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We prove that the density of locally Lipschitz functions in a global Sobolev space
based on a Banach function space implies the density of Lipschitz functions, with
compact support in a given open set, in the corresponding Sobolev space with
zero boundary values. In the case, when the Banach function space is a Lebesgue
space, we recover some density results of Bjorn, Bjorn and Shanmugalingam
(2008). Our results require neither a doubling measure nor the validity of a
Poincaré inequality in the underlying metric measure space.
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1. INTRODUCTION

In the following, (X, d, i) is a metric measure space, i.e. a metric space
(X,d) endowed with a Borel regular measure p, that is finite and positive
on balls. We use the definition given by Bennet and Sharpley [3] for Banach
function spaces over the o-finite measure space (X, ). The theory of Banach
function spaces is an axiomatic unifying framework for the study of Orlicz
spaces and Lorentz spaces, that generalize Lebesgue spaces.

Given a Banach function space B, the abstract Sobolev space of Newto-
nian type N1B(X) consists of all functions u : X — R such that v € B and u
has a B-weak upper gradient in B. The Banach space N 1’B(X ) is an extension
of Newtonian spaces N (X) introduced by Shanmugalingam [21] (where B =
LP (X), 1 < p < o0), of Orlicz-Sobolev spaces introduced by Aissaoui [1] and
by Tuominen [23] (where B is an Orlicz space over X) and of a class of New-
tonian Sobolev-Lorentz spaces introduced by Costea and Miranda [7] (where
B is the Lorentz space LP? (X) with 1 < g < p).

In the Euclidean case, when X = () is an open subset of R"™ with the
Lebesgue measure p, the Newtonian space NP (X) is the classical Sobolev
space WP (), where 1 < p < oco. The Sobolev space with zero boundary
values W[} (Q) is an important tool in PDE’s and calculus of variations, that
allows us to compare boundary values of functions in W' (€2). There are two
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equivalent definitions of W, (Q2). On one hand, W, () is the completion of
CL () in WP () (5], IX.4). On the other hand, u belongs to Wy () if u
can be extended to a function from the global Sobolev space WP (R"), such
that the trace of the extension vanishes on X \ €.

The second definition of Sobolev spaces with zero boundary values has
been extended to the metric setting, in the case of Newtonian functions based
on Lebesgue spaces [22], on Orlicz spaces [2] and on Banach function spaces
[16]. A real-valued function v on E C X belongs to the Newtonian space
N& ’B(E) of functions with zero boundary values on E if u has a representative
whose extension by zero to X belongs to N»B(X). It is known that N&’B(E)
is a closed subspace of the Banach space N"B(X). In analysis on metric
measure spaces the role of smooth functions is played by Lipschitz continuous
functions. The purpose of this paper is to provide some sufficient conditions
for the density of Lipschitz functions with compact support in €2 in the space
N&’B(Q) , where €2 C X is open.

The density of Lipschitz functions in Newtonian spaces N1 (X) has been
proved in doubling metric measure spaces (X,d, 1) supporting a weak (1, p)-
Poincaré inequality [21]. Corresponding density results have been proved for
Orlicz-Sobolev spaces [1, 23] and Sobolev-Lorentz spaces [7]. Without assum-
ing that p is doubling or that X supports a Poincaré inequality, Bjorn, Bjorn
and Shanmugalingam [4] proved that in a proper metric space X the density
of locally Lipschitz functions implies the density in NS P (Q) of the set of com-
pactly supported Lipschitz functions. So, in this case, we recover the first route
to the definition of the Sobolev spaces with zero boundary values. The density
results in [4] have been extended in [18] by replacing the Lebesgue space LP (X)
by an Orlicz space LY (X), where ¥ is a doubling N-function. In this paper,
we generalize the results from [18] to the case of Newtonian spaces based on
Banach function spaces that satisfy some natural assumptions.

2. PRELIMINARIES

Denote the open balls, respectively the closed balls in the metric space
(X,d) by B(x,r) ={y € X :d(y,z) <r} and B(z,r) ={y € X :d(y,z) <r}.
A metric space is called proper if every closed ball of the space is compact.

Let (X,u) be a o-finite measure space and M T (X) be the set of u-
measurable non-negative functions on X.

Definition 1 ([3]). A function p : M1 (X) — [0,00] is called a Banach
function norm if, for all functions f, g, f, (n > 1) in M (X), for all constants
a > 0 and for all measurable sets £ C X, the following properties hold:
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(P1) p(f) = 0iff f =0 p-ae; plaf) = ap(f); p(f +9) < p(f) + p(g)-
(P2) If 0 < g < f pra.e., then p(g) < p(f).

(P3) 110 < fu 1/ jrac., then p(fa) 1 p(f).

(P4) If u(F) < oo, then p(xg) < oo.

