1.
|
Finite weakly ergodic Markov chains which are locally or globally strongly ergodic. Stud. Cerc. Mat. 49 (1997), 355-363. (Romanian) |
2.
|
Weakly ergodic classes of states, I. Stud. Cerc. Mat. 50 (1998), 409-415. |
3.
|
Weakly ergodic classes of states, II. Math. Rep. (Bucur.) 1(51) (1999), 117-121. |
4.
|
A generalization of a theorem of Hajnal. Rev. Roumaine Pures Appl. 45 (2000), 487-494. |
5.
|
Uniformly weakly ergodic classes. Rev. Roumaine Pures Appl. 45 (2000), 983-991. |
6.
|
Strongly ergodic classes. Rev. Roumaine Pures Appl. 47 (2002), 373-384. |
7.
|
Uniformly strongly ergodic classes. Rev. Roumaine Pures Appl. 47 (2002), 485-497. |
8.
|
Applications of the ergodicity coefficient of Dobrushin to finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 257-265. |
9.
|
Ergodic theorems for finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 383-390. |
10.
|
A class of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 4(54) (2002), 225-232. |
11.
|
Bounds for the nontrivial eigenvalues of stochastic matrices: a local approach. Math. Rep. (Bucur.) 6(56) (2004), 93-104. |
12.
|
New classes of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 6(56) (2004), 141-158. |
13.
|
Weak and uniform weak Δ-ergodicity for [Δ]-groupable finite Markov chains.
Math. Rep. (Bucur.) 6(56) (2004), 275-293. |
14.
|
Blocks method in finite Markov chain theory. Rev. Roumaine Pures Appl. 50 (2005), 205-236. |
15.
|
Ergodicity coefficients of several matrices. Math. Rep. (Bucur.) 7(57) (2005),
125-148. |
16.
|
General Δ-ergodic theory of finite Markov chains. Math. Rep. (Bucur.) 8(58) (2006), 83-117. |
17.
|
General Δ-ergodic theory: Δ-stability, basis, and new results. Math. Rep. (Bucur.) 8(58)
(2006), 219-238. |
18.
|
Perturbed finite Markov chains. Math. Rep. (Bucur.) 9(59) (2007), 183-210. |
19.
|
Δ-ergodic theory and simulated annealing. Math. Rep. (Bucur.) 9(59) (2007),
279-303. |
20.
|
General Δ-ergodic theory: an extension. Rev. Roumaine Math. Pures Appl. 53 (2008), 209-226. |
21.
|
Δ-ergodic theory and reliability theory. Math. Rep. (Bucur.) 10(60) (2008),
73-95. |
22.
|
What do we need for simulated annealing? Math. Rep. (Bucur.) 11(61) (2009), 231-247. |
23.
|
Ergodicity coefficients of several matrices: new results and applications. Rev. Roumaine Math. Pures Appl. 55 (2010), 53-77. |
24.
|
General Δ-ergodic theory, with some results on simulated annealing. Math. Rep. (Bucur.) 13(63) (2011), 171-196. |
25.
|
GΔ1,Δ2
in action. Rev. Roumaine Math. Pures Appl. 55 (2010), 387–406. |
26.
|
A hybrid Metropolis-Hastings chain. Rev. Roumaine Math. Pures Appl. 56 (2011), 207-228. |
27.
|
P(Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At) in the Markov chain case: from an upper bound to a method. Rev. Roumaine Math. Pures Appl. 57 (2012), 145-158. |
28.
|
Waiting time random variables: upper bounds. Markov Process. Related Fields 19 (2013), 791-818. Abstract. |
29.
|
Other results on the Markovian inequality P(Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At)≤ ᾱ(Qs,t). Rev. Roumaine Math. Pures Appl. 61 (2016), 157-183. |
30.
|
G method in action: from exact sampling to approximate one. Rev. Roumaine Math. Pures Appl. 62 (2017), 413-452. |
31.
|
G method in action: fast exact sampling from set of permutations of order n according to Mallows model through Cayley metric. Braz. J. Probab. Stat. 31 (2017), 338-352. |
32.
|
G method in action: fast exact sampling from set of permutations of order n according to Mallows model through Kendall metric. Rev. Roumaine Math. Pures Appl. 63 (2018), 259-280. |
33.
|
G method in action: normalization constant, important probabilities, and fast exact sampling for Potts model on trees. Rev. Roumaine Math. Pures Appl. 65 (2020), 103-130. |
34.
|
A Gibbs sampler in a generalized sense. An. Univ. Craiova Ser. Mat. Inform. 43 (2016), 62-71. |
35.
|
A Gibbs sampler in a generalized sense, II. An. Univ. Craiova Ser. Mat. Inform. 45 (2018), 103-121. |
36.
|
Ewens distribution on Sn is a wavy probability distribution with respect
to n partitions. An. Univ. Craiova Ser. Mat. Inform. 47 (2020), 1-24. |
37.
|
Δ-wavy probability distributions and Potts model. An. Univ. Craiova Ser. Mat. Inform. 49 (2022), 208-249. |
38.
|
G+ method in action: new classes of nonnegative matrices, with results. ROMAI Journal 20 (2024), 99-143; arXiv:2304.05227. |
39.
|
G method in action: pivot+ algorithm for self-avoiding walk. arXiv:2310.07564. |