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Let F be an absolutely continuous probability measure on [0,∞) having finite
moments and the density f . Let F be its tail, defined by F (x) = F ((x,∞)). Con-
sider the sequence of probability distributions (Fn)n constructed by the recurrence
F0 = F , Fn+1 = (Fn)I , where FI is the probability distribution on [0,∞) having
the tail (F I)(x) =

∫∞
x

F (y)dy /
∫∞
0

F (y)dy. The main result in [9] was Theo-
rem 3.5: suppose that the hazard rate of F , defined by λ(x) = f(x)/F (x) has a
limit λ0 := λ(∞) ∈ (0,∞) as x→∞. Then Fn converges weakly to Exp(λ0).
In this paper we conjecture that the same result holds if the Cesaro limit

lim
x→∞

∫∞
0

λ(y)dy

x
= λ0

does exist. We prove the conjecture in the very particular case when λ is periodic.
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1. DEFINITIONS AND STATEMENT OF THE PROBLEM

Let (Ω,K, P ) be a probability space and L = ∩Lp
+(Ω,K, P ). So, X ∈ L

iff X ≥ 0 (a.s.) and EXp < ∞ for every 1 ≤ p < ∞. Let M be the set of the
distributions of the random variables X ∈ L. Thus F ∈ M iff F ([0,∞)) = 1
and

∫
xpdF (x) < ∞ ∀1 ≤ p < ∞. We shall denote by F (x) the distribution

function of F, by F (x) its right tail and by µn(F ) its moments. Precisely,
F (x) will stand for F ([0, x]), F (x) for F ((x,∞)) and µn(F ) for

∫
xndF (x). If

F is absolutely continuous, its density will be denoted by fF and its hazard
rate by λF := fF

F . The Lebesgue measure on the real line will be denoted by
µ. The exponential distribution of parameter λ will be denoted by Exp(λ).

In renewal and ruin theories the following distribution is of interest: it is
called the integrated tail (see for instance [2], [4] or [6]). Its tail is defined by

(1.1) FI(x) =

∫∞
x F (y)dy∫∞
0 F (y)dy

.
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We intend to study the mapping U : M → M defined by U(F ) = FI

and the sequence defined by

(1.2) F0 = F, Fn+1 = (Fn)I .

Ignatov [5] conjectured in 2005 that this sequence always converges to
some exponential distribution. Now we know that this is not true (counter-
example from [7]). However, Theorem 3.5 from [9] states that if λ has a finite
and non-zero limit at infinity, λ0, then the sequence (Fn)n weakly converges
to the exponential distribution Exp(λ0). Similar results were obtained in [1].
Thus the tail of the limit is exp(−λ0x). Moreover, it was proved in [1] and [8]
that in this case the sequence ( µn+1

(n+1)µn
)n converges to 1/λ0.

However, the particular examples we have studied make us believe that
Ignatov’s conjecture holds if the Cesaro limit lim

x→∞

∫ x
0 λ(y)dy

x = λ0 does exist. A
particular case when this limit does exist is when λ is periodic.

In this paper we shall suppose that this is indeed the case: λ(x + T ) =
λ(x), ∀x ≥ 0 for some period T .

The main result is:

Theorem 1.1. If λ is periodic and has the period T > 0, then Fn ⇒
Exp

(∫ T
0 λ(x)dx

T

)
. More than that, the hazard rates λFn converge uniformly

to
∫ T
0 λ(x)dx

T .

As µ1(Fn) = µn+1

(n+1)µn
(see [8]) we have the following by product:

Corollary 1.2. If F has a periodic hazard rate, then the sequence(
µn+1

(n+1)µn

)
n

is convergent and its limit is T∫ T
0 λ(x)dx

.

2. PLAN OF THE PROOF

Proposition 2.1. Let λ : [0,∞) → [0,∞) be a measurable function
having the period T > 0.

Let Λ(x) =
∫ x
0 λ(y)dy and F (x) = e−Λ(x). Then

(2.1) F (x) = q[
x
T ]h(T

{
x
T

}
) with q = e−Λ(T ) and h(t) = e−Λ(t)

and

(2.2) F I(x) = q[
x
T ]
(

1−p
H(T

{
x
T

}
)

H(T )

)
with p = 1−q and H(t) =

∫ t

0
h(x)dx.
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Moreover, the hazard rate of FI is

(2.3) λI(x) =
ph(T

{
x
T

}
)

H(T )− pH(
{

x
T

}
)

([y] and {y} are the integer part of y and the decimal part of y).

