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Let (Xn)n≥0 be a finite Markov chain with state space S. Let 0 ≤ a ≤ 1 and

∅ 6= A ⊆ S. We give necessary and/or sufficient conditions for lim
n→∞

P (Xn ∈ A) =

a and lim
n→∞

P (Xn ∈ A) ≥ a in the language of ∆-ergodic theory. These are

applied, in particular, to the simulated annealing and lead to some basic matters
in this field.
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1. ∆-ERGODIC THEORY

In this section we recall elements of ∆-ergodic theory (see [14] and [16])
that we shall need. These are used to give necessary and/or sufficient condi-
tions for lim

n→∞
P (Xn ∈ A) = a and lim

n→∞
P (Xn ∈ A) ≥ a, where (Xn)n≥0 is a

finite Markov chain with state space S, ∅ 6= A ⊆ S, and 0 ≤ a ≤ 1.
Consider a finite Markov chain (Xn)n≥0 with state space S = {1, 2, . . . , r},

initial distribution p0, and transition matrices (Pn)n≥1. We frequently shall
refer to it as the (finite) Markov chain (Pn)n≥1 . For all integers m ≥ 0, n > m,
define

Pm,n = Pm+1Pm+2 . . . Pn =
(
(Pm,n)ij

)
i,j∈S

.

(The entries of a matrix Z will be denoted Zij .)
Set

Par(E) = {∆ | ∆ is a partition of E } ,
where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.

Definition 1.1. Let ∆1,∆2 ∈ Par(E). We say that ∆1 is finer than ∆2 if
∀V ∈ ∆1, ∃W ∈ ∆2 such that V ⊆W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
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In ∆-ergodic theory the natural space is S ×N, called state-time space.
Let ∅ 6= A ⊆ S and ∅ 6= B ⊆ N. Let Σ ∈ Par(A). Suppose that Σ is an
ordered set. Frequently, when we only use a partition Σ of A or Σ = ({i})i∈A
([14] corresponds to the latter situation), we shall omit to precise this.

Definition 1.2 ([16]). Let i, j ∈ S. We say that i and j are in the same
weakly ergodic class on A×B (or on A×B with respect to Σ, or on (A×B,Σ)
when confusion can arise) if ∀K ∈ Σ, ∀m ∈ B we have

lim
n→∞

∑
k∈K

[
(Pm,n)ik − (Pm,n)jk

]
= 0.

Write i A×B∼ j (with respect to Σ) (or i
(A×B,Σ)∼ j) when i and j are in

the same weakly ergodic class on A×B. Then A×B∼ is an equivalence relation
and determines a partition ∆ = ∆ (A×B,Σ) = (C1, C2, . . . , Cs) of S. The
sets C1, C2, . . . , Cs are called weakly ergodic classes on A×B.

Definition 1.3 ([16]). Let ∆ = (C1, C2, . . . , Cs) be the partition of weakly
ergodic classes on A× B of a Markov chain. We say that the chain is weakly
∆-ergodic on A × B. In particular, a weakly (S)-ergodic chain on A × B is
called weakly ergodic on A×B for short.

Definition 1.4 ([16]). Let (C1, C2, . . . , Cs) be the partition of weakly er-
godic classes on A×B of a Markov chain with state space S and ∆ ∈ Par(S).
We say that the chain is weakly [∆]-ergodic on A×B if ∆ � (C1, C2, . . . , Cs) .

In connection with the above notions and notation we mention some
special cases (Σ ∈ Par(A)):

1. A × B = S ×N. In this case we can write ∼ instead of S×N∼ (or Σ∼
instead of

(S×N,Σ)∼ ) and can omit ‘on S ×N’ in Definitions 1.2, 1.3, and 1.4.

2. A = S. In this case we can write B∼ instead of S×B∼ (or
(B,Σ)∼ instead

of
(S×B,Σ)∼ ) and can replace ‘S × B’ by ‘(time set) B (with respect to Σ)’ (or

by ‘(B,Σ)’) in Definitions 1.2, 1.3, and 1.4. A special subcase is B = {m}
(m ≥ 0); in this case we can write m∼ (or

(m,Σ)∼ ) and can replace ‘on (time set)
{m}’ by ‘at time m’ in Definitions 1.2, 1.3, and 1.4.

3. B = N. In this case we can set A∼ instead of A×N∼ (or
(A,Σ)∼ instead of

(A×N,Σ)∼ ) and can replace ‘A×N’ by ‘(state set) A (with respect to Σ)’ (or by
‘(A,Σ)’) in Definitions 1.2, 1.3, and 1.4.

The following three definitions are special cases of Definitions 1.13, 1.16,
and 1.17 in [16], respectively.
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Definition 1.5. Let C be a weakly ergodic class on A× B (with respect
to Σ). We say that C is a strongly ergodic class on A×B if ∀i ∈ C, ∀K ∈ Σ,
∀m ∈ B the limit

lim
n→∞

∑
j∈K

(Pm,n)ij := σm,K = σm,K(C)

exists and does not depend on i.

