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By using a generalized differential operator, defined by means of the Hadamard
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the open unit disk and investigate their inclusion relationships. Some integral
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1. INTRODUCTION AND PRELIMINARIES

Let Ap denote the class of functions f(z) of the form

(1) f(z) = zp +
∞∑

n=1

anz
p+n, p ∈ N = {1, 2, 3, . . .},

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. For functions
f given by (1) and g given by

g(z) = zp +
∞∑

n=1

bnz
p+n,

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = zp +
∞∑

n=1

anbnz
p+n.

Let f(z) and g(z) be analytic in U. Then we say that the function f(z)
is subordinate to g(z) in U, if there exists an analytic function w(z) in U with

w(0) = 0, |w(z)| < 1, z ∈ U,
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such that
f(z) = g(w(z)), z ∈ U.

We denote this subordination by f(z) ≺ g(z). Furthermore, if the function g(z)
is univalent in U, then f(z) ≺ g(z), z ∈ U ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let P denote the class of analytic functions h(z) with h(0) = 1, which
are convex univalent in U and for which R{h(z)} > 0, z ∈ U.

Let α1, α2, . . . , αq and β1, β2, . . . , βs (q, s ∈ N∪{0}, q ≤ s+1) be complex
numbers such that βk 	= 0,−1,−2, . . . for k ∈ {1, 2, . . . , s}. The generalized
hypergeometric function qFs is given by

qFs(α1, α2, . . . , αq;β1, β2, . . . , βs; z) =
∞∑

n=0

(α1)n(α2)n . . . (αq)n

(β1)n(β2)n . . . (βs)n

zn

n!
, z ∈ D,

where (x)n denotes the Pochhammer symbol defined by

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1) for n ∈ N and (x)0 = 1.

Corresponding to a function Gp
q,s(α̃1; β̃1 ; z) defined by

(2) Gp
q,s(α̃1, β̃1 ; z) := zp

qFs(α1, α2, . . . , αq;β1, β2, . . . , βs; z),

where α̃1 = (α1, α2, . . . , αq) and β̃1 = (β1, β2, . . . , βs), C. Selvaraj and K.R.
Karthikeyan [11] recently defined the following generalized differential operator
Dp,m

λ (α1, β1)f : Ap → Ap by

Dp,0
λ (α1, β1)f(z) = f(z) ∗ Gp

q,s(α̃1, β̃1 ; z),

Dp,1
λ (α1, β1)f(z) = (1− λ)(f(z) ∗ Gp

q,s(α̃1, β̃1 ; z)) +
λ

p
z(f(z) ∗ Gp

q,s(α̃1, β̃1 ; z))′,

Dp,m
λ (α1, β1)f(z) = Dp,1

λ (Dp,m−1
λ (α1, β1)f(z)),(3)

where m ∈ N0 = N ∪ {0} and λ ≥ 0.
If f(z) ∈ Ap, then we have

(4) Dp,m
λ (α1, β1)f(z) = zp +

∞∑
n=1

(
p+ λn

p

)m (α1)n(α2)n . . . (αq)n

(β1)n(β2)n . . . (βs)n
ap+n

zp+n

n!
.

It can be seen that, by specializing the parameters the operator Dp,m
λ (α1, β1)

reduces to many known and new integral and differential operators. In par-
ticular, when m = 0 and p = 1 the operator Dp,m

λ (α1, β1) reduces to the well
known Dziok-Srivastava operator [3] and for p = 1, q = 2, s = 1, α1 = β1 and
α2 = 1, it reduces to the operator introduced by F. Al-Oboudi [1]. Further we
remark that, when p = 1, q = 2, s = 1, α1 = β1, α2 = 1 and λ = 1 the operator
Dp,m

λ (α1, β1) reduces to the operator introduced by G.S. Sălăgean [10].
It can be easily verified from (4) that

(5) λz(Dp,m
λ (α1, β1)f(z))′ = pDp,m+1

λ (α1, β1)f(z)−p(1−λ)Dp,m
λ (α1, β1)f(z)
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and

(6) z(Dp,m
λ (α1, β1)f(z))′ = α1D

p,m
λ (α1+1, β1)f(z)−(α1−p)Dp,m

λ (α1, β1)f(z).