Proof. Let x ≥ 0. Let k ≥ 0 and t ∈ [0, T ) such that x = kT + t. Then

Λ(x) =
∫ x

0
λ(y)dy =

k−1∑
j=0

∫ (j+1)T

jT
λ(y)dy +

∫ kT+t

kT
λ(y)dy

= k

∫ T

0
λ(y)dy +

∫ t

0
λ(y)dy = kI +

∫ t

0
λ(y)dy = kI + Λ(t).

It means that F (x) = e−kI−Λ(t) = qkh(t). Thus (2.1) is proved.
The integral is∫ ∞

x
F (x)dx =

∫ ∞

kT
F (x)dx−

∫ x

kT
F (x)dx

=
∞∑

j=k

∫ (j+1)T

jT
F (x)dx−

∫ kT+t

kT
F (x)dx.

Let H(t) =
∫ t
0 h(x)dx. By (2.1) we have

∫∞
x F (x)dx =

∞∑
j=k

qjH(T )−qkH(t) =

qk

1−q (H(T )− (1− q)H(t)). For x = 0 we get
∫∞
x F (x)dx = H(T )

1−q .

It means that F I(x) = qk H(T )−(1−q)H(t)
H(T ) , which proves (2.2). As about

(2.3), we use the relation λI(x) = F (x)∫∞
x F (y)dy

. �

Remark. Notice that h(0) = 1, h(T − 0) = q, λI(0) = λI(T − 0) = p
H(T )) .

Therefore, λI is periodic, too, and continuous.

Corollary 2.2. Let (Fn)n be the sequence given by the recurrence (1.2).
Then

(2.4) F (x) = q[
x
T ]hn(T

{
x
T

}
) with q = e−Λ(T ) and h(t) = e−Λ(t).

The functions hn : [0, T ) → R+ have the properties

(2.5) hn(0) = 1, hn(T ) = q, hn+1(x) = 1− p

∫ x
0 hn(y)dy∫ T
0 hn(y)dy

.

Now let us look at the operator B : Y → Y defined by

(2.6) (Bh)(x) = 1− p

∫ x
0 h(y)dy∫ T
0 h(y)dy

.
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Here Y = {h : [0, T ]) → [q, 1] | h is differentiable, decreasing, h(0) = 1,
h(T ) = 1− p := q}. Taking this into account, we can write

Corollary 2.3. Let (Fn)n be the sequence given by the recurrence (1.2).
Then

(2.7) F (x) = q[
x
T ](Bnhn)(T

{
x
T

}
) with q = h(T ).

If we could prove that the sequence (Bnh)n is convergent to some limit
h∗, then Fn would converge to F ∗(x) = Fn(x) = q[

x
T ]h∗(T

{
x
T

}
), hence the

sequence (Fn)n would have a weak limit. Actually we shall prove more, namely

Theorem 2.4. (Bnh)(x) converges uniformly to q
x
T as n →∞ for any

h ∈ Y and x ∈ [0, T ].

Suppose that Theorem 2.4 holds. Then lim
n→∞

Fn(x) = q[
x
T ]q{

x
T } = q

x
T =

e−x
∫ T
0 λ(y)dy

T . Or, otherwise written, Fn ⇒ exp(λ∗) with λ∗ =
∫ T
0 λ(y)dy

T . That
will end the proof of the Theorem 1. �

Example. The geometric distribution. Let

F = Geometric(p) :=
∞∑

k=1

pqk−1δk,

with p, q > 0, p + q = 1.
It is true that F is not absolutely continuous, hence λF has no meaning.

However, after the first iteration F1 = FI has the density F (x)/µ1(F ) = pq[x]

and the hazard rate λ1(x) = pq[x]∫∞
x pq[y]dy

= p
1−p{x} . In this case the period

T = 1 and λ∗ =
∫ T
0 λ(y)dy

T =
∫ 1
0

p
1−pxdx = − ln q. Thus Fn ⇒ exp(− ln q). The

hazard rates λFn converge to − ln q uniformly. It follows that the moments
of Fn converge to the moments of the exponential distribution. Therefore,
lim

n→∞

µn+1

(n+1)µn
= − 1

log(1−p) .

