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We develop the theory of generalized path algebras as defined by Coelho and
Xiu [4]. In particular, we focus on the relation between a set of algebras and
its associated generalized path algebra for a given quiver. Explicitly, we describe
the modules over a generalized path algebra by means of generalized linear rep-
resentation of the generalized quiver in a similar way as stated for standard path
algebras. Last, in the finite dimensional case, we find the Gabriel quiver (in the
usual sense) of a generalized path algebra.
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1. INTRODUCTION AND PRELIMINARIES

The Representation Theory of Algebras has provided many worthwhile
results, and is nowadays considered a classic and fruitful theory. For that
reason, in the literature, there are different efforts trying to extend it to a
wider context and generalize methods already known for finite dimensional
algebras to a broader framework. Among these tools, the quiver-theoretical
techniques developed by Gabriel and his school is mostly accepted as one of
the most powerful of them, see for example [2], [3] and [6]. In this work we
deal with a generalization of the well known notion of path algebra of a quiver:
generalized path algebras.

Generalized path algebras were defined by Coelho and Xiu [4]. The idea
of such algebras is to focus on the vertices of a quiver and endow each of them
with a structure of algebra which is not necessary the ground field (as usually
done for the ordinary path algebras). This way gives us a method to obtain
more examples of algebras starting from a given set of them. In this note,
we attend to the relation between this new algebra and the set of original
ones. In particular, in Section 2, we study the modules over a generalized
path algebra and we get a relation between the category of modules over a
generalized path algebra and the category of generalized linear representation
of the generalized quiver finding a similar result as stated for standard path
algebras (Theorem 2.4), see [2]. Last, in Section 3, we describe the ordinary
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quiver of a finite dimensional generalized path algebra by means of the ordinary
quivers of the algebras attached to the set of vertices (Theorem 3.3).

Throughout K will be an algebraically closed field. Following Gabriel
[5], by a quiver, Q, we mean a quadruple (Q0, Q1, s, e) where Q0 is the set
of vertices (points), Q1 is the set of arrows and for each arrow α ∈ Q1, the
vertices s(α) and e(α) are the source (or start point) and the sink (or end
point) of α, respectively (see [2], [3] and [6]).

If i and j are vertices, an (oriented) path in Q of length m from i to j is
a formal composition p = αm · · ·α2α1 of arrows, where s(α1) = i, e(αm) = j
and e(αk−1) = s(αk), for k = 2, . . . ,m. To any vertex i ∈ Q0 we attach a
trivial path of length 0, say ei, starting and ending at i such that αei = α
(resp. ejβ = β) for any arrow α (resp. β) with s(α) = i (resp. e(β) = i). We
identify the set of vertices and the set of trivial paths. A cycle is a path which
starts and ends at the same vertex.

Let KQ be the K-vector space generated by the set of all paths in Q.
Then KQ can be endowed with the structure of a (non necessarily unitary)
K-algebra with multiplication induced by concatenation of paths, that is, if
α = αm · · ·α2α1 and β = βn · · ·β2β1 then

αβ =
{
αm · · ·α2α1βn · · ·β2β1 if e(βn) = s(α1),
0 otherwise;

KQ is the path algebra of the quiver Q. The algebra KQ can be graded by

KQ = KQ0 ⊕KQ1 ⊕ · · · ⊕KQm ⊕ · · · ,

where Qm is the set of all paths of length m and Q0 is a complete set of
primitive orthogonal idempotents of KQ. If Q0 is finite then KQ is unitary,
and it is clear that KQ has finite dimension if and only if Q is finite and has
no cycles. For each n ∈ N, we denote by KQ≥n the ideal of the path algebra
KQ generated by the paths in Q of length greater or equal than n.

We denote by RMf and RM the category of finitely generated and all
left modules over the ring R, respectively.

For completeness, we remind the famous Gabriel theorem for finite di-
mensional algebras, see [2], [3] and [6] for details. We recall that the Gabriel
quiver, QA, of a finite dimensional algebra A may be obtained considering
as vertices the complete set of primitive orthogonal idempotent elements, say
{e1, e2, . . . , en}, and whose number of arrows from a vertex ei to a vertex ej
is given by the dimension of the vector space ej(J/J2)ei, where J denotes the
Jacobson radical of A.