Throughout this paper, we assume that p, k ∈ N, εk = exp(2πi
k ) and

(7) fp,m
λ,k (α1, β1; z) =

1
k

k−1∑
j=0

ε−jp
k (Dp,m

λ (α1, β1)f(εjkz)) = zp + · · · , f ∈ Ap.

Clearly, for k = 1, we have

fp,m
λ,1 (α1, β1; z) = Dp,m

λ (α1, β1)f(z).

We now introduce the following subclasses of analytic functions.

Definition 1.1. A function f ∈ Ap is said to be in the class Sp,m
λ,k (α1, β1;h),

if it satisfies

(8)
z(Dp,m

λ (α1, β1)f(z))′

pfp,m
λ,k (α1, β1; z)

≺ h(z), z ∈ U,

where h ∈ P and fp,m
λ,k (α1, β1; z) 	= 0, z ∈ U.

Remark 1.1. If we let m = 0, then Sp,m
λ,k (α1, β1;h) reduces to the function

class Sq,s
p,k(α1;h) introduced and investigated by Z.-G. Wang, Y.-P. Jiang and

H.M. Srivastava [14].

Remark 1.2. If we let m = 0, q = 2, s = 1, α1 = a, α2 = 1 and β1 = c,
then Sp,m

λ,k (α1, β1;h) reduces to the function class Tp,k(a, c;h) introduced and
investigated by N.-E. Xu and D.-G. Yang [15].

Remark 1.3. If we let m = 0, p = 1, q = 2, s = 1, α1 = β1 and α2 = 1,
then Sp,m

λ,k (α1, β1;h) reduces to the known subclass S(k)
s (φ) of close-to-convex

functions with respect to k-symmetric points, introduced and studied recently
by Z.-G. Wang, C.-Y. Gao and S.-M. Yuan [13].

Remark 1.4. Let h(z) = 1+z
1−z and let q = 2, s = 1, α1 = β1 and α2 = 1.

Then S1,0
λ,2(α1, β1;h) = S∗s . The class S∗s of functions starlike with respect to

symmetric points has been studied by several authors (see [8], [9], [16]).

Definition 1.2. A function f ∈ Ap is said to be in the classKp,m
λ,k (α1, β1;h),

if it satisfies

(9)
z(Dp,m

λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

≺ h(z), z ∈ U,

for some g(z) ∈ Sp,m
λ,k (α1, β1;h), where h ∈ P and gp,m

λ,k (α1, β1; z) 	= 0 is defined
as in (7).
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Remark 1.5. If we let m = 0, p = 1, q = 2, s = 1, α1 = β1 and α2 = 1,
then Kp,m

λ,k (α1, β1;h) reduces to the known subclass C(k)
s (φ) of quasi-convex

functions with respect to k-symmetric points, introduced and studied recently
by Z.-G. Wang, C.-Y. Gao and S.-M. Yuan [13].

Definition 1.3. A function f ∈ Ap is said to be in the class QCp,m
λ,k (δ;α1,

β1;h), if it satisfies

(10) (1−δ)z(D
p,m
λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

+δ
z(Dp,m

λ (α1+1, β1)f(z))′

p gp,m
λ,k (α1+1, β1; z)

≺ h(z), z ∈ U,

for some δ, δ≥0 and g(z)∈Sp,m
λ,k (α1, β1;h), where h∈P and gp,m

λ,k (α1, β1; z) 	= 0.

Remark 1.6. If we let m = 0, p = 1, q = 2, s = 1, α1 = β1 and α2 = 1,
then QCp,m

λ,k (δ;α1, β1;h) reduces to the known subclass QC(k)
s (λ, φ) of δ-quasi-

convex functions with respect to k-symmetric points, introduced and studied
recently by S.-M. Yuan and Z.-M. Liu [17]. Further if we set,

m = 0, p = k = 1, q = 2, s = 1, α1 = β1, α2 = 1, δ = 1 and h(z) =
1 + z

1− z ,
then QCp,m

λ,k (δ;α1, β1;h) reduces to the familiar class of quasi-convex functions
which was introduced and studied earlier by K.I. Noor [7].

We need the following lemmas to derive our results.

Lemma 1.7 ([5]). Let β and γ be complex numbers and let h(z) be analytic
and convex univalent in U with R{βh(z) + γ} > 0, z ∈ U. If q(z) is analytic
in U with q(0) = h(0), then the subordination

q(z) +
zq′(z)

βq(z) + γ
≺ h(z), z ∈ U

implies that
q(z) ≺ h(z), z ∈ U.