(P5) If u(E) < oo, then /f dp < Cgp(f), for some constant Cg €

E
(0, +00) depending only on E and p.
The collection B of the py-measurable functions f : X — [—o0, +00] for
which p(|f|) < oo is called a Banach function space on X. For f € B define

1flls = p(If1)-

We identify two functions that coincide p-a.e. and denote by = the rela-
tion of equality p-a.e. If f,g: X — R such that p(|f|) < co and f = g p-a.e,
then ¢ is p-measurable and p(|g]) = p(|f]) < oo. Moreover, by Definition 1
(P5) and the o-finiteness of p, it follows that f and g are finite u-a.e., hence,
[ —9 =0 p—a.e. and therefore, || f — g|[g = 0.

Definition 2 ([3], Definition 1.3.1). A function f € B is said to have
absolutely continuous norm in B if and only if || fx g, ||g — O for every sequence

(Ek)i>1 of measurable sets satisfying p <lim SupEk) = 0. The space B is said
k—o0
to have absolutely continuous norm if every f € B has absolutely continuous

norim.

An Orlicz space LY (X) has absolutely continuous norm if the Young
function ¥ is doubling. The (p,q)-norm of a Lorentz space LP¢(X) with
1 <p<ooand 1< g < oo is absolutely continuous [7]. In L (X) the only
function having an absolutely continuous norm is the null function.

In a space with absolutely continuous norm, a suitable form of Lebesgue
dominated convergence theorem holds.

LEMMA 1 ([3], Proposition 1.3.6). A function f in a Banach function
space B has absolutely continuous norm if and only if the following condition
holds: whenever f,, n > 1 and g are u-measurable functions satisfying |fn| <
|f| for all n and f, — g p-a.e., then || f, — gllg = 0 as n — oo.

A Banach function space B is said to have property (C)if lim p(E,) =0
n—oo
for every sequence E, C X, n > 1 of measurable sets satisfying the condition
lim |[xz,|g = 0.
n—oo

If B =LY (X) is an Orlicz space with the Luxemburg norm, then ||xg|lg =
1/U=1(1/p(E)) and if B =LP9(X) is a Lorentz space with the p,g-norm,
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1 <p<ooand 1l < g < oo, then ||xg|g = c(p,q),u(E)l/p, where ¢(p,q) =
(p/q)9. 1f B =L (X), then |xgllg = sgn (u(E)). All these three types
of Banach function spaces have property (C). Every rearrangement invariant
Banach function space over a resonant measure space has property (C), as
follows from ([3], Corollary II. 5.3).

Let B be a Banach function space with a norm ||-||g. The B-modulus of
a family T' of curves in X is defined by Mg(I') = inf ||p||g ,where the infimum

is taken over all Borel functions p : X — [0, +00] satisfying / pds > 1 for all
¥
rectifiable curves v in X [17].
A Borel measurable function g : X — [0,+o0] is said to be an upper
gradient of a function uw : X — R if for every rectifiable curve 7 : [a,b] — X
the following inequality holds

(2.1) [u(y(a)) — u(y(b))] < / gds.
Y

A B-weak upper gradient of a function u : X — R is a Borel measurable
function g : X — [0, 00] such that (2.1) holds for all rectifiable curves -~ :
[a,b] — X except for a curve family with zero B-modulus. We can weaken
the assumption that g is Borel measurable in the definition of a B-weak upper
gradient, saying that g : X — [0, 0] is a generalized B-weak upper gradient of a
function u : X — R if there exists a curve family I’y C Ty with Modg(T'g) =0
such that for every v € Ty \I'g the function goy : [0,1 ()] — [0, 0o] is Lebesgue
measurable and (2.1) holds.

For every function v : X — R we will denote by G, g the family of all
B-weak upper gradients ¢ € B of u in X. Let N LB(X) be the set formed
from the real-valued functions u € B for which G, p is non-empty. The func-
tional |lull; g = |lullg + inf{|lgllg : 9 € Gup} is a seminorm on NLB(X).
The Newtonian-type space NB(X) is defined as the quotient normed space
of N LB(X) with respect to the equivalence relation defined by: u ~ v if
|u—wv|; g = 0. The norm on N1B(X) corresponding to the seminorm I, 8
is denoted by ||| y18x) [17]-

In the definition of N LB(X), we can use alternatively upper gradients
(respectively, generalized B-weak upper gradients) instead of B-weak upper
gradients. For every B-weak upper gradient ¢ € B of a function u : X —
R there is a decreasing sequence (g;),~, of upper gradients of u such that
li>rn llg: — gllg = 0 ([17], Proposition 2). The case B =LP(X) was proved by
2 oo

Koskela and MacManus [12]. For every generalized B-weak upper gradient h



5 Approximation by Lipschitz functions in abstract Sobolev spaces on metric spaces 463

of u that is finite p-a.e. there exists a B-weak upper gradient g of u such that
g = h p-almost everywhere in X. Generalized B-weak upper gradients are
stable under modifications p-a.e. ([14], Lemma 6). For all v € N"B(X) we
have

lell,m y, — s

= inf{||h||g : h € B is a generalized B-weak upper gradient of u}
= inf {||g||g : ¢ € B is an upper gradient of u}

A Sobolev capacity with respect to the space N'B(X) is defined by
Capg(E) = inf{|[ullyimx) + v € NYB(X) : w > 1 on E}. Note that
Capg(E) = inf{|ul yisx) : v € N'B(X):0<u<1l,u=1onE}. It
was shown that B-capacity is an outer measure, that represents the correct
gauge for distinguishing between two functions in N1B(X) [17].

