
APPROXIMATION BY LIPSCHITZ FUNCTIONS
IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES

MARCELINA MOCANU

We prove that the density of locally Lipschitz functions in a global Sobolev space
based on a Banach function space implies the density of Lipschitz functions, with
compact support in a given open set, in the corresponding Sobolev space with
zero boundary values. In the case, when the Banach function space is a Lebesgue
space, we recover some density results of Björn, Björn and Shanmugalingam
(2008). Our results require neither a doubling measure nor the validity of a
Poincaré inequality in the underlying metric measure space.
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1. INTRODUCTION

In the following, (X, d, µ) is a metric measure space, i.e. a metric space
(X, d) endowed with a Borel regular measure µ, that is finite and positive
on balls. We use the definition given by Bennet and Sharpley [3] for Banach
function spaces over the σ-finite measure space (X,µ). The theory of Banach
function spaces is an axiomatic unifying framework for the study of Orlicz
spaces and Lorentz spaces, that generalize Lebesgue spaces.

Given a Banach function space B, the abstract Sobolev space of Newto-
nian type N1,B(X) consists of all functions u : X → R such that u ∈ B and u
has a B-weak upper gradient in B. The Banach space N1,B(X) is an extension
of Newtonian spaces N1.p (X) introduced by Shanmugalingam [21] (where B =
Lp (X), 1 ≤ p < ∞), of Orlicz-Sobolev spaces introduced by Aı̈ssaoui [1] and
by Tuominen [23] (where B is an Orlicz space over X) and of a class of New-
tonian Sobolev-Lorentz spaces introduced by Costea and Miranda [7] (where
B is the Lorentz space Lp,q (X) with 1 ≤ q ≤ p).

In the Euclidean case, when X = Ω is an open subset of Rn with the
Lebesgue measure µ, the Newtonian space N1,p (X) is the classical Sobolev
space W 1,p (Ω), where 1 ≤ p < ∞. The Sobolev space with zero boundary
values W 1,p

0 (Ω) is an important tool in PDE’s and calculus of variations, that
allows us to compare boundary values of functions in W 1,p (Ω). There are two
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equivalent definitions of W 1,p
0 (Ω). On one hand, W 1,p

0 (Ω) is the completion of

C1
0 (Ω) in W 1,p (Ω) ([5], IX.4). On the other hand, u belongs to W 1,p

0 (Ω) if u
can be extended to a function from the global Sobolev space W 1,p (Rn), such
that the trace of the extension vanishes on X \ Ω.

The second definition of Sobolev spaces with zero boundary values has
been extended to the metric setting, in the case of Newtonian functions based
on Lebesgue spaces [22], on Orlicz spaces [2] and on Banach function spaces
[16]. A real-valued function u on E ⊂ X belongs to the Newtonian space
N1,B

0 (E) of functions with zero boundary values on E if u has a representative

whose extension by zero to X belongs to N1,B(X). It is known that N1,B
0 (E)

is a closed subspace of the Banach space N1,B(X). In analysis on metric
measure spaces the role of smooth functions is played by Lipschitz continuous
functions. The purpose of this paper is to provide some sufficient conditions
for the density of Lipschitz functions with compact support in Ω in the space
N1,B

0 (Ω) , where Ω ⊂ X is open.

The density of Lipschitz functions in Newtonian spaces N1,p (X) has been
proved in doubling metric measure spaces (X, d, µ) supporting a weak (1, p)-
Poincaré inequality [21]. Corresponding density results have been proved for
Orlicz-Sobolev spaces [1, 23] and Sobolev-Lorentz spaces [7]. Without assum-
ing that µ is doubling or that X supports a Poincaré inequality, Björn, Björn
and Shanmugalingam [4] proved that in a proper metric space X the density
of locally Lipschitz functions implies the density in N1.p

0 (Ω) of the set of com-
pactly supported Lipschitz functions. So, in this case, we recover the first route
to the definition of the Sobolev spaces with zero boundary values. The density
results in [4] have been extended in [18] by replacing the Lebesgue space Lp (X)
by an Orlicz space LΨ (X), where Ψ is a doubling N -function. In this paper,
we generalize the results from [18] to the case of Newtonian spaces based on
Banach function spaces that satisfy some natural assumptions.

2. PRELIMINARIES

Denote the open balls, respectively the closed balls in the metric space
(X, d) by B(x, r) = {y ∈ X : d(y, x) < r} and B(x, r) = {y ∈ X : d(y, x) ≤ r}.
A metric space is called proper if every closed ball of the space is compact.

Let (X,µ) be a σ-finite measure space and M+(X) be the set of µ-
measurable non-negative functions on X.

Definition 1 ([3]). A function ρ : M+(X) → [0,∞] is called a Banach
function norm if, for all functions f , g, fn (n ≥ 1) in M+(X), for all constants
a ≥ 0 and for all measurable sets E ⊂ X, the following properties hold:
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(P1) ρ(f) = 0 iff f = 0 µ-a.e.; ρ(af) = aρ(f); ρ(f + g) ≤ ρ(f) + ρ(g).

(P2) If 0 ≤ g ≤ f µ-a.e., then ρ(g) ≤ ρ(f).

(P3) If 0 ≤ fn ↑ f µ-a.e., then ρ(fn) ↑ ρ(f).

(P4) If µ(E) <∞, then ρ(χE) <∞.

(P5) If µ(E) < ∞, then

∫
E

f dµ ≤ CEρ(f), for some constant CE ∈

(0,+∞) depending only on E and ρ.

The collection B of the µ-measurable functions f : X → [−∞,+∞] for
which ρ(|f |) <∞ is called a Banach function space on X. For f ∈ B define

‖f‖B = ρ(|f |).

