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In this paper, we introduce the notion of a Hilbert pro-C∗-bimodule over a pro-
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1. INTRODUCTION

The concept of a Hilbert C∗-module was first introduced by I. Kaplansky
in 1953, while developing the theory of commutative unital algebras. This
concept generalizes the notion of a Hilbert space, which in its turn constitutes
a generalization of a Euclidean space. Since 1953, a continuous development of
the theory of Hilbert C∗-modules has started, which increased in the last forty
years, having offered a very rich literature and useful tools in various important
fields of Mathematics. In the 1970’s, the theory was extended independently
by W.L. Paschke and M.A. Rieffel to non commutative C∗-algebras and the
latter author used it to construct the theory of “induced representations of
C∗-algebras”. Moreover, Hilbert C∗-modules gave the right context for the
extension of the notion of Morita equivalence to C∗-algebras and have played
a crucial role in Kasparov’s KK-theory. Finally, they may be considered as
a generalization of vector bundles to non-commutative C∗-algebras, therefore
they play a significant role in non-commutative geometry and, in particular, in
C∗-algebraic quantum group theory and groupoid C∗-algebras. The extension
of such a richness in results concept, to the case of pro-C∗-algebras (:inverse
limits of C∗-algebras) could not be disregarded. It was A. Mallios who first
considered in 1985 (see [15]) (finitely generated) modules, over a topological
∗-algebra A, endowed with an A-valued inner product and used the standard
Hilbert module HA over a pro-C∗-algebra A. In 1988, N.C. Phillips considers
Hilbert modules over pro-C∗-algebras, in [18]; in this regard, also see [24] and
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[13]. But the main body of the work on Hilbert modules over pro-C∗-algebras
is due to M. Joiţa; all her work on the subject can be found in her book, under
the homonym title “Hilbert modules over locally C∗-algebras” (see [9]). Our
reference for Hilbert C∗-modules will be [14]. A detailed list of references on the
theory of Hilbert C∗-modules is exhibited in “Hilbert C∗-modules Homepage”.

Brown, Mingo and Shen introduced the notion of a Hilbert C∗-bimodule
E over a C∗-algebra A and proved that the two topologies inherited on E by
its left and right A-module structure coincide [4, Corollary 1.11]. As far as
we know the notion of a Hilbert C∗-bimodule over a pro-C∗-algebra has not
yet been studied. In this paper, we first consider the question whether an
analogous result to that of Brown, Mingo and Shen, mentioned before, holds
true in case A is a pro-C∗-algebra. Towards an affirmative answer to this
question we give the definition of a Hilbert pro-C∗-bimodule over a pro-C∗-
algebra, and study some aspects of its structure (Section 3). Furthermore,
we give some examples (Section 4) and construct Hilbert pro-C∗-bimodules
as inverse limits of Hilbert C∗-bimodules (Section 5). Finally, we give two
applications in Section 6. The first one concerns the continuity of a derivation
from a pro-C∗-algebra A[τΓ] in a Hilbert bimodule E[τ ] over A. Moreover,
we remark that any such derivation δ : A[τΓ] → E[τ ] whose the factorization
δλ : Aλ → EA

λ is inner for every λ ∈ Λ, is approximately inner, where Γ =
(pλ)λ∈Λ is the directed family of C∗-seminorms defining the topology τΓ and
(pA

λ )λ∈Λ, the family of seminorms defining the locally convex topology τ of
E, through its inner product(s). These results extend previous results due to
J.R. Ringrose in [20] and R. Becker in [1]. The second application concerns
a realization of “compact” operators on a Hilbert pro-C∗-bimodule E over a
σ-C∗-algebra A[τΓ], by the closed two-sided ∗-ideal of A[τΓ] generated by the
set {A〈ξ, η〉 : ξ, η ∈ E}. The latter extends a relevant result of Brown, Mingo
and Shen [4, Proposition 1.10] for Hilbert C∗-bimodules.

2. PRELIMINARIES AND DEFINITIONS

Throughout this paper all algebras are considered over the field C of
complexes and all topological spaces are assumed to be Hausdorff.

A pro-C∗-algebra A[τΓ] is a complete topological ∗-algebra for which
there exists an upward directed family Γ of C∗-seminorms (pλ)λ∈Λ defining
the topology τΓ [7, Definition 7.5]. In [7], pro-C∗-algebras are called locally
C∗-algebras (A. Inoue), whereas in [1], they are named LMC∗-algebras. A
pro-C∗-algebra, whose topology is defined by an upward directed countable
family of C∗-seminorms, will be called a σ-C∗-algebra as, for example in [19].
Every pro-C∗-algebra has jointly continuous multiplication (Sebestyén, see [7,
Theorem 7.2]).
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For a pro-C∗-algebra A[τΓ], and every λ ∈ Λ, the quotient normed ∗-
algebra Aλ := A/Nλ, where Nλ := {a ∈ A : pλ(a) = 0}, is already complete,
hence a C∗-algebra in the norm ṗλ(a + Nλ) ≡ ‖a + Nλ‖ := pλ(a), a ∈ A
(Apostol, see [7, Theorem 10.24]). The Arens-Michael decomposition gives us
the representation of A[τΓ] as an inverse limit of C∗-algebras; namely A[τΓ] =
lim←−A/Nλ, up to a topological ∗-isomorphism [7, pp. 15–16]. We refer the reader
to [7] for further information about pro-C∗-algebras.

For clarity’s sake, we first recall the definition of a right (left) Hilbert
C∗-module from [14]. Let A be a C∗-algebra and E a complex vector space
and a right A-module equipped with an A-valued inner product, that is a
sesqui-linear map 〈 , 〉A : E × E → A, which is conjugate linear in the first
variable and linear in the second variable, such that, for all x, y in E and
a ∈ A the following properties hold:

(i) 〈x, x〉A ≥ 0,

(ii) 〈x, x〉A = 0⇒ x = 0,

(iii) 〈x, y〉∗A = 〈y, x〉A,
(iv) 〈x, ya〉A = 〈x, y〉Aa.

If E is complete with respect to the norm ‖x‖A := ‖〈x, x〉A‖
1
2 , x ∈ E, then E

is called a right Hilbert A-module or a right Hilbert C∗-module over the C∗-
algebra A [14]. The notion of a left Hilbert C∗-module E over a C∗-algebra B
is defined in an analogous way. That is, E is a left B-module, equipped with
a B-valued inner product, which is a sesqui-linear map B〈 , 〉 : E × E → B,
linear in the first variable and conjugate linear in the second variable, satisfying
analogous properties to (i)–(iv) above, where for instance (iv) becomes now

B〈bx, y〉 = b(B〈x, y〉), ∀x, y ∈ E, b ∈ B,

and E is complete with respect to the norm B‖x‖ = ‖B〈x, x〉‖
1
2 . In case E

is both a left Hilbert B-module and a right Hilbert A-module, such that the
following relation is satisfied

B〈x, y〉z = x〈y, z〉A, ∀x, y, z ∈ E,

then E is called a Hilbert B-A-bimodule. In [4, Corollary 1.11] it is proved that

‖x‖A = B‖x‖, ∀x ∈ E.(2.1)

Let now A[τΓ] be a pro-C∗-algebra and E a complex vector space and a right
A-module equipped with an A-valued sesqui-linear map, conjugate linear in
the first and linear in the second variable, satisfying the conditions (i)–(iv)
above. Then, for every pλ ∈ Γ, a seminorm pA

λ is defined on E, as follows [9,
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Corollary 1.2.3]

pA
λ (x) := pλ(〈x, x〉A)

1
2 , ∀x ∈ E.

