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1. INTRODUCTION

The modulus method was initiated by Lars Ahlfors and Arne Beurling
in [1]. Later on this method was extended and enhanced by several other
authors. The techniques are geometric and have turned out to be an indis-
pensable tool in the study of quasiconformal and quasiregular mappings. The
book [25] is based on rather recent research papers and extends the modulus
method beyond its classical applications presented in many monographs, see,
e.g., [6], [24], [36], [37], [48]–[50]. It has also been employed in metric measure
spaces, now called Loewner spaces, see, e.g., [13] and [15].

Mapping theory started in the 18th century. Beltrami, Carathéodory,
Christoffel, Gauss, Hilbert, Liouville, Poincaré, Riemann, Schwarz, Stoilow
and so on all left their marks in this theory. Conformal mappings and their
applications to potential theory, mathematical physics, Riemann surfaces, and
technology played a key role in this development. During the late 1920s and
early 1930s, Grötzsch, Lavrentiev, and Morrey introduced a more general
and less rigid class of mappings that were later named quasiconformal, were
later defined in higher dimensions (Lavrentiev, Gehring, Väisälä), and were
further extended to quasiregular mappings (Reshetnyak, Martio, Rickman,
and Väisälä).

Recently, various generalizations of quasiconformal mappings have been
studied intensively, see, e.g., [4], [7], [10]–[12] [17], [18], [21], [22], [25]–[31], [38]–
[44], [45]–[47] and further references on the mappings with finite distortion in
the monograph [19]. However, the moduli method has not been used very much
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to study mappings of finite distortion and related mappings. The reason is that
extremal metrics are more difficult to find and the estimates for the modulus
of a path family become more complicated than in the quasiconformal case.
In spite of these drawbacks, the modulus method has certain advantages since
it is naturally connected to the metric and geometric behavior of mappings.

In the monograph [25] the modulus method is applied to the genera-
lizations of quasiconformal mappings. The main goal is to study the classes of
mappings with distortion of moduli dominated by a given measurable function
Q. Functions Q like BMO (bounded mean oscillation), FMO (finite mean os-
cillation), L1

loc, etc. are included and the principal tool is the modulus method.
We follow the traditional research directions of the quasiconformal theory like
differentiability, absolute continuity, local and boundary behavior, removabi-
lity of singularities, normal families, convergence and many other and every-
where we demonstrate a strong efficiency of the modulus method.

Recall definitions and basic facts. Let Γ be a path family in Rn, n ≥ 2. A
Borel function ρ : Rn → [0,∞] is called admissible for Γ, ρ ∈ adm Γ for short, if

(1)
∫

γ
ρ ds ≥ 1

for each γ ∈ Γ. The (conformal) modulus of Γ is the quantity

(2) M(Γ) = inf
ρ∈admΓ

∫
Rn

ρn(x) dm(x),

where dm(x) stands for the Lebesgue measure in Rn.
By the classical geometric definition of Väisälä, see, e.g., 13.1 in [48], a ho-

meomorphism f between domainsD andD′ in Rn, n ≥ 2, isK-quasiconformal ,
K-qc mapping for short, if

(3) M(Γ)/K ≤M(fΓ) ≤ KM(Γ)

for every path family Γ in D. A homeomorphism f : D → D′ is called quasi-
conformal, qc for short, if f is K-quasiconformal for some K ∈ [1,∞), i.e., if
the distortion of the moduli of path families under the mapping f is bounded.

By Theorem 34.3 in [48], a homeomorphism f : D → D′ is quasiconfor-
mal if and only if

(4) M(fΓ) ≤ KM(Γ)

for some K ∈ [1,∞) and for every path family Γ in D. In other words, it is
sufficient to verify that

(5) sup
M(fΓ)
M(Γ)

<∞,
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where the supremum is taken over all path families Γ in D for which M(Γ)
and M(fΓ) are not simultaneously 0 or ∞. Then we also have

(6) sup
M(Γ)
M(fΓ)

<∞.