We recall the formal definition of a Newtonian space with zero boundary
values, based on a Banach function space [16]. Denote by Ny (E) be the
collection of functions u : E — R for which there exists 7 € NB(X) such that
u=u p-a.e. on E and Capg({z € X\F :u(z) #0}) =0. If u,v € N&’B(E)
define u ~ v if u =v p-a.e. on E. Then ~ is an equivalence relation. We
consider the quotient space NS’B(E) = NOI’B(E)/ ~. A norm on NOI’B(E) is
unambiguously defined by HUHNS,B(E) = [[ul yrB(x)-

Given u € ]Vé’B(E), we define u(z) = u(x) if z € E and ﬁ(:):) =0if
x € X\ E. Since % = u outside a set of B-capacity zero, it follows that
i € N'B(X) and u defines the same equivalence class in N'B(X) as w. In
the following, we will identify each u € NO1 ’B(E) to the corresponding function
uecNLB (X), that will be also denoted by wu.

3. PRELIMINARY DENSITY RESULTS

In the proofs of density results it is very important to build new gradients
from old ones. We will need to cut and paste (generalized) weak upper gradients
and to have a counterpart for the product rule.

Since every generalized B-weak upper gradient ¢ € B of a function
u: X — R coincides p-a.e. with a B-weak upper gradient of u, several results
regarding weak upper gradients can be extended to generalized weak upper
gradients.

A function u : X — R is said to be absolutely continuous (AC) on a
compact rectifiable curve vy parameterized by arc-length if woy : [0, (y)] — Ris
absolutely continuous. The function  is said to be AC on B-almost every curve
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if there exists a family I'g C I'ye. with Mp (I'g) = 0, such that u is absolutely
continuous on each curve v € I'yee \ T'g. We will denote by ACCg (X) the
family of all functions u : X — R that are AC on B-almost every curve. Every
function v : X — R that has a B-weak upper gradient g € B in X belongs to
ACCg (X), in particular N'B (X) ¢ ACCg (X) ([17], Proposition 3).

LEMMA 2 ([15]). Assume that u, : X — R, k € {1,2,3}, where u; €
ACCg (X) and up has a generalized B-weak upper gradient g, € B in X
for k € {2,3}. If F C X is a p-measurable set such that ui|p = us|p and
ul‘X\F = U3|X\F, then the function g1 := gaXr + gsXx\F 1S a generalized
B-weak upper gradient of uy in X.

COROLLARY 1. Assume thatu:X —-R,coe Rand FC{x € X :u(x)=co}
is a p-measurable set. If u has a generalized B-weak upper gradient g € B in
X, then gxx\r is also a generalized B-weak upper gradient of u in X.

LEMMA 3 ([14]). Assume that u; : X — R is a p-measurable function
which has a B-weak upper gradient g, € B in X, for k € {1,2}. Then the
function g = |ui| g2 + |u2| g1 is a generalized B-weak upper gradient of u :=
uiug tn X. Moreover, if uy and ug are bounded, then g € B.

Some natural assumptions on B imply the density in N%B(X) of the set
of bounded functions from N1B(X).

LEMMA 4 ([14]). Assume that the Banach function space B has absolutely
continuous norm and has property (C). Let v € NVB(X) be nonnegative. For
each integer k > 0 we define uy, := min{u,k}. Then uy € B for each k > 0
and the sequence (ur)ysq converges to u in the norm of NVB(X).

We will need to approximate from below Newtonian functions that are
non-negative, bounded and with bounded support.

LEMMA 5. Assume that B has absolutely continuous norm. Let u €
NI’B(X) be non-negative, bounded and with bounded support. Then u. :=
max{u — ¢,0} tends to u in NVB(X) as e decreases to zero.

Proof. Denote S := suppu. For every € > 0 we have |ue —u| < uin X
and u € B, therefore u. € B.

It suffices to prove that nlg)go max{u — &,,0} = u in N"B(X) whenever
(€n),>1 is a sequence of positive numbers decreasing to zero. Denote u, :=
max{u — &,,0}, n > 1. Since (g,),~; is decreasing, the sequence (u,) is non-
decreasing. B

Since |up, —u| < wand up—u—0on X as n— 00, we get nlgngo||un—u||B =0,

by Lemma 1.
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Let g, € B be an upper gradient of .