3. PROOF OF THEOREM 2.4

The proof relies on a result about Markovian kernels, which may be of
some interest itself. Firstly we give some definitions (see for instance [3] or
[7]) for the readers which are not familiar with these objects.

Let (E, E) be a measurable space. A kernel from E to E is a family of
finite measures on E,Q := (Qx)x∈E , having the property that the mapping
x 7→ Qx(A) is measurable for any A ∈ E . If Qx(E) ≤ 1 ∀x ∈ E, then Q is called
a submarkovian kernel. If Qx(E) = 1 ∀x ∈ E, Q is called a Markovian kernel.
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To any kernel one can attach two operators: one which is acting on bounded
measurable functions and the other one acting on finite signed measures. The
first one is the operator VQ defined by VQ(f)(x) = VQ(f)(x) =

∫
f(y)Qx(dy).

The standard notation for it is Qf : Qf(x) actually means VQ(f)(x). Notice
that Q is Markovian iff Q1 = 1.

The other one is the operator UQ(ν)(A) =
∫

Qx(A)dν(x). For it, the
standard notation is νQ: thus νQ(A) stands for UQ(ν)(A). As a particular
case, Qx = δxQ where δx is Dirac’s point measure. The compositions Q(Qf)),
Q(Q(Qf))), . . . are denoted by Qnf and the compositions (µQ)Q, ((µQ)Q)Q,
. . . are denoted by µQn. Thus Qn

x stands for δxQn. Notice again that Q is
Markovian iff δxQ is a probability for every x ∈ E.

The notation is motivated by a particular case: suppose that all Qx have
densities K(x, ·) with respect to some σ-finite measure µ. Then VQ(f)(x) =∫

K(x, y)f(y)dµ(y). It is as if we multiply the “matrix” K with the column
“vector” f . Moreover, if ν is a signed measure having the density g with
respect to the same σ-finite measure µ, then

UQ(ν)(A) =
∫ (∫

g(x)K(x, y)dµ(x)
)

1A(y)dµ(y),

the new density is
∫

g(x)K(x, y)dµ(x). It is as if we multiply the “row vector”
g with the same “matrix” K. In this particular case we also could denote the
first operator as f 7→ Kµf and the other one as ν 7→ νKµ. Some authors call
this function K to be the kernel and say that the (sub)markovian operator Q
is given by the kernel K.

The Dobrushin coefficient. Suppose now that P is a Markovian kernel.
The Dobrushin coefficient of P is defined (see [3], p. 88) by

(3.1) α(P ) =
1
2
{‖Px − Py‖ : x, y ∈ E} .

Recall that the norm of a signed measure ν is its variation, ‖ν‖ =
|ν| (E) = ν+(E)+ν−(E). It is easy to see that ᾱ(P ) ≤ 1 , ᾱ(PQ) 6 ᾱ(P )ᾱ(Q)
(ᾱ is submultiplicative) hence ᾱ(Pn) ≤ ᾱ(P )n. Moreover, if ν is a signed mea-
sure, then it is known that ‖νP‖ 6 ᾱ(P ) ‖ν‖+ (1− ᾱ(P )) |ν(E)| ([3], p. 91);
as a particular case, if ν(E) = 0 (as it is the case when ν is the difference
between two probabilities), then ‖νP‖ ≤ ᾱ(P ) ‖ν‖.

The power of this Dobrushin coefficient is given in the following result –
it should be well known, but we lack a precise reference:

Lemma 3.1. Let P be a Markovian kernel. If ᾱ(P ) < 1 then there exists
an invariant probability π such that ‖(Px)n − π‖ ≤ (ᾱ(P ))n → 0 as n →
∞. Thus Pn has always a limit P∞ which is a constant Markovian kernel :
(P∞)x = π, ∀x ∈ E.
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Proof. The sequence (Px)n is Cauchy: ‖(Pn)x−(Pn+k)x‖ = ‖(δx−δxP k)·
Pn‖ ≤ ᾱ(Pn)‖δx − δxP k‖ ≤ 2(ᾱ(P ))n < ε if n is great enough. Thus there
exists a probability πx such that (Pn)x converges in norm to πx. Let x, y ∈ E
be arbitrary. Then

‖πx−πy‖=
∥∥∥ lim

n→∞
δxPn− lim

n→∞
δyP

n
∥∥∥=
∥∥∥ lim

n→∞
(δx − δy)Pn

∥∥∥= lim
n→∞

‖(δx−δy)Pn‖.

