ON PRINCIPAL IDEALS AND BANDS IN l-ALGEBRA

BAHRİ TURAN and MUSTAFA ASLANTAS

Let A be a uniformly complete *l*-algebra with unit element e . Some results are obtained about algebra structure of principal ideal and principal band.

AMS 2010 Subject Classification: 06F25, 06F20.

Key words: l-algebra, principal ideal, principal band, commutant.

1. INTRODUCTION

An ordered vector spaces E is called a Riesz space (or a vector lattice) if $\sup\{x,y\} = x \vee y$ (or $\inf\{x,y\} = x \wedge y$) exits in E, for all $x,y \in E$. Sets of the form $[x, y] = \{z \in E : x \leq z \leq y\}$ are called order intervals or simply intervals. The subset M of E is said to be order bounded if M is included in some order interval. A linear map T , between E and L , is said to be order bounded whenever T maps order bounded sets into order bounded sets. Order bounded linear maps between E and L will be denoted by $L_b(E, L)$. We denote $L_b(E)$ the order bounded operators from E into itself. A mapping $\pi \in L_b(E)$ is called an orthomorphism if $x \perp y$ (i.e., $|x| \wedge |y| = 0$) implies $\pi x \perp y$. An order bounded operator T on an Archimedean Riesz space E is orthomorphism if and only if $T(B) \subseteq B$ holds for each band B of E. The set of orthomorphisms of E will be denoted by $Orth(E)$. The principal order ideal generated by the identity operator I in $Orth(E)$ is called the ideal center of E and is denoted by $Z(E)$ (i.e., $Z(E) = {\pi \in Orth(E) : |\pi| \leq \lambda I}$, for some $\lambda \in \mathbb{R}_+$). If E is an Dedekind complete Riesz space then $Z(E)$ is the ideal generated by I and $Orth(E)$ is the band generated by I in $L_b(E)$. Morever, if E is a Banach lattice then $Z(E) = Orth(E)$.

Let A be a Riesz algebra (lattice ordered algebra), i.e., A is a Riesz space which is simultaneously an associative algebra with the additional property that $a, b \in A^+$ implies that $a.b \in A^+$. An f-algebra A is a Riesz algebra which satisfies the extra requirement that $a \perp b$ implies that $ac \perp b = ca \perp b$, for all $c \in A^+$. Every Archimedean f-algebra is commutative. $Orth(E)$ and $Z(E)$ are f-algebras under pointwise order and composition of operators.

In [4], Huijsmans has given some properties for principal ideal and band generated by unit in a uniformly complete l-algebra A with unit element $e > 0$,

REV. ROUMAINE MATH. PURES APPL., 57 (2012), 4, 423-429

which are similar properties to $Z(E)$ and $Orth(E)$. Alpay and Uyar have studied algebra structure of principal ideals and bands generated by order bounded operators in $L_b(E)$ [3]. In this paper, we will obtain some results about algebra structure of principal ideals and bands generated by an element in a uniformly complete *l*-algebra A with unit element $e > 0$.

The Riesz spaces in this paper are assumed to be Archimedean. For all undefined terminology concerning vector lattice and l-algebra we shall adhere to the definitions in $[1]$, $[5]$, $[6]$ and $[8]$.

2. MAIN RESULTS

Let A be a l-algebra with unit element $e > 0$. We shall now investigate whether I_a (principal ideal generated by a), and B_a (principal band generated by a) are subalgebras of A.

THEOREM 2.1 ([4], Theorem 1). Let A be a uniformly complete l-algebra with unit element $e > 0$. Then, the following holds:

(1) The principal band B_e generated by e in A is a projection band, i.e., $A=B_e\oplus B_e^d.$

(2) For any $a \in B_e$, the left multiplication π_a^l by a and right multiplication π_a^r by a are orthomorphisms.

Theorem 2.2 ([4], Theorem 2). Let A be a Banach l-algebra with unit element $e > 0$. Then, the principal ideal I_e generated by e satisfies $I_e = B_e$, and so, $A = I_e \oplus I_e^d$.

We now give a simple necessary and sufficient condition for I_a to be subalgebra.

LEMMA 2.3. Let A be an l-algebra and $a \in A$. Then, I_a is an subalgebra if and only if $|a|^2 \leq \lambda |a|$, for some $\lambda \in \mathbb{R}$.

