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© 2008, Editura A
ademiei RomânePrefa
eThe in
reased interest in obtaining more e�e
tive mathemati
al tools forboth fundamental and applied s
ien
es has led in the past years to a stronginterplay between various s
ienti�
 domains, in parti
ular between appliedmathemati
s and mathemati
al physi
s.The present monograph 
ontains a 
olle
tion of review papers on the stateof the art and new results obtained in the resear
h a
tivity on several top-i
s of applied mathemati
s and mathemati
al physi
s. The topi
s are ofequal interest for several resear
h groups involved in the s
ienti�
 a
tivitiesof Romania. The main reason is the 
ommon mathemati
al 
on
epts, analyt-i
al and numeri
al te
hniques, whi
h have imposed themselves as parti
ularyuseful in handling various problems related to the above topi
s.The proposed surveys are written by experts who attained full s
ienti�
re
ognition by signi�
ant 
ontributions to mathemati
s, applied mathemati
sand mathemati
al physi
s.At the same time, this book is the result of their joint e�ort in 
ommon re-sear
h a
tivities along several fruitful years, involving in this respe
t, �Ghe-orghe Miho
�Caius Ia
ob� Institute of Mathemati
al Statisti
s and AppliedMathemati
s, �Simion Stoilow� Institute of Mathemati
s of the RomanianA
ademy, �Horia Hulubei� National Institute of Physi
s, and Institute ofSpa
e S
ien
es, all from Bu
harest.The paper �Quasi-free quantum statisti
al models for tunnelling jun
tion� byN. Angeles
u and M. Bundaru deals with the des
ription of the stationarystates o

urring when a nanos
opi
 quanti
 system is 
onne
ted to thermalreservoirs having di�erent temperatures and a
tivities.�An introdu
tion to monotoni
ity methods for nonlinear kineti
 equations�by Ce
il Grünfeld is a survey upon the re
ent progress on the appli
ationof monotoni
ity methods (with respe
t to the order) to investigate the exis-ten
e of solutions of various Boltzmann-like nonlinear kineti
 equations. Tomotivate the topi
, we �rst provide several examples of Boltzmann modelsfor 
omplex systems, with similar monotoni
ity properties, whi
h presentinterest in appli
ations. These are Smolu
howski's 
oagulation equation,Povzner-like models with dissipative 
ollisions and rea
tive 
ollisions, respe
-tively, a Boltzmann model for several 
hemi
al spe
ies (with rea
tions), anda von Neumann-Boltzmann quantum model. The 
ommon properties of the



8above models 
an be abstra
ted into a very general setting. One obtains a
lass of nonlinear evolution equations, formulated into an abstra
t Lebesguespa
e, for whi
h one 
an state general 
riteria for the existen
e, uniquenessand positivity of global (in time) solutions. The proofs extend te
hniquesthat were initially developed in the more parti
ular 
ontext of the spa
e-homogeneous version of the 
lassi
al Boltzmann equation. Finally we showhow the abstra
t results 
an be applied to our examples of Boltzmann-likemodels.The paper �Estimating the number of negative eigenvalues of a relativisti
Hamiltonian with regular magneti
 �eld� by Viorel Iftimie, Marius M ntoiuand Radu Puri
e is 
on
erned with the proof of the analog of the Cwi
kel-Lieb-Rosenblum estimation for the number of negative eigenvalues of a rela-tivisti
 Hamiltonian with magneti
 �eld B ∈ C∞
pol(R

d) and an ele
tri
 poten-tial V ∈ L1
loc(R

d). A dire
t 
onsequen
e is a Lieb-Thirring inequality for thesum of powers of the absolute values of the negative eigenvalues.The le
ture �Approximate inertial manifolds for nonlinear paraboli
 problemsand approximate solutions based upon these� by An
a Veroni
a Ion presentsthe notion of approximate inertial manifold of a semi-dynami
al system gen-erated by a nonlinear evolution PDE (more pre
isely, a semilinear paraboli
equation), as it appeared in the literature of the last twenty years. Thelo
alization of the attra
tors in the spa
e of phases was a �rst interestingappli
ation �eld of the a.i.m.s. Besides, a.i.m.s found very interesting appli-
ations in the 
onstru
tion of some approximate solutions (and 
onsequentlyin the numeri
al integration) of the nonlinear evolution problems. Theseare 
ontained in the so-
alled nonlinear Galerkin and postpro
essed Galerkinmethods.The 
hapter �Di�usion pro
esses. Physi
al models and numeri
al approxima-tion� by Stelian Ion deals with the numeri
al approximation of a 
lass of non-linear di�usion pro
esses that in
ludes the unsaturated water �ow throughporous media and the fast di�usion. The approximation method 
onsistsin the dis
retization of spa
e derivative operators using the �nite volumes
heme and keeping the 
ontinuum time di�erentiation. Consequently, thesolution of the partial di�erential equations is approximated by the solutionof a system of ordinary di�erential equations. A s
heme to approximate thedi�usion and 
onve
tive term su
h that one 
an obtain a quasi-monotoneODE system is de�ned. Further, it is proved that there exists a dis
rete
omparison prin
iple, the solutions of the dis
rete model are bounded andthe upper and lower bounds are independent of the mesh size of triangula-tion. To perform the time numeri
al integration a 
lass of impli
it ba
kward



9di�erentiation formulae with adaptive time step is used. Sin
e the impli
its
hemes require a nonlinear solver a method that mixes Broyden methodand an inexa
t Newton method is 
onstru
ted. The performan
es of the newmethod are illustrated by some numeri
al results 
on
erning the fast di�usionequation and water in�ltration through a layered soil.The paper �On a 
onvergent numeri
al method for nonlinear Boltzmann-type models� by Dorin Marines
u deals with the extensions of approximationte
hniques of Nambu, Babovsky and Illner for the solutions of the 
lassi
alBoltzmann equation to a nonlinear generalized Boltzmann-type system ofequations solving nontrivial transport �ows in dilute gas mixtures. First,one proves the global existen
e and uniqueness of solutions. Then a weaktime-dis
retized version of equations for positive measures is provided. To ob-tain an algorithm, with small numeri
al e�ort (of order N logN) sto
hasti
methods are introdu
ed. Finally a numeri
al approximation s
heme, 
on-verging almost surely, in some sense, to the solutions of exa
t equations isprovided.The �rst part of the paper �Mathemati
al models of di�usion in nonhomoge-neous porous media� by Gabriela Marinos
hi introdu
es di�usive models ofwater �ow in saturated-unsaturated media, 
hara
terized by a spa
e variationof the porosity. Then the analysis fo
uses on a model with mixed boundary
onditions involving a �ux on a part of the boundary and a nonhomogeneousDiri
hlet 
ondition 
orresponding to a singular situation (i.e., the blowing updi�usion 
oe�
ient) on the other part of the domain boundary. From themathemati
al point of view, the problem resides in the study of a degeneratenonlinear variational inequality whi
h 
an be redu
ed to a multivalued in
lu-sion by an appropriate 
hange of the unknown fun
tion. Finally, existen
e,uniqueness and other properties of the solution are established.The editorsBu
harest, July 2008
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Quantum Statisti
al Models 131. Introdu
tion1.1. General frameDuring the last de
ade 
onsiderable progress has been a
hieved in the statisti-
al des
ription of non-equilibrium thermodynami
 pro
esses. While previouswork 
on
entrated and provided a reasonable understanding of situationsnear thermal equilibrium, su
h as stability of equilibrium states (approa
hto equilibrium) or linear response, a 
onsistent mathemati
al framework ini-tiated by Ruelle [16℄, is now available for a

ounting for the installation, atlarge time, of a non-equilibrium stationary state (NESS) even when the ini-tial state of the system is far from equilibrium (see [3℄ for a re
ent review).The typi
al physi
al situation whi
h �ts in this framework is that of severalreservoirs, Ri; i = 1, ..., r, 
oupled to a �nite quantum system, S (sample).One has to give a

ount for the �ow of energy and parti
les through thesample in the large time asymptoti
 regime.The isolated sample S is a usual quantum system with Hilbert spa
e HS,algebra of observables AS equal to the algebra of all bounded operators on
HS , and unitary dynami
s generated by the Hamiltonian HS. The Heisen-berg pi
ture of the evolution is the automorphism group on AS de�ned as
αt

S(A) = exp (itHS)A exp (−itHS). We suppose that the sample is at time
t = 0 in an arbitrary invariant state ω0

S, i.e. the expe
tation of an observable
A ∈ AS is given by a density matrix: ω0

S(A) = tr(ρSA) and [ρS ,HS ] = 0.The des
ription of the reservoirs Ri is somewhat more elaborated. A reser-voir is an in�nite quantum system, whi
h, before the 
oupling to the sampleis swit
hed on, is in a 
ertain equilibrium state. Its des
ription in the initialstate �ts therefore in the well-established algebrai
 formalism of equilibriumquantum statisti
al me
hani
s [4℄. One starts with reservoirs �nitely ex-tended in some regions Λi of spa
e: the pure states are the unit ve
tors in aHilbert spa
e Hi,Λi , the algebra of observables Ai,Λi 
onsists of all boundedoperators on Hi,Λi and the (Heisenberg) dynami
s on Ai,Λi is generated bya self-adjoint Hamiltonian Hi,Λi , αt
i,Λi

(A) = exp (itHi,Λi)A exp (−itHi,Λi); atgiven inverse temperature βi, the �nite reservoir i has one equilibrium state
ωi,βi,Λi

(A) = tr(Aρi,βi,Λi
) given by the Gibbs ansatz for the density matrix

ρi,βi,Λi
= (1/Zi,Λi(βi)) exp (−βiHi,Λi), where the statisti
al sum Zi,Λi(βi) isa normalizing fa
tor. The in�nite reservoir is 
on
eived as an idealizationbehaving like very large reservoirs, i.e., as a limit of the above stru
ture:The algebra of observables Ai is the smallest C∗-algebra 
ontaining Ai,Λifor all �nite regions Λi, the (strongly 
ontinuous) dynami
s αt

i(·) on it is



14 N. Angeles
u et al.the strong limit (provided it exists) of the automorphism groups αt
i,Λi

(·),and the equilibrium state is a limit point ωi,βi
of ωi,βi,Λi

as Λi in
reasesto the in�nite region Li o

upied by the reservoir Ri. The in�nite reser-voirs in this sense 
an be represented as genuine quantum systems usingthe so-
alled Gelfand-Neumark-Segal (GNS) 
onstru
tion. The latter 
on-sists essentially in the following: a state ω on a C∗-algebra A de�nes asesquilinear form on it by 〈A,B〉 = ω(A∗B); after division by the ideal I ofall I ∈ A su
h that ω(I∗I) = 0, A/I be
omes a pre-Hilbert spa
e, whose
ompletion Hω is the representation spa
e. The representation πω(X) of anelement X ∈ A is the bounded operator whi
h sends the ve
tor Â into theve
tor X̂A; thereby, 1̂ =: Ωω is a 
y
li
 ve
tor for this representation, and
ω(A) = (Ωω, πω(A)Ωω). If, moreover, the state ω is invariant under the auto-morphism group αt (i.e. ω ◦αt = ω), then πω(αt(X)) = Uω(−t)πω(X)Uω(t),where Uω(t) = exp (−itHω) is a unitary group on Hω. The generator Hωof this group, named thermal Hamiltonian, has Ωω as an eigenve
tor witheigenvalue 0.To simplify the notation, we no longer mention the referen
e states ω0

i = ωi,βiof the reservoirs, and simply denote {Hi, πi(·),Ωi,Hi} the GNS des
rip-tion for the reservoir Ri 
orresponding to the equilibrium state ω0
i , i.e.,respe
tively, the Hilbert spa
e, the representation of the observable alge-bra Ai, the 
y
li
 ve
tor and the thermal Hamiltonian generating the uni-tary implementation of the dynami
al automorphism group: πi(α

t
i(A)) =

exp (itHi)A exp (−itHi). Likewise, we denote {HS , πS(·),ΩS ,HS} the GNSrepresentation of the sample asso
iated to the state ω0
S invariant for the group

αt
S .The 
omposite system S+

∑
Ri is in turn an in�nite quantum system, whi
his to be 
onstru
ted as above from a 
ertain referen
e state. The algebra ofobservables is taken as a C∗-tensor produ
t of the algebras Ai of the reservoirsand AS of the sample:
A = AS ⊗ (⊗iAi), (1.1)and the referen
e state is taken as the produ
t of the initial equilibriumstates ω0

i of the reservoirs and the αt
S-invariant state ω0

S(·) = (ΩS , ·ΩS) ofthe sample:
ω0 = ω0

S ⊗ ((⊗iω
0
i ). (1.2)On the algebra A one has the un
oupled dynami
s des
ribed by the auto-morphism group αt = αt

S ⊗ ((⊗iα
t
i), whi
h leaves invariant the state ω0:

ω0(αt(A)) = ω0(A), A ∈ A.At time t = 0, a 
oupling between reservoirs and the sample is swit
hed on,meaning that the dynami
s of the system at positive times is given by another



Quantum Statisti
al Models 15automorphism group of A, τ t. The evolved referen
e state will therefore
hange in time, and be, at time t > 0, the state for whi
h the expe
tation ofan observable equals the ω0-expe
tation of the observable evolved at time ta

ording to the new dynami
s:
ωt(A) = ω0(τ t(A)) = ω0(α−t · τ t(A)), (1.3)where the se
ond equality 
omes from the αt-invarian
e of ω0. Supposea stationary (τ t-invariant) state is approa
hed at large time. This 
an beexpressed as the existen
e of the limit of ωt(A) when t→ +∞ for all A ∈ A.The latter is ensured by the existen
e of the limits

lim
t→+∞

α−t · τ t(A) = Ω+(A), (1.4)i.e. by the existen
e of the Möller endomorphisms of the two groups. Inthis way, the existen
e of (and the 
onvergen
e to) a stationary state 
anbe presented as a s
attering problem for two automorphism groups on a
C∗-algebra. As a rule, τ t is 
onstru
ted as a lo
al perturbation of αt via astrongly 
onvergent Dyson series; more pre
isely, if lim

t→0

1
t (α

t(A)−A) = δ0(A)for A in a dense subalgebra D ⊂ A, one supposes that there exists V ∈ A,su
h that δV (A) := lim
t→0

1
t (τ

t(A) −A) = δ0(A) + i[V,A] for A ∈ D.As a 
onsequen
e of the 
hoi
e (1.2), the 
omposite system 
an be realizedin the tensor produ
t of Hilbert spa
es H = HS ⊗ ((⊗iHi), whi
h 
arries theprodu
t representation of A, so that π(A) is the C∗-tensor produ
t of oper-ator algebras πS(AS) ⊗ ((⊗iπi(Ai)). Thereby, the independent (un
oupled)dynami
s of the reservoirs and of the sample is implemented in H by theunitary group U0(t) = exp (−itH0) = exp (−itHS) ⊗ ((⊗i exp (−itHi)). The
y
li
 ve
tor Ω = ΩS ⊗ ((⊗iΩi) is an eigenve
tor of H0 with eigenvalue 0.Also, the lo
ally perturbed dynami
s is implemented by the unitary group
U(t) = exp (−itH), where

H = H0 + π(V ). (1.5)In this way, the problem 
an be reformulated as a perturbation problem forselfadjoint operators on a Hilbert spa
e in a setting depending on the 
hosenreferen
e state.Of 
ourse, the 
onstru
tion of the perturbed dynami
s and the proof thatthe Möller endomorphisms exist are to be done for the models under 
on-sideration of reservoirs, samples and 
ouplings between them. It happensthat the program outlined before 
an a

ommodate a few reservoir models ofphysi
al interest, su
h as spin models or free parti
le models obeying Fermi



16 N. Angeles
u et al.statisti
s, and samples with �nite-dimensional HS . One of the most restri
-tive assumptions is the existen
e of the in�nite-volume dynami
al group ofautomorphisms αt and its assumed strong 
ontinuity. A way out to a morepermissible framework for the reservoirs, Ri, is to 
onstru
t as above thereferen
e states ω0
i as limit points of �nite-volume Gibbs states and furtherwork within the GNS representation asso
iated to it. In parti
ular, a weakly
ontinuous in�nite-volume dynami
s may appear as a limit of the lo
al dy-nami
s αt

Λi
(·) viewed as automorphisms of the weak 
losures of the operatoralgebras πi(Ai) representing Ai, i.e. of the von Neumann algebras πi(Ai)

′′.This allows to de�ne a representation-dependent dynami
s and self-adjointthermal Hamiltonian. Hen
e, the steps leading to a s
attering problem in aHilbert spa
e are to be performed. In parti
ular, this is the 
ase of free-bosonreservoirs, see Se
. 4. below.1.2. Quasi-free modelsIn the paper we shall 
onsider instan
es of 
on
rete realizations, within a
lass of very simple models, of the paradigm outlined above. Essentially, wesuppose that:1. The reservoirs are free quantum identi
al parti
le systems, obeyingFermi-Dira
 or Bose-Einstein statisti
s.2. The perturbed (
oupled) dynami
s is quasi-free.In more detail, point 1 means the following: Before taking the thermody-nami
 limit, i.e. when the reservoir is 
on�ned to a �nite region Λ, theappropriate Fo
k spa
e, whi
h bears the Fo
k representation of the 
anoni-
al (anti)
ommutation relations, 
an be used, whereby the number of parti-
les NΛ = dΓ(1) and Hamiltonian HΛ = dΓ(h0
Λ). A

ording to the grand-
anoni
al pres
ription, HΛ is to be repla
ed by HΛ−µNΛ in the Gibbs ansatzfor the equilibrium density matrix, where the multiplier µ is adjusted to en-sure given parti
le density in the reservoir. In the thermodynami
 limit, the

