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In this work, we derive some properties of n-universal quadratic forms, quadratic
ideals and elliptic curves over finite fields Fp for primes p ≥ 5. In the first section,
we give some preliminaries form binary quadratic forms and quadratic idelas. In
the second section, we consider the quadratic ideals and quadratic forms. In
the third section, we consider the quadratic forms over finite fields, also consider
the representations of positive integers by quadratic forms and n-universal forms.
In the last section, we consider the number of rational points on elliptic curves
associated with the universal forms.
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1. PRELIMINARIES

A real binary quadratic form (or just a form) F is a polynomial in two
variables x and y of the type

(1.1) F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We briefly denote F by F = (a, b, c). The discri-
minant of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆(F ).
F is an integral form if and only if a, b, c ∈ Z, and is indefinite if and only if
∆(F ) > 0. An indefinite definite form F = (a, b, c) of discriminant ∆ is said
to be reduced if

(1.2)
∣∣√∆− 2|a|

∣∣ < b <
√

∆

(for further details on binary quadratic forms see [1, 2, 5, 9, 10]). Most pro-
perties of quadratic forms can be giving by the aid of extended modular group
Γ (see [12]). Gauss (1777–1855) defined the group action of Γ on the set of
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forms as follows

gF (x, y) =(1.3)

=
(
ar2 + brs + cs2

)
x2 + (2art + bru + bts + 2csu) xy +

(
at2 + btu + cu2

)
y2

for g =
(

r s
t u

)
= [r; s; t;u] ∈ Γ. Moreover, ∆(F ) = ∆(gF ) for all g ∈ Γ,

that is, the action of Γ on forms leaves the discriminant invariant. If F is
indefinite or integral, then so is gF for all g ∈ Γ. Let F and G be two
forms. If there exists a g ∈ Γ such that gF = G, then F and G are called
equivalent. If det g = 1, then F and G are called properly equivalent, and if
det g = −1, then F and G are called improperly equivalent. A quadratic form
F is called ambiguous if it is improperly equivalent to itself. An element g ∈ Γ
is called an automorphism of F if gF = F . If det g = 1, then g is called a
proper automorphism of F , and if det g = −1, then g is called an improper
automorphism of F . Let Aut(F )+ denote the set of proper automorphisms of
F and let Aut(F )− denote the set of improper automorphisms of F .

Mollin [9] considered the arithmetic of ideals in his book. Let D 6= 1
be a square free integer and let ∆ = 4D

r2 , where r = 2 if D ≡ 1(mod 4)
and r = 1 otherwise. If we set K = Q(

√
D), then K is called a quadratic

number field of discriminant ∆ and O∆ is the ring of integers of the quadratic
field K of discriminant ∆. Let I = [α, β] denote the Z-module αZ ⊕ βZ,
i.e., the additive abelian group, with basis elements α and β consisting of
{αx + βy : x, y ∈ Z}. Note that O∆ =

[
1, 1+

√
D

r

]
. In this case w∆ = r−1+

√
D

r

is called the principal surd. Every principal surd w∆ ∈ O∆ can be uniquely
expressed as w∆ = xα + yβ, where x, y ∈ Z and α, β ∈ O∆. We call [α, β]
an integral basis for K. If αβ−βα√

∆
> 0, then α and β are called ordered basis

elements. Recall that two basis of an ideal are ordered if and only if they
are equivalent under an element of Γ. If I has ordered basis elements, then
we say that I is simply ordered. If I is ordered, then F (x, y) = N(αx+βy)

N(I) is
a quadratic form of discriminant ∆ (here N(x) denotes the norm of x). In
this case we say that F belongs to I and write I → F . Conversely, let us
assume that G(x, y) = Ax2 + Bxy + Cy2 = d(ax2 + bxy + cy2) be a quadratic
form, where d = ±gcd(A,B, C) and b2 − 4ac = ∆. If B2 − 4AC > 0, then
we get d > 0 and if B2 − 4AC < 0, then we choose d such that a > 0. If
I = [α, β] =

[
a, b−

√
∆

2

]
for a > 0 or

[
a, b−

√
∆

2

]√
∆ for a < 0 and ∆ > 0,

then I is an ordered O∆-ideal. Note that if a > 0, then I is primitive and if
a < 0, then I√

∆
is primitive. Thus to every form G, there corresponds an ideal

I to which G belongs and we write G → I. Hence we have a correspondence
between ideals and quadratic forms (for further details see [1, 9]).
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Theorem 1.1. Let I = [a, b + cw∆]. Then I is a non-zero ideal of O∆

if and only if c|b, c|a and ac|N(b + cw∆) ([9]).