COROLLARY 2.4. Let A be a uniformly complete l-algebra with unit element $e > 0$. Then, the following holds:

(1) I_e and B_e are Archimedean f-algebras with unit element e ;

(2) $I_e = Z(I_e)$ and $B_e = Orth(B_e)$ (lattice and algebra isomorphic).

Proof. (1) I_e is a subalgebra from Lemma 2.3. As $\pi_a^l \in Orth(A), \pi_a^r \in$ $Orth(A)$ and B_e is a band, B_e is an f-algebra.

(2) It follows from Theorem 141.1 in [8]. \square

PROPOSITION 2.5. Let A be a uniformly complete l-algebra with unit element $e > 0$, and a^{-1} exists and is positive for $a \in A^+$. Then, the principal

band B_a generated by a is a projection band, i.e., $A = B_a \oplus B_a^d$. If A is a Banach l-algebra then, $I_a = B_a$ is satisfied, and so, $A = I_a \oplus I_a^d$.

Proof. In view of Theorem 24.7 in [5], it is sufficient to show that $\sup_n(b \wedge$ na) exists in B_a for each $b \in A^+$. Since B_e is a projection band, $\sup_n(a^{-1}b \wedge$ $ne) = v$ exist in B_e , for each $b \in A^+$. The mapping π_a^l is evidently a positive isomorphism. Furthermore, the invers mapping $(\pi_a^l)^{-1} = \pi_{a^{-1}}^l$ is also positive. Hence, π_a^l is an order continous lattice isomorphism. We have $\sup_n(b \wedge na)$ = av and $av \in B_a$ since $\pi_v^r \in Orth(A)$. Let A be a Banach lattice and $0 \le b \in B_a$. We have to prove that $b \in I_a$. By Theorem 3.4 in [1], $\sup_n(b \wedge na) = b$. Therefore, $\sup_n(a^{-1}b \wedge ne) = a^{-1}b$. This implies $a^{-1}b \in I_e$ as B_e is a projection band and $I_e = B_e$. We find $b \in I_a$ as desired.

Although a^{-1} exists and is positive for $0 \le a \in A$, I_a (or B_a) may not be subalgebra.

Example 2.6. Let A denote the set of all 2×2 real matrix. It is well known that A is Dedekind complete (hence, uniformly complete) l -algebra with matrix operations and the order " $[a_{i,j}] \leq [b_{i,j}] \Leftrightarrow a_{i,j} \leq b_{i,j}$, for all i and j ".

Let $0 \le a = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Then, a^{-1} exists in A and is positive but a^2 is not an element of I_a (or B_a). Hence, I_a (or B_a) is not a subalgebra.

PROPOSITION 2.7. Let A be a Dedekind complete l-algebra with unit element $e > 0$ and $a \in A^+$. Then, the following are equivalent:

- (i) $a \in B_e$ and I_a is a subalgebra;
- (ii) $a \in I_e$.

Proof. (i) \Rightarrow (ii) Let $a \in B_e$ and I_a be a subalgebra. As I_a be a subalgebra $0 \le a^2 \le \lambda a$, for some $\lambda \in \mathbb{R}^+$. By the Theorem 8.15 in [1] and Corollary 2.4 (2) there exists $b \in B_e$ such that $0 \le b \le e$ and $\lambda ab = a^2$. We have $a(a - \lambda b) = 0$ and consequently $a \wedge |a-\lambda b| = 0$ because of B_e is an f-algebra. But $a-\lambda b \le a$ implies that $a - \lambda b \leq a \wedge |a - \lambda b| = 0$. Hence, $a \leq \lambda b \leq \lambda e$, so $a \in I_e$.

 $(ii) \Rightarrow (i)$ It is evident. \square

PROPOSITION 2.8. Let A be an l-algebra with unit element $e > 0$, and a^{-1} exists and is positive for $a \in A^+$. Then, B_a is a subalgebra if and only if $a \in B_e$.

Proof. Suppose B_a is a subalgebra. As $a^2 \in B_a$, we have $\sup_n(a^2 \wedge na)$ $= a^2$. Therefore, sup_n $(a \wedge ne) = a$ and this yields $a \in B_e$. Let now $a \in B_e$. Since $\pi_a^l \in Orth(A)$, we get $\pi_a^l(B_a) \subseteq B_a$. Hence, B_a is a subalgebra.