As ‖(δx − δy)Pn‖ ≤ 2ᾱ(P )n the last limit equals 0; it means that the proba-
bility π does not depend on x. On the other hand, πP = lim(δxPn) · P =
lim δxPn+1 = lim δxPn = π.

Another fact: if the Markovian kernel has the form

Pf(x) =
∫

K(x, y)f(y)dµ(y),

then its Dobrushin coefficient is easier to compute: it is equal to

α(P ) =
1
2

sup
{∫

|K(x, z)−K(y, z)|dµ(z) : x, y ∈ E

}
(3.2)

:=
1
2

sup {‖K(x, ·)−K(y, ·)‖1 : x, y ∈ E} .

Next fact provides a simple criterion to decide if ᾱ(P ) < 1.

Lemma 3.2. Suppose that (E, E) is a measurable space and µ is a proba-
bility on it.

Let K : E × E → [a,∞), a > 0, be measurable bounded such that∫
K(x, y)dµ(y) = 1 ∀x and

(3.3) Pf =
∫

K(x, y)f(y)dµ(y).

Then ᾱ(P ) ≤ 1− aµ(E) < 1.

Proof. We know that ᾱ(P ) = 1
2 sup{‖K(x, ·)−K(y, ·)‖1 : x, y ∈ E}. But∫

|K(x, z)−K(y, z)|dµ(z) =
∫
|(K(x, z)− a)−(K(y, z)− a)|dµ(z) 6

6
∫
|K(x, z)−a|dµ(z)+

∫
|K(y, z)−a|dµ(z) =

=
∫

(K(x, z)−a)dµ(z)+
∫

(K(y, z)−a)dµ(z) = 2(1−aµ(E)).

Now we give the main result of this section.

Theorem 3.3. Let (E, E) be a measurable space and µ be a finite mea-
sure on it.
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Let K : E × E → [a,∞), a > 0 be a measurable bounded function and

(3.4) Kµf =
∫

K(x, y)f(y)dµ(y).

Let also B be the mapping defined for bounded measurable functions as

(3.5) (Bf)(x) =
(Kµf)(x)
(Kµf)(y)

,

where y ∈ E is fixed.
Suppose that there exists a bounded measurable function h : E → (0,∞)

and a positive constant c > 0 such that

(3.6) cKµh = h.

Then the sequence (Bnf)n converges to f∞(x) = h(x)
h(y) . The limit does not

depend on f .

Proof. Consider the new kernel P defined by (Pf)(x) = c
h(x)(Kµu)(x).

As (P1)(x) = c
h(x)(Kµ(h))(x) = 1, P is now a Markovian kernel. Its powers

are given by

(3.7) Pnf =
cn

h
(Kµ)n(fh).

We can write it as Pf(x) =
∫

K̃(x, y)f(y)dµ(y) with K̃(x, y) = ch(y)
h(x)K(x, y).

As h is bounded away from 0 (h(x) = c
∫

K(x, y)h(y)dµ(y) ≥ c
∫

ah(y)dµ(y) =
ca
∫

hdµ> 0) and bounded, the ratio y 7→ h(y)
h(x) is bounded away from 0, too

by some b > 0. It follows that K̃(x, y) ≥ abc > 0. According to Lemma 3.2,
ᾱ(P ) < 1. By Lemma 1, Pn converges in norm to a stationary measure π.
Thus Pnf →

∫
fdπ for any bounded measurable f . By (3.7) that means,

explicitly, that
cn

h(x)
(Kµ)n(fh)(x) n→∞−→

∫
fdµ.

