
PRIMALITY, IRREDUCIBILITY, AND COMPLETE
IRREDUCIBILITY IN MODULES
OVER COMMUTATIVE RINGS

TOMA ALBU and PATRICK F. SMITH

The aim of this paper is to extend from ideals to modules over commutative rings
some results of Fuchs, Heinzer, and Olberding [8], [9] concerning primal and com-
pletely irreducible ideals. In particular, it is shown that if a proper submodule N
of a module M is an irredundant intersection of completely irreducible submod-
ules of M then the maximal ideals occurring as adjoint ideals of these submodules
are independent of the intersection. In addition, it is proved for a module M , that
every primal submodule of M is irreducible if and only if M is arithmetical.
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1. INTRODUCTION

In this paper we extend from ideals to modules over commutative rings
some results of Fuchs, Heinzer and Olberding ([8], [9]) concerning primal and
completely irreducible ideals. Two methods are used to do this. Firstly, we
prove the results for modules directly and secondly we use trivial extensions
of modules.

In Section 2 we introduce the basic terminology and notation we will
be using throughout the paper. Section 3 introduces the concept of a primal
submodule of a module and various equivalent characterizations of completely
irreducible submodules are given (Proposition 3.4). Trivial extensions are
discussed in Section 4. We show that irreducibility, complete irreducibility,
and primality are nicely transferred via trivial extensions, which allow us to
prove a module version of a theorem of Fuchs, Heinzer and Olberding [8,
Theorem 3.2] concerning irredundant intersections of completely irreducible
submodules (Theorem 4.6). The final section is concerned with arithmetical
modules. It is shown that, for any commutative ring R, an R-module M is
arithmetical if and only if every primal submodule is irreducible (Theorem 5.3);
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this extends from rings to modules a result of Fuchs, Heinzer and Olberding
[8, Theorem 1.8] characterizing arithmetical rings in terms of primal ideals.

2. TERMINOLOGY AND NOTATION

Throughout this paper R will always denote a commutative ring with a
non-zero identity and M a unital R-module. The lattice of all submodules of
M will be denoted by L(M). The notation N 6 M (resp. N < M) means
that N is a submodule (resp. proper submodule) of M . Whenever we want
to indicate that X is merely a subset (resp. proper subset) of Y , then we
shall write X ⊆ Y (resp. X ⊂ Y ). We denote by N the set {0, 1, 2, . . .} of all
natural numbers, and by Z the ring of rational integers.

The ideals of R will be denoted by small Gothic letters a, p, q, m, and
the submodules of M by X, L, N, P, Q. By Spec(R) we denote the set of all
prime ideals of R, and by Max(R) the set of all maximal ideals of R.

For any subsets X, Y of M and any subset I of R we set

V (I) := {p ∈ Spec(R) | p ⊇ X},
(X : Y ) := {a ∈ R | aY ⊆ X}, (X : I) := {z ∈ M | Iz ⊆ X}.

If x ∈ M then we denote (0 : {x}) by AnnR(x). The annihilator of M ,
denoted by AnnR(M), is the ideal (0 : M) of R. Note that if N 6 M , then
(N : M) = AnnR(M/N).

As in Bourbaki [5], for any module M we denote by Ass(M) the assassin
of M , by Assf (M) the weak assassin of M (“f ” for the French faible = weak),
and by Z(M) the set of all zero divisors on M . That is,

Ass(M) := {p ∈ Spec(R) | ∃x ∈ M with p = AnnR(x)},
Assf (M) := {p ∈ Spec(R) | ∃x ∈ M with p minimal in V (AnnR(x))},

and
Z(M) := {a ∈ R | ∃x ∈ M, x 6= 0, with ax = 0}.

It is well-known (see, e.g., Bourbaki [5]) that for any R-module M one has

Z(M) =
⋃

p∈Assf (M)

p.