We identify two functions that coincide µ-a.e. and denote by ≈ the rela-
tion of equality µ-a.e. If f, g : X → R such that ρ(|f |) < ∞ and f = g µ-a.e,
then g is µ-measurable and ρ (|g|) = ρ (|f |) < ∞. Moreover, by Definition 1
(P5) and the σ-finiteness of µ, it follows that f and g are finite µ-a.e., hence,
f − g = 0 µ−a.e. and therefore, ‖f − g‖B = 0.

Definition 2 ([3], Definition I.3.1). A function f ∈ B is said to have
absolutely continuous norm in B if and only if ‖fχEk

‖B → 0 for every sequence

(Ek)k≥1 of measurable sets satisfying µ

(
lim sup
k→∞

Ek

)
= 0. The space B is said

to have absolutely continuous norm if every f ∈ B has absolutely continuous
norm.

An Orlicz space LΨ (X) has absolutely continuous norm if the Young
function Ψ is doubling. The (p, q)-norm of a Lorentz space Lp,q (X) with
1 < p < ∞ and 1 ≤ q < ∞ is absolutely continuous [7]. In L∞ (X) the only
function having an absolutely continuous norm is the null function.

In a space with absolutely continuous norm, a suitable form of Lebesgue
dominated convergence theorem holds.

Lemma 1 ([3], Proposition I.3.6). A function f in a Banach function
space B has absolutely continuous norm if and only if the following condition
holds: whenever fn, n ≥ 1 and g are µ-measurable functions satisfying |fn| ≤
|f | for all n and fn → g µ-a.e., then ‖fn − g‖B → 0 as n→∞.

A Banach function space B is said to have property (C) if lim
n→∞

µ (En) = 0

for every sequence En ⊂ X, n ≥ 1 of measurable sets satisfying the condition
lim
n→∞

‖χEn‖B = 0.

If B =LΨ (X) is an Orlicz space with the Luxemburg norm, then ‖χE‖B =
1/Ψ−1 (1/µ (E)) and if B =Lp,q (X) is a Lorentz space with the p, q-norm,



462 Marcelina Mocanu 4

1 < p < ∞ and 1 ≤ q < ∞, then ‖χE‖B = c (p, q)µ (E)1/p, where c (p, q) =

(p/q)1/q. If B =L∞ (X), then ‖χE‖B = sgn (µ (E)). All these three types
of Banach function spaces have property (C). Every rearrangement invariant
Banach function space over a resonant measure space has property (C), as
follows from ([3], Corollary II. 5.3).

Let B be a Banach function space with a norm ‖·‖B. The B-modulus of
a family Γ of curves in X is defined by MB(Γ) = inf ‖ρ‖B ,where the infimum

is taken over all Borel functions ρ : X → [0,+∞] satisfying

∫
γ

ρds ≥ 1 for all

rectifiable curves γ in X [17].

A Borel measurable function g : X → [0,+∞] is said to be an upper
gradient of a function u : X → R if for every rectifiable curve γ : [a, b] → X
the following inequality holds

(2.1) |u(γ(a))− u(γ(b))| ≤
∫
γ

gds.

A B-weak upper gradient of a function u : X → R is a Borel measurable
function g : X → [0,∞] such that (2.1) holds for all rectifiable curves γ :
[a, b] → X except for a curve family with zero B-modulus. We can weaken
the assumption that g is Borel measurable in the definition of a B-weak upper
gradient, saying that g : X → [0,∞] is a generalized B-weak upper gradient of a
function u : X → R if there exists a curve family Γ0 ⊂ Γrec with ModB(Γ0) = 0
such that for every γ ∈ Γrec\Γ0 the function g◦γ : [0, l (γ)]→ [0,∞] is Lebesgue
measurable and (2.1) holds.

For every function u : X → R we will denote by Gu,B the family of all

B-weak upper gradients g ∈ B of u in X. Let Ñ1,B(X) be the set formed
from the real-valued functions u ∈ B for which Gu,B is non-empty. The func-

tional ‖u‖1,B := ‖u‖B + inf {‖g‖B : g ∈ Gu,B} is a seminorm on Ñ1,B(X).

The Newtonian-type space N1,B(X) is defined as the quotient normed space
of Ñ1,B(X) with respect to the equivalence relation defined by: u ∼ v if
‖u− v‖1,B = 0. The norm on N1,B(X) corresponding to the seminorm ‖·‖1,B
is denoted by ‖·‖N1,B(X) [17].

In the definition of Ñ1,B(X), we can use alternatively upper gradients
(respectively, generalized B-weak upper gradients) instead of B-weak upper
gradients. For every B-weak upper gradient g ∈ B of a function u : X →
R there is a decreasing sequence (gi)i≥1 of upper gradients of u such that
lim
i→∞
‖gi − g‖B = 0 ([17], Proposition 2). The case B =Lp(X) was proved by

Koskela and MacManus [12]. For every generalized B-weak upper gradient h
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of u that is finite µ-a.e. there exists a B-weak upper gradient g of u such that
g = h µ-almost everywhere in X. Generalized B-weak upper gradients are
stable under modifications µ-a.e. ([14], Lemma 6). For all u ∈ N1,B(X) we
have

‖u‖
N1,B(X)

− ‖u‖B
= inf{‖h‖B : h ∈ B is a generalized B-weak upper gradient of u}
= inf {‖g‖B : g ∈ B is an upper gradient of u}

A Sobolev capacity with respect to the space N1,B(X) is defined by
CapB(E) = inf{‖u‖N1,B(X) : u ∈ N1,B(X) : u ≥ 1 on E}. Note that

CapB(E) = inf{‖u‖N1,B(X) : u ∈ N1,B(X) : 0 ≤ u ≤ 1, u = 1 on E}. It
was shown that B-capacity is an outer measure, that represents the correct
gauge for distinguishing between two functions in N1,B(X) [17].

