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Let F' be an absolutely continuous probability measure on [0,c0) having finite
moments and the density f. Let F be its tail, defined by F(z) = F((z,c0)). Con-
sider the sequence of probability distributions (F5 ), constructed by the recurrence
Fo = F, Fi1 = (Fy)1, where F7 is the probability distribution on [0, c0) having
the tail (F;)(z) = [° F(y)dy/ [;° F(y)dy. The main result in [9] was Theo-
rem 3.5: suppose that the hazard rate of F, defined by A(z) = f(x)/F(x) has a
limit Ag := A(o0) € (0,00) as x — oo. Then F), converges weakly to Exp(Ao).

In this paper we conjecture that the same result holds if the Cesaro limit

> Ay)d
lim fo (y)dy

Tr— 00 xT

= )\0
does exist. We prove the conjecture in the very particular case when A is periodic.
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1. DEFINITIONS AND STATEMENT OF THE PROBLEM

Let (2, K, P) be a probability space and £ = NLE (Q, K, P). So, X € L
iff X >0 (a.s.) and EX? < oo for every 1 < p < co. Let M be the set of the
distributions of the random variables X € £. Thus F' € M iff F([0,00)) =1
and [2PdF(z) < oo V1 < p < oo. We shall denote by F(xz) the distribution
function of F, by F(x) its right tail and by u,(F) its moments. Precisely,
F(z) will stand for F([0,z]), F(x) for F((x,00)) and p,(F) for [2"dF (z). If
F' is absolutely continuous, its density will be denoted by fr and its hazard
rate by A\p := %F The Lebesgue measure on the real line will be denoted by
. The exponential distribution of parameter A will be denoted by Exp()).

In renewal and ruin theories the following distribution is of interest: it is
called the integrated tail (see for instance [2], [4] or [6]). Its tail is defined by

[ F(y)dy
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We intend to study the mapping U : M — M defined by U(F) = F;
and the sequence defined by

(1.2) Foy=F, Fo=(F)r

Ignatov [5] conjectured in 2005 that this sequence always converges to
some exponential distribution. Now we know that this is not true (counter-
example from [7]). However, Theorem 3.5 from [9] states that if A has a finite
and non-zero limit at infinity, Ao, then the sequence (F},), weakly converges
to the exponential distribution Exp(\g). Similar results were obtained in [1].
Thus the tail of the limit is exp(—Agx). Moreover, it was proved in [1] and [§]
that in this case the sequence ( (nTSLn )n converges to 1/\.

However, the particular examples we have studled make us believe that

Ignatov’s conjecture holds if the Cesaro limit lim Jo 2wy - = )\ does exist. A
r—00

particular case when this limit does exist is when A\ is periodic.

In this paper we shall suppose that this is indeed the case: A(z +T') =
A(z), Yz > 0 for some period T

The main result is:

THEOREM 1.1. If X is periodic and has the period T > 0, then F, =

(fo ) More than that, the hazard rates Ap, converge uniformly
Jo
to o#

As pi(Fy) = (n’ff)Ln (see [8]) we have the following by product:

COROLLARY 1.2. If F has a periodic hazard rate, then the sequence

HMn+1 . . . . .
((n+1)un)n 18 convergent and its limat is

T
fOT Az)dz
2. PLAN OF THE PROOF
PROPOSITION 2.1. Let A : [0,00) — [0,00) be a measurable function

having the pem’od T > 0.
Let A(z) = [y Ay)dy and F(z) = e M) Then

(2.1) F(x) = [% T {%}) with g=e~ M) gnd h(t) = e A

and

(2.2) Fy(z) = q[%] (1—pH(§({T§;})> with p=1—q and H(t / h(z
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Moreover, the hazard rate of FT is
ph(T {%})

H(T) - pH({%})
(ly] and {y} are the integer part of y and the decimal part of y).

Proof. Let > 0. Let k> 0 and ¢ € [0,7T) such that = kT +t. Then

z k=1 G+1)T KT+t
M) = [ awday =3 [ away+ [ away
j

S0 /i T

(2.3) Ar(z) =

T t ¢
= k:/o )\(y)dy—i—/o AMy)dy = k‘I—I—/O AMy)dy = kI + A(t).

