
Stochastic Modeling of Continuous Evolutionary

Algorithms

Alexandru Agapie∗ Günter Rudolph† Gheorghita Zbaganu‡

Abstract

Evolutionary algorithms (EAs) acting on continuous space require a more
sophisticated modeling than their discrete counterparts. Sharing with
classical theory of evolution strategies only the interest for expected one-
step progress, the proposed modeling is based on stochastic renewal pro-
cesses. The new paradigm allows for global convergence results, as well
as first hitting time computation for particular algorithms on particular
fitness functions.

1 The Continuous EA is a Renewal Process

For each t = 0, 1, 2, . . ., let Pt be the random variable ’(best individual from) EA
population at iteration t’. Then {Pt}t≥0 is a stochastic process on <n. We also
define a distance d : <n ← <+

0 , accounting for the (one-dimensional) distance
to optimum, that is, to 0 := (0, . . . , 0) since we are minimising. Distance d
will also stand for our drift function. As generally the case with probabilistic
algorithms on continuous space, we say convergence is achieved at iteration t if
the algorithm has entered an ε-vicinity of 0 for some fixed ε, 0 ≤ d(Pt) < ε. We
also define the stochastic process {Xt}t≥1 given by

Xt = d(Pt−1)− d(Pt) t = 1, 2, . . . .

In our EA framework, Xt will stand for the (relative) progress of the algorithm
in one step, namely from the (t− 1)st iteration to the tth. Due to EA’s elitism
{Xt}t≥1 are non-negative random variables (r.v.s), and we shall also assume
they are independent. Each Xt is composed of a point mass (singular, or Dirac
measure) in zero accounting for the event where there is no improvement from
Pt−1 to Pt, and a continuous part accounting for the real progress toward the
optimum - a truncated uniform or normal distribution, e.g.. A second natural
assumption is P{Xt = 0} < 1, or equivalently P{Xt > 0} > 0, for all t,
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otherwise convergence of the algorithm would be precluded. That does not
require a progress at each iteration, but only a strictly positive probability to
that event, which is different.

However, the conditions above are not sufficient for a consistent stochastic
analysis, providing first hitting times for the algorithms in study. The fulfilment
of either one of the following natural hypotheses will be also required.

H1: {Xt}t≥1 are non-negative, independent, identically distributed
r.v.s with finite mean µ.

H2: {Xt}t≥1 are non-negative, independent r.v.s and there exist
constants µ1, µ2, σ > 0 such that µ1 ≤ E(Xt) ≤ µ2 and

V ar(Xt) ≤ σ2, for all t.

H1 is well-known within the theory of stochastic processes, yet cumbersome
to achieve when modelling continuous EAs on practical problems. H2 is more
flexible, allowing for different mutation rates and different success probabili-
ties at different algorithmic iterations. For example, H2 describes a family of
distributions that are all normal, or all uniform, with the parameters ranging
within certain positive bounds. One can easily see that, under supplementary
assumption ’Xt has finite variance’, the following implication holds:

H1 ⇒ H2

but not vice-versa.
It is shown below that both hypothesis yield a stronger confinement on the

progress probabilities, than the already stated ’P{Xt > 0} > 0 for all t’. We
need first some general results from probability theory.

Lemma 1.1 If X is a positive random variable and α > 0 s.t. P{X ≥ α} = 0,
then E(X) ≤ α · P{X < α} .

¤

Lemma 1.2 H2 ⇒ there exist α, β > 0 such that P{Xt ≥ α} ≥ β for all t.

¤
A somehow different proof is given in Appendix A for the case of normal muta-
tions with uniformly bounded mean and variance.

One can easily see that, under H1, the conclusion of lemma 1.2 is a direct
consequence of P{Xt > 0} > 0 for all t. Note that lemma 1.2 holds also for a
different version of hypothesis H2, namely:

H ′
2: {Xt}t≥1 non-negative, independent, and there is r.v. Z with E(Z) < ∞

and Xt ≤ Z for all t, and constant µ1 with 0 < µ1 ≤ E(Xt) for all t.
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Remark 1.3 Hypothesis H ′
2 does not imply H2, nor vice-versa. H ′

2 applies,
e.g., to a familly of uniform r.v.s that are uniformly bounded.

However, we preferred version H2 over H ′
2 having in mind the typical normal

mutation used in continuous EAs.

Lemma 1.4 H ′
2 ⇒ there exist α, β > 0 such that P{Xt ≥ α} ≥ β > 0 for all t.