Lemma 1.8 ([6]). Let h(z) be analytic and convex univalent in U and let
w(z) be analytic in U with R{w(z)} ≥ 0, z ∈ U. If q(z) is analytic in U with
q(0) = h(0), then the subordination

q(z) + w(z)zq′(z) ≺ h(z), z ∈ U

implies that
q(z) ≺ h(z), z ∈ U.

Lemma 1.9. Let f(z) ∈ Sp,m
λ,k (α1, β1;h). Then

(11)
z(fp,m

λ,k (α1, β1; z))′

pfp,m
λ,k (α1, β1; z)

≺ h(z), z ∈ U.
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Proof. For f(z) ∈ Ap, we have from (7) that

fp,m
λ,k (α1, β1; ε

j
kz) =

1
k

k−1∑
n=0

ε−np
k Dp,m

λ (α1, β1)f(εn+j
k z)

=
εjpk
k

k−1∑
n=0

ε
−(n+j)p
k Dp,m

λ (α1, β1)f(εn+j
k z)

= εjpk f
p,m
λ,k (α1, β1; z), j ∈ {0, 1, . . . , k − 1}

and

(fp,m
λ,k (α1, β1; z))′ =

1
k

k−1∑
j=0

ε
j(1−p)
k (Dp,m

λ (α1, β1)f(εjkz))
′.

Hence

z(fp,m
λ,k (α1, β1; z))′

pfp,m
λ,k (α1, β1; z)

=
1
k

k−1∑
j=0

ε
j(1−p)
k z(Dp,m

λ (α1, β1)f(εjkz))
′

pfp,m
λ,k (α1, β1; z)

(12)

=
1
k

k−1∑
j=0

εjkz(D
p,m
λ (α1, β1)f(εjkz))

′

pfp,m
λ,k (α1, β1; z)

, z ∈ U.

Since f(z) ∈ Sp,m
λ,k (α1, β1;h), we have

(13)
εjkz(D

p,m
λ (α1, β1)f(εjkz))

′

pfp,m
λ,k (α1, β1; ε

j
kz)

≺ h(z), for j ∈ {0, 1, . . . , k − 1}.

Noting that h(z) is convex univalent in U, from (12) and (13) we conclude
that (11) holds true. �

2. A SET OF INCLUSION RELATIONSHIPS

Theorem 2.1. Let h(z) ∈ P with

(14) R{h(z)} > max
{

1− 1
λ
, 1− α1

p

}
, z ∈ U, λ > 1.

Then

Sp,m+1
λ,k (α1 + 1, β1;h) ⊂ Sp,m

λ,k (α1 + 1, β1;h) ⊂ Sp,m
λ,k (α1, β1;h).
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Proof. From (5) and (7), we have

(1− λ)fp,m
λ,k (α1, β1; z) +

λz

p
(fp,m

λ,k (α1, β1; z))′ =(15)

=
1
k

k−1∑
j=0

ε−jp
k (Dp,m+1

λ (α1, β1)f(εjkz)) = fp,m+1
λ,k (α1, β1; z).

Let f(z) ∈ Sp,m+1
λ,k (α1 + 1, β1;h) and

(16) w(z) =
z(fp,m

λ,k (α1 + 1, β1; z))′

pfp,m
λ,k (α1 + 1, β1; z)

.

Then w(z) is analytic in U, with w(0) = 1 and from (15) (with α1 replaced by
α1 + 1) and (16) we have

(17) 1− λ+ λw(z) =
fp,m+1

λ,k (α1 + 1, β1; z)

fp,m
λ,k (α1 + 1, β1; z)

.

Differentiating (17) with respect to z and using (16), we get

(18) w(z) +
zw′(z)

p
λ(1− λ) + pw(z)

=
z(fp,m+1

λ,k (α1 + 1, β1; z))′

p fp,m+1
λ,k (α1 + 1, β1; z)

.

From (18) and Lemma 1.9 (with α1 replaced by α1 + 1) we note that

(19) w(z) +
zw′(z)

p
λ(1− λ) + pw(z)

≺ h(z), z ∈ U.

In view of (14) and (19), we deduce from Lemma 1.7 that

(20) w(z) ≺ h(z), z ∈ U.

Suppose that

q(z) =
z(Dp,m

λ (α1 + 1, β1)f(z))′

pfp,m
λ,k (α1 + 1, β1; z)

.