Definition 1.6. Consider a weakly ∆-ergodic chain on A×B. We say that
the chain is strongly ∆-ergodic on A × B if any C ∈ ∆ is a strongly ergodic
class on A×B. In particular, a strongly (S)-ergodic chain on A×B is called
strongly ergodic on A×B for short.

Definition 1.7. Consider a weakly [∆]-ergodic chain on A × B. We say
that the chain is strongly [∆]-ergodic on A×B if any C ∈ ∆ is included in a
strongly ergodic class on A×B.

In connection with the last three definitions we mention some special
cases:

1. A×B = S ×N. In this case we can omit ‘on S ×N’.
2. A = S. In this case we can replace ‘S × B’ by ‘(time set) B’. In the

special subcase B = {m} we can replace ‘on S × {m}’ by ‘at time m’.
3. B = N. In this case we can replace ‘A×N’ by ‘(state set) A’.
Set

Rm,n = {T | T is a real m× n matrix} ,

Nm,n = {T | T is a nonnegative m× n matrix} ,

Sm,n = {T | T is a stochastic m× n matrix} ,
Rm = Rm,m, Nm = Nm,m, and Sm = Sm,m.

Let T = (Tij) ∈ Rm,n, ∅ 6= U ⊆ {1, 2, . . . ,m}, ∅ 6= V ⊆ {1, 2, . . . , n}, and
Σ = (K1,K2, . . . ,Kp) ∈ Par (V ) . Suppose that Σ is an ordered set. Define

TU = (Tij)i∈U,j∈{1,2,...,n} , T V = (Tij)i∈{1,2,...,m},j∈V , T V
U = (Tij)i∈U,j∈V ,

T+ =
(
T+

ij

)
, T+

ij =
∑

k∈Kj

Tik, ∀i ∈ {1, 2, . . . ,m} ,∀j ∈ {1, 2, . . . , p}

(we call T+ =
(
T+

ij

)
the reduced matrix of T on (V,Σ); T+ = T+ (V,Σ) , i.e.,

it depends on (V,Σ) (if confusion can arise we write T+V or T+(V,Σ) instead
of T+); see [16]),

α (T ) = min
1≤i,j≤m

n∑
k=1

min (Tik, Tjk)
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(if T ∈ Sm,n, then α (T ) is called Dobrushin’s ergodicity coefficient of T (see,
e.g., [4] or [7, p. 56])),

α (T ) =
1
2

max
1≤i,j≤m

n∑
k=1

|Tik − Tjk| ,

γ∆ (T ) = min
K∈∆

α (TK) , γ∆ (T ) = max
K∈∆

α (TK)

(see [12] for γ∆ and γ∆), and

|‖T‖|∞ = max
1≤i≤m

n∑
j=1

|Tij |

(the ∞-norm of T ).
A vector x ∈ Rn will be understood as a row vector and x′ is its transpose.

Define e = e(n) = (1, 1, . . . , 1) ∈ Rn.

Definition 1.8. Let C be a strongly ergodic class on A×B (with respect
to Σ ∈ Par(A)). We say that C has limits Λm, m ∈ B, if

lim
n→∞

(
(Pm,n)C

)+ = Λm, ∀m ∈ B.

In particular, if there exists a matrix Λ such that Λm = Λ, ∀m ∈ B, then we
say that C has limit Λ.

The following definition is a generalization of Definition 2.19 in [16].

Definition 1.9. Consider a strongly [∆]- or ∆-ergodic Markov chain on
A×B. We say that the chain has limits Πm, m ∈ B, if

lim
n→∞

(Pm,n)+ = Πm, ∀m ∈ B.

In particular, if there exists a matrix Π such that Πm = Π, ∀m ∈ B, then we
say that it has limit Π.

The following result is an improvement of Theorem 1.16 in [17].

Theorem 1.10. Let (Pn)n≥1 be a Markov chain.
(i) If ∃∆ ∈ Par(S) such that the chain is strongly ∆-ergodic on A × B

with respect to Σ and has limits Πm, m ∈ B, then ∃∆′ ∈ Par(S) with ∆ � ∆′

such that it is strongly ∆′-ergodic on CA×B with respect to (CA) , where CA
is the complement of A, and has limits e′ − h′m, m ∈ B, where hm ∈ Rr,

(hm)i :=
|Σ|∑
j=1

(Πm)ij , ∀m ∈ B, ∀i ∈ S (|Σ| is the cardinal of Σ).

(ii) The chain is strongly ∆-ergodic on A × B with respect to (A) and
has limits Πm, m ∈ B, if and only if it is strongly ∆-ergodic on CA×B with
respect to (CA) and has limits e′ −Πm, m ∈ B.