¤
Let us return to defining the renewal process in case of the continuous EA
optimisation. By summing up the relative progress at each iteration we obtain
St, the (overall) progress in t iterations:

St =
t∑

k=1

Xk =d(P0)− d(P1) + d(P1)− d(P2) + . . . + d(Pt−1)− d(Pt) =

=d(P0)− d(Pt) t = 1, 2, . . . .

Remark 1.5 By definition, St is bounded within the closed interval [0, d(P0)],
for all t ≥ 1. If we fix at the start of the algorithm a positive δ to designate the
’maximal distance to optimum’, then we have

0 ≤ St ≤ d(P0) ≤ δ.

Let us now introduce another r.v., accounting for the EA’s first hitting time of
the area [0, d(P0)− d), or equivalently, for the overall progress to go beyond d
- a certain positive threshold1:

Td = inf{t | d(Pt) < d(P0)− d} = inf{t | St > d}.

According to [7, 13], the process {Td}d>0 will be called a renewal process2 with
the following interpretation: We say a renewal occurs at distance d(P0)−d from
the optimum if St = d for some iteration t. A renewal is actually a ’successful
iteration’, that is, an iteration that produced a strictly positive progress towards
the optimum. After each renewal the process (the algorithm) starts over again.

2 First Hitting Time

From this point further, all results concerning the convergence of the renewal
process associated to the continuous EA will be stated ’under hypotheses H1/H2’,
meaning ’either under hypothesis H1, or under H2’. Accordingly, we shall split
each proof in two parts; as H1 corresponds to the classical definition of a renewal
process, the first part will be in general a simple adaptation of the corresponding
result from [13].

1In order to keep the notation simple, we shall use the same letter ’d’ for denoting the
distance function d(·), and a scalar d > 0.

2The continuous-time index t of a classical renewal process {Nt}t≥0 in queueing theory is
replaced in our paradigm by a continuous-distance index d.
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Proposition 2.1 Under hypothesis H1/H2, the first hitting time of the contin-
uous EA is finite with probability 1.

¤

Definition 2.2 An integer valued positive random variable T is called a stop-
ping time for the sequence {Xt}t≥1 if the event {T = t} is independent of
Xt+1, Xt+2, . . . for all t ≥ 1.

We have the following simple result.

Lemma 2.3 Td defined as above is a stopping time for {Xt}t≥1, for any d > 0.

¤
We also have the relationship that the first hitting time of a distance d from
the starting point is greater than t if and only if the tth iteration yields a point
situated at distance less than or equal d. Formally,

Td > t ⇔ St ≤ d.

According to [13], E(Td), the mean/expected value of Td is called the renewal
function, and much of classical renewal theory is concerned with determining
its properties. In our EA framework, if we set d := d(P0) − ε with some
fixed positive ε defining the target-zone of the continuous space algorithm, then
Td = inf{t | d(Pt) < ε} is the first hitting time of the target-zone, and E(Td)
the expected (first) hitting time. So determining the properties of the renewal
function seems to be the principal goal of EA theory as well.

Table below summarizes the intuitive interpretation of the random variables
Xt, St and Td under the continuous EA setting.

Random Variable Interpretation
Xt (one-dimensional) progress between

the (t− 1)st and the tth iteration

St overall progress up to the tth iteration

Td (no. of iterations) first hitting time of
a distance d from the starting point

The following theorem is crucial to the stochastic analysis of continuous EAs.
Note that this result was also used in [9], yet outside the context of renewal
processes.

Theorem 2.4 (Wald’s Equation, [13] p.38) If {Xt}t≥1 are independent and
identically distributed random variables having finite expectations E(X), and T
is a stopping time for {Xt}t≥1 such that E(T ) < ∞, then

E

(
T∑

t=1

Xt

)
= E(T ) · E(X).

¤
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When applied to the continuous EA paradigm, Wald’s equation provides only
a lower bound on the expected hitting time. In order to obtain both upper
and lower bounds, the application of limit theorems from renewal processes is
necessary.

A reformulation in terms of inequalities of Wald’s equation is first required.

Theorem 2.5 (Wald’s Inequation) If {Xt}t≥1 are independent, non-negative,
µ1 ≤ E(Xt) ≤ µ2 for all t and T is a stopping time for {Xt}t≥1, then

µ1E(T ) ≤ E

(
T∑

t=1

Xt

)
≤ µ2E(T ).