For each ¢ > 0, denote F. = {z € X : 0 < u(zx) < ¢}. Then F;
is p-measurable and u. (z) — u(z) € {—¢,0}, whenever z € X \ F;, while
ue () —u (x) = —u (z) for all z € F.. Applying two times Corollary 1, it follows
that g, xr. is a generalized B-weak upper gradient of u, — u. In particular,
denoting F;, := F;, we see that

(3.1) [un = ullyrm(xy < llun = ullg + [lguxr. B

for n > 1.
Since (£n),,>, is decreasing and tends to zero, the sequence of sets (F},),,~

oo
is decreasing and lim F,, = (| F,, = 0. Since g, € B has absolutely continuous
n—oo n=1
norm, we have lim |g,xr,|g = 0.
n—oo

By inequality (3.1), we obtain li_}m up, =uin NVB(X), qed. O
n—oo

4. DENSITY OF COMPACTLY SUPPORTED LIPSCHITZ FUNCTIONS
IN NEWTONIAN SPACES

Let 2 C X be an open set. We will denote by Lipc(€2) the family of all
Lipschitz functions u : 2 — R with the property that the support of u is a
compact subset of €. It is easy to see that every L-Lipschitz function u : 2 — R
admits as an upper gradient the constant function L > 0. Moreover, it is
known that lipu is an upper gradient of a Lipschitz function w : 2 — R, where
lipu(z) = ligélf%L(x,u,r) with L(x,u,r) = sup{|u(y) — u(z)| : d(z,y) < r}
([8], Lemma 6.7).

For every u : F — R we denote by @ the extension by zero of u to X,
defined by u(z) = u(z) if z € E and u(z) =0if z € X \ E.

LEMMA 6. Let u : Q — R be L-Lipschitz, where L > 0 and denote S :=
SUpp u.

a) Lxs is an upper gradient of u in §);

b) If u € Lipc(R2) and g : Q@ — R is an upper gradient of u in Q, then
the extension by zero of g to X is an upper gradient in X for the extension by
zero of u to X ;

c) If u € Lipc(QY), then Lxg is an upper gradient in X for the extension
by zero of u to X.

Proof. Clearly, lipu < L in Q. Since S is a closed set, Lyg is a Borel
function.
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a) If S = Q, there is nothing to prove. Suppose that S # Q. Since u
vanishes identically on the open set 2\ S, we have lipu (z) = 0 for all z € Q\ S.
Then lipu < Lxg in 2, hence, Lyg is an upper gradient of u in ).

b) Let w: X — R and g : X — R be the extensions by zero of u and
g, respectively. Let v : [a,b] — X be a rectifiable curve. We check that

D :=lu(y(a))—u(y (b)) < /§d5 =: . Since u is continuous on X, the set

v
{t € [a,b] : (wo~)(t) =0} is compact, therefore it contains its lower bound ay
and its upper bound by. If a < ag, then v ([a,ap)) C {x € X : u(x) # 0}, hence
v ([a, ap]) € S C Q, by the continuity of . Similarly, if by < b, then  ([by, b]) C
S C Q. Note that u (v (ag)) = u (v (b)) = 0. Assuming that a < ag and by < b
we get D = |u (v (a)) —u (v (b)] < |u(y(a)) = u(y(a0))[+u(y (bo)) —u (v (b))]
< / gds + / gds <I. If a=ap and bg =b, then D =0<1. If a = aq
ia.ao) Viso 0
and by < b, then D = |u (v (by)) —u (7 (b))| < / gds <I. If a < ap and
7\[1;0,17]

bp = b, then D = |u(y(a)) —u(y(ag))| < / gds < I.

7‘[a»‘lol
¢) According to a), Lxg is an upper gradient of u in €2, hence, by b), Lxg
is an upper gradient of w in X. [

Let B a Banach function space B over X. Using properties (P1), (P2)
and (P4) from Definition 1 it follows that the extension by zero of any function
u € Lipc(Q) belongs to NVB (X). Thus, Lipc () C Nol’B (Q).

It is natural to ask for assumptions on X and B under which Lipc(€) is
dense in Nol’B (Q).

First, we look at the density in the global Newtonian space N'B (X) of
functions on X having bounded support.

LEMMA 7. Let S be the family of functions in N'B (X) that have bounded
support. If B has absolutely continuous norm, then S is dense in NB (X).

Proof. If X is bounded, then & = NVB (X). Assuming that X is un-
bounded, fix z9 € X and write X as X = U2, X}, where X}, := B (z0, k) for
each integer k > 1.

Let v € NMB (X). We will approximate v in N'B (X) by a sequence of
functions in S, using multiplication by Lipschitz cut-off functions.

For each integer k > 1, consider the function 7, : X — R, ni(x) =
max{1l — dist(x, X}),0}. Note that 7 is 1-Lipschitz, 0 < g < 1 on X and
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supp i C Xg41 is bounded.