Theorem 1.1 (Gabriel Theorem). Let K be an algebraically closed field.
Then every basic finite dimensional algebra A is isomorphic to a quotient
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KQA/Ω, where Ω is an ideal of KQA such that

K(QA)≥n ⊆ Ω ⊆ K(QA)≥2

for some integer n ≥ 2.
Moreover, there exists a K-linear equivalence of categories

F :AM→ RepK(Q,Ω)

between the category of left A-modules and linear representations of the quiver
with relations (Q,Ω). This equivalence restricts to an equivalence

F :AMf → repK(Q,Ω)

between the category of finitely generated left A-modules and finite dimensional
linear representations of (Q,Ω).

Remark 1.2. In the literature, such an ideal Ω is usually called an ad-
missible ideal of the path algebra KQ.

Let now Q = (Q0, Q1) be an acyclic and finite quiver, i.e., it has no
cycle and the sets Q0 and Q1 are finite. Let A = {Ai}i∈Q0 be a set of finite
dimensional K-algebras indexed by the set of vertices. We call the pair (Q,A)
a generalized quiver. Following [4], an A-path of length n from x ∈ Q0 to
y ∈ Q0 is a formal expression

anβnan−1βn−1 · · · a1β1a0,

where βn · · ·β1 is an (ordinary) path in Q of length n from x to y, ai ∈ Ae(βi)

for all i = 1, . . . , n and a0 ∈ As(β1). The elements of the set
⋃n
i=1Ai are called

the zero-length A-paths. Let us consider the K-vector space generated by the
set of all A-paths modulo the subspace of all expressions of the form

an+1βn · · ·βj+1(a1
j + · · ·+ amj )βj · · ·β1a0 −

m∑
l=1

(an+1βn · · ·βj+1a
l
jβj · · ·β1a0)

This quotient vector space is denoted by K(Q,A). We may endow K(Q,A)
with a structure of K-algebra given by the following multiplication. For each
two elements a = an+1βn · · · a1β1a0 and b = bm+1γm · · · b1γ1b0 in K(Q,A),
define

ab =
{
an+1βn · · · a1β1(a0bm+1)γm · · · b1γ1b0 if s(β1) = e(γm),
0 otherwise.

It is clear that K(Q,A) has unit if and only if Q0 is finite and the algebra Ai
has unit, say 1Ai , for all i ∈ Q0. In such a case the unit element is given by
1 = 1A1 + · · · + 1An . K(Q,A) is finite dimensional if and only if Q is finite
and acyclic and the algebra Ai is finite dimensional for all i ∈ Q0.
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Throughout, for any algebra A, we denote by J(A) the Jacobson radical
of A, see [1] for basic facts and properties of the Jacobson radical of a ring.
Let now Q = (Q0, Q1) be a quiver and A = {Ai}i∈Q0 be a family of algebras
indexed by the set of vertices. We say that an A-path p is regular if it is either
a zero-length path in J(Ai) for some vertex i ∈ Q0 which does not belong to
a cycle in Q, or p = an+1βn · · · a1β1a0, where βn · · ·β1 is not a subpath of a
cycle in Q (that is, it is a regular path in Q in the usual sense), see [4].

We may calculate the Jacobson radical of K(Q,A) by means of the reg-
ular A-paths. The next result is proved in [4].

Proposition 1.3. Let Q = (Q0, Q1) be a quiver and A = {Ai}i∈Q0 be
a family of algebras indexed by the set of vertices. Then, the Jacobson radical
of K(Q,A) is generated by the set of all regular A-paths.

