MATRICEAL BLOCH
AND BERGMAN-SCHATTEN SPACES

NICOLAE POPA

The main goal of this paper is to extend some theorems of the papers [ACP] and
[Z] concerning the space of analytic Bloch functions, respectively the Bergman
space of functions, to infinite matrices. The extension to the matriceal framework
will be based on the fact that there is a natural correspondence between Toeplitz
matrices and formal Fourier series associated to 2w-periodic distributions. We
mention a characterization of diagonal matrices associated to a Bloch matrix
using a quadratic form and the fact that the matriceal Bloch space is the dual
Banach space of the matriceal Bergman space.
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1. INTRODUCTION

The Bloch functions and the Bloch space have a long history behind
them. They were introduced by the French mathematician André Bloch at the
beginning of the last century. Many mathematicians payed attention to these
functions: L. Ahlfors, J.M. Anderson, J. Clunie, Ch. Pommerenke, P.L. Duren,
B.W. Romberg and A.L. Shields are some of them. There were some good
papers about this topic (see for example [DRS], [ACP]) and in the more recent
past the monographs [Z] and [DS].

Our intention is to introduce a concept of Bloch matrixz (respectively of
Bergman-Schatten matriz) which extends the notion of Bloch function (re-
spectively the function from the Bergman space) and to prove some results
generalizing those of the papers [ACP] and [Z].

The idea behind our considerations is to consider an infinite matrix A as
the analogue of the formal Fourier series associated to a 2m-periodic distribu-
tion, the diagonals Ay, k € Z, being the analogues of the Fourier coefficients
associated to such a distribution. In this manner we get a one-to-one cor-
respondence between the infinite Toeplitz matrices and formal Fourier series
associated to periodic distributions, hence an infinite matrix appears in a natu-
ral way as a more general concept than that of a periodic distribution on the
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torus. (See the papers [BPP], [BLP] and [BKP] for more information about
these concepts.)
For an infinite matrix A = (a;;) and an integer k we denote by A the

matrix whose entries a} ; are given by
k2

a;; ifj—i=k,
1) dy=1
7 0 otherwise.
Then Ay will be called the kth-diagonal matriz associated to A.
In the sequel we need a special type of matrices, Toeplitz matrices, defined
below.

Definition 1. Let A = (a;j)i;>1 be an infinite matrix. If there is a
sequence of complex numbers (ak),j;"ioo such that a;; = a;—; for all 4,5 € N,

then A is called a Toeplitz matriz.

For simplicity we will write a Toeplitz matrix as A = (a;,);>° . The
class of all Toeplitz matrices will be denoted by 7.

We consider on the interval [0, 1) the Lebesgue measurable infinite matrix-
valued functions A(r). These functions may be regarded as infinite matrix-
valued functions defined on the unit disc D using the correspondence A(r) —
falrt) = S22 Ag(r)el, where Ay (r) is the kth-diagonal of the matrix
A(r). The preceding sum is a formal one and t belongs to the torus T.

We may consider fa(r,t), also denoted by fa(z), where z = rel, as a
matrix valued distribution (resp. formal series). Such a matrix A(r) is called
an analytic matriz if there exists an upper triangular infinite matrix A such
that for all r € [0,1) we have Ag(r) = Apr* for all k € Z.

In what follows we identify the analytic matrices A(r) with their corre-
sponding upper triangular matrices A and also call the latter analytic matrices.

Let us denote by A * B the Schur product of the matrices A and B,
that is, the matrix having as entries the products of corresponding entries of
these matrices. C(r) means the Cauchy matriz, that is the Toeplitz matrix
corresponding to the Cauchy kernel ﬁ

2. MATRICEAL BLOCH SPACE

We now define the matriceal analog of the classical Bloch space of ana-
lytic functions.

Definition 2. The matriceal Bloch space B(D,¢s) is the space of all an-
alytic matrices A with A(r) € B(f2), 0 <r < 1, such that

def
IAlB(D,e) = (1= )| A (") Bea) + A0l Ber) < 0,

sup
0<r<1
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where || A[ g(,) is the usual operator norm of the matrix A on the space /2,

and A'(r) = —i;L“gY’t).

A matrix A € B(D, ¢3) is called a Bloch matriz.

It is clear that Toeplitz matrices which belong to the Bloch space B(D, ¢)
of analytic matrices coincide with Bloch functions. So, B(D, ¢2) appears as an
extension of the classical space B of Bloch functions.

Now, we give some properties of Bloch matrices, which extend the cor-
responding properties of Bloch functions.

It is known that in [ACP] a characterization of Taylor coefficients of
Bloch functions in terms of a quadratic form is given. We want to extend this
result to infinite matrices.