The hypothesis that a^{-1} be positive is indispensable. \Box

 $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. Then, a^{-1} exists in A and B_a is a subalgebra. But, a is not element Example 2.9. Let A be the l-algebra in Example 2.6 and $0 \leq a =$ of B_e .

PROPOSITION 2.10. Let A be an l-algebra with unit element $e > 0$, and a^{-1} exists and is positive for $a \in A^+$. Then,

$$
B_a = \{b \in A : b = ac, \text{ for some } c \in B_e\}.
$$

Proof. Since π_a^l is a lattice homomorphism, the set $\{b \in A : b = ac, \text{ for } \}$ some $c \in B_e$ is Riesz subspace of A. Furthermore, it is easy to see that

$$
b \in B_a \Leftrightarrow \sup_n(b \wedge na) = b \Leftrightarrow \sup_n(a^{-1}b \wedge ne) = a^{-1}b \Leftrightarrow a^{-1}b \in B_e,
$$

and $b = a(a^{-1}b)$, for each $0 \leq b$. Thus, the equality follows.

Let A be an algebra and M be a non-empty subset of A . The commutant of M is denoted by $M_c = \{a \in A : am = ma, \text{ for all } m \in M\}$. Suppose E is a Riesz space with separating order dual. Let $x \in E$ be arbitrary and $0 \le y \le x$. E is said to have topologically full centre (or topologically full) if there exists a net $0 \leq \pi_{\alpha} \leq I$ in $Z(E)$ with $\pi_{\alpha} x \to y$ in $\sigma(E, E^{\sim})$. The class of Riesz spaces that have topologically full centre are quite large. Each σ -Dedekind complete Riesz spaces and each unital f-algebras with separating order dual are topologically full [7]. In [2] we have shown that if E is a topologically full Riesz space, then the commutant $Z(E)$ in $L_b(E)$ is $Orth(E)$, i.e., $Z(E)_c =$ Orth(E). Now, we will give similar properties for the commutant of I_a in a l-algebra A.

After then, A^{\sim} (or E^{\sim}) will be assumed to separate the points of A (or E). This assumption implies that A (or E) is Archimedean.

Let E, F and G be Riesz space and $\mu : E \times F \to G$ be a bilinear map. If for each $x \in E^+$ and $y \in F^+$, the maps $\mu_x : F \to G : z \to \mu_x(z) = \mu(x, z)$ and $\mu_y : E \to G : u \to \mu_y(u) = \mu(u, y)$ are positive (lattice homomorphism), then μ is called bipositive (bilattice homomorphism). Let E be a Riesz space. We can define a bilinear map

$$
\mu: E \times E^{\sim} \to Z(E)^{\sim} : (x, f) \to \mu_{x, f}, \mu_{x, f}(\pi) = f(\pi x), \quad \text{ for } \pi \in Z(E).
$$

Some properties of this map is studied in [7]. We will study similar a bilenear map.

If A is an l-algebra and $a \in A^+$ then, the following bilenear map is considered

$$
\mu: A\times A^{\sim} \to I_a^{\sim}:(x,f) \to \mu_{x,f}, \mu_{x,f}(b)=f(bx), \quad \text{ for } b\in I_a.
$$

For each $x \in A^+$, $0 \le f \in A^{\sim}$, the map $\mu_x : A^{\sim} \to I_a^{\sim}$ and the map $\mu_f : A \to$ I_{a}^{\sim} are positive and we have $|\mu_{x,f}| \leq \mu_{|x|,|f|}$, for each each $(x,f) \in A \times A^{\sim}$. If A is a topologically full algebra we can say more about the positivity of the map μ .

THEOREM 2.11. If A is a topologically full algebra and $a \in A^+$ then, $\mu_f: A \to I_a^{\sim}$ is a lattice homomorphism, for each $0 \le f \in A^{\sim}$.