Let δ denote a real quadratic irrational integer with trace t = δ + δ and
norm n = δδ. Given a real quadratic irrational γ ∈ Q(δ), there are rational
integers P and Q such that γ = P+δ

Q with Q|(δ + P )(δ + P ). Hence for each
γ = P+δ

Q there is a corresponding Z-module

(1.4) Iγ = [Q, P + δ]

(in fact, this module is an ideal by Theorem 1.1), and an indefinite qua-
dratic form

(1.5) Fγ(x, y) = Q(x + δy)(x + δy)

of discriminant ∆ = t2 − 4n. The ideal Iγ in (1.4) is said to be reduced if and
only if P + δ > Q and −Q < P + δ < 0 and is said to be ambiguous if and
only if it contains both P+δ

Q and P+δ
Q , so if and only if 2P

Q ∈ Z.

2. QUADRATIC IDEALS AND QUADRATIC FORMS

In this section, we will consider some properties of quadratic ideals and
indefinite quadratic forms. First we give the following definition (see [3, 4]).

Definition 2.1. Let n be any integer. If there exists a (x, y) ∈ Z × Z
such that

F (x, y) = ax2 + bxy + cy2 = n,

then n can be represented by F . If a form F represents all integers, then it
called universal.

Let F (x, y) = x2+5xy+6y2 be an indefinite binary quadratic form. Then
F is universal. Indeed for any integer n, the quadratic equation F (x, y) =
x2 + 5xy + 6y2 = n has a solution for (x, y) = (2 − 3n, n − 1). Since F is
universal every prime number p can be also represented by F . Let P = 2−3p,
Q = p − 1 and D = P 2 + 5PQ + 6Q2 = p. Then γ = P+

√
D

Q is a quadratic
irrational and hence

(2.1) Iγ = [p− 1, 2− 3p +
√

p]

is a quadratic ideal and

(2.2) Fγ = (p− 1, 4− 6p, 9p− 4)

is an indefinite binary quadratic form of discriminant ∆ = 4p. Then we can
give the following two theorems.

Theorem 2.2. The ideal Iγ in (2.1) is not reduced and is not ambiguous
for any prime p ≥ 5.
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Proof. Note that |2−3p| > p−1 and also 16p2−25p+9 > 0 since p ≥ 5.
So, we have

16p2 − 25p + 9 > 0 ⇔ 16p2 − 24p + 9 > p ⇔ 4p− 3 >
√

p

⇔ p− 1 > (2 + 3p) +
√

p ⇔ Q > P +
√

D.

Therefore, Iγ is not reduced. Also, Iγ is not ambiguous since 2P
Q = 4−6p

p−1 is not
an integer for primes p ≥ 5. �

Theorem 2.3. The form Fγ in (2.2) is not reduced and is not ambiguous
for any prime p ≥ 5.

Proof. We proved in the previous theorem that Iγ is not reduced, that
is, p− 1 > (2 + 3p) +

√
p. Since 9p2 − 13p + 4 > 0, we have

9p2 − 13p + 4 > 0 ⇔ 9p2 − 12p + 4 > p ⇔ 2− 3p >
√

p

⇔ 4− 6p >
√

4p ⇔ b >
√

∆.

So Fγ is not reduced by (1.2). For g = [r; s; t;u] ∈ Γ, the system of equations

(p− 1)r2 + (4− 6p)rs + (9p− 4)s2 = p− 1,

(2p− 2)rt + (4− 6p)ru + (4− 6p)ts + (18p− 8)su = 4− 6p,

(p− 1)t2 + (4− 6p)tu + (9p− 4)u2 = 9p− 4

has no solution with det g = −1. So Fγ is not improperly equivalent to itself
and hence is not ambiguous. �

If an indefinite form F is not reduced, then we can get it into a reduced
form by applying the following algorithm: Let F = F0 = (a0, b0, c0) and let
si = sign(ci)

⌊
bi

2|ci|

⌋
for |ci| ≥

√
∆ or sign(ci)

⌊
bi+

√
∆

2|ci|

⌋
for |ci| <

√
∆ for i ≥ 0.

