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We consider an operator introduced by Pfaltzgraff and Suffridge which provides
a way of extending a locally biholomorphic mapping f ∈ H(Bn) to a locally bi-
holomorphic mapping F ∈ H(Bn+1). When n = 1, this operator reduces to the
well known Roper-Suffridge extension operator. In the first part of this paper we
prove that if f has parametric representation on Bn then so does F on Bn+1. In
particular, if f ∈ S∗(Bn) then F ∈ S∗(Bn+1). We also prove that if f is convex on
Bn, then the image of F contains the convex hull of the image of some egg domain
contained in Bn. In the second part of the paper we investigate some problems
related to extreme points and support points for biholomorphic mappings on Bn

generated using the Roper-Suffridge extension operator. Given a parametric rep-
resentation for an extreme point (respectively a support point) generated in this
way, we consider whether the corresponding Loewner flow consists only of extreme
points (respectively support points). This generalizes work of Pell.
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1. INTRODUCTION AND PRELIMINARIES

Let C
n be the space of n complex variables z = (z1, . . . , zn) with the

Euclidean inner product 〈z,w〉 =
n∑
j=1

zjwj and the Euclidean norm ‖z‖ =

〈z, z〉1/2. For n ≥ 2, let z̃ = (z2, . . . , zn) ∈ C
n−1 so that z = (z1, z̃) ∈ C

n. The
unit ball in C

n is denoted by Bn. In the case of one variable, B1 is denoted
by U . The ball of radius r > 0 in C

n with center at 0 will be denoted by Bn
r .

Let L(Cn,Cm) denote the space of complex-linear mappings from C
n

into C
m with the standard operator norm

‖A‖ = sup{‖A(z)‖ : ‖z‖ = 1}
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and let In be the identity in L(Cn,Cn). If Ω is a domain in C
n, let H(Ω) be

the set of holomorphic mappings from Ω into C
n. Also, let H(Bn,C) be the

set of holomorphic functions from Bn into C. A mapping f ∈ H(Bn) is called
normalized if f(0) = 0 and Df(0) = In. We say that f ∈ H(Bn) is locally
biholomorphic on Bn if the complex Jacobian matrix Df(z) is nonsingular
at each z ∈ Bn. Let Jf (z) = detDf(z) for z ∈ Bn. Let LSn be the set
of normalized locally biholomorphic mappings on Bn, and let S(Bn) denote
the set of normalized biholomorphic mappings on Bn. In the case of one
variable, the set S(B1) is denoted by S, and LS(B1) is denoted by LS. A
mapping f ∈ S(Bn) is called starlike (respectively convex) if its image is a
starlike domain with respect to the origin (respectively convex domain). The
classes of normalized starlike (respectively convex) mappings on Bn will be
denoted by S∗(Bn) (respectively K(Bn)). In the case of one variable, S∗(B1)
(respectively K(B1)) is denoted by S∗ (respectively K).

Let f, g ∈ H(Bn). We say that f is subordinate to g (and write f ≺ g) if
there is a Schwarz mapping v (i.e., v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such
that f(z) = g(v(z)), z ∈ Bn. If g is biholomorphic on Bn, this is equivalent
to requiring that f(0) = g(0) and f(Bn) ⊆ g(Bn).

We recall that a mapping f : Bn × [0,∞) → C
n is called a Loewner

chain if f(·, t) is biholomorphic on Bn, f(0, t) = 0, Df(0, t) = etIn for t ≥ 0,
and f(z, s) ≺ f(z, t) whenever 0 ≤ s ≤ t < ∞ and z ∈ Bn. We note that
the requirement f(z, s) ≺ f(z, t) is equivalent to the condition that there is
a unique biholomorphic Schwarz mapping v = v(z, s, t), called the transition
mapping associated to f(z, t), such that

f(z, s) = f(v(z, s, t), t), z ∈ Bn, t ≥ s ≥ 0.

We also note that the normalization of f(z, t) implies the normalization
Dv(0, s, t) = es−tIn for 0 ≤ s ≤ t <∞.

Certain subclasses of S(Bn) can be characterized in terms of Loewner
chains. In particular, f is starlike if and only if f(z, t) = etf(z) is a Loewner
chain (see [21]).

Definition 1.1 (see [9], [11], [12], [25], [26]). We say that a normalized
mapping f ∈ H(Bn) has parametric representation if there exists a mapping
h : Bn × [0,∞) → C

n such that
(i) h(·, t) ∈ H(Bn), h(0, t) = 0, Dh(0, t) = In, t ≥ 0, Re〈h(z, t), z〉 > 0,

for z ∈ Bn \ {0}, t ≥ 0;
(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn,

and f(z) = limt→∞ etv(z, t) locally uniformly on Bn, where v = v(z, t) is the
unique solution of the initial value problem

∂v

∂t
= −h(v, t) a.e. t ≥ 0, v(z, 0) = z,

for all z ∈ Bn.



3 Parametric representation and linear functionals 49

The above condition is equivalent to the fact that there exists a Loewner
chain f(z, t) such that {e−tf(·, t)}t≥0 is a normal family on Bn and f(z) =
f(z, 0), z ∈ Bn.

Let S0(Bn) be the set of mappings which have parametric representation
on Bn.

Let Aut(Bn) be the set of holomorphic automorphisms of Bn. Also, let
U denote the set of unitary transformations in C

n. Then it is well known that

Aut(Bn) = {V ϕa : a ∈ Bn, V ∈ U},
where

(1.1) ϕa(z) = ϕ(z; a) = Ta

(
z − a

1 − 〈z, a〉
)
, z ∈ Bn,

(1.2) Ta =
1

‖a‖2
{(1 − sa)aa∗ + sa‖a‖2In}

and
sa =

√
1 − ‖a‖2.

Note that T0 = In and ϕ0(z) = z, z ∈ Bn. The following conditions hold
(see [29]):

(1.3) |Jϕa(0)| = (1 − ‖a‖2)
n+1

2 ;

(1.4) ϕa(0) = −a, ϕa(a) = 0, ϕ−1
a = ϕ−a.

Moreover, if φ ∈ Aut(Bn) then

(1.5) |Jφ(z)| =
[
1 − ‖φ(z)‖2

1 − ‖z‖2

]n+1
2

, z ∈ Bn.

A key role in our discussion is played by the following Schwarz-type
lemma for the Jacobian determinant of a holomorphic mapping from Bn into
Bn. We have (cf. [29]; see also [13])

Lemma 1.1. Let ψ ∈ H(Bn) be such that ψ(Bn) ⊆ Bn. Then

(1.6) |Jψ(z)| ≤
[
1 − ‖ψ(z)‖2

1 − ‖z‖2

]n+1
2

, z ∈ Bn.