If E is complete with respect to the locally convex topology defined by the
family of seminorms {pA

λ }λ∈Λ, then E is called a right Hilbert A-module [9,
Definition 1.2.5], but we shall call it a right Hilbert pro-C∗-module over A.
Similarly, the notion of a left Hilbert pro-C∗-module over a pro-C∗-algebra B
is defined. In order to speak of a Hilbert B-A-bimodule E, we will see in the
next section that we have to impose an extra “natural” condition concerning
the continuity of the module actions (see (T )), so as to be able to prove the
coincidence of the two respective topologies defined on E, as in (2.1).

3. STRUCTURE OF HILBERT PRO-C∗-BIMODULES

Let A[τΓ] be a pro-C∗-algebra. Let E be both a left and right Hilbert pro-
C∗-module over A, where A〈 , 〉 and 〈 , 〉A denote the respective left and right
A-valued inner products on E. Then, there are two locally convex topologies
defined on E. One, denoted by τA, induced by the seminorms { pA

λ }λ∈Λ corres-
ponding to its structure as a right Hilbert A-module and the other, denoted
by Aτ , induced by the seminorms {Apλ}λ∈Λ, corresponding to its structure as
a left Hilbert A-module. Namely,

pA
λ (x) := pλ(〈x, x〉A)

1
2 , ∀x ∈ E, λ ∈ Λ,(3.1)

Apλ(x) := pλ(A〈x, x〉)
1
2 , ∀x ∈ E, λ ∈ Λ.(3.2)

We assume continuity of the left (resp. right) module action, in the sense that

(T ) pA
λ (ax)≤pλ(a) pA

λ (x), Apλ(xa) ≤ Apλ(x) pλ(a), ∀x∈E, a∈A, λ∈Λ.

That is, the left action is (smoothly) continuous with respect to the topology
τA defined on E by its right module structure and vice-versa. It is easily seen
that the above inequalities always hold in the normed case (see e.g., [5, p. 239]).
Also (T) is always true when pA

λ = Apλ, for every λ ∈ Λ; relevant examples
can be seen in Section 4. A kind of converse to this situation is provided
by Corollary 3.2, below. It is clear from (3.1), (3.2) that whenever A[τΓ] is
Hausdorff, both E[τA] and E[Aτ ] are Hausdorff as locally convex spaces.

The following result is of independent interest.

Theorem 3.1. Let A[τΓ] be a pro-C∗-algebra and E a left and right
Hilbert pro-C∗-module over A, such that A〈x, y〉z = x〈y, z〉A, for all x, y, z ∈
E. If the condition (T ) is also satisfied, then each C∗-seminorm pλ of A,
is realized on the inner product elements 〈x, x〉A, A〈x, x〉, x ∈ E, of A, by



5 Hilbert pro-C∗-bimodules and applications 293

the norm of the “adjointable” operators induced by the left, respectively right,
action of A on the elements of E (see (3.5), (3.6) below).

Proof. For every λ ∈ Λ, let

NA
λ := {x ∈ E : pA

λ (x) = 0}, EA
λ := E/NA

λ .

It is known that EA
λ is a right Hilbert Aλ-module [9, Theorem 1.3.9], with

module action and inner product well defined by

(x+NA
λ ) (a+Nλ) := xa+NA

λ , ∀x ∈ E, a ∈ A,
〈x+NA

λ , y +NA
λ 〉Aλ

:= 〈x, y〉A +Nλ, ∀x, y ∈ E,

and norm by

‖x+NA
λ ‖2Aλ

:= ‖〈x+NA
λ , x+NA

λ 〉Aλ
‖ = pλ(〈x, x〉A).(3.3)

For all λ ∈ Λ, consider the correspondence

κλ : Aλ → LAλ
(EA

λ ) with κλ(a+Nλ)(x+NA
λ ) = ax+NA

λ , ∀x ∈ A,

where LAλ
(EA

λ ) is the set of all maps S : EA
λ → EA

λ which have an adjoint,
with respect to the inner product 〈 , 〉Aλ

. It is a C∗-algebra, under the norm
‖S‖ = sup{‖S(x+NA

λ )‖Aλ
: ‖x+NA

λ ‖Aλ
≤ 1; x ∈ E}, S ∈ LAλ

(EA
λ ) (see [14,

p. 8]). The map κλ is well defined due to the first inequality in (T ). We show
that κλ(a+Nλ) ∈ LAλ

(EA
λ ).

For this, let I := span{ 〈x, y〉A : x, y ∈ E}. Then I is a two-sided ideal of
A. Its closure IA is a ∗-ideal [7, Theorem 11.7], therefore it is a pro-C∗-algebra
and thus contains an approximate identity (uα) [7, Theorem 11.5]. If b ∈ IA
such that for all z ∈ E, zb = 0, we get 〈E,E〉A b = 〈E,Eb〉A = 0, so uαb = 0
for all α and thus b = 0. Therefore, since for all x, y, z ∈ E, a ∈ A

x 〈ay, z〉A =A 〈x, ay〉z =A 〈x, y〉a∗z = x 〈y, a∗z〉A,

we take

(i) 〈ax, y〉A = 〈x, a∗y〉A and similarly(3.4)

(ii) A〈xa, y〉 = A〈x, ya∗〉.

Then, for all x, y ∈ E, a ∈ A we have that

〈κλ(a+Nλ)(x+NA
λ ), y +NA

λ 〉Aλ
= 〈x+NA

λ , a
∗y +NA

λ 〉Aλ
.

Therefore, κλ(a + Nλ)∗ = κλ(a∗ + Nλ). Since κλ is a ∗-morphism between
C∗-algebras, then ‖κλ(a+Nλ)‖ ≤ ‖a+Nλ‖, for every a ∈ A. In addition, if
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a ≡A 〈x, x〉, x ∈ E, we have the following calculation

‖κλ(A〈x, x〉+Nλ)‖2

= sup{‖κλ(A〈x, x〉+Nλ)(ω +NA
λ )‖2Aλ

: ω ∈ E; ‖ω +NA
λ ‖Aλ

≤ 1}
= sup{‖x〈x, ω〉A +NA

λ ‖2Aλ
: ω ∈ E; pA

λ (ω) ≤ 1}

= sup{pλ(〈x〈x, x〉A
1
2 , ω〉A)2 : ω ∈ E; pA

λ (ω) ≤ 1}

= pA
λ (x〈x, x〉

1
2
A)2 = pλ(〈x, x〉

1
2
A〈x, x〉A〈x, x〉

1
2
A)

= pλ(〈x, x〉2A) = pλ(〈x, x〉A)2.