C∗-algebra of observables should "
ontain" the lo
al operators, i.e. fun
tionsof a♯(f) with f having support in some �nite region. It is therefore naturalto take it as the 
anoni
al (anti)
ommutation relations algebra, CAR(D),respe
tively CCR(D), over a 
ertain subspa
e of the spa
e of reservoir's one-parti
le states, D ⊂ H(1), 
ontaining at least the fun
tions with 
ompa
tsupport. The equilibrium states of the reservoir, i.e. the limit states of the



Quantum Statisti
al Models 17�nite-volume Gibbs states, are well-known (see e.g. [4℄), and turn out to bequasi-free states (i.e. states in whi
h there are no 
orrelations of order higherthan 2) over these C∗-algebras. D may be extended su
h that the limit statesbe de�ned on the 
orresponding C∗-algebra. In the Fermi 
ase D = H(1).In the Bose 
ase, however, due to the phenomenon of Bose-Einstein 
onden-sation, D 6= H(1); in the paper, in order to avoid the domain problems, wesuppose also that the Bosons live on the latti
e Zd, leaving the general 
asefor another publi
ation.The point 2 means that the evolution automorphism of the C∗-algebra isgiven by a unitary evolution e−ith inH(1) whi
h leavesD invariant: τ t(a♯(f)) =
a♯(eithf). As a 
onsequen
e, not only the initial (referen
e) state ω0, but alsoall ωt, t > 0 and the stationary state are quasi-free. Thereby, the problemis redu
ed to a s
attering problem for the one-parti
le Hamiltonians, whi
h
an be expli
itly solved.In this respe
t, the quasi-free models are trivial, in parti
ular they allowno intera
tion between parti
les and thus restri
t 
onsideration to simpletunneling jun
tions, but they turn out to be a good laboratory for 
onje
tures
on
erning various phenomena and providing instan
es of interesting physi
albehavior. In parti
ular, the 
oupled dynami
s no longer 
onserves the energyand number of parti
les in the reservoirs, implying that, in the stationarystate, there exist persistent 
urrents of energy and parti
les, depending onthe parameters �xing the initial equilibria of the reservoirs, and also on thegeometry of the sample and its 
oupling to them. In this way various formulaeof transport theory 
an be obtained beyond the linear response regime.1.3. SummaryThere is an extensive literature on quasi-free quantum systems. This workstarted as an attempt to systematize their appli
ation to the problems ofreturn to equilibrium and of approa
h to NESS in a more abstra
t, 
om-prehensive frame, as outlined in the previous subse
tion. In the meantime,we be
ame aware of two re
ent papers with the same purpose in the Fermi
ase [2℄, [12℄, so we limited to the more modest aim of giving a (hopefullymore friendly) presentation of their general result, of indi
ating its extensionto the Bose 
ase and of providing a few examples of 
al
ulation for 
ertaininteresting physi
al quantities.Se
tion 2 is 
on
erned with the spe
tral and s
attering problems for the one-parti
le Hamiltonians, as the same analysis applies to both Fermi and Bose



18 N. Angeles
u et al.statisti
s. In order to have as far as possible expli
it expressions, we 
onsider,as an appli
ation, in subse
tions 2.3. and 2.4. the 
ase of two reservoirs, inwhi
h the parti
les live on two d-dimensional latti
es, and those in the sampleon a 
hain ofN ≥ 0 sites; thereby, the 
oupling is a simple tunneling involvingone site of ea
h reservoir.Se
tion 3 is devoted to the Fermi statisti
s 
ase, whi
h is simpler in manyrespe
ts, in parti
ular the C∗-framework is su�
ient, as the in�nite-volumedynami
s is a strongly 
ontinuous group of automorphisms of CAR(H(1)) .A 
omprehensive study of this 
ase has been performed in [2℄, the results ofwhi
h are brie�y presented. We make expli
it their result for the parti
ularsetting in Se
tion 2.3. and point out a few pe
uliarities of the NESS, su
h asthe resonant 
hara
ter of the transport and the plateau e�e
t for the 
arrierdensity.Se
tion 4 is 
on
erned with Bose reservoirs. This brings in several new phe-nomena and 
ompli
ations. First, at high density and low temperature,Bose 
ondensation may appear, implying the spontaneous gauge-symmetrybreaking, i.e. existen
e of several extremal equilibrium states labeled by aphase. Moreover, the in�nite volume dynami
s 
annot be a strongly 
ontinu-ous group of the CCR algebra; fortunately, as quasi-free states are regular, itis 
ontinuous in the GNS representation 
orresponding to equilibrium states.The interesting question here is the dependen
e of the NESS on the parti
ularmixtures of phases 
onstituting the initial equilibria of the reservoirs. Thismay be viewed as a 
ari
ature of the Josephson tunneling of Cooper pairsbetween two super
ondu
tors. The approa
h to equilibrium in the presen
eof a 
ondensate has been analyzed by Merkli [8℄. The problem of approa
hto a NESS, left open there, was 
onsidered by us in [1℄, the result of whi
his presented in the present, slightly more general, setting.2. S
attering for the one-parti
le HamiltoniansThis se
tion is devoted to the spe
tral analysis of the one-parti
le Hamil-tonian h = h0 + v, where h0 is the one-parti
le Hamiltonian of the de
ou-pled system, i.e. the dire
t sum of the one-parti
le Hamiltonians hi (i =
1, ..., r), hS of the isolated reservoirs and sample and v des
ribes the tunnel-ing between them. We make the following assumptions:Assumption 2.1 The one-parti
le Hilbert spa
e is an orthogonal sum

H(1) = H(1)
S ⊕H(1)

R ; H(1)
R = ⊕r

i=1H
(1)
i ,
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al Models 19with dimH(1)
S = N < ∞. Let J : H(1)

R → H(1) and I : H(1)
S → H(1) be thenatural inje
tions:

Jf = 0 ⊕ f If = f ⊕ 0,Assumption 2.2 In the matrix representation asso
iated to this de
omposi-tion, the unperturbed Hamiltonian h0 is blo
k-diagonal:
h0 = hS ⊕ h0

ac; h0
ac = ⊕r

i=1hi,and the perturbation v has the following stru
ture: There exist maps τi :

H(1)
i → H(1)

S , su
h that
v = IτJ∗ + Jτ∗I∗,where

τ : H(1)
R → H(1)

S , τ(⊕r
i=1fi) =

r∑

i=1

τifi.Assumption 2.3 hi, i = 1, ..., r, have absolutely 
ontinuous spe
tra equalto the bounded intervals Ii ⊂ R. Thereby, we suppose that r⋃
i=1

Int(Ii) is aninterval (emin, emax). We denote Ri(z) = (hi − z)−1, (z ∈ C \ Ii) and R0
ac =

(hac −z)−1 = ⊕r
i=1Ri(z). Let pi, πi denote the right, respe
tively left, supportof τi (i.e. the orthogonal proje
tions onto the subspa
es τi(H(1)

i ) ⊂ H(1)
S ,respe
tively τ∗i (H(1)

S ) ⊂ H(1)
i ). For all x ∈ Ii, the limits
lim
ǫց0

πiRi(x+ iǫ)|
πi(H

(1)
i )exist as operators in the 
orresponding subspa
es and are 
ontinuous fun
tionsof x; thereby, for all interior points x of Ii, ,

lim
ǫց0

πiℑRi(x+ iǫ)|
πi(H

(1)
i )

> 0 (i = 1, ..., r).2.1. Resolvent and spe
trum of the perturbed HamiltonianThe spe
tral de
omposition of h = h0 + v is based on �nding a 
onvenientrepresentation of the resolvent operator R(z) = (h − z)−1. We shall use avariant of the Feshba
h method, taking advantage of the fa
t that v has �niterange, what allows summing the perturbation series in 
losed form.We have to solve for fS, fi, i = 1, ..., r, the system of equations




(hi − z)fi + τ∗i fS = gi (i = 1, ...r)
r∑

i=1
τifi +(hS − z)fS = gS ,

(2.1)
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i=1gi) ∈ H(1) is arbitrary.If z ∈ C \ [emin, emax], the �rst line in equation (2.1) provide fi in terms of

fS :
fi = Ri(z)(gi − τ∗i fS), (2.2)and the se
ond line be
omes

(heff (z) − z)fS = Q(z)g, (2.3)where heff (z) : H(1)
S → H(1)

S and Q(z) : H(1) → H(1)
S are de�ned by:

heff (z) = hS −
r∑

i=1
τiRi(z)τ

∗
i = hS − τR0

ac(z)τ
∗,

Q(z) = I∗ − τR0
ac(z)J

∗.
(2.4)Whenever heff(z) − z is invertible, we denote Reff(z) = (heff(z) − z)−1, sothat Eq. (2.3) has the unique solution

fS = Reff(z)Q(z)g, (2.5)With fS given by Eq. (2.5) and fi given in terms of it by Eq. (2.2),
f = fS ⊕ (⊕r

i=1fi) = Q(z̄)∗fS provides the solution to the system (2.1).Therefore, remarking that ∪r
i=1Ii ⊂ σ(h) (by the invarian
e of the essentialspe
trum under 
ompa
t perturbations), the following 
hara
terization hasbeen proved:Lemma 2.1 The resolvent set of h is

ρ(h) = {z ∈ C \ [emin, emax]; ker (heff(z) − z) = {0}}.For all z ∈ ρ(h),
R(z) = JR0

ac(z)J
∗ +Q(z̄)∗Reff(z)Q(z). (2.6)The Kato-Rosenblum s
attering theory [15℄ ensures the existen
e and 
om-pleteness of the wave operators W± : H(1)

R → H(1) for the unitary groups
e−ith, e−ith0

ac , i.e. the existen
e of the strong limits:
W± := (s) lim

t→±∞
eithJe−ith0

ac . (2.7)Hen
e,
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al Models 21Lemma 2.2 h has absolutely 
ontinuous spe
trum σac(h) = [emin, emax] andno singular 
ontinuous spe
trum. The absolutely 
ontinuous part hac of h,i.e. h restri
ted H(1)
ac (h) = W±(H(1)

R ), is unitarily equivalent to h0
ac via theintertwining relations hacW± = W±h

0
ac.Finally, we determine the point spe
trum of h, σp(h).Let z ∈ σp(h), and f = fS ⊕ (⊕r

i=1fi) 6= 0 be an eigenve
tor of h witheigenvalue z. Then f is a solution of Eq. (2.1) for g = 0.If, thereby, τ∗i fS = 0 for all i = 1, ..., r, then (hi − z)fi = 0, ∀i, hen
e fi = 0,be
ause hi have no point spe
trum. If so, the se
ond line in (2.1) shows that
z ∈ σp(hS) and that fS ∈ ker τ∗i is a 
orresponding eigenve
tor. Conversely,if fS ∈ ∩i ker τ

∗
i is an eigenve
tor of hS , then fS ⊕ 0 is an eigenve
tor of hwith the same eigenvalue.Suppose next that τ∗i fS 6= 0 for at least one i. If z 6∈ [emin, emax], Eq. (2.2),whi
h expresses fi in terms of fS , and Eq. (2.3) show that fS 6= 0 is aneigenve
tor of heff(z) with eigenvalue z. Conversely, if ker (heff (z) − z) ∋

fS 6= 0, then z ∈ σp(h) and Q(z̄)∗fS is an eigenve
tor of h with eigenvalue z(in parti
ular, we have that ℑz = 0). Let us 
onsider the family of self-adjointoperators {heff (x); z = x ∈ (−∞, emin)} and let λ1(x) ≤ ... ≤ λN (x) be theeigenvalues of heff (x) and ψ(x)
(1)
S , ..., ψ(x)

(N)
S the 
orresponding eigenve
tors.As remarked before, x ∈ σp(h) if, and only if, x = λk(x) for some k = 1, ...,N .As heff (x) is a de
reasing operator-valued fun
tion of x in the 
onsideredinterval, all its eigenvalues λk(x) are de
reasing fun
tions, hen
e, the equation

x = λk(x) has a simple solution x = e−k if, and only if, lim
xրemin

λk(x) < emin.Then, every eigenve
tor of heff (e−k ) with eigenvalue e−k 
an be 
ompleted toan eigenve
tor of h with this eigenvalue. Likewise, on (emax,∞) the equation
x = λk(x) has a solution e+k if, and only if, lim

xցemax

λk(x) > emax, implying
e+k ∈ σp(h).Next, let fS ⊕f be an eigenve
tor of h 
orresponding to x in (emin, emax) andsu
h that τ∗i fS 6= 0 for some i = 1, ..., r. Let z = x + iy, with ℑz = y > 0.We have, by the �rst line of equations (2.1), fk = Rk(x+iy)(hk −x− iy)fk =
−Rk(x+ iy)τ∗kfS − iyRk(x+ iy)fk, whi
h, plugged into the se
ond equation,implies, in parti
ular, that

(fS , (heff (x+ iy) − x)fS) = iy
r∑

k=1

(τ∗kfS, Rk(x+ iy)fk)

= iy
r∑

k=1

(‖fk‖2 − iy(fk, Rk(x+ iy)fk)).Equating the imaginary parts of this equality, letting y ց 0 and using
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‖Rk(x+ iy)‖ = 1/y, we arrive at

ℑ(fS , τkRk(x+ i0)τ∗kfS) = 0, ∀k,whi
h 
ontradi
ts assumption 2.3.In summary:Lemma 2.3 The point spe
trum of h in R \ {emin, emax} 
onsists, besidesthe possible eigenvalues of hS possessing eigenve
tors fS ∈
r⋂

i=1
ker τ∗i , of thesolutions e−k ∈ (−∞, emin) and e+k ∈ (emax,∞) of the equations λk(x) = x.The latter exist if, and only if, λk(emin − 0) < emin and λk(emax + 0) > emax,respe
tively.The values emin or emax may be eigenvalues of h, either if they are eigenvaluesof hS with eigenve
tor fS ∈

r⋂
i=1

ker τ∗i , or if λk(x) = x and the 
orrespondingeigenve
tor ψ(x)(k) ful�lls lim
x′→x

‖Ri(x
′)τ∗i ψ(x′)(k)‖ < ∞, ∀i. The latter 
on-dition, being dependent on the stru
ture of h0 and τi, is to be 
he
ked forea
h 
on
rete model.2.2. Wave operators and s
attering matrixIn this subse
tion we derive the expressions of the wave operators and S-matrix using the formalism of stationary s
attering theory [15℄, [17℄. Namely,with the spe
tral representation of the unitary groups e−ith =

∫
e−itxdE(x),

e−ithi =
∫

e−itxdEi(x), we 
an express the wave operators in terms of theresolvent R(z) of h. We have
W+ = (s) lim

ǫց0
ǫ
∫∞
0 e−tǫ exp (ith)J exp (−ith0)dt

= (s) lim
ǫց0

ǫ
∫

dE(x′)
∫
JdE0

ac(x)
∫∞
0 dteit(x′−x+iǫ)

= (s) lim
ǫց0

(iǫ)
∫
R(x− iǫ)JdE0

ac(x).

(2.8)where we denoted E0
ac(x) = ⊕r

i=1Ei(x). Similar 
al
ulations are valid forW−.Using Eq. (2.6) for R(z), taking into a

ount that ∓iǫR0
ac(x± iǫ)dE0

ac(x) =
dE0

ac(x) and Assumption 2.2, the following representation is obtained:
W± = J − (s) lim

ǫց0

∫
Q(x± iǫ)∗Reff(x∓ iǫ)τdE0

ac(x). (2.9)
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W ∗

± = J∗ − (s) lim
ǫ′ց0

∫
dE0

ac(x
′)τ∗Reff(x′ ± iǫ′)Q(x′ ± iǫ′). (2.10)Eqs. (2.9), (2.10) give for the S-matrix:

S = W ∗
+W− = 1 −J∗

∫
Q(x− i0)∗Reff(x+ i0)τdE0

ac(x)

−
∫

dE0
ac(x

′)τ∗Reff(x′ + i0)Q(x′ + i0)J

+ lim
ǫ′ց0

{lim
ǫց0

∫
dE0

ac(x
′)τ∗Reff(x′ + iǫ′)Q(x′ + iǫ′)

×
∫
Q(x− iǫ)∗Reff(x+ iǫ)τdE0

ac(x)}.

(2.11)We 
al
ulate the last term using the resolvent equation, whi
h implies
Q(x′ + iǫ′)Q(x− iǫ)∗ = 1 + τR0

ac(x
′ + iǫ′)R0

ac(x+ iǫ)τ∗

= 1 + (x′ − x+ i(ǫ′ − ǫ))−1τ [R0
ac(x

′ + iǫ′) −R0
ac(x+ iǫ)]τ∗

= (x′ − x+ i(ǫ′ − ǫ))−1[(heff (x+ iǫ) − x− iǫ) − (heff (x′ + iǫ′) − x′ − iǫ′)].Ea
h term of the latter expression, when plugged into Eq. (2.11), is sand-wi
hed between Reff , what, after making the obvious simpli�
ation, allowsone of the integrals to be performed (e.g. ∫ dE0
ac(x

′)(x′−x+i(ǫ′− ǫ))−1τ∗ =
R0

ac(x− i(ǫ′−ǫ))τ∗ = J∗Q(x− i(ǫ−ǫ′))∗). Therefore, after taking the iteratedlimit, the last term of Eq. (2.11) equals
∫
J∗Q(x+ i0)∗Reff(x+ i0)τdE0

ac(x) +

∫
dE0

ac(x
′)τ∗Reff(x′ + i0)Q(x′ + i0)J.As Q(z)J = −τR0

ac(z), one obtains �nally
S = 1 + 2i

∫
ℑ(R0

ac(x+ i0))τ∗Reff(x+ i0)τdE0
ac(x). (2.12)Remark 2.1 It is sometimes useful to represent the Hilbert spa
e Hac(h

0) asa dire
t integral over energy of Hilbert "eigenspa
es" Kx, i.e. there exists aunitary U : Hac(h
0) →

∫ ⊕
[emin,emax] Kydy =: K, su
h that UE0

ac(Λ)U∗ = χΛ(·)(the operator of multipli
ation with the indi
ator of the measurable set Λ). Itis 
lear that, for ψ(·) ∈
∫ ⊕
[emin,emax] Kydy, (UR0(z)U∗ψ)(y) = (y − z)−1ψ(y).Also, τU∗ψ =

∫
[emin,emax] τy(ψ(y))dy, where τy : Ky → H(1)

S . Eq. (2.12)shows that, in this representation, the S-matrix is diagonal, i.e. USU∗ =∫ ⊕
[emin,emax] Sxdx, where Sx : Kx → Kx equals

Sx = 1 + 2πiτ∗xReff(x+ i0)τx =: 1 + Tx. (2.13)
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Tx is 
alled the on-shell T -matrix.Cal
ulating, for f ∈ H(1)

ac , separately the 
omponent I∗W±f ∈ H(1)
S and

J∗W±f ∈ H(1)
ac of Eq. (2.9), one obtains

I∗W±f = −
∫
Reff(x∓ i0)τx(Uf)(x)dx,

[UJ∗W±f ] (x) = (Uf)(x)+
+
∫

1
x−x′∓i0τ

∗
xReff(x′ ∓ i0)τx′(Uf)(x′)dx′.