To end the proof we write

(Bnf)(x) =
(Kµ)n(f)(x)
(Kµ)n(f)(y)

=
cn(Kµ)n(f)(x)/h(x)
cn(Kµ)n(f)(x)/h(y)

· h(x)
h(y)

n→∞−→ h(x)
h(y)

∫
f/hdπ∫
f/hdπ

=
h(x)
h(y)

. �

We claim that Theorem 2.4 is a simple consequence of Theorem 3.3. We
shall generalize a bit the operator defined by (2.6) replacing the uniform dis-
tribution on the interval [0, T ] by a continuous probability measure on [0,∞) :
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Proposition 3.4. Let F be a continuous distribution on [0,∞) and let
p ≤ 1, q = 1 − p ≥ 0. Let B be the mapping Bf(x) = 1 − p

∫ x
0 f(y)dF (y)∫∞
0 f(y)dF (y)

,
defined for measurable bounded positive functions. Then Bnf(x) converges to
to qF (x). As a particular case, if F = U(0, T ) is the uniform distribution on
[0, T ], then the limit is q

x
T , with the convention that 00 = 1.

Moreover, if q < 1, the convergence is uniform.

Proof. Our operator will be

Bf(x) =
q
∫ x
0 f(y)dF (y) +

∫∞
x f(y)dF (y)∫∞

0 f(y)dF (y)
.

Now, the kernel K from (3.4) is

(3.8) K(x, y) = q1[0,x](y) + 1[x,∞](y).

As K(x, y) ≥ a := min(1, q) the first condition from Theorem 3.3 is
fulfilled if q > 0. The operator B can be written as (Bf)(x) = (Kµf)(x)

(Kµf)(0) . The

equation Bh = h has the solution h(x) = qF (x). Indeed

Kµh(x) = q

∫ x

0
qF (y)dF (y) +

∫ ∞

x
qF (y)dF (y)

= q
qF (x) − 1

ln q
+

q − qF (x)

ln q
=

q − 1
ln q

qF (x).

Thus the constant c from Theorem 3.3, (3.6) is c = ln q
q−1 and h(x) = qF (x).

The limit of (Bnf)(x) is h(x)/h(0) = h(x).
The case p = 1 ⇔ q = 0 is special. This time the kernel K(x, y) =

1[x,∞](y) vanishes for x > y. We shall use the brute force to check that
Bnf → 1{0}.

Indeed, now Bf(x) =
∫∞

x f(y)dF (y)∫ T
0 f(y)dF (y)

. We have to prove that Bnf(x) con-

verges to 1 if x = 0 or to 0 if x > 0. The first assertion is obvious. Let
x > 0. Firstly, remark that Bf is always decreasing and (Bf)(0) = 1. Re-
placing if necessary f by Bf , one can always accept that f is continuous,
non-increasing, non-negative and f(0) = 1. Next, the reader is invited to
check by induction that

(3.9) Bnf(x) =

∫∞
x (F (y)− F (x))n−1f(y)dF (y)∫ T

0 F (y)n−1f(y)dF (y)
.

Let θ = inf {x : f(x) > 0}. Then

Bnf(x) =

∫ θ
x (F (y)− F (x))n−1f(y)dF (y)∫ θ

0 F (y)n−1f(y)dF (y)
.
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Let 0 < x < θ be fixed and let θ0 < θ be such that F (θ)−F (x) < F (θ0).
Such a θ0 does exist since F is continuous and F (x) > 0. Then, using the fact
that 0 ≤ f(x) ≤ 1 and f is non increasing, we have

Bnf(x) 6

∫ θ
x (F (y)−F (x))n−1dF (y)∫ θ

0 F (y)n−1f(y)dF (y)
≤
∫ θ
x (F (y)−F (x))n−1dF (y)

f(θ0)
∫ θ
0 F (y)n−1dF (y)

=

=
(

F (θ)− F (x)
F (θ0)

)n

· 1
f(θ0)

and the last term obviously converges to 0.
To prove that the convergence is uniform if p < 1, notice that we can

always assume that the functions fn = Bnf are non-decreasing, continuous,
fn(0) = 1, fn(∞) = q := 1 − p. Let f(x) = qF (x), ε > 0 be fixed and let δ
be such that if |x− x′| < δ then |f(x)− f(x′)| < ε. Let Γ = {0, δ, 2δ, . . . , Nδ}
where N is chosen such that f(Nδ) − f(∞) < ε. Let n(ε) be such that
n > n(ε) ⇒ |fn(kδ)− f(kδ)| < ε, ∀k = 0, 1, . . . , N . Let x ∈ R be any. There
are two cases:

– either there exists a k < N such that kδ ≤ x < (k + 1)δ. Let s = kδ,
t = (k+1)δ. As fn are non-increasing, we have (f(x)−f(s))+(f(s)−fn(s)) =
f(x)− fn(s) ≤ f(x)− fn(x) ≤ f(x)− fn(t) = (f(x)− f(t)) + (f(t)− fn(t)).