The first equality in the last but one line is a consequence of the Cauchy-
Schwarz inequality, as this is applied for Hilbert pro-C∗-modules (see [9,
Proposition 1.2.2]). Hence

pλ(〈x, x〉A) = ‖κλ(A〈x, x〉+Nλ)‖, ∀x ∈ E and λ ∈ Λ.(3.5)

On the other hand, if we define
ANλ := {x ∈ E : Apλ(x) = 0}, AEλ := E/ANλ,

then by [9, Theorem 1.3.9], AEλ is a left Hilbert Aλ-module with module
action, inner product and norm defined in a similar way as in the case of the
right module action.

Now, for every λ ∈ Λ we consider the assignment

ρλ : Aλ → Aλ
L(AEλ) : ρλ(a+Nλ)(x+ ANλ) := xa+ ANλ,

where Aλ
L(AEλ) is the C∗-algebra of all maps φ : AEλ → AEλ, for which there

is a map φ∗ : AEλ → AEλ, such that

Aλ
〈φ(x+ ANλ), y + ANλ〉 = Aλ

〈x+ ANλ, φ
∗(y + ANλ)〉, ∀x, y ∈ E.

For φ ∈ Aλ
L(AEλ) the norm is given by

‖φ‖ = sup{Aλ
‖φ(x+ ANλ)‖ : Aλ

‖x+ ANλ‖ ≤ 1; x ∈ E}.
The map ρλ is well defined due to the second inequality in (T ) and (3.4)(ii).
Moreover, it is a ∗-morphism between C∗-algebras, when we consider the op-
posite multiplication in Aλ

L(AEλ). Therefore, we get that
‖ρλ(a+Nλ)‖ ≤ ‖a+Nλ‖, ∀ a ∈ A.

Furthermore, by considering the element 〈x, x〉A, x ∈ E, in A, by similar
calculations as above we conclude that

‖ρλ(〈x, x〉A +Nλ)‖2 = sup{Aλ
‖ω〈x, x〉A + ANλ‖2 : ω ∈ E; Apλ(ω) ≤ 1}

= sup{ pλ(A〈A〈x, x〉
1
2x, ω〉)2 : ω ∈ E; Apλ(ω) ≤ 1}

= Apλ(A〈x, x〉
1
2x)2 = pλ(A〈x, x〉)2.
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Consequently,

pλ(A〈x, x〉) = ‖ρλ(〈x, x〉A +Nλ)‖, ∀x ∈ E and λ ∈ Λ.(3.6)

The proof of theorem is complete. �

Corollary 3.2. Let A[τΓ] be a pro-C∗-algebra and E a left and right
Hilbert pro-C∗-module over A, such that A〈x, y〉z = x〈y, z〉A, for all x, y, z ∈
E. If the condition (T ) is also satisfied, then pA

λ (x) = Apλ(x), for all λ ∈ Λ,
x ∈ E.

Proof. By (3.5), (3.6) and (3.1), (3.2), we conclude that

pλ(〈x, x〉A) = ‖κλ(A〈x, x〉+Nλ)‖ ≤ ‖A〈x, x〉+Nλ‖ = pλ(A〈x, x〉),
pλ(A〈x, x〉) = ‖ρλ(〈x, x〉A +Nλ)‖ ≤ ‖〈x, x〉A +Nλ‖ = pλ(〈x, x〉A),

for all λ ∈ Λ and x ∈ E. Thus, pA
λ (x) ≤ Apλ(x) ≤ pA

λ (x), for all x ∈ E and
λ ∈ Λ, which completes the proof. �

Remarks 3.3. (1) In an electronic correspondence with Professor Maria
Joiţa, she suggested me a direct proof of Corollary 3.2, independent of Theo-
rem 3.1. We present it here:

Use the C∗-property for pλ’s, the properties of the A-inner product(s)
from Section 2, the assumptions of Corollary 3.2 and the Cauchy-Schwarz
inequality [9, Proposition 1.2.2]. Let λ ∈ Λ and x ∈ E with Apλ(x) 6= 0. Then,
since A〈x, x〉∗ =A 〈x, x〉, we get

Apλ(x)4 = pλ(A〈x, x〉)2 = pλ(A〈x, x〉A〈x, x〉)
= pλ(A〈A〈x, x〉x, x〉) = pλ(A〈x〈x, x〉A, x〉)
≤ (Cauchy-Schwarz) Apλ(x〈x, x〉A) Apλ(x)

≤ (from (T )) Apλ(x)pλ(〈x, x〉A) Apλ(x) = Apλ(x)2pA
λ (x)2,

therefore Apλ(x) ≤ pA
λ (x). If x ∈ E withApλ(x) = 0, then clearly the inequality

is true. Hence, Apλ(x) ≤ pA
λ (x), for all x ∈ E.

Using the same arguments, one also gets pA
λ (x) ≤ Apλ(x), for all x ∈ E,

so that pA
λ (x) = Apλ(x), for all x ∈ E.

(2) Let B[τΓ′ ] and A[τΓ] be two pro-C∗-algebras, where Γ′ = {qλ}λ∈Λ

and Γ = {pλ}λ∈Λ are the families of C∗-seminorms defining the topology of
B and A respectively, indexed by the same index set Λ. If E is a left Hilbert
pro-C∗-module over B and a right Hilbert pro-C∗-module over A, such that

B〈x, y〉z = x〈y, z〉A, ∀x, y, z ∈ E
and relation (T ) is respectively given by

(T ′) pA
λ (bx) ≤ qλ(b) pA

λ (x), Bqλ(xa) ≤ Bqλ(x) pλ(a),
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for all x ∈ E, a ∈ A, b ∈ B, λ ∈ Λ. Then by the above proof, with obvi-
ous modifications, we get the equality of the seminorms induced on E by A
and B, i.e.

Bqλ(x) = pA
λ (x), ∀x ∈ E, λ ∈ Λ.

(3) Here are some examples of different pro-C∗-algebras B[τΓ′ ], A[τΓ]
where, Γ, Γ′ are indexed by the same index set; A[τΓ] and its unitization
A1[τ1] (for A1[τ1] see [7, Theorem 8.3]), A[τΓ], LA(E) and A[τΓ], KA(E). For
the last two pairs, see subsection 6.(2).

(4) Note that the equality

A 〈x, y〉z = x〈y, z〉A, ∀x, y, z ∈ E

in Theorem 3.1, clearly makes the two A-inner products on E, compatible.
On the other hand, condition (T ) in the same theorem provides a relation

of compatibility of the right module action on E with the topology on E induced
by the left Hilbert pro-C∗-module structure of E and vice-versa.

According to Corollary 3.2, the two locally convex topologies Aτ, τA

defined on the Hilbert pro-C∗-bimodule E over A coincide. In what follows
we shall use the notation τ for the topology Aτ = τA on E. In this way, we
can work with one topology on E compatible with both the left and the right
Hilbert structure of our module. Based on the preceding we can now give
the following

Definition 3.4. Let B[τΓ′ ] and A[τΓ] be two pro-C∗-algebras, where Γ, Γ′

have the same index set, say Λ. Let E be a left Hilbert pro-C∗-module over
B and a right Hilbert pro-C∗-module over A. Suppose that condition (T ′) is
satisfied and that

B〈x, y〉z = x〈y, z〉A, ∀x, y, z ∈ E.