We recall the formal definition of a Newtonian space with zero boundary
values, based on a Banach function space [16]. Denote by Ñ1,B

0 (E) be the

collection of functions u : E → R for which there exists u ∈ Ñ1,B(X) such that
u = u µ-a.e. on E and CapB({x ∈ X\E : u(x) 6= 0}) = 0. If u, v ∈ Ñ1,B

0 (E)
define u ' v if u = v µ-a.e. on E. Then ' is an equivalence relation. We
consider the quotient space N1,B

0 (E) = Ñ1,B
0 (E)/ '. A norm on N1,B

0 (E) is
unambiguously defined by ‖u‖

N1,B
0 (E)

:= ‖u‖N1,B(X).

Given u ∈ Ñ1,B
0 (E), we define ˜̃u(x) = u(x) if x ∈ E and ˜̃u(x) = 0 if

x ∈ X \ E. Since ˜̃u = u outside a set of B-capacity zero, it follows that˜̃u ∈ Ñ1,B(X) and ˜̃u defines the same equivalence class in N1,B(X) as u. In
the following, we will identify each u ∈ N1,B

0 (E) to the corresponding function˜̃u ∈ N1,B(X), that will be also denoted by u.

3. PRELIMINARY DENSITY RESULTS

In the proofs of density results it is very important to build new gradients
from old ones. We will need to cut and paste (generalized) weak upper gradients
and to have a counterpart for the product rule.

Since every generalized B-weak upper gradient g ∈ B of a function
u : X → R coincides µ-a.e. with a B-weak upper gradient of u, several results
regarding weak upper gradients can be extended to generalized weak upper
gradients.

A function u : X → R is said to be absolutely continuous (AC) on a
compact rectifiable curve γ parameterized by arc-length if u◦γ : [0, l (γ)]→ R is
absolutely continuous. The function u is said to be AC on B-almost every curve
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if there exists a family Γ0 ⊂ Γrec with MB (Γ0) = 0, such that u is absolutely
continuous on each curve γ ∈ Γrec \ Γ0. We will denote by ACCB (X) the
family of all functions u : X → R that are AC on B-almost every curve. Every
function u : X → R that has a B-weak upper gradient g ∈ B in X belongs to
ACCB (X), in particular N1,B (X) ⊂ ACCB (X) ([17], Proposition 3).

Lemma 2 ([15]). Assume that uk : X → R, k ∈ {1, 2, 3}, where u1 ∈
ACCB (X) and uk has a generalized B-weak upper gradient gk ∈ B in X
for k ∈ {2, 3}. If F ⊂ X is a µ-measurable set such that u1|F = u2|F and
u1|X\F = u3|X\F , then the function g1 := g2χF + g3χX\F is a generalized
B-weak upper gradient of u1 in X.

Corollary 1. Assume that u :X→R , c0∈ R and F ⊂{x ∈ X :u (x)=c0}
is a µ-measurable set. If u has a generalized B-weak upper gradient g ∈ B in
X, then gχX\F is also a generalized B-weak upper gradient of u in X.

Lemma 3 ([14]). Assume that uk : X → R is a µ-measurable function
which has a B-weak upper gradient gk ∈ B in X, for k ∈ {1, 2}. Then the
function g := |u1| g2 + |u2| g1 is a generalized B-weak upper gradient of u :=
u1u2 in X. Moreover, if u1 and u2 are bounded, then g ∈ B.

Some natural assumptions on B imply the density in N1,B(X) of the set
of bounded functions from N1,B(X).

Lemma 4 ([14]). Assume that the Banach function space B has absolutely
continuous norm and has property (C). Let u ∈ N1,B(X) be nonnegative. For
each integer k ≥ 0 we define uk := min {u, k}. Then uk ∈ B for each k ≥ 0
and the sequence (uk)k≥0 converges to u in the norm of N1,B(X).

We will need to approximate from below Newtonian functions that are
non-negative, bounded and with bounded support.

Lemma 5. Assume that B has absolutely continuous norm. Let u ∈
N1,B(X) be non-negative, bounded and with bounded support. Then uε :=
max{u− ε, 0} tends to u in N1,B(X) as ε decreases to zero.

Proof. Denote S := supp u. For every ε > 0 we have |uε − u| ≤ u in X
and u ∈ B, therefore uε ∈ B.

It suffices to prove that lim
n→∞

max{u − εn, 0} = u in N1,B(X) whenever

(εn)n≥1 is a sequence of positive numbers decreasing to zero. Denote un :=
max{u − εn, 0}, n ≥ 1. Since (εn)n≥1 is decreasing, the sequence (un) is non-
decreasing.

Since |un−u| ≤ u and un−u→0 onX as n→∞, we get lim
n→∞

‖un−u‖B=0,

by Lemma 1.
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Let gu ∈ B be an upper gradient of u.

For each ε > 0, denote Fε = {x ∈ X : 0 < u(x) < ε}. Then Fε
is µ-measurable and uε (x) − u (x) ∈ {−ε, 0} , whenever x ∈ X \ Fε, while
uε (x)−u (x) = −u (x) for all x ∈ Fε. Applying two times Corollary 1, it follows
that guχFε is a generalized B-weak upper gradient of uε − u. In particular,
denoting Fn := Fεn we see that

(3.1) ‖un − u‖N1,B(X) ≤ ‖un − u‖B + ‖guχFn‖B ,

for n ≥ 1.