Proof. Obvious. �
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Concerning Theorem 1.10(ii), if Πm = e′, ∀m ∈ B, we can say more.

Theorem 1.11. Let (Pn)n≥1 be a Markov chain. Then the following state-
ments are equivalent.

(i) The chain is strongly ergodic on A × B with respect to (A) and has
limit e′.

(ii) The chain is strongly ergodic on CA × B with respect to (CA) and
has limit 0.

(iii) The chain is strongly ergodic on CA×B (with respect to ({i})i∈CA)
and has limit 0.

Proof. Obvious. �

Theorem 1.12. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let ∅ 6= A ⊆ S. Then

P (Xn ∈ A) = p0 (P0,n)+ ,

where (·)+ = (·)+(A,(A)) .

Proof. Let A = {i1, i2, . . . , iw}. Then

P (Xn ∈ A) =
w∑

t=1

P (Xn = it) =
w∑

t=1

r∑
s=1

(p0)s (P0,n)sit
=

=
r∑

s=1

(p0)s

w∑
t=1

(P0,n)sit
= p0 (P0,n)+ . �

Let π be a probability distribution on S (S = {1, 2, . . . , r}). Define

suppπ = {i | i ∈ S and πi > 0}

(the support of π). Note that supp π = S if and only if π > 0.
Below we give main results related to lim

n→∞
P (Xn ∈ A) = a and

lim
n→∞

P (Xn ∈ A) ≥ a, 0 ≤ a ≤ 1 (we build a bridge between these and ∆-

ergodic theory).

Theorem 1.13. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let p0 > 0, ∅ 6= A ⊆ S, and
0 ≤ a ≤ 1. If the chain is strongly ergodic on A at time 0 with respect to (A)
and has limit ae′, then

lim
n→∞

P (Xn ∈ A) = a.

Proof. By Theorem 1.12,

lim
n→∞

P (Xn ∈ A) = lim
n→∞

p0 (P0,n)+ = p0ae
′ = ap0e

′ = a. �
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If a = 1, we can say more. (The converse of Theorem 1.13 is not true. In-
deed, if Pn = I2, ∀n ≥ 1, p0 =

(
1
2 ,

1
2

)
, and A = {1}, then lim

n→∞
P (Xn ∈ {1}) =

1
2 , but (Xn)n≥0 is not strongly ergodic on {1} at time 0 with respect to ({1})
(it is strongly ({1} , {2})-ergodic on {1} at time 0 with respect to ({1}) and
has limit ( 1 0 )′).)

Theorem 1.14. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let p0 > 0 and ∅ 6= A ⊆ S.
Then the following statements are equivalent.

(i) lim
n→∞

P (Xn ∈ A) = 1.

(ii) The chain is strongly ergodic on A at time 0 with respect to (A) and
has limit e′.

(iii) The chain is strongly ergodic on CA at time 0 with respect to (CA)
and has limit 0.

(iv) The chain is strongly ergodic on CA at time 0 (with respect to
({i})i∈CA) and has limit 0.

Proof. (i) ⇒ (iii) By (i), lim
n→∞

P (Xn ∈ CA) = 0. Let

b = max
s∈S

lim sup
n→∞

∑
k∈CA

(P0,n)sk .

Suppose that b > 0. Then ∃s0 ∈ S such that

b = lim sup
n→∞

∑
k∈CA

(P0,n)s0k .

It follows that there exists a sequence 1 ≤ n1 < n2 < · · · such that∑
k∈CA

(P0,nt)s0k → b as t→∞.

Further,
0 = lim

t→∞
P (Xnt ∈ CA) =

(by Theorem 1.12)

= lim
t→∞

p0 (P0,nt)
+(CA,(CA)) ≥ lim

t→∞
(p0)s0

∑
k∈CA

(P0,nt)s0k = (p0)s0
b > 0,

and we have reached a contradiction. Therefore, b = 0 and this implies that
lim

n→∞
(P0,n)+(CA,(CA)) exists and is equal to 0, i.e., (iii).

(ii) ⇒ (i) See Theorem 1.13.
(ii) ⇔ (iii) ⇔ (iv) See Theorem 1.11. �

Theorems 1.13 and 1.14 can be improved by removing the condition p0> 0.
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Theorem 1.15. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let 0 ≤ a ≤ 1 and ∅ 6= A ⊆
S. If supp p0 is included in a strongly ergodic class on A at time 0 with respect
to (A) and the class has limit ae′, then

lim
n→∞

P (Xn ∈ A) = a.