Then E will be called a Hilbert B-A-bimodule, or a Hilbert pro-C∗-bimodule
over B,A.

By Corollary 3.2, we have that NA
λ = ANλ, so the quotient space EA

λ =
AEλ becomes a Hilbert Aλ-bimodule, under the actions and Aλ-inner prod-
ucts defined at the beginning of the proof of Theorem 3.1 (see also [4, Defi-
nition 1.8]). The equality condition between the Aλ-valued inner products is
immediate by the very definitions.

4. SOME EXAMPLES

In this section we present some examples of Hilbert bimodules over a
pro-C∗-algebra.
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Example 4.1. Every pro-C∗-algebra A is a Hilbert pro-C∗-bimodule over
itself. Indeed if A〈 , 〉 and 〈 , 〉A are defined by

A〈a, b〉 = ab∗, 〈a, b〉A = a∗b, ∀ a, b ∈ A,

then it is straightforward to check that a 〈b, c〉A = A〈a, b〉 c, for all a, b, c ∈ A
and that

Apλ(a)2 := pλ(A〈a, a〉) = pλ(a∗)2 = pλ(a)2 = pA
λ (a)2, ∀ a ∈ A, λ ∈ Λ.

Example 4.2. Let X be a locally compact Hausdorff space and A a C∗-
algebra. Let E be a Hilbert A-bimodule with A〈 , 〉 and 〈 , 〉A A-valued inner
products defined on E as in Section 2. Let C(X,A) denote the algebra of all
A-valued continuous functions from X and K the family of all compact subsets
of X. As usual C(X,A) is endowed with the compact open topology c defined
by the C∗-seminorms

pK(f) := sup{‖f(t)‖A : t ∈ K}, f ∈ C(X,A), K ∈ K

(see e.g., [16, p. 387, (1.1)]). Then Cc(X,A) = lim←−K∈K C(K,A) and Cc(X,A)
is a pro-C∗-algebra. Completeness stems from the fact that X as a locally
compact space is a k-space (see e.g., [7, p. 35]). Consider the set C(X,E) of
all E-valued continuous functions on X equipped with the following actions:

C(X,A)× C(X,E)→ C(X,E) : (f, φ) 7→ fφ with (fφ)(t) := f(t)φ(t), t ∈ X,
C(X,E)× C(X,A)→ C(X,E) : (φ, f) 7→ φf with (φ f)(t) = φ(t)f(t), t ∈ X.

Denote by C(X,A)〈 , 〉 and 〈 , 〉C(X,A) the C(X,A)-valued well-defined inner
products of C(X,E), given by

〈φ, ψ〉C(X,A)(t) := 〈φ(t), ψ(t)〉A, t ∈ X

and
C(X,A)〈φ, ψ〉(t) := A〈φ(t), ψ(t)〉, t ∈ X.

These inner products turn C(X,E) into a right and left C(X,A)-module,
such that

(φ〈ψ, ω〉C(X,A))(t) = φ(t)〈ψ(t), ω(t)〉A = A〈φ(t), ψ(t)〉ω(t)

= C(X,A)〈φ, ψ〉(t)ω(t) = (C(X,A)〈φ, ψ〉ω)(t),

for all φ, ψ, ω ∈ C(X,E), t ∈ X. Thus

φ〈ψ, ω〉C(X,A) = C(X,A)〈φ, ψ〉ω, ∀φ, ψ, ω ∈ C(X,E).

Moreover, considering the families of seminorms {pC(X,A)
K }, {C(X,A)pK} we get

easily that
C(X,A)pK(φ)2 : = pK(C(X,A)〈φ, φ〉) = p

C(X,A)
K (φ)2, ∀φ ∈ C(X,E).



298 I. Zarakas 10

Now, along the lines of the proof of [16, p. 390, (1.12), and the discussion
after it], we have that C(X,E) = lim←−C(K,E),K ∈ K, within an isomorphism
of locally convex spaces, where each C(K,E) is a Hilbert C∗-bimodule over
C(K,A). This yields completeness for C(X,E), hence the conditions of the
Definition 3.4 are met, and so C(X,E) becomes a Hilbert pro-C∗-bimodule
over the pro-C∗-algebra C(X,A).

Example 4.3. Let A[τΓ] be a commutative pro-C∗-algebra and M(A) its
multiplier algebra, which is also a pro-C∗-algebra [18, Theorem 3.14]. For the
definition of M(A), in the case where A is an arbitrary pro-C∗-algebra see
[18, Definition 3.13]. We consider M(A)op, that is M(A) with the opposite
multiplication. In M(A)op the following module actions are well defined

M(A)op ×A→ A : (l, r)a =: r(a) and A×M(A)op → A : a(l, r) := l(a).

The opposite multiplication inM(A) is considered so as to ensure that a
(
(l1, r1)

◦(l2, r2)
)

=
(
a(l1, r1)

)
(l2, r2), for all a ∈ A, (li, ri) ∈M(A), i = 1, 2. Also, the

following M(A)op-valued maps are defined

M(A)op〈 , 〉 : A×A→M(A)op : M(A)op〈a, b〉 := (lab∗ , rab∗)

and

〈 , 〉M(A)op : A×A→M(A)op : 〈a, b〉M(A)op := (la∗b, ra∗b).

It can be checked, using the commutativity of A, that the above maps are
M(A)op-valued inner products on A, under which A is a left and right Hilbert
pro-C∗-module over M(A)op, such that

M(A)op〈a, b〉c = a〈b, c〉M(A)op , ∀ a, b, c ∈ A.

Considering on A the respective families of seminorms {qM(A)op

λ }, {M(A)op
qλ},

λ ∈ Λ, where qλ(l, r) := sup{pλ(l(a)) : pλ(a) ≤ 1}, λ ∈ Λ, (l, r) ∈ M(A), is
the family of seminorms, making M(A) a pro-C∗-algebra [18, Definition 3.13],
we have the following

M(A)op
qλ(a)2 = qλ(M(A)op〈a, a〉)= qλ

(
(laa∗ , raa∗)

)
= pλ(aa∗)= pλ(a)2 = pλ(a∗a)

= qλ
(
(la∗a, ra∗a)

)
= qλ(〈a, a〉M(A)op) = q

M(A)op

λ (a)2, ∀ a ∈ A.

Therefore, the topology inherited on A from its M(A)op-bimodule structure
coincides with its topology τΓ as a pro-C∗-algebra and A is a Hilbert pro-
C∗-bimodule over M(A)op. Note that, in general, A ⊂ M(A) and A = M(A)
in case A is unital. In this sense, it can be said that the present example
generalizes Example 4.1, in case A is commutative and unital.
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5. HILBERT PRO-C∗-BIMODULES VIA INVERSE LIMITS
OF HILBERT C∗-BIMODULES

In this section we investigate how a Hilbert pro-C∗-bimodule can be
realized via an inverse limit of Hilbert C∗-bimodules.