Let us recall the definition of the space Z from the paper [ACP]: Z =

{g:D — C|+ 3 fol 2 g (2)|df dr + |g(0)] < oo}, equipped with the norm

lgllz = 3= fy Jo " 19/ (2)[d0 dr.
Then the followmg result holds.

LEMMA 3. Let A € B(D,ls); A= 0"Anz" and g(z) = > 02 gbn2" €
Z. Then h(z) = Y02 o Apbpz™ : D — B(l3) is a continuous function in |z| < 1
and we have

(1) 1P(2) | Be) < 201 AllBD.e2) 9z

for all ||z|| < 1.
In particular, it follows that there exists

L —i0 i0
(4,9) —pligl ZA bnp" —plig{ 2—/0 A(pe™")g(pe'”)do,

for all A e B(D,ts), g€ T.

Proof. Let ||| < 1. We have A'(z) = fi(z) = >.02, nAnz"_.1 and
dd [2(9(2) — bo)] = 3°°°  (n+ 1)b,2". Then we easily get that for z = rel’ and
¢ € D we have

1 1 p2r .o d —i B o .
;/0/0 (1 =) A(2) S [a(9(2) — bo)] e b dr = 3 Aubu¢

n=1
Using Holder’s inequality we get

ZAb

<

Bl

)
2
< sup (1= ERIA et [ [ o)~ ol +rlg v

|z]<1
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We further have

1 2m 1 2r pr
/ / lg(rel?) — bo|df dr S/ / / g’ (te'?)|dtdd dr =
0 Jo
21 1 21
:/ / </ d7’>\g (tel?)|dadt = / / t)|g (te?)|dAdt.
0 0

Since z — ||A’(2)||p(e,) is a subharmonic function, we get
<

ZA bnC"
52)

1 1 27 )
< [[Aobol| B(e,) + sup(l — IZ\Q)HA’(Z)IIBMQ)—/ / g/ (te'?)|d0dt.
2€D ™ Jo Jo

Hence

1M By < 21 AllB(D,ea)ll9lIz
for |¢| < 1.
In order to show the continuity of h in |z| < 1, we take (1, (o € D and
note that
17(C)=h(C) | Bes) =

(b1 —bn(y) <2/ Allg(p,e2) 19(C1—9(C2) Iz

B(tz)

But it is known that the last norm converges to 0 as [(; — (2| — 0. (See
Theorem 2.2 [ACP].)
Hence h can be extended by continuity to D and we get (1). [

THEOREM 4. Let A =", Ay be a Bloch matriz. Then the inequality
o wl®

<K -

- ; 2v+1

holds, where w,, v = O, 1,2,... are complexr numbers and K < 2HA||B(D’g2).
Conversely, (2) implies that A € B(D,{2) and ||Allgp,) < 2K.

+1/+1

2) u+v+

Wy Wy
1 B(t2)

Proof. 1t is clear that the double series converges if the right hand series
converges, t00.
Then we have

o0

(3) ZZM:—;/_T_ll pWy = Z n'r_l:-i (Zwuwn u) (A,9),

pn=0r=0

where
(e}

1
o= Sy (s ) 1 wep
v=0

n=0
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and by (A, g) we mean

1 2 . .
(A,g) = lim ZA bpp" = lim — A(pe=9)g(pel?)do,
p—17 - p—>1‘ 0

for || || g(e,)-convergent expansions Alpe10) =352 | Apbype™ and g(pe?) =
3% bubnp™e™. But

-y (zwywn ) (§w>

n=0

Hence, by Parseval formula we get

2m 2m
otz =g [ [ l0Goar= [ 1 [

! 2.2 \wn|2
n
= g dr = g .
/0 — \wn| e — 2n+1
n=0 n=0

Now, by Lemma 3 we have

o0

>

der =

o0 2
Wn
(A, D By < 201 AllB(D,es) Z 2|n+‘ T
n=0

that is, (2) holds for A € B(D, {s).

b) Conversely, if (2) holds we take Z € D and find w,, such that g(z) =
S0 Tl = e = >t 0wt (Ov—o Wywn—,,)z". (See Theorem 3.5 in
[ACP].)

Using the computations in [ACP], page 17, we get

\ 2
Z = lollz < =

By (2) and (3) we have

0o
<K

w.
<KD 5 SToE
n=0

14 = | (46 =)

Therefore, [|Allgp,e) < 2K. O

We can identify the space Z with the space of all corresponding Toeplitz
matrices and consider the bounded linear operators which invariate the diag-
onals ¢ : T — B({2).

Then we have the following extension of a result from [DRS]. (See also
Theorem 2.4 in [ACP].)