Proof. Let $0 \le f \in A^{\sim}$. It is enough to show that $\mu_f(x) \wedge \mu_f(y) = 0$ for each x, y in A satisfying $x \wedge y = 0$. It is well known that

$$
[\mu_f(x) \wedge \mu_f(y)](b) = [\mu_{x,f} \wedge \mu_{y,f}](b)
$$

= inf{ $\mu_{x,f}(c) + \mu_{y,f}(d) : 0 \le c, d \in I_a, c + d = b$ }
= inf{ $f(cx) + f(dy) : 0 \le c, d \in I_a, c + d = b$ }

Let $z = x + y$ and I_x, I_y and I_z be respectively, the order ideals generated by x, y and z. Then, I_z is actually the order direct sum of I_x and I_y by Theorem 1.7.6 in [5]. We denote p the order projection of I_z onto I_x . Let J be the restriction to I_z of order bounded functionals on A . Then, J is an order ideal in I_z^{\sim} because if $f \in I_z^{\sim}$ satisfies $0 \le f \le g/I_z$, for some $g \in A^{\sim}$ then f has extension to a positive functional on A by Theorem 2.3 in [1]. The adjoint p^{\sim} : I_z^{\sim} \rightarrow I_z^{\sim} of p satisfies $0 \le p^{\sim} \le I$ and as a consequence we obtain $p^{\sim}(J) \subseteq J$. As a result of these simple observations, the pair (I_z, J) constitutes a Riesz pair and $p:(I_z,\sigma(I_z,J))\to (I_z,\sigma(I_z,J))$ is continuous. Since $0 \leq p(z) \leq z$ there exists (π_{α}) in $Z(A)$ such that $0 \leq \pi_{\alpha} \leq I$ and $\pi_{\alpha}(z) \to p(z) = x$, and also the continuity of $p \cdot p(\pi_{\alpha}(z)) = \pi_{\alpha}(p(z)) \to p(x)$ now yields $\pi_{\alpha}(x) \to x$ in $\sigma(I_z, J)$. Since $\pi_{\alpha}(z) = \pi_{\alpha}(x) + \pi_{\alpha}(y)$ for each α , we have $\pi_{\alpha}(y) \to 0$ in $\sigma(I_z, J)$. As

$$
[\mu_f(x) \wedge \mu_f(y)](b) \le f((b - \pi_\alpha(b))x + \pi_\alpha(b)y)
$$

for each α , we obtain

$$
[\mu_f(x) \wedge \mu_f(y)](b) \le \lim_{\alpha} f((b - \pi_\alpha(b))x + \pi_\alpha(b)y) = 0,
$$

which completes the proof. \square

THEOREM 2.12. Let A be a topologically full l-algebra with unit element $e > 0$, and a^{-1} exists for $a \in A^+$. Then, $(I_a)_c \subseteq B_e$.

Proof. Let $b \in (I_a)_c$ be arbitrary. We show that $\pi_b^l \in Orth(A)$. If $x \perp y$ in A, then the positivity of the map μ implies

 $|\mu_{x,f}| \leq \mu_{|x|,|f|} \leq \mu_{|x|,|f|\vee|g|}$ and $|\mu_{y,g}| \leq \mu_{|y|,|g|} \leq \mu_{|y|,|f|\vee|g|}$

for each $f, g \in A^{\sim}$. Hence,

$$
0 \leq |\mu_{x,f}| \wedge |\mu_{y,g}| \leq \mu_{|x|,|f| \vee |g|} \wedge \mu_{|y|,|f| \vee |g|} = \mu_{|x| \wedge |y|,|f| \vee |g|} = 0
$$

by Theorem 2.11. Thus, if $x \perp y$ in A, then $\mu_{x,f} \perp \mu_{y,g}$ in I_{a}^{\sim} , for each $f, g \in A^{\sim}$. On the other hand, as $b \in (I_a)_c$ we have

$$
\mu_{\pi_b^l(x),f}(z) = \mu_{bx,f}(z) = f(z(bx)) = f(b(zx)) = (\pi_b^l)^\sim(f)(zx) = \mu_{x,(\pi_b^l)^\sim(f)}(z),
$$

for each $z \in I_a$. Hence, $\mu_{\pi^l_a(x),f} \perp \mu_{y,f}$, for each $f \in A^{\sim}$. As μ_f is a lattice homomorphism for each $0 \leq f \in A^{\sim}$, $\mu_{|\pi_b^l(x)| \wedge |y|,f} = 0$. Thus, $\mu_{|\pi_b^l(x)| \wedge |y|,f}(a) =$ 0, for each $f \in A^{\sim}$. Since A^{\sim} separetes the points of A, we have $a(|\pi_b^l(x)| \wedge$ \boldsymbol{b} $|y| = 0$ which yields $|\pi_b^l(x)| \wedge |y| = 0$ as a^{-1} exists. So, $\pi_b^l \in Orth(A)$. It follows that $\pi_b^l(e) = b \in B_e$ as $\pi_b^l(B_e) \subseteq B_e$.