Let A[τΓ] be a pro-C∗-algebra and E a Hilbert pro-C∗-bimodule over A.
Then pA

λ (x) = Apλ(x), for all x ∈ E (see Corollary 3.2) and EA
λ = AEλ is a

Hilbert Aλ-bimodule (see comments after Definition 3.4). For all λ, µ ∈ Λ such
that λ ≥ µ consider the well-defined, surjective Aλ-Aµ-bimodule morphisms
(i.e., (5.1), (5.2) below hold true)

σλµ : EA
λ → EA

µ : x+NA
λ 7→ x+NA

µ , ∀x ∈ E,
which are continuous as it follows from (3.3). If {Aλ, πλµ}µ≤λ is the inverse
system of the C∗-algebras corresponding to A[τΓ], where πλµ(a+Nλ) := a+Nµ,
a ∈ A, µ ≤ λ in Λ. Then for any x, y ∈ E, a ∈ A, µ ≤ λ in Λ the following
conditions are satisfied

σλµ

(
(x+NA

λ ) (a+Nλ)
)

= σλµ(x+NA
λ )πλµ(a+Nλ),(5.1)

σλµ

(
(a+Nλ)(x+NA

λ )
)

= πλµ(a+Nλ)σλµ(x+NA
λ ),(5.2)

(5.3)
〈σλµ(x+NA

λ ), σλµ(y +NA
λ )〉Aµ = 〈x+NA

µ , y +NA
µ 〉Aµ = 〈x, y〉A +Nµ

= πλµ(〈x+NA
λ , y +NA

λ 〉Aλ
),

Aµ〈σλµ(x+NA
λ ), σλµ(y +NA

λ )〉 = πλµ(Aλ
〈x+NA

λ , y +NA
λ 〉).(5.4)

From all the above, it is clear that the family {EA
λ }λ∈Λ constitutes an inverse

system of Aλ-bimodules with connecting maps σλµ, µ ≤ λ ∈ Λ [9, Definition
1.2.20]. Thus we can form the inverse limit lim←−E

A
λ , which is non empty ac-

cording to [2, p. 198, Proposition 5], and consider it as a left and right Hilbert
pro-C∗-module over A, with module actions and A-valued inner products de-
fined in the obvious manner, i.e.,

a(σλ(x))λ := (πλ(a)σλ(x))λ, (σλ(x))λ a := (σλ(x)πλ(a))λ

A〈(σλ(x))λ, (σλ(y))λ〉 :=
(

Aλ
〈σλ(x), σλ(y)〉

)
λ

〈(σλ(x))λ, (σλ(y))λ〉A :=
(
〈σλ(x), σλ(y)〉Aλ

)
λ
,

for all x, y ∈ lim←−E
A
λ , a ∈ A, where σλ : lim←−E

A
λ → EA

λ and πλ : A→ Aλ, λ ∈ Λ,
are the projection maps of the respective inverse limits. The above actions and
inner products are well-defined, due to the relations (5.1)–(5.4). Moreover, for
any x, y, z ∈ lim←−E

A
λ we get the following equality

A〈(σλ(x))λ, (σλ(y))λ〉 (σλ(z))λ = (σλ(x))λ〈(σλ(y))λ, (σλ(z))λ〉A.
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The inverse limit lim←−E
A
λ inherits two locally convex topologies, determined by

the families of seminorms {pA
λ }, {Apλ}, with respect to which lim←−E

A
λ is a right

and a left Hilbert pro-C∗-module over A respectively [9, Proposition 1.2.21].
Also, for any λ ∈ Λ, x ∈ lim←−E

A
λ , we get the following

pA
λ

(
(σλ(x))λ

)2 : = pλ(〈(σλ(x))λ, (σλ(x))λ〉A) = pλ

(
(〈σλ(x), σλ(x)〉Aλ

)λ

)
= ‖σλ(x)‖2Aλ

= Aλ
‖σλ(x)‖2 = Apλ

(
(σλ(x))λ

)2
.

Therefore, according to Definition 3.4, lim←−E
A
λ is a Hilbert pro-C∗-bimodule

over the pro-C∗-algebra A[τΓ].
Consider now the map

Φ : E → lim←−E
A
λ : x 7→ (x+NA

λ )λ,

which is well-defined by the definition of the connecting maps σλµ, λ ≥ µ. The
map Φ is an A-bimodule morphism and for any x, y in E we have that

〈Φ(x),Φ(y)〉A = 〈(x+NA
λ )λ, (y +NA

λ )λ〉A
=
(
〈x+NA

λ , y +NA
λ 〉Aλ

)
λ

= 〈x, y〉A.
Similarly, we get that A〈Φ(x),Φ(y)〉 = A〈x, y〉. Thus, Φ(E) is a closed A-sub-
bimodule of lim←−E

A
λ , therefore E = lim←−E

A
λ (see proof of [9, Proposition 1.3.10]),

up to a topological isomorphism of A-bimodules.

6. APPLICATIONS

In this section we give two applications. The first one deals with the
continuity of a derivation from a pro-C∗-algebra A[τΓ] into a Hilbert pro-
C∗-bimodule E over A (see 6.(1)), while the second one gives a realization
of “compact” operators on Hilbert pro-C∗-bimodules by means of a specific
closed ∗-ideal of the pro-C∗-algebra involved (see 6.(2)).

6.(1) Continuity of derivations in Hilbert pro-C∗-bimodules.

If A is an algebra and E an A-bimodule, a linear map δ : A→ E is called
a derivation if it satisfies the Leibnitz rule, i.e.,

δ(ab) = δ(a)b+ aδ(b), ∀ a, b ∈ A.
The derivation δ is said to be inner, if

∃x ∈ E such that δ(a) = ax− xa, ∀ a ∈ A.
A lot of automatic continuity results for derivations of Banach, C∗-algebras
and von Neumann algebras are given in [5]. In the case of a C∗-algebra A,
every derivation δ : A → A is continuous [21, Theorem 2.3.1]. J.R. Ringrose
extended this result in 1972, showing that every derivation from a C∗-algebra
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A into a Banach bimodule X over A is continuous [20]. In the case of pro-C∗-
algebras, Becker proved in 1992, that if A is a pro-C∗-algebra, every derivation
δ : A→ A is continuous [1]. In 1995, N.C. Phillips proved that every derivation
δ : A[τΓ] → A[τΓ] of a pro-C∗-algebra is approximately inner [19]. In this
subsection we prove (Theorem 6.1) that every derivation of a pro-C∗-algebra in
a Hilbert pro-C∗-bimodule is continuous, generalizing thus Becker’s result, and
giving at the same time a version of Ringrose theorem in our setting. In a paper,
joint with M. Weigt, we present various generalizations of Ringrose’s result,
using a complete locally convex bimodule, over a pro-C∗-algebra (see [23]).

Theorem 6.1. Let A[τΓ] be a pro-C∗-algebra and E[τ ] (see Remarks
3.3(4)) a Hilbert pro-C∗-bimodule over A[τΓ]. Then every derivation δ : A[τΓ]→
E[τ ] is continuous.

Proof. For all λ ∈ Λ, consider the correspondence

δλ : Aλ → EA
λ : δλ(πλ(a)) := σλ(δ(a)), ∀ a ∈ A,

where πλ : A → Aλ, σλ : E → EA
λ are the natural quotient maps. Then for

every λ, the map δλ is well defined, since if πλ(α) = 0, then

‖σλ(δ(a))‖2Aλ
= ‖〈σλ(δ(a)), σλ(δ(a))〉Aλ

‖ = ‖〈δ(a), δ(a)〉A +Nλ‖
= pλ(〈δ(a), δ(a)〉).