This inequality is sharp and equality at a given point z ∈ Bn holds if and
only if ψ ∈ Aut(Bn).

Proof. Fix a ∈ Bn and let b = ψ(a). First, assume that a �= 0 and b �= 0.
Let f : Bn → C

n be given by f(z) = (ϕb ◦ ψ ◦ ϕ−a)(z), z ∈ Bn. Then f is
a holomorphic mapping on Bn, f(0) = 0 and f(Bn) ⊆ Bn. Consequently, by
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the Schwarz lemma for holomorphic mappings we deduce that ‖f(z)‖ ≤ ‖z‖,
z ∈ Bn, and ‖Df(0)‖ ≤ 1. Further, since

|Jf (z)| ≤ ‖Df(z)‖n, z ∈ Bn,

we have |Jf (0)| ≤ 1. A simple computation yields

Df(0) = Dϕb(b)Dψ(a)Dϕ−a(0),

and using the last equality in (1.4) we obtain

Jf (0) =
Jϕ−a(0)
Jϕ−b

(0)
Jψ(a).

Next, taking into account (1.3) and the above equation, we deduce that

1 ≥ |Jf (0)| = |Jψ(a)|
[
1 − ‖a‖2

1 − ‖b‖2

]n+1
2

,

hence (1.6) now follows.
If a = 0 and b �= 0 then it suffices to consider the mapping g = ϕb ◦ ψ

and to use a similar argument as above. Similarly, if a �= 0 and b = 0, then we
may consider the mapping h = ψ ◦ ϕ−a and apply the above argument. The
case a = b = 0 is clear.

If ψ ∈ Aut(Bn) then equality holds according to (1.5).
Conversely, if equality holds at a given point a ∈ Bn, then reversing the

steps in the above proof, we deduce that |Jf (0)| = 1 where f = ϕb◦ψ◦ϕ−a and
b = ψ(a). Hence f ∈ Aut(Bn) by [16, Theorem 11.3.1], and thus ψ ∈ Aut(Bn)
too. This completes the proof. �

For n ≥ 1, set z′ = (z1, . . . , zn) ∈ C
n and z = (z′, zn+1) ∈ C

n+1.

Definition 1.2 ([22]). The extension operator Φn : LSn → LSn+1 is
defined by

Φn(f)(z) = F (z) =
(
f(z′), zn+1[Jf (z′)]

1
n+1

)
, z = (z′, zn+1) ∈ Bn+1.

We choose the branch of the power function such that

[Jf (z′)]1/(n+1)
∣∣∣
z′=0

= 1.

Then F = Φn(f) ∈ LSn+1 whenever f ∈ LSn. It is easy to see that if
f ∈ S(Bn) then F ∈ S(Bn+1).

If n = 1 then Φ1 reduces to the well-known Roper-Suffridge extension
operator. For general n ≥ 2 we have
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Definition 1.3 ([27]). The Roper-Suffridge extension operator Ψn : LS →
LSn is defined by

Ψn(f)(z) =
(
f(z1), z̃

√
f ′(z1)

)
, z = (z1, z̃) ∈ Bn.

We choose the branch of the power function such that√
f ′(z1)

∣∣
z1=0

= 1.

Roper and Suffridge [27] proved that if f is convex on U then Ψn(f) is
also convex on Bn. Graham and Kohr [8] proved that if f is starlike on U then
so is Ψn(f) on Bn, and in [10] (see also [9] and [7]) it is shown that if f has
parametric representation on the unit disc, then Ψn(f) has the same property
on Bn. Moreover, if one begins with a complex valued function f(z1), then
the extension to B2 under Φ1 = Ψ2 is (f(z1), z2

√
f ′(z1)). If this mapping is

then extended to B3 then to B4, etc. up to Bn by successive applications of
Φk, k = 1, . . . , n − 1, one obtains the mapping Ψn(f)(z) = (f(z1), z̃

√
f ′(z1)),

i.e. we obtain the Roper-Suffridge extension operator Ψn.
In this paper we prove that if f ∈ S(Bn) can be imbedded in a Loewner

chain f(z′, t), then F = Φn(f) can also be imbedded in a Loewner chain
F (z, t). Further, if f ∈ S0(Bn) then F = Φn(f) ∈ S0(Bn+1). In particular, we
give a simplified proof of the theorem of Graham, Kohr and Kohr [10] that the
Roper-Suffridge extension operator preserves the parametric representation
property. Moreover, we prove that if f ∈ S∗(Bn) then F = Φn(f) ∈ S∗(Bn+1),
and if f ∈ K(Bn) then the image of F contains the convex hull of the image of
some egg domain contained in Bn. It would be interesting to give a complete
answer to the conjecture of Pfaltzgraff and Suffridge [22, Conjecture 1] that
Φn preserves convexity, but so far we have not been able to do so. We also
discuss the behaviour of Φn with respect to starlikeness and convexity on the
unit polydisc Pn in C

n.
In the last section we investigate some problems involving extreme points

and support points for families of biholomorphic mappings on Bn generated
with the Roper-Suffridge extension operator. We consider the following ques-
tion: given a parametric representation for an extreme point (respectively
a support point) of Ψn(S), must the corresponding Loewner flow e−tF (·, t)
consist of extreme points (respectively support points)? The analogous one-
variable questions were treated by Pell [19] (see also Kirwan [15]).

2. STARLIKENESS AND CONVEXITY PROPERTIES
AND THE EXTENSION OPERATOR Φn

We begin this section with the following main result. In the case n = 1,
we obtain a simplified proof of [10, Theorem 2.1].
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Theorem 2.1. Assume f ∈ S(Bn) can be imbedded in a Loewner chain
f(z′, t). Then F = Φn(f) can also be imbedded in a Loewner chain F (z, t).

Proof. Since f ∈ S(Bn), it is easiy to see that F ∈ S(Bn+1). Let v =
v(z′, s, t) be the transition mapping associated to f(z′, t). Then

(2.1) f(z′, s) = f(v(z′, s, t), t), z′ ∈ Bn, 0 ≤ s ≤ t <∞.