B(t2)
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THEOREM 5. Any B € B(D, {3) corresponds to a bounded linear operator

Yp : I — B({y) invariating the diagonals and conversely. The correspondence

is given by: B — g, where ¢p is defined by ¥p(g) = lim B x G(r), G being
r—1-

the Toeplitz matriz associated to g, for g = fg.

Proof. Let B € B(D, {2). Then by Lemma 3 we have

159 Bes) < 2I1AlB(D,e2) 9]l

for all g € Z. Hence ¥ has the required properties.
Conversely, let ¢ : T — B(D, {3) be a bounded linear operator invariating
the diagonals. Then there exists a unique A € B(D, ¢3) such that

P(G) = lil“{li G x A(r).

Let the matrix A given by A, = ¢ (FE,) for every n = 0,1,2,..., where
E is the Toeplitz matrix given by the constant sequence (1,1,...). Here of
course we used the fact that ¢ invariates the diagonals. Now, let us define
A(s) = AxC(s) = > 07y Ays™, converging in B(D,ls) for all 0 < s < 1. For
0<p<1landg(s)=>7",bys" we have

Y(G xC(ps)) = Z bnp"Y(En) = Z bp™ An.
n=0 n=0

Since lir? g(p-) = g(+) in the norm of Z, we have
p—1-

|G+ Clp) = Gllz < €/[I9],

if |p—1] < é(e). But [[{(G+C(p) = (GOl pp,e) < 1UIG+Cp) =Gz < e
if |p— 1| < d(e), that is, lim Y 2 byp" A, exists in B({2).
p

Moreover, by the definition of the derivative, for 0 < s < 1 we have

(4) Al(s) =) nAps" ! =¥(Gy),
n=1

G5 being the Toeplitz matrix corresponding to the function gs = ﬁ,

|z| < 1.
But by computations on page 17 in [ACP] we have
- 2
7 1—s%

z

(1—s2)?
Hence, by (4) and by the definition of the norm of ¢ we have
2

146l 3(ea) < 19(GIl < 1] lgsllz < ]l 7=

therefore ||AHB(D,£2) <2l O

lgsllz = \
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We may call lim B * G(r), the generalized Schur product of B and G.
r—1-

It is known that the usual Schur product B * G of a matrix B € B(D,{3) and
G € T does not exist in general. (See Theorem 2.5 in [ACP].)

So, Theorem 5 may be stated as follows. The Bloch matrices are gener-
alized Schur multipliers from T into B({s).

Now, we can give an interesting example of a Bloch matrix.

THEOREM 6. Let A = Y 72 jAok. Then A € B(D,ls) if and only if
sup|| Ak p(e,) < oo

Proof. By Theorem 5, there is a constant C' > 0 such that C||Al|gp,e,) >
supy, || Azl ps,) for all infinite matrices A.
Now, let us consider a lacunary matrix A as in the statement. Then

12 f4(2 ||B€2 <Z N ok ok

—— 12 \n> 3 A2k
1 k=0

< sup Ay Z(Z )z|“

n=1 *2k<pn

<

B(¢2)

- 2|2|
<2 A = __ A )
= Sl],}:p H 2"‘”3(@2) nzz:ln|z‘ (1 _ |ZD2 Sl;p || 2k HB(@Q)
Consequently, (1 — 7’2)||A,(7’)||B(g2) < 4supy, HA21€||B(62), that is ||AHB(D,42) <
4supy, [|Agr|[pe). O

It was remarked in [ACP] that the classical space B of Bloch functions is
a Banach algebra with respect to convolution or, equivalently, to Hadamard
(Schur) composition of functions, that is, for f = > 7, ape®® € B and g =
S obe*? € B, fxg =37 arbre*” € B. (See 3.5 in [ACP].)

Now, we extend this remark in the framework of matrices with respect
to Schur product. Its proof was communicated to us by Victor Lie.

THEOREM 7. The space B(D,¥s3) is a commutative Banach algebra with
respect to Schur product of matrices.

Proof. Let
ai ay
0 ag as
A=10 0o df ;

= dk e Al ) = sup(L — )| A' (1) ey
k=0 r<l
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Then ||AH23(D’£2) is given by

|Allsp.p) = sup(1 — r>{ sup (
r<l hll2<1

(See [BLP].) Hence

e e
r< ||h||2<1

where (f;); corresponds to A as above and (g;); corresponds to B.
Then we have

. Vol . A
T(fj % gj)/(re%rlt) — 2/ / fj(8e27r1(9+t))g; (Se—me)sdeds
0 0

for all j.
By the Cauchy-Schwarz inequality we have

o

D

=1

2

1
/ (fj *gj)/(Te27r1te27r1jth(e—2mt)dt
0

2
<

1
» < / fJ{(Se27ri(9+t))62”ij(t+9)h(e_2”it)dt> dfds
0
<i47“_2 VT 1| 1o —2mify |2
< gj(se )|#dO |sds | x
i=1 0 ’