Then the reduction of F is

(2.3) ρi+1(F ) = (ci,−bi + 2cisi, cis
2
i − bisi + ai)

for i ≥ 0 (see [1]).
Now we consider the reduction of Fγ . Let Fγ = Fγ0 = (p−1, 4−6p, 9p−4).

Then s0 = −1 and hence ρ1(Fγ) = (9p−4,−12p+4, 4p−1). Similarly, we obtain
the following table where t =

⌊√
p
⌋
. So, we can give the following theorem.

Theorem 2.4. The reduction of Fγ is ρ4(Fγ) = (−1, 2t, p − t2), where
t =

⌊√
p
⌋
.
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Table 1.
Reduction of Fγ

i ai bi ci si

0 p− 1 4− 6p 9p− 4 −1

1 9p− 4 −12p + 4 4p− 1 −1

2 4p− 1 4p− 2 p− 1 2

3 p− 1 −2 −1 1− t

4 −1 2t p− t2

3. BINARY QUADRATIC FORMS OVER FINITE FIELDS

In the first section, we give some notation for binary quadratic forms.
Now we generalize this notation to any finite field Fp for a primes p ≥ 5. A
binary quadratic form F p over Fp is a form in two variables x and y of the type
F p(x, y) = ax2 + bxy + cy2, where a, b, c ∈ Fp. We denote F p briefly by F p =
(a, b, c). The discriminant of F p is defined by the formula b2 − 4ac and is de-
noted by ∆p = ∆p(F p). Set Γp = {gp = [r; s; t;u] : r, s, t, u ∈ Fp and ru− st ≡
±1(mod p)}. Let F p and Gp be two forms over Fp. If there exists a gp ∈ Γp such
that gpF p = Gp, then F p and Gp are called equivalent. If det gp ≡ 1(mod p),
then F p and Gp are called properly equivalent and if det gp ≡ −1(mod p),
then F p and Gp are called improperly equivalent. A form F p is called ambigu-
ous if it is improperly equivalent to itself. An element gp ∈ Γp is called an
automorphism of F p if gpF p = F p. If det gp ≡ 1(mod p), then g is called a
proper automorphism and if det gp ≡ −1(mod p), then g is called an improper
automorphism. Let Aut(F p)p,+ denote the set of proper automorphisms of F p

and let Aut(F p)p,− denote the set of improper automorphisms of F p.
Recall that Fγ = (p− 1, 4− 6p, 9p− 4). If we consider this form over Fp,

then we obtain

(3.1) F p
γ = (p− 1, 4, p− 4).

First we consider the proper and improper automorphisms of F p
γ .

Theorem 3.1. Let F p
γ be the form defined in (3.1). Then

# Aut(F p
γ )p,+ = # Aut(F p

γ )p,− = 2p

for every primes p ≥ 5.

Proof. First we consider the proper automorphisms. Let p = 5. Then
F 5

γ = (4, 4, 1). Let gp = [r; s; t;u] ∈ Γ5. Then by (1.3), we have the following
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system of equations

4r2 + 4rs + s2 = 4

8rt + 4ru + 4ts + 2su = 4(3.2)

4t2 + 4tu + u2 = 1.

This system has a solution for g5 =[0; 2; 2; 2], [0; 3; 3; 3], [1; 0; 0; 1], [1; 1; 1; 2], [2; 3;
3; 0], [2; 4; 4; 1], [3; 1; 1; 4], [3; 2; 2; 0], [4; 0; 0; 4] and [4; 4; 4; 3]. Note that det g5 =
1. So,

Aut(F 5
γ )5,+ =

{
[0; 2; 2; 2], [0; 3; 3; 3], [1; 0; 0; 1], [1; 1; 1; 2], [2; 3; 3; 0],

[2; 4; 4; 1], [3; 1; 1; 4], [3; 2; 2; 0], [4; 0; 0; 4], [4; 4; 4; 3]