2. GENERALIZED LINEAR REPRESENTATIONS

Let Q = (Q0, Q1) be a finite and acyclic quiver and A = {Ai}i∈Q0 be
a set of algebras indexed by the set of vertices of Q. A generalized K-linear
representation of (Q,A) is a system

(Xi, ϕα)i∈Q0, α∈Q1 ,

where Xi is an Ai-module for each i ∈ Q0, and ϕα : Xi → Xj is a mor-
phism of K-vector spaces for each arrow α : i → j in Q1. The generalized
linear representation (Xi, ϕα)i∈Q0, α∈Q1 is said to be finitely generated if Xi

is finitely generated as Ai-module for all i ∈ Q0. Given two representations
(Xi, ϕα)i∈Q0, α∈Q1 and (Yi, ψα)i∈Q0, α∈Q1 of (Q,A), a morphism of representa-
tions is a system f = (fi)i∈Q0 , where fi : Xi → Yi is a morphism of Ai-modules
such that the diagram

Xi
ϕα //

fi

��

Xj

fj

��
Yi

ψα // Yj

is commutative if α : i → j is an arrow in Q1. It is clear that the (finitely
generated) generalized linear representations of (Q,A) form a category which
we denote by (repK(Q,A)) RepK(Q,A). Let us recall the following well known
result (see [3] for the definition of the tensor algebra):

Lemma 2.1. Let Σ and ∆ be two rings and V a Σ-bimodule. Let f :
Σ⊕ V → ∆ be a map satisfying the conditions below.

(a) The restriction f|Σ : Σ → ∆ is a morphism of rings.
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(b) The restriction f|V : V → ∆ is a morphism of Σ-bimodules (viewing
∆ as a Σ-bimodule via f|Σ).

Then there exists a unique morphism f̃ : T (Σ, V ) → ∆ of rings between
the tensor algebra T (Σ, V ) and the ring ∆ such that f̃|Σ⊕V = f .

Using the previous lemma we may consider K(Q,A) as a tensor algebra:
let K(Q,A)0 be the vector space generated by the zero-length A-paths and
K(Q,A)1 the vector space generated by the one-length A-paths. Then we
have the inclusion

i : K(Q,A)0 ⊕K(Q,A)1 → K(Q,A),

hence, by Lemma 2.1, there exists a unique ring morphism

f : T (K(Q,A)0,K(Q,A)1) → K(Q,A).

It is easy to see that f is an isomorphism of algebras.
Our aim now is to give an equivalence between module categories and

categories of representations as stated in Gabriel’s theorem for standard path
algebras. For that purpose we define the functor

F : RepK(Q,A) →K(Q,A)M

between the category of generalized linear representations of (Q,A) and the
category of left K(Q,A)-modules, as

F (X) =
n⊕
i=0

Xi

for each generalized linear representation X = (Xi, ϕα)i∈Q0, α∈Q1 . Let us show
that F (X) is a left K(Q,A)-module. To do that, it is enough to have a ring
morphism

φ : K(Q,A) → End (F (X)) .
Consider the maps

φ0 : K(Q,A)0 → End(F (X))

and
φ1 : K(Q,A)1 → End(F (X))

defined as follows.
(a) For any ai ∈ Ai and (x1, . . . , xn) ∈ F (X), set

φ0(ai)(x1, . . . , xn) = (0, . . . , aixi, . . . , 0),

where aixi is placed in the i-th coordinate. This is clearly a morphism of rings.
(b) For each ajαai ∈ K(Q,A)1 and (x1, . . . , xn) ∈ F (X), set

φ1(ajαai)(x1, . . . , xn) = (0, . . . , ajϕα(aixi), . . . , 0),
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where ajϕα(aixi) is placed in the j-th coordinate. It is easy to see that φ1 is
a morphism of K(Q,A)0-bimodules. Note that since K(Q,A) is a K-algebra,
kα(x1, . . . , xn) = αk(x1, . . . , xn), so

(0, . . . , kϕα(xi), . . . , 0) = (0, . . . , ϕα(kxi), . . . , 0)

and then kϕα(xi) = ϕα(kxi). That is, ϕα is a K-linear map.
Therefore, by Lemma 2.1, we obtain the desired ring morphism φ while

F (X) is endowed with a structure of leftK(Q,A)-module. That is, the functor
F is well defined.