Proof. Let C be a strongly ergodic class on A at time 0 with respect to
(A) and with supp p0 ⊆ C. By Theorem 1.12,

lim
n→∞

P (Xn ∈ A) = lim
n→∞

p0 (P0,n)+ = lim
n→∞

(p0)
C ((P0,n)+

)
C

=

= lim
n→∞

(p0)
C ((P0,n)C

)+ = (p0)
C ae′ = a (p0)

C e′ = a. �

If a = 1, we can say more. (The converse of Theorem 1.15 is not true. In-
deed, if Pn = I3, ∀n ≥ 1, p0 =

(
1
2 ,

1
2 , 0
)
, and A = {1}, then lim

n→∞
P (Xn ∈ {1})

= 1
2 , but supp p0 is not included in a strongly ergodic class on {1} at time 0

with respect to ({1}).)

Theorem 1.16. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let ∅ 6= A ⊆ S. Then the
following statements are equivalent.

(i) lim
n→∞

P (Xn ∈ A) = 1.

(ii) supp p0 is included in a strongly ergodic class on A at time 0 with
respect to (A) and the class has limit e′.

(iii) supp p0 is included in a strongly ergodic class on CA at time 0 with
respect to (CA) and the class has limit 0.

(iv) supp p0 is included in a strongly ergodic class on CA at time 0 (with
respect to ({i})i∈CA) and the class has limit 0.

Proof. This is left to the reader. (It is easy to obtain the results analogous
to Theorems 1.10 and 1.11 for classes.) �

Theorem 1.17. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let 0 ≤ a ≤ 1 and ∅ 6= A ⊆
S. If the chain is strongly [∆]-ergodic on A at time 0 with respect to (A) and
has limit greater or equal to ae′, then

lim
n→∞

P (Xn ∈ A) ≥ a.

Proof. By Theorem 1.12,

lim
n→∞

P (Xn ∈ A) = lim
n→∞

p0 (P0,n)+ ≥ p0ae
′ = ap0e

′ = a. �

Theorem 1.17 also can be improved.
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Theorem 1.18. Let (Xn)n≥0 be a Markov chain with state space S, initial
distribution p0, and transition matrices (Pn)n≥1. Let 0 ≤ a ≤ 1 and ∅ 6= A ⊆
S. If supp p0 is included in a union of strongly ergodic classes on A at time 0
with respect to (A) and this union has limit (we join the limits of all classes
belonging to union) greater or equal to ae′, then

lim
n→∞

P (Xn ∈ A) ≥ a.

Proof. This is left to the reader. �

2. SIMULATED ANNEALING

In this section we show that some results in the previous section apply, in
particular, to the simulated annealing. Then we consider some basic matters
and make some considerations on them.

Set

a+ =
{
a if a > 0,
0 if a ≤ 0,

where a ∈ R.
Let H : S → R be a nonconstant function. We want to find min

y∈S
H (y) .

A stochastic optimization technique for solving this problem approximately
when S is very large is the simulated annealing (see, e.g., [1], [5], [9], [11],
[15], [18], [20], and [21]). For this, consider a sequence (βn)n≥1 of positive real
numbers with βn →∞ as n→∞ ((βn)n≥1 is called the cooling schedule), an
irreducible stochastic matrix G = (Gij)i,j∈S (G is called the generation ma-
trix ) and a Markov chain (Xn)n≥0 with state space S and transition matrices
(Pn)n≥1 , where

(Pn)ij =

 Gije−βn(H(j)−H(i))+ if i 6= j,

1−
∑
k 6=i

(Pn)ik if i = j,

∀i, j ∈ S. (Xn)n≥0 (or, by convention, (Pn)n≥1) is called the (classical) sim-
ulated annealing chain (the (classical) simulated annealing for short). Note
that the results below can be applied to all versions of simulated annealing
(also, to all versions of quantum annealing (see, e.g., [3] and [19])), except for
Theorem 2.26 and Remark 2.27.

Let
S∗ = S∗ (H) =

{
i | i ∈ S and min

y∈S
H (y) = H(i)

}
(the set of global minima of H; it only depends on H).
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Taking A = S∗, Theorems 1.13, 1.14, 1.15, 1.16, 1.17, and 1.18 yield nece-
ssary and/or sufficient conditions for lim

n→∞
P (Xn ∈ S∗) = a and lim

n→∞
P (Xn ∈

S∗) ≥ a (0 ≤ a ≤ 1). For other approaches, see, e.g., [2], [5], and [20]. As for,
e.g., Theorem 1.14, we need:

1) necessary and/or sufficient conditions for (ii), or (iii), or (iv);
2) ergodicity coefficients and other tools and methods for to solve 1);
3) speed of convergence for the types of chains which appear at 1).
Below we make some considerations related to the basic matters 1), 2),

and 3).

First, we consider matter 1).

Remark 2.1. If a chain is strongly ergodic, then it is strongly ergodic at
time 0. The converse is not true. E.g., let

P1 =

(
1
2

1
2

1
2

1
2

)
, P2n = I2, P2n+1 =

(
0 1
1 0

)
, ∀n ≥ 1.