Let M be a module. A submodule X of M is said to be irreducible, if
X 6= M and whenever X = N ∩ P for N, P ∈ L(M), then X = N or X = P
and in this case the module M/X is called uniform. Next, a submodule X
of M is said to be completely irreducible, abbreviated CI , if X 6= M and
whenever X =

⋂
i∈I Xi for a family (Xi)i∈I of submodules of M , then X = Xj

for some j ∈ I and in this case the module M/X is called completely uniform.
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In the literature, completely uniform modules are usually known as subdirectly
irreducible modules and we will use this terminology throughout this paper.

Note that the concepts above can be also defined for modules over not
necessarily commutative rings, and more generally, for complete lattices (see
Albu [1]). Moreover, one can define the very general concept of a subdirectly
irreducible poset as in Albu, Iosif and Teply [2, Definition 0.1]: a poset P with
least element 0 is said to be subdirectly irreducible if P 6= {0} and the set
P \{0} has a least element. Note that a module M is subdirectly irreducible if
and only the lattice L(M) of all its submodule is subdirectly irreducible if and
only M 6= 0 and M has a simple essential socle (see Albu [1, Proposition 0.5]).

Recall that a module MR is said to be a chain module if the lattice L(M)
is a chain, or equivalently, if every proper submodule of M is irreducible. One
may ask what are the modules M for which every proper submodule of M is
CI. It is easy to see that this happens if and only if every nonempty set of
proper submodules of M has a unique least submodule (i.e., the lattice L(M)
is a well-ordered poset), and that this occurs if and only if M is an Artinian
chain module.

Finally, recall that a module M is called semi-Artinian if every non-
zero homomorphic image contains a simple submodule. Observe that if M is
a semi-Artinian module, then every irreducible submodule of M is CI; this
follows from a more generally latticial result of Albu [1, Corollary 0.6] applied
to the lattice L = L(M).

3. PRIMAL AND COMPLETELY
IRREDUCIBLE SUBMODULES

The concept of primal ideal of a commutative ring has been introduced
by Fuchs [7] and extended to modules over rings which are not necessarily
commutative by Dauns [6] using the term of “not right prime element to a
submodule”. The definition below, for commutative rings, is a reformulation
in terms of “zero divisor on a module” of Dauns’ definition.

Definition 3.1. A module M is said to be coprimal if M 6= 0 and Z(M) is
an ideal of R. A submodule N of a module M is called primal if the quotient
module M/N is coprimal, and in this case Z(M/N) is called the adjoint ideal
of N and will be denoted by adj N . �

The following result is elementary but is included for completeness.

Lemma 3.2. If M is a coprimal module, then Z(M) is a prime ideal
of R.



278 Toma Albu and Patrick F. Smith 4

Proof . We have M 6= 0 since M is coprimal, so Z(M) 6= R. Now let
a, b ∈ R with ab ∈ Z(M). Then (ab)z = 0 for some 0 6= z ∈ M . If bz = 0,
then b ∈ Z(M). If bz 6= 0, then a(bz) = 0, so that a ∈ Z(M). This shows that
the ideal Z(M) of R is prime. �

For an R-module M we denote by PR(M) the set of all primal submo-
dules of M . If N ∈ PR(M) and if the adjoint ideal adj N of N is the prime
ideal p, then N is said to be p-primal . We also denote by IR(M) the set
of all irreducible submodules of M and by Ic

R(M) the set of all completely
irreducible submodules of M . The subscript R is deleted if there is no danger
of ambiguity.

The next results extend, from ideals to modules, some results of Section 1
of Fuchs Heinzer and Olberding [9]. The proofs are straightforward but are
included for completeness.

Lemma 3.3. For any module M we have Ic(M) ⊆ I(M) ⊆ P(M), and

adjN ∈ Ass(M/N) ∩Max(R)

for any N ∈ Ic(M).

Proof . The inclusion Ic(M) ⊆ I(M) is clear. For the inclusion I(M) ⊆
P(M) let N ∈ I(M). Let a, b ∈ Z(M/N). There exist x, y ∈ M \N such that
ax ∈ N and by ∈ N . Because N is irreducible, there exists z ∈ (Rx + N) ∩
(Ry + N) \ N . Note that (a + b)z ∈ N so that a + b ∈ Z(M/N). It follows
that Z(M/N) is an ideal of R, as required.