Vol
SV
o Jo

ut

supsup(1 — 5?) (/ 1 (se 2mwde)s<||BHg<D,gQ>>2

j>1 s<1

/ (SGQTri(Q—H) )GQTrij(t+9) h(e—Qﬂit)dt

and for ||hl|2 = 1 we also have

1 2
(1 o 82)2 Z /0 f]{(8627r1t)627r1jth(e—th)dt
=1

*g] 271'175 27T1jth( —27Tit)dt

2
d«9ds> def f

< (||AH/B(D,42))2-

1/2
/ f] 27r1t 27r1]th( —27r1t)dt|2> }

\
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Consequently,
1<4T—2/”M /”M
- 0 (1 —s2) 0 (1—s2)?
= (1 =) 21 A5, (IBll5(D,e2))%
that is,

A% Bllgp.e,) < 1A50.e) IBll5D,e) T

3. MATRICEAL BERGMAN-SCHATTEN SPACES

We intend now to give more results about matriceal Bloch space which
are related to other matrix spaces, namely, matriceal Bergman-Schatten spaces.

In order to do this, we recall some notions from vector-valued integration
theory.

We say that a function f : D — B({2) is w*-measurable if Ao f is
a Lebesgue measurable function on D for every A € (7, where C7 is the
Schatten class of all operators with trace, and A is considered as a functional
on B({3).

f D — B({y) is said to be strong measurable if it is a norm limit of
a sequence of simple functions. (See [E] for more details about vector-valued
measurability.)

For instance, it follows from Proposition 8.15.3 in [E] that for a w*-
measurable B({z)-valued function f, the function ¢ — [|f(¢)|| () is Lebesgue
measurable on D. We introduce also the matrix spaces

L>(D,t3) = {r — A(r) being a w*-measurable function on [0, 1) |

ess sup ||A(”’)HB(£2) = HA(T)HLOO(D,EQ) < oo},
0<r<1

ﬁ’z(D, {3), the subspace of L>°(D, ¢5) consisting of all strong measurable func-
tions on [0,1), and

L (D, ly) = { A infinite analytic matrix | [|Al|pe(p,e,) =
= sup [|C(r) * Al = [A() || oo (D,en) < 00}
0<r<1
To obtain more information about the matriceal Bloch space we need the

concept of Bergman projection.
First, we introduce the Bergman-Schatten classes.

Definition 8. Let 1 < p < oo. Let LP(D,¥ls) = {r — A(r) a strong
measurable Cjp-valued function defined on [0,1) such that [|A(r)|zr(p,e) =

(2 fol HA(T)H%prdr) Yr - oo}, where Cy, is the Schatten class of order p, and let
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LY(D, 0y)={A(r):= AxC(r); A upper triangular matrices | | Allr (D ) <00}
L2(D, ty) is a subspace of LP(D,{s).

By LL(D, /) we mean the space of all upper triangular matrices such
that [[A(r)||Lz(p,e,) < o0, where A(r) = C(r) x A, r € [0,1).

We identify LE(D,05) and LE(D, ;) and call LE(D,(5) the Bergman-
Schatten classes.

LEMMA 9. The function r — A(r) := C(r) * A, where A is an upper
triangular matriz, is a continuous function on [0,1] taking values in Cp, 1 <
p < 00, or in B(ly), if A € Cp, respectively A € B(l3).

Proof. If A € B({3), for r,, — r € [0,1] we have

(by Theorem 8.1 in [B]) |7,n _ 7"

[(C(rn) = C(r)) = Allpey) <

m”AHB(@) —2. 0

Using the duality and interpolation between C), we have
lim [|(C(r) — C(r) * All, =0, 1<p < oo,
ifAeC, 0O
By Lemma 9 we have

COROLLARY 10. Let 1 < p < oo and A an upper triangular matriz. If
A € C) (respectively if A € B({3)), then

sup [|C(r) x Allc, = sup [|C(r)* A|c,
0<r<1 0<r<1

and similarly with || || g,y instead of || ||c,-
Proof. We have to show that
IC(1) « Alle, < sup [[C(r) = Allc,,
0<r<1

for 1 < p < oo (respectively, the similar inequality for || [|z(s,))-
By Lemma 9 we have

I4lle, = 1C(1) * Alle, = lim [C(r)  Aflc, < sup 1C(r) = Allc,
r— r<

and similarly for B(¢3). O

Now, we have

COROLLARY 11. L2°(D,¥3) is a Banach subspace in B({2), sometimes
denoted by H> (D, ls).
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Proof. We have