¤
Note that the only confinements on {Xt}t≥1 required by theorem 2.5 were
’Xt ≥ 0’, and ’µ1 ≤ E(Xt) ≤ µ2’, for all t - hence a simplified version of
H2. Condition ’E(T ) < ∞’, which appeared in Wald’s equation, was no longer
used in the inequation. Actually, if one follows the proof of theorem 2.5, she/he
will observe that the only point where such condition could apply would be at
interchanging expectation and summation in equation (??). Instead, we have
used Lebesque’s Monotone Convergence theorem, which does not require a con-
dition like ’E(T ) < ∞’ but only monotony of the partial sums - ensured by
’Xt ≥ 0 for all t’.

So, apparently, one could conclude that whenever Wald’s inequation is ap-
plied, H2 may be replaced by that simplified hypothesis. That is not the case,
since E(T ) will designate the expected hitting time of an area at certain dis-
tance from the starting point of the algorithm, and if E(T ) = ∞ there is no
convergence at all. Hence we need also E(T ) < ∞ for our analysis, and that
is proved under the continuous EA paradigm in proposition 2.7 below, relying
strongly on lemma 1.2, which in turn does not work unless all requirements in
H2 are fulfilled!

We show next that the result of proposition 2.1 holds also for the expected
hitting time of the renewal process modelling the continuous EA. That is not
trivial, since finiteness with probability 1 of a positive random variable does not
imply finiteness of its expected value, see e.g. the Cauchy distribution.

First we need a simple result.

Lemma 2.6 Let us consider a discrete random variable Z =
(

0 1
1− p p

)

and Z1, Z2, . . . be independent, identically distributed as Z. Let also consider
the stopping time M = inf{m | Z1 + . . . + Zm = 1}. Then E(M) = 1/p.

¤

Proposition 2.7 Under hypotheses H1/H2, the expected hitting time of the
continuous EA is finite.

¤

5



3 Main Result

The expression 1/E(Xt) is often called the progress rate between the (t − 1)st
and the tth iteration. Following the general theory of renewal processes [7, 13],
we prove next the highly intuitive result that the (expected) average number of
iterations required per distance unit converges to the progress rate. As E(Td)
represents the expected hitting time of an area situated at distance d from the
starting point of the algorithm, the result below will provide estimates of the
convergence time for continuous EAs.

We stress again that the estimates given below are meaningless without the
assertion ’E(Td) < ∞ for all d > 0’, ensured under H1/H2 through proposition
2.7 .

Theorem 3.1 Under hypotheses H1/H2 we have, as d→∞
E(Td)

d
→ 1

µ
,

respectively
1
µ2

≤ E(Td)
d

≤ 1
µ1

.

¤
As one can see from the proof of theorem 3.1, the left hand side of the inequality
- the one giving a lower bound on E(Td) - is a simple consequence of Wald’s
inequation. Most of the effort was concentrated on validating the upper bound
of the expected hitting time - far more significant for computation time analysis.

Translated to our continuous EA paradigm, theorem 3.1 says that the ex-
pected average3 hitting time:

i converges, under hypothesis H1, to the inverse of the expected progress in
one step, respectively

ii is bounded, under hypothesis H2, by the inverse bounds of the expected
progress in one step.

The estimates for the expected hitting time hold for a general (1 + λ) EA,
optimising an arbitrary fitness function defined on n-dimensional continuous
space. The case of EA with constant parameters is obviously covered, but also
the more practical situation where parameters are adapted (are allowed to vary)
during the evolution - see section 4.

The analysis performed so far on continuous EAs regarded as renewal pro-
cesses is similar to the Markov chain analysis of discrete EAs performed in [1, 14]
- see [15] for an accurate state of art in stochastic convergence for discrete EAs.
It closes the theoretical discussion on convergence of the algorithm, opening the
door for particular estimations of local progress rates µ, respectively µ1 and
µ2. As this calculus has a long history in EA theory, we shall use some of the
previous results in the remaining sections of the paper.

3With respect to distance on the progress axis.
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4 Adaptive mutation

How can one apply theorem 3.1 to computing practical hitting times of con-
tinuous EAs? In general, estimates of the one-step expected progress could be
derived either

a. ANALITICALLY, provided the optimisation problem, fitness function and
evolutionary operators are manageable enough, or

b. NUMERICALLY, by running a single iteration of the algorithm for several
times and/or from different points in the search space and then averaging
the outcomes.