(2.14)Also, the a
tion of W ∗
± on f ∈ H(1) is given by

(UW ∗
±f)(x) = (UJ∗f)(x)−

−
∫

1
x−x′±i0τ

∗
xReff(x± i0)τx′(UJ∗f)(x′)dx′−

−τ∗xReff(x± i0)I∗f.

(2.15)2.3. An example: two half-in�nite latti
e reservoirs 
oupledby a wireIn this subse
tion we des
ribe, as an illustration of the more general settingof the model, a parti
ular geometry and dynami
s: the system 
onsisting oftwo parti
le reservoirs, R1, R2, 
onne
ted by a one-dimensional wire, S.The reservoirs, Ri, i = 1, 2, are taken as in�nitely extended latti
e quantumgases. The parti
les in the reservoirs live, respe
tively, on the two (left,respe
tively, right) half-in�nite latti
es,
Li = Zd

i =
{
r = (r′, rd); r′ ∈ Zd−1, (−1)ird = 1, 2, ...

}
. (2.16)The Hilbert spa
e of one-parti
le states in Ri is therefore

H(1)
i = l2(Li) =



f = (fr)r∈Li ; ‖f‖2 =

∑

r∈Li

|fr|2 <∞



 . (2.17)The kineti
 energy operator of one parti
le in Ri is 1/2 times the latti
eLapla
e operator with free boundary 
onditions, i.e.

(hif)r = dfr −
1

2

∑

q∈Li,|q−r|=1

fq. (2.18)A 
omplete set of generalized eigenve
tors of hi are ψi(k) ∈ l∞(Li), k ∈ Td
i ,where the index sets Td

i = {k = (k′, kd); k′ ∈ [0, 2π)d−1, kd ∈ (0, π)} are
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al (the subs
ript i has the only role to make the di�eren
e betweenthe two reservoirs, e.g. by Td
1 ∪ Td

2 we mean the disjoint union of two 
opiesthis set), and
ψi(k)r = 2(2π)−d/2 exp (ik′r′) sin (kd|rd|). (2.19)

ψi(k) 
orresponds to the generalized eigenvalue
ωi(k) = 2

d∑

α=1

sin2 (kα/2). (2.20)Again, though the two dispersion laws (2.20) are identi
al, we keep the label
i to mark the reservoir they 
orrespond to. Therefore the spe
tra of hi areabsolutely 
ontinuous and 
oin
ide with the intervals I1, I2 ⊂ R (both equalto [0, 2d]). In fa
t, we de�ne the unitary operators ui : H(1)

i → L2(T
d
i ) by

uif = (ψi(·), f); (2.21)then, uihiu
∗
i is the operator of multipli
ation with the fun
tion ωi(k) on

L2(T
d
i ).The sample S, providing our model of a nanowire, is a free quantum gas inwhi
h parti
les live on the �nite set of sites {1, 2, ...,N}. The states withone parti
le are ve
tors f = (f1, ..., fN ) ∈ H(1)

S = l2({1, 2, ...,N}) ≡ CN andtheir evolution is 
ontrolled by the Hamiltonian
(hSf)i = (1+eg)fi−1/2(fi−1 +fi+1), i = 1, ...,N (f0 = fN+1 = 0), (2.22)where the parameter eg plays the role of an adjustable gate potential. Theeigenvalues of hS are εm = eg + 2 sin2 (qm/2);m = 1, ...,N , where qm =
mπ/(N + 1), with eigenve
tors ψ(m):

ψ
(m)
i =

√
2

N + 1
sin (qmi). (2.23)The one-parti
le Hilbert spa
e for the entire system, S +R1 +R2 is

H(1) = H(1)
S ⊕H(1)

1 ⊕H(1)
2 = l2(L), where L = {1, 2, ...,N}∪L1 ∪L2. (2.24)The evolution of the one-parti
le states for the un
oupled system is given bythe one-parti
le Hamiltonian

h0 = hS ⊕ h1 ⊕ h2 (2.25)
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tions are turned on between the reservoirs and theends of the wire through the pairs of sites (α1 = (0′,−1), {1}) and (α2 =
(0′, 1), {N}), N > 0. On H(1), this is given by the one-parti
le operator vde�ned by the matrix

vr,s =

{
t, if either {r, s} = {α1, 1} or {α2,N}
0, otherwise,

(2.26)Thus, the evolution of the one-parti
le states in the 
oupled system is gen-erated by the Hamiltonian:
h = h0 + v. (2.27)Proposition 2.1 The model de�ned above ful�lls the assumptions 2.1�2.3.Thereby, h has no eigenvalue embedded in (0, 2d).Proof. Assumptions 2.1 and 2.2 are obvious, with r = 2 and τ1, τ2 having allmatrix elements equal to 0, but for (τ1)1,α1 = (τ2)N,α2 = t. We have that

(τ1R1(z)τ
∗
1 )i,j = t2δi,1δj,1g(z), (2.28)where

g(z) = 4(2π)−d
∫

Td sin2 (kd)(ω1(k) − z)−1dk

= 4(2π)−d
2d∫
0

(y − z)−1dy
∫

Td(y)

sin2 (kd)dµy(k),
(2.29)where dµy(k) = |∇ω(k)|−1dσy(k) is the Gelfand-Leray measure on the levelset Td(y) = {k ∈ Td; ω(k) = y} (where dσy(k) is the area measure on thissurfa
e). Using the Sokhotski formula (x− i0)−1 = P( 1

x ) + iπδ(x) (where Pdenotes the prin
ipal part), we have
lim
yց0

ℑg(x+ iy) = 4(2π)−d

∫

Td(x)

sin2 (kd)dµx(k) > 0, ∀x ∈ (0, 2d). (2.30)Finally, the eigenfun
tions (2.23) of hS ful�ll ψ(m)
1 =

√
2

N+1 sin (qm) 6=
0,∀m = 1, ..., N , implying that there are no eigenvalues embedded in (0, 2d).
�For this model one may de�ne the unitary U of Remark 2.1 as the 
ompo-sition the unitary u1 ⊕ u2 : Hac(H

0) → ⊕2
i=1L2(T

d
i ) (where ui are de�nedin Eq. (2.21)), with the unitary v1 ⊕ v2 : ⊕2

i=1L2(T
d
i ) →

∫ 2d
0

⊕Kxdx, with
Kx = ⊕2

i=1L2(T
d
i (x),dµi,x(k)), where (vifi)(x) is the restri
tion of fi to the
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i (x) and dµi,x is the Gelfand-Leray measure on the latter.Then, τf =

∫ 2d
0 dxτx(Uf(x)), where τx : Kx → H(1)

S is given by:
(τxφ)m = δm,1t

∫
Td

1(x) ψ
1(k)α1φ1(k)dµ1,x(k)+

+δm,N t
∫

Td
2(x) ψ

2(k)α2φ2(k)dµ2,x(k),
(2.31)and (Uτ∗f)(x) = τ∗xf , where τ∗x : H(1)

S → Kx is given by
(τ∗xf)(k) = tψ1(k)α1f1 ⊕ tψ2(k)α2fN . (2.32)We remind that ψi(k)αi = 2(2π)−d/2 sin (kd), see Eq. (2.19).Upon insertion of Eqs. (2.31), (2.32), the equations of the previous remarkare made expli
it. For instan
e, the T -matrix Tx : Kx → Kx appearing inEq. (2.13) is an integral operator with matrix kernel:

Tx(k, k′)i,j =
4i

(2π)d−1
sin (kd)Reff(x+ i0)si,sj sin (k′

d
), (2.33)where s1 = 1, s2 = N.2.4. An example of dire
t tunneling between reservoirsThe 
ase when the reservoirs are dire
tly 
oupled through a tunneling jun
-tion without any intermediate sample is spe
ial. Indeed, e.g. for two reser-voirs, H(1) = Hac(h

0) = H(1)
1 ⊕H(1)

2 .In view of the appli
ation to Bose gases, where the surfa
e e�e
ts may bedrasti
, we 
onsider now the translation invariant 
ase of latti
e reservoirs,i.e. we suppose that parti
les live on Li = Zd, i = 1, 2. The one-parti
leHilbert spa
es H(1)
i and reservoir Hamiltonians hi are de�ned by Eqs.(2.17),(2.18), respe
tively. Then, the generalized eigenfun
tions of hi are planewaves

ψi(k)r = (2π)−d/2 exp (ikr), k ∈ Td = [0, 2π)d, (2.34)with generalized eigenvalues ω(k), Eq. (2.20), and the unitaries ui are simplythe Fourier transform.The tunneling is between the origins of Li, i.e. we take αi = 0 ∈ Zd. Let
π0 = π1 ⊕π2 : H(1) → C2 denote the restri
tion to the pair α1, α2 of 
oupledsites:

π0(f1 ⊕ f2) = (f1)0 ⊕ (f2)0,
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σ0 =

(
1 0
0 1

) be the unit matrix in C2 and σ1 =

(
0 1
1 0

) be the �rstPauli matrix (inter
hange of 1 and 2). The intera
tion 
an be represented as
v = tπ∗0σ1π0 (2.35)One 
an simplify signi�
antly the expressions of R(z), Ω±, S by using theFourier representation (2.21) on both spa
es: u = u1 ⊕ u2 : ⊕2

i=1H
(1)
i →

⊕2
i=1L2(T

d
i ). The resolvent equation (h − z)f = g redu
es in π0H(1) to theequation (σ0 + tπ0R

0(z)π∗0σ1)(π0f) = π0R
0(z)g, whi
h amounts to invertinga 2 × 2 matrix. Thereby,

π0R
0(z)π∗0 = g̃(z)σ0, (2.36)with g̃(z) given by

g̃(z) = (2π)−d

∫

Td

dk

ω(k) − z
. (2.37)It should be remarked that ℑg̃(x+ i0) > 0 for all x ∈ (0, 2d) (and is, as amatter of fa
t, π times the density of states of the latti
e Lapla
eian (2.18))and, for d ≥ 3, goes to 0 at the spe
trum ends x = 0, 2d.We obtain �nally:Lemma 2.4 In the dire
t-
oupling model des
ribed above1. The resolvent of h = h0 + v has the representation:

R(z) = R0(z) − tR0(z)π
∗
0(σ1 + tg̃(z)σ0)

−1π0R0(z),

(z ∈ C \ [0, 2d], t2g̃(z)2 6= 1).
(2.38)2. σac(h) = [0, 2d].3. If lim

xր0
g̃(x) > 1/t, the equation t2g̃(z)2 = 1 has two real solutions e0 < 0and 2d− e0, whi
h are simple eigenvalues of h; otherwise, σp(h) = ∅.Using this representation in Eq. (2.8) (in this 
ase, J = 1), one �nds thatthe wave operators have the form W± = 1 −K±, where uK±u

∗ are integraloperators in L2(T
d) ⊕ L2(T

d) with 2 × 2-matrix kernels
K±(k, k′) =

t(2π)−d

ω(k) − ω(k′) ± i0
(σ1 + tg̃(ω(k′) ∓ i0)σ0)

−1. (2.39)The S-matrix a
quires the form S = 1+T with uTu∗ having the generalizedkernel
t(k, k′) =

iδ(ω(k) − ω(k′))

(2π)d−1
(σ1 + tg̃(ω(k′) + i0)σ0)

−1. (2.40)
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al Models 293. Quasi-free Fermion models3.1. The algebra of observables, the C∗-dynami
s and thereferen
e stateWe 
onsider the physi
al situation des
ribed in the Introdu
tion, with rreservoirs of free Fermi gases at equilibrium, 
oupled via a tunneling jun
tionwith a sample 
onsisting of free Fermi parti
les with a �nite-dimensional one-parti
le state spa
e. The dynami
s is supposed quasi-free, spe
i�ed by theone-parti
le Hamiltonian h = h0 + v, ful�lling the assumptions of Se
. 2.This subse
tion is devoted to a pre
ise de�nition of the quantum systemunder 
onsideration. We use the notation of subse
tions 2.1., 2.2..We start with de�ning the C∗-dynami
al system:Let F(H(1)) be the antisymmetri
 Fo
k spa
e over the one-parti
le spa
eof Assumption 2.1, and denote a∗(f)/a(f) the usual 
reation/annihilationoperators of one parti
le in the state f ∈ H(1); a∗(f) is linear and a(f)is antilinear with respe
t with f ∈ H(1). The following anti
ommutationrelations hold: for f, g ∈ H(1),
{a(f), a(g)} = {a∗(f), a∗(g)} = 0, {a(f), a∗(g)} = (f, g). (3.1)It follows that ‖a(f)‖ = ‖a∗(f)‖ = ‖f‖. The norm-
losed operator algebragenerated by them, denoted CAR(H(1)) (
alled the the algebra of 
anoni
alanti
ommutation relations), is taken as the algebra of lo
al observables of thesystem. As an instan
e, we shall 
onsider elements in CAR(H(1)) whi
h arethe se
ond quantization of one-parti
le operators: for a tra
e-
lass operator

a a
ting in H(1) with 
anoni
al form a =
∑
sk(fk, ·)gk (where sk are thesingular values of a), dΓ(a) =

∑
ska

∗(gk)a(fk) ∈ CAR(H(1)).The one-parti
le Hamiltonians h0 and h de�ne two (strongly 
ontinuous)groups of automorphisms of CAR(H(1)) (
orresponding to the un
oupledand 
oupled dynami
s, respe
tively) by
αt(a♯(f)) = a♯(eih0tf), τ t(a♯(f)) = a♯(eihtf). (3.2)Also, let φθ denote the gauge automorphism group of CAR(H(1)), i.e.

φθ(a♯(f)) = a♯(eiθf). (3.3)Corresponding to the de
omposition H(1) = H(1)
S ⊕ (⊕r

i=1H
(1)
i ), one 
an de-�ne gauge automorphisms φi (i = 1, ..., r), φS of the kinemati
al algebras

CAR(H(1)
i ) (i = 1, ..., r), CAR(H(1)

S ) of the reservoirs and of the sample.
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tionals ω : CAR(H(1)) → Cof norm ‖ω‖ = ω(1) = 1. A state ω is gauge invariant (i.e. ω ◦ φθ = ω) if,and only if, ω(
n∏

i=1
a∗(gi)

m∏
i=1

a(fi)) = 0, ∀n 6= m. For any state ω, the formula
ω(a∗(g)a(f)) = (g, ρωf) (3.4)de�nes a self-adjoint operator 0 ≤ ρω ≤ 1 onH(1), 
alled its density operator.Given ρ self-adjoint with 0 ≤ ρ ≤ 1, there exists a unique quasi-free, gauge-invariant state ωρ with density operator ρ. The higher order expe
tationsare expressed in this state ωρ by

ωρ(a
∗(gm)...a∗(g1)a(f1)...a(fn)) = δm,n det {(fi, ρgj)}. (3.5)If the initial state ω0 of our system is quasi-free and αt-invariant, what hap-pens if its density operator ρ0 
ommutes with h0, its evolution ωt under theperturbed dynami
s τ t is likewise a quasi-free state with density operator:

ρt = [e−ith0
eith]∗ρ0e−ith0

eith; (3.6)indeed, using the α0-invarian
e of ω0,
ωt(a∗(g)a(f)) := ω0(τ t(a∗(g)a(f))) = ω0(α−t ◦ τ t(a∗(g)a(f))) =

= ω0(a∗(e−ith0
eithg)a(e−ith0

eithf)) = (e−ith0
eithg, ρ0e−ith0

eithf).The initial state is taken as a produ
t state ω0 = ωS ⊗(⊗r
i=1ωi), where ωi arethe equilibrium states of two latti
e free Fermi gases with one-parti
le statespa
es H(1)

i and one-parti
le Hamiltonians hi and ωS is an invariant state ofthe isolated sample.It is well-known [4℄ that, at given values of the temperature β−1 ≥ 0 and
hemi
al potential µ ∈ R, a free Fermi gas has a unique equilibrium state: itis the gauge-invariant quasi-free state with density operator fβ,µ(h), where
h is the one-parti
le Hamiltonian, and fβ,µ is the Fermi-Dira
 fun
tion:

fβ,µ(x) =
1

1 + eβ(x−µ)
(3.7)This de�nes in parti
ular the initial states of the reservoirs ωi.3.2. Convergen
e to the NESS and 
urrentsWe present here the main results of [2℄ within the framework de�ned byAssumptions 2.1�2.3. As with our assumptions no regularization is ne
essary,
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al Models 31the proof 
an be made 
onsiderably more transparent, so we shall sket
h theargument for reader's 
onvenien
e.As all states involved are quasi-free and gauge-invariant, it is su�
ient, inview of Eq. (3.5), to establish the 
onvergen
e of the state on elements ofthe form a(g)a∗(f). This means to 
al
ulate the limit density operator as aweak limit of the density operators ρt.As shown in Se
. 2, H(1) = Hac(h) ⊕Hp(h), with Hp(h) �nite-dimensional.Let Pac, Pp denote the 
orresponding orthogonal proje
tions. We 
al
ulatethe density operator:
ρ+ = (w) lim