It means that F(z) = e * A8 = ¢kh(t). Thus (2.1) is proved.
The integral is

/xoo F(z)dx = /OO F(z)dx — /’; F(z)dx

0 j+1)T KT+t
Z/ dl‘—/ F(z)dx.
=k k

T

Let H(t) = [; h(z)dz. By (2.1) we have [ F(z)dx = i GH(T)—q¢"H(t) =
j=k
lq—_kq(H(T) — (1 —q)H(t)). For z =0 we get [ F(x)dz = }f(fj;).
It means that F;(x) = qkw, which proves (2.2). As about
(2.3), we use the relation \;(x) = T }ﬁx) O
Remark. Notice that h(0) =1, h(T'—0) = ¢, A\;(0) = A\(T'—0) =
Therefore, Aj is periodic, too, and continuous.

p
H(T))"
COROLLARY 2.2. Let (Fy,), be the sequence given by the recurrence (1.2).
Then
(2.4) F(z) = q[%}hn(T {£}) with ¢ = e M) and h(t) = @,
The functions hy, : [0,T) — R4+ have the properties

(25)  h(®) =1 (D)= hu(e) =1 plo P20
fo n(y)d
Now let us look at the operator B : Y — Y defined by
(26) (Bh)(x) = 1 - p o M

I
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Here Y = {h : [0,T]) — [q,1] | h is differentiable, decreasing, h(0) = 1,
h(T) =1—p:= q}. Taking this into account, we can write

COROLLARY 2.3. Let (Fy,), be the sequence given by the recurrence (1.2).
Then

(2.7) F(z) = qlF}(B"h,) (T {£}) with q = W(T).

If we could prove that the sequence (B™h),, is convergent to some limit
hx, then F,, would converge to F*(z) = F,(z) = q[%]h*(T {£}), hence the
sequence (F},), would have a weak limit. Actually we shall prove more, namely

THEOREM 2.4. (B"h)(z) converges uniformly to qT as n — oo for any
heY and x €[0,T).

Suppose that Theorem 2.4 holds. Then lim F,(z) = [%]q{ - q% =

n—oo
JE A(w)dy

e *7 7 . Or, otherwise written, F;,, = exp(\*) with \* = % That
will end the proof of the Theorem 1. [

Example. The geometric distribution. Let
oo
F = Geometric(p) := quk_ldk,

with p,g >0, p+q¢=1.
It is true that F' is not absolutely continuous, hence Ar has no meaning.
However, after the first iteration | = Fy has the density F(z)/u (F) = pg®!

and the hazard rate )\1( ) = foop]g;[j]dy = 1= p{ﬁ} In this case the period
T=1and \* = Jo M)y /\(y fo i ppm = —Ingq. Thus F,, = exp(—Ingq). The

hazard rates Ap, converge to —Ing uniformly. It follows that the moments

of F,, converge to the moments of the exponential distribution. Therefore,
: MHnt1 _ 1
,}er,lo n+tDpn —  log(l-p)°

3. PROOF OF THEOREM 2.4

The proof relies on a result about Markovian kernels, which may be of
some interest itself. Firstly we give some definitions (see for instance [3]| or
[7]) for the readers which are not familiar with these objects.

Let (E,&) be a measurable space. A kernel from E to E is a family of
finite measures on E,Q := (Qz)zcE, having the property that the mapping
x +— Qz(A) is measurable for any A € £. If Q,(F) < 1Vz € E, then Q is called
a submarkovian kernel. If Q,(FE) = 1Vx € E, Q is called a Markovian kernel.
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To any kernel one can attach two operators: one which is acting on bounded
measurable functions and the other one acting on ﬁnite signed measures. The
first one is the operator Vi defined by Vg(f)(z) = = [ f(y)Qz(dy).
The standard notation for it is Qf : Qf(x) actually means VQ( f)(z). Notice
that @ is Markovian iff Q1 = 1.