(by Corollary 10)

Al Loe (D) = S 1C(r) * Allgey) sup [|C(r) * Allp,) =

0<r<1
= sup sup tr(C(r)*x A)B <
rel0,1] I1Bllcy <1
B a lower triangular matrix
(by Lemma 9)
< [|All B(ez) sup 1C(r) * Blloy < Al

IBllcy <1, rank(B)<oo,
B lower triangular

On the other hand,
1Al Lge (D,t2) = e 1C(r) * Allpea) = 1Al B(ea)-
Consequently, [|A|lr< (D) ~ [|AllBe,). O
PROPOSITION 12. The Banach space L3°(D, ¢3) is a subspace of B(D, {s),

[AllB(D,62) < 6| AllLge(D,e2) and LT (D, 42)) S B(D, Ls).
More precisely, the infinite analytic matriz

1 1
11 3 :

0 1 1 =

A=] 0 0 1 =
0 0 0 1

is not in L3°(D,{s), but A € B(D,{3).
Proof. We have (1 —r2)A/(r) = C; * AL(r), where
(1—r2)(G —k)yrU=R/2=1 if j > k41
Cr(r)(k,g) = § (1 =r*)(j —k) ifj=k+1
0 if j < k+1,

and A'(r) = Ay + Ay + 352, A2,
Note that Ci(r) is a Schur multiplier by Theorem 8.1 in [B], with
1C1(r) Iar(ey) < 1. Thus,

(1 =) A' (") Bes) = 1CL) * A (")l Be) < 1A () By VO <7 <1,
implying that

1Al 5Dy <2 sup A (")l Be) = 6l All 2o (D.es)-
0<r<1
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If Ae L°(D,4s), then clearly A € B({2). But, taking hy = hg = --- =

h, = ﬁ and hpi1 = hpio = -+ =0, we have Y o2, |h;|> = 1 and

1 1 1 \* 1 1 1 )?
Ay > = (1+1+=+ -+ —— — 1414+ -+
| 1\3(42)_72( +l4+5+ +n_1> +n< +l+5+ +n_2> +

1
+---+E(1)2 > Cln(n—1) — oc.
Now, A € B(D, l3). It is easy to see that
sup (1 — 7’2)||C(7’) * A/(T’)HB(gQ) = sup r’=1. O
0<r<1 0<r<1

PROPOSITION 13. Let 1 < p < oo. Then LY(D,l5) is a closed subspace
in LP(D,ls). Consequently, L5(D,ls) may be identified via the map A —
AxC(r), r€10,1), with a closed subspace of LP(D,{s).

Proof. Let A™ € LL(D,{3). Then there are upper triangular matrices A"
such that A”(r) = C(r)*xA" forallm € Nand all 0 <r < 1. If A"(r) — A(r) €
LP(D,t5), then (A™(r)), is a Cauchy sequence in LP(D, ¢3) and, consequently,
|C(r)x (A" —A™)|lc, — 0 a.e. with respect to Lebesgue measure on [0, 1].
Consequently, by Lemma 9, we have lim |[|C(r) * (A" — A™)||c, = 0 for all

)

r € [0, 1], that is, the sequence (C(r)* A™),, is a Cauchy sequence in C,, for all
r € [0, 1], which in turn implies that lim (C(r) * A™)(4,5) = A(r)(4,7) for all
i,7 € Nand for all 0 < r < 1. Consequently, A(r) is an upper triangular matrix

for all » < 1 and, since (A" * C'(1))(4,7) = a%’r’j_i, we have lim af; = a;; for
n—oo

all 4,5 € Nand A(r) = C(r) * A, where A = (a;;); ;. Thus, A € LL(D, (). O
Now, let A € L2(D,{5) be arbitrary, let a fixed 0 < < 1 and let B € Cs.
We then have

LEMMA 14. The linear functional F, p(A) = tr A(r)B* is continuous on
L2(D, ().

Proof. If A is an upper triangular matrix of finite order and A(r) =
C(r) * A, then we consider the function f4(r,0) on D defined in Section 1. It
is clear that it is an holomorphic Cs-valued function on D. Consequently, the
function 2z — || 3270, Axr*e*?||c, is subharmonic.