The first path appeals more to the mathematician but so far only the smoothest
functions (linear, quadratic) and simplest algorithms ((1+1) EA, mainly) exhibit
close formulas for the expected one-step progress in the continuous case [3, 9, 10,
14]. In turn, the numerical approach is far more general, its potential application
varying from smooth to black-box optimisation problems, from (1 + 1) EA to
(µ + λ) EAs including all sort of evolutionary operators. However, we defer the
experimental study to a future paper, and concentrate within this section on
estimating analytically the hitting time of the (1+1) EA with uniform mutation
inside the (hyper)-sphere of radius r (r variable), minimising the well-known
SPHERE function4

f : <n → < f(x) = f(x1, . . . , xn) =
n∑

i=1

x2
i .

One can bound the uniform mutation both in mean and variance such that
it satisfies hypothesis H2. On the other hand, we claim that uniform muta-
tion inside the sphere is more tractable than normal mutation, at least from a
geometrical point of view.

To see that, note the following simple facts. First, the expected value of a
uniform variable defined inside a figure of volume 1 is the centroid (center of
mass) of the corresponding figure. If the figure of volume 1 is truncated - as
the case with elitist EAs on SPHERE, where not all of the mutation sphere is
active for next generation, the removed volume (probability) being charged to a
single point, zero, the expected value will still be the centroid of the truncated
figure. Second, if the mutation sphere is no longer of volume 1 - as it happens
when we successively decrease mutation radius r, we need to divide the uniform
’variable’ and consequently its expected value by the volume of the new sphere
- call it Vn(r) - in order for the non-unitary sphere to define a proper random
variable.

We are also going to need the following geometrical results, the proof being
deferred to Appendix B.

4In order to avoid confusion, we shall use uppercase when referring to the fitness function,
and lowercase when referring to the mutation operator.
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Proposition 4.1 Let Sn be the n-dimensional sphere of volume 1, centered in
0 = (0, . . . , 0). Consider the positive semi-sphere that is symmetric around the
x1 axis. Then the centroid An of the semi-sphere satisfies, as n →∞

An → A =
(

1
π
√

e
, 0, . . . , 0

)
.

¤

Corollary 4.2 If we multiply the radius of the sphere from proposition 4.1 by
r = r(n), the coordinates of the centroid will be multiplied by the same factor.

¤
Note that the limit value obtained for the position of the centroid along the x1

axis is 1/π
√

e = 0.193, in good concordance with 1/5, the well-known threshold
value used for mutation adaptation in evolution strategies - see e.g. [16]!

We are going to use the calculus of centroids for estimating the upper and
lower bounds on the expected one-step progress of the (1+1) EA with spherical
mutation along the ’progress axis’ Ox1

5. As usually the case in adaptive EAs,
we shall decompose the algorithm into different phases with respect to distance
to the optimum, each phase keeping a fixed mutation radius, and progressively
decrease the radius from one phase to the other. As in [9, 14], we are fixing the
initial mutation radius to some carefully chosen optimal value. The particular
mutation adaptation rule is made clear in the following.

Theorem 4.3 Assume the (1+1) EA with uniform mutation inside the sphere
of radius r minimising the n-dimensional SPHERE function starts at distance
d such that d À √

n, and let k be fixed in Θ(ln(d/
√

n)). For all t ≥ 1, phase t
of the algorithm is defined by mutation radius rt := d/2tk, maximal distance to
optimum d/2(t−1)k and minimal distance to optimum d/2tk. Then the expected
convergence time of the algorithm is in O(

√
n) and in Ω(1).

Proof.
In a single phase of the algorithm, under constant mutation radius r, expected
one-step progress increases the closer we get to the optimum. To see that,
consider two extreme positions of the current EA: far away - at distance d À r
- Figure 1, and close-by - at distance r - Figure 2, respectively.

Assume for the moment that r = R ≈
√

n/2πe, the radius of the the n-
dimensional sphere of volume 1. For large n, one can approximate the inter-
section of the two spheres in the first case by the semi-sphere of radius r, then
proposition 4.1 provides the value of the centroid as A = 1/π

√
e. In the second

case, the centroid of the intersection is R/2, due to symmetry of the figure.
Consider next the more general situation where r 6= R. The centroids will

change, according to corollary 4.2, and respectively to symmetry of the figure,
5Because of the symmetry of the SPHERE, we can assume without loss of generality that

we rotate the axes at each iteration such that the current EA position lies on Ox1.
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A

x1

x2, x3, ... , xn 

O

d

Figure 1: Mutation sphere far away

into

A −→ A
r

R
=

r
√

2√
nπ

R

2
−→ r

2
.