Remark 2.2. Note that the functor F restricts to a functor

F : repK(Q,A) →K(Q,A)Mf

between the category of finitely generated generalized linear representations
of (Q,A) and the category of finitely generated left K(Q,A)-modules.

For simplicity, we will write 1i instead of 1Ai for any i = 1, . . . , n. We
remind that

M = 1K(Q,A)M = (11 + · · ·+ 1n)M = 11M ⊕ · · · ⊕ 1nM

for each left K(Q,A)-module M . Then we may define the functor

G :K(Q,A)M→ RepK(Q,A)

by
G(M) = (Xi, ϕα)i∈Q0, α∈Q1 ,

where Xi = 1iM for any i ∈ Q0 and ϕα : 1iM → 1jM is given by ϕα(x) = α ·x
for each α ∈ Q1.

On the other hand, if f : M → N is a morphism of K(Q,A)-modules
then we set G(f) = (f|1iM )i∈Q0 , where f|T denotes the restriction of f to a
submodule T ⊆M .

The functor G is well defined. Indeed,
(a) If x ∈ 1iM then x = 1im for some m ∈M . Therefore

ϕα(x) = (α · 1i) ·m = 1j · (α ·m) ∈ 1jM.

Thus ϕα is well defined.
(b) Since ϕα(λx) = α · λx = λ(α · x) = λϕα(x) for any λ ∈ K, any

x ∈ 1iM and any arrow α : i→ j in Q, the map ϕα is K-linear.
c) We have

(f|1jM ◦ ϕα)(m) = f|1jM (α ·m) = α · (f|1iM (m)) = (ψα ◦ f|1iM )(m)

for any m ∈ 1iM . Then f|1jM ◦ ϕα = ψα ◦ f|1iM for all α : i→ j. Thus f is a
morphism of generalized linear representations.
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Remark 2.3. It is obvious that G also restricts to a functor between
K(Q,A)Mf and repK(Q,A).

Now, we are able to prove the main result of this section.

Theorem 2.4. The functor

F : RepK(Q,A) →K(Q,A)M

is a K-linear equivalence of categories between the category of generalized K-
linear representations of the generalized quiver (Q,A) and the category of left
K(Q,A)-modules.

Moreover, F restricts to an equivalence

F : repK(Q,A) →K(Q,A)Mf

between the category of finitely generated generalized linear representations of
(Q,A) and finitely generated left K(Q,A)-modules.

Proof. By the above discussion it only remains to prove that F and
G are inverse to each other. Let (Xi, ϕα)i∈Q0, α∈Q1 be a generalized linear
representation. Then

GF (Xi, ϕα)i∈Q0, α∈Q1 = G

( n⊕
i=1

Xi

)
= (εi(Xi), ϕ′α)i∈Q0, α∈Q1 ,

where εi is given by εi(Xi) = (0, . . . , Xi, . . . , 0) for each i ∈ Q0, and

ϕ′α(0, . . . , xi, . . . , 0) = (0, . . . , ϕα(xi), . . . , 0)

for each arrow α : i→ j in Q1. Taking ε = (εi)i∈Q0 , it is clear that

ε : (Xi, ϕα)i∈Q0, α∈Q1 → (εi(Xi), ϕ′α)i∈Q0, α∈Q1

is an isomorphism of generalized linear representations. Thus, GF ∼=1RepK(Q,A).
Let now M be a right K(Q,A)-module. Then

FG(M) = F (1iM,ϕα)i∈Q0, α∈Q1 =
n⊕
i=1

1iM ∼= M.

This completes the proof. �

3. FINITE DIMENSIONAL
GENERALIZED PATH ALGEBRAS

In this section we deal with the relation between the generalized quiver of
a finite-dimensional generalized path algebra and its standard Gabriel quiver.
For simplicity, we introduce the following notation. Let Q be any quiver and
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Q = {Qi}i∈Q0 a family of quivers indexed by the set of vertices of Q. Denote
by QQ the quiver described as follows:

• the set of vertices (QQ)0 =
⋃
i∈Q0

(Qi)0;
• for each pair of vertices a ∈ Qi and b ∈ Qj with i, j ∈ Q0, if i = j

then the number of arrows from a to b is the number of arrows from a
to b in Qi while if i 6= j then the number of arrows from a to b is the
number of arrows from i to j in Q.