Now, since a ∈ Nλ, from [1, Lemma 1], there are y1, y2, y3, y4 ∈ Nλ, such

that a =
4∑

k=1

iky2
k, where i is the imaginary unit. Therefore, for each pλ ∈ Γ

we have

pλ(〈δ(a), δ(a)〉A) = pλ

(〈
δ

( 4∑
k=1

iky2
k

)
, δ

( 4∑
m=1

imy2
m

)〉
A

)
≤

≤
4∑

k,m=1

pλ(〈δ(y2
k), δ(y

2
m)〉A) ≤

≤
4∑

k,m=1

{pλ(y∗k)pλ(〈δ(yk), δ(ym)〉A)pλ(ym) + pλ(〈ykδ(yk), δ(ym)〉A)pλ(ym)+

+pλ(y∗k)pλ(〈δ(yk), ymδ(ym)〉A) + pλ(〈δ(yk), y∗kymδ(ym)〉A)} ≤

≤
4∑

k,m=1

pλ(〈δ(yk), δ(yk)〉A)
1
2 pλ(〈y∗kymδ(ym), y∗kymδ(ym)〉A)

1
2 =

=
4∑

k,m=1

pA
λ (δ(yk))pA

λ (y∗kymδ(ym)) ≤
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≤
4∑

k,m=1

pA
λ (δ(yk))pλ(yk)pλ(ym)pA

λ (δ(ym)) = 0.

The last but one inequality follows from Cauchy-Schwarz inequality and
the last inequality follows from the first inequality in (T ). Thus, we get that
‖σλ(δ(a))‖Aλ

= 0, therefore δλ is well defined. Moreover, it is easily checked
that δλ is a derivation from Aλ in EA

λ , for every λ ∈ Λ. Since every EA
λ is a

Hilbert Aλ-bimodule, it follows from Ringrose’s result [20, Theorem 2] that
every δλ is continuous. That is, for each pλ ∈ Γ, there is Cpλ

> 0 such
that: ‖δλ(πλ(a))‖ ≤ Cpλ

‖πλ(a)‖, for all a ∈ A, or equivalently

pλ(〈δ(a), δ(a)〉A)
1
2 = pA

λ (δ(a)) ≤ Cpλ
pλ(a), ∀ a ∈ A,

therefore, δ is continuous. �

Proposition 6.3 below is a restatement of a result of Becker in the case of
Hilbert bimodules. For this, we modify the definition of approximate innerness
[1, Definition 11] in the following way.

Definition 6.2. A derivation δ : A→ E from a pro-C∗-algebra A[τΓ] into
a Hilbert pro-C∗-bimodule E over A[τΓ] is called approximately inner, if there
exists a net (xj)j∈J in E, such that δ(a) = lim

j
(xja− axj), for all a ∈ A.

If E[τ ] is a Hilbert A-bimodule over a pro-C∗-algebra A[τΓ], then A[τΓ] =
lim←−λ

Aλ and E[τ ] = lim←−λ
EA

λ (see Section 5). The inverse limit E[τ ] fulfils
the relations (5.1)–(5.4) in Section 5. Based on these properties the following
proposition is easily proved (see [1, Proposition 12]).

Proposition 6.3. Let δ : A[τΓ]→ E[τ ] be a derivation, such that every
induced derivation δλ : Aλ → EA

λ , λ ∈ Λ, is inner. Then the derivation δ is
approximately inner.

We remark that if we take A[τ ] to be the pro-C∗-algebra lim←−n
Mn(C) =∏

nMn(C), Mn(C) are all n× n matrices with entries from C, E[τ ] a Hilbert
A-bimodule and δ a derivation of A[τΓ] in E[τ ], then every δn : Mn(C) →
EA

n , n ∈ N, is inner, since Mn(C) is semisimple and finite-dimensional (see
[5, Theorem 1.9.21]). For a survey account on derivations of locally convex
(∗-)algebras, see [8].

6.(2) A realization of “compact” operators on Hilbert pro-C∗-bimodules.

Let A[τΓ] be a pro-C∗-algebra and E a Hilbert pro-C∗-bimodule over A.
LA(E) stands for the set of all maps T : E → E, for which there is a map
T ∗ : E → E, such that

〈T (x), y〉A = 〈x, T ∗y〉A, ∀x, y ∈ E.
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It is a pro-C∗-algebra, where the C∗-seminorms {p̃λ}λ∈Λ determining its
topology are given by

p̃λ(T ) := sup{pA
λ (Tx) : x ∈ E, pA

λ (x) ≤ 1}, λ ∈ Λ, T ∈ LA(E);

moreover, LA(E) = lim←−LAλ
(EA

λ ), as pro-C∗-algebras [18, Theorem 4.2, Propo-
sition 4.7]. For x, y ∈ E, θx,y is defined to be the element of LA(E), with

θx,y(z) = x〈y, z〉A, z ∈ E.

Then, denote by KA(E) the closed linear span of {θx,y : x, y ∈ E}. KA(E) is a
closed two-sided ∗-ideal of LA(E), whose elements are usually called “compact”
operators. Note that if E,F are Hilbert pro C∗-bimodules over A[τΓ], the
“compact” operators KA(E,F ) are defined in a similar way (ibid.). If E,F are
Hilbert C∗-modules over a C∗-algebra A, the elements of KA(E,F ) considered
as operators between the Banach spaces E,F need not be compact [14, p. 10].
For this reason, some authors do not use the preceding terminology. Coming
back to KA(E) as before, note that this is a pro-C∗-algebra, topologically ∗-
isomorphic to the pro-C∗-algebra lim←−KAλ

(Eλ) [18, Theorem 4.2, Proposition
4.7]. Let now AI be the closure of the two-sided ideal span{A〈x, y〉 : x, y ∈ E};
the notation is analogous to that of IA in the proof of Theorem 3.1. By [7,
Theorem 11.7] AI is a ∗-ideal. Theorem 6.5, below, gives a realization of the
“compact” operators KA(E), through the closed two-sided ∗-ideal AI of A,
in case A is a σ-C∗-algebra. For this, we will need a particular form for the
elements of the approximate identity that AI gets as a pro-C∗-algebra, which
for the C∗-case stems from [6, Proposition 1.7.2] and [3, Theorem 2.1], as
indicated in [4, Remark 1.9]. In the following lemma, for clarity’s sake, we
give a detailed proof of the same particular result in our setting.

Lemma 6.4. Let A[τΓ] be a σ-C∗-algebra, E a Hilbert A-bimodule and
AI = span{A〈ξ, η〉 : ξ, η ∈ E}. Then AI has an approximate identity {uα}
with uα =

n∑
i=1

A〈ηα
i , η

α
i 〉, where α = {ξ1, . . . , ξn} ⊂ E ranges over finite subsets

of E and ηα
i =

( n∑
j=1

A〈ξj , ξj〉+ 1
n1
)− 1

2
ξi, i = 1, . . . , n, where 1 is the identity

of the unitization A1 of A [7, 8.3 Theorem].