}
and hence # Aut(F 5

γ )5,+ = 10. Also (3.2) has a solution for g5 = [0; 2; 3; 0], [0; 3;
2; 0], [1; 0; 1; 4], [1; 1; 0; 4], [2; 3; 4; 3], [2; 4; 3; 3], [3; 1; 2; 2], [3; 2; 1; 2], [4; 0; 4; 1] and
[4; 4; 0; 1] with det g5 = −1. So,

Aut(F 5
γ )5,− =

{
[0; 2; 3; 0], [0; 3; 2; 0], [1; 0; 1; 4], [1; 1; 0; 4], [2; 3; 4; 3],

[2; 4; 3; 3], [3; 1; 2; 2], [3; 2; 1; 2], [4; 0; 4; 1], [4; 4; 0; 1]

}
and hence # Aut(F 5

γ )5,− = 10.
Similarly, it can be shown that # Aut(F p

γ )p,+ = # Aut(F p
γ )p,− = 2p for

every primes p ≥ 7. �

3.1. Representation of integers by quadratic forms

Representations of integers (or primes) by binary quadratic forms have
an important role on the theory of numbers and are studied by many authors.
In fact, this problem intimately connected with reciprocity laws. The major
problem of the theory of quadratic forms is: given a quadratic form F , find
all integers n that can be represented by F , that is, for which the equation
F (x, y) = ax2 + bxy + cy2 = n has a solution (x, y). This problem was studied
for specific quadratic forms by Fermat, and intensively investigated by Eu-
ler. Fermat considered the representation of integers as sums of two squares.
It was, however, Gauss in the Disquisitions [6] who made the fundamental
breakthrough and developed a comprehensive and beautiful theory of binary
quadratic forms. Most important was his definition of the composition of
two forms and his proof that the (equivalence classes of) forms with a given
discriminant ∆ form a commutative group under this composition. The idea
behind composition of forms is simple. If forms F and G represent integers n
and m, respectively, then their composition F ∗G should represent n ·m. The
implementation of this idea is subtle and extremely difficult to describe. At-
tempts to gain conceptual insight into Gauss theory of composition of forms
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inspired the efforts of some of the best mathematicians of the time, among
them Dirichlet, Kummer and Dedekind. The main ideal here was to extend
the domain of higher arithmetic and view the problem in a broader context.

In this subsection, we will consider the the number of representations of
integers n ∈ F∗p by F p

γ defined in (3.1). It is known that [7], to each quadratic
form F , there corresponds the theta series

(3.3) ℘(τ ;F ) = 1 +
∞∑

n=1

r(n;F )zn,

where r(n;F ) is the number of representations of a positive integer n by the
quadratic form F and z = exp(2πiτ) for Im(τ) > 0. We can generalize (3.3) to
any finite field Fp. Let F p = (a, b, c) be a quadratic form over Fp for a, b, c ∈ Fp.
Then (3.3) becomes

(3.4) ℘p(τ ;F p) = 1 +
∑
n∈F∗p

rp(n;F p)zn,

where rp(n;F p) is the number of representations of n ∈ F∗p by F p. Note that
the theta series in (3.4) is determined by rp(n;F p). So, we have the find out
rp(n;F p). Let Qp denote the set of quadratic residues mod p. Then we have
the following theorem.

Theorem 3.2. Let F p
γ be the quadratic form. If p ≡ 1(mod 4), then

rp(n;F p
γ ) =

{
# Aut(F p

γ )p,+ if n ∈ Qp,

0 if n /∈ Qp

and if p ≡ 3(mod 4), then

rp(n;F p
γ ) =

{
0 if n ∈ Qp,

# Aut(F p
γ )p,+ if n /∈ Qp.

Proof. Let p ≡ 1(mod 4). Then (−1
p ) = 1, where ( .

p) denotes the Legendre
symbol. Let x ∈ Fp be given. Then we want to solve the quadratic congruence

(3.5) (p− 1)x2 + 4xy + (p− 4)y2 ≡ n(mod p)

according to y. From (3.5), we get

(3.6) (p− 4)y2 + 4xy + (p− 1)x2 − n ≡ 0(mod p).