Since (εn)n≥1 is decreasing and tends to zero, the sequence of sets (Fn)n≥1

is decreasing and lim
n→∞

Fn =
∞⋂
n=1

Fn = ∅. Since gu ∈ B has absolutely continuous

norm, we have lim
n→∞

‖guχFn‖B = 0.

By inequality (3.1), we obtain lim
n→∞

un = u in N1,B(X), q.e.d. �

4. DENSITY OF COMPACTLY SUPPORTED LIPSCHITZ FUNCTIONS
IN NEWTONIAN SPACES

Let Ω ⊂ X be an open set. We will denote by LipC(Ω) the family of all
Lipschitz functions u : Ω → R with the property that the support of u is a
compact subset of Ω. It is easy to see that every L-Lipschitz function u : Ω→ R
admits as an upper gradient the constant function L > 0. Moreover, it is
known that lipu is an upper gradient of a Lipschitz function u : Ω→ R, where
lipu(x) = lim inf

r→0

1
rL(x, u, r) with L(x, u, r) = sup{|u(y)− u(x)| : d(x, y) ≤ r}

([8], Lemma 6.7).

For every u : E → R we denote by ũ the extension by zero of u to X,
defined by ũ(x) = u(x) if x ∈ E and ũ(x) = 0 if x ∈ X \ E.

Lemma 6. Let u : Ω → R be L-Lipschitz, where L > 0 and denote S :=
supp u.

a) LχS is an upper gradient of u in Ω;

b) If u ∈ LipC(Ω) and g : Ω → R is an upper gradient of u in Ω, then
the extension by zero of g to X is an upper gradient in X for the extension by
zero of u to X;

c) If u ∈ LipC(Ω), then LχS is an upper gradient in X for the extension
by zero of u to X.

Proof. Clearly, lipu ≤ L in Ω. Since S is a closed set, LχS is a Borel
function.
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a) If S = Ω, there is nothing to prove. Suppose that S 6= Ω. Since u
vanishes identically on the open set Ω\S, we have lipu (x) = 0 for all x ∈ Ω\S.
Then lipu ≤ LχS in Ω, hence, LχS is an upper gradient of u in Ω.

b) Let ũ : X → R and g̃ : X → R be the extensions by zero of u and
g, respectively. Let γ : [a, b] → X be a rectifiable curve. We check that

D := |ũ (γ (a))− ũ (γ (b))| ≤
∫
γ

g̃ds =: I. Since ũ is continuous on X, the set

{t ∈ [a, b] : (ũ ◦ γ) (t) = 0} is compact, therefore it contains its lower bound a0

and its upper bound b0. If a < a0, then γ ([a, a0)) ⊂ {x ∈ X : u (x) 6= 0}, hence
γ ([a, a0]) ⊂ S ⊂ Ω, by the continuity of γ. Similarly, if b0 < b, then γ ([b0, b]) ⊂
S ⊂ Ω. Note that u (γ (a0)) = u (γ (b0)) = 0. Assuming that a < a0 and b0 < b
we getD = |u (γ (a))− u (γ (b))| ≤ |u (γ (a))− u (γ (a0))|+|u (γ (b0))−u (γ (b))|
≤

∫
γ|[a,a0]

gds+

∫
γ|[b0,b]

gds ≤ I. If a = a0 and b0 = b, then D = 0 ≤ I. If a = a0

and b0 < b, then D = |u (γ (b0))− u (γ (b))| ≤
∫

γ|[b0,b]

gds ≤ I. If a < a0 and

b0 = b, then D = |u (γ (a))− u (γ (a0))| ≤
∫

γ|[a,a0]

gds ≤ I.

c) According to a), LχS is an upper gradient of u in Ω, hence, by b), LχS
is an upper gradient of ũ in X. �

Let B a Banach function space B over X. Using properties (P1), (P2)
and (P4) from Definition 1 it follows that the extension by zero of any function
u ∈ LipC(Ω) belongs to N1,B (X). Thus, LipC(Ω) ⊂ N1,B

0 (Ω).

It is natural to ask for assumptions on X and B under which LipC(Ω) is
dense in N1,B

0 (Ω).

First, we look at the density in the global Newtonian space N1,B (X) of
functions on X having bounded support.

Lemma 7. Let S be the family of functions in N1,B (X) that have bounded
support. If B has absolutely continuous norm, then S is dense in N1,B (X).

Proof. If X is bounded, then S = N1,B (X). Assuming that X is un-
bounded, fix x0 ∈ X and write X as X = ∪∞k=1Xk, where Xk := B (x0, k) for
each integer k ≥ 1.

Let v ∈ N1,B (X). We will approximate v in N1,B (X) by a sequence of
functions in S, using multiplication by Lipschitz cut-off functions.

For each integer k ≥ 1, consider the function ηk : X → R, ηk(x) =
max{1 − dist(x,Xk), 0}. Note that ηk is 1-Lipschitz, 0 ≤ ηk ≤ 1 on X and
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supp ηk ⊂ Xk+1 is bounded.

The function vηk belongs to B, since v ∈ B and ηk is bounded. We
estimate the norm in N1,B (X) of v − vηk = v (1− ηk), taking into account
that this function vanishes on Xk. Let gv ∈ B be an upper gradient of v in
X. Using Lemma 3, taking into account that 0 ≤ ηk ≤ 1 and L = 1 is an
upper gradient of ηk, then applying Corollary 1, we see that (|v|+ gv)χX\Xk

is a generalized B-weak upper gradient of v − vηk in X. Then

‖v − vηk‖N1,B(X) ≤
∥∥vχX\Xk

∥∥
B

+
∥∥(|v|+ gv)χX\Xk

∥∥
B

≤ 2
∥∥vχX\Xk

∥∥
B

+
∥∥gvχX\Xk

∥∥
B
.