T→+∞
(1/T )

∫ T

0
ρtdt. (3.8)For f ∈ Hac(h), we have, in view of Eq. (3.6),

lim
t→+∞

ρtf = W−ρ
0W ∗

−fbe
ause lim
t→+∞

e−ith0eithf = W ∗
−f exists. On the other hand, if f ∈ Hp(h),it is a �nite 
ombination of eigenve
tors, so, we 
an suppose that f is aneigenve
tor of h with eigenvalue e,

(w) lim
t→+∞

Pace−ithρ0eithf = (w) lim
t→+∞

Pace−it(h−e)(ρ0f) = 0by the Riemann-Lebesgue lemma, while, for any eigenve
tor g of h witheigenvalue e′,
lim

T→+∞
(1/T )

∫ T

0
(g, ρtf)dt = lim

T→+∞
(1/T )

∫ T

0
eit(e−e′)(g, ρ0f)dt = δe,e′(g, ρ

0f).In summary,Proposition 3.1 The following limit exists for A ∈ CAR(H(1))

lim
T→+∞

(1/T )

∫ T

0
ωt(A)dt = ω+(A) (3.9)and is the quasi-free gauge invariant state of density operator

ρ+ = W−ρ
0W ∗

− +
∑

e∈σp(h)

Peρ
0Pe, (3.10)where Pe is the proje
tion onto the eigenspa
e of h 
orresponding to the eigen-value e. Thereby, the restri
tion of ω+ to CAR(Hac(h)) is the quasi-free stateof density W−ρ

0W ∗
−, and we have
lim

t→+∞
ωt(A) = ω+(A), A ∈ CAR(Hac(h)). (3.11)
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ular, for any tra
e-
lass operator
a on H(1), d

dtω+(τ t(dΓ(a))) = 0, implying that tr(ρ+[h, a]) = 0. However,if a is not a tra
e-
lass operator (but ρ+[h, a] is tra
e-
lass), it may happenthat tr(ρ+[h, a]) 6= 0. This is the 
ase for the extensive 
onserved 
harges ofthe isolated reservoirs, and it expresses the existen
e of the steady 
urrentsin the NESS ω+ 
onstru
ted above.Ea
h of the reservoirs Ri has two 
onserved quantities, the energy and theparti
le number, whi
h 
orrespond formally to dΓ(h0Pi) and dΓ(Pi), where Piis the proje
tion ofH(1) ontoH(1)
i . This is expressed by the invarian
e of theirequilibrium states ωi under the dynami
al and gauge automorphism groups,

αt
i and φθ

i , of the isolated reservoirs. The energy and parti
le 
urrents fromthe reservoirs Ri is 
al
ulated as the ω+-expe
tation of the 
orresponding�uxes Ii,en = dΓ(−i[h, h0Pi]) = dΓ(−i[v, h0Pi]) and Ii,part = dΓ(−i[h, Pi]) =
dΓ(−i[v, Pi]), respe
tively. Remark that, be
ause v is a �nite range operator,the 
ommutators are tra
e-
lass in H(1), so the proposition 3.1 applies. As
Peh = hPe = ePe, the sum over the point spe
trum in Eq. (3.10) does not
ontribute to any of the two 
urrents J = ω+(I). Hen
e,Proposition 3.2 The energy and parti
le 
urrents from the reservoirs Riare 
al
ulated a

ording to the formulas

Ji,en = −tr(ρ+i[v, h0Pi]) = −tr(W−ρ
0W ∗

−i[v, h0Pi]),

Ji,part = −tr(ρ+i[v, Pi]) = −tr(W−ρ
0W ∗

−i[v, Pi]).
(3.12)We shall next bring formulas (3.12) to a form, known as Landauer-Büttikerformulas, whi
h make 
lear that the 
urrents depend in fa
t only on the on-shell T -matrix Tx. We start with a statement [2℄ relative to a larger 
lass of
onserved reservoir observables.Proposition 3.3 Let a be a bounded self-adjoint operator in H(1)

ac (h0) 
om-muting with h0, so that, in the representation of Remark 2.1, UaU∗ =∫ ⊕
a(x)dx, with a(x) bounded self-adjoint operators in Kx. We denote â =

JaJ∗ its 
ounterpart in H(1). Let
J(a) := ω+(dΓ(−i[h, â])) = −trHac(h)(W−ρ

0W ∗
−i[h, â]) (3.13)be the "
urrent" asso
iated to a. Then,

J(a) = −
∫

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]}dx

2π
. (3.14)
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al Models 33Proof. The equality in Eq. (3.13), meaning that the sum over the pointspe
trum of h in Eq. (3.10) vanishes, is shown in the same way as for Eq.(3.12).As, by Assumption 2.2, v = Jτ∗I∗ + IτJ∗, the 
ommutator in the r.h.s. of(3.13) equals [h, â] = [v, â] = IτaJ∗ − Jaτ∗I∗, whi
h has �nite-range. Usingthe permutation invarian
e of the tra
e,
trHac(h)(W−ρ

0W ∗
−[v, â]) = trK(Uρ0W ∗

−[v, â]W−U
∗).We show that the operator under tra
e is an integral operator on K, i.e. ofthe form Kψ(x) =

∫
dyk(x, y)ψ(y), where k(x, y) : Ky → Kx are 
ontinuous,tra
e-
lass-operator valued fun
tions. Therefore, the tra
e 
an be 
al
ulatedas ∫ dxtrKxk(x, x).To this aim, we fa
torize the two terms of the 
ommutator as

UW ∗
−[v, â]W−U

∗ = (UW ∗
−IτU

∗)(UaU∗)(UJ∗W−U
∗)

−(UW ∗
−JU

∗)(UaU∗)(Uτ∗I∗W−U
∗).Remembering the representation of τ, τ∗ in Remark 2.1 and the expressions(2.14), (2.15) of W−,W

∗
−, the generalized kernels of the operators in bra
ketsare

(UW ∗
−JU

∗)(x, y) = δ(x− y) + (y − x+ i0)−1τ∗xReff(x− i0)τy;

(UJ∗W−U
∗)(x, y) = δ(x − y) + (x− y − i0)−1τ∗xReff(y + i0)τy ;

(UW ∗
−IτU

∗)(x, y) = −τ∗xReff(x− i0)τy;

(Uτ∗I∗W−U
∗)(x, y) = −τ∗xReff(y + i0)τy .The kernel k(x, y) is obtained as the 
omposition of the kernels of the fa
tors.The 
ontinuity with respe
t with x, y is a 
onsequen
e of Assumption 2.2.The diagonal k(x, x) equals

−τ∗xReff(x− i0)τxa(x) + a(x)τ∗xReff(x− i0)τx−

−
∫

dx′τ∗xReff(x− i0)τ ′xa(x
′)τ∗x′Reff(x+ i0)τx×

×[(x′ − x− i0)−1 − (x′ − x+ i0)−1]

= 1
2πi [T

∗
xa(x) + a(x)Tx + T ∗

xa(x)Tx],where we used the Sokhotski formula (x − i0)−1 = P
(

1
x

)
+ iπδ(x) and thede�nition (2.13) of the T -matrix. Insertion of this 
al
ulation in Eq. (3.13)gives Eq. (3.14). �
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u et al.We take now into a

ount the de
omposition H(1)
ac (h0) =

⊕
i H

(1)
i . For anenergy x ∈ [emin, emax], we have Kx =

⊕
i Kx,i; thereby, if x 6∈ Ii, Kx,i = {0}.A

ordingly, the operators under trKx in Eq. (3.14) have matrix representa-tions. The density ρ0(x) is the diagonal matrix with ρ0(x)i,i = fβi,µi

(x) · 1.Also, (Tx)i,j = 2πi(τ∗i )xReff(x + i0)(τj)x, whi
h vanishes for x 6∈ Ii ∩ Ij.What 
on
erns a(x), as we are interested in observables asso
iated withthe isolated reservoirs, we suppose that its matrix has blo
k-diagonal form:
a(x)i,j = δi,jai(x). In this 
ase,

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]} =
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)(Tx)i,i + (T ∗
x )i,iai(x) +

r∑
j=1

(T ∗
x )i,jaj(x)(Tx)j,i}.(3.15)This 
an be further simpli�ed using the unitarity of the S-matrix:

(Tx)i,i + (T ∗
x )i,i +

r∑

j=1

(Tx)i,j(T
∗
x )j,i = 0and the permutation invarian
e of the tra
e, when
e

r∑
i=1

fβi,µi
(x)trKx,i{ai(x)(Tx)i,i + (T ∗

x )i,iai(x)}

= −
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)
r∑

j=1
(Tx)i,j(T

∗
x )j,i

= −
r∑

j=1
fβj ,µj

(x)trKx,i{
r∑

j=1
(T ∗

x )i,jaj(x)(Tx)j,i.Hen
e,Corollary 3.1 For a self-adjoint operator a in H(1)
ac (h0) su
h that a(x)i,j =

δi,jai(x),∀x,
J(a) =

r∑

i,j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]trKx,i{ai(x)(Tx)i,j(T

∗
x )j,i}dx. (3.16)Thereby, (Tx)i,j 6= 0 only for x ∈ Ii ∩ Ij.In parti
ular, de�ning the transmission probability between reservoirs Ri and

Rj as ti,j(x) := trKx,i{(Tx)i,j(T
∗
x )j,i},

Ji,en =
r∑

j=1

∫
[fβi,µi

(x) − fβj ,µj
(x)]xti,j(x),

Ji,part =
r∑

j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]ti,j(x).

(3.17)
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al Models 353.3. Consequen
es for the model of Se
. 2.3We spe
ialize here to the 
ase of two reservoirs (r = 2) of free latti
e Fermigases des
ribed in Se
. 2.3. and draw a few 
on
lusions about its behavioras a fun
tion of the dimension of the latti
es di and of the wire length N .
• The 
urrents, Eq. (3.17), are a sum of two 
urrents, ea
h obtainedwhen one of the two reservoirs is put in turn in the Fo
k state (
or-responding to the density matrix f+∞,−∞(hi) = 0. One may 
onsidertherefore only the parti
le 
urrent

J1,part(β, µ) =

∫
fβ,µ(x)t1,2(x). (3.18)

• The transmission probability
t1,2(x) =

∫

Td(x)
dµx(k)

∫

Td(x)
dµx(k)|T (k, k′)1,2|2has a resonant stru
ture. In view of Eq. (2.33), one has to study theenergy dependen
e of the matrix element Reff(x+ i0)1,N . By analyti
perturbation theory, as hS has simple eigenvalues εm, the eigenvalues

λm(x), m = 1, ..., N of heff(x + i0) are simple for su�
iently smalltunneling 
onstant t. Let ψ(m)(x) be the 
orresponding eigenve
tors;then ψ̄(m)(x) is the dual basis (i.e. (ψ̄(m)(x), ψ(m′)(x)) = δm,m′ . Hen
e,
Reff(x+ i0)1,N ∼

N∑

m=1

(λm(x) − x)−1ψ
(m)
1 (x)ψ

(m)
N (x).To lowest order in t, λm(x) ∼ εm − 2

N+1 t
2g(x + i0) sin2 qm, wherewe used Eq. (2.28) and the expli
it form (2.23) of the eigenve
tors

ψ(m) at t = 0, whi
h puts into eviden
e "resonan
es" at x = εm −
2

N+1t
2ℜg(x+ i0) sin2 qm of "width" 2

N+1t
2ℑg(x+ i0) sin2 qm.

• The density pro�le
n(r) = ω+(a∗(δr)a(δr)) =

∑
(Peδr, ρ

0Peδr)+(W ∗
−δr, ρ

0W ∗
−δr) (3.19)is a sum over reservoirs of density pro�les 
orresponding to the otherreservoir put in its Fo
k state (due to the blo
k stru
ture of ρ0 =∑L

i ρi). We 
al
ulate the se
ond term of (3.19) with ρ2 = 0. We need
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u et al.therefore P1W
∗
−δr, where P1 is the proje
tion onto H(1)

1 . In view ofEq. (2.15), we have
(UP1W

∗
−δr)(x) = −tψ1(k)α1Reff(x− i0)1,r,if r ∈ {1, ..., N},

(UP1W
∗
−δr)(x) = ψ1(k)r + t2ψ1(k)α1Reff(x− i0)1,1R1(x+ i0)α1,rif r ∈ L1, and

(UP1W
∗
−δr)(x) = t2ψ1(k)α1Reff(x− i0)1,NR2(x+ i0)α2,r,if r ∈ L2.In parti
ular, the density pro�le inside R2 (the initially void reservoir),is given by

t4
∫

dkfβ1,µ1(ω1(k))|ψ1(k)α1Reff(ω1(k)− i0)1,N |2|R2(ω1(k) + i0)α2,r|2.It is to be remarked that, if d2 = 1 (whi
h is the model of in�nite leadsused in [6℄), the density of transmitted parti
les has a nonzero limitas r → ∞; this seems improper for a reservoir, whi
h is expe
ted tokeep un
hanged its "
onserved 
harges" even after 
oupling it to otherreservoirs. For d2 > 1, the density de
ays like |r|−1 irrespe
tive of d2[14℄.4. Quasi-free Boson models4.1. The algebra of observables and the referen
e stateThe kinemati
al C∗-algebra of the model is the 
anoni
al 
ommutation rela-tion algebra CCR(D) over a suitable subspa
e D ⊂ H(1), whi
h is left invari-ant by the one-parti
le evolution groups: exp (ith0)D = D, exp (ith)D = D.
CCR(D) is generated by the Weyl operators {W(f); f ∈ D}, satisfying

W(f)W(g) = e− i
2
ℑ(f,g)W(f + g). (4.1)The de�ning equation (4.1) implies that W(0) = 1 and W(f) are unitaries(W(f)∗W(f) = 1). A

ording to a theorem by Slawny, su
h a C∗-algebra
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al Models 37is unique up to an isomorphism; in parti
ular, it 
an be shown (using thewell-known Fo
k representation) that ‖W(f) − 1‖ ≥
√

2 for f 6= 0, implyingthat the appli
ation f 7→ W(f) 
annot be norm-
ontinuous [13℄.To any state ω on CCR(D) a fun
tion E : D → C is asso
iated by
E(f) = ω(W(f)), (4.2)named its generating fun
tional. E satis�es: (i) normalization: E(0) = 1,(ii) unitarity: E(f) = E(−f), and (iii) positivity:

n∑

i,j=1

ziE(fi − fj)e− i
2
ℑ(fi,fj)z̄j ≥ 0, ∀n,∀zi ∈ C, fi ∈ D (i = 1, ..., n).Conversely, any E with these properties de�nes a unique state by Eq. (4.2).Therefore, in des
ribing the initial and evolved states of our model, it will besu�
ient to spe
ify the 
orresponding generating fun
tionals.A state ω is quasi-free if, and only if, E has the parti
ular form

E(f) = exp (i
√

2ℜ〈l, f〉 − 1

4
Q(f, f)), (4.3)where l ∈ D′ is a linear form and Q(·, ·) ≥ 1 a quadrati
 form on D × D.Quasi-free states ω are regular, i.e. in the asso
iated GNS representation πω,for any f ∈ D, the unitary group R ∋ t 7→ πω(W(tf)) is weakly 
ontinuous.Hen
e, ∀f ∈ D, there exist self-adjoint operators ϕ(f) � "�eld operators",su
h that πω(W(tf)) = exp (itϕ(f)). The �elds ϕ(f) are real-linear fun
tionsof f . In terms of the �elds ϕ(f) one 
an de�ne 
reation and annihilationoperators by a∗(f) = 2−1/2(ϕ(f) − iϕ(if)), a(f) = 2−1/2(ϕ(f) + iϕ(if)).Then, denoting Ωω the 
y
li
 ve
tor of π, one has the followingProposition 4.1 In a quasi-free state with generating fun
tional (4.3), Ωωis in the domain of all powers of a♯(f), f ∈ D, and the following relationshold:

(Ωω, a
∗(f)Ωω) = (Ωω, a(f)Ωω) = 〈l, f〉,

(Ωω, a
∗(g)a(f)Ωω) − (Ωω, a

∗(g)Ωω)(Ωω, a(f)Ωω) = Q(f, g);

(4.4)all other trun
ated expe
tations vanish.The time evolutions αt, τ t, for the un
oupled, respe
tively, 
oupled reservoirsand sample are the groups of Bogoliubov automorphisms on CCR(D) de�ned
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tion on W(f):
αt(W(f)) = W(eih0tf),

τ t(W(f)) = W(eihtf).