The function vn; belongs to B, since v € B and 7 is bounded. We
estimate the norm in NVB (X) of v — vmp = v (1 — ), taking into account
that this function vanishes on Xj. Let g, € B be an upper gradient of v in
X. Using Lemma 3, taking into account that 0 < n;, < 1land L =1 is an
upper gradient of 7, then applying Corollary 1, we see that (|v| + gv) xx\x,
is a generalized B-weak upper gradient of v — vng in X. Then

v = vl 1B (x) < [oxaox,[[g + [0+ 90) xx0\x, ||
<2 HUXX\XkHB, + HgvXX\XkHB'

Since limsup (X \ Xj)=0and v, g, € B have absolutely continuous norm,

k—o0
we get kll}rglo H”XX\XkHB :kli_>1nfolo Hg'”XX\XkHB: 0. Then klingo Hv—vnkHNl,B(X)
= 0.
The following result provides sufficient conditions for the density of Lip-

schitz compactly supported functions on X in the global Newtonian space
NLB(X).

PROPOSITION 1. Let X be proper and assume that B has absolutely

continuous norm. If locally Lipschitz functions are dense in N'B (X), then
Lipc (X) is a dense subset of NVB (X).

Proof. Tf X is bounded, then it is compact and Lipc (X) = Lipjoe (X).
Assuming that X is unbounded, let X} and 7 be as in the proof of Lemma 7,
for k > 1. Since X is proper, each X} is compact.

Let w € N"B(X) and ¢ > 0. By our assumption, there exists v €
Lipoe (X) N NYB (X) such that ||u — vllyiex) < 5

The function v, € NVB (X) is Lipschitz and compactly supported. By
the proof of Lemma 7, kliﬁrg(} lv — ’UTH‘CHNLB(X) = 0. Pick an integer kg > 1 such
that [|v — vnk || y1s(x) < 5

We obtain [[u — vnk, || y1.5(x) < € and the claim follows. [

Next, we move to the study of dense subclasses of N& /B (E), where E C X.

LEMMA 8. Let S be the family of functions in NVB (X) that have bounded
support and let B be the family of bounded functions in NYB (X). Assume that
B has absolutely continuous norm. Let E C X. Then SHN&’B (E) is dense

in N&’B (E). Moreover, if B has property (C), then BN N&’B (E) is dense in
NP (E).

Proof. Let v € NOI’B (E).
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If X is bounded, then v € SHN&’B (E). If X is unbounded, taking the
sequence (1);>; as in the proof of Lemma 7, we see that vny € SﬂNol’B (E)
for K > 1 and klim vne = v in NVB (X).

—00

Write v = v — v, where v := max{v, 0} and v~ := max{—v,0}. Then
vt vT € N&’B (E). For each integer k > 1 define vy := min{v*, k}. Then
U,f € f N N&’B (E), hence v;” — v, € BN NOI’B (E). By Lemma 4, we have
kli)ngovk =T in N1B (X), hence klgr;o (v,j — vy ) — ¢ in NLB (X). O

In the case when E = () is an open subset of X, we will obtain a stronger
version of the density in NS B (E) of functions with bounded support, by re-
quiring that all their supports are contained in E. If u € NO1 B (Q), then
supp (ung) C 2 is bounded, but it is possible to have supp (ung) NN # 0, e.g.
in the case when w is continuous on X.

Ezample 1. Assume that u € N&’B ()N C (X) is non-negative, not iden-
tically zero. Since u =0 on X \ 2 and u € C (X), we have u = 0 on 9. Let
e > 0. For each x € 0 there exists an open set V., containing z, such that
0<u(y) <eforalyeV,,. Then D, := U V.« is an open superset of the

€I

boundary 9. Let 0 < ¢ < supu (z). Then D. N is a proper subset of 2
z€Q

whenever 0 < € < gg. Consider u. := max {u — €,0} as in Lemma 5. Note that
suppue C suppu. Moreover, u. () = 0if x € (X \Q)UD,. For 0 < e < ¢
we have suppu. C €. If B has absolutely continuous norm, then u. — u in
NVB (X) as e decreases to zero. So, every function in Nol’B (Q)NC(X)is
the limit in N'B (X) of a sequence of functions having the supports contained
in Q.

In order to get an approximating sequence (vn)n>1 for u, with supports
(suppun),~; staying away from the boundary 02, similar to (ue,),>; with
en 1 0, we will assume that v is B-quasicontinuous. -

A function u : X — R is called B-quasicontinuous if for every € > 0 there
is a set £ C X with Capg (F) < e such that the restriction of u to X \ E is
continuous.

PROPOSITION 2. Let B a Banach function space that has absolutely con-
tinuous norm and has property (C). Assume that all functions in NVB(X) are
B-quasicontinuous. Let 0 C X be open. Then every function u € Nol’ (Q)
is the limit in NYB(X) of a sequence of functions that have bounded support
contained in 2.