Example 3.1. Let us consider the quiver Q : '&%$ !"#1 //'&%$ !"#2 and the set of
quivers Q = {Q1, Q2}, where

Q1 : ◦ // ◦ and Q2 : ◦ // ◦
Then the quiver QQ is

◦ //

���
�
�
�

��?
??

??
??

??
◦

���
�
�
�

◦ //

??���������
◦

where the dashed arrows correspond to the arrows of the quivers Q1 and Q2.

Example 3.2. Observe that there is no condition on any quiver Qi ∈ Q in
the above definition. For instance, let us consider the quiver Q of the previous
example, the quiver Q2 formed by only one vertex and without loops and the
infinite quiver Q1 below:

◦ // ◦ // ◦ // ◦ // ◦
Then QQ is the quiver

◦ //___

((RRRRRRRRRRRR ◦

""EE
EE

EE
//___ ◦

��

//___ ◦

||yyy
yy

y
//___ ◦

vvllllllllllll

◦

Theorem 3.3. Let Q be a finite and acyclic quiver with Q0 = {1, . . . , n},
K an algebraically closed field and A = {A1, . . . , An} a set of finite dimen-
sional basic K-algebras. Let us suppose that Q = {Q1, . . . , Qn} is a set of
quivers such that Ai ∼= KQi/(Ωi) as algebras for all i = 1, . . . , n, where Ωi is
an admissible ideal of KQi. Then K(Q,A) ∼= KQQ/(Ω1, . . . ,Ωn).

Proof. Clearly, K(Q,A) is a finite dimensional algebra. Let us denote
by Ji the Jacobson radical of Ai for all i = 1, . . . , n, and by J the Jacobson
radical ofK(Q,A). By Proposition 1.3, J is generated by theA-paths of length
greater that zero and the set {J1, J2, . . . , Jn}. Then A1, . . . , An are basic if
and only if Ai/Ji ∼=

⊕ki
j=1D

i
j for all i = 1, . . . , n, where Di

j ia a division
rings for any i and j. Therefore, K(Q,A)/J ∼=

⊕n
i=1Ai/Ji

∼=
⊕

i,j D
i
j and

then K(Q,A) is also basic. Therefore, by Gabriel’s theorem (Theorem 1.1),
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there exists a finite quiver Q′ and an admissible ideal Ω in KQ′ such that
K(Q,A) ∼= KQ′/Ω.

Let us consider Ei = {ei1, ei2, . . . , eiki
} a complete set of primitive ortho-

gonal idempotent elements of Ai for any i = 1, . . . , n. Then

1K(Q,A) = 11 + · · ·+ 1n =
n∑
i=1

ki∑
j=1

eij ,

thus E = {eij}
i=1,...,n
j=1,...,ki

is a complete set of primitive orthogonal idempotent
elements of K(Q,A). Hence the quiver Q′ has

∑n
i=1 ki vertices which are in

one-to-one correspondence with the elements of the set E.
Let us now calculate the arrows of Q′. For this purpose we recall the

facts below.

(0) The zero-length A-paths in J2 are the elements in J2
i for all i =

1, . . . , n. Consequently, the classes of the zero-length A-paths in J/J2

are the elements in Ji/J2
i for all i = 1, . . . , n.

(1) The one-length A-paths in J2 are the one-length A-paths aαb such
that α : i → j is an arrow in Q and either b ∈ Ji or a ∈ Jj for some
i, j ∈ Q0. Consequently, the classes of the one-length A-paths in J/J2

are the A-paths aαb such that α : i → j is an arrow in Q, a ∈ Aj/Jj
and b ∈ Ai/Ji for some i, j ∈ Q0. For simplicity, we denote this space
by J1.

(+1) Every A-path of length greater than one is contained in J2. Conse-
quently, the classes of such elements in J/J2 are zero.

Summarizing, J/J2 is generated by the elements in
⋃
i∈Q0

Ji/J
2
i and the

one-length A-paths aαb such that α : i → j is an arrow in Q, a ∈ Aj/Jj and
b ∈ Ai/Ji for some i, j ∈ Q0.