The other one is the operator Ug(v = [ Qu(A)dv(z). For it, the
standard notation is vQ: thus vQ(A) stands for Ug(v )(A) As a particular
case, @z = 0,Q where 4, is Dirac’s point measure. The compositions Q(Qf)),
Q(Q(QSf))), ... are denoted by Q" f and the compositions (uQ)Q, ((1Q)Q)Q,

. are denoted by p@". Thus Q7 stands for §,Q". Notice again that @ is
Markovian iff §,Q is a probability for every x € E.

The notation is motivated by a particular case: suppose that all (), have
densities K (z,-) with respect to some o-finite measure . Then Vy(f)(z) =
[ K(z,y)f(y)du(y). It is as if we multiply the “matrix” K with the column
“vector” f. Moreover, if v is a signed measure having the density g with
respect to the same o-finite measure p, then

U001 () = [ ( [oe)K @ ) 1awau)

the new density is [ g(z)K (x,y)du(z). It is as if we multiply the “row vector”
g with the same “matrix” K. In this particular case we also could denote the
first operator as f — K, f and the other one as v — vK,,. Some authors call
this function K to be the kernel and say that the (sub)markovian operator @
is given by the kernel K.

The Dobrushin coefficient. Suppose now that P is a Markovian kernel.
The Dobrushin coefficient of P is defined (see [3], p. 88) by

(31) w(P) = 3 {I|Ps — Pyl 2.y € BY.

Recall that the norm of a signed measure v is its variation, |v| =
V| (E) = vy (E)4+v_(E). Tt is easy to see that a(P) < 1, a(PQ) < a(P)a(Q)
(a is submultiplicative) hence a(P™) < a(P)"™. Moreover, if v is a signed mea-
sure, then it is known that ||[vP| < a(P) ||v|| + (1 — a(P)) |v(E)| ([3], p- 91);
as a particular case, if ¥(E) = 0 (as it is the case when v is the difference
between two probabilities), then ||[vP|| < a(P)||v|.

The power of this Dobrushin coefficient is given in the following result —
it should be well known, but we lack a precise reference:

LEMMA 3.1. Let P be a Markovian kernel. If a(P) < 1 then there exists
an invariant probability m such that ||(Pp)" — «|| < (&(P))" — 0 as n —
oo. Thus P™ has always a limit Py, which is a constant Markovian kernel :
(Pso)g =m, Va € E.
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Proof. The sequence (P,)" is Cauchy: [|(P");—(P"™).|| = ||(6x—0.P")-
P"|| < a(P™)||6, — 0, P*|| < 2(a(P))" < ¢ if n is great enough. Thus there
exists a probability 7, such that (P™), converges in norm to 7. Let x,y € E
be arbitrary. Then
lim (6, — 0,)P"|| =

n—oo

= lim (3, —3,)P".

B :‘ lim 3, P~ lim 6, P"
n—oo

As ||(0; — 6y)P"|| < 2&(P)™ the last limit equals 0; it means that the proba-
bility 7 does not depend on z. On the other hand, 7P = lim(d,FP,) - P =
lim 6, P"*! = lim 6, P" = .

Another fact: if the Markovian kernel has the form

_ / K (z,9)f(y)du(y),

then its Dobrushin coefficient is easier to compute: it is equal to

(3.2) Sup{/|K z, 2) ,2)| du(z) - m,yEE}

§SUP{”K( )= Ky, )l s xy € B}

Next fact provides a simple criterion to decide if @(P) < 1.

LEMMA 3.2. Suppose that (E,E) is a measurable space and p is a proba-
bility on it.

Let K : Ex E — [a,00), a > 0, be measurable bounded such that
[ K(z,y)du(y) =1 Vx and

(3.3) Pf= / K(2,9)f (4)du(y).

Then a(P) <1—au(E) < 1.
Proof. We know that a(P) = 3 sup{||K(z,-) — K(y,)|l1 : z,y € E}. But

[ 1K@2) - K a)ldne) = [15 (.2 - )= (K(0,2) - @)l duz) <
/!sz )—aldu(z) /K% )—aldu(z) =
~ (K@) -adu@)+ [ (K.2)-a)du) = 21-an(E)).

Now we give the main result of this section.