Since lim sup
k→∞

(X \Xk)=∅ and v, gv ∈ B have absolutely continuous norm,

we get lim
k→∞

∥∥vχX\Xk

∥∥
B

= lim
k→∞

∥∥gvχX\Xk

∥∥
B

= 0. Then lim
k→∞

‖v−vηk‖N1,B(X)

= 0. �

The following result provides sufficient conditions for the density of Lip-
schitz compactly supported functions on X in the global Newtonian space
N1,B (X).

Proposition 1. Let X be proper and assume that B has absolutely
continuous norm. If locally Lipschitz functions are dense in N1,B (X), then
LipC (X) is a dense subset of N1,B (X).

Proof. If X is bounded, then it is compact and LipC (X) = Liploc (X).
Assuming that X is unbounded, let Xk and ηk be as in the proof of Lemma 7,
for k ≥ 1. Since X is proper, each Xk is compact.

Let u ∈ N1,B (X) and ε > 0. By our assumption, there exists v ∈
Liploc (X)∩ N1,B (X) such that ‖u− v‖N1,B(X) <

ε
2 .

The function vηk ∈ N1,B (X) is Lipschitz and compactly supported. By
the proof of Lemma 7, lim

k→∞
‖v − vηk‖N1,B(X) = 0. Pick an integer k0 ≥ 1 such

that ‖v − vηk0‖N1,B(X) <
ε
2 .

We obtain ‖u− vηk0‖N1,B(X) < ε and the claim follows. �

Next, we move to the study of dense subclasses ofN1,B
0 (E), where E ⊂ X.

Lemma 8. Let S be the family of functions in N1,B (X) that have bounded
support and let B be the family of bounded functions in N1,B (X). Assume that
B has absolutely continuous norm. Let E ⊂ X. Then S∩N1,B

0 (E) is dense

in N1,B
0 (E). Moreover, if B has property (C), then B ∩N1,B

0 (E) is dense in

N1,B
0 (E).

Proof. Let v ∈ N1,B
0 (E).



468 Marcelina Mocanu 10

If X is bounded, then v ∈ S∩N1,B
0 (E). If X is unbounded, taking the

sequence (ηk)k≥1 as in the proof of Lemma 7, we see that vηk ∈ S∩N1,B
0 (E)

for k ≥ 1 and lim
k→∞

vηk = v in N1,B (X).

Write v = v+− v−, where v+ := max{v, 0} and v− := max{−v, 0}. Then
v+, v− ∈ N1,B

0 (E). For each integer k ≥ 1 define v±k := min{v±, k}. Then

v±k ∈ B ∩ N
1,B
0 (E), hence v+

k − v
−
k ∈ B ∩ N

1,B
0 (E). By Lemma 4, we have

lim
k→∞

v±k = v± in N1,B (X), hence lim
k→∞

(
v+
k − v

−
k

)
= v in N1,B (X). �

In the case when E = Ω is an open subset of X, we will obtain a stronger
version of the density in N1,B

0 (E) of functions with bounded support, by re-

quiring that all their supports are contained in E. If u ∈ N1,B
0 (Ω), then

supp (uηk) ⊂ Ω is bounded, but it is possible to have supp (uηk)∩∂Ω 6= ∅, e.g.
in the case when u is continuous on X.

Example 1. Assume that u ∈ N1,B
0 (Ω)∩C (X) is non-negative, not iden-

tically zero. Since u = 0 on X \ Ω and u ∈ C (X), we have u = 0 on ∂Ω. Let
ε > 0. For each x ∈ ∂Ω there exists an open set Vε,x containing x, such that

0 ≤ u (y) < ε for all y ∈ Vε,x. Then Dε :=
⋃
x∈∂Ω

Vε,x is an open superset of the

boundary ∂Ω. Let 0 < ε0 < sup
z∈Ω

u (x). Then Dε ∩ Ω is a proper subset of Ω

whenever 0 < ε ≤ ε0. Consider uε := max {u− ε, 0} as in Lemma 5. Note that
supp uε ⊂ supp u. Moreover, uε (x) = 0 if x ∈ (X \ Ω) ∪ Dε. For 0 < ε ≤ ε0

we have suppuε ⊂ Ω. If B has absolutely continuous norm, then uε → u in
N1,B (X) as ε decreases to zero. So, every function in N1,B

0 (Ω) ∩ C (X) is
the limit in N1,B (X) of a sequence of functions having the supports contained
in Ω.

In order to get an approximating sequence (vn)n≥1 for u, with supports
(supp vn)n≥1 staying away from the boundary ∂Ω, similar to (uεn)n≥1 with
εn ↓ 0, we will assume that u is B-quasicontinuous.

A function u : X → R is called B-quasicontinuous if for every ε > 0 there
is a set E ⊂ X with CapB (E) < ε such that the restriction of u to X \ E is
continuous.

Proposition 2. Let B a Banach function space that has absolutely con-
tinuous norm and has property (C). Assume that all functions in N1,B(X) are
B-quasicontinuous. Let Ω ⊂ X be open. Then every function u ∈ N1,B

0 (Ω)
is the limit in N1,B(X) of a sequence of functions that have bounded support
contained in Ω.

Proof. We follow the lines of the proof of Lemma 5.9 from [4]. Using
Lemma 8, we may assume that u is a bounded function and that u has a
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bounded support. We also may assume that u is non-negative. Let uε :=
max {u− ε, 0} for ε > 0. Note that supp uε ⊂ {x ∈ X : u(x) ≥ ε}. Since u is
bounded, uε is also bounded for every ε > 0.