Obviously, this chain is strongly ergodic at time 0 and has limit(
1
2

1
2

1
2

1
2

)
,

but is not strongly ergodic. Note that the simulated annealing has the strong
ergodicity property under some conditions (see, e.g., [9], [11], [18], and [21]),
but nobody (as far as we know) not examined the conditions we need such that
the strong ergodicity at time 0 holds. A problem appears here: Are there con-
ditions for the simulated annealing which guarantee the equivalence between
strong ergodicity and strong ergodicity at time 0?

Theorem 2.2 ([6]). Let (Pn)n≥1 be a Markov chain. Then it is weakly
ergodic if and only if there exists a sequence 0 ≤ n1 < n2 < · · · such that∑

s≥1

α
(
Pns,ns+1

)
= ∞.

Proof. See, e.g., [6] or [7, p. 219]. �

Remark 2.3. A sufficient condition for weak ergodicity at time 0 follows
from the above theorem, namely, if there exists a sequence 0 ≤ n1 < n2 < · · ·
such that ∑

s≥1

α
(
Pns,ns+1

)
= ∞,

then the chain is weakly ergodic at time 0. A proof of this result is as the
proof of “⇐” of Theorem 2.2 and an other is as follows. By Theorem 2.2, the
above hypothesis implies that the chain is weakly ergodic. But weak ergodicity
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implies weak ergodicity at time 0. Further, we mention, obviously, that the
above condition is not necessary for weak ergodicity at time 0. An example is

P1 =

(
1
2

1
2

1
2

1
2

)
, Pn = I2, ∀n ≥ 2,

since

Pm,n =
{
P1 if m = 0,
I2 if m > 0,

∀m,n, 0 ≤ m < n. A problem occurs here: Give necessary and sufficient
conditions for weak ergodicity at time 0.

Theorem 2.4 ([10]). Let (Pn)n≥1 be a Markov chain. If
(i) the chain is weakly ergodic

and
(ii)

∑
n≥1

‖ψn+1 − ψn‖1 <∞, where ψn is a probability vector and ψnPn =

ψn, ∀n ≥ 1,
then it is strongly ergodic.

Proof. See, e.g., [8, pp. 160−162] or [10]. �

Remark 2.5. As for strong ergodicity at time 0, if (Pn)n≥1 is weakly
ergodic at time 0 and (ii) from Theorem 2.4 holds, then it does not follow that
it is strongly ergodic at time 0. Indeed, let

P1 =

(
1
3

2
3

1
3

2
3

)
, P2n =

(
0 1
1 0

)
:= P, P2n+1 = I2, ∀n ≥ 1.

Then it is weakly ergodic at time 0 while (ii) in Theorem 2.4 holds since by
taking ψ1 =

(
1
3 ,

2
3

)
, ψn =

(
1
2 ,

1
2

)
, ∀n ≥ 2, we have ψnPn = ψn, ∀n ≥ 1, and∑

n≥1
‖ψn+1 − ψn‖1 = ‖ψ2 − ψ1‖1 <∞. But the chain is not strongly ergodic at

time 0 since with

Tn := {k | 1 ≤ k ≤ n and Pk = P } , ∀n ≥ 1, and Q :=

(
2
3

1
3

2
3

1
3

)
we have

P0,n =
{
P1 if |Tn| is even,
Q if |Tn| is odd,

∀n ≥ 1. Therefore, a result similar to Theorem 2.4, keeping (ii) from there,
does not exist for strong ergodicity at time 0. Open problem: Find a result
‘similar’ to Theorem 2.4 for strong ergodicity at time 0.

Remark 2.6 (see again Remark 2.1). If a chain is strongly ergodic at time
0, then it is strongly ergodic on A at time 0 with respect to (A) (∅ 6= A ⊆ S).
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More generally, if a chain is strongly ergodic at time 0, then it is strongly
ergodic on A at time 0 with respect to Σ, ∀Σ ∈ Par(A). The converse is not
true. Indeed, if

Pn =

 1 0 0
0 1 0
1
2

1
2 0

 , ∀n ≥ 1,

then the chain is strongly ergodic on {3} at time 0 with respect to ({3}) , but
it is not strongly ergodic at time 0.

Remark 2.7. Related to (iv) in Theorem 1.14, a main objective is to
obtain as many columns as possible belonging to the set{

j | j ∈ S and lim
n→∞

(P0,n){j} = 0
}
.

For this matter there exist some results in [15].

Second, we consider matter 2).

Theorem 2.8 ([16]). Let P ∈ Rm,n, Q ∈ Rn,p, ∅ 6= V ⊆ {1, 2, . . . , p},
and Σ ∈ Par (V ) . Then

(PQ)+ = PQ+.