Proof. We follow the lines of the proof of Lemma 5.9 from [4]. Using
Lemma 8, we may assume that u is a bounded function and that u has a
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bounded support. We also may assume that u is non-negative. Let u. :=
max {u —¢,0} for € > 0. Note that suppu. C {z € X : u(z) > e}. Since u is
bounded, u,. is also bounded for every ¢ > 0.

Taking advantage of the fact that u is B-quasicontinuous on X, we find a
sequence of open sets Uj, j > 1, such that each restriction u X\U; is continuous
and ]lggo Capg(U;) = 0. By the definition of the Sobolev B-capacity and the

remark following it, for each j > 1 there exists w; € NMB(X) such that 0 <

w;j <1, w; =1onU; and ijHNLB(X) < C’apB(Uj)—i—%. By [17, Proposition 2]

there exists an upper gradient g; of w; such that [|g;||g < ijHNLB(X) +1/5.

Then lim ||wjl|g = lim [|gj||g = 0. By Theorem I.1.4 from [3], every sequence
J—00 J]—00

that converges in B to some function f contains a subsequence that is point-
wise p-almost everywhere convergent to f. Passing to a subsequence, we may
assume that w; — 0 p-a.e. in X.

Fix € > 0. By the continuity of u]X\Uj , the set {z € X\ U; : u(z) < ¢}
is relatively open in X \ U;. Then the set W, ; :=U; U{x € X : u(x) < e} is
open in X. Since u = 0in X \ Q and v > € in X \ W, ;, the closed set X \ W, ;
is contained in QN suppu. Since suppu is bounded, X \ W, ; is also bounded.

Define the functions u.; := (1 — wj)u. for j > 1. Then supp u.; C
X \ W, ;, therefore supp u. ; C  and supp u. ; bounded. We will prove that
Uz j — ue in NYB(X) as j — oo.

We have ||uc; — ucl|g = |lwjucllg. Since |wjus| < u. for all j > 1,
wjus — 0 p-a.e. and u. € B has absolutely continuous norm, we have
lim [juc; — ucl|g = 0, by Lemma 1.

— 00

Let g € B be an upper gradient of u.. By Lemma 3, taking into account
that 0 < u. < [Jue| ., it follows that p.; = ||uc|| g; + wjg is a generalized
B-weak upper gradient of u. ; — u.. But lim |g;|lg = 0, hence |Juc||,, g; — 0

Jj—o0
in B as j — oo. Since |w;g| < g for all j > 1, w;jg — 0 p-a.e. and g € B has
absolutely continuous norm, we have lim ||w;jg||g = 0, by Lemma 1. Then
J—00

T [lp- 5 = 0.

But [lue; — tellyimx) < luey —uellg + llpegllg for all j.  Then

jlggo e 5 — UEHNLB(X) =0.
By Lemma 5, we have li\I‘% lue — ully1B(x) = 0. Using a diagonal ar-
g

gument we can find, for every sequence (ue,),~, With (ex);~, decreasing to
zero, an associated sequence of functions uj := wug, j,, K > 1 such that

i Jlue g, —ullyipxy =0 O
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Now, we can prove our main result, which is a consequence and an ex-
tension of Proposition 1.

THEOREM 1. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm and has property (C). Assume
that locally Lipschitz functions are dense in NYB(X) and that all functions in
NVB(X) are B-quasicontinuous. Then, for every open set Q C X, the closure
of Lipc (Q) in NVB(X) is N3P (Q).

Proof. 1t Q = X, then N;®(Q2) = N'B(X) and the proof will be com-
pleted by Proposition 1. Assume that 2 # X. We will identify every function
defined on ) with its extension by zero. Let u € Nol’B(Q). Fix ¢ > 0. We
prove that there exists v € Lipc (Q2) such that [|u — v||y1s(y) <e.

Using Proposition 2, we can choose w € NB(X) with a bounded support
suppw C £, such that ||ju — w”vaB(X) < 5. Note that suppw is compact, since
it is closed and bounded in the proper metric space X.

Let 0 := 1 min {dist (suppw, X \ Q),1}. There exists a Lipschitz cut-off
function n € Lipc () with 0 < n < 1, n = 1 on suppw, having an upper
gradient g, < 1/4.

By Proposition 1, there exists f(¢) € Lipc(X) such that [w — f (¢)[|y1e(x,)
< €. Note that f(5)77 € Lipc (Q) Since |f(5) ( )TI‘ < |f( )’XX\suppw
< |w_f(€)‘ on X, we have Hf( ) (5 77||B |Hf ‘XX\suppwHB
< Jw— £ (@)l < & by (P2).

Assume that g. € B is an upper gradient of f (¢). By Lemma 3, taking
into account that 0 < n < 1, and by Corollary 1, it follows that the func-
tion p. = (|f ()l gy + 9e) Xx\suppw is a generalized B-weak upper gradient

of f(E) - f(€) UE We have HIOEHB =3 H|f |XX\suppwHB + ng-:XX\suppwHB
Then

(4.1) |f @)= fE)nlyisey <€)= fE)nls+ lpellg < (6+1)e/d
+ Hg€XX\suppwHB .