Gehring was the first to note that the suprema in (5) and (6) remain
the same if we restrict ourselves to families of paths connecting the boundary
components of rings in D; see [8] or Theorem 36.1 in [48]. Thus, the geometric
definition of aK-quasiconformal mapping by Väisälä is equivalent to Gehring’s
ring definition.

Moreover, condition (6) has been shown to be equivalent to the statement
that f is ACL (absolutely continuous on lines), a.e., differentiable, and

(7) ess sup
‖f ′(x)‖n

J(x, f)
<∞,

where ‖f ′(x)‖ denotes the matrix norm of the Jacobian matrix f ′(x) of the
mapping f, i.e., max{|f ′(x)h| : h ∈ Rn, |h| = 1}, and J(x, f) its determinant
at a point x ∈ D [here the ratio is equal to 1 if f ′(x) = 0]. Furthermore, it turns
out that the suprema in (6) and (7) coincide; see Theorem 32.3 in [48]. The
three given properties of f form the analytic definition for a quasiconformal
mapping that is equivalent to the above geometric definition; see Theorem 34.6
in [48].

In the light of the interconnection between conditions (3) and (4), the
following concept proposed by Olli Martio is a natural extension of the geo-
metric definition of quasiconformality, see, e.g., [26]–[31]. Let D be a domain
in Rn, n ≥ 2, and let Q : D → [1,∞] be a measurable function. We say that
a homeomorphism f : D → Rn = Rn ∪ {∞} is a Q-homeomorphism if

(8) M(fΓ) ≤
∫

D
Q(x) · ρn(x) dm(x)

for every family Γ of paths in D and every admissible function ρ for Γ. This
concept is related in a natural way to the theory of the so-called moduli with
weights, see, e.g., [2, 3]. The quasiconformal mappings give the simplest exam-
ples of Q-homeomorphisms with inner dilatation KI(x, f) as Q(x), see, e.g.,
Lemma 2.1 in [5] and [24], p. 221. Theorem 12 and Corollary 12 below give
more advanced examples.

The main goal of the theory of Q-homeomorphisms is to clear up various
interconnections between properties of the majorant Q(x) and the correspon-
ding properties of the mappings themselves. The subject of Q-homeomor-
phisms is interesting in its own right and has applications to many classes
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of mappings that we also investigate. For example, the theory of Q-homeo-
morphisms can be applied to mappings in local Sobolev’s classes and to the
mappings with finite length distortion.

Except a general introduction, the book [25] contains detailed introduc-
tions in Moduli and Capacity in Metric Spaces and Moduli and Domains,
Chapters 2 and 3, written by Olli Martio. Moreover, the book includes a
survey on Mappings with Finite Mean Dilatations, Chapter 12, written by
Anatoly Golberg. In the Appendix of our book one can find classical arti-
cles of Fuglede, Gehring, Hesse, Ziemer and others in the moduli theory. We
think that it would be useful for everybody to have a both handbook and
research monograph.

Chapter 4 is devoted to the basic theory of space Q-homeomorphisms f
for Q ∈ L1

loc. Differentiability a.e., absolute continuity, estimates from below
for distortion, extension to the boundary and other properties are considered.

Chapter 5 includes estimates of distortion, removability of isolated singu-
larities, theorems on continuous and homeomorphic extension to boundaries,
and other results on Q-homeomorphisms for Q in BMO, where BMO refers to
functions with bounded mean oscillation introduced by John and Nirenberg.

Results on Q-homeomorphisms for Q in FMO (finite mean oscillation)
and in more general classes are given in Chapter 6. Analogies of the Painleve
theorem on removability of singularities of length zero and applications to
mappings in the Sobolev class W 1,n

loc are presented.
Extensions of the quasiconformal theory to ring and lower Q-homeomor-

phisms and applications to mappings with finite length and area distortion are
found in Chapters 7–10. Existence theorems of ring Q-homeomorphisms are
given in Chapter 11. Some results on mappings quasiconformal in the mean
related to moduli techniques are contained in Chapter 12.