Taking advantage of the fact that u is B-quasicontinuous on X, we find a
sequence of open sets Uj , j ≥ 1, such that each restriction u|X\Uj

is continuous

and lim
j→∞

CapB(Uj) = 0. By the definition of the Sobolev B-capacity and the

remark following it, for each j ≥ 1 there exists wj ∈ N1,B(X) such that 0 ≤
wj ≤ 1, wj = 1 on Uj and ‖wj‖N1,B(X) < CapB(Uj)+ 1

j . By [17, Proposition 2]

there exists an upper gradient gj of wj such that ‖gj‖B≤‖wj‖N1,B(X) + 1/j.

Then lim
j→∞

‖wj‖B = lim
j→∞

‖gj‖B = 0. By Theorem I.1.4 from [3], every sequence

that converges in B to some function f contains a subsequence that is point-
wise µ-almost everywhere convergent to f . Passing to a subsequence, we may
assume that wj → 0 µ-a.e. in X.

Fix ε > 0. By the continuity of u|X\Uj
, the set {x ∈ X \ Uj : u(x) < ε}

is relatively open in X \ Uj . Then the set Wε,j := Uj ∪ {x ∈ X : u(x) < ε} is
open in X. Since u = 0 in X \Ω and u ≥ ε in X \Wε,j , the closed set X \Wε,j

is contained in Ω∩ supp u. Since supp u is bounded, X \Wε,j is also bounded.

Define the functions uε,j := (1 − wj)uε for j ≥ 1. Then supp uε,j ⊂
X \Wε,j , therefore supp uε,j ⊂ Ω and supp uε,j bounded. We will prove that
uε,j → uε in N1,B(X) as j →∞.

We have ‖uε,j − uε‖B = ‖wjuε‖B. Since |wjuε| ≤ uε for all j ≥ 1,
wjuε → 0 µ-a.e. and uε ∈ B has absolutely continuous norm, we have
lim
j→∞

‖uε,j − uε‖B = 0, by Lemma 1.

Let g ∈ B be an upper gradient of uε. By Lemma 3, taking into account
that 0 ≤ uε ≤ ‖uε‖∞, it follows that ρε,j := ‖uε‖∞ gj + wjg is a generalized
B-weak upper gradient of uε,j − uε. But lim

j→∞
‖gj‖B = 0, hence ‖uε‖∞ gj → 0

in B as j → ∞. Since |wjg| ≤ g for all j ≥ 1, wjg → 0 µ-a.e. and g ∈ B has
absolutely continuous norm, we have lim

j→∞
‖wjg‖B = 0, by Lemma 1. Then

lim
j→∞

‖ρε,j‖B = 0.

But ‖uε,j − uε‖N1,B(X) ≤ ‖uε,j − uε‖B + ‖ρε,j‖B for all j. Then

lim
j→∞

‖uε,j − uε‖N1,B(X) = 0.

By Lemma 5, we have lim
ε↘0
‖uε − u‖N1,B(X) = 0. Using a diagonal ar-

gument we can find, for every sequence (uεk)k≥1 with (εk)k≥1 decreasing to
zero, an associated sequence of functions uk := uεk,jk , k ≥ 1 such that
lim
k→∞

‖uεk,jk − u‖N1,B(X) = 0. �
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Now, we can prove our main result, which is a consequence and an ex-
tension of Proposition 1.

Theorem 1. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm and has property (C). Assume
that locally Lipschitz functions are dense in N1,B(X) and that all functions in
N1,B(X) are B-quasicontinuous. Then, for every open set Ω ⊂ X, the closure
of LipC (Ω) in N1,B(X) is N1,B

0 (Ω).

Proof. If Ω = X, then N1,B
0 (Ω) = N1,B(X) and the proof will be com-

pleted by Proposition 1. Assume that Ω 6= X. We will identify every function
defined on Ω with its extension by zero. Let u ∈ N1,B

0 (Ω). Fix ε > 0. We
prove that there exists v ∈ LipC (Ω) such that ‖u− v‖N1,B(X) < ε.

Using Proposition 2, we can choose w ∈ N1,B(X) with a bounded support
suppw ⊂ Ω, such that ‖u− w‖N1,B(X) <

ε
2 . Note that suppw is compact, since

it is closed and bounded in the proper metric space X.
Let δ := 1

2 min {dist (suppw,X \ Ω) , 1}. There exists a Lipschitz cut-off
function η ∈ LipC (Ω) with 0 ≤ η ≤ 1, η = 1 on suppw, having an upper
gradient gη ≤ 1/δ.

By Proposition 1, there exists f(ε)∈LipC(X) such that ‖w −f (ε)‖N1,B(X)

< ε. Note that f (ε) η ∈ LipC (Ω). Since |f (ε)− f (ε) η| ≤ |f (ε)|χX\suppw
≤ |w − f (ε)| on X, we have ‖f (ε)− f (ε) η‖B ≤

∥∥|f (ε)|χX\suppw
∥∥
B

≤ ‖w − f (ε)‖B < ε, by (P2).
Assume that gε ∈ B is an upper gradient of f (ε). By Lemma 3, taking

into account that 0 ≤ η ≤ 1, and by Corollary 1, it follows that the func-
tion ρε := (|f (ε)| gη + gε)χX\suppw is a generalized B-weak upper gradient

of f (ε) − f (ε) η. We have ‖ρε‖B ≤
1
δ

∥∥|f (ε)|χX\suppw
∥∥
B

+
∥∥gεχX\suppw∥∥B.