We show that we can choose g. such that HgEXX\SuppwHB < 2e. Since
[w = f ()l N1B(x) < € we can choose by ([17], Proposition 2) an upper gra-
dient he € B of w — f(¢) such that [|h:||g < 2¢. Let g € B be any upper
gradient of f (g). Since f(¢) = f(e) —w on X \ suppw, it follows by Lemma
2 that g = heXx\suppw T 9Xsuppw 15 a generalized B-weak upper gradient of
f(&‘) Then JeX X \suppw = hEXX\suppw? hence HQEXX\suppwHB < HhE”B < 2,
q.e.d.

With the above choice of g., (4.1) implies || f (€)= f (€) 7l y1.B(x) < 30kl

hence [lw — f () nllyie(x) < WHle For ¢ = f(85+2> it follows that
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[w = ¥nl[y1.8(x) < 5. Then the function v := tn satisfies all requirements.  [J

If continuous functions are dense in NB(X), then the following proper-
ties are equivalent ([17], Theorem 3):

(1) Every function in N"B(X) is B-quasicontinuous;

(2) Capp(F) = inf{Capp(G) : G open, F C G C X} for every F' C X.

The B-capacity satisfies the outer regularity condition (2) provided that
X is proper, B has absolutely continuous norm, B has the Vitali-Carathéodory
property and continuous functions are dense in NVB(X) [19]. We say that B
has the Vitali-Carathéodory property if for every f € B there is a semicontin-
uous function g € B such that f < g. If ¥ :[0,00) — [0,00) is a Young func-
tion, strictly increasing and doubling, then LY (X) has the Vitali-Carathéodory
property.

In view of the above discussion, Theorem 1 implies the following

COROLLARY 2. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm, has property (C) and has Vitali-
Carathéodory property. Assume that locally Lipschitz functions are dense in
NVB(X). Then, for every open set Q2 C X, the closure of Lipc (Q) in NVB(X)
is Né BQ).

In the case when B =LY (X) is an Orlicz space, where ¥ : [0, 00) — [0, 00)

is a doubling N-function, Corollary 2 gives the main result from [18], that
extends Theorem 5.8 from [4].

5. APPLICATIONS OF THE MAIN DENSITY RESULT

We recall an analogue of Mazur’s lemma for function-weak upper gradient
pairs in B x B.

LEMMA 9 ([17], Theorem 1). Let g; € B be a B-weak upper gradient of
uj € B in X, for all j > 1. Assume that u; — u and g; — g weakly in B, for
some u,g € B. Then there are some sequences (Uj)j>1 and (Gj)j>1 of convex
combinations

n; n;
Uj =Y Mejur, G5 = e,
k=j k=j
n;
where Ag; >0, Z)\kj =1, such that U; — u and G; — g in B. In addition,
k=j

a representative of g is a B-weak upper gradient of u in X.

PROPOSITION 3. Assume that Lipc () is dense in N&’B (), where Q C
X is an open set. Letu € N&’B(Q) and g € B be a (generalized) B-weak upper
gradient of u in Q. Then g is a (generalized) B-weak upper gradient of u in X.
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Proof. Note that g € B.

First assume that g is a B-weak upper gradient of v in 2. Since Lipc (£2)
is dense in N&’B(Q), there exists a sequence (uy),~; in Lipc (2) such that
kli)ngo lur — Ul y1.8(x) = 0. Then we can find, for each k > 1, an upper gradient

hy, of up,—w in X, such that ||hg||g < ||ux — @l|g+1/k. Note that g, := g+ hilq
is a B-weak upper gradient of ug in . By Lemma 6 b), g is a B-weak upper
gradient of ug in X. Since g, < g+ hy we see that p, = g+ hy, is also a B-weak
upper gradient of ug in X.

Since lim ||ug — ul|g =0 and lim ||px — g||g = 0, it follows by Lemma 9

k—o00 k—o00

that a representative of ¢ is a B-weak upper gradient of @ in X. Then g is a
generalized B-weak upper gradient of @ in X, by ([14], Lemma 6 a), but g is
Borel measurable, hence ¢ is a B-weak upper gradient of 7 in X.

Now, assume that g € B is a generalized B-weak upper gradient of u in €.
By ([14], Lemma 6 b), there exists a B-weak upper gradient h of w in 2, such
that h = g p-a.e. in Q. Then h € B. By the above argument, a representative
of h is a B-weak upper gradient of u in X. Since g = h p-a.e. in X, it follows by
([14], Lemma 6 a) that g is a generalized B-weak upper gradient of win X. [

COROLLARY 3. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm and has property (C). Assume
that locally Lipschitz functions are dense in NYB(X) and that all functions
in NYB(X) are B-quasicontinuous. If  C X is an open set, u € N&’B(Q)
and g € B is a (generalized) B-weak upper gradient of u in Q, then g is a
(generalized) B-weak upper gradient of u in X.