For the last part of lemma, it is sufficient to prove that

Z(M) ∈ Ass(M) ∩Max(R)

for any subdirectly irreducible module M . By Albu [1, Proposition 0.5] applied
to the lattice L = L(M/N), M is an essential extension of a simple module
S, so {m} = Ass(S) = Ass(M), where m ∈ Max(R) is such that S ' R/m. To
complete the proof, we have to show that Z(M) = m. We have m ⊆ Z(M)
since m ∈ Ass(M), so m = AnnR(x) for some 0 6= x ∈ M . Hence, m = Z(M)
since m ∈ Max(R) and Z(M) 6= R. �

Note that the set inclusions in Lemma 3.3 are, in general, strict as we
show below. Now, if p ∈ Spec(R) and N 6 M, then N(p) will denote the
(R \ p)-saturation of N in M , i.e.,

N(p) := {x ∈ M | ∃ s ∈ R \ p, sx ∈ N}.
Note that N(p) is a submodule of M such that N ⊆ N(p). Recall that N is
said to be (R \ p)-saturated if N = N(p).

Proposition 3.4. The following statements are equivalent for a proper
submodule N of a module M .
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(1) N ∈ Ic(M).
(2)

⋂
N<P6M

P 6= N .

(3) M/N has a simple essential socle.
(4) N ∈ I(M) and Soc(M/N) 6= 0.
(5) N ∈ I(M) and N < (N : m) for some m ∈ Max(R).
(6) N ∈ I(M) and adjN ∈ Ass(M/N) ∩Max(R).
(7) N ∈I(M), adjN ∈ Max(R), and adjN =(N : x) for some x∈M \N .
(8) N = N(m) for some m ∈ Max(R), and Nm ∈ Ic

Rm
(Mm).

Proof . The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4) follow at once from Albu
[1, Proposition 0.5] applied to the lattice L = L(M/N).

(1) ⇒ (6) follows from Lemma 3.3.
(6) ⇒ (5): Let m = adjN , and let x ∈ M \ N be such that m =

AnnR(x̂) = (N : x), where x̂ is the coset of x + N of x modulo N . Then
x ∈ (N : m) \N , as desired.

(5) ⇒ (4): If we set X := (N : m), then N < X, and m(X/N) = 0,
so X/N is a non-zero (R/m)-module, and it surely has a simple R-submodule
isomorphic to R/m.

(6) ⇔ (7) Clear.
(7) ⇒ (8): Let adj N = m ∈ Max(R). First, we are going to show

that N is (R \ m)-saturated, i.e., if s ∈ R \ m, y ∈ M , and sy ∈ N , then
necessarily y ∈ N . Assume that y 6∈ N . Then 0̂ 6= ŷ in M/N and sŷ = 0̂, so
s ∈ Z(M/N) = m, which is a contradiction.

In order to prove that Nm is a completely irreducible Rm-module, using
the equivalence (1) ⇔ (7) already proved, it is sufficient to show that mRm =
(Nm : (x/1)) for some x ∈ M \ N , and Nm is an irreducible Rm-submodule
of Mm.

The equality mRm = (Nm : (x/1)) follows immediately from (N : x)m =
(Nm : (x/1)). It is known that there is a lattice isomorphism between the
lattice of all Rm-submodules of Mm and the lattice of all (R \ m)-saturated
R-submodules of M (see, e.g., Bourbaki [5, Proposition 10, Chapter 2]); this
implies that N(m) is an irreducible R-submodule of M if and only if Nm is an
irreducible Rm-submodule of Mm.