Then

(4.1) ‖f (ε)− f (ε) η‖N1,B(X) ≤ ‖f (ε)− f (ε) η‖B + ‖ρε‖B < (δ + 1) ε/δ

+
∥∥gεχX\suppw∥∥B .

We show that we can choose gε such that
∥∥gεχX\suppw∥∥B < 2ε. Since

‖w − f (ε)‖N1,B(X) < ε, we can choose by ([17], Proposition 2) an upper gra-
dient hε ∈ B of w − f (ε) such that ‖hε‖B < 2ε. Let g ∈ B be any upper
gradient of f (ε). Since f (ε) = f (ε)− w on X \ suppw, it follows by Lemma
2 that gε := hεχX\suppw + gχsuppw is a generalized B-weak upper gradient of
f (ε). Then gεχX\suppw = hεχX\suppw, hence

∥∥gεχX\suppw∥∥B ≤ ‖hε‖B < 2ε,
q.e.d.

With the above choice of gε, (4.1) implies ‖f (ε)−f (ε) η‖N1,B(X) <
3δ+1
δ ε,

hence ‖w − f (ε) η‖N1,B(X) < 4δ+1
δ ε. For ψ := f

(
εδ

8δ+2

)
it follows that
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‖w − ψη‖N1,B(X) <
ε
2 . Then the function v := ψη satisfies all requirements. �

If continuous functions are dense in N1,B(X), then the following proper-
ties are equivalent ([17], Theorem 3):

(1) Every function in N1,B(X) is B-quasicontinuous;
(2) CapB(F ) = inf{CapB(G) : G open, F ⊂ G ⊂ X} for every F ⊂ X.
The B-capacity satisfies the outer regularity condition (2) provided that

X is proper, B has absolutely continuous norm, B has the Vitali-Carathéodory
property and continuous functions are dense in N1,B(X) [19]. We say that B
has the Vitali-Carathéodory property if for every f ∈ B there is a semicontin-
uous function g ∈ B such that f ≤ g. If Ψ : [0,∞) → [0,∞) is a Young func-
tion, strictly increasing and doubling, then LΨ(X) has the Vitali-Carathéodory
property.

In view of the above discussion, Theorem 1 implies the following

Corollary 2. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm, has property (C) and has Vitali-
Carathéodory property. Assume that locally Lipschitz functions are dense in
N1,B(X). Then, for every open set Ω ⊂ X, the closure of LipC (Ω) in N1,B(X)
is N1,B

0 (Ω).

In the case when B =LΨ (X) is an Orlicz space, where Ψ : [0,∞)→ [0,∞)
is a doubling N -function, Corollary 2 gives the main result from [18], that
extends Theorem 5.8 from [4].

5. APPLICATIONS OF THE MAIN DENSITY RESULT

We recall an analogue of Mazur’s lemma for function-weak upper gradient
pairs in B×B.

Lemma 9 ([17], Theorem 1). Let gj ∈ B be a B-weak upper gradient of
uj ∈ B in X, for all j ≥ 1. Assume that uj → u and gj → g weakly in B, for
some u, g ∈ B. Then there are some sequences (Uj)j≥1 and (Gj)j≥1 of convex
combinations

Uj =

nj∑
k=j

λkjuk, Gj =

nj∑
k=j

λkjgk,

where λkj ≥ 0,

nj∑
k=j

λkj = 1, such that Uj → u and Gj → g in B. In addition,

a representative of g is a B-weak upper gradient of u in X.

Proposition 3. Assume that LipC (Ω) is dense in N1,B
0 (Ω), where Ω ⊂

X is an open set. Let u ∈ N1,B
0 (Ω) and g ∈ B be a (generalized) B-weak upper

gradient of u in Ω. Then g̃ is a (generalized) B-weak upper gradient of ũ in X.
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Proof. Note that g̃ ∈ B.

First assume that g is a B-weak upper gradient of u in Ω. Since LipC (Ω)
is dense in N1,B

0 (Ω), there exists a sequence (uk)k≥1 in LipC (Ω) such that
lim
k→∞

‖ũk − ũ‖N1,B(X) = 0. Then we can find, for each k ≥ 1, an upper gradient

hk of ũk−ũ in X, such that ‖hk‖B < ‖ũk − ũ‖B+1/k. Note that gk := g+hk|Ω
is a B-weak upper gradient of uk in Ω. By Lemma 6 b), g̃k is a B-weak upper
gradient of ũk in X. Since g̃k ≤ g̃+hk we see that ρk = g̃+hk is also a B-weak
upper gradient of ũk in X.

Since lim
k→∞

‖ũk − ũ‖B = 0 and lim
k→∞

‖ρk − g̃‖B = 0, it follows by Lemma 9

that a representative of g̃ is a B-weak upper gradient of ũ in X. Then g̃ is a
generalized B-weak upper gradient of ũ in X, by ([14], Lemma 6 a), but g̃ is
Borel measurable, hence g̃ is a B-weak upper gradient of ũ in X.

Now, assume that g ∈ B is a generalized B-weak upper gradient of u in Ω.
By ([14], Lemma 6 b), there exists a B-weak upper gradient h of u in Ω, such
that h = g µ-a.e. in Ω. Then h ∈ B. By the above argument, a representative
of h̃ is a B-weak upper gradient of ũ in X. Since g̃ = h̃ µ-a.e. in X, it follows by
([14], Lemma 6 a) that g̃ is a generalized B-weak upper gradient of ũ in X. �

Corollary 3. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm and has property (C). Assume
that locally Lipschitz functions are dense in N1,B(X) and that all functions
in N1,B(X) are B-quasicontinuous. If Ω ⊂ X is an open set, u ∈ N1,B

0 (Ω)
and g ∈ B is a (generalized) B-weak upper gradient of u in Ω, then g̃ is a
(generalized) B-weak upper gradient of ũ in X.