Thus, for 0 < ' <1 —1r we have

JAEIE, < — / /
02—7.(-7«/2 0 0

1M
< 772/0 Z | Ak, (r + 5)**2sds < (since ' <1 —7) <
k=0

o

ZAk‘T’-i-Seie‘ke;ik@
k=0

2
sdsdf <
Cy
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1 [t 1
gﬁéwm%wwzﬁMm@m

Taking ' = 1 — r, we have

: IB12:
|Frp(A)P = |tr A(r)B*| < |A(M)]12, - 1BIIE, < = T)Z A2 (p,65):

which implies the continuity of Fj. p. [
Thus, by the Riesz theorem there is a unique matrix K, p € L2(D, t5)
such that
1
Frp(4) = (A Kr)izpay =2 | 60 AWK (o))"sds
0
for all B€ Cy, 0<r < 1and A€ L2(D, /).
Let 7,5 € N fixed and B the matrix whose entries b(k, 1) are
b(k}, l) = 5ki5lj.

Then the above formula becomes

1 1
A (i, f) = 2 /0 tr A() Ky (s)sdls = 2 /0 e [A(s) (Ko (r) + P(s))]sds

for all 7,7 € N, where by K,;; we denoted the matrix K, p for the above
matrix B, while P(s) is the Toeplitz matrix associated to the Poisson kernel.
Since A(r) is an analytic matrix, we have

1
(P(r) =« A)(i,j) = /0 tr(P(s) * A)[P(s) * K; ;(r)](2s)ds

forall j >dand all 0 <7r < 1.
It is easy to see that

Koy L (G im0 8ndi i<
. . fr‘ f— ’
" (O)?,Omzl 1> j
Definition 15. Let r — A(r) be an element of L?(D, f3). Since L2(D, {5)
is a closed subspace in the Hilbert space L?(D,/{s), there is a unique orthog-

onal projection P on ﬂg(D,Eg), called Bergman projection. Denote by P the
corresponding operator from L2(D, f5) onto L2(D,{5).

PROPOSITION 16. For all functions A(r) € L?(D,{s) defined on [0,1)
and for all i,5 € N we have

2(j —i+ 1)ri—" fol aij(s)s’ " ds  ifi<j

ﬂmmwwn@ﬁz{o P
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Proof. We have
[PAC)I(r) (i, ) = Frij(P(A())) = (P(A()), Kpij) =
(since P is a selﬂgﬂjoint projection) <A, P(Krﬂ;,j)) _

(since Ky j is an analytic matrix)

(A, Kvij) 12(Dyen) =

1 1
— 2/ tr A(s) :’i’j(s)sds =2(j —i+ 1)7,1'—1‘/ ai; (s) - Sj_H—ldS,
0 0
if j > i and (A, B) means tr AB*.
If j <, then it is easy to get that ([P(A("))]) (¢,5) =0. O

If A e L>®(D,¥;) then r — A(r) is a w*-measurable function, conse-
quently each function a;;(r) is a Lebesgue measurable function on [0, 1) for all
i and 7 and we may introduce PA(-) as in Proposition 16.

THEOREM 17. Both P : L®(D,l3) — B(D,ly) and P : L=(D,{5) —
B(D, t3) are bounded surjection operators.

Proof. 1t is enough to prove the first assertion. Let A(-) € L*(D,¥2)
and B = PA(-). We show that B € B(D, {s).

We have
1B/ (") 3 =
N o 2\ 1/2 2
= sup [/ <Z Z aij(s)ri s TG — i+ 1) (j — i)y ) (2sds)] <
[Rll<t LSO N5 15500
1 2
< | [ 140 €9l 2505
where

G—i+ 1) —i)(rs) " lsr ifj >

C(r,s)(i,7) = {

0 if j <.
Thus,
1 T do
B’ < 2||A()]| f00 . 5 d
1B 0 aten < 240 im0y [ [ Tt
. r
~ (by Lemma 4.2.2 in [Z]) ~ CHA(-)HLOO(Db) T

Consequently, ||B|gp,e,) < Cl|AC)||Loo(D,ey), that is, P L®(D, ly) —
B(D,{s) is a bounded operator.
In order to show that P is onto, we take B € B(D,f3) and Bl(r) =
B(r) — By — Byr. Then
. 3(j —1)
B2(r)(i,§) = 5—— —
WD = GG 0

bi;(r) = (B*)'(r) + T,
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where
(G—i)yri=ty j—i>2

(B2 (r) (i, j) = bi(r) = [C(r)=(BY) ()](i, j) = { 0 o
j—1<?2

and T = (t;j—i)ij, with ¢, = % Easy computations show that
PB()) = BL.

But 7 is a Schur multiplier. It thus follows that B2(r) € L>(D, /). If
we show that By + Bir € L*°(D,{s), we are done.

Clearly, it suffices to show that Byr € L*>(D, /) (since By € B({2) by
the hypothesis, we have B € B(D, {2)). As

IBillap,es) = sup (1 —7°)||Billpw,) = I1B1ll )
0<r<1
it follows that Bir € B({2). Thus Byr € L*°(D,{3). O

Remark 18. Note that B(D,{2) endowed with [[Allzp,¢,) is a Banach
space and, by the open mapping theorem, (B(D,/2), || ||5(p,z,)) is isomorphic
to the quotient space L>°(D,¢s)/Ker P, endowed with quotient norm.