Let ft(z′) = f(z′, t) for z′ ∈ Bn and t ≥ 0, and let vs,t(z′) = v(z, s, t′),
z′ ∈ Bn, t ≥ s ≥ 0. Also, let F : Bn+1 × [0,∞) → C

n+1 be given by

(2.2) F (z, t) =
(
f(z′, t), zn+1e

t
n+1 [Jft(z

′)]
1

n+1

)
for z = (z′, zn+1) ∈ Bn+1 and t ≥ 0. We choose the branch of the power
function such that

[Jft(z
′)]

1
n+1
∣∣
z′=0

= ent/(n+1).

Let us prove that F (z, t) is a Loewner chain. Indeed, since f(·, t) is
biholomorphic on Bn, f(0, t) = 0 and Df(0, t) = etIn, it is not difficult to see
that F (·, t) is biholomorphic on Bn+1, F (0, t) = 0 and DF (0, t) = etIn+1.

Let Vs,t : Bn+1 → C
n+1 be given by Vs,t(z) = V (z, s, t), where

(2.3) V (z, s, t) =
(
v(z′, s, t), zn+1e

s−t
n+1 [Jvs,t(z

′)]
1

n+1

)
for z = (z′, zn+1) ∈ Bn+1 and t ≥ s ≥ 0. We choose the branch of the power

function such that [Jvs,t(z′)]
1

n+1
∣∣
z′=0

= e
n(s−t)

n+1 . Then Vs,t is biholomorphic on
Bn, Vs,t(0) = 0, DVs,t(0) = es−tIn+1, and ‖Vs,t(z)‖ < 1, z ∈ Bn+1. Indeed, by
Lemma 1.1 we obtain that

‖Vs,t(z)‖2 = ‖vs,t(z′)‖2 + e
2(s−t)
n+1 |zn+1|2|Jvs,t(z

′)| 2
n+1 ≤

≤ ‖vs,t(z′)‖2 +
|zn+1|2

1 − ‖z′‖2
(1 − ‖vs,t(z′)‖2) <

< ‖vs,t(z′)‖2 + 1 − ‖vs,t(z′)‖2 = 1, z = (z′, zn+1) ∈ Bn+1.

Hence ‖Vs,t(z)‖ < 1 for z ∈ Bn+1, as claimed.
Further, taking into account (2.1), we easily deduce that F (z, s) =

F (V (z, s, t), t) for z ∈ Bn+1, t ≥ s ≥ 0. Indeed,

F (V (z, s, t), t) = (f(v(z′, s, t), t), zn+1e
s

n+1 [Jvs,t(z
′)]

1
n+1 [Jft(vs,t(z

′))]
1

n+1 =

=
(
f(z′, s), zn+1e

s
n+1 [Jfs(z

′)]
1

n+1

)
= F (z, s),

for all z ∈ Bn+1 and t ≥ s ≥ 0. Here we have used (2.1) and the fact that

Jfs(z
′) = Jft(vs,t(z

′))Jvs,t(z
′), z′ ∈ Bn, t ≥ s ≥ 0.

This completes the proof. �
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Corollary 2.1. Assume f ∈ S0(Bn). Then F = Φn(f) ∈ S0(Bn+1).

Proof. Since f ∈ S0(Bn), there is a Loewner chain f(z′, t) such that
f(z′, 0) = f(z′), z′ ∈ Bn, and {e−tf(·, t)}t≥0 is a normal family. Then

(2.4)
r

(1 + r)2
≤ ‖e−tf(z′, t)‖ ≤ r

(1 − r)2
, ‖z′‖ = r < 1, t ≥ 0,

by [11, Corollary 2.6] (see also [6]). Applying the Cauchy integral formula for
vector valued holomorphic functions, it is easy to see that for each r ∈ (0, 1)
there is K = K(r) ≥ 0 such that

e−t‖Df(z′, t)‖ ≤ K(r), ‖z′‖ ≤ r, t ≥ 0.

Moreover, since
|Jft(z

′)| ≤ ‖Dft(z′)‖n, z′ ∈ Bn,

we deduce that there is some K∗ = K∗(r) ≥ 0 such that

(2.5) |Jft(z
′)| 1

n+1 ≤ e
nt

n+1K∗(r), ‖z′‖ ≤ r, t ≥ 0.

Let F : Bn+1 × [0,∞) → C
n+1 be the Loewner chain given by (2.2).

Taking into account (2.4) and (2.5) we now easily deduce that for each r ∈
(0, 1) there is some L = L(r) ≥ 0 such that e−t‖F (z, t)‖ ≤ L(r), ‖z‖ ≤ r,
t ≥ 0. Consequently, {e−tF (·, t)}t≥0 is a locally uniformly bounded family on
Bn+1, and thus is normal. Hence F = F (·, 0) ∈ S0(Bn+1). This completes
the proof. �

From Corollary 2.1 and [11, Corollary 2.6] we obtain the following dis-
tortion result of independent interest for mappings in S0(Bn). In particular,
this result also holds for mappings in S∗(Bn), since any starlike mapping has
parametric representation on Bn (see e.g. [9]).

Corollary 2.2. Assume f ∈ S0(Bn) and r ∈ [0, 1). Then

r2

(1 + r)4
≤ ‖f(z′)‖2 + |zn+1|2|Jf (z′)|

2
n+1 ≤ r2

(1 − r)4
,

z = (z′, zn+1) ∈ ∂Bn+1
r .

Proof. Since f ∈ S0(Bn), we have F = Φn(f) ∈ S0(Bn+1). Then
r

(1 + r)2
≤ ‖F (z)‖ ≤ r

(1 − r)2
, ‖z‖ = r,

by [11, Corollary 2.6]. The result now follows. �
From Corollary 2.1 we can deduce the compactness of the set Φn(S0(Bn)).

We have

Corollary 2.3. The set Φn(S0(Bn)) is compact.
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Proof. Since Φn(S0(Bn)) is a subset of S0(Bn+1), Φn(S0(Bn)) is locally
uniformly bounded by [11, Corollary 2.6]. We prove that Φn(S0(Bn)) is closed.
To this end, let {Fk}k∈N be a sequence in Φn(S0(Bn)) which converges locally
uniformly on Bn+1 to a mapping F as k → ∞. Also let {fk}k∈N be a sequence
in S0(Bn) be such that Fk = Φn(fk), k ∈ N. Since {fk}k∈N is a locally
uniformly bounded sequence on Bn, there is a subsequence {fkp}p∈N of {fk}k∈N

which converges locally uniformly on Bn to a mapping f . Since S0(Bn) is a
compact set, by [11, Theorem 2.9], we deduce that f ∈ S0(Bn). Also it is
easy to see that the subsequence {Φn(fkp)}p∈N converges locally uniformly on
Bn+1 to Φn(f), and thus we must have F = Φn(f). Hence F ∈ Φn(S0(Bn)).
This completes the proof. �

Example 2.1. (i) Let fj ∈ S, j = 1, . . . , n. Then f : Bn → C
n given by

f(z′) = (f1(z1), . . . , fn(zn)) belongs to S0(Bn). Indeed, since fj ∈ S, there is
a Loewner chain fj(zj , t) such that fj(zj) = fj(zj , 0), j = 1, . . . , n. Moreover,
{e−tfj(zj , t)}t≥0 is a normal family on U since e−tfj(zj , t) ∈ S. Next, let
f(z′, t) = (f1(z1, t), . . . , fn(zn, t)) for z = (z1, . . . , zn) ∈ Bn and t ≥ 0. Then it
is easy to see that f(z′, t) is a Loewner chain and {e−tf(z′, t)}t≥0 is a normal
family on Bn. The desired conclusion now follows.