(8) ⇒ (7): Use the same arguments as in implication (7) ⇒ (8). �

Let R be a ring and M an R-module. A submodule K of M is called
prime provided K 6= M and whenever r ∈ R and m ∈ M such that rm ∈ K
then m ∈ K or rM ⊆ K. Suppose that K is a prime CI submodule of M .
There exists a submodule L of M such that K ⊆ L and L/K is simple. If
p = (K : L) then p is a maximal ideal of R and pM ⊆ K. Because M/K is
uniform, M/K is simple. We have thus proved
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Corollary 3.5. A prime submodule P of a module M is CI if and only
if it is maximal. �

Remarks 3.6. (1) The inclusions Ic(M) ⊆ I(M) ⊆ P(M) from Lemma 3.3
are in general strict. For example, 0 ∈ IZ(Z) \ Ic

Z(Z) by Corollary 3.5.
Consider now the ring F [X, Y ] of polynomials in the indeterminates X

and Y over a field F . Then the ideal q := (X2, XY ) of the ring F [X, Y ]
is primal with adjoint prime ideal (X, Y ) (see, e.g., Fuchs [7]), but it is not
irreducible since q = (X2, Y ) ∩ (X), q ⊂ (X2, Y ), q ⊂ (X). However, more
spectacular examples can be given. Let R be a ring with a maximal ideal m
such that there exists an infinite family of prime ideals pi (i ∈ I) with pi ⊆ m
for all i ∈ I. Let M denote the R-module (R/m)⊕ (

⊕
i∈I(R/pi)). Clearly, M

is an infinite direct sum of uniform submodules but it is easy to check that
the zero submodule of M is m-primal.

(2) As is well-known, any prime ideal of a commutative ring is irreducible.
This result does not hold for modules, i.e., a prime submodule of a module M
is not necessarily irreducible. Indeed, if F is any field, then for any non-zero
F -module M , any proper submodule N of M is prime, but N is irreducible if
and only if M/N is cyclic. �

4. TRANSFERRING PROPERTIES
VIA TRIVIAL EXTENSIONS

For any (commutative) ring R (with identity element) and any (unital)
R-module M one defines the trivial extension of M by R or the idealization
of M , denoted by R o M or by R(+)M , to be the commutative ring whose
elements are of the form (r, m), where r ∈ R and m ∈ M , with addition and
multiplication defined as

(r, m) + (r′,m′) = (r + r′,m + m′)

and
(r, m)(r′,m′) = (rr′, rm′ + r′m)

for all r, r′ ∈ R and m,m′ ∈ M (see, e.g., Huckaba [10, p. 161] or Anderson
and Winders [4]). Note that the ring R o M has identity element (1,0).

Let N be a submodule of M and let a = (N : M). Now, we define N#

to be the set of elements (a, x) in R o M such that a ∈ a and x ∈ N , i.e.,
N# = aoN . It is easy to check that N# is an ideal of RoM . The assignment
N 7→ 0 o N determines a lattice isomorphism between the lattice L(M) of all
submodules of M and the lattice of all ideals of R o M that are contained in
0 o M . Observe that the module M , identified with 0 o M , becomes an ideal
of R o M , which also explains the term idealization.
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Lemma 4.1. Let U be an R-module, and set S := R o U . Then SS is a
uniform module if and only if RU is a faithful uniform module.

Proof . Assume that the module RU is faithful and uniform. Let s1 and
s2 be any non-zero elements of S. Then s1 = (r1,m1) and s2 = (r2,m2) for
some r1, r2 ∈ R and m1,m2 ∈ U . Suppose that r1 6= 0. Then r1U 6= 0, so that
r1x 6= 0 for some x ∈ U . Note that

0 6= (0, r1x) = (0, x)(r1,m1) ∈ Ss1.

On the other hand, if r1 = 0 then

0 6= (0,m1) = s1 ∈ Ss1.

Thus we can suppose without loss of generality that r1 = r2 = 0. There exist
elements a1 and a2 in R such that 0 6= a1m1 = a2m2. Then

0 6= (0, a1m1) = (a1, 0)(0,m1) = (a2, 0)(0,m2) ∈ Ss1 ∩ Ss2.

It follows that S is a uniform S-module.

Conversely, suppose that RU is not faithful, i.e., there exists 0 6= r ∈ R
such that rU = 0. If we set s := (r, 0) and X := 0 o U , then X is a non-zero
ideal of S and Ss ∩X = 0, so that SS is not uniform. Now suppose that RU
is not uniform. Then there exist non-zero elements u and v in U such that
Ru ∩ Rv = 0. It follows that S(0, u) ∩ S(0, v) = 0, so that again SS is not
uniform. �

Corollary 4.2. Let RM be a non-zero module with annihilator a in R.
Then ao0 is an irreducible ideal of RoM if and only if M is a uniform module.