We would like to prove a similar result for the Bergman-Schatten class
LY(D, ).

Unfortunately, the Bergman projection is unbounded on this last space,
but instead we can consider a version of it.

Let a > —1. Put

P(j—i+2+a)  j—i © .
<7<j—i)!r<2+a>“ z5i7l‘5ﬂ'7m>zmz1 1=

0 i>j

Kija(r) =

and for an analytic matrix A(s) = P(s) * A we have

1 w . .
aijrj_i = (a+ 1)2/ (Ay, K;C’]’a(r))s%ﬂ(l — sQ)O‘ds Vi, 7,
0 k=0

k=

where A = (a;;)75-;. Then
(DI G—i+2+a) j—irg (1, . J=itl(] _ ¢2)ds if 7> i
PAQ)r) = { e T @ ag(@)s I - P)rds it
0 if j <.

THEOREM 19. If a = 1 then Py is a continuous operator (precisely a
continuous projection) from LY(D, ) on LL(D,t5).
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Proof. By Theorem 8.18.2 in [E], the topological dual of L'(D,fs) is
L*>°(D, ¢y) with respect to the duality pair

1
(A(), B()) = 2 / tr (A(s)[B(s)]*)2sds,

0

where A(-) € L®(D, (), B(-) € L*(D, f3).
Now, we are looking for the adjoint P} of P;. We have

1 o0 o0

(A )=2 [ 3 P A ) =

i=1 j=1

o0 o0 1 L
- Z Z/ (PA()) (1) (3, 5)big (r)(2r)dr.
i=1 j=1"0

On the other hand,

NN LU= 43) (G o (9ads
-3 T ([l 2 ) 5

« </Olmsj—i(1 _ 52)(2sd5)> |

Now, we take B(s)(i,j) = x1,(s)/(1(Ir)) and B(s)(l,k) = 0, (I,k) #
(1,7), V(i,7) € N x N, where I, > r is a sequence of intervals such that
klim () =0, dp = 2sds.

By Lebesgue’s diferentiation theorem we have

I'(j—i+3) pi—i (1-— 2 (i,7) 53 (2sds if j >4
(PFA()) (r)(i, §) = { (G—)Ir(2) fo ( ) e
0 if j <4

a.e. for all r € [0,1).
We show that P : L>(D,¥3) — L*>(D,¥s) is a bounded operator. In
order to prove that, we remark that

Z ai;(r

7j=1

||A(T)H%oo(D,42) = esssup || A(r)||% (ta) = esssup sup Z
0<r<1 <<l 3222 |hi12<1 5
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Consequently,
1PF A 0.6y =

Z/h J=i ]_ZZ';_(Q))(1—T2)aij(5)5j_i(25d5)
7j=1

— esssup sup (1— 7’222/<Zal] (rs)’ i%)l@)@sds)\gg

0<r<1 ||hlly, <1

< esssup(l —r?) sup [/(
0<r<1 Bl <tLJ0 N5y

x[(rs)! ' (j —i+2)(j — i+ 1]k

2

= esssup sup
0<r<l 2 |hy|2<1 5

) ]

Since the Toeplitz matrix C(rs) = ((cij)(rs)” 1) with
(rs)i=(j—i+2)(j—i+1) ifj>i
0 if j <1

cij(rs) == cj_i(rs) = {

is a Schur multiplier (we remark that > 7% u*(k + 2)(k + 1)t = ﬁ)
by Theorem 8.1 in [B] the multiplier norm of the matrix C (rs) is exactly the

3/2
LY(T)-norm of m, that is, is equal to 2 > %(rs)gn
Thus,
< 0o | 0 1/2
aij(s)(rs) (5 —i+2)(j — i+ 1)hy > =
e (2|2

B 2 T(n+3/2)? .
= | A(s) * C(rs)ll Ben) < I1A() | Been) 2220 WW :

Consequently,
HPTA(')II%oo(D ) =

I(n+3/2)?% ,, on+1 ?
< — - @ 7 <
esssup(l = r* [/ 4@z HZ: COENETE A B

r<l

0o T(n 3/2 27,2n
<esssup(l — )| AC) |70 (p ) <nZ::o (n!)g(n++ {)%(3/2?)

(by Stirling’s formula)
~Y

1
212 2 2
essj}lp(l—r ) (1—12)2 HA(')HLOO(D,ZQ) ~ ||A(')||Loo(D,£2),

which shows in turn that P : L*°(D, l3) — L>(D,{3) is bounded. O
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THEOREM 20. The projection Py is a bounded operator from L*°(D,{s)
(respectively from L (D, {s)) onto B(D,¥s).