Proof. AI as a closed ideal of A[τΓ] is a ∗-ideal [7, Theorem 11.7] and
thus as a closed ∗-subalgebra of A[τΓ] is a σ-C∗-algebra. Let Γ = {pn}n∈N be
the family of C∗-seminorms defining τΓ. We consider the right ideal R of AI

generated by the set {A〈ξ, ξ〉
1
2 : ξ ∈ E}. We note that from the functional

calculus in pro-C∗-algebras [7, Theorem 10.2 and Proposition 10.13] A〈ξ, ξ〉
1
2 ∈

AI, ξ ∈ E. Then, A〈ξ, ξ〉 ∈ R∗R, where R∗R is a two-sided ideal in AI and
R∗ = {r∗ : r ∈ R}. From the Polarization identity we then get that A〈ξ, η〉 ∈



304 I. Zarakas 16

R∗R and thus span{A〈ξ, η〉 : ξ, η ∈ E} ⊆ R∗R. Therefore, R∗R is dense in AI.
Then from [7, Theorem 11.5] we know that AI has an approximate identity

eλ of the form eλ =
n∑

i=1
x∗ixi

(
1
n1 +

n∑
i=1

x∗ixi

)−1
where λ = {x1, . . . , xn} ranges

over all finite subsets of R∗R. Now, we note that for any self-adjoint element
c of R∗R there are finite many elements cj ∈ R such that c ≤

∑
c∗jcj . This is

due to the inequality

2Re(a∗b) ≤ a∗a+ b∗b, ∀ a, b ∈ R,(6.1)

which is considered in the proof of [3, Theorem 2.1]. Therefore, if c =
p∑

k=1

a∗kbk,

ak, bk in R, is a self-adjoint element of R∗R, we have that

c = Re(c) = Re
( p∑

k=1

a∗kbk

)
≤

2p∑
k=1

c∗kck, where

ck =
1√
2
ak, for k = 1, . . . , p, and ck =

1√
2
bk−p, for k = p+ 1, . . . , 2p,

with ck ∈ R, for all k = 1, . . . , 2p. Consequently, if vλ =
n∑

i=1
x∗ixi, with xi ∈

R∗R, i = 1, . . . , n, then there are cj ∈ R, j = 1, . . . , q, such that vλ ≤
q∑

j=1
c∗jcj ≡ rl, where q > n and l = {c1, . . . , cq}. Let Rl ≡

q∑
j=1

c∗jcj(
1
q1 +

q∑
j=1

c∗jcj)
−1. Thus, as in the proof of [7, Theorem 11.5] we conclude that

eλ = 1 − 1
n

(
1
n
1 + vλ

)−1

≤ 1 − 1
n

(
1
n
1 + rl

)−1

≤ 1 − 1
q

(
1
q
1 + rl

)−1

= Rl.

By the above inequality we have that 1 ≥ 1 − eλ ≥ 1 − Rl ≥ 0. We then
get (1 − Rl)2 ≤ 1 − Rl ≤ 1 − eλ, where the first inequality is due to the
pro-C∗-algebras functional calculus [7, Chapter II, Section 10] for the positive
element 1 −Rl with 1 −Rl ≤ 1 . Therefore (ibid., 10.18 Corollary)

x∗(1 −Rl)2x ≤ x∗(1 − eλ)x, ∀x ∈ R∗R,

which implies

pn((1−Rl)x)2 = pn(x∗(1−Rl)2x) ≤ pn(x∗)pn((1−eλ)x), ∀ pn∈Γ and x∈R∗R.

Now, from the construction of l from λ and the fact that {eλ} is an approximate
identity for AI, together with the fact that R∗R is dense in AI and pn(1−Rl) ≤
1, for all pn ∈ Γ, it follows that {Rl} is an approximate identity for AI too.
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Let now

cj =
mj∑
s=1

A〈ξj
s , ξ

j
s〉

1
2aj

s ∈ R, mj ∈ N, ξj
s ∈ E, aj

s ∈ AI, j = 1, . . . , l.(6.2)

Note that we can assume w.l.o.g. that AI, as a pro-C∗-algebra, has a unit,
so the finite sums in R of the form

∑
f∈F

λf A〈ξf , ξf 〉
1
2 , F ⊂ N finite, ξf ∈ E,

λf ∈ C, for all f ∈ F, are “among” the above considered elements in (6.2).
Let Tj = {1, . . . ,mj}, for j = 1, . . . , q. Now, for cj as in (6.2) we have the
following calculation

c∗jcj

( mj∑
s=1

(aj
s)
∗

A〈ξj
s , ξ

j
s〉

1
2

)( mj∑
s=1

A〈ξj
s , ξ

j
s〉

1
2aj

s

)
=

=
mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉+
∑

s∈Tj\{1}

(aj
1)
∗

A〈ξj
1, ξ

j
1〉

1
2 A〈ξj

s , ξ
j
s〉

1
2aj

s + · · ·+

+
∑

s∈Tj\{mj}

(aj
mj

)∗ A〈ξj
mj
, ξj

mj
〉

1
2 A〈ξj

s , ξ
j
s〉

1
2aj

s =

=
mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉+
mj−1∑
k=1

[ ∑
s∈Tj\{1,··· ,k}

(aj
k)

∗
A〈ξj

k, ξ
j
k〉

1
2 A〈ξj

s , ξ
j
s〉

1
2aj

s+

+(aj
s)
∗

A〈ξj
s , ξ

j
s〉

1
2 A〈ξj

k, ξ
j
k〉

1
2aj

k

]
=

mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉+

+
mj−1∑
k=1

[ ∑
s∈Tj\{1,··· ,k}

2Re
(
(aj

k)
∗

A〈ξj
k, ξ

j
k〉

1
2 A〈ξj

s , ξ
j
s〉

1
2aj

s

)]
≤

≤
mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉+

+
mj−1∑
k=1

[ ∑
s∈Tj\{1,··· ,k}

A〈(aj
k)

∗ξj
k, (a

j
k)
∗ξj

k〉+ A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉
]

=

=
mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉+ (mj − 1)
mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉 =

= mj

mj∑
s=1

A〈(aj
s)
∗ξj

s , (a
j
s)
∗ξj

s〉 =
mj∑
s=1

A〈(
√
mja

j
s)
∗ξj

s , (
√
mja

j
s)
∗ξj

s〉.
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In the above string of relations, the inequality is due to (6.1). Therefore,
q∑

j=1

c∗jcj ≤
q∑

j=1

[ mj∑
s=1

A〈(
√
mja

j
s)
∗ξj

s , (
√
mja

j
s)
∗ξj

s〉
]