Chapter 13 contains the theory of Q-homeomorphisms in general me-
tric spaces with measures. In particular, here we study properties of weakly
flat spaces which are a far-reaching generalization of the recently introduced
Loewner spaces, including as special cases Riemannian manifolds and the well-
known groups of Carnot and Heisenberg. On this basis, we create the theory of
the boundary behavior and removal singularities for quasiconformal mappings
and their generalizations, which can be applied to any of the mentioned classes
of spaces. In particular, we prove a generalization and strengthening of the
known Gehring–Martio theorem on homeomorphic extension to the boundary
of quasiconformal mappings between quasiextremal distance domains in Rn,
n ≥ 2, see [9].

We use in Rn = Rn ∪ {∞} the spherical metric h(x, y) = |π(x) − π(y)|
where π is the stereographic projection of Rn onto the sphere Sn(1

2en+1,
1
2) in
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Rn+1, that is,

h(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
, x 6= ∞ 6= y, h(x,∞) =

1√
1 + |x|2

.

Recall that a (continuous) mapping f : D → Rn is absolutely continuous
on lines, f ∈ ACL for short, if, for every closed parallelepiped P in D whose
faces are perpendicular to the coordinate axes, each coordinate function of f |P
is absolutely continuous on almost every line segment in P that is parallel to
the coordinate axes. In particular, f is ACL if f is in the Sobolev class W 1,1

loc .
We shall next formulate some of our research results from Chapters 4–6

in [25].

2. Q-HOMEOMORPHISMS WITH ARBITRARY Q ∈ L1
loc

Chapter 4 in [25] contains results for Q-homeomorphisms with locally
integrable Q, see, e.g., [26]–[31] and [45].

Theorem 1. Let D and D′ be domains in Rn, n ≥ 2, and let f : D → D′

be a Q-homeomorphism with Q ∈ L1
loc. Then f is differentiable a.e.

Remark 1. Note also that f−1 has Lusin’s (N)-property and J(x, f) 6= 0
a.e. for every Q-homeomorphism f with Q ∈ L1

loc.

Theorem 2. Let D and D′ be domains in Rn, n ≥ 2, and let f : D → D′

be a Q-homeomorphism with Q ∈ L1
loc. Then f ∈ ACL.

Corollary 1. Let D and D′ be domains in Rn, n ≥ 2, and let f : D →
D′ be a Q-homeomorphism with Q ∈ L1

loc. Then f belongs to W 1,1
loc .

Theorem 3. Let f : Bn → Rn be a Q-homeomorphism with Q ∈ L1(Bn),
f(0) = 0, h(Rn \ f(Bn)) ≥ δ > 0, and h(f(x0), f(0)) ≥ δ for some x0 ∈ Bn.
Then for all |x| < r = min(|x0|/2, 1− |x0|) we have

(9) |f(x)| ≥ ψ(|x|),
where ψ(t) is a strictly increasing function with ψ(0) = 0 that depends only
on the L1-norm of Q in Bn, n, and δ.

Later on, for given sets A,B, and C in Rn, ∆(A,B;C) denotes a collec-
tion of all paths γ : [0, 1] → Rn joining A and B in C, i.e., γ(0) ∈ A, γ(1) ∈ B,
and γ(t) ∈ C for all t ∈ (0, 1). Following [9], we say that a domain D in Rn,
n ≥ 2, is a quasiextremal distance domain, QED domain for short, if

(10) M(∆(E,F ; Rn)) ≤ KM(∆(E,F ;D))

for a finite number K ≥ 1 and all continua E and F in D.
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Now, introduce a new class of domains in Rn, n ≥ 2, which are wider
than the class of QED domains described earlier. The significance of such a
type of domains is that conformal and quasiconformal mappings as well as
many of their generalizations between them admit homeomorphic extensions
to their boundary.