(4.5)In view of the 
anoni
al 
ommutation relations (4.1), Eq. (4.5) is su�
ient touniquely de�ne the a
tion of τ t on all elements of CCR(D). By the remarkabove, the two automorphism groups are not strongly 
ontinuous. However,in a quasi-free representation they are implemented by weakly 
ontinuousunitary groups. Moreover, the evolution of a quasi-free initial state undera dynami
s of the form (4.5) is likewise quasi-free. This means that theevolved state at time t > 0 of Boson systems, whi
h, at t = 0, were in aquasi-free state, is uniquely determined by the evolved one-point and two-point fun
tions, i.e. by 〈lt, f〉 = 〈l, eihtf〉 and Qt(f, g) = Q(eihtf, eihtg). Inthis respe
t, their study parallels the study of Fermi systems in the previ-ous se
tion and the 
ounterpart of proposition 3.1 holds true. There appear,however, subtleties related to the 
hoi
e of the initial (referen
e) state; in par-ti
ular, unlike in the Fermi 
ase, the domain D (i.e. the kinemati
al algebra
CCR(D)) depends on the referen
e state. In order to keep the exposition ata reasonable level of 
omplexity, we shall explain them only for the model inSe
. 2.4., i.e. dire
t tunneling between reservoirs on Zd with no intermediatesample. The 
onsideration of the general frame (given by assumptions 2.1�2.3, supplemented with spe
ial requirements about the existen
e of a densityof energy levels in the in�nite volume limit) is left for another publi
ation.The equilibrium states of a free Bose gas are quasi-free; they have been stud-ied in detail in the literature [4℄. The pe
uliarity of the free Bose gas is that,under 
ertain 
onditions, it shows a phase transition at low temperatureand high density. It happens that, in the multi-phase region, the 
anoni-
al and grand-
anoni
al are inequivalent. As we are interested in parti
le�ows between reservoirs, it is natural to use the 
anoni
al des
ription for thereservoirs.We remind below the expressions of the generating fun
tionals for the 
anon-i
al equilibrium states for our model of reservoir, obtained by an easy adap-tation of the derivation by Cannon [4℄, [11℄ for the 
ontinuum Bose gas.We start by des
ribing one reservoir R, 
onsisting of a free latti
e Bose gasliving on Zd.Let β, ρ be �xed positive numbers and de�ne:

ρcr(β) = (2π)−d

∫

Td
1

1eβω(k) − 1
ddk ≤ +∞, (4.6)
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al Models 39where ω(k) is the dispersion law Eq. (2.20). As ω(k) ≈ 1
2 |k|2 around itsminimum at k = 0, one has that ρcr(β) is �nite for d ≥ 3 and is in�nite for

d = 1, 2.For ρ < ρcr(β), the fuga
ity z is de�ned to be the unique solution z(β, ρ) ofthe equation
ρ = (2π)−d

∫

Td

zeβω(k) − z
ddk,while, for ρ ≥ ρcr(β), put z(β, ρ) = 1. The momentum distribution for k 6= 0at the given β, ρ is proportional to

nβ,ρ(k) =
z(β, ρ)eβω(k) − z(β, ρ)

, (4.7)while the 
ondensate density is given by
ρ0 = max{0, ρ − ρcr(β)}. (4.8)Then, the generating fun
tional of the 
anoni
al equilibrium state at β, ρ isgiven by the formula

Eβ,ρ(f) = exp

{
−‖f‖2

4
− 1

2
(uf, nβ,ρ uf)

}
J0(
√

2(2π)dρ0 |(uf)(0)|), (4.9)where u is the Fourier transform and J0 is the Bessel fun
tion.For ρ ≤ ρcr(β), the 
anoni
al state de�ned by Eq. (4.9) is extremal, however,if ρcr(β) <∞ and ρ > ρcr(β), it has a nontrivial de
omposition into extremalstates indexed by a phase eiθ:
Eβ,ρ(f) = (2π)−1

∫ 2π

0
Eθ

β,ρ(f)dθ, (4.10)where
Eθ

β,ρ(f) = exp

{
−‖f‖2

4
− (uf, nβ,ρ uf)

2
− i

√
2ρ0

(2π)d/2
ℜ(e−iθ(uf)(0))

}
. (4.11)Thereby, the test fun
tion spa
e D should be 
hosen su
h that the fun
tion-als (4.11) are well de�ned for f ∈ D, e.g. taking D = l1(Zd) would su�
e.Indeed, with this 
hoi
e uf is 
ontinuous on Td, ensuring both the integra-bility of nβ,ρ|uf |2 and the existen
e of (uf)(0). We shall impose, howevera stronger 
ondition ensuring that uf is Hölder-
ontinuous, and take D as
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e l1(Zd; |x|ǫ) for some ǫ > 0, 
onsisting of fun
tions f : Zd → C forwhi
h ‖f‖D :=
∑

x∈Zd

|x|ǫ|fx| <∞.Using the matrix notation asso
iated with the dire
t sum H(1) = H(1)
1 ⊕H(1)

2 ,we take f = f1 ⊕ f2 ∈ D1 ⊕ D2 (where Di are 
opies of D) and the initialstate ω0 as a produ
t of 
anoni
al equilibrium states of Ri at temperatures
βi and densities ρi (i = 1, 2), respe
tively:

ω0(W(f)) = E0(f) = Eβ1,ρ1(f1)Eβ2,ρ2(f2), (4.12)where Eβi,ρi
(fi) are arbitrary mixtures (with probability measures dµ1,2(θ1,2))of the extremal state generating fun
tionals (4.11). Denoting ρ0,i the 
on-densate densities in Ri and

ñ0 =

(
nβ1,ρ1 0

0 nβ2,ρ2

)
, ρ̃0(θ1, θ2) =

(√
2ρ0,1e−iθ1

√
2ρ0,2e−iθ2

)
, (4.13)we have

E0(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
0 (f), (4.14)where

Eθ1,θ2
0 (f) = exp

{
−‖f‖2

4
− (uf, ñ0 uf)

2
− i

(2π)d/2
ℜ(ρ̃0(θ1, θ2)(uf)(0))

}
.(4.15)In parti
ular, the 
anoni
al states (4.9) are obtained for dµi(θ) = (2π)−1dθ.4.2. The approa
h to, and properties of, the NESSWe are interested in the time evolution of an initial state ω0 as de�ned byEq. (4.14) (whi
h is αt-invariant) under the 
oupled dynami
s τ t, Eq. (4.5).We have

ωt(W(f)) = ω0(W(exp (ith)f) = ω0(W(exp (−ith0) exp (ith)f). (4.16)Using the analysis done in Se
. 2.4., we obtain the following 
onvergen
eresult, whi
h de�nes the stationary state.Proposition 4.2 Under the 
ondition above, the following limit exists andde�nes a quasi-free invariant state ωstat: ∀f ∈ D,
lim

T→∞

1

T

T∫

0

ωt(W(f))dt = Estat(f). (4.17)
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al Models 41Corresponding to the de
omposition (4.14) of the initial state,
Estat(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
stat (f), (4.18)where

Eθ1,θ2
stat (f) = Eθ1,θ2

0 (W ∗
−Pacf)Eθ1,θ2

(p) (Ppf). (4.19)Thereby, the limit in mean is ne
essary only for the 
ontribution of thepoint spe
trum, i.e. for f = Pacf , the limit lim
t→∞

ωt(W(f)) exists and equals
∫

dµ1(θ1)dµ2(θ2)E
θ1,θ2
0 (W ∗

−Pacf).Proof. We isolate, in the quadrati
 and linear forms appearing at the expo-nent in Eθ1,θ2
0 (eihtf), the terms whi
h do not depend on Pacf , i.e. Tp(t) :=

−1
4‖Ppf‖2 − 1

2(ueihtPpf, ñ0 ue
ihtPpf) − i(2π)−3/2ℜ(ρ̃0(θ1, θ2)(ue

ihtPpf)(0)).The t-dependen
e of Tp(t) 
omes from exponentials of the form eie0t, ei(2d−e0)tand ei2(d−e0)t, where e0, 2d − e0 are the two eigenvalues of h. Therefore,
eTp(t) is an almost-periodi
 fun
tion, what ensures that lim

T→∞

1
T

T∫
0

eTp(t)dt =:

Eθ1,θ2

(p) (Ppf) exists. Remark that (Ppf)r de
ays exponentially as r → ∞,therefore, if f ∈ D, Pacf ∈ D as well. Hen
e, ∫
Td(x)(uPacf)(k)dµx(k) isHölder 
ontinuous of x, therefore, by the Privalov theorem [7℄,

(uW ∗
−Pacf)(k) = (uPacf)(k)−

− t
(2π)d (σ1 + tg̃(ω(k) − i0)σ0)

−1
∫

Td
(uPacf)(k′)dk′

ω(k′)−ω(k)+i0

(4.20)is likewise Hölder 
ontinuous of ω(k) and, as su
h, belongs to the domain of
Eθ1,θ2

0 . By an analysis like that in the proof of Proposition 3.1, the remainingterms have (usual) limits as t→ ∞, whi
h proves the assertion. �In view of the expli
it forms (4.15) of the fun
tionals Eθ1,θ2
0 , Proposition 4.2provides a detailed des
ription of the stationary state and allows the 
al
u-lation of various quantities of physi
al interest.We report below the analyti
 results for the energy and parti
le 
urrents.We point out that, like in the Fermi 
ase, the point spe
trum of h gives no
ontribution to the 
urrents and the 
ontribution of the absolutely 
ontinu-ous spe
trum may be expressed in terms of the S-matrix alone (Landauer-Büttiker-like formula). We shall not repeat here the proof of the latter,but perform the dire
t 
al
ulation based on Eq. (4.19). Thereby, if d ≥ 3,
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ity, that we are in the weak 
oupling regime, where
σp(h) = ∅.In 
al
ulating the 
urrents between pure phases of the reservoirs, we take ad-vantage that the initial state, being a produ
t of extremal equilibrium states,
an be approximated by �nite-volume states (possibly with weak symmetry-breaking perturbations), what allows to substantiate expressions (of the 
ur-rents from a reservoir in an extremal state) similar to those in the Fermi 
ase[1℄. As a preparation, we 
al
ulate, using Eq. (4.20), W ∗

−f for a few lo
alfun
tions f appearing in these expressions:
• For (δ10)r = δ0,r

(
1
0

) and δ20 de�ned analogously for the se
ond reservoir,
(uPjW

∗
−δ

i
0)(k) =

1

(2π)d/2

{
δi,j − tg̃(ω(k) − i0)[(σ1 + tg̃(ω(k) − i0))−1]j,i

}
,where Pj proje
ts onto the reservoir j and we used the de�nition (2.37) of g̃;

• For (h1
0)r = (dδx,0 − 1

2δ|x|,1)

(
1
0

),
(uPjW

∗
−h

1
0)(k) = 1

(2π)d/2 {ω(k)δj,1−
−t[(σ1 + tg̃(ω(k) − i0))−1]j,1[1 + ω(k)g̃(ω(k) − i0)]

}
.Proposition 4.3 In the dire
t tunneling model of Se
tion 2.4, the 
urrents�owing from R1 in the stationary state ωθ1,θ2

stat arising from extremal initialstates are given by:1. The parti
le 
urrent:
J1

part(θ1, θ2) = 2tℑωθ1,θ2
0 (a∗0(W

∗
−(δ10))a0(W

∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2|2d
3k

+
2t

(2π)d

√
ρ01ρ02

1 − g̃(0)2
sin(θ2 − θ1)2. The energy 
urrent:

J1
en(θ1, θ2) = 2tℑωθ1,θ2

0 (a∗0(W
∗
−(h1

0))a0(W
∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ω(k)ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2
|2d3k.Several remarks are in order:
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al Models 43If both reservoirs are 
ondensed, i.e. ρ0,1, and ρ0,2 are both di�erent fromzero, the parti
le 
urrent shows a pe
uliar dependen
e on the phase di�eren
e.This is not true for the energy 
urrent, where the se
ond term, 
oming fromthe expe
tations of the 
reation/annihilation operators does not 
ontribute(as expe
ted, as the k = 0 states 
arry no energy). Also, if ρ0,1ρ0,2 6= 0 and
β1 = β2, then n1(k) = n2(k), in whi
h 
ase the integral terms in the 
urrents,representing the 
ontribution of the ex
ited states, vanish, therefore parti
lesare ex
hanged only between the k = 0 states, and there is no energy �ow.In order to obtain the 
urrents in the 
anoni
al state, we have still to integratethe expressions of the 
urrents over the phases θi of the two 
ondensates.This has the e�e
t that the parti
le 
urrents between the k = 0 states areaveraged out, and only the �rst term in the expression of the parti
le 
urrentsurvives. In parti
ular, there is no 
urrent if the temperatures are equal andeither ρ1 = ρ2 ≤ ρcr(β), or both densities are over
riti
al (irrespe
tive oftheir values).As a matter of fa
t, Proposition 4.3 implies that the presen
e of the 
on-densates in the reservoirs has little in�uen
e on the 
urrents, as long as one
onsiders non-symmetry-breaking states. We 
onje
ture that this holds truefor more general jun
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An Introdu
tion to Monotoni
ity Methods 471. Introdu
tionMany nonlinear kineti
 equations for 
omplex systems appear as generaliza-tion of the 
lassi
al Boltzmann equation (see, e.g. [4℄). The last years havebeen marked by an in
reased interest in the mathemati
al properties of su
hmodels. This 
an be explained by various appli
ations not only in physi
s,astrophysi
s and 
hemistry (e.g. studies of simple and 
omplex/rea
ting �u-ids, granular media, 
oagulation-fragmentation, formation of planetary rings,galaxy 
ollision) but also in modeling evolution pro
esses in immunology,tra�
 �ow, 
ommuni
ation networks, et
.In many situations, the above equations are phenomenologi
al or mi
ros
opi
models that des
ribe the evolution of various populations (ma
ros
opi
 sys-tems) of many well individualized, obje
ts (e.g. rare�ed gas parti
les, 
ellsnetworks signals et
.) intera
ting among themselves. The intera
tions are(lo
alized) mi
ros
opi
 pro
esses: a) any intera
tion has a very short du-ration, with respe
t to the time-s
ale of the ma
ros
opi
 evolution; b) thenumber of partners of any intera
tion is very small, with respe
t to the totalnumber of the 
omponents of the population. Depending on the model, an in-tera
tion may 
hange the state, nature and/or the number of the parti
ipantsin intera
tion. This may result in modi�
ations of the values of the physi
alquantities 
hara
terizing the states of the intera
ting obje
ts. However, su
hmodi�
ations must be 
onsistent with 
ertain balan
e laws (e.g. 
onservation/dissipation laws ) imposed by the pe
uliarities of the mi
ros
opi
 pro
esses.The problem of the existen
e and uniqueness of solutions of the above modelsis not only of an a
ademi
 interest. Indeed, good 
riteria for the existen
e ofgeneral solutions and a detailed study of the properties of the solutions 
anbe parti
ularly useful in obtaining e�e
tive 
onvergent numeri
al s
hemes forthe models.The above models present some mathemati
al properties, similar to those ofthe 
lassi
al Boltzmann equation, in parti
ular similar monotoni
ity proper-ties (with respe
t to the order). This made possible to extend nontriviallymonotoni
ity methods, initially introdu
ed for the 
lassi
al Boltzmann equa-tion, [2℄ (see also [28℄) to study these models [18℄, [27℄, [9℄, [7℄. Re
entlythe ideas of [2℄ and [28℄) have been re
onsidered nontrivially within a moregeneral, abstra
t framework, [11℄, [12℄, [13℄. The present work is a surveyof the re
ent progress in the domain, and in
ludes �ve se
tions and an Ap-pendix. This Introdu
tion is the �rst Se
tion. The next Se
tion, is a briefpresentation, at formal level, of some relevant examples of Boltzmann modelsfor 
omplex systems. In Se
tion 3, we introdu
e a 
lass of abstra
t evolution
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il Pompiliu Grünfeldproblems, as a generalization of the examples 
onsidered in Se
tion 2. Thenwe develop the general existen
e theory based on monotoni
ity arguments.Se
tion 4 is devoted to appli
ations. Finally, Se
tion 5 
ontains 
on
lusionsand open problems.2. Boltzmann-like kineti
 modelsIn this se
tion we present several nonlinear models with nonlinear singulari-ties, that exhibit similar isotoni
ity properties. In very general terms, theseequations are essentially des
ribed by nonlinear evolution equations of theform
df

dt
= Af +Q(t, f), t > 0, (2.1)formulated in the positive 
one of some suitable ordered fun
tion spa
e X,usually an ordered Bana
h spa
e. The unknown f = f(t) 
hara
terizes thestate of the ma
ros
opi
 system at time t. The two terms of the r.h.s. ofEq.(2.1), Af (possibly A = 0) and Q(t, f) des
ribe the free motion and the
ontribution of the intera
tion pro
esses, respe
tively. From a mathemati
alpoint of view, A is the generator of a evolution linear group in X, while

Q(t, ·) is a nonlinear integral operator.In many situations, we 
an write Q(t, ·) = Q+(t, ·)−Q−(t, ·), where Q+(t, ·)and Q−(t, ·) are positive and isotone with respe
t to the order of X. More-over, Q+(t, ·) and Q−(t, ·) satisfy 
ertain relations -ma
ros
opi
 balan
e laws-determined by the mi
ros
opi
 balan
e properties.In this work we are interested in solving the initial value problem (i.v.p.) forEq.(2.1), whi
h 
an take various formulations, depending on the model.2.1. Smolu
howski's 
oagulation equationSmolu
howski's 
oagulation equation, [21, 25℄ (see also, e.g., [1℄, for a re
entreview), des
ribes the irreversible evolution of parti
les that may 
oales
einto larger 
lusters. The 
ontinuous version of the Smolu
howski's equationreads
∂

∂t
f = Qc(f) = Q+

c (f) −Q−
c (f) (2.2)
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ity Methods 49for the unknown f(t, y) ≥ 0, the density of 
lusters of size y ∈ R+ := [0,∞)at time t ≥ 0. Here
Q+

c (g)(y) =
1

2

∫ y

0
q(y − y∗, y∗)g(y − y∗)g(y∗)dy∗, (2.3)

Q−
c (g)(y) = g(y)

∫ ∞

0
q(y, y∗)g(y∗)dy∗, (2.4)with the (
oagulation) kernel q : R+ × R+ 7→ R+ a symmetri
, measurablefun
tion.We assume that there exist the 
onstants q0, q1 ≥ 0 and 0 ≤ α ≤ β, su
hthat

q(y, y∗) ≤ q0 + q1(y
αyβ

∗ + yβyα
∗ ) (y, y∗ ≥ 0), (2.5)where

α+ β ≤ 1. (2.6)Condition (2.5) in
ludes the 
ase when either q0 = 0 or q1 = 0. Withoutloss of generality, we 
an assume that q1 > 0 (indeed the situation when qis bounded by a 
onstant 
an be 
onsidered as a parti
ularization of (2.5) tothe 
ase where q1 > 0 and α = β = 0).The following property of the Smolu
howski's model is essential for our anal-ysis. Formally, if g, ψ : R+ 7→ R are measurable, then
∫ ∞

0
ψ(y)

[
Q+

c (g)(y) −Q−
c (g)(y)