=
∑
f∈T

A〈bfξf , bfξf 〉,

for a finite subset T of N and bf ∈ AI, ξf ∈ E, for all f ∈ T. Reasoning as
above we get that

uα =
∑
f∈T

A〈bfξf , bfξf 〉
(

1
|T |

1 +
∑
f∈T

A〈bfξf , bfξf 〉
)−1

=
∑
f∈T

A

〈(
1
|T |

1 +
∑
f∈T

A〈bfξf , bfξf 〉
)− 1

2

bfξf ,

(
1
|T |

1+

+
∑
f∈T

A〈bfξf , bfξf 〉
)− 1

2

bfξf

〉
=
∑
f∈T

A〈ηα
f , η

α
f 〉,

is an approximate identity for AI, where

ηα
f =

(
1
|T |

1 +
∑
f∈T

A〈bfξf , bfξf 〉
)− 1

2

bfξf and α = {bfξf : f ∈ T}

ranges over all finite subsets {aξ : a ∈ AI, ξ ∈ E} of E. Let Λ be the
family of all such finite subsets and {uα}α∈Λ the above approximate identity
of AI. Now, from functional calculus in the pro-C∗-algebra AI we have that
pn(uα) ≤ 1, for all pn ∈ Γ, α ∈ Λ. Also, it can easily be checked that uαξ → ξ,
for all ξ ∈ E. Therefore, since the Hilbert pro-C∗-bimodule E over A is by
restriction a Hilbert AI-bimodule, by a factorization result of Summers [22,
Theorem 2.1], we have that for ξ ∈ E there are η ∈ E, a ∈ AI such that
ξ = aη (in fact to apply the result of Summers we need only the fact that E
is a left Hilbert pro-C∗-module over AI). This fact, together with the above
considerations, implies that the elements uα of the approximate identity of AI

are of the form uα =
m∑

j=1
A〈ηα

j , η
α
j 〉, where ηα

j =
(

1
m1 +

m∑
j=1

A〈ξj , ξj〉
)− 1

2
ξj and

α = {ξ1, . . . , ξm} ranges over all finite subsets of E. �

Theorem 6.5. Let A[τΓ] be a σ-C∗-algebra, where Γ = {pn}n∈N. Let
E be a Hilbert A-bimodule. Then AI = KA(E), with respect to a topological
∗-isomorphism.

Proof. AI as a closed ∗-subalgebra of A[τΓ] is a σ−C∗- algebra and hence
it has an Arens-Michael decomposition, i.e., AI = lim←− In, up to a topological
∗-isomorphism, where In = AI/Nn; Nn = ker(pn|AI), n ∈ N (see Section 2).
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Moreover, LA(E) = lim←−LAn(EA
n ), up to a topological ∗-isomorphism, as we

noticed above. Consider the correspondence

λn : In → LAn(EA
n ) with λn

a+Nn
(ξ +NA

n ) = aξ +NA
n , a ∈ AI, ξ ∈ E.

Notice that λn is well-defined (apply the same procedure as that for the map
κλ in the proof of Theorem 3.1). By Lemma 6.4, AI has an approximate
identity (uα), with

uα =
m∑

i=1

A〈ηα
i , η

α
i 〉, ηα

i =
(

1
m

1 +
m∑

i=1

A〈ξi, ξi〉
)− 1

2

ξi ∈ E

and α = {ξ1, . . . , ξm} ⊂ E ranges over all finite subsets of E.

Now, if uα,n =
( m∑

i=1
A〈ηα

i , η
α
i 〉
)
+Nn ∈ In, then (uα,n)α is an approximate

identity for In, for every n ∈ N [16, Lemma 1.2, p. 466]. Then if b ∈ AI with
λn

b+Nn
= 0, we have that

(b+Nn)uα,n =
(
b

m∑
i=1

(A〈ηα
i , η

α
i 〉)
)

+Nn =
m∑

i=1

(A〈bηα
i , η

α
i 〉) +Nn =

=
m∑

i=1

(
An
〈(b+Nn)(ηα

i + NA
n ), ηα

i + NA
n 〉
)

=

=
m∑

i=1

(
An
〈λn

b+Nn
(ηα

i +NA
n ), ηα

i + NA
n 〉
)

= 0,

for every α, thus b+Nn = 0. So λn is 1-1 for all n. For the last but one equality
above, see discussion after Definition 3.4. For n ≤ m, σmn : EA

m → EA
n are

the connecting maps of the inverse system {EA
m}m∈N as Hilbert Am-bimodules

(Section 5). Let

Fmn : LAm(EA
m)→ LAn(EA

n ) with Fmn(T )(ξ +NA
n ) := σmn(T (ξ +NA

m)),

T ∈ LAm(EA
m), ξ ∈ E, be the connecting maps of the inverse system of the

C∗-algebras {LAm(EA
m)}m∈N [9, p. 44]. For n ≤ m, consider the following

diagram

Im

πmn

��

λm
// LAm(EA

m)

Fmn

��
In

λn
// LAn(EA

n )
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where πmn : Im → In are the connecting maps of the inverse system {Im}m∈N.
Then, for a ∈ AI and ξ ∈ E we have that

Fmnλ
m
a+Nm

(ξ +NA
n ) = σmn(λm

a+Nm
(ξ +NA

m)) = σmn(aξ +NA
m)

= aξ +NA
n = λn

a+Nn
(ξ +NA

n )

= λn(πmn(a+Nm))(ξ +NA
n ), n ∈ N,

so the above diagram is commutative.
Let now a ∈ AI. Define λa : E → E : ξ 7→ aξ. Then λa ∈ LA(E) due to

(3.4)(i). Thus, the correspondence
λ :A I → LA(E) : a 7→ λa,

is well-defined and it is a ∗-homomorphism between σ-C∗-algebras. Moreover,
let πn :A I → In, σn : E → EA

n be the projective maps of the inverse systems
{EA

n }n∈N and {In}n∈N respectively and

Fn : LA(E)→ LAn(EA
n ) with Fn(S)(ξ +NA

n ) = σn(Sξ), S ∈ LA(E),

ξ ∈ E, n ∈ N, the projective maps of the inverse system {LAn(EA
n )}n∈N (ibid.).

Then the following diagram

AI

πn

��

λ // LA(E)

Fn

��
In

λn
// LAn(EA

n )

is commutative, since for all a ∈ AI and ξ ∈ E, we have

Fn(λ(a))(ξ +NA
n ) = σn(λa(ξ)) = aξ +NA

n = λn(a+Nn)(ξ +NA
n )

= λn(πn(a))(ξ +NA
n ), n ∈ N.

Therefore, λ = lim←−λ
n and thus λ has closed range and is a homeomorphism

onto its image, according to [18, Proposition 5.3 (1)]. Then since λ maps a
dense set of AI, i.e., span{A〈ξ, η〉 : ξ, η ∈ E} onto the set {θξ,η : ξ, η ∈ E},
which is dense in KA(E), we conclude that KA(E) = AI, up to a topological
∗-isomorphism. �

We note that Theorem 6.5 is an extension of Proposition 1.10 in [4], in
the non-normed setting. Notice that in case we have two σ-C∗-algebras A, B
and a Hilbert B-A-bimodule E, then, with the same proof as above, we get
that BI = KA(E) and AI = KB(E∗), up to topological ∗-isomorphisms, where
E∗ is a Hilbert A-B-bimodule defined exactly as in [4, Definition 1.4].

The work developed in this article is essentially used in a forthcoming pa-
per, which introduces and studies the important topic of “C∗-correspondences”,
in the context of pro-C∗-algebras.
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Further applications of the contents of the present paper will appear
in a joint paper with M. Joiţa, entitled “Crossed products by Hilbert pro-C∗-
bimodules” [10]. For the C∗-case of the aforementioned topics see e.g., [11, 12],
respectively [4, 17].
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