Proof . Set S := R o M and B := a o 0. Observe that the map

R o M → (R/a) o M, (r, x) 7→ (r + a, x),

is a surjective ring morphism with kernel B, so it induces a ring isomorphism
S/B ' (R/a) o M .

Assume that RM is uniform. Because M is clearly a faithful uniform
(R/a)-module, the S/B-module S/B is uniform by Lemma 4.1, and so, the
S-module S/B is also uniform, which says exactly that B is an irreducible
ideal of S, as desired.

Conversely assume that B is an irreducible ideal of S, and set R′ := R/a
and S′ := S/B. Then M is an R′-module, and S′ ' R′ o M . Since B is an
irreducible ideal of S, S′ is uniform as an S′-module, so R′ o M is uniform as
an R′ o M -module. Let m1, m2 be non-zero elements of M . Then there exist
(r1, x1), (r2, x2) ∈ R′ o M such that

(0, 0) 6= (r1, x1)(0,m1) = (r2, x2)(0,m2) = (0, r1m1) = (0, r2m2),
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and so, 0 6= r1m1 = r2m2. This shows that RM is uniform. �

Lemma 4.3. Let N =
⋂

i∈I Ni be an irredundant decomposition of a
proper submodule N of an R-module M . Then N# =

⋂
i∈I N#

i is an irredun-
dant decomposition of the ideal N# of S.

Proof . Note that a =
⋂

i∈I ai. It can easily be seen that N# =
⋂

i∈I N#
i

and that N# 6=
⋂

i∈J N#
i , for every proper subset J of I. This proves the

result. �

We introduce one further piece of notation. Let a be any ideal of R.
Then a+ will denote the set of elements of R o M of the form (a,m) with
a ∈ a and m ∈ M , i.e., a+ = a o M . Note that if p is a prime ideal of R, then
p+ is a prime ideal of R o M and that, moreover, every prime ideal of S is of
the form p+ for some prime ideal p of R (see, e.g., Anderson and Winders [4,
Theorem 3.2]).

Proposition 4.4. Let M be an R-module, N 6 M , and a := (N : M).
If S := R o M and N# := a o N , then the following assertions hold.

(1) N is an irreducible submodule of M ⇔ N# is an irreducible ideal
of S.

(2) N is a CI submodule of M ⇔ N# is a CI ideal of S.
(3) N is a primal submodule of M with adjoint prime ideal p ⇔ N# is

a primal ideal of S with adjoint prime ideal p+.

Proof . (1) Clearly, M/N becomes an (R/a)-module by defining

(r + a)(m + N) = rm + N, ∀ r ∈ R, m ∈ M.

Note that M/N is a faithful (R/a)-module. Set T := (R/a) o M/N . Then
the mapping S → T, (r, m) 7→ (r + a,m + N), r ∈ R, m ∈ M , is a surjective
ring morphism with kernel N#, which induces a ring isomorphism S/N# ' T .
Now apply Lemma 4.1.

(2) Suppose that N is a CI submodule of M . Then there exists a sub-
module L of M , N < L and L/N is a simple essential submodule of the
R-module M/N . Let K = a o L. Then N# 6 K. Let r ∈ R, m ∈ M such
that s = (r, m) /∈ N#. Suppose that r ∈ a. Then m /∈ N so that L ⊆ N +Rm.
Thus, for any x ∈ L there exist u ∈ N and c ∈ R such that x = u + cm. Now,
(0, x) = (−cr, u) + (c, 0)(r, m) ∈ N# + Ss. It follows that K ⊆ N# + Ss.
Now, suppose that r /∈ a, hence rM is not contained in N . It follows that
L ⊆ N + rM . For any y ∈ L there exist v ∈ N and w ∈ M such that
y = v + rw and, in this case, (0, y) = (0, v) + (0, w)(r, m) ∈ N# + Ss. Again,
it follows that K ⊆ N# +Ss. Thus, K/N# is a simple essential submodule of
the S-module S/N#, hence N# is a CI ideal of S. Conversely, suppose that
N# is a CI ideal of S. Let Li (i ∈ I) be any collection of submodules of M
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such that N =
⋂

i∈I Li. By Lemma 4.3, N# =
⋂

i∈I L#
i , hence N# = L#

i for
some i in I. It follows that N = Li. Hence N is CI.