]
dy =

=
1

2

∫ ∞

0

∫ ∞

0
ψ̃(y, y∗)q(y, y∗)g(y)g(y∗)dydy∗, (2.7)(provided that the integrals exist), where

ψ̃(y, y∗) := ψ(y + y∗) − ψ(y) − ψ(y∗). (2.8)Property (2.7) follows from the 
hange of variables (y, y∗) → (y − y∗, y∗) inthe �rst term of the l.h.s. of (2.7), and then applying Fubini's theorem.In parti
ular, if ψ(y) = y in (2.7), then
∫ ∞

0
Qc(g)(y)ydy = 0. (2.9)This gives formally the mass 
onservation for Eq. (2.2).
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onsiderations as before 
an be made for the dis
rete version of theSmolu
howski equation
ċj =

1

2

j−1∑

k=1

Qj−k,k(c(t)) −
∞∑

k=1

Qj,k(c(t)), cj(0) = cj,0 ≥ 0 (j = 1, 2, ...),(2.10)where Qj,k(c) := q(k, j)ckcj , is de�ned by the same symmetri
 
oagulationkernel introdu
ed before, subje
t to (2.5), (2.6), and the 
omponent cj(t) ≥ 0of c(t) := (cj(t)) is interpreted as the 
on
entration of 
lusters of size j attime t ≥ 0.2.2. Povzner-like model with dissipative 
ollisionsThe model des
ribes a rare�ed mono-
omponent �uid of parti
les of unitmass, evolving in the free spa
e with dissipative (
onservative) binary 
olli-sions, i.e., 
ollisions resulting in the loss (
onservation) of the kineti
 energyof the en
ounters.A

ording to the model, [7℄, the post-
ollision velo
ities v′, w′ are related tothe pre-
ollision velo
ities v and w by
v

′
= v− (1− β(n))〈v − w,n〉n, w

′
= w + (1− β(n))〈v−w,n〉n, (2.11)where 〈·, ·〉 is the Eu
lidean produ
t in R3 and n ∈ Ω - the unit sphere in R3.Here, β : Ω 7→ [0, 1/2) is a given measurable fun
tion. The total momentumis 
onserved in 
ollisions, v′ + w′ = v + w, but the kineti
 energy is lost

∣∣v′
∣∣2 +

∣∣w′
∣∣2 = |v|2 + |w|2 − 2β(n)(1 − β(n)) |〈v − w,n〉|2 , (2.12)ex
epting the 
ase β = 0, when the 
ollisions be
ome elasti
.For ea
h �xed n ∈ Ω, the transformation R3 × R3 ∋ (v, w) 7→ (v′,w′) ∈

R3 × R3 is invertible. The inversion formulae are
v̂ = v −

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n, ŵ = w +

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n.(2.13)Formally the above model reads

∂

∂t
f = −v · ∇xf +Q+

d (f) −Q−
d (f) (2.14)where f = f(t,x,v) is the one-parti
le distribution fun
tion, depending ontime t ≥ 0, position x ∈R3, and velo
ity v ∈R3 of the so-
alled test parti
le,
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Q+

d and Q−
d are the so-
alled nonlinear gain and loss operators, respe
tively,and des
ribe the in�uen
e of the 
ollisions on the evolution of f . They areformally given by

Q+
d (g)(x,v) =

=

∫ R

0
dr

∫

Ω×R3

|〈n,v − w〉|γ

(1 − 2β(n))1+γ P (r,n)g(x, v̂)g(x + rn, ŵ)dndw (2.15)and
Q−

d (g)(x,v) = g(x,v)

∫ R

0
dr

∫

Ω×R3

|〈n,v −w〉|γ P (r,n)g(x + rn,w)dndw,(2.16)respe
tively, where P : R+ × Ω 7→ R+ is a given measurable fun
tion with
P (r,n) = P (r,−n) assumed to satisfy

P (r,n) ≤ c0r
2 (r ≥ 0, n ∈Ω), (2.17)for some 
onstants c0 > 0, 0 ≤ γ ≤ 1, and R > 0, spe
i�
 to the 
ollisionpro
esses.The basi
 property of the model is the formal identity

∫

R3

ψ(v)
[
Q+

d (g) −Q−
d (g)

]
dv =

=

∫

Ω×R3×R3

ψ̃(v,w,v′,w′)
|〈n,w − v〉|γ

2
P (r,n)g(x,v)g(x + rn,w)dndvdw,(2.18)where ψ : R3 7→ R and g : R3 × R3 7→ R are measurable fun
tions su
h that(2.18) is well de�ned, and

ψ̃(v,w,v′,w′) := ψ(v′) + ψ(w′) − ψ(v) − ψ(w), (2.19)with v′ and w′ given by (2.11). We dedu
e easily (2.18), performing the
hange of variable (v,w) → (v̂, ŵ) in the �rst term of the l.h.s (2.18).If β ≡ 0, then (2.14) yields a version of the so-
alled generalized Boltzmannequation with binary elasti
 (
onservative) 
ollisions, analyzed in [3℄.2.3. Povzner-like model with 
hemi
al rea
tionsWe re
all here a Povzner-like model with 
hemi
al rea
tions introdu
ed in [8℄for a rea
ting gas mixture of N spe
ies Ai and mass mi, 1 ≤ i ≤ N , withoutintera
tion with photon �elds. We assume binary rea
tions
Ai +Aj → Ak +Al, 1 ≤ i, j, k, l ≤ N, (2.20)
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il Pompiliu Grünfeldwhere 
ase i = j = k = l 
orresponds to non-rea
tive (elasti
) pro
esses.A

ording to the model of [8℄, for ea
h spe
ies i, the gas parti
les have oneinternal energy state, say Ei ≥ 0, 1 ≤ i ≤ N . It is assumed that the rea
tionsare 
onsistent with the 
onservation of mass, momentum and total energy,i.e., mi +mj = mk +ml, and miv +mjw = mkv
′ +mlw

′, as well as
mi |v|2

2
+ Ei +

mj |w|2
2

+ Ej =
mk |v′|2

2
+ Ek +

ml |w′|2
2

+ El, (2.21)where (v,w) are the pre-rea
tion velo
ities of the parti
les (i, j) and (v′,w′)are the post-rea
tion velo
ities of the parti
les (k, l)The 
onservation relations give
mkml |v′ −w′|2

2(mk +ml)
=
mimj |v − w|2

2(mi +mj)
+Ei+Ej−Ek−El := tkl,ij(v,w) (2.22)and obviously, (2.20) o

urs, provided that

tkl,ij(v,w) ≥ 0. (2.23)It 
an be easily seen that (v′,w′) 
an be represented in terms of the pre-rea
tion velo
ities (v, w) and of the unit ve
tor n = (v′ −w′) |v′ − w′|−1as
v′ =

miv +mjw

mi +mj
+

21/2(ml)
1/2

m
1/2
k (mi +mj)1/2

tkl,ij(v,w)1/2n := vkl,ij(v,w,n)(2.24)and
w′ =

miv +mjw

mi +mj
− 21/2(mk)

1/2

m
1/2
l (mi +mj)1/2

tkl,ij(v,w)1/2n := wkl,ij(v,w,n)(2.25)It is 
onvenient to extend the de�nitions of vkl,ij(v,w,n) and wkl,ij(v,w,n)by setting
vkl,ij(v,w,n) = wkl,ij(v,w,n) =

miv +mjw

mi +mj
(2.26)whenever tkl,ij(v,w) < 0. By virtue of the above formulae one has

vkl,ij(v,w,n) = vkl,ji(w,v,n) = wlk,ij(v,w, −n) (2.27)and
wkl,ij(v,w,n) = wkl,ji(w,v,n) = vlk,ij(v,w, −n). (2.28)
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h spe
ies 1 ≤ i ≤ N is des
ribed by the one-parti
le distribution fun
tion
fi = fi(t,x,v) depending on time t ≥ 0, position x and velo
ity v.Assuming mole
ular 
haos and (instant) point lo
alized rea
tions, the kineti
model is derived following the original argument for the 
lassi
al Boltzmannequation. The obtained model reads, [8℄,

∂

∂t
fi = −v · ∇xfi +Q+

i (f) −Q−
i (f), 1 ≤ i ≤ N, (2.29)where f = (f1, ..., fN ) and, formally,

Q+
i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×S2

pkl,ij(y,v,w,n)gk(t,x,vkl,ij)gl(t,x + y,wkl,ij)dydwdn,(2.30)
Q−

i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×Ω
rkl,ij(y, v,w,n)gi(t,x,v)gj(t,x + y,w)dydwdn. (2.31)Here, g := (g1, ...gN ) with gi : R3 × R3 → R+, Ω := {n ∈ R3 : |n| =

1}, gk(·, ·,vkl,ij) = gk(·, ·,vkl,ij(v,w), gl(·, ·,wkl,ij) = gl(·, ·,wkl,ij(v,w,n)).Moreover, pkl,ij, rkl,ij : R3×R3×R3×Ω → [0,∞), are given measurable mapswith the property that if (v,w) /∈ Dij,kl := {(v,w) ∈ R3 ×R3 : tij,kl(v,w) ≥
0}, then

pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0. (2.32)One assumes that the following properties are satis�ed a.e.:
pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0 (y > R), (2.33)

pkl,ij(y,v,w,n) = pkl,ij(−y,v,w,n),

rkl,ij(y,v,w,n) = rkl,ij(−y,v,w,n), (2.34)
pkl,ij(y,v,w,n) = pkl,ji(y,w,v,n) = plk,ij(y,v,w,−n), (2.35)
rkl,ij(y,v,w,n) = rkl,ji(y,w,v,n) = rlk,ij(y,v,w,−n). (2.36)Moreover,
∫

R3×R3×Ω
ϕ(v,w)pkl,ij(y,v,w,n)ψ(vkl,ij ,wkl,ij)dvdwdn =



54 Ce
il Pompiliu Grünfeld
=

∫

R3×R3×Ω
ϕ(vij,kl,wij,kl)rij,kl(y,v,w,n)ψ(v,w)dvdwdn (2.37)for all (ψ,ϕ) : R3×R3 → R, provided that whi
hever side of (2.37) is de�ned.The kernels pkl,ij, rkl,ij : R3 × R3 × Ω → [0,∞) 
arry the information of therea
tion pro
esses. For a gas 
omposed by one spe
ies of parti
les with elasti

ollisions, the above system of equations redu
es to the so-
alled generalizedBoltzmann equation.Our main hypothesis is as follows:Assumption 2.1 There exist 
onstants cq > 0 and 0 ≤ q ≤ 1 su
h that

∫

Ω
rkl,ij(y,v,w,n)dn ≤ cq

[
1 + |v|2 + |w|2

]q
. (2.38)Observe that sin
e rkl,ij and pkl,ij are related by (2.37), then the abovehypothesis is also an impli
it 
ondition on pkl,ij.Under Assumption (2.38), one 
an show that, at least, formally,

N∑

i=1

∫

R3×R3

[Q+
i (g)(x,v) −Q−

i (g)(x,v)]hi(x,v)dvdx =

=
1

4

N∑

i,j,k,l=1

∫

D
[pkl,ij(y,v,w,n)gk(x,vkl,ij)gl(x + y,wkl,ij)

−rkl,ij(y,v,w,n)gi(x,v)gj(x + y,w)]

×[hi(x,v) + hj(x + y,w) − hk(x,vkl,ij) − hl(x + y,wkl,ij)]dxdydvdwdn(2.39)for all g=(g1, ...gN ) and h=(h1, ...hN ), with gi, hi ≥ 0, for whi
h the integralsare de�ned. Here, D := R3 × R3 × R3 × R3 × Ω. The last property followsby applying (2.27), (2.28), (2.32)�(2.37), as well as the invarian
e propertiesof the sums in (2.39), with respe
t to the 
hange of variables (x,y,n) →
(x′,y′,n′) := (x + y,−y,−n), and a suitable inter
hanges of summationindi
es.At least, at formal level, property (2.39) implies the bulk 
onservation formass, momentum, and total energy,

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(t,x,v)dxdv =

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(0,x,v)dxdv(2.40)
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ity Methods 55(0 ≤ j ≤ 4), where fi(t) are the 
omponents of the solution f of Eq. (2.29),and
Ψ

(0)
i (x,v) := mi, Ψ

(4)
i (x,v) := mi |v|2 /2 + Ei, Ψ

(j)
i (x,v) := mivj(2.41)(j = 1, 2, 3), with vj are the 
omponents of v.2.4. A model with inelasti
 
ollisions and 
hemi
al rea
tionsIn this example, we 
onsider an abstra
t system of a Boltzmann-like phe-nomenologi
al equations, [9, 10, 14℄, for a multi-
omponent rea
ting gasof parti
les with internal states and dis
rete values of the internal energy.Thinking a real gas mixture of parti
les with internal stru
ture as a mixtureof several 
hemi
al spe
ies of mass points with unique internal state, one 
anassume that any gas parti
le of the model has only one internal state. Spe
if-i
ally, the model refers to a gas 
onsisting of N 
hemi
al spe
ies. A parti
leof spe
ies n = 1, 2, ..., N is 
hara
terized by mass mn > 0 and internal energy

En. Without loss of generality, one 
an assume that En ≥ 0, 1 ≤ n ≤ N .It is assumed that the 
hemi
al rea
tions are indu
ed by inelasti
 (possibly)multi-body, instant 
ollisions. A rea
tion is identi�ed with a 
ouple (α, β) ∈
M×M, where M := {γ = (γn)1≤n≤N | γn ∈ {0, 1, . . . ,K}} is a multi-indexset. Here α = (α1, . . . , αN ) ∈ M and β = (β1, . . . , βN ) ∈ M designate thepre-
ollision and post-
ollision 
hannels, respe
tively, with 0 ≤ αn, βn ≤ Kparti
ipants of spe
ies n; 1 ≤ n ≤ N . Any 
ouple of the form (γ, γ) ∈ M×Mis identi�ed with a multi-body elasti
 
ollision with γn 
ollision partners ofspe
ies n; 1 ≤ n ≤ N . The number of parti
les in some 
hannel γ ∈ M is
|γ| :=

∑N
i=1 γi. The family of 
hemi
al spe
ies parti
ipating in 
hannel γ isdenoted by N (γ) := {i : γi > 0, 1 ≤ i ≤ N}.LetMγ , Vγ(w) andWγ(w) denote the total mass, velo
ity of the mass 
enterand total energy, respe
tively, for the parti
les in 
hannel γ, i.e.,

Mγ :=

N∑

i=1

γimi, (2.42)
Vγ(w) :=

1

Mγ

∑

i∈N (γ)

γi∑

j=1

miwi,j, (2.43)
Wγ(w) :=

∑

i∈N (γ)

γi∑

j=1

(2−1miw
2
i,j + Ei), (2.44)
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ities ofthe parti
les in 
hannel γ. Then, the kineti
 energy of the parti
les (withvelo
ities w) in 
hannel γ, relative to the frame of the mass 
enter, reads
Wr,γ(w) = Wγ(w) − MγVγ(w)2

2
−

N∑

i=1

γiEi. (2.45)Obviously, Wr,γ(w) ≥ 0.A gas rea
tion (α, β) may take pla
e only if it is 
onsistent with the 
onser-vation of mass, momentum and energy, i.e.,
Mα = Mβ , Vα(w) = Vβ(u), Wα(w) = Wβ(u). (2.46)We will assume here that elasti
 
ollisions are always present. Therefore, theset CM := {(α, β) ∈ M×M : Mα = Mβ} is nonempty.The Boltzmann-like system of equations for the above model is

∂

∂t
fi = Q+

i (f) −Q−
i (f). (2.47)Here the unknown fi : R+ × R3 7→ R+ is the one parti
le distribution fun
-tions fi = fi(t,v) (t-time, v-velo
ity) of the parti
les of spe
ies 1 ≤ i ≤ N .In Eq. (2.47), Q+

i (f) and Q−
i (f), with f := (f1, . . . , fN ), are the so-
alledloss and gain (nonlinear) operators for the parti
les of spe
ies i, respe
tively.Formally,

Q+
i (g)(v) =

∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[
pβ,α(w,n)(gβ ◦ uβ,α)(w,n)

]
wi,αi

=v
dw̃idn,(2.48)

Q−
i (g)(v) =

∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[rβ,α(w,n)gα(w)]
wi,αi

=v
dw̃idn, (2.49)where

gγ(w) :=
∏

i∈N (γ)

γi∏

j=1

gi(wi,j), γ ∈ M, (2.50)
Ωγ is the unit sphere in R3|γ|−3, with γ ∈ M, and dw̃i is the Eu
lidean ele-ment of area on {w ∈R3|α| | wi,αi = v

}. Here, the fun
tions uβ,α ∈ C(R3|α|×
Ωβ; R3|β|), and the measurable fun
tions rβ,α, pβ,α : R3|α| × Ωβ 7→ R+ aregiven.
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ity Methods 57The following 
onditions are assumed ([9, 11, 14℄):(B1) rβ,α = pβ,α = 0 unless: |α| ≥ 2 , |β| ≥ 2, (α, β) ∈ CM , and w ∈ D+
β,α :={

w′ ∈ R3|α| : Wr,α(w′) +
N∑

i=1
(αi − βi)Ei ≥ 0

}.(B2) For ea
h i ∈ N (α) �xed, pβ,α(w,n), rβ,α(w,n), and uβ,α(w) are in-variant with respe
t to the inter
hange of the 
omponents wi,1, ...,wi,αi of
w.(B3) If (α, β) ∈ CM , w ∈ D+

β,α, then
(Vβ ◦ uβ,α)(w,n) = Vα(w), (Wβ ◦ uβ,α)(w,n) = Wα(w), (2.51)for all n ∈ Ωβ, and