The discriminant of (3.6) is ∆ = (4xy)2−4(p−4)((p−1)x2−n) ≡ −16n(mod p).
So, the solutions of (3.6) are

(3.7) y1,2 =
−4x±

√
∆

2(p− 4)
≡ −4x±

√
−16n

2(p− 4)
≡ −2x± 2

√
−n

p− 4
.
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Note that −1 is a quadratic residue when p ≡ 1(mod 4). So, (3.7) becomes

(3.8) y1,2 ≡
−2x± 2

√
n

p− 4
.

If n ∈ Qp, then
√

n ∈ F∗p. So there are two solutions y1,2. Therefore, there
are 2p integer solutions of (3.6). If n /∈ Qp, then

√
n /∈ F∗p. So, there are no

integer solutions y1,2. The second case can be proved similarly. �

We proved in Theorem 2.4 the reduction of Fγ is ρ4(Fγ) = (−1, 2t, p−t2)
for t =

⌊√
p
⌋
. If we consider ρ4(Fγ) over Fp, then we get

(3.9) ρp,4(F p
γ ) = (p− 1, 2t, p− t2).

Now, we can give the following theorems without giving its proof since they
can be proved as in the same way that Theorems 3.1 and 3.2 were proved.

Theorem 3.3. Let ρp,4(F p
γ ) be the quadratic form in (3.9). Then

# Aut(ρp,4(F p
γ ))p,+ = # Aut(ρp,4(F p

γ ))p,− = 2p

for any prime p ≥ 5.

Theorem 3.4. Let ρp,4(F p
γ ) be the quadratic form. If p ≡ 1(mod 4), then

rp(n; ρp,4(F p
γ )) =

{
# Aut(ρp,4(F p

γ ))p,+ if n ∈ Qp,

0 if n /∈ Qp

and if p ≡ 3(mod 4), then

rp(n; ρp,4(F p
γ )) =

{
0 if n ∈ Qp,

# Aut(ρp,4(F p
γ ))p,+ if n /∈ Qp.

n-Universal Form. In this subsection, we will consider the representa-
tion of integers by quadratic forms. First we define the following: let F p be a
quadratic form over Fp and let n ∈ F∗p. If n can be represented by F p, then
F p is called n-universal form. Now we can give the following theorem.

Theorem 3.5. Let F p
γ be the form in (3.1). Then F p

γ

(1) is a 1-universal form if p ≡ 1(mod 4);
(2) is a 2-universal form if p ≡ 1, 3(mod 8);
(3) is a 3-universal form if p ≡ 1, 7(mod 12);
(4) is a 4-universal form if p ≡ 1, 5(mod 12);
(5) is a 5-universal form if p ≡ 1, 3, 7, 9(mod 20);
(6) is a 6-universal form if p ≡ 1, 5, 7, 11, 25, 29, 31, 35(mod 48);
(7) is a 7-universal form if p ≡ 1, 9, 11, 15, 23, 25(mod 28);
(8) is a 8-universal form if p ≡ 1, 11, 17, 19, 25, 35, 41, 43(mod 48);
(9) is a 9-universal form if p ≡ 1, 5, 13, 17(mod 24);
(10) is a 10-universal form if p ≡ 1, 7, 9, 11, 13, 19, 23, 37(mod 40);
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(11) is a p−1
2 -universal form if p ≡ 1, 3(mod 8);

(12) is a (p− 1)-universal form for every primes p ≥ 5;
(13) is a (p− 2)-universal form if p ≡ 1, 7(mod 8);
(14) is a (p− 3)-universal form if p ≡ 1, 11(mod 12);
(15) is a (p− 4)-universal form for every primes p ≥ 5;
(16) is a (p− 5)-universal form if p ≡ 1, 9(mod 10);
(17) is a (p− 6)-universal form if p ≡ 1, 5, 19, 23(mod 24);
(18) is a (p− 7)-universal form if p ≡ 1, 3, 9, 19, 25, 27(mod 28);
(19) is a (p− 8)-universal form if p ≡ 1, 7, 17, 23(mod 24);
(20) is a (p− 9)-universal form for every primes p ≥ 11;
(21) is a (p− 10)-universal form if p ≡ 1, 3, 9, 13, 27, 31, 37, 39(mod 40);
(22) is not a p-universal form for every primes p ≥ 5.