It follows that |f(x)− fn(x)| ≤ max(|(f(x) − f(t)) + (f(t) − fn(t))|,
|(f(x)− f(s)) + (f(s)− fn(s))|) ≤ max |f(x) − f(t)| + |f(t) − fn(t)|, |f(x) −
f(s)|+ |f(s)− fn(s)| ≤ 2ε

– or x ≥ Nδ; in this case 2ε ≤ (f(∞) − f(Nδ)) + (f(Nδ) − fn(Nδ)) =
f(∞)−fn(Nδ) ≤ f(x)−fn(Nδ) ≤ f(x)−fn(x) ≤ f(x)−fn(∞)≤f(Nδ)−q≤ε.

Thus in both cases n ≥ n(δ) ⇒ |f(x)− fn(x)| ≤ 2ε hence the conver-
gence is uniform. �

Remark and open problem. Is it necessary that the probability F from
Proposition 3.4 be continuous? We think that the operator Bnf always has a
limit which depends only on F , not on the chosen f . The limit is not necessarily
the exponential qF (x). The main problem is to decide if the operator B defined
in Proposition 3.4 has a fixed point h, i.e., if there exists h such that Bh = h.
Such a function h is necessarily non-increasing, h(0) = 1, h(∞) = 1− p. Were
we able to prove the existence of h, then we could apply again Theorem 3.3.

Unfortunately, we are able to prove the conjecture only if F is a discrete

probability with a discrete support, i.e., if F =
∞∑

k=1

πkδak
with 0 < a1 <

a2 < · · · . In this case B admits two versions: the right continuous one is

Bf(x) = 1− p

∫
[0,x] f(y)dF (y)∫∞
0 f(y)dF (y)
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and the left continuous one is

Bf(x) = 1− p

∫
[0,x) f(y)dF (y)∫∞
0 f(y)dF (y)

.

We focus on the first one. µ = µ(f) =
∫

fdF =
∞∑

k=1

f(ak)πk. Then

Bf(x) =
∞∑

k=1

(
1− p

∑
k:ak6x

f(ak)πk

µ

)
1[ak,ak+1)(x).

We claim that the equation Bh = h admits a solution h = 1[0,a1) +h11[a1,a2) +
h21[a2,a3) + · · · . Indeed, if x = a1 the equation becomes h1 = 1 − ph1π1

µ ⇔
h1 = µ

µ+pπ1
. If x = a2 , then the equation is h2 = 1− ph1π1+h2π2

µ ; replacing h1

we find h2 = µ2

(µ+pπ1)(µ+pπ2) . By induction, we see that

(3.10) hn =
µn

(µ + pπ1)(µ + pπ2) . . . (µ + pπn)
with µ = µ(h) =

∞∑
k=1

hkπk.

We have to prove that h is a solution, i.e., that the sum
∞∑

k=1

hkπk is indeed

equally to µ. To this end, let
∑
n

=
n∑

k=1

hkπk. One proves by induction that

(3.11)
∑

n

=
µ

p
(1− hn)

and takes into account the fact that hn , as constructed in (3.10) must tend to
1 − p if n → ∞. It means that lim

n→∞

∑
n = lim

n→∞
µ
p (1− hn) = µ

p (1− lim
n→∞

hn) =
µ
p (1−(1− p)) = µ, hence the function h defined by (3.10) is indeed, a solution
of the equation Bh = h. For instance if π3 = π4 = . . . = 0, the solution is

(3.12) h = 1[0,a1) +
q(π1 − π2) +

√
g2(π1 − π2)2 + 4qπ1π2

2π1
1[a1,a2) + q1[a1,∞).

Notice that the equality h=qF still holds if F =Uniform({a1, a2, . . . , aN}),
N ≥ 2, since in that case the relation (3.10) becomes hn = ( µ

µ+ p
N

)n. For in-
stance, for N = 2 and π1 = π2 the relation (3.12) becomes

h = 1[0,a1)+
√

4qπ1π2

2π1
1[a1,a2)+q1[a2,∞) = q01[0,a1)+q1/21[a1,a2)+q11[a2,∞) = qF .