Then q(z) is analytic in U, with q(0) = 1 and we obtain from (5) (with α1

replaced by α1 + 1) that
(21)

fp,m
λ,k (α1+1, β1; z)q(z) =

1
λ
Dm+1

λ (α1+1, β1)f(z)+
(

1− 1
λ

)
Dp,m

λ (α1+1, β1)f(z).

Differentiating both sides of (21) with respect to z, we get
(22)

zq′(z)+
(
p
( 1
λ
−1

)
+
z(fp,m

λ,k (α1+1, β1; z))′

fp,m
λ,k (α1+1, β1; z)

)
q(z) =

z(Dp,m+1
λ (α1+1, β1)f(z))′

λfp,m
λ,k (α1, β1; z)

.
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Since f(z) ∈ Sp,m+1
λ,k (α1 + 1, β1;h), we find from (15) (with α1 replaced by

α1 + 1), (16) and (22) that

(23) q(z) +
zq′(z)

p
λ(1− λ) + pw(z)

=
z(Dp,m+1

λ (α1 + 1, β1)f(z))′

pfp,m+1
λ,k (α1 + 1, β1; z)

≺ h(z), z∈U.

From (14) and (20) we observe that

R
{p
λ

(1− λ) + pw(z)
}
> 0.

Therefore, from (23) and Lemma 1.8 we conclude that

q(z) ≺ h(z), z ∈ U

which shows that f(z) ∈ Sp,m
λ,k (α1 + 1, β1;h).

To prove the second inclusion relationship, we now let f(z) ∈ Sp,m
λ,k (α1 +

1, β1;h) and set

s(z) =
z(Dp,m

λ (α1, β1)f(z))′

pfp,m
λ,k (α1, β1; z)

.

Then, by using a similar argument as detailed above, it follows from (6) and
Lemma 1.8 that

s(z) ≺ h(z), z ∈ U.

This implies that f(z) ∈ Sp,m
λ,k (α1, β1;h). �

Theorem 2.2. Let h(z) ∈ P with

(24) R{h(z)} > max
{

1− 1
λ
, 1− α1

p

}
, z ∈ U, λ > 1.

Then

(25) Kp,m+1
λ,k (α1 + 1, β1;h) ⊂ Kp,m

λ,k (α1 + 1, β1;h) ⊂ Kp,m
λ,k (α1, β1;h).

Proof. We only prove the first inclusion relationship in (25), since the
other inclusion relationship can be justified using similar arguments.

Let f(z) ∈ Kp,m+1
λ,k (α1 + 1, β1;h). Then there exists a function g(z) ∈

Sp,m+1
λ,k (α1 + 1, β1;h) such that

(26)
z(Dp,m+1

λ (α1 + 1, β1))′

p gp,m+1
λ,k (α1 + 1, β1; z)

≺ h(z), z ∈ U.

An application of Theorem 2.1 yields g(z) ∈ Sp,m
λ,k (α1+1, β1;h) and Lemma 1.9

leads to

(27) ψ(z) =
z(gp,m

λ,k (α1 + 1, β1; z))′

p gp,m
λ,k (α1 + 1, β1; z)

≺ h(z), z ∈ U.
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Let

φ(z) =
z(Dp,m

λ (α1 + 1, β1)f(z))′

p gp,m
λ,k (α1 + 1, β1; z)

.

By using (5) (with α1 replaced by α1 + 1), q(z) can be written as follows

gp,m
λ,k (α1 + 1, β1; z)φ(z) =

1
λ
Dp,m+1

λ (α1 + 1, β1)f(z)+(28)

+
(

1− 1
λ

)
Dp,m

λ (α1 + 1, β1)f(z).

Differentiating both sides of (28) with respect to z and using (15) (with f
replaced by g and α1 replaced by α1 + 1), we get

(29) φ(z) +
zφ′(z)

p
λ(1− λ) + pψ(z)

=
z(Dp,m+1

λ (α1 + 1, β1f(z))′

p gp,m+1
λ,k (α1 + 1, β1; z)

.

Now, from (26) and (29) we find that

(30) φ(z) +
zφ′(z)

p
λ(1− λ) + pψ(z)

≺ h(z), z ∈ U.