The notions of strong accessibility and weak flatness at boundary points
of a domain in Rn defined below are localizations and generalizations of the
corresponding notions introduced in [30, 31]; compare with the properties P1

and P2 by Väisälä [48] and also with the quasiconformal accessibility and the
quasiconformal flatness by Näkki [35]. Lemma 1 below establishes the relation
of weak flatness formulated in terms of moduli of path families with the general
topological notion of local connectedness on the boundary, see [21].

We say that ∂D is weakly flat at a point x0 ∈ ∂D if, for every neigh-
borhood U of the point x0 and every number P > 0, there is a neighborhood
V ⊂ U of x0 such that

(11) M(∆(E,F ;D)) ≥ P

for all continua E and F in D intersecting ∂U and ∂V . We say that the
boundary ∂D is weakly flat if it is weakly flat at every point in ∂D.

We also say that a point x0 ∈ ∂D is strongly accessible if, for every
neighborhood U of the point x0, there exist a compactum E in D, a neigh-
borhood V ⊂ U of x0, and a number δ > 0 such that

(12) M(∆(E,F ;D)) ≥ δ

for all continua F in D intersecting ∂U and ∂V . We say that the boundary
∂D is strongly accessible if every point x0 ∈ ∂D is strongly accessible.

Remark 2. Here, in the definitions of strongly accessible and weakly
flat boundaries, one can take as neighborhoods U and V of a point x0 only
balls (closed or open) centered at x0 or only neighborhoods of x0 in another
fundamental system of its neighborhoods. These concepts can also be extended
in a natural way to the case of Rn, n ≥ 2, and x0 = ∞.

Proposition 1. If a domain D in Rn, n ≥ 2, is weakly flat at a point
x0 ∈ ∂D, then the point x0 is strongly strongly accessible from D.

Corollary 2. Weakly flat boundaries of domains in Rn, n ≥ 2, are
strongly accessible.

Recall that a domain D ⊂ Rn, n ≥ 2, is said to be locally connected
at a point x0 ∈ ∂D if, for every neighborhood U of the point x0, there is a
neighborhood V ⊆ U of x0 such that V ∩ D is connected. Note that every
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Jordan domain D in Rn is locally connected at each point of ∂D, see, e.g.,
[51], p. 66.

Lemma 1. If a domain D in Rn, n ≥ 2, is weakly flat at a point x0 ∈ ∂D,
then D is locally connected at x0.

Corollary 3. A domain D in Rn, n ≥ 2, with a weakly flat boundary
is locally connected at every boundary point.

Remark 3. As is well known, see, e.g., 10.12 in [48], we have

(13) M(∆(E,F ; Rn)) ≥ cn log
R

r

for all sets E and F in Rn, n ≥ 2, intersecting all the spheres S(x0, %), % ∈
(r,R). Hence, it follows directly from the definitions that a QED domain has
a weakly flat boundary.

Corollary 4. Every QED domain D in Rn, n ≥ 2, is locally connected
at each boundary point and ∂D is strongly accessible.

Theorem 4. Let D and D′ be domains in Rn, n ≥ 2, and let f be a
Q-homeomorphism of D onto D′ with Q ∈ L1(D). If D is locally connected at
∂D and ∂D′ is weakly flat, then f−1 has a continuous extension to D′.

It is necessary to stress here that the extension problem for the direct
mappings f is much more complicated, see Proposition 3.

In particular, by Theorem 4, we obtain the following conclusion.

Theorem 5. Let D and D′ be domains in Rn, n ≥ 2. If D′ is locally
connected at ∂D′ and ∂D is weakly flat, then any quasiconformal mapping
f : D → D′ admits a continuous extension to the boundary f : D → D′.

Corollary 5. If D and D′ are domains with weakly flat boundaries,
then any quasiconformal mapping f : D → D′ admits a homeomorphic exten-
sion f : D → D′.