Remark. One can always write a function f ∈ Y (i.e., a decreasing func-
tion such that f(0) = 1, f(T ) = 1−p := q) as f = 1−pg where g : [0, T ] → [0, 1]
is increasing, g(0) = 0 and g(T ) = 1. Let X be the space of all the functions
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of this type. In that way the operator B defined at (2.6) becomes another
operator A : X → X having the form

Ag(x) =

∫ x
0 (1− pg(y))dy∫ T
0 (1− pg(y))dy

.

If we apply Proposition 3.4 we see that the iterates An, f converge to

h(x) = 1−(1−p)
x
T

p for any p < 1.

4. ANOTHER APPROACH TO THEOREM 3.3 AND ITS APPLICATION

The readers which are already familiar with the theory of Markov chains
may remark that the kernel considered in Theorem 3.3 is a very particular
case in the R-theory for irreducible kernels, theory developed, in [7], to which
we refer for terminology and properties involved in the sequel.

Let h be the c-invariant function for Kµ and let m,M denote its lower
(upper) bound. Note the following relations, direct consequence of the as-
sumptions in Theorem 3.3:

(4.1) Kµ1A(x) ≥ aµ(A)Kµ1A(x) ∀x ∈ E, A ∈ E

and

(4.2) Kµ1A(x) ≥ a

M
h(x)µ(A) ∀x ∈ E, A ∈ E .

Relation (4.1) implies that Kµ is µ-irreducible (i.e., µ(A) > 0 ⇒ Kµ1A(x)
> 0, ∀x ∈ E), aperiodic and the whole space is a small set. Also relation (4.2)
implies that h is a small function.

We summarize below the properties of Kµ which are relevant in our
context

Proposition 4.1. (i) The convergence parameter R of the kernel Kµ is c.
(ii) There exists a c-invariant measure π satisfying π(E) < ∞, i.e., the

kernel is c-positive recurrent.
(iii) The kernel K µ is c-uniformly ergodic, i.e.,

(4.3) lim
n→∞

sup
x∈E

sup
{f :|f |≤h}

∣∣∣∣ cn

h(x)
Kn

µf(x)− π(f)
∣∣∣∣ = 0.

Proof. (i) The very existence of a c-invariant function implies c ≤ R.
Next,

∞∑
n=1

cnKn
µ1(x)≥ 1

M

∞∑
n=1

Kn
µh(x)= ∞.
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Now, for an arbitrary set A with µ(A) > 0 we have by induction over n

Kn+1
µ 1A(x) > aµ(A)Kn

µ1(x), whence
∞∑

n=1
cnKn

µ1(x) is also ∞, which actually

means both the fact that c ≥ R and the c-recurrence of Kµ.
(ii) Kµ being c-recurrent there exists a c-invariant σ-finite measure π.

We shall now prove that π(h) < ∞, which sets up the c-positive recurrence of
Kµ. Let B ∈ E be a set for which π(B) < ∞. By (4.2) we have

π(B) = c(πKµ)(B) = c

∫
Kµ1B(x)dπ(x) ≥

≥ ca

M
µ(B)

∫
h(x)dπ(x) =

ca µ(B)π(h)
M

.

(iii) To show the claimed c-uniform ergodicity of Kµ, we invoke Corol-
lary 6.12(ii) in [7] which states that this property is equivalent to the fact that
the c-invariant function h is small. �

Coming now to the particular case which generated this discussion, i.e.,
to the kernel

Kµf(x) = q

∫ x

0
f(y)dF (y) +

∫ ∞

x
f(y)dF (y),

straightforward computations show that

h(x) = qF (x) and π(f) =
∫

q−F (x)f(x)dF (x)

are respectively the c-invariant function and the c-invariant measure of Kµ,
with c = ln q

q−1 .
Applying Proposition 4.1(iii) we get the uniform convergence

lim
n→∞

sup
x∈E

∣∣∣∣cnKn
µf(x)

h(x)
−π(f)

∣∣∣∣ = 0

for any bounded f .
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[9] Gh. Zbăganu, On iterated integrated tail. Proc. Romanian Academy of Sciences, Series

A 11 (2010), 1, 25–42.

Received 7 December 2009 “Gheorghe Mihoc–Caius Iacob” Institute
of Mathematical Statistics

and Applied Mathematics of the Romanian Academy
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