Further, by Corollary 2.1, we deduce that F : Bn+1 → C
n+1 given by

F (z) =
(
f1(z1), . . . , fn(zn), zn+1

n∏
j=1

[f ′j(zj)]
1

n+1

)
, z = (z′, zn+1) ∈ Bn+1,

belongs to S0(Bn+1).
(ii) Let f ∈ LSn be such that

(1 − ‖z′‖2)‖[Df(z′)]−1D2f(z′)(z′, ·)‖ ≤ 1, z′ ∈ Bn.

Then F = Φn(f) belongs to S0(Bn+1).
Indeed, by [20, Theorem 2.4], f is biholomorphic on Bn and can be

imbedded as the first element of the chain

f(z′, t) = f(e−tz′) + (et − e−t)Df(e−tz′)(z′), z′ ∈ Bn, t ≥ 0.

Moreover, since lim
t→∞ e−tf(z′, t) = z′ locally uniformly on Bn, {e−tf(z′, t)}t≥0

is a normal family on Bn. Hence f ∈ S0(Bn). By Corollary 2.1, we have
F = Φn(f) ∈ S0(Bn+1).

Another consequence of Theorem 2.1 is given in the following result,
which provides a positive answer to the question of Pfaltzgraff and Suffridge
regarding the preservation of starlikeness under the operator Φn (see [22]).

Corollary 2.4. Assume f ∈ S∗(Bn). Then F = Φn(f) ∈ S∗(Bn+1).

Proof. The fact that f is starlike on Bn is equivalent to the statement
that f(z′, t) = etf(z′) is a Loewner chain. With this choice of f(z′, t), we
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deduce that F (z, t) given by (2.2) is a Loewner chain. On the other hand, a
simple computation yields that F (z, t) = etF (z) for z ∈ Bn+1 and t ≥ 0. Thus
F = F (·, 0) ∈ S∗(Bn+1), as claimed. This completes the proof. �

Example 2.2. (i) Let fj ∈ S∗, j = 1, . . . , n. Then f : Bn → C
n given

by f(z′) = (f1(z1), . . . , fn(zn)) is starlike on Bn. By Corollary 2.4, we deduce
that F : Bn+1 → C

n+1 given by

F (z) =
(
f1(z1), . . . , fn(zn), zn+1

n∏
j=1

[f ′j(zj)]
1

n+1

)
, z = (z′, zn+1) ∈ Bn+1,

is starlike on Bn+1. For example, the mapping

F (z) =
(

z1
(1 − z1)2

, . . . ,
zn

(1 − zn)2
, zn+1

n∏
j=1

[ 1 + zj
(1 − zj)3

] 1
n+1

)
is starlike on Bn+1.

(ii) Let a be a complex number. Then the mapping F : B3 → C
3 given by

F (z) =
(
z1 + az1z2, z2, z3(1 + az2)1/3

)
is starlike if and only if |a| ≤ 1.

Indeed, if |a| ≤ 1 then f : B2 → C
2 given by f(z′) = (z1 + az1z2, z2) is

starlike on B2 (see [32], [28]). Hence F is also starlike on B3 by Corollary 2.4.
Conversely, if F ∈ S∗(B3) then F (z′, 0) is starlike on B2, and thus we

must have |a| ≤ 1 by [32], [28].
We next discuss the case of convex mappings associated with the operator

Φn. Pfaltzgraff and Suffridge [22] conjectured that if f ∈ K(Bn) then Φn(f) ∈
K(Bn+1).

For a ∈ (0, 1], let

Ωa,n =
{
z = (z′, zn+1) ∈ C

n+1 : |zn+1|2 < a
2n

n+1 (1 − ‖z′‖2)
}
.

Then Ωa,n ⊆ Bn+1 and Ω1,n = Bn+1. We have the following convexity
result.

Theorem 2.2. Let f ∈ K(Bn) and α1, α2 > 0 be such that α1 + α2 ≤ 1.
Also let F = Φn(f). Then

(1 − λ)F (z) + λF (w) ∈ F (Ωα1+α2,n), z ∈ Ωα1,n, w ∈ Ωα2,n , λ ∈ [0, 1].

Proof. Our argument combines an idea of Gong and Liu [4] (see also [5])
with the estimates for the Jacobian determinant of a holomorphic mapping
from Bn to itself (Lemma 1.1). Fix λ ∈ [0, 1] and let z ∈ Ωα1,n and w ∈ Ωα2,n.
Since f ∈ K(Bn), F is biholomorphic on Bn+1. We want to find a point
u = (u′, un+1) ∈ Ωα1+α2,n such that

(1 − λ)F (z) + λF (w) = F (u),
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i.e., (
f(u′), un+1[Jf (u′)]

1
n+1

)
=

=
(
(1 − λ)f(z′) + λf(w′), (1 − λ)zn+1[Jf (z′)]

1
n+1 + λwn+1[Jf (w′)]

1
n+1

)
.

Since z′, w′ ∈ Bn and f ∈ K(Bn), there is a unique point u′ ∈ Bn

such that
f(u′) = (1 − λ)f(z′) + λf(w′),

i.e., u′ = f−1((1 − λ)f(z′) + λf(w′)). If λ = 0 then u′ = z′, and if λ = 1 then
u′ = w′. Hence, we may assume that λ ∈ (0, 1). Then u′ = u′(z′, w′) can be
viewed as a mapping from Bn ×Bn into Bn. Let

un+1 = (1 − λ)zn+1

[
Jf (z′)
Jf (u′)

] 1
n+1

+ λwn+1

[
Jf (w′)
Jf (u′)

] 1
n+1

.