The proof is an easy adaptation of the proof of Theorem 12 and we leave
it to the reader.
By Theorems 19 and 20 we easily get

COROLLARY 21. Let 1 < p < o0 and 1 — 6 = 1/p. Then LP(D,{l3) =
[LY(D, t3), B(D, {3)]g with equivalent norms.

Indeed, we use the known result about the interchangebility of the inter-
polation functor and a bounded projection. (See [T].)
We have the folowing interesting result.

THEOREM 22. Ll(D,/(5)*, the Banach space dual of LL(D,{3), can be
identified with B(D, l3). Namely, let A € LL(D,ls) and B € B(D,{3). Then
we have

4. Bl = ‘/ trlA (M](2rdr)| < CllAllLy(p,e) - 1BllB(D.e2)

where C > 0 is a constant.

Proof. Since C is a separable Banach space with C] = B({2), with
(A, B) = tr(AB*), according to Theorem 8 18 2 in [E] we have LY (D, ty)* =
L>(D, t5), using the duality map (A(r) fo tr[A (r)](2rdr).

Then, by Hahn-Banach theorem, Lcll(D Eg) LOO(D Eg)/(L}I(D,Eg)) .

Using the fact that L!(D,£y) is canonically isomorphic to L!(D, ¢s), we
have to show that

Ker P = Ker P = (LL(D,3))t in L®(D, (y).
But Ker P C (LL(D, ¢2))*, since for A(r) € L°°(D, ¢5) such that PA(-) = 0,
at least for finite order matrices A(-), B(:) we have
(PA(). B(-)) = (A(-), PB(")),
and if B € LL(D, (5)) then
(A(-), B()) = (A(-) = PA(-), B(")) = (A(-), B(-) = PB(-)) = 0,

consequently, A(-) € (LL(D, £2))*.

Conversely, let A(-) € (Ll(D l9))*, that is, (A(:),B(-)) = 0 VB €
LL(D, 3)). Taking B(r )(z j) =i~ for j > i, with fixed j,i and B(r )( ,7)=0
otherwise, we get fol aij(r)(2rdr) = 0 for all j > i. Thus (PA)(r)(i,j) = 0 for
all i, j, that is, A(-) € Ker P.
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For B(r) € L®(D,{3) and A € LL(D, ¢3) we easily get

1 1
/ tr [A(r)B*(r)](2rdr)| < / [tr [A(r)B*(r)]|(2rdr) <
0 0

1
S/O A oy - 1B(r) | Beyy2rdr < [ AllLy(p,e2) - 1Br) o= (D,22):

so, using Remark 18, we get the required inequality, since for A € LL(D,(5),
B € B(D, ¢5) we obviously have

(A, B)| = [{A(r), B(r)| < |41l Ly (0,62) 1B ()l o (0,2
V B(-) € L>®(D,¥{2) defining B, that is, such that PB(-) = B. O

LEMMA 23. Let A be a matriz of finite band-type, that is, A= | Ay
such that Ay € Cy for k=1,2,... and let B € B(D,{3). Then

(A,B) =
k=0
Proof. We recall that (A, B) = fol tr [A(r)B*(r)]2rdr. It is easy to see

that tr A(r)B*(r) = >, (Zi‘;o ak@r%). Consequently,

(A, B) Z (Zakbl 2k>2rdr _/0 22r2k+1<2akbl>

0 =1 k=0

_ZkH(Z @) :Zkiltr(AkPk). O

1 _
o 1tI‘ (AkBk)

By L (D, f5) we denote the space of all upper triangular matrices A such
that [[AllL; = >0, k+_1 Y2, al| < oo, equipped with its natural norm.

Let us denote by SM(X,Y), where X and Y are Banach matrix spaces,
the space of all Schur multipliers from X into Y, endowed with the natural
norm |[Bllsarx.y) = sup{l| 4 * Blly; [ Allx < 1}

Then, using Lemma 23, Theorem 22 yields.

THEOREM 24. The matriceal Bloch space B(D,l3) can be identified with
the space SM(LL(D, (3), LY (D, (5)), with the equivalence of the norms.

Now, Theorem 22 has the analogue below.

THEOREM 25. Let 1 < p < oo and 1/p+ 1/q = 1. Then (L5(D,ls))* ~
LE(D, ty) with respect to the duality bilinear mapping

1
(A(), B()) :/0 tr [A(r)B*(r)](2rdr).
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We should use the boundedness of the projection P : LP(D,l3) —
LE(D, £3). The details are left to the reader.
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