∫

R3|α|×Ωβ

pβ,α(w,n)ϕ(w,n)(ψ ◦ uβ,α)(w,n)dwdn =

=

∫

R3|β|×Ωα

rα,β(w,n)(ϕ ◦ uα,β)(w,n)ψ(w,n)dwdn, (2.52)for all ϕ : R3|α| 7→ R and ψ : R3|β| 7→ R, for whi
h the integrals are wellde�ned.We suppose that the rea
tions are reversible, i.e., if rβ,α 6= 0 for some (α, β),then also rα,β 6= 0.From (3.9), it follows that pβ,α and rβ,α are related one to another. Indeed, amore expli
it relationship between pβ,α and rβ,α 
an be derived, as it resultsfrom a general example 
onstru
ted in [9, 14℄. Note also here that if oneassumes a mono-
omponent gas of parti
les with binary elasti
 
ollisions(i.e., N = 1, K = 2, and pβ,α = rβ,α = 0 unless α = β = (1, 1)), then Eq.(2.47) redu
es to the spa
e homogeneous 
lassi
al Boltzmann equation
∂

∂t
f = Q+(f) −Q−(f), (2.53)where

Q+(f)(v) =

∫

R3×Ω

q(v,w,n)f(v′)f(w′)dwdn, (2.54)
Q−(f)(v) =

∫

R3×Ω

q(v,w,n)f(v)f(w)dwdn. (2.55)
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il Pompiliu GrünfeldThe notations are f = f(t,v) � the one-parti
le distribution fun
tion, v′ =
v − 〈v − w,n〉n, w

′
= w + 〈v − w,n〉n, and n ∈ Ω � the unit sphere in

R3. Here, the Boltzmann 
ollision law q is a positive measurable fun
tion(depending, in our 
ase, on v and w through the variable v − w).The last 
ondition of the model 
on
erns the behavior of rβ,α (see [9℄):Assumption 2.2 There are some 
onstants 0 ≤ q ≤ 1 and cq > 0 su
h that
νβ,α(w) :=

∫

Ωβ

rβ,α(w,n)dn ≤ cq(1 +Wα(w))q (w ∈ R|α|, a.e.), (2.56)for all α, β ∈ M.Obviously, νβ,α(w) = 0, unless (α, β) ∈ CM .A 
onsequen
e of (B1), (B2) and (2.56) is the key equality
N∑

i=1

∫

R3

Ψ
(j)
i (v)

[
Q+

i (g)(v) −Q−
i (g)(v)

]
dv = 0 (0 ≤ j ≤ 4), (2.57)for all g = (g1, ..., gN ) with (1+ |v|2)1+qgi ∈ L1(R3; dv), i = 1, 2, ...,N . Here,

Ψ
(0)
i (v) := mi, Ψ

(4)
i (v) :=

1

2
mi |v|2 +Ei, Ψ

(j)
i (v) := mivj (1 ≤ i ≤ N),(2.58)where vj is the j-
omponent, j = 1, 2, 3, of v. Equality (2.57) implies, at lestformally, the bulk 
onservation of mass, momentum and total energy.2.5. A nonlinear von Neumann-Boltzmann equationBesides 
lassi
al models, we 
an also 
onsider "quantum" kineti
 models withmonotoni
ity properties similar to 
lassi
al ones.Let X = T (H) be the spa
e of tra
e 
lass selfadjoint operators in someseparable Hilbert spa
e H. On X, we 
onsider the order F ≤ G i� (f, Ff) ≤

(f,Gf), ∀f ∈ D(F ) ∩ D(G). Let ‖F‖ := Tr(|F |) be the norm on X.For some orthogonal base {e0, e1, ...} ⊂ H, de�ne the selfadjoint operator
H =

∑

i≥0

µi(ei, ·)ei, (2.59)
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ity Methods 59where {µn}n ⊂ R. Let {U t}t∈R denote the 
ontinuous group of positiveisometries on X, given by U t(F ) := exp(−iHt)F exp(iHt), i =
√
−1. Con-sider a se
ond sequen
e, 0 ≤ λ0 < λ1 < λ2 ≤ ... λn−1 ≤ λn ... ր ∞, as

n→ ∞. Let {V t
}

t≥0
be the C0 semigroup on X, de�ned by

(ei, V
t(F )ej) := (V t(F ))i,j = exp[−(1 + λiδi,j)t]Fi,j (2.60)where Fi,j := (ei, Fej), and let the in�nitesimal generator of {V t

}
t≥0

bedenoted by (−Λ). Then
(Λ)i,j(F ) := (1 + λiδi,j)Fi,j , (2.61)hen
e Λ ≥ I. Clearly, U t leaves D(Λ) ∩ X+ invariant and U tΛ = ΛU t on

D(Λ) ∩X+.Now we 
an 
onsider the following example of nonlinear von Neumann-Boltzmann equation X (see also [12℄):
dF

dt
+ i[H,F ] = Q+(F ) −Q−(F ) (2.62)with Q± : D(Λ) ⊂ X → X given by

Q−(F ) := F0,0Tr(ΛF )(

2∑

i=0

Pi), (2.63)and
Q+(F ) := Q−(F ) + L(F ), (2.64)where Pi := (ei, ·)ei and

L(F ) := F0,0Tr(ΛF )(

2∑

i=0

εiPi). (2.65)Here, ε0 = ε (λ1 − λ0)
−1 (λ2 − λ0)

−1, ε1 = −ε(λ1 − λ0)
−1 (λ2 − λ1)

−1, ε2 =
ε(λ2 − λ0)

−1 (λ2 − λ1)
−1 and 0 < ε < (λ0 − λ1) (λ0 − λ2). Thus Q± arepositive operators, and a simple 
omputation gives

TrQ+(F ) = TrQ−(F ) (2.66)for 0 ≤ F ∈ D(Λ), and
Tr(ΛQ+)(F ) = Tr(ΛQ−)(F ) (2.67)for 0 ≤ F ∈ D(Λ2), so that both TrF (t) and Tr(ΛF )(t) remain 
onstant withtime.
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il Pompiliu Grünfeld3. General theory3.1. A monotoni
ity result for the 
lassi
al Boltzmann equa-tionBefore pro
eeding to a more general analysis, we start with a relevant exam-ple - the Arkeryd's monotoni
ity result for the Boltzmann equation ([2℄).Spe
i�
ally, in [2℄, the main interest is to solve the Cau
hy problem for thespa
e homogeneous Boltzmann equation (2.47) in the positive 
one L1
+ of

L1 = L1(R3,dv), namely
d

dt
f = Q(f) ≡ Q+(f) −Q−(f), f(0) = f0 ≥ 0 (t ≥ 0) (3.1)with Q± de�ned by (2.54) and (2.55), respe
tively.The basi
 hypothesis is that the 
ollision kernel q satis�es
q(v,w,n) ≤ Cq(1 + |v|λ + |w|λ) (0 ≤ λ ≤ 2), (3.2)for some 
onstant Cq > 0. The initial data f0 is supposed to satisfy (at least)the 
ondition of �nite mass and energy, i.e. ‖f0‖2 <∞, where

‖g‖l :=

∫
(1 + |v|2) l

2 |g(v)| dv. (3.3)Unfortunately, under 
ondition (3.2), the operators Q± are too singular toallow for applying general methods to the above problem. The idea of [2℄is to approximate Q± by 
ollision-like operators Q±
m with bounded (hen
esimpler) kernels qm(v,w) := min{q(v,w),m}, m = 1, 2, ... .Thus one starts by solving the simple model

d

dt
f = Qm(f) ≡ Q+

m(f) −Q−
m(f), f(0) = f0 (t ≥ 0). (3.4)Note that, sin
e (3.4) is a Boltzmann-type equation, then for "many" g ∈ L1,

∫
ϕi(v)Qm(g)dv = 0, (3.5)where ϕ0(v) = 1, ϕi(v) = vi , i = 1, 2, 3, ϕ4(v) = |v|2. An immediate
onsequen
e is that for any solution f = f(t,v) of (3.4),

‖f(t)‖0 = ‖f0‖0 (t ≥ 0). (3.6)
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ity Methods 61Moreover, if also ‖f(t)‖2 <∞, then
‖f(t)‖2 = ‖f0‖2 . (3.7)Writing the solution of (3.4) as fm, one 
ould hope that if m → ∞, then

fm 
onverges somehow to a solution of the original problem (3.1). Anotherkey point in the analysis is to use the above equalities as a priori estimatesin order to repla
e (3.4) with other (somehow equivalent) equations, moresuitable for monotone iteration with respe
t to the natural order of L1.Thus, one 
an �rst prove the following result ([2℄).Proposition 3.1 There exists a unique non-negative solution fm(t,v) ∈ L1of (3.4) for every 0 ≤ f0 ∈ L1.Proof. By (3.6), the positive solutions (in L1) of (3.4) are exa
tly the positivesolutions of the equation
d

dt
f + C ‖f0‖0 f = Qm(f) + C ‖f(t)‖0 f, f(0) = f0 (t ≥ 0), (3.8)whi
h satisfy equality (3.6). Here C > 0 is some 
onstant. Let v(t) :=

exp(−C ‖f0‖0 t). Sin
e the operators Q±
m are lo
ally Lips
hitz in L1, (3.8)has a unique lo
al solution fm(t), whi
h is also a unique lo
al solution to themild equation

f(t) = v(t)f0 +

∫ t

0
v(t− s)[Qm(f)(s) + C ‖f(s)‖0 f(s)]ds. (3.9)De�ne the sequen
e {fn

m}n by
f1

m = 0, fn
m = v(t)f0 +

∫ t

0
v(t− s)[Qm(fn

m)(s) + C ‖fn
m(s)‖0 f

n
m(s)]ds.(3.10)If C is su�
iently large, then the operator X ∋ g → Qm(g) + C ‖g‖0 g ∈ Xis positive. Then the sequen
e {fn

m(t)}n is positive and in
reasing in L1. Asimple indu
tion, making use of (3.5), gives ‖fn
m(t)‖0 ≤ ‖f0‖0. Then bythe monotone 
ompleteness of L1 (Levi's theorem) {fn

m(t)}n is 
onvergent,its limit gm(t) satis�es (3.9), and ‖gm(t)‖0 ≤ ‖f0‖0. But by virtue of theuniqueness of the aforementioned lo
al solution fm(t) (of both (3.8) and(3.9)), 
learly gm(t) = fm(t) ≥ 0 for t small enough. Moreover, gm(t) extends
fm(t), as the unique solution of (3.8), for all t ≥ 0. It remains to show that
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il Pompiliu Grünfeldthis solution satis�es (3.6). To this end, one integrates (3.8), with fm assolution, and rearrange 
onveniently the resulting expression as
fm +

∫ t

0
[Q−

m(fm)(s) + C ‖f0‖0 fm(s)]ds =

= f0 +

∫ t

0
[Q+

m(fm)(s) + C ‖fm(s)‖0 fm(s)]ds. (3.11)As fm(t), Q±
m(fm)(t) ≥ 0, invoking the additivity of the L1 norm, and theproperty ‖fm(t)‖0 ≤ ‖f0‖0, one �nally obtains

0 ≤ ‖f0‖0 − ‖fm(t)‖0 ≤ C ‖f0‖0

∫ t

0
(‖f0‖0 − ‖fm(s)‖0)ds. (3.12)Thus by Gronwall's inequality,

‖fm(t)‖0 = ‖f0‖0 , (t ≥ 0) (3.13)so the proof is 
on
luded. 2An indu
tion involving (3.10), and making use of (3.5) also shows ([2℄) thatif fm is as in Prop. 3.1, and (1 + |v|2)f0 ∈ L1, then (1 + |v|2)fm ∈ L1, and
‖fm(t)‖2 = ‖f0‖2 (t ≥ 0). (3.14)Another important property is the following estimation, uniform with respe
tto m (see [2℄): for any t∗ > 0,

‖fm(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4, (3.15)for some number 0 < K = K(t∗, ‖f0‖2 , Cq, l). The proof (see the slightlymore general Prop. 1.3 of [2℄) is indu
tive, and applies (3.10) and the basi
inequality ∫

R3

(1 + |v|2) l
2Qm(fm)dv ≤

≤ 3

2
Cqβl[‖fm(t)‖l+λ−θ ‖fm(t)‖θ + ‖fm(t)‖l−θ ‖fm(t)‖λ+θ , (3.16)valid for some βl > 0 and for any 0 ≤ θ ≤ 2. Inequality (3.16) follows (see,e.g., [2℄) from an elementary inequality due to Povzner, [23℄, and will be also
alled Povzner inequality2.One 
an prove that fm 
onverges to a solution of (3.1), under a stronger
ondition on f0 than in Prop. 3.1. Indeed, one has ([2℄)2Povzner-like inequalities 
an be also proved for the models presented in theprevious se
tions.
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ity Methods 63Proposition 3.2 If ‖f0‖l < ∞ for some l ≥ 4, then there exists a uniquesolution f ≥ 0 of problem (3.1) su
h that (1 + |v|l)f(t) ∈ L1. Moreover,
‖f(t)‖2 = ‖f0‖2 ( t ≥ 0), and for any t∗ > 0, there is some number K =
K(t∗, ‖f0‖2 , l) su
h that ‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗).Proof. Consider the equation,

d

dt
f + hf = Qa

m(f), f(0) = f0 (t ≥ 0), (3.17)where h(v) := C(1 + |v|2) ‖f0(v)‖2 and Qa
m(f) := Qm + hf .If fm is as in Prop. 3.1, but f0 is as in Prop. 3.2, then fm is also the uniquepositive solution of Eq. (3.17), whi
h satis�es (3.14). Further, 
onsider

d

dt
f + hf = Qb

m(f), f(0) = f0 (t ≥ 0), (3.18)where Qb
m(f) := Q+

m(f) −Q−(f) + hf .Let V (t) := exp(−th). One 
an introdu
e re
urren
es similar to (3.10),
f̃1,i

m = 0, f̃n+1,i
m = V (t)f0 +

∫ t

0
V (t− s)Qi

m(f̃n,i
m )(s)ds (n ≥ 1); i = a, b.(3.19)Under 
ondition (3.2), if C > 0 is su�
iently large, the operators Qi

m arepositive and isotone so that the sequen
es {f̃m
n,i

(t)
}

n
are positive and in-
reasing (i = a, b). Moreover, if 0 ≤ (1 + |v|2)g ∈ L1, then Qa

m (g) ≥ Qb
m(g)and Qb

m (g) ≥ Qb
j(g) for all m, 0 ≤ j ≤ m. Using the above properties, one�nds by indu
tion that

0 ≤ f̃j
n,b

(t) ≤ f̃m
n,b

(t) ≤ f̃n,a
m (t) ≤ fm(t); 0 ≤ j ≤ m. (3.20)Hen
e, the in
reasing sequen
es {f̃m

n,i
(t)
}

n
are 
onvergent. Note that ifwe set f b

m(t) := limn→∞ f̃m
n,b

(t), then 0 ≤ f b
j (t) ≤ f b

m(t) ≤ fm(t); 0 ≤
j ≤ m. Then {f b

m(t)
}

n
is in
reasing and ∥∥f b

m(t)
∥∥

2
≤ ‖f0‖2, hen
e {f b

m(t)
}

n
onverges to some limit f(t), as m→ ∞, and
‖f(t)‖2 ≤ ‖f0‖2 . (3.21)Moreover,

d

dt
f + hf = Q(f) + hf (3.22)
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‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4. (3.23)Thus f is a solution of (3.1) if there is equality in (3.21). This 
an be provedby estimating sm := fm − f b

m(t). Indeed, as fm is the solution of (3.17),(3.18), one 
an write
d

dt
sm + hsm = Qa

m(fm) −Qb
m(f b

m). (3.24)A short 
omputation, whi
h takes advantage that sm is non-negative, andapplies (3.23), gives (under hypothesis (3.2))
‖sm(t)‖2 ≤ tCK ‖f0‖4 sup

0≤s≤t∗

‖sm(s)‖2 + o(1) (3.25)as m→ ∞ (with C > 0 su�
iently large, and K, t∗ as in (3.23)).Then for t su�
iently small, ‖sm(t)‖2 → 0 as m → ∞, hen
e ‖f(t)‖2 =
limm→∞

∥∥f b
m(t)

∥∥
2

= limm→∞ ‖fm(t)‖2 = ‖f0‖2.To prove the uniqueness part of the proposition, observe that if g ≥ 0 satis�esEq. (3.1), and if ‖g(t)‖2 ≤ ∞, then ‖g(t)‖2 = ‖f0‖2. But g also satis�es themild form of (3.22). Then g ≥ f , by the 
onstru
tion of f . 2Variants of Arkeryd's monotoni
ity argument were su

essfully applied toother models 
lose to the 
lassi
al Boltzmann equation, [18℄, [27℄, [9℄, [7℄.Thus, developing the above line of reasoning within a more general frameworkhas be
ome a tempting task. But this is not trivial, and requires new ideas (aswill be seen in this se
tion). Indeed, for instan
e, too key issues of Arkeryd'sanalysis seem rather spe
i�
 to the model 
onsidered in [2℄: a) 
hoi
e of apriori estimates; b) 
onstru
tion of suitable regular operator approximationsof the Boltzmann 
ollision operators.3.2. An abstra
t modelWe begin with some terminology and fa
ts related to Bana
h latti
es ([17,24℄).The frame of our analysis is a separable AL-spa
e X with norm ‖·‖, order
≤, and positive 
one X+. We re
all that an (AL) spa
e, is a Bana
h latti
ewhose norm satis�es

‖g + h‖ = ‖g‖ + ‖h‖ (g, h ∈ X+). (3.26)
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ity Methods 65As X is an AL-spa
e, if h : R 7→ X+ is Bo
hner integrable, then property(3.26) gives ∥∥∥∥
∫