We prove that u = (u′, un+1) ∈ Ωα1+α2,n. It is obvious that

Ju′
z′

(z′, w′) = (1 − λ)n
Jf (z′)
Jf (u′)

and Ju′
w′ (z

′, w′) = λn
Jf (w′)
Jf (u′)

,

where u′z′ and u′w′ denote the Fréchet derivatives of u′ with respect to z′ and
w′, respectively. Hence

un+1 = (1 − λ)
1

n+1 zn+1[Ju′
z′

(z′, w′)]
1

n+1 + λ
1

n+1wn+1[Ju′
w′ (z

′, w′)]
1

n+1 .

Next, using Lemma 1.1 and Hölder’s inequality in the previous equation,
we obtain

|un+1| ≤ (1−λ)
1

n+1 |zn+1|
[
1−‖u′(z′, w′)‖2

1−‖z′‖2

]1/2
+λ

1
n+1 |wn+1|

[
1−‖u′(z′, w′)‖2

1−‖w′‖2

]1/2

≤
√

1 − ‖u′‖2(1 − λ+ λ)
1

n+1

{[ |zn+1|2
1 − ‖z′‖2

]n+1
2n

+
[ |wn+1|2
1 − ‖w′‖2

]n+1
2n

} n
n+1

<
√

1 − ‖u′‖2(α1 + α2)
n

n+1 .

Therefore, we have proved that |un+1|2 < (α1 + α2)
2n

n+1 (1 − ‖u′‖2), i.e., u =
(u′, un+1) ∈ Ωα1+α2,n. This completes the proof. �

Corollary 2.5. Let f ∈ K(Bn) and F = Φn(f). Then

(1 − λ)F (z) + λF (w) ∈ F (Bn+1), z, w ∈ Ω1/2,n, λ ∈ [0, 1].

It is natural to investigate the situation concerning starlikeness and con-
vexity on the unit polydisc Pn =

{
z ∈ C

n : max1≤j≤n |zj | < 1
}
.

Remark 2.1. The operator Φn does not preserve convexity on Pn. Indeed,
let f : Pn → C

n be a normalized convex mapping and let F = Φn(f). By [31,
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Theorem 2] there exist normalized convex functions fk(zk) on the unit disc U ,
k = 1, . . . , n, such that

f(z′) = (f1(z1), . . . , fn(zn)), z′ = (z1, . . . , zn) ∈ Pn.

Then F = Φn(f) is given by

(2.6) F (z)=
(
f1(z1), . . . , fn(zn), zn+1

n∏
k=1

[f ′k(zk)]
1

n+1

)
, z =(z′, zn+1)∈ Pn+1.

Here we choose the branch of the power function such that [f ′k(zk)]
1/(n+1)|zk=0 =

1 for k = 1, . . . , n. It is clear that if there is some k such that f ′k(zk) �≡ 1, then
F does not satisfy the necessary and sufficient condition for convexity in the
polydisc given by Suffridge.

Remark 2.2. The operator Φn does not preserve starlikeness on the unit
polydisc Pn either. Indeed, let fj(zj) be a function in S∗ for j = 1, . . . , n.
Then it is easy to see that the mapping f(z′) = (f1(z1), . . . , fn(zn)) is starlike
on Pn while F given by (2.6) is not starlike on Pn+1. Indeed, the necessary
and sufficient condition for starlikeness of F is (see [31, Theorem 1])

(2.7) Re
[
wj(z)
zj

]
> 0, j = 1, . . . , n+ 1, ‖z‖∞ = |zj | > 0,

where
w(z) = [DF (z)]−1F (z) =

=

(
f1(z1)
f ′1(z1)

, . . . ,
fn(zn)
f ′n(zn)

, zn+1

[
1 − 1

n+ 1

n∑
k=1

fk(zk)f ′′k (zk)
(f ′k(zk))2

])
,

for all z = (z′, zn+1) ∈ Pn+1.
It is clear that the first n inequalities in (2.7) are satisfied, but if j = n+1

then (2.7) becomes

0 < Re
[
wn+1(z)
zn+1

]
= 1 − 1

n+ 1

n∑
k=1

Re
[
fk(zk)f ′′k (zk)

(f ′k(zk))2

]
, |zn+1| = ‖z‖∞ > 0,

i.e.,

1 − 1
n+ 1

n∑
k=1

Re
[
fk(zk)f ′′k (zk)

(f ′k(zk))2

]
> 0, |zk| < 1, k = 1, . . . , n.

It suffices to choose n = 2 and fj(zj) = zj/(1 − zj)2 for j = 1, 2. Also let
z1 = z2 ∈ U . Then the above inequality is equivalent to

Re
[
(1 − z1)(z1 + 3)

(1 + z1)2

]
> 0, |z1| < 1.
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However, it is elementary to check that this relation is not satisfied everywhere
on the unit disc U , and thus F is not starlike.

3. EXTREME POINTS AND SUPPORT POINTS ASSOCIATED
WITH THE ROPER-SUFFRIDGE EXTENSION OPERATOR

In this section we restrict our discussion to the Roper-Suffridge extension
operator Ψn. A key role is played by the result established in Theorem 2.1.
We shall study extreme points and support points for families of univalent
mappings on Bn constructed using the Roper-Suffridge operator, and their
behaviour under the Loewner variation. To this end, we recall the definitions
of extreme points and support points in the general setting of locally convex
linear spaces. For applications of linear methods to the study of extremal
problems in geometric function theory of one variable, the reader may consult
[14], [1], [2], [3], [24], [30], and the recent survey [17]. In the case of several
variables, see [18].

Definition 3.1. Let X be a locally convex linear space and let E be a
subset of X.

(i) A point x ∈ E is called an extreme point of E provided x = ty+(1−t)z,
where t ∈ (0, 1), y, z ∈ E, implies x = y = z. That is, x ∈ E is an extreme
point of E if x is not a proper convex combination of two points in E.

(ii) A point w ∈ E is called a support point of E if

ReL(w) = max
y∈E

ReL(y)

for some continuous linear functional L : X → C such that ReL is nonconstant
on E.

Let exE and suppE be the sets of extreme points of E and support points
of E. From the general theory of locally convex linear spaces, in particular by
the Krein-Milman theorem (see e.g. [14, Chapter 4]), it is known that if E is
a nonempty compact subset of X then exE and suppE are nonempty subsets
of E.

In the case of the class S, it is known that if f ∈ exS or f ∈ suppS, then
f maps the unit disc U onto the complement of a continuous arc tending to
∞ with increasing modulus (see e.g. [17]). In particular, a bounded univalent
function cannot be a support point of S.