Combining (24), (27) and (30), we deduce from Lemma 1.8 that

φ(z) ≺ h(z), z ∈ U

which shows that f(z) ∈ Kp,m
λ,k (α1 + 1, β1;h) with respect to g(z) ∈ Sp,m

λ,k (α1 +
1, β1;h)). �

Theorem 2.3. Let h(z) ∈ P with R{h(z)} > {1− α1
p }, z ∈ U. Then

QCp,m
λ,k (δ2;α1, β1;h) ⊂ QCp,m

λ,k (δ1;α1, β1;h), 0 ≤ δ1 < δ2.

Proof. From (6) and (7), we have

(α1 − p)fp,m
λ,k (α1, β1; z) + z(fp,m

λ,k (α1, β1; z))′ =(31)

= α1
1
k

k−1∑
j=0

ε−jp
k (Dp,m

λ (α1 + 1, β1)f(εjkz)) = α1f
p,m
λ,k (α1 + 1, β1; z).

Let f(z) ∈ QCp,m
λ,k (δ2;α1, β1;h). Then there exists a function g(z) in the class

Sp,m
λ,k (α1, β1;h) such that

(32) (1−δ2)z(D
p,m
λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

+δ2
z(Dp,m

λ (α1+1, β1)f(z))′

p gp,m
λ,k (α1+1, β1; z)

≺ h(z), z∈U.

Furthermore, it follows from Lemma 1.9 that

(33) ν(z) =
z(gp,m

λ,k (α1, β1; z))′

p gp,m
λ,k (α1, β1; z)

≺ h(z), z ∈ U.
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We now set

(34) ϕ(z) =
z(Dp,m

λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

.

Then ϕ(z) is analytic in U, with ϕ(0) = 1. By using (6), q(z) can be written as

gp,m
λ,k (α1, β1; z)ϕ(z) =

α1

p
Dp,m

λ (α1 + 1, β1)f(z)−(35)

−
(

1− α1

p

)
Dp,m

λ (α1, β1)f(z).

Differentiating both sides of (35) with respect to z and using (31) (with f
replaced by g), we find

(36) ϕ(z) +
zϕ′(z)

α1 − p+ pψ(z)
=
z(Dp,m

λ (α1 + 1, β1f(z))′

p gp,m
λ,k (α1 + 1, β1; z)

.

Equivalently,

ϕ(z) +
δ2zϕ

′(z)
α1 − p+ pψ(z)

= (1− δ2)z(D
p,m
λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

+(37)

+ δ2
z(Dp,m

λ (α1, β1)f(z))′

p gp,m
λ,k (α1 + 1, β1; z)

≺ h(z).

Since ν(z) ≺ h(z) and 1
δ2

R{p h(z) + α1 − p} > 0, z ∈ U, it follows from (37)
and Lemma 1.8 that ϕ(z) ≺ h(z), z ∈ U.

Since h(z) is convex univalent in U and 0 ≤ δ1
δ2
< 1, we deduce from (32)

and (34) that

(1− δ1)z(D
p,m
λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

+ δ1
z(Dp,m

λ (α1 + 1, β1)f(z))′

p gp,m
λ,k (α1 + 1, β1; z)

=

=
δ1
δ2

(
(1− δ2)z(D

p,m
λ (α1, β1)f(z))′

p gp,m
λ,k (α1, β1; z)

+ δ2
z(Dp,m

λ (α1 + 1, β1)f(z))′

p gp,m
λ,k (α1 + 1, β1; z)

)
+

+
(

1− δ1
δ2

)
ϕ(z) ≺ h(z).

Thus f(z)∈QCp,m
λ,k (δ1;α1, β1;h) which completes the proof of Theorem 2.3. �
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3. INTEGRAL OPERATOR

In this section, we consider the generalized Bernardi–Libera–Livingston
integral operator F (z) defined by (cf. [2] and [4])

(38) F (z) =
c+ p

zc

∫ z

0
tc−1f(t)dt, f ∈ Ap, c > −p.

It is easy to verify that, F (z) ∈ Ap, p-valent (cf. [12]) and

F (z) =
(
zp +

∞∑
n=1

c+ p

c+ p+ n
zp+n

)
∗ f(z)(39)

=
(
zp +

∞∑
n=1

c+ p

c+ p+ n
anz

p+n

)
, f ∈ Ap, c > −p.