Proof. 1. Recall that n(p−1)/2 = 1 if n ∈ Qp and n(p−1)/2 = −1 if n /∈ Qp

for n ∈ F∗p, that is,
(

n
p

)
= n(p−1)/2. Further, let

{
n, 2n, 3n, . . . , p−1

2 n
}

be the
set of multiplies of n. Represent each of these elements of Fp by an integer
in the range

(−p
2 , p

2

)
and let v denote the number of negative integers in this

set. Then
(

n
p

)
= (−1)v. Now let p ≥ 5 be any prime number. Then p − 1

is always even. Hence
(

1
p

)
= 1 for every primes p. Now consider the set

{2, 4, 6, . . . , p−1}. We know that 2 is an quadratic residue mod p if and only if
v lie in the interval

(
−p

2 , 0
)

is even. Note that v is the number of even integers

in the interval
[

p+1
2 , p− 1

]
. Let p+1

2 is even. Then p ≡ 3(mod 4) and hence

v = (p−1)− p+1
2

2 + 1 = p+1
4 . So

(
2
p

)
= 1 if p ≡ 7(mod 8) or −1 if p ≡ 3(mod 8).

Similarly let p+1
2 is odd. Then p ≡ 1(mod 4) and hence v = (p−1)− p+3

2
2 + 1 =

p−1
4 . Therefore

(
2
p

)
= 1 if p ≡ 1(mod 8) of −1 if p ≡ 5(mod 8). Consequently,

we get
(

2
p

)
= 1 if p ≡ 1, 7(mod 8) or −1 if p ≡ 3, 5(mod 8). Similarly it can be

shown that
(

3
p t

)
= 1 if p ≡ 1, 11(mod 12) or −1 if p ≡ 5, 7(mod 12);

(
4
p

)
= 1

for any prime p ≥ 5;
(

5
p

)
= 1 if p ≡ 1, 9(mod 10) or −1 if p ≡ 3, 7(mod 10);(

6
p

)
= 1 if p ≡ 1, 5, 19, 23(mod 24) or −1 if p ≡ 7, 11, 13, 17(mod 24);

(
7
p

)
=

1 if p ≡ 1, 3, 9, 19, 25, 27(mod 28) or −1 if p ≡ 5, 11, 13, 15, 17, 23(mod 28);(
8
p

)
= 1 if p ≡ 1, 7, 17, 23(mod 24) of −1 if p ≡ 5, 11, 13, 19(mod 24);

(
9
p

)
= 1

for every primes p ≥ 11;
(

10
p

)
= 1 if p ≡ 1, 3, 9, 13, 27, 31, 37, 39(mod 40) or −1
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if p ≡ 7, 11, 17, 19, 21, 23, 29, 33, 37(mod 40) and
(

p+1
2
p

)
= 1 if p ≡ 1, 3(mod 8)

or −1 if p ≡ 5, 7(mod 8).
With the same argument, we find that −1 ∈ Qp ⇔ p ≡ 1(mod 4);

−2 ∈ Qp ⇔ p ≡ 1, 3(mod 8); −3 ∈ Qp ⇔ p ≡ 1, 7(mod 12); −4 ∈ Qp ⇔
p ≡ 1, 5(mod 12); −5 ∈ Qp ⇔ p ≡ 1, 3, 7, 9(mod 20); −6 ∈ Qp ⇔ p ≡
1, 5, 7, 11, 25, 29, 31, 35(mod 48); −7 ∈ Qp ⇔ p ≡ 1, 9, 11, 15, 23, 25(mod 28);
−8 ∈ Qp ⇔ p ≡ 1, 11, 17, 19, 25, 35, 41, 43(mod 48); −9 ∈ Qp ⇔ p ≡ 1, 5, 13, 17
(mod 24); −10 ∈ Qp ⇔ p ≡ 1, 7, 9, 11, 13, 19, 23, 37(mod 40). Applying the
Theorem 3.2 the results from 1 to 21 are obvious.