We will say that a µ-measurable function u : Ω → R on the open set
Ω ⊂ X belongs to B if its extension by zero ũ : X → R belongs to B.

Proposition 4. Assume that LipC (Ω) is dense in N1,B
0 (Ω), where Ω ⊂

X is an open set. For k ≥ 1, let uk ∈ N1,B
0 (Ω) and gk be a B-weak upper

gradient of uk in Ω. Assume that there exist u : Ω → R and g : Ω → [0,∞]
such that ũk → ũ and g̃k → g̃ weakly in B. Then u ∈ N1,B

0 (Ω) and g is a
generalized B-weak upper gradient of u in Ω.

Proof. By Proposition 3, g̃k is a B-weak upper gradient of ũk in X, for
k ≥ 1. Since ũk → ũ and g̃k → g̃ weakly in B, it follows by Lemma 9 that a
representative of g̃ is a B-weak upper gradient of ũ in X. Since ũ ∈ B has the
generalized B-weak upper gradient g̃ ∈ B, we have u ∈ N1,B

0 (Ω). Obviously, g
is a generalized B-weak upper gradient of u in Ω. �

Given an open set Ω ⊂ X, we say that u ∈ N1,B
loc (Ω) if u ∈ N1,B

loc (Ω′) for
every open set Ω′ that is compactly contained in Ω.
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Using Theorem 1 we extend Theorem 5.10 from [4], replacing Newtonian
spaces based on Lebesgue spaces with Newtonian spaces based on more general
Banach function spaces.

Theorem 2. Let X be proper and let B be a Banach function space
over X, that has absolutely continuous norm and has property (C). Assume
that locally Lipschitz functions are dense in N1,B(X) and that all functions
in N1,B(X) are B-quasicontinuous. If Ω ⊂ X is open, u ∈ N1,B

loc (Ω) and
ε > 0, then there exists a locally Lipschitz function v : Ω → R such that
u− v ∈ N1,B(Ω) and ‖u− v‖N1,B(Ω) < ε.

Proof. We follow Björn, Björn and Shanmugalingam [4]. Let ε > 0.
Any open set in a proper metric space possess an exhaustion by compact sets.
Then there are open sets Ω1 b Ω2 b ... b Ωk b Ωk+1 b ... b Ω such that

Ω =
∞⋃
k=1

Ωk. For each k ≥ 1 we choose ηk ∈ LipC (Ωk+1) so that ηk = 1 on Ωk

and 0 ≤ ηk ≤ 1 everywhere. Define inductively a sequence of functions (uk)k≥1

such that u−
k∑
i=1

ui = u (1− η1) ... (1− ηk) for k ≥ 1, namely u1 := uη1 and

uk := u (1− η1) ... (1− ηk−1) ηk for k ≥ 2. We have uk ∈ N1,B
0

(
Ωk+1 \ Ωk−1

)
for k ≥ 1, where Ω0 := ∅. Indeed, uk vanishes in (X \ Ωk) ∪Ωk−1 and ũk ∈ B.
Moreover, we can find a generalized B-weak upper gradient of ũk in X, as
follows. Let g be an upper gradient of u in Ωk+2, such that the extension by zero
of g to X belongs to B. Since (1− η1) ... (1− ηk−1) ηk is a L-Lipschitz function,
for some L > 0, taking values in [0, 1] and vanishing in Ωk+1\Ωk−1, it follows by
Lemma 3 and Corollary 1 that (g + L |u|)χΩk+1\Ωk−1

is a generalized B-weak

upper gradient of uk in Ωk+2. The extension by zero of (g + L |u|)χΩk+1\Ωk−1

to X is a generalized B-weak upper gradient of ũk in X and belongs to B.

For every x ∈ Ω there exists k ≥ 1 such that x∈Ωk, hence u (x)=
k∑
i=1

ui(x).

Then u (x) =

∞∑
k=1

uk (x) for every x ∈ X.

By Theorem 1, there exists vk∈LipC
(
Ωk+1\Ωk−1

)
such that ‖uk−vk‖N1,B(X)

< ε2−k3−1. For each x ∈ Ω the sum
∞∑
k=1

vk (x) has at most three nonzero

terms. Let v (x) =

∞∑
k=1

vk (x), x ∈ X. Then v is locally Lipschitz in Ω.
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Since
∞∑
k=1

‖uk − vk‖B <∞, it follows by ([3], Theorem I.1.6) that the series

∞∑
k=1

(uk − vk) converges in B and its sum w ∈ B satisfies ‖w‖B ≤
∞∑
k=1

‖uk − vk‖B

< ε/3. But every sequence that converges in B has a subsequence that con-
verges µ-a.e. on X. Then w = u−v µ-a.e. in Ω and choosing a representative of
w we may assume that w = u− v in Ω. Since ‖uk − vk‖N1,B(X) < ε2−k3−1, we

can choose an upper gradient gk of uk − vk in X such that ‖gk‖B < ε21−k3−1.

Then

∞∑
k=1

gk converges in B to some g ∈ B, with ‖g‖B < 2ε/3, by ([3], The-

orem I.1.6). Since

n∑
k=1

(uk − vk)→ w in B and

n∑
k=1

gk → g in B, as n → ∞,

it follows by Lemma 9 that g is a B-weak upper gradient of w in X. Then
w ∈ N1,B(X) and ‖w‖N1,B(X) ≤ ‖w‖B +‖g‖B < ε, hence u−v ∈ N1,B(Ω) and
‖u− v‖N1,B(Ω) < ε. �
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