Note that these results on the extension to weakly flat boundaries are
new even for the class of conformal mappings in the plane. Here, we do not
assume that the domains are simply connected.

3. Q-HOMEOMORPHISMS WITH SPECIAL Q

Chapter 5 in [25] demonstrates that the main part of the quasiconformal
theory can be extended to Q-homeomorphisms with Q ∈ BMO, see also [26]–
[31]. Let us give some examples of the corresponding results.
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Theorem 6. Let f : Bn → Rn be a Q-homeomorphism with Q ∈
BMO(Bn). If h(Rn \ f(Bn(1/e))) ≥ δ > 0, then

(14) h(f(x), f(0)) ≤ C

(log 1/|x|)α

for all |x| < e−2, where C and α are positive constants that depend only on n, δ,
the BMO norm ‖Q‖∗ of Q, and the average Q1 of Q over the ball |x| < 1/e.

Corollary 6. Let F be a family of Q-homeomorphisms f : D → Rn

with Q ∈ BMO(D) and let δ > 0. If every f ∈ F omits two points af and bf
in Rn with h(af , bf ) ≥ δ, then F is equicontinuous.

Theorem 7. Let f : Bn \ {0} → Rn be a Q-homeomorphism with Q ∈
BMO(Bn \ {0}). Then f has a Q(x)-homeomorphic extension to Bn.

Lemma 2. Let D and D′ be domains in Rn, n ≥ 2, and let f : D → D′

be a Q-homeomorphism with Q ∈ BMO(D). If D is locally connected at ∂D
and ∂D′ is strongly accessible, then f has a continuous extension f̃ : D → D

′.

Combining Lemma 2 and Theorem 4, we obtain

Corollary 7. Let f : D → D′ ⊂ Rn be a Q-homeomorphism onto D′

with Q ∈ BMO(D). If D locally connected at ∂D and ∂D′ is weakly flat, then
f has a homeomorphic extension f̃ : D → D′.

Corollary 8. Let f : D → D′ ⊂ Rn be a Q-homeomorphism onto D′

with Q ∈ BMO(D). If ∂D and ∂D′ are weakly flat, then f has a homeomorphic
extension f̃ : D → D′.

The next theorem extends the known Gehring–Martio–Vuorinen results
from qc mappings to Q-homeomorphisms with Q ∈ BMO(D), cf. [9], p. 196,
and [32], p. 36.

Theorem 8. Let f : D → D′ be a Q-homeomorphism between QED
domains D and D′ with Q ∈ BMO(D). Then f has a homeomorphic extension
f̃ : D → D′.

More advanced results on Q-homeomorphisms for the case of Q ∈ FMO
and more general situations are proved in Chapter 6. For this goal, we develop
here a general method of singular functional parameters, see, e.g., [17, 18].

Our study concerns isolated boundary points, thin parts of the boundary
in terms of Hausdorff measures, and domains with regular boundaries such
as the quasiextremal distance domains of Gehring–Martio, uniform, convex,
smooth, etc. In particular, we show that an isolated singularity is removable
for Q-homeomorphisms provided that Q(x) has finite mean oscillation at this
point. An analogue of the well-known Painlevé theorem for analytic functions
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also follows if Q(x) has finite mean oscillation at each point of a singular set
of the length zero.

Let D be a domain in Rn, n ≥ 1. Following [17], we say that a function
ϕ : D → R has finite mean oscillation at a point x0 ∈ D if

(15) lim
ε→0

−
∫

D(x0,ε)
|ϕ(x)− ϕε|dm(x) <∞,

where

(16) ϕε = −
∫

D(x0,ε)
ϕ(x) dm(x) =

1
|D(x0, ε)|

∫
D(x0,ε)

ϕ(x) dm(x)

is the mean value of the function ϕ(x) over D(x0, ε) = D ∩ B(x0, ε), ε > 0.
Here B(x0, ε) = {x ∈ Rn : |x− x0| < ε}.