We recall in view of the proof of Theorem 2.1 that if f(z1, t) is a Loewner
chain then F : Bn × [0,∞) → C

n given by

(3.1) F (z, t) =
(
f(z1, t), z̃et/2(f ′(z1, t))1/2

)
, z = (z1, z̃) ∈ Bn, t ≥ 0,
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is also a Loewner chain. We choose the branch of the power function such
that (f ′(z1, t))1/2|z1=0 = et/2 for t ≥ 0. If t = 0 then F = F (·, 0) is the
Roper-Suffridge extension operator Ψn(f).

We also recall that Ψn(S) is a compact set by Corollary 2.3, hence
exΨn(S) �= ∅ and suppΨn(S) �= ∅.

We begin this section with some auxiliary results.

Lemma 3.1. Ψn(exS) ⊆ ex Ψn(S).

Proof. Let F ∈ Ψn(exS) and f ∈ exS be such that F = Ψn(f). Suppose
F = sG + (1 − s)H where s ∈ (0, 1) and G,H ∈ Ψn(S). Then there exist
functions g, h ∈ S such that G = Ψn(g), H = Ψn(h) and

Ψn(f)(z) = sΨn(g)(z) + (1 − s)Ψn(h)(z), z ∈ Bn.

Hence
f(z1) = sg(z1) + (1 − s)h(z1), z1 ∈ U,

and since f ∈ exS, we must have g ≡ h. Therefore G ≡ H, too. This
completes the proof. �

Example 3.1. It is known that the rotations of the Koebe function, given
by f(z1) = z1/(1 − λz1)2, where |λ| = 1, are extreme points of S. Then
F = Ψn(f) ∈ ex Ψn(S) by Lemma 3.1, i.e., the mapping Fλ given by

(3.2) Fλ(z) =

(
z1

(1 − λz1)2
, z̃

(
1 + λz1

(1 − λz1)3

)1/2
)
, z = (z1, z̃) ∈ Bn,

is an extreme point of Ψn(S) for |λ| = 1.

Lemma 3.2. Let f ∈ exS and let f(z1, t) be a Loewner chain such that
f(z1) = f(z1, 0), z1 ∈ U . Also let F (z, t) be given by (3.1). Then e−tF (·, t) ∈
exΨn(S) for t ≥ 0.

Proof. Since f is an extreme point of S, e−tf(·, t) also is an extreme point
of S by a result of Pell [19]. Then Ψn(e−tf(·, t)) ∈ Ψn(exS) for t ≥ 0. Hence
Ψn(e−tf(·, t)) ∈ exΨn(S) by Lemma 3.1. On the other hand, since

Ψn(e−tf(·, t)) = e−tF (·, t), t ≥ 0,

the conclusion follows. �
We now prove one of the main results of this paper.

Theorem 3.1. Let f ∈ S and F = Ψn(f). Also let F (z, t) be the Loewner
chain given by (3.1). If F ∈ exΨn(S) then e−tF (·, t) ∈ exΨn(S) for t ≥ 0.

Proof. Fix t ≥ 0. Suppose that

e−tF (z, t) = λG(z) + (1 − λ)H(z), z ∈ Bn,
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where λ ∈ (0, 1) and G,H ∈ Ψn(S). Let V = V (z, s, t) be the transition
mapping associated with F (z, t). Also let V (z, t) = V (z, 0, t) for z ∈ Bn.
Then

F (z) = F (V (z, t), t) = λetG(V (z, t)) + (1 − λ)etH(V (z, t)), z ∈ Bn.

Let g, h ∈ S be such that G = Ψn(g) and H = Ψn(h). Also, let v(z1, t) =
v(z1, 0, t) where v(z1, s, t) is the transition function associated with f(z1, t). A
simple computation yields

etG(V (z, t)) = Ψn(etg ◦ v(·, t))(z), z ∈ Bn.

Indeed, if vt = v(·, t) then

etG(V (z, t)) =
(
etg(v(z1, t)), z̃e−t/2et(g′(v(z1, t))1/2(v′(z1, t))1/2

)
=

=
(
etg(vt(z1)), z̃(et(g ◦ vt)′(z1))1/2

)
= Ψn(etg ◦ vt)(z), z = (z1, z̃) ∈ Bn,

as claimed. Further, since g ∈ S and vt is a univalent function on U such that
v′t(0) = e−t, the composition etg◦vt is a function in S. Hence etG◦Vt ∈ Ψn(S).
Similarly, etH ◦ Vt ∈ Ψn(S). Then we deduce that

F (z) = λΨn(etg ◦ vt)(z) + (1 − λ)Ψn(eth ◦ vt)(z), z ∈ Bn,

and since F ∈ ex Ψn(S), we must have Ψn(etg ◦ vt)(z) = Ψn(eth ◦ vt)(z) for
z ∈ Bn. Finally, applying the identity theorem for holomorphic mappings, we
deduce that Ψn(g) ≡ Ψn(h), i.e. G ≡ H. This completes the proof. �

We next consider the analog of a result of Pell [19] concerning support
points and Loewner chains associated with the Roper-Suffridge extension op-
erator. See also [15].

Lemma 3.3. Let f ∈ S and F = Ψn(f). Also let F (z, t) be the Loewner
chain given by (3.1). If f ∈ suppS then e−tF (·, t) ∈ Ψn(suppS) for t ≥ 0.

Proof. Let f(z1, t) be a Loewner chain such that f(z1) = f(z1, 0) for
|z1| < 1, and e−tF (·, t) = Ψn(e−tf(·, t)), t ≥ 0. Since f ∈ suppS, by [19,
Theorem] we have e−tf(·, t) ∈ suppS, too, for all t ≥ 0. Hence e−tF (·, t) ∈
Ψn(suppS) for t ≥ 0, as claimed. �

Using Lemma 3.3 and a result of Pfluger [23], we obtain the following
asymptotic result.

Corollary 3.1. If f ∈ suppS and F (z, t) is the Loewner chain given
by (3.1), then there is some λ ∈ C, |λ| = 1, such that lim

t→∞ e−tF (z, t) =

Fλ(z) locally uniformly on Bn+1, where Fλ is given by (3.2). Moreover, Fλ ∈
Ψn(suppS).
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Proof. Let f(z1, t) be a Loewner chain such that f(z1) = f(z1, 0) for
|z1| < 1, and e−tF (·, t) = Ψn(e−tf(·, t)), t ≥ 0. Since f ∈ suppS, by a result
of Pfluger [23] (in particular, using the fact that the boundary curve of f(U)
has an asymptotic direction) we have

lim
t→∞ e−tf(z1, t) =

z1
(1 − λz1)2

and the limit holds locally uniformly on U for some choice of λ, |λ| = 1. Now,
it is easy to deduce that

lim
t→∞Ψn(e−tf(·, t))(z) = Fλ(z)

locally uniformly on Bn, as claimed.
On the other hand, since the rotations of the Koebe function are all

members of suppS, the mapping Fλ belongs to Ψn(suppS). This completes
the proof. �

Example 3.2. The mapping Fλ given by (3.2) belongs to suppΨn(S).