Accordingly, the expected values of the one-step progress will also change into

A −→ A
r

RVn(r)
=

r
√

2√
nπ Vn(r)

R

2
−→ r

2Vn(r)
.

Comparing the two extreme cases, one can easily see that for n > 8/π ≈ 2.5, the
value of the centroid far away is less than the value of the centroid close-by. The
same holds for expected values, and hence the announced monotonic behavior -
true for each algorithmic phase with constant mutation radius r. Summing up,

r
√

2√
nπ Vn(r)

≤ E(Xt) ≤ r

2Vn(r)
.

With this inequality in mind let us return to the original setting r = rt = d/2tk

and make t = 1, thus r = r1 = d/2k, k constant to be fixed later. For large
d, we can use theorem 3.1 to estimate the expected hitting time of distance r1,
provided the algorithm starts at distance d:

2Vn(r1)
r1

≤
E

(
Td− d

2k

)

d− d
2k

≤
√

nπ Vn(r1)
r1

√
2

⇔

2dVn(r1)
r1

(
1− 1

2k

)
≤ E

(
Td− d

2k

)
≤ d

√
nπ Vn(r1)
r1

√
2

(
1− 1

2k

)
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O

r/2

r

x1

x2, x3, ... , xn

r

Figure 2: Mutation sphere close-by

or, under the common assumption 1 À 1/dk, after removing the parentheses
and substituting the value of r1

2k+1Vn(r1) ≤ E
(
Td− d

2k

)
≤

√
nπ

2
2kVn(r1). (1)

At this point one can fix k such that 2kVn(r1) = 1, equivalent to Cndn = 2(n−1)k

- see Appendix B. From relation (??) and Stirling’s formula (??), we obtain the
solution k of the exponential equation as

k ≈ n

(n− 1)2 ln 2
ln

(
d
√

2πe√
n

)
.

The value found for k is in Θ(ln (d/
√

n)), while the prior confinement ’2k large’ is
equivalent to d À √

n. Under fulfillment of these conditions we have 2kVn(r1) =
1, which simplifies inequality (1) to:

2 ≤ E
(
Td− d

2k

)
≤

√
nπ

2
. (2)

Let us make now t = 2. Mutation radius is r2 = d/22k and a derivation similar
to the one leading to (2) provides

2
1

2kn
≤ E

(
T d

2k− d

22k

)
≤

√
nπ

2
1

2kn
(3)

and recursively, after t steps,

2
1

2tkn
≤ E

(
T d

2tk− d

2(t+1)k

)
≤

√
nπ

2
1

2tkn
. (4)
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All we have to do now is sum up relations (2)-(4) and let t→∞. The middle term
converges to E(Td), the expected hitting time of distance d from the starting
point of the algorithm - recall that E(Td) < ∞ according to proposition 2.7 -
which is exactly the convergence time of our (1 + 1) EA. As for the left and
right hand terms, they each sum up to the geometrical series with ratio 1/2kn,
which converges to 1/(1− 1/2kn) as t→∞ . Thus

2
1

1− 1
2kn

≤ E (Td) ≤
√

nπ

2
1

1− 1
2kn

.

By removing again the small term 1/2kn from both sides we are left with

2 ≤ E (Td) ≤
√

nπ

2

thus convergence time of the (1 + 1) EA is in Ω(1) and in O(
√

n). ¤
Compared to the main results in [9, 10], where convergence time of the

(1+1) EA minimising SPHERE using normal mutation and the 1/5 adaptation
rule is estimated to be in Θ(poly(n)), one may find the result of theorem 4.3
surprising. We claim that the substantially better convergence time obtained
in this section is not a consequence of the special mutation we used (uniform
instead of normal), but of the more accurate theoretical modeling.
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[10] Jägersküpper, J.: How the (1+1) ES using isotropic mutations minimizes
positive definite quadratic forms. Theoretical Computer Science 361, 38–56
(2006)

[11] Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distribu-
tions: Vol.1. Wiley, New York (1994)

[12] Li, S.: Concise Formulas for the Area and Volume of a Hyperspherical Cap.
Asian Journal of Mathematics and Statistics 4(1), 66–70 (2011)

[13] Ross, S.: Applied Probability Models with Optimization Applications.
Dover, New York (1992)

[14] Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Kovać,
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