Proof. See [16]. �

Remark 2.9. The well-known equation e′ = Pe′ when P ∈ Sm,n follows
from the above result taking P ∈ Sm,n, Q ∈ Sn,p, V = {1, 2, . . . , p} , and
Σ = (V ) , since in this case (PQ)+ = Q+ = e′.

Theorem 2.10 ([4]). Let P ∈ Sm,n and Q ∈ Sn,p. Then

α (PQ) ≤ α (P )α (Q) .

Proof. See, e.g., [4], or [7, pp. 58–59], or [8, pp. 145–146]. �

Theorem 2.11. Let P ∈ Sm,n, Q ∈ Sn,p, and Σ ∈ Par ({1, 2, . . . , p}) .
Then

α
(
(PQ)+

)
≤ α (P )α

(
Q+
)
.

Proof. See Theorems 2.8 and 2.10. (We can apply Theorem 2.10 be-
cause Q ∈ Sn,p and Σ ∈ Par ({1, 2, . . . , p}) implies that Q+ is a stochastic
matrix.) �

By Theorems 2.8 and 2.11 and induction we have

α
(
(Q1Q2 . . . Qt)

+) ≤ α (Q1)α (Q2) . . . α
(
(Qt)

+) ,
∀Q1 ∈ Sm1,m2 , ∀Q2 ∈ Sm2,m3 , . . ., ∀Qt ∈ Smt,mt+1 , ∀Σ ∈ Par ({1, 2, . . . ,mt+1}) .
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Remark 2.12. (a) A main drawback of the above inequality is the fact
that the operator (·)+ only appears at the last position of the right term.

(b) In general, even when Σ ∈ Par ({1, 2, . . . , p}) we do not have

α
(
(PQ)+

)
≤ α

(
P+
)
α
(
Q+
)
.

Indeed, let

P =

 0 1 0
0 1 0
0 0 1

 , Q =

 1 0 0
1 0 0
0 0 1

 , and Σ = ({1} , {2, 3}) .

Then

PQ = Q, (PQ)+ = Q+ =

 1 0
1 0
0 1

 , P+ =

 0 1
0 1
0 1

 ,

α
(
(PQ)+

)
= α

(
Q+
)

= 1 and α
(
P+
)

= 0.
Hence

1 = α
(
(PQ)+

)
> α

(
P+
)
α
(
Q+
)

= 0.

This negative result raises the following question: When do we have α
(
(PQ)+

)
≤ α (P+)α (Q+)?

(c) If Q ∈ Sn,p, ∅ 6= V ⊂ {1, 2, . . . , p} , and Σ ∈ Par (V ) , it is possible
that Q+ is not a stochastic matrix. This drawback can be removed if we replace
Σ by Σ′ = Σ ∪ {CV } .

Let T ∈ Rm,n, ∅ 6= W ⊆ {1, 2, . . . , n}, and Σ ∈ Par (W ) . Suppose that
Σ is an ordered set. Define

αΣ (T ) = min
1≤i,j≤m

∑
K∈Σ

min

(∑
k∈K

Tik,
∑
k∈K

Tjk

)
and

αΣ (T ) =
1
2

max
1≤i,j≤m

∑
K∈Σ

∣∣∣∣ ∑
k∈K

Tik −
∑
k∈K

Tjk

∣∣∣∣.
(Because Σ ∈ Par (W ), in fact αΣ and αΣ only work on TW ; equivalently, we
can work on T if instead of Σ ∈ Par (W ) we use Σ ∪ {CW} .)

Theorem 2.13. Let T ∈ Rm,n, ∅ 6= W ⊆ {1, 2, . . . , n}, and Σ ∈ Par (W ) .
Then

αΣ (T ) = α
(
T+
)

and αΣ (T ) = α
(
T+
)
.

Proof. Obvious. �

Remark 2.14. It follows from the above result that the coefficients αΣ

and αΣ bring no news for our problems.
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Below, we generalize part of the above results (these generalizations are
related to Theorems 1.17 and 1.18).

Definition 2.15. Let T ∈ Nm,n. We say that T is a generalized stochastic
matrix if ∃a ≥ 0,∃Z ∈ Sm,n such that T = aZ.

Let ∆1∈Par({1, 2, . . . ,m}) and ∆2∈Par({1, 2, . . . , n}). Define (see [13])

G∆1,∆2 = {P | P ∈ Sm,n and ∀K ∈ ∆1, ∀L ∈ ∆2,

PL
K is a generalized stochastic matrix

}
.

In particular, if m = n and ∆1 = ∆2 := ∆, we set G∆ = G∆,∆.

The following result is a generalization of Theorem 2.10.

Theorem 2.16 ([13]). Let ∆1 ∈ Par ({1, 2, . . . ,m}) and ∆2 ∈ Par({1, 2,
. . . , n}). Let P ∈ G∆1,∆2 and Q ∈ Sn,p. Then

γ∆1
(PQ) ≤ γ∆1

(P ) γ∆2
(Q) .