Proof. It suffices to assume λ = 1. Let e1 = (1, 0, . . . , 0) ∈ ∂Bn and
L : H(Bn) → C be given by

L(F ) = 〈D2F (0)(e1, e1), e1〉, F ∈ H(Bn).

Then it is clear that L is a continuous linear functional on H(Bn). We show
that ReL|Ψn(S) is nonconstant and

ReL(F1) = max
F∈Ψn(S)

ReL(F ).

Suppose that ReL|Ψn(S) is constant. Since the identity mapping id of Bn be-
longs to Ψn(S), we have ReL(Ψn(f)) = ReL(id), ∀f ∈ S. This is equivalent to

Re〈D2Ψn(f)(0)(e1, e1), e1〉 = 0, ∀f ∈ S.

However, this is impossible since if k(z1) = z1/(1 − z1)2 then

Re〈D2Ψn(k)(0)(e1, e1), e1〉 = 4.

Hence we must have ReL|Ψn(S) nonconstant, as claimed. On the other hand,
if f ∈ S then a straightforward computation yields

Re〈D2Ψn(f)(0)(e1, e1), e1〉 = Re f ′′(0) ≤ 4,

thus
ReL(F1) = max

F∈Ψn(S)
ReL(F ).

Consequently, F1 ∈ suppΨn(S). �
Next, we obtain a representation for a continuous linear functional on

H(Bn) in terms of the Taylor coefficients. The corresponding one variable
result is due to Toeplitz [33] (see also [3, Theorem 9.3] and [14, Theorem 4.3].
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First, note that a continuous linear functional L on H(Bn) is easily
expressed as a sum of continuous linear functionals on the component func-
tions, i.e.,

L(h) = L(h1, . . . , hn) =
n∑
k=1

L(0, . . . , 0, hk , 0, . . . , 0) =
n∑
k=1

Lk(hk)

for all h = (h1, . . . , hn) ∈ H(Bn), where

Lk(hk) = L(0, . . . , 0, hk , 0, . . . , 0), k = 1, . . . , n.

For each monomial zα = zα1
1 · · · zαn

n , let Lk(zα) = dk,α. We expand hk in
a Taylor series for each k as

hk(z) =
∑
α

ck,αz
α, k = 1, . . . , n.

Lemma 3.4. Lk is given by

(3.3) Lk(hk) =
∑
α

ck,αdk,α.

The series converges uniformly and L(h) =
n∑
k=1

∑
α
ck,αdk,α.

Proof. For m ∈ N, let

hk,m(z) =
∑

|α|≤m
ck,αz

α.

Then
Lk(hk,m) =

∑
|α|≤m

ck,αdk,α.

The continuity of Lk implies that lim
m→∞Lk(hk,m) = Lk(hk), and this implies

that the series (3.3) converges. Since any rearrangement of
∑
α
ck,αz

α converges

locally uniformly to hk, any rearrangement of the series in (3.3) converges to
Lk(hk). This completes the proof. �

Theorem 3.2. The identity mapping of Bn is not a support point
of Ψn(S).

Proof. It suffices to give the proof in the case n = 2. Suppose that L is a
continuous linear functional on H(B2) such that ReL|Ψ2(S) is nonconstant and

ReL(id) = max
F∈Ψ2(S)

ReL(F ).
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If f ∈ S has the Taylor series expansion f(z1) = z1 +
∞∑
j=2

ajz
j
1, then

(3.4) Ψ2(f)(z) =
(
z1 +

∞∑
j=2

ajz
j
1, z2

√√√√1 +
∞∑
j=2

jajz
j−1
1

)
=

=
(
z1 +

∞∑
j=2

ajz
j
1, z2

(
1 +

∞∑
j=2

bjz
j−1
1

))
,

where the bj ’s are determined by the aj’s.
Hence the restriction of a continuous linear functional onH(B2) to Ψ2(S)

is given by

(3.5) L(Ψ2(f)) = d11 +
∞∑
j=2

ajd1j + d21 +
∞∑
j=2

bjd2j ,

where d1j = L1(z
j
1) and d2j = L2(z2z

j−1
1 ), j ≥ 1.

Consider the function f(z1) = z1 + γz2
1 , which belongs to S if |γ| is

sufficiently small. Let√
1 + 2γz1 = 1 + γz1 +

∞∑
j=2

βjγ
jzj1,

and note that βj �= 0, j ≥ 2. Then

(3.6) L(Ψ2(f)) = d11 + γd12 + d21 + γd22 +
∞∑
j=3

βj−1γ
j−1d2j =

= d11 + d21 + γ(d12 + d22) +
∞∑
j=3

βj−1γ
j−1d2j .

Now, if d12 + d22 �= 0, we obtain that Re[γ(d12 + d22)] > 0 by suit-
ably choosing the argument of γ. Then, choosing |γ| sufficiently small and
noting that

∞∑
j=3

βj−1γ
j−1d2j = O(|γ|2),

we obtain ∣∣∣ ∞∑
j=3

βj−1γ
j−1d2j

∣∣∣ < Re[γ(d12 + d22)],

hence

Re
[
γ(d12 + d22) +

∞∑
j=3

βj−1γ
j−1d2j

]
> 0.
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But then ReL(Ψ2(f))>ReL(id), which is a contradiction. Hence d12+d22 =0.
A similar argument using (3.6) shows that d2j = 0, j = 3, 4, . . .. In fact,

suppose that (3.6) has the form

(3.7) L(Ψ2(f)) = d11 + d21 +
∞∑
j=j0

βj−1γ
j−1d2j ,

where f(z1) = z1 + γz2
1 , j0 ≥ 3, and d2j0 �= 0. Then, by suitably choosing

the argument of γ, we obtain Re[βj0−1γ
j0−1d2j0 ] > 0, and, by choosing |γ|

sufficiently small, we obtain∣∣∣ ∞∑
j=j0+1

βj−1γ
j−1d2j

∣∣∣ < Re[βj0−1γ
j0−1d2j0 ].