(3) Suppose that N is a p-primal submodule of M ,

p = {r ∈ R | ∃u ∈ M \N, ru ∈ N}.

We are going to show that p+ coincides with the set Z(S/N#) of all zero
divisors of the S-module S/N#, which means precisely that N# is a primal
ideal of S with adjoint prime ideal p+. Let (p, m) ∈ p+, where p ∈ p and
m ∈ M . There exists v ∈ M \ N such that pv ∈ N . Then (p, m)(0, v) =
(0, pv) ∈ N# but (0, v) /∈ N#. Thus, p+ ⊆ Z(S/N#). Now, suppose that
there exists (d, y) ∈ Z(S/N#) \ p+. There exist elements r′ ∈ R and m′ ∈ M
such that (d, y)(r′,m′) ∈ N# but (r′,m′) /∈ N#. Now, dr′ ∈ a which implies
that dr′M ⊆ N . But d /∈ p then gives r′M ⊆ N , hence r′ ∈ a. Moreover,
dm′ + r′y ∈ N . But r′ ∈ a, so that r′y ∈ N and hence dm′ ∈ N . Since d /∈ p,
we have m′ ∈ N . We have proved that (r′,m′) ∈ N#, which is a contradiction.
It follows that Z(S/N#) ⊆ p+, as desired.

Conversely, suppose that N# is a primal ideal of S with adjoint prime
ideal p+. Let p ∈ P . Then (p, 0)(r, m) ∈ N# for some r ∈ R, m ∈ M such
that (r, m) /∈ N#. Note that pr ∈ a and pm ∈ N . Suppose that m ∈ N . Then
r /∈ a, so that rM * N but prM ⊆ N . It is now clear that p ∈ adjN . Hence
P ⊆ adjN . Now, suppose that a ∈ adjN . There exists an element x ∈ M
such that ax ∈ N but x /∈ N . This implies that (a, 0)(0, x) ∈ N#, hence
(a, 0) ∈ p+. In other words, a ∈ P . Thus adjN = p and N is p-primal. �

Remark 4.5. If N is a prime submodule of M then N# is never a prime
ideal of R o M because every prime ideal of R o M contains the ideal 0 o M
with square 0. �

The next result generalizes Fuchs, Heinzer and Olberding [9, Theorem 3.2].

Theorem 4.6. Let M be an R-module and N a proper submodule of M
such that

N =
⋂
i∈I

Ki =
⋂
j∈J

Lj

are irredundant intersection representations of N in terms of CI submodules
Ki (i ∈ I) and Lj (j ∈ J) of M. Then

(i) Each maximal ideal of R occurring as the adjoint prime ideal of some
submodule Ki occurs as the adjoint prime ideal of some submodule Lj. More-
over, if a maximal ideal occurs a finite number of times in one intersection
then it occurs the same number of times in the other intersection.

(ii) For each i ∈ I there exists j ∈ J such that replacing Ki by Lj in the
first intersection gives another irredundant intersection representation of N .
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Proof . Let S := RoM be the trivial extension of M by R. By Lemma 4.3
and Proposition 4.4,

N# =
⋂
I∈I

K#
i =

⋂
j∈J

L#
j

are irredundant intersections of the ideal N# of S in terms of CI ideals K#
i

(i ∈ I) and L#
j (j ∈ J) of S. Moreover, if pi is the adjoint prime ideal of Ki

then p+
i is the adjoint prime ideal of K#

i for each i ∈ I, and there is a similar
description for the adjoint prime ideals of L#

j for each j ∈ J . The result now
follows by Fuchs, Heinzer and Olberding [9, Theorem 3.2]. �

5. ARITHMETICAL MODULES

In this section we extend from rings to modules Fuchs, Heinzer and
Olberding [8, Theorem 1.8] characterizing arithmetical rings in terms of pri-
mal ideals.