THEOREM 3.3. Let (E,&) be a measurable space and p be a finite mea-
sure on .
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Let K: Ex E — [a,00), a > 0 be a measurable bounded function and

(34) Kuf = /K(x,y)f(y)du(y)-
Let also B be the mapping defined for bounded measurable functions as
(K f)(x)
. B =7/ 7/
(35) (BN = G,

where y € E is fized.
Suppose that there ezists a bounded measurable function h : E — (0, 00)
and a positive constant ¢ > 0 such that

(3.6) cK,h = h.

Then the sequence (B™f),, converges to fs(z) = % The limit does not

depend on f.

Proof. Consider the new kernel P defined by (Pf)(z) = ﬁ(Kuu)(x)
As (P1)(z) = 75 (K ,(h))(x) = 1, P is now a Markovian kernel. Its powers

h(z)
are given by
C?’L
(3.7) P"f = - (Ku)"(fh).
We can write it as Pf(z) = [ K(x,y)f(y)du(y) with K(l‘ y) = chgy%K(x Y).

As h is bounded awayfromO(h ) =c [ K(z,y)h(y)du(y) > c[ah(y)du(y) =
ca [ hdp> 0) and bounded, the ratio y — % is bounded away from 0, too

by some b > 0. It follows that K(z,y) > abc > 0. According to Lemma 3.2,
a(P) < 1. By Lemma 1, P™ converges in norm to a stationary measure 7.
Thus P"f — [ fdr for any bounded measurable f. By (3.7) that means,
explicitly, that

To end the proof we write

)" (f)(x) _ "(KL)"(f)(=@)/h
(B"f)(x) =
(K (H)y) (B w)"(f)(2)/h
s h(a;)ff/hdﬂ' _ h(z) 0
y) [ f/hdr — h(y)”
We claim that Theorem 2.4 is a simple consequence of Theorem 3.3. We
shall generalize a bit the operator defined by (2.6) replacing the uniform dis-
tribution on the interval [0, 7] by a continuous probability measure on [0, c0) :

\\
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PROPOSITION 3.4. Let F be a continuous distribution on [0,00) and let

p<1qg=1—p>0. Let B be the mapping Bf(x) = 1—p%,
defined for measurable bounded positive functions. Then B™f(x) converges to
to ¢F'@ . As a particular case, if F = U(0,T) is the uniform distribution on
[0,T], then the limit is qT, with the convention that 0° = 1.

Moreover, if q <1, the convergence is uniform.

Proof. Our operator will be
_ 4Jo SWAE() + [, f(y)dF(y)

B
f) Joo Fy)dE(y)
Now, the kernel K from (3.4) is
(3.8) K(z,y) = qli 5 (y) + 1z,00) (9)-

As K(z,y) > a := min(1,q) the first condition from Theorem 3.3 is
fulfilled if ¢ > 0. The operator B can be written as (Bf)(z) = E];;J;))Eg; The
equation Bh = h has the solution h(x) = ¢¥(*). Indeed

[e.o]

K,h(z) = q /0 "WAF(y) + / "OAF(y)

et S B G el 9%
—d Ing Ing lnqq ’

Thus the constant ¢ from Theorem 3.3, (3.6) is ¢ = ;i—ql and h(z) = ¢F'®@.
The limit of (B"f)(z) is h(x)/h(0) = h(z).

The case p = 1 < ¢ = 0 is special. This time the kernel K(x,y) =
liz,00](y) vanishes for z > y. We shall use the brute force to check that

Indeed, now Bf(z) = m%. We have to prove that B™ f(z) con-
0

verges to 1 if z = 0 or to 0 if # > 0. The first assertion is obvious. Let
x > 0. Firstly, remark that Bf is always decreasing and (Bf)(0) = 1. Re-
placing if necessary f by Bf, one can always accept that f is continuous,
non-increasing, non-negative and f(0) = 1. Next, the reader is invited to
check by induction that

Lo (F(y) = F@))" "' f(y)dF(y)
ST Fy)m=1f(y)dF(y)

Let 6 = inf{z : f(z) > 0}. Then

J7 (F(w) = F())" () AF ()
J§ F(y)m=1f(y)dF(y)

(3.9) B"f(z) =

B"f(z) =
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Let 0 < z < 6 be fixed and let 6y < 6 be such that F(0) — F'(z) < F(6y).
Such a 6y does exist since F' is continuous and F'(x) > 0. Then, using the fact
that 0 < f(z) <1 and f is non increasing, we have

. (@) ~F@)" 1 dFy) _ [} (Fy)-F(2)"dF )
B"f(x) < 7 < 5 : =
Jo Fy)» 1 f(y)dF(y) f(6o) [y F(y)" dF(y)

<F(9) —F(:c))” 1
F(o) f(6o)
and the last term obviously converges to 0.