Note that under (15) it is possible that ϕε →∞ as ε→ 0 and that FMO
is not BMOloc and not a subset of Lp

loc for any p > 1.

Proposition 2. If, for some collection of numbers ϕε ∈ R, ε ∈ (0, ε0],

(17) lim
ε→0

−
∫

D(x0,ε)
|ϕ(x)− ϕε|dm(x) <∞,

then ϕ has finite mean oscillation at x0.

Corollary 9. If, for a point x0 ∈ D,

(18) lim
ε→0

−
∫

D(x0,ε)
|ϕ(x)|dm(x) <∞,

then ϕ has finite mean oscillation at x0.

It is well known that isolated singularities are removable for conformal
as well as quasiconformal mappings. The following statement shows that any
power of integrability of Q(x) cannot guarantee the removability of isolated
singularities of Q-homeomorphisms. This is a new phenomenon.

Proposition 3. For any p ∈ [1,∞), there is a Q-homeomorphism f :
Bn\{0} → Rn, n ≥ 2, with Q ∈ Lp(Bn) that has no continuous extension
to Bn.

However, as the next lemma shows, it is sufficient for the removability of
isolated singularities of Q-homeomorphisms to require that Q(x) is integrable
with suitable weights.

Lemma 3. Let f : Bn\{0} → Rn, n ≥ 2, be a Q-homeomorphism. If

(19)
∫

ε<|x|<1
Q(x) · ψn(|x|) dm(x) = o(I(ε)n)
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as ε→ 0, where ψ(t) is a nonnegative measurable function on (0,∞) such that

(20) 0 < I(ε) : =
∫ 1

ε
ψ(t) dt <∞, ε ∈ (0, 1),

then f has a continuous extension to Bn that is a Q-homeomorphism.

Remark 4. Note also that (19) holds, in particular, if

(21)
∫

Bn

Q(x) · ψn(|x|) dm(x) <∞

and I(ε) →∞ as ε→ 0. In other words, for the removability of a singularity at
x = 0, it is sufficient that integral (21) converges for some nonnegative function
ψ(t) that is locally integrable over (0, 1) but has a nonintegrable singularity
at 0. The functions Q(x) = logλ(e/|x|), λ ∈ (0, 1), x ∈ Bn, n ≥ 2, and
ψ(t) = 1/(t log(e/t)), t ∈ (0, 1), show that the condition (21) is compatible
with the condition I(ε) → ∞ as ε → 0. In particular, we have shown that
functions Q ∈ FMO satisfy (19) and (21) with the given ψ for n ≥ 2 and
n ≥ 3, respectively.

Theorem 9. Let f : D\{x0} → Rn, n ≥ 2, be a Q-homeomorphism
where Q(x) has finite mean oscillation at a point x0 ∈ D. Then f has a Q-
homeomorphic extension to D.

In other words, an isolated singularity of a Q-homeomorphism is remo-
vable if Q(x) has finite mean oscillation at the point. As consequences of
Theorem 9 and Corollary 9, we also obtain the following statements.

Corollary 10. If f : Bn\{0} → Rn, n ≥ 2, is a Q-homeomorphism,

(22) lim
ε→0

−
∫

B(ε)
Q(x) dm(x) <∞,

then f has a Q-homeomorphic extension to Bn.

Choosing in Lemma 3 the function ψ(t) = 1/t as a weight, we come to
the following more general statement.

Theorem 10. Let f : Bn\{0} → Rn, n ≥ 2, be a Q-homeomorphism. If

(23)
∫

ε<|x|<1
Q(x)

dm(x)
|x|n

= o
([

log 1
ε

]n)
as x→ 0,

then f has a Q-homeomorphic extension to Bn.

Corollary 11. In particular, the conclusion of Theorem 10 holds if

(24) Q(x) = o

([
log 1

|x|

]n−1
)

as x→ 0.
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Let us give conditions of other types that are often met in the mapping
theory, see, e.g., [23] and [34].