Proof. See [13]. �

The following result is a generalization of Theorem 2.11 (obviously, with
the same main drawback).

Theorem 2.17. Let ∆1 ∈ Par ({1, 2, . . . ,m}), ∆2 ∈ Par ({1, 2, . . . , n})
and Σ ∈ Par ({1, 2, . . . , p}) . Let P ∈ G∆1,∆2 and Q ∈ Sn,p. Then

γ∆1

(
(PQ)+

)
≤ γ∆1

(P ) γ∆2

(
Q+
)
.

Proof. See Theorems 2.8 and 2.16. (We can apply Theorem 2.16 be-
cause Q ∈ Sn,p and Σ ∈ Par ({1, 2, . . . , p}) implies that Q+ is a stochastic
matrix.) �

Remark 2.18. As above, we can consider other two coefficients γΣ
∆ and

γΣ
∆ (γΣ

∆ (T ) := min
K∈∆

αΣ (TK) and γΣ
∆ (T ) := max

K∈∆
αΣ (TK)), but neither of

them brings some news (since γΣ
∆ (T ) = γ∆ (T+) and γΣ

∆ (T ) = γ∆ (T+),
∀T ∈ Rm,n).

Theorem 2.19. Let (Pn)n≥1 be a Markov chain. Then the chain is weakly
ergodic on A×B with respect to Σ if and only if it is weakly ergodic on S×B
with respect to Σ ∪ {CA} .

Proof. Obvious. �

Theorem 2.20. Let (Pn)n≥1 be a Markov chain. Then the chain is weakly
ergodic on A×B with respect to Σ if and only if

lim
n→∞

α
(
(Pm,n)+

)
= 0, ∀m ∈ B.
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Proof. Obvious. �

Theorem 2.11 can be used to prove

Theorem 2.21. Let (Pn)n≥1 be a weakly ergodic Markov chain on A at
time l ≥ 0 with respect to Σ (Σ ∈ Par(A)). Then it is weakly ergodic on A at
time m with respect to Σ, ∀m, 0 ≤ m ≤ l.

Proof. By Theorem 2.19, the chain is weakly ergodic on S at time l with
respect to Σ′ := Σ∪ {CA}. Further, we show that the chain is weakly ergodic
on S at time m with respect to Σ′, ∀m, 0 ≤ m ≤ l. Let 0 ≤ m ≤ l.

Case 1. l = 0. Obvious.

Case 2. l > 0. The subcase m = l is obvious. Now, let 0 ≤ m < l. Then,
by Theorem 2.20, for n > l we have

α
(
(Pm,n)+

)
≤ α (Pm,l)α

(
(Pl,n)+

)
→ 0 as n→∞.

Therefore, the chain is weakly ergodic on S at time m with respect to Σ′. Now,
by Cases 1 and 2 and using again Theorem 2.19, the chain is weakly ergodic
on A at time m with respect to Σ, ∀m, 0 ≤ m ≤ l. �

Remark 2.22. Using Theorem 2.17 and considering a chain (Pn)n≥1 with
Pn ∈ G∆, ∀n ≥ 1, the reader can try to prove a result similar to Theorem 2.21.

Third, we consider matter 3).

Definition 2.23 (see, e.g., [7, p. 222]). Let T ∈ Rm,n. The matrix obtained
from T by replacing all its nonzero entries by ones is called the incidence matrix
of T .

Let T,Z ∈ Rm,n. We write T ∼ Z if T and Z have the same incidence
matrix.

Theorem 2.24. Let P,Q ∈ Rm,n. Then
(i) ‖xP − xQ‖1 ≤ ‖|P −Q|‖∞, ∀x ∈ Rm with ‖x‖1 ≤ 1;
(ii) ‖xP − xQ‖∞ ≤ ‖|P −Q|‖∞, ∀x ∈ Rm with ‖x‖1 ≤ 1.

Proof. (i) Let x ∈ Rm with ‖x‖1 ≤ 1. Then

‖xP − xQ‖1 =
∥∥(P −Q)′ x′

∥∥
1
≤
∥∥∣∣(P −Q)′

∣∣∥∥
1

∥∥x′∥∥
1
≤

≤
∥∥∣∣(P −Q)′

∣∣∥∥
1

= ‖|P −Q|‖∞ .

(ii) This follows from (i) because ‖·‖∞ ≤ ‖·‖1. �

Theorem 2.25. Let (Pn)n≥1 be a strongly ergodic Markov chain at time
0 with limit Π0. Let pn be the distribution of Markov chain at time n (pn =
p0P0,n), ∀n ≥ 1. Setting Π0 = e′π0, we have

‖pn − π0‖1 ≤ ‖|P0,n −Π0|‖∞ .
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Proof. By Theorem 2.24(i), we have

‖pn − π0‖1 = ‖p0P0,n − p0Π0‖1 ≤ ‖|P0,n −Π0|‖∞ . �

Let (V,E) be a connected directed graph (V is the set of vertices and E
is the set of edges). Let i, j ∈ V , i 6= j. Denote

d (i, j) = min {t | t ≥ 1 and ∃i0, i1, . . . , it ∈ V such that

i0 = i, it = j, and (i0, i1) , (i1, i2) , . . . , (it−1, it) ∈ E} .