To prove that the convergence is uniform if p < 1, notice that we can
always assume that the functions f,, = B"f are non-decreasing, continuous,
fn(0) =1, fu(o) = q:=1—p. Let f(x) = ¢F®) ¢ > 0 be fixed and let &
be such that if |z — 2’| < § then |f(z) — f(2')| <e. Let I' = {0,6,24,...,Nd}
where N is chosen such that f(NJ) — f(oo) < e. Let n(e) be such that
n > n(e) = |fu(kd) — f(k0)] < e, Vk=0,1,...,N. Let x € R be any. There
are two cases:

— either there exists a k < N such that k§ < z < (k + 1)4. Let s = ko,
t = (k+1)4. As f, are non-increasing, we have (f(z)— f(s))+(f(s)— (s))
f@) = fa(s) < fl@) = fo(@) < f(@) = fult) = (f(2) = f(1) + (f() = fu(D)).

It follows that [f(z) — fn(x)] < max(|(f(z) — f(t)) + ( () = fu(®))],
[(f(z) = f(s)) + (f(S)—fn(S))l) < max |[f(z) — f(t)| + [f() = fu(@)], [f(2) —
F) + 17(5) = fuls)| < 2¢

—or x > N¢; in this case 2e < (f(00) — f(NO)) + (f(NO) — fn(NJ)) =
f(00)=fn(NO) < f(2)=fu(NO) < fz)—fulz) < f(x)—fn(00) < f(NO)—gq<e.

Thus in both cases n > n(d) = |f(x) — fn(x)| < 2¢ hence the conver-
gence is uniform. [0

Remark and open problem. Is it necessary that the probability F' from
Proposition 3.4 be continuous? We think that the operator B™ f always has a
limit which depends only on F', not on the chosen f. The limit is not necessarily
the exponential ¢¥'*). The main problem is to decide if the operator B defined
in Proposition 3.4 has a fixed point h, i.e., if there exists h such that Bh = h.
Such a function h is necessarily non-increasing, h(0) = 1, h(oco) =1 — p. Were
we able to prove the existence of h, then we could apply again Theorem 3.3.

Unfortunately, we are able to prove the conjecture only if F' is a discrete

[e.e]
probability with a discrete support, i.e., if F' = ) mpd,, with 0 < a3 <

k=1
az < ---. In this case B admits two versions: the right continuous one is

f[o g fW)AF (y)
fo F(y)

Bf(x)=1-
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and the left continuous one is

- Jiowy fW)AF(y)
P Fm)dr(y)

We focus on the first one. p = p(f) = [ fdF = Y f(ag)m;. Then
k=1

Bf(z) =

00 L Z< f(ak)ﬂ-k
:ap <T
Bf(.f[]) = Z <1 — pk//[/> 1[ak7ak+1)(1’).
k=1
We claim that the equation Bh = h admits a solution h = 1(9 4,) + h1l{g 4) +
halig,az) + -+ Indeed, if z = a; the equation becomes hy = 1 — p% &
hy = u+l;77r1' Ifx = a22 , then the equation is hy = 1 —p%; replacing hq
we find hy = (Mﬂm’fm. By induction, we see that
" —
3.10 hp = with u = p(h) = himg.
B0 o = o) + pma) - G+ ) ®) ;
o0
We have to prove that h is a solution, i.e., that the sum > hg7y is indeed
k=1
n
equally to u. To this end, let Y = > hymg. One proves by induction that
n k=1
(3.11) Y= %(1—hn)

n

and takes into account the fact that h, , as constructed in (3.10) must tend to
1—pifn — co. It means that lim >’ = lim £(1 —hy,) = 2(1- lim hy,) =
n—oo

n—00 n—ooP
%(1—(1 —p)) = p, hence the function h defined by (3.10) is indeed, a solution
of the equation Bh = h. For instance if 73 = m4 = ... = 0, the solution is
q(m1 — ma) + /g2 (m1 — m2)? + dqmiTo