Corollary 2.4 suggests that if A is a uniformly complete l -algebra with unit element $e > 0$ then, B_e is an Archimedean f-algebra. Hence, B_e is a commutative algebra. By this observation and Theorem 2.12 we can give a corollary.

COROLLARY 2.13. If A is a topologically full uniformly complete l-algebra with unit element $e > 0$, then $(I_e)_c = (B_e)_c = B_e$.

COROLLARY 2.14. If A is a topologically full uniformly complete l-algebra with unit element $e > 0$, and a^{-1} exists for $a \in A^+$. Then $(I_a)_c = B_e$ if and only if $a \in B_e$.

Proof. If $a \in B_e$, then it is clear that $(I_a)_c = B_e$. Let $(I_a)_c = B_e$. This implies that $ba = ab$, for each $b \in B_e$. Hence, $a \in (B_e)_c = B_e$.

COROLLARY 2.15. If A is a topologically full uniformly complete l-algebra with unit element $e > 0$, then B_e is a full subalgebra (i.e., if $c \in B_e$ and c^{-1} exists in A, then $c^{-1} \in B_e$).

Proof. Since $(B_e)_c = B_e$ and $(B_e)_c$ is a full subalgebra, then B_e is a full subalgebra. \square

COROLLARY 2.16. Let A be a topologically full uniformly complete l algebra with unit element $e > 0$, and a^{-1} exists and is positive for $a \in A^+$. If B_a is an algebra, then it is full subalgebra.

Proof. Let B_a be an algebra, $b \in B_a$ and b^{-1} exists in A. As B_e is full algebra, we have

$$
b \in B_a \Rightarrow b \land na \uparrow b \Rightarrow ba^{-1} \land ne \uparrow ba^{-1} \Rightarrow ba^{-1} \in B_e \Rightarrow ab^{-1} \in B_e
$$

$$
\Rightarrow ab^{-1} \land ne \uparrow ab^{-1} \Rightarrow a^2b^{-1} \land na \uparrow a^2b^{-1} \Rightarrow a^2b^{-1} \in B_a.
$$

Since B_a is an algebra, $a \in B_e$ by Proposition 2.8. Hence, $a^{-1} \in B_e$. This implies $\pi_{a^{-1}}^l \in Orth(A)$. It follows that $b^{-1} \in B_a$ as $\pi_{a^{-1}}^l(B_a) \subseteq B_a$. \Box

COROLLARY 2.17. Let A be a topologically full uniformly complete l algebra with unit element $e > 0$, and a^{-1} exists and is positive for $a \in A^+$. Then, B_a is an algebra if and only if $B_a = B_e$.

Proof. By Proposition 2.8 and Corollary 2.16, the proof is clear. \Box

REFERENCES

- [1] C.D. Aliprantis and O. Burhinshaw, *Positive Operators*. Academic Press, New York, 1985.
- [2] S. Alpay and B. Turan, On the commutant of the ideal centre. Note Mat. 18 (1998), 63–69.
- [3] S. Alpay and A. Uyar, On ideals generated by positive operators. Positivity 7 (2003), 125–133.
- [4] C.B. Huijsmans, Elements with unit spectrum in a Banach lattice algebra. Math. Proc. Cambridge Philos. Soc. 91 (1988), 43–51.
- [5] W.A.J. Luxemburg and A.C. Zaanen, Riesz Spaces I. North Holland, Amsterdam, 1971.
- [6] P. Meyer-Nieberg, Banach Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
- [7] B. Turan, On f-linearity and f-orthomorphisms. Positivity 4 (2000), 293-301.
- [8] A.C. Zaanen, Riesz Space II. North-Holland, Amsterdam, 1983.

Received 5 April 2012 Gazi University

Faculty of Science Department of Mathematics Teknikokullar 06500, Ankara, Turkey bturan@gazi.edu.tr