Theorem 2.26. Let (Pn)n≥1 be a strongly ergodic Markov chain at time 0
with limit Π0. Let 0 ≤ ε < 1. Suppose that P1 determines a connected directed
graph, Ps ∼ Pt, ∀s, t ≥ 1, Π0 = e′π0, and suppπ0 6= S. If ‖|P0,n −Π0|‖∞ ≤ ε,
then

n ≥ n∗ := max
i∈S−supp π0

min
j∈supp π0

d (i, j) .

Proof. Case 1. n∗ = 1. Obvious.
Case 2. n∗ ≥ 2. We have∑

j∈supp π0

∣∣ (P0,n)ij − (π0)j

∣∣ = ∑
j∈supp π0

∣∣ (P0,n)ij − (Π0)ij

∣∣ ≤
≤ ‖|P0,n −Π0|‖∞ , ∀i ∈ S.

Therefore, ∑
j∈supp π0

∣∣ (P0,n)ij − (π0)j

∣∣ ≤ ε, ∀i ∈ S.

Now, let i1 ∈ S − suppπ0 for which ∃j1 ∈ suppπ0 such that n∗ = d (i1, j1) .
Then

(P0,n)i1j = 0, ∀j ∈ suppπ0, ∀n, 1 ≤ n < n∗.

Suppose that ∃n, 1 ≤ n < n∗, such that∑
j∈supp π0

∣∣ (P0,n)ij − (π0)j

∣∣ ≤ ε, ∀i ∈ S.

Then we have, for i = i1,

1 > ε ≥
∑

j∈supp π0

∣∣ (P0,n)i1j − (π0)j

∣∣ = ∑
j∈supp π0

(π0)j = 1.

We have reached a contradiction. This means that n ≥ n∗. �

Remark 2.27. (a) From the proof of Theorem 2.26 we have

‖|P0,n −Π0|‖∞ ≥ 1, ∀n, 1 ≤ n < n∗, if n∗ ≥ 2.

(b) In particular, Theorem 2.26 can be applied to the simulated annealing
(Pn)n≥1 because Ps ∼ Pt, ∀s, t ≥ 1, a.s.o. . Moreover, we have n∗ = n∗(H,G) ≤
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d(G) := max
i,j∈S

d (i, j), where G is directed graph associated with G. (We also

must keep in mind the worst case n∗ = d
(
G
)
.)

We conclude with two remarks.

Remark 2.28. In [15] we defined the notion of breaking up. The reader
might associate this notion with Theorems 1.15, 1.16, 1.17, and 1.18 here.

Remark 2.29. Section 2 refers to the study of limit behaviour of simu-
lated annealing. In particular, this might contribute to the study of finite-time
behaviour of simulated annealing.
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Tehnică, Bucharest, 1980; corrected republication by Dover, Mineola, N.Y., 2007.
[8] D.L. Isaacson and R.W. Madsen, Markov Chains: Theory and Applications. Wiley, New

York, 1976; republication by Krieger, 1985.
[9] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing : Theory and Applications.

Reidel, Dordrecht, 1987.
[10] R.W. Madsen and D.L. Isaacson, Strongly ergodic behaviour for non-stationary Markov

processes. Ann. Probab. 1 (1973), 329–335.
[11] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, Convergence and finite-time be-

havior of simulated annealing. Adv. in Appl. Probab. 18 (1986), 747–771.
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[17] U. Păun, ∆-ergodic theory and reliability theory. Math. Rep. (Bucur.) 10(60) (2008),
73–95.

[18] F. Romeo and A. Sangiovanni-Vincentelli, A theoretical framework for simulated an-
nealing. Algorithmica 6 (1991), 302–345.

[19] G.E. Santoro and E. Tosatti, Optimization using quantum mechanics: quantum anneal-
ing through adiabatic evolution. J. Phys. A Math. Gen. 39 (2006), R393–R431.

[20] J.N. Tsitsiklis, Markov chains with rare transitions and simulated annealing. Math.
Oper. Res. 14 (1989), 70–90.

[21] G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A
Mathematical Introduction, 2nd Edition. Springer-Verlag, Berlin, 2003.

Received 28 January 2008 Romanian Academy
Gheorghe Mihoc-Caius Iacob Institute

of Mathematical Statistics and Applied Mathematics
Calea 13 Septembrie nr. 13

050711 Bucharest 5, Romania
paun@csm.ro