We first prove

Theorem 3.1. Let h(z) ∈ P and

R{h(z)} > max
{

0,−R(c)
p

}
, z ∈ U,

where c is a complex number such that R(c) > −p. If f(z) ∈ Sp,m
λ,k (α1, β1;h),

then the function F (z) defined by (38) is also in the class Sp,m
λ,k (α1, β1;h).

Proof. Let f(z) ∈ Sp,m
λ,k (α1, β1;h). Then from (38), (39) and R(c) > −p,

we note that F (z) ∈ Ap, p-valent and

(40) (c+ p)Dp,m
λ (α1, β1)f(z) = cDp,m

λ F (z) + z(Dp,m
λ (α1, β1)F (z))′.

Also, from the above, we have

(c+ p)fp,m
λ,k (α1, β1; z) =(41)

=
1
k

k−1∑
j=0

ε−jp
k

(
cDp,m

λ (α1, β1)F (εjkz) + εjkz(D
p,m
λ (α1, β1)F (εjkz))

′) =

= cF p,m
λ,k (α1, β1; z) + z

(
F p,m

λ,k (α1, β1; z)
)′
.

Let

ϑ(z) =
z(F p,m

λ,k (α1, β1; z))′

pF p,m
λ,k (α1, β1; z)

.

Then ϑ(z) is analytic in U, with ϑ(0) = 1 and from (41) we observe that

(42) p ϑ(z) + c = (c+ p)
fp,m

λ,k (α1, β1; z)

F p,m
λ,k (α1, β1; z)

.
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Differentiating both sides of (42) with respect to z and using Lemma 1.9,
we obtain

(43) ϑ(z) +
z ϑ ′(z)
p ϑ(z) + c

=
z(fp,m

λ,k (α1, β1; z))′

p fp,m
λ,k (α1, β1; z)

≺ h(z).

In view of (43), Lemma 1.7 leads to ϑ(z) ≺ h(z).
If we let

Φ(z) =
z(Dp,m

λ (α1, β1)F (z))′

pF p,m
λ,k (α1, β1; z)

then Φ(z) is analytic in U, with Φ(0) = 1 and it follows from (40) that

(44) F p,m
λ,k (α1, β1; z)Φ(z) =

c+ p

p
Dp,m

λ (α1, β1)f(z)− c

p
Dp,m

λ (α1, β1)F (z).

Differentiating both sides of (44), we get

zΦ′(z) +
z(F p,m

λ,k (α1, β1; z))′

F p,m
λ,k (α1, β1; z)

Φ(z) =

= (c+ p)
z(Dp,m

λ (α1, β1)f(z))′

pF p,m
λ,k (α1, β1; z)

− cz(D
p,m
λ (α1, β1)F (z))′

pF p,m
λ,k (α1, β1; z)

.

Equivalently,

(45) zΦ ′(z) +
(
pϑ(z) + c

)
Φ(z) = (c+ p)

z(Dp,m
λ (α1, β1)f(z))′

pF p,m
λ,k (α1, β1; z)

.

Now, from (42) and (45) we deduce that

Φ(z) +
zΦ ′(z)
pϑ(z) + c

=
c+ p

pϑ(z) + c

z(Dp,m
λ (α1, β1)f(z))′

pF p,m
λ,k (α1, β1; z)

(46)

=
z(Dp,m

λ (α1, β1)f(z))′

p fp,m
λ,k (α1, β1; z)

≺ h(z).

Combining, R{h(z)} > max
{
0,−R(c)

p

}
and ϑ(z) ≺ h(z) we have R{p ϑ(z) +

c} > 0, z ∈ U. Therefore, from (46) and Lemma 1.8 we find that Φ(z) ≺ h(z),
which shows that F (z) ∈ Sp,m

λ,k (α1, β1;h). �
By applying similar method as in Theorem 3.1, we have

Theorem 3.2. Let h(z) ∈ P and

R{h(z)} > max
{

0,−R(c)
p

}
, z ∈ U, R(c) > −p.
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If f(z) ∈ Kp,m
λ,k (α1, β1;h) with respect to g(z) ∈ Sp,m

λ,k (α1, β1;h), then the func-
tion

F (z) =
c+ p

zc

∫ z

0
tc−1f(t)dt

belongs to the class Kp,m
λ,k (α1, β1;h) with respect to

G(z) =
c+ p

zc

∫ z

0
tc−1g(t)dt,

provided that Gp,m
λ,k (α1, β1; z) 	= 0, z ∈ U.
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