(3.12) h=1jg,,)+ Laya2) + Ljas,00)-

27T1

Notice that the equality h=¢* still holds if F = Uniform({a1, az,...,ax}),

N > 2, since in that case the relation (3.10) becomes h,, = (ufg )"™. For in-
N

stance, for N = 2 and 7 = my the relation (3.12) becomes

VAqmmo

2m

F

h =141 Vara2) ¥ azi00) = 10,00) +0"* Lar,a0) +0 Lago0) = ¢*

Remark. One can always write a function f € Y (i.e., a decreasing func-
tion such that f(0) =1, f(T) = 1-p:=q) as f = 1—pg where g : [0, 7] — [0, 1]
is increasing, g(0) = 0 and ¢g(7") = 1. Let X be the space of all the functions
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of this type. In that way the operator B defined at (2.6) becomes another
operator A : X — X having the form

~ Jo (1= pg(y))dy
= =0 .
Jo (1 =pg(y))dy
If we apply Proposition 3.4 we see that the iterates A™, f converge to

h(zx) = % for any p < 1.

Ag(z)

4. ANOTHER APPROACH TO THEOREM 3.3 AND ITS APPLICATION

The readers which are already familiar with the theory of Markov chains
may remark that the kernel considered in Theorem 3.3 is a very particular
case in the R-theory for irreducible kernels, theory developed, in [7], to which
we refer for terminology and properties involved in the sequel.

Let h be the c-invariant function for K, and let m, M denote its lower
(upper) bound. Note the following relations, direct consequence of the as-
sumptions in Theorem 3.3:

(4.1) K la(x) > ap(A)K,1a(z) Vo B, Acé
and
(4.2) K,la(z) > %h(m)u(A) Vre E, Acé.

Relation (4.1) implies that K, is p-irreducible (i.e., u(A4) > 0 = K, 14(z)
> 0, Vz € E), aperiodic and the whole space is a small set. Also relation (4.2)
implies that h is a small function.

We summarize below the properties of K, which are relevant in our
context

PROPOSITION 4.1. (i) The convergence parameter R of the kernel K, is c.

(ii) There exists a c-invariant measure 7 satisfying 7w(E) < oo, i.e., the
kernel is c-positive recurrent.

(ili) The kernel K, is c-uniformly ergodic, i.e.,

Cn

h(z)

(4.3) lim sup sup
"0 ze B {f:|f|<h}

Kif(w) = ()| =0

Proof. (i) The very existence of a c-invariant function implies ¢ < R.
Next,

o0

3 c”Kﬁl(a:)z% S Kh(r)= .

n=1 n=1
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Now, for an arbitrary set A with M(A) > 0 we have by induction over n
K”+11A( ) = ap(A)Kj1(z), whence Z c"Kj1(z) is also oo, which actually

means both the fact that ¢ > R and the c-recurrence of K.
(ii) K, being c-recurrent there exists a c-invariant o-finite measure 7.

We shall now prove that m(h) < oo, which sets up the c-positive recurrence of
K,. Let B € € be a set for which 7(B) < co. By (4.2) we have

7(B) = e(nK.)(B) = ¢ / K lp(2)dn(z) >

_ cap(B)r(h)
> M (B)/h($)dﬂ'(l‘) ==

(ili) To show the claimed c-uniform ergodicity of K,,, we invoke Corol-
lary 6.12(ii) in [7] which states that this property is equivalent to the fact that
the c-invariant function A is small. [

Coming now to the particular case which generated this discussion, i.e.,

to the kernel
K,f(x)=q / fly)dF(y / f(y)dF(y

straightforward computations show that

ha) =" and w(f) = [ f(a)aF @)

are respectively the c-invariant function and the c-invariant measure of K,

with ¢ = ;ri%.
Applying Proposition 4.1(iii) we get the uniform convergence

n—00 ek h(l‘)

()| =0
for any bounded f.
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