Theorem 11. Let f : Bn\{0} → Rn, n ≥ 2, be a Q homeomorphism and
assume that

(25)
∫ ε0

0

dr
rqβ(r)

= ∞, β ≥ 1/(n− 1),

where q(r) is the mean integral value of the function Q(x) over the sphere
|x| = r. Then f has a Q-homeomorphic extension to Bn.

We also studied super Q-homeomorphisms, i.e., such Q-homeomorphisms
f : D → Rn, n ≥ 2, that inequality (8) holds not only for all families Γ of
continuous paths γ : (0, 1) → D but also for dashed lines γ : ∆ → D, i.e.,
continuous mappings γ of open subsets ∆ of the real axis R into D. Recall
that every open set ∆ in R consists of a countable collection of mutually
disjoint intervals ∆i ⊂ R, i = 1, 2, . . . . This fact gives reasons for the term
“dashed line”.

Theorem 12. Let f : D → Rn be a homeomorphism in the class W 1,n
loc

with f−1 ∈W 1,n
loc . Then f is a super Q-homeomorphism with Q(x) = KI(x, f).

As above, KI(x, f) is the inner dilatation of f at x. It is known that
homeomorphisms of the class W 1,n

loc with KI ∈ L1
loc have f−1 in the same class;

see Corollary 2.3 in [20]. Thus, we have the next assertion.

Corollary 12. Let f : D → Rn be a homeomorphism in the class W 1,n
loc

with KI ∈ L1
loc. Then f is a super Q-homeomorphism with Q(x) = KI(x, f).

Thus, Theorem 12 shows that super Q-homeomorphisms form a wide
subclass of Q-homeomorphisms including many mappings with finite distor-
tion.

Consider the problem of removability of singularities of length zero for
super Q-homeomorphisms. A set X in Rn is called a set of length zero if X
can be covered by a sequence of balls in Rn with an arbitrary small sum of
diameters. As known, such sets have (Lebesgue) measure zero,

(26) dimX = 0,

hence they are totally disconnected, see, e.g., [16], pp. 22 and 104. By the
theorem of Menger and Urysohn, see, e.g., [16], condition (26) guarantees that
X does not disconnect a domain D in Rn, n ≥ 2, and, thus, if X is closed in
D, then D∗ = D \X is also a domain. Classical examples of such sets are sets
C of the Cantor type. Note that C is perfect , i.e., it is closed and without
isolated points. Hence each neighborhood of a point in C contains a subset of
C of the continuum cardinality, see [52].
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Theorem 13. Let D be a domain in Rn, n ≥ 2, let X be a closed subset
of D of length zero, and let f : D\X → Rn be a super Q-homeomorphism. If
the function Q(x) has finite mean oscillation at every point x0 ∈ X, then f
has a homeomorphic extension to D.

Corollary 13. Let X be a closed subset of length zero in D and let

(27) lim
ε→0

−
∫

B(x0,ε)
Q(x) dm(x) <∞

for every x0 ∈ X. Then every super Q-homeomorphism f : D\X → Rn has a
homeomorphic extension to D.

Other results on singular sets of length zero under Q-homeomorphisms
are formulated in terms on Q which is similar to the case of isolated singular
points. We also consider the case of singular sets of the Hausdorff (n− 1)-di-
mensional measure zero.

Our results on continuous and homeomorphic extensions of Q homeo-
morphisms to boundary points are also formulated in similar terms on the
majorant Q(x), e.g., if Q(x) has finite mean oscillation at the corresponding
points. In particular, the well-known Gehring–Martio theorem on the homeo-
morphic extension to the boundary of quasiconformal mappings is also genera-
lized to Q-homeomorphisms with Q ∈ FMO. All these results can be applied
to homeomorphisms of Sobolev’s classes.

Chapter 13 in [25] extends many of these results to arbitrary metric
spaces with measures, see also [38].
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