Thus ReL(Ψ2(f)) > ReL(id), which is a contradiction.
To show that d1j = 0, j ≥ 3, consider f(z1) = z1 + γzj1, where |γ| is

sufficiently small. Since d12 + d22 = 0 and d2j = 0, j ≥ 3, it is easy to see that

L(f) = d11 + d21 + γd1j .

The usual argument by contradiction yields that d1j = 0.
We now know that d12 + d22 = 0 and that d1j = d2j = 0, j ≥ 3. In

the representation (3.4) of Ψ2(f), we have a2 = b2. Hence (3.5) shows that
L(Ψ2(f)) = d11 + d21 for all f ∈ S. �

Theorem 3.3. Let f ∈ S and let f(z1, t) be a Loewner chain such that
f = f(·, 0). Let F (z, t) be the Loewner chain given by (3.1) and let F = Ψn(f).
If F ∈ suppΨn(S) then there exists t0 > 0 such that e−tF (·, t) ∈ suppΨn(S)
for 0 ≤ t < t0.

Proof. We mention that some of the ideas used below come from the
proof of [15, Theorem 1].

Since F ∈ suppΨn(S), there is a continuous linear functional L onH(Bn)
such that ReL is nonconstant on Ψn(S) and

(3.8) ReL(F ) = max
G∈Ψn(S)

ReL(G).

Fix t ≥ 0. Since L : H(Bn) → C is linear, we have

L(h) = L(h1, . . . , hn) =
n∑
k=1

L(0, . . . , hk, 0, . . . , 0) =
n∑
k=1

Lk(hk),

for all h = (h1, . . . , hn) ∈ H(Bn), where

Lk(hk) = L(0, . . . , hk, 0, . . . , 0), k = 1, . . . , n.
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It is easy to see that Lk is a continuous linear functional on H(Bn,C) for
k = 1, . . . , n. Arguing as in the proof of [3, Theorem 9.2], we deduce that
there exist an integer m ≥ 2 and a constant K > 0 such that

|Lk(g)| ≤ K sup
{|g(z)| : z ∈ Bn

1−1/m

}
, g ∈ H(Bn,C).

By the Hahn-Banach theorem, Lk extends to a continuous linear functional on
the space of continuous complex-valued functions on the closed ball Bn

1−1/m

(with the supremum norm). Hence, by the Riesz representation theorem, Lk
is given by integration with respect to a complex Borel measure supported on
B
n
1−1/m. That is, there exists a compact subset Ek of Bn and a complex Borel

measure dµk supported on Ek such that

Lk(g) =
∫
Ek

g(z)dµk(z), ∀g ∈ H(Bn,C), k = 1, . . . , n.

Hence

L(h) =
n∑
k=1

∫
Ek

hk(z)dµk(z), ∀h = (h1, . . . , hn) ∈ H(Bn).

On the other hand, since F (z) = F (V (z, t), t), z ∈ Bn, t ≥ 0, where
V (z, t) = V (z, 0, t) and V = V (z, s, t) is the transition mapping associated
with F (z, t), we deduce that

L(F ) =
n∑
k=1

∫
Ek

Fk(z)dµk(z) =
n∑
k=1

∫
Ek

Fk(V (z, t), t)dµk(z).

Setting ζ = Vt(z) where Vt(z) = V (z, t), we obtain

L(F ) =
n∑
k=1

∫
V (Ek,t)

Fk(ζ, t)dµk(V −1
t (ζ)) =

=
n∑
k=1

∫
V (Ek,t)

e−tFk(ζ, t)etdµk(V −1
t (ζ)).

Since dνk(ζ, t) = etdµk(V −1
t (ζ)) is a complex Borel measure supported on the

compact set V (Ek, t) ⊂ Bn, we may consider the functional Lt : H(Bn) → C

given by

Lt(G) =
n∑
k=1

∫
Vt(Ek)

Gk(ζ)dνk(ζ, t), G = (G1, . . . , Gn) ∈ H(Bn).

Then Lt is a continuous linear functional on H(Bn) and it is clear that

(3.9) L(F ) = Lt(e−tF (·, t)).
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Moreover, if G ∈ Ψn(S) then by another change of variable we obtain that

(3.10) Lt(G) = L(etG ◦ Vt), G ∈ Ψn(S).

Next, taking into account the fact that F ∈ suppΨn(S) and equations (3.9)
and (3.10), we deduce that

ReLt(e−tF (·, t)) = ReL(F ) ≥ ReL(etG ◦ Vt) = ReLt(G)

for G ∈ Ψn(S), i.e.,

ReLt(e−tF (·, t)) = max
G∈Ψn(S)

ReLt(G).

Here we have used the fact that etG ◦ Vt ∈ Ψn(S) for G ∈ Ψn(S), by a similar
argument to that in the proof of Theorem 3.1. Now the functionals {Lt}t≥0 are
weakly continuous in their dependence on t. In particular, if id is the identity
mapping of Bn, then Lt(id) → L(id) as t→ 0+. Since id is not a support point
of Ψn(S), we have ReL(id) < ReL(F ). Hence there exists t0 > 0 such that

(3.11) ReLt(id) < ReL(F ) = ReLt(e−tF (·, t)), 0 ≤ t < t0.

For such t, ReLt|Ψn(S) is nonconstant. This completes the proof. �
Remark 3.1. If Ψn(S) has the property that no bounded mapping is a

support point of Ψn(S), then e−tF (·, t) ∈ suppΨn(S) for all t ≥ 0. For,
etVt = Ψn(etvt) is a bounded mapping in Ψn(S), and we would have

ReLt(id) = ReL(etVt) < ReL(F ) = ReLt(e−tF (·, t)),
and thus ReLt|Ψn(S) would be nonconstant.

Conjecture 3.1. No bounded mapping in Ψn(S) is a support point
of Ψn(S).

Taking into account the above results, we can also state.

Conjecture 3.2. Let f ∈ S0(Bn), n ≥ 2, and let f(z, t) be a Loewner
chain such that f(z) = f(z, 0), z ∈ Bn. If f ∈ exS0(Bn) then e−tf(·, t) ∈
exS0(Bn) for t ≥ 0.

Conjecture 3.3. Let f ∈ S0(Bn), n ≥ 2, and let f(z, t) be a Loewner
chain such that f(z) = f(z, 0), z ∈ Bn. If f ∈ suppS0(Bn) then e−tf(·, t) ∈
suppS0(Bn) for t ≥ 0.
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Babeş-Bolyai University
Faculty of Mathematics and Computer Science
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