For the reader’s convenience, we shall denote by p(eij , e
l
m) the number

of arrows in Q′ from eij to elm for any j ∈ {1, . . . , ki}, m ∈ {1, . . . , kl} and
i, l ∈ {1, . . . , n}.

We shall distinguish two cases:
(a) Two vertices eij and eim are associated with the same quiver Qi for

some i ∈ {1, 2, . . . , n}. Since Q has no cycle, we have

p(eij , e
i
m) = dimK

(
eim(J/J2)eij

)
= dimK

(
eim(Ji/J2

i )e
i
j

)
.

Hence p(eij , e
i
m) is the number of arrows from eij to eim in Qi.
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(b) Two vertices eij and elm are in QQ with i 6= l. Then

p(eij , e
l
m) = dimK

(
elm(J/J2)eij

)
= dimK

(
elm(J1)eij

)
=

∑
α:i→l

dimK

(
elm(Al/Jl)α(Ai/Ji)eij

)
=

∑
α:i→l

dimK

(
elm(Al/Jl)

)
· dimK

(
(Ai/Ji)eij

)
=

∑
α:i→l

kl∑
s=1

ki∑
t=1

dimK

(
elm(Al/Jl)els

)
· dimK

(
eit(Ai/Ji)e

i
j

)
=

∑
α:i→l

kl∑
s=1

ki∑
t=1

δm,s · δj,t =
∑
α:i→l

1.

Therefore, p(eij , e
l
m) is the number of arrows from i to l in Q. This proves that

the standard Gabriel quiver of K(Q,A) is the quiver QQ.
Let us now consider the isomorphisms of algebras

fi : KQi/(Ωi) → Ai

for any i = 1, . . . , n, as obtained from the method of the proof of the Gabriel
theorem, see for instance [3]. Then we can get a surjective morphism of alge-
bras

g : KQQ → K(Q,A)

as follows. Consider the morphism of algebras

g0 : (KQQ)0 → K(Q,A)

defined by g0(eij) = fi(eij) = eij for any j = 1, . . . , ki and i = 1, . . . , n. Also let

g1 : (KQQ)1 → K(Q,A)

be the map defined by

g1(α) =

{
fi(α) if i = l,
elmαe

i
j if i 6= l

for any arrow α in QQ from eij to elm. Clearly, g1 is a morphism of (KQQ)0-
bimodules (viewing K(Q,A) as a (KQQ)0-bimodule via g0). Therefore, by
Lemma 2.1, there is a unique morphism of algebras

g : KQQ → K(Q,A).

This map may be also described as follows:
• g(p) = fi(p) for any path p ∈ Qi ⊂ QQ;
• g(α) = elmαe

i
j for any arrow α : eij → elm such that i 6= l.
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Then it is obvious that g is surjective and

Ker g = (Ker f1, . . . ,Ker fn) = (Ω1, . . . ,Ωn).

Therefore,

g :
KQQ

(Ω1, . . . ,Ωn)
→ K(Q,A)

is an isomorphism. �

Example 3.4. Let Q be the quiver ◦ // ◦ and A = {A1, A2}, where

A1 = K andA2 =
(
K 0
K K

)
. ThenK(Q,A) is the path algebra of the quiver

◦

���
�
�
�

◦

::uuuuuu

$$IIIIII

◦

Example 3.5. Let Q be the quiver '&%$ !"#1 //'&%$ !"#2 '&%$ !"#3oo and A = {A1, A2,
A3}, where A2 = K and A1 = A3 is the quotient KQ1/(βα) with Q1 the
quiver ◦ α // ◦ β // ◦ . Then the generalized path algebra K(Q,A) ∼=
KΓ/(α1β1, α3β3), where Γ is the quiver

◦
α1

���
�

�
�

��7
77

77
77

◦
α3

��7
7

7
7

����
��

��
�

◦

β1 ��7
7

7
7

// ◦ ◦oo

β3���
�

�
�

◦

CC������
◦
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