22. Now let p ≥ 5 be a prime. Then the quadratic equation

F p
γ (x, y) = (p− 1)x2 + 4xy + (p− 4)y2 ≡ p(mod p)

has no solution (x, y). Therefore, F p
γ is not a p-universal form any prime

p ≥ 5. �

4. RATIONAL POINTS ON ELLIPTIC CURVES OVER FINITE FIELDS

In this section, we will consider the rational points on elliptic curves
associated to F p

γ obtained in the previous section. Recall that an elliptic curve
E over a finite field Fp is defined by an equation in the Weierstrass form

(4.1) E : y2 = x3 + ax2 + bx,

where a, b ∈ Fp and b2(a2 − 4b) 6= 0 with discriminant ∆(E) = 16b2(a2 − 4b).
If ∆(E) = 0, then E is not an elliptic curve, it is a curve of genus 0 (in fact it
is a singular curve). We can view an elliptic curve E as a curve in projective
plane P2, with a homogeneous equation y2z = x3 + ax2z2 + bxz3, and one
point at infinity, namely (0, 1, 0). This point ∞ is the point where all vertical
lines meet. We denote this point by O. The set E(Fp) = {(x, y) ∈ Fp × Fp :
y2 = x3 + ax2 + bx} ∪ {O} of rational points on E is a subgroup of E. The
order of E(Fp), denoted by #E(Fp), is defined as the number of the points on
E and is given by

(4.2) #E(Fp) = p + 1 +
∑
x∈Fp

(
x3 + ax2 + bx

Fp

)
,

where
(

.
Fp

)
denotes the Legendre symbol (for the arithmetic of elliptic curves

and rational points on them see [11, 13]).
In this section, we want to carry out the results we obtained in the

previous section to the singular curves which are the special case of elliptic
curves. To get this we want to construct a connection between quadratic forms
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and elliptic curves. For this reason, let F = (a, b, c) be a quadratic form of
discriminant ∆(F )=b2−4ac. We define the corresponding elliptic curve EF as

(4.3) EF : y2 = ax3 + bx2 + cx.

If we making the substitution y′ = ay and x′ = ax+2 in (4.3), then we obtain

(4.4) EF : y′2 = x′3 + (b− 6)x′2 + (12− 4b + ac)x′ + (−8 + 4b− 2ac).

Note that F p
γ = (p − 1, 4, p − 4) and hence −8 + 4b − 2ac = −2p2 + 10p ≡

0(mod p), that is, ac = 2b− 4. So (4.4) becomes

(4.5) EF p
γ

: y′2 = x′3 + (b− 6)x′2 + (8− 2b)x′.

The discriminant of EF p
γ

is hence ∆(EF p
γ
) = 64(b − 2)2∆(F ) since ∆(F p

γ ) =
(b − 4)2. So, we have a correspondence between F p

γ and EF p
γ
. Since F p

γ =
(p− 1, 4, p− 4), this curve becomes

(4.6) EF p
γ

: y′2 = x′3 − 2x′2 = x′2(x′ − 2)

which is a singular curve. Now we can give following lemma.

Lemma 4.1 ([8]). Let p be an odd prime and let f(x) ∈ Z[x] be a poly-
nomial of degree ≥ 1. Then the number Np(f) of solutions (x, y) ∈ Fp × Fp of
the congruence y2 ≡ f(x)(mod p) is Np(f) = p + 1 + Sp(f), where

(4.7) Sp(f) =
p−1∑
x=0

(
f(x)

p

)
.

Also it is showed in [13] that for the polynomial f(x) = (x − r)2(x − s)
of degree 3 for some r, s ∈ Fp,

(4.8)
p−1∑
x=0

(
f(x)
Fp

)
= −

(
r − s

p

)
.

Applying (4.7) and (4.8), we deduce that

(4.9) #EF p
γ
(Fp) = p + 1 +

p−1∑
x=0

(
x′2(x′ − 2)

Fp

)
= p + 1−

(
−2
p

)
.

Hence we can give following theorem.

Theorem 4.2. For the curve EF p
γ

in (4.6), we have

#EF p
γ
(Fp) =

{
p if p ≡ 1, 3(mod 8),

p + 2 if p ≡ 5, 7(mod 8)

for any prime p ≥ 5.
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Proof. Note that in (4.9), the order of EF p
γ

is p or p+2 if −2 is a quadratic
residue mod p or not, respectively. Therefore, the determination of the order of
EF p

γ
depends on when −2 is a quadratic residue or not. We see in the previous

section that (−2
p ) = 1 if p ≡ 1, 3(mod 8) and (−2

p ) = −1 if p ≡ 5, 7(mod 8). So
the result is clear by (4.9). �
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