We will say that a p-measurable function u : @ — R on the open set
Q2 C X belongs to B if its extension by zero u : X — R belongs to B.

PROPOSITION 4. Assume that Lipc () is dense in Nol’B (Q), where Q C
X is an open set. For k > 1, let uy € N&’B(Q) and gr be a B-weak upper
gradient of uy in Q. Assume that there exist u : Q@ — R and g : Q — [0, 00]
such that up — u and g — g weakly in B. Then u € Ng’B(Q) and g is a
generalized B-weak upper gradient of u in Q.

Proof. By Proposition 3, g is a B-weak upper gradient of uy in X, for
k > 1. Since up — w and g, — ¢ weakly in B, it follows by Lemma 9 that a
representative of g is a B-weak upper gradient of @ in X. Since uw € B has the
generalized B-weak upper gradient g € B, we have u € N& B (©). Obviously, ¢
is a generalized B-weak upper gradient of v in 2. [

Given an open set {2 C X, we say that u € NZIO’CB(Q) itue Nllo’cB(Q’) for
every open set ' that is compactly contained in €.
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Using Theorem 1 we extend Theorem 5.10 from [4], replacing Newtonian
spaces based on Lebesgue spaces with Newtonian spaces based on more general
Banach function spaces.

THEOREM 2. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm and has property (C). Assume
that locally Lipschitz functions are dense in NYB(X) and that all functions
in NVB(X) are B-quasicontinuous. If Q C X is open, u € Nllo’?(Q) and

e > 0, then there exists a locally Lipschitz function v : Q@ — R such that
u—v e NVB(Q) and ||u— vl|yiB ) <e.

Proof. We follow Bjorn, Bjorn and Shanmugalingam [4]. Let ¢ > 0.
Any open set in a proper metric space possess an exhaustion by compact sets.
Then there are open sets 1 € Uy € ... € Q) € gy € ... € (2 such that

o0

Q= U Q. For each k > 1 we choose 1 € Lipc (k+1) so that np =1 on Qy
k=1

and 0 < n < 1 everywhere. Define inductively a sequence of functions (uy) k>1

k
such that u — ZUZ =u(l—=m)...(1 —ng) for £ > 1, namely uy := un; and
i=1
ug == u(l—=mn1)...(1 —nx_1) mg for & > 2. We have uy € Né’B (Qk+1 \m)
for k > 1, where Qg := ). Indeed, uy vanishes in (X \ Q) UQx_1 and uy € B.
Moreover, we can find a generalized B-weak upper gradient of ug in X, as
follows. Let g be an upper gradient of w in {249, such that the extension by zero
of g to X belongs to B. Since (1 —n1) ... (1 — nx—1) n is a L-Lipschitz function,
for some L > 0, taking values in [0, 1] and vanishing in €, 1\Qy_1, it follows by
Lemma 3 and Corollary 1 that (g + L |u|) Xqu,\@r 7 18 a generalized B-weak

upper gradient of uy in Q9. The extension by zero of (g + L |u|) X\ T
to X is a generalized B-weak upper gradient of uy in X and belongs to B.

k
For every = € () there exists k > 1 such that x € Qy, hence u (z) = Zuz(x)
i=1

oo
Then u (z) = Zuk (z) for every z € X.
k=1
By Theorem 1, there exists vy€Lipc (Qk+1\ Qk,l) such that [|ug— vy, HNLB(X)

oo
< €27%371, For each z € Q the sum ka (z) has at most three nonzero
k=1

oo
terms. Let v (z) = ka (), € X. Then v is locally Lipschitz in €.
k=1
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mce U — Vk < 00, 1t tollows by , eorem [.1.6) that the series
Si B it foll by ([3], Th [.1.6) that th i

Z (ug — vi) converges in B and its sum w € B satisfies ||w||g < Z llur — vkllg
k=1 k=1

< ¢/3. But every sequence that converges in B has a subsequence that con-
verges p-a.e. on X. Then w = u—v p-a.e. in {2 and choosing a representative of
w we may assume that w =u —v in Q. Since |lur — vgl[y1.8(x) < 277371 we
can choose an upper gradient gj, of u; — v; in X such that ||gx||g < 2'7*371,

o0
Then ng converges in B to some g € B, with ||g||g < 2¢/3, by ([3], The-
k=1

n n
orem I.1.6). Since Z(uk — i) — w in B and ng — g in B, as n — oo,
k=1 k=1
it follows by Lemma 9 that g is a B-weak upper gradient of w in X. Then
w € NVB(X) and lwllyisx) < wllg +lgllg <&, hence u—v € NVB(Q) and
lu—vllyiB) <e. O
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