Recall that a (commutative) ring R is called arithmetical provided the
lattice of all ideals of R is distributive, or equivalently, if the local ring Rp is a
chained ring for every maximal ideal p of R. If R is an arbitrary ring then, as in
Albu and Năstăsescu [3], we say that an R-module M is arithmetical provided
the lattice L(M) of all submodules of M is distributive, or equivalently, if
the Rp-module Mp is chained for every maximal ideal p of R (see Albu and
Năstăsescu [3, Proposition 1.3 and Théorème 1.6]). The arithmetical modules
are also known as distributive modules (see Stephenson [11]).

Lemma 5.1 (Stephenson [11, Theorem 1.6]). Given any ring R, an R-
module M is arithmetical if and only if

(Rx : Ry) + (Ry : Rx) = R

for all elements x and y of M . �

Lemma 5.2. Let p be a maximal ideal of a ring R and let N be a finitely
generated submodule of an R-module M . Let L = {m ∈ M | (1 − p)m ∈
pN for some p ∈ p}. Then L is a p-primal submodule of M or (1− q)N = 0
for some q ∈ p.

Proof . Suppose first that N ⊆ L. For each x ∈ N there exists a ∈ p such
that (1− a)x ∈ pN and hence x ∈ pN . Thus, N = pN . Because N is finitely
generated, the usual determinant argument gives that (1− b)N = 0 for some
b ∈ p. Now, suppose that N * L. Then pN ⊆ L implies that p ⊆ Z(M/L). To
prove now the other inclusion, let r ∈ Z(M/L). There exists m ∈ M\L such
that rm ∈ L. Hence (1−p)rm ∈ pN for some p ∈ p. Suppose that r /∈ p. Then
rs = 1− q for some s ∈ R and q ∈ p. But this implies (1− p)(1− q)m ∈ pN
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so that m ∈ L, a contradiction. It follows that r ∈ p. Thus Z(M/L) ⊆ p and
we conclude Z(M/L) = p. Thus, p = Z(M/L), hence L is p-primal. �

Theorem 5.3. Let R be any commutative ring. Then an R-module M
is arithmetical if and only if every primal submodule of M is irreducible.

Proof . Suppose first that M is arithmetical. Let K be any primal sub-
module of M . Then K is a proper submodule of M . Let Z = Z(M/K) and
note that Z is a proper ideal of R. There exists a maximal ideal p of R such
that Z ⊆ p. Suppose that K is not irreducible. Then there exist submodules G
and H of M , both properly containing K such that K = G∩H. Let g ∈ G\H
and h ∈ H\G. By Lemma 5.1, R = (Rg : Rh)+(Rh : Rg). Thus, without loss
of generality we can suppose that there exists c ∈ p such that (1− c)g ∈ Rh.
Then (1− c)g ∈ G∩H = K, hence 1− c ∈ Z ⊆ p, a contradiction. Thus K is
irreducible.

Conversely, suppose that M is not arithmetical. By Lemma 5.1 there
exist u, v ∈ M such that (Ru : Rv) + (Rv : Ru) ⊆ q, for some maximal
ideal q of R. Let N = Ru + Rv. Suppose that (1 − q)N = 0 for some
q ∈ q. Then (1 − q)u = 0 ∈ Rv and hence 1 − q ∈ q, a contradiction. Thus,
(1 − q)N 6= 0 for all q ∈ q. It follows that N 6= qN so that, without loss
of generality, (1 − p)u /∈ qN for all p ∈ q. By Lemma 5.2 the submodule
L = {m ∈ M : (1− d)m ∈ qN for some d ∈ q} is q-primal. Note that qN ⊆ L,
hence (N+L)/L is semisimple. Suppose that L is irreducible. Then (N+L)/L
is simple. Since u /∈ L we have N ⊆ Ru + L. There exist s ∈ R and z ∈ L
such that v = su + z. But (1 − e)z = q1u + q2v for some q1, q2 ∈ q, hence
(1 − e − q2)v ∈ Ru, a contradiction. Thus L is a primal submodule which is
not irreducible. �
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