S
h(s)ds

∥∥∥∥ =

∫

S
‖h(s)‖ ds (3.27)for any measurable set S of R, the integral being in the sense of Lebesgue.Examples of AL-spa
es are L1-real and the real subspa
e of self-adjoint tra
e-
lass operators (with tra
e norm)3.Related to the order of X, we shall also use the standard notations (g ≥

h)⇔(h ≤ g), as well as (g < h)⇔( h > g)⇔(g ≤ h and g 6= h). AL-spa
esare monotone 
omplete, in the sense that any in
reasing (i.e., dire
ted ≤)norm-bounded family 
onverges. The norm of an AL-spa
e is order 
ontin-uous, i.e., any dire
ted ≥ �lters that 
onverges to 0 is also norm 
onvergentto 0 . A map Γ : D(Γ) ⊂ X 7→ X, with D(Γ) ∩ X+ 6= ∅, is 
alled positive(stri
tly positive) if 0 ≤ Γg for 0 ≤ g ∈ D(Γ) (if 0 < Γg for 0 < g ∈ D(Γ)).Further, Γ : D(Γ) ⊂ X 7→ X is 
alled isotone (stri
tly isotone) if Γg ≤ Γh,whenever g ≤ h (if Γg < Γh, whenever g < h), g, h ∈ D(Γ). Obviously,if Γ : D(Γ) ⊂ X 7→ X is isotone, 0 ∈ D(Γ) and 0 ≤ Γ(0), then Γ is posi-tive. We say that a subset M ⊂ X is p-saturated (positively saturated) if
M∩X+ 6= ∅, and from 0 ≤ g ≤ h ∈ M, it follows that g ∈ M. An operator
Γ : D(Γ) ⊂ X 7→ X will be 
alled o-
losed (
losed with respe
t to the or-der) if for any in
reasing sequen
e {gn} ⊂ D(Γ) su
h that {gn} is in
reasingand 
onvergent (in symbols, ր) to some g, and {Γgn} is Cau
hy, one has
g ∈ D(Γ) and limn→∞ Γgn = Γg. Clearly, any 
losed mapping is o-
losed.We re
all (see, e.g., [16℄) that if Γ : D(Γ) ⊂ X 7→ X is a 
losed linearoperator, then

Γ

∫

S

h(s)ds =

∫

S

Γh(s)ds. (3.28)for any fun
tion h Bo
hner integrable on some measurable set S ∈ R, withvalues in D(Γ), and su
h that Γh is Bo
hner integrable.We re
all that a positive C0 semigroup on X is a C0 semigroup of posi-tive linear operators on X. If {St
}

t≥0
is a positive C0 semigroup on X,then its in�nitesimal generator G is densely de�ned and 
losed (as the in-�nitesimal generator of a C0 semigroup). Moreover, Gk is densely de�nedand 
losed, k = 2, 3, ... . Additional useful properties are 
olle
ted in thefollowing lemma.Let I denote the identity on X. Set D∞

+ (G) := ∩∞
k=1D(Gk) ∩X+.3A
tually, a

ording to Kakutani's theorem, [24℄, every AL-spa
e is isometri
allyisomorphi
 (as an ordered ve
tor spa
e) to a spa
e of type L1.
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il Pompiliu GrünfeldLemma 3.1 ([11℄)a) The sets D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are dense in X+.b) Suppose that there is some number γ ≥ 0 su
h that

(G+ γI)g ≤ 0 (g ∈ D(G) ∩X+). (3.29)Then D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are p-saturated. Moreover, forany h ∈ X+,

0 ≤ Sth ≤ exp(−γt)h (t ≥ 0), (3.30)and there is an in
reasing sequen
e {hn} ⊂ D∞
+ , su
h that hn ր h as n→ ∞.Motivated by the examples of the previous se
tion, it is of interest to 
onsiderthe following abstra
t i.v.p., [11℄,

df

dt
= Q(t, f) = Q+(t, f) −Q−(t, f), f(0) = f0 ∈ X+ (t > 0), (3.31)formulated in X+ (the parti
ular autonomous 
ase is not ex
luded).In Eq. (3.31), Q+ and Q− are mappings de�ned from R+×D to X, for some

D ⊂ X su
h that D ∩X+ is dense in X+.The following properties are assumed for Q±:a) For a.e. t ≥ 0, the operators Q±(t, ·) : D 7→ X are positive and isotone.b) The mappings R+ ∋ t 7→ Q±(t, g(t)) ∈ X+ are measurable for anyLebesgue measurable fun
tion g : R+ 7→ X that satis�es g(t) ∈ D ∩ X+a.e. on R+.
) For a.e. t ≥ 0, the operators Q±(t, ·) are o-
losed and their 
ommondomain D is p-saturated.We are interested in the existen
e and uniqueness of positive (i.e., in X+)strong solutions of Eq. (3.31) under additional hypotheses whi
h abstra
tfurther properties of the Boltzmann model.We re
all that a fun
tion f : R+ 7→ X is a strong solution of Eq. (3.31), if itis absolutely 
ontinuous on R+, di�erentiable a.e. on R+, satis�es Eq. (3.31)a.e. on R+, and veri�es the initial 
ondition. Equivalently, f is a strongsolution of problem (3.31) if it is solution of the integral equation
f(t) = f0 +

∫ t

0
Q(s, f(s))ds (t ≥ 0), (3.32)where the integral is in the sense of Bo
hner.
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ity Methods 67We also 
onsider the following problem related to Eq. (3.31)
df

dt
= Af +Q(t, f), f(0) = f0 ∈ X+ (t > 0), (3.33)with Q as in Eq. (3.31). Here A is the in�nitesimal generator of a C0 groupof positive linear isometries on X, whi
h 
ommutes with Λ.We are interested in the existen
e and uniqueness of mild solutions of Eq.(3.31) in X+, i.e, solutions of the integral equation

f(t) = U tf0 +

∫ t

0
U t−sQ(s, f(s))ds (t ≥ 0) (3.34)in X+, where {U t

}
t∈R

is the C0 group of positive linear isometries on X,generated by A (the integral is in the sense of Bo
hner).As the above model is still too general for developing an existen
e theory ofsolutions, additional hypotheses are needed. The examples of the previousse
tion suggest to assume some sort of dissipation (
onservation) property,[11℄. This 
laims the existen
e of a positive, densely de�ned, 
losed linearoperator Λ : D(Λ) ⊂ X 7→ X su
h that, for any positive solution f(t) ∈
D(Λ2) of Eq. (3.31), the quantity ‖Λf(t)‖ is dissipated (
onserved), i.e., isde
reasing (
onstant) in t, and ∥∥Λ2f(t)

∥∥ is lo
ally bounded in t. The "lawof de
rease" of ‖Λf(t)‖ 
an be used as a "natural" a priori estimate4. Inparti
ular,
‖Λf(t)‖ ≤ ‖Λf0‖ (t ≥ 0). (3.35)To be pre
ise, we introdu
e the following "dissipation" property ([11℄). Let

M be a subset of D ∩X+ dense in X+.Definition 3.1 ([11℄) A 
losed positive linear operator Γ : D(Γ) ⊂ X 7→
X is 
alled of type D on M (with respe
t to Eq. (3.31)) if M ⊂D(Γ),
Q±(t,M) ⊂ D(Γ) a.e. on R+, and for any g ∈ M,

0 ≤ ∆(t, g; Γ, Q) :=
∥∥ΓQ−(t, g)

∥∥ −
∥∥ΓQ+(t, g)

∥∥ (t ≥ 0 a.e.). (3.36)If Γ is of type D on M, then the following property 
an be easily establishedby making use of (3.27) and (3.28).Lemma 3.2 ([11℄) Let g0, g(t), h(t) ∈ M, t ≥ 0 a.e., with Q±(·, h(·)),
ΓQ±(·, h(·)) ∈ L1

loc(R+;X+), and
g(t) ≤ g0 +

∫ t

0
Q(s, h(s))ds (t ≥ 0). (3.37)4This 
an take various forms in appli
ations, depending on the form of Λ and

Q, e.g., 
onservation energy, in the 
ase of the model of [2℄.
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‖Γg(t)‖ +

∫ t

0
∆(s, h(s); Γ, Q)ds ≤ ‖Γg0‖ (t ≥ 0). (3.38)Moreover, (3.38) holds with equality sign for any t ≥ 0, provided that thereis equality in (3.37) for all t ≥ 0.On the other hand, in determining the behavior of ∥∥Λ2f(t)

∥∥, a major role ap-pears to be played by the Povzner inequality (3.16). This has to be somehowin
luded in the model.Now we are in position to 
omplete the setting of Eq. (3.31) with additionalhypotheses, making more pre
ise the above 
onsiderations.Spe
i�
ally, we assume that there is a linear operator Λ : D(Λ) ⊂ X 7→ X,with D(Λ) ⊂ D and Q±(t,D(Λk)∩X+) ⊂ D(Λk−1), t ≥ 0 a.e., k = 2, 3, su
hthat:
(A0) The operator (−Λ) is the in�nitesimal generator of a C0 semigroup ofpositive linear operators on X, and there is a number λ0 > 0 su
h that

(Λ − λ0I)g ≥ 0 (g ∈ D(Λ) ∩X+). (3.39)(A1) For a.e. t ≥ 0,
∆(t, g) := ∆(t, g; Λ, Q) ≥ 0 (g ∈ D(Λ2) ∩X+), (3.40)and the map D(Λ2) ∩X+ ∋ g 7→ ∆(t, g) ∈ R+ is isotone.(A2) There exists a non-de
reasing 
onvex fun
tion a : R+ 7→ R+ su
h that

a(‖Λg‖)Λg −Q−(t, g) ≥ 0, (g ∈ D(Λ) ∩X+, t ≥ a.e.), (3.41)and for a.e. t ≥ 0, the map D(Λ) ∩X+ ∋ g 7→ a(‖Λg‖)Λg − Q−(t, g)
∈ X is isotone.(A3) There exists a non-de
reasing fun
tion ρ : R+ 7→ R+, and there is anoperator Λ1 : D(Λ1) ⊂ X 7→ X of type D on D(Λ2) ∩X+ su
h that
−∆(t, g; Λ2, Q) ≤ ρ(‖Λ1g‖)

∥∥Λ2g
∥∥ (g ∈ D(Λ3) ∩X+, t ≥ 0 a.e.).(3.42)Some remarks are in order.First, observe that if g ∈ D(Λ2) ∩X+, then by (3.39), (3.40) and (3.41) wehave the simple inequalities

‖g‖ ≤ λ−1
0 ‖Λg‖ ≤ λ−2

0

∥∥Λ2g
∥∥ (3.43)
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ity Methods 69and ∥∥Q±(t, g)
∥∥ ≤ λ−1

0

∥∥ΛQ±(t, g)
∥∥ ≤ λ−1

0

∥∥ΛQ−(t, g)
∥∥ ≤

≤ a(‖Λg‖)λ−1
0

∥∥Λ2g
∥∥ ≤ a(λ−1

0

∥∥Λ2g
∥∥)λ−1

0

∥∥Λ2g
∥∥ (t ≥ 0 a.e.), (3.44)with the following obvious 
onsequen
es.Remark 3.1 Q±(t, 0) = 0 and ∆(t, 0) = 0 a.e. on R+.Let Λ0 := I.Remark 3.2 If g : R+ 7→ X+ is measurable, with g(t) ∈ D(Λ2), t ≥

0, a.e., and ∥∥Λ2g
∥∥ ∈ L∞

loc(R+), then g, Λk+1g, and ΛkQ±(·, g(·)) are in
L1

loc(R+;X+), k = 0, 1.Lemma 3.1a) and (A0) imply that D(Λk) ∩ X+, k = 1, 2, ..., and D∞
+ :=

D∞
+ (Λ) are p-saturated and dense in X+. Obviously, (3.39) shows that Λ ispositive. Thus, by (3.40), the operator Λ is of type D on D(Λ2) ∩X+. Thishas the following important 
onsequen
e.If f(t) ∈ D(Λ2), t ≥ 0, a.e., and if Q±(·, f(·)), ΛQ±(·, f(·)) ∈ L1(R+;X+),then by (3.38), applied with equality sign,

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ (t ≥ 0). (3.45)Thus ‖Λf(t)‖ is de
reasing in time and satis�es (3.35). In parti
ular, if

∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t ≥ 0 a.e., then ‖Λf(t)‖ is 
onserved forall t ≥ 0.Observe that inequality (3.42) is of the form
−∆(t, g; Γ, Q) ≤ ρΓ(‖Λ1g‖) ‖Γg‖ (g ∈ M1, t ≥ 0 a.e.), (3.46)where Γ : D(Γ) ⊂ X 7→ X is some positive linear operator, and M1 ⊂ D(Γ)∩

D(Λ2)∩X+ is su
h that Q±(t,M1) ⊂ D(Γ), t ≥ 0 a.e., while ρΓ : R+ 7→ R+is some non-de
reasing fun
tion.Formula (3.45) generalizes a priori estimates introdu
ed in e.g., [2, 7, 8, 9, 27℄.Formula (3.46) 
an be regarded as an abstra
t 
orrespondent to the Povznerinequality, [2, 23℄.We �nally remark that the above setting does not ex
lude the 
ase Λ1 = Λwhen, obviously, some of the above 
onditions be
ome redundant.
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e of solutionsWe are now in position to state some results ([11℄, [13℄) on the existen
eof solutions to our abstra
t model. The proofs will be sket
hes in the nextsubse
tion (for more details, the reader is referred to [11℄ and [13℄). First we
onsider problem (3.31).Theorem 3.1 Let either of the following two sets of 
onditions be ful�lled:a) Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., ΛkQ+(·,D∞
+ ) ⊂ L1

loc(R+;X+), k = 1, 2, ... .In problem (3.31), f0 ∈ D(Λ2) ∩X+.b) The operators Q± do not depend expli
itly on t. In problem (3.31), f0 ∈
D(Λ3) ∩X+.Then there exists a unique positive strong solution of the i.v.p. (3.31) su
hthat f(t) ∈ D(Λ2) for any t ≥ 0, and ∥∥Λ2f(·)

∥∥ is lo
ally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es Eq. (3.45) and
∥∥Λ2f(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.47)Note here that Theorem 3.1a) is also appli
able to the autonomous 
ase, but,
learly, its 
onditions are di�erent from those of Theorem 3.1b).Theorem 3.1 has an immediate noti
eable 
onsequen
e, as follows:Consider Eq. (4.22) and let {U t
}

t∈R
be the C0 group of positive linearisometries on X, generated by A.If f is a solution of (3.34), then setting F (t) := U−tf(t) in (3.34), we get

F (t) = f0 +

∫ t

0
QU(s, F (s))ds (t ≥ 0), (3.48)hen
e, by di�erentiation,

d

dt
F = QU (t, F ) = Q+

U (t, F )−Q−
U (t, F ), F (0) = f0 (t ≥ 0 a.e.), (3.49)where QU (t, ·) := U−tQ(t, U t·) and Q±

U (t, ·) := U−tQ±(t, U t·).Suppose that U tD(Λ) = D(Λ) and U tΛ = ΛU t on D(Λ) for every t > 0.Also, let U tD(Λ1) = D(Λ1) and U tΛ1 = Λ1U
t on D(Λ1) for all t > 0.Now Q±

U and QU are well de�ned as maps from R+ × D(Λ) to X, the lastequation is of the form (3.31), and we 
an state the following 
onsequen
e([11℄) of Theorem 3.1a):
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ity Methods 71Corollary 3.1 Let Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., and ΛkQ+(·, U ·g) ∈
L1

loc(R+;X+) for all g ∈ D∞
+ , k = 1, 2, ... . Suppose that f0 ∈ D(Λ2) ∩X+in (4.22). Then problem (4.22) has a unique positive mild solution f su
hthat f(t) ∈ D(Λ2) for any t ≥ 0 and ∥∥Λ2f(·)

∥∥ is lo
ally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es (3.45) and (3.47).The following result, [13℄, extends the existen
e of strong solutions of Eq.(3.31) to the 
ase of initial datum f0 ∈ D(Λ) ∩X+ (instead of D(Λ2) ∩X+,as assumed in Theorem 3.1).Theorem 3.2 Under the assumptions of Theorem 3.1a) on Λ and Q±, let
f0 ∈ D(Λ) ∩ X+ in Eq. (3.31). Then there exists a strong solution, f ∈
C([0,∞);X+), of the i.v.p. (3.31). Moreover, for any t ≥ 0, f(t) ∈ D(Λ),
‖Λf(t)‖ ≤ ‖Λf0‖, and

‖f(t)‖ = ‖f0‖ +

∫ t

0

∥∥Q+(s, f(s))
∥∥ −

∥∥Q−(s, f(s))
∥∥ ds. (3.50)Note here that if f is as in Theorem 3.2, we know only that f ∈ D(Λ)∩X+.Then ∆(t, f) and Λ2f may not be not well-de�ned. Therefore, we 
annotobtain inequalities of the form (3.45) (ex
ept the 
ase when ∆ = 0 on D(Λ2)∩

X+,) or like (3.47), at the level of abstra
tion of the theorem.Also remark that Theorem 3.2 leaves open the question on the uniqueness ofthe solution in the general 
ase (under the 
onditions of the theorem).However, uniqueness 
an be proved under additional 
onditions, [13℄.Proposition 3.3 If ∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t � a.e., then
‖Λf(t)‖ = ‖Λf0‖ (t ≥ 0), (3.51)and there is a unique solution of the i.v.p. (3.31) as in Theorem 3.2, whi
hsatis�es (3.51).A similar result like Corollary 3.1 
an be formulated for Theorem 3.2.The following proposition yields additional useful estimates, [11℄, for the so-lutions of Eq. (3.31). For simpli
ity, we remain in the 
onditions of Theorem3.1a). However, similar results are valid when Theorem 3.1b) holds, as 
anbe seen by inspe
ting the proof of the proposition.Assume that Γ : D(Γ) ⊂ X 7→ X is a 
losed, positive linear operator. Let fbe a solution of problem (3.31), provided by Theorem 3.1a).
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il Pompiliu GrünfeldProposition 3.4 a) Suppose that Γ is of type D on D∞
+ . Then f(t) ∈ D(Γ),

t ≥ 0, and
‖Γf(t)‖ ≤ ‖Γf0‖ (t ≥ 0). (3.52)b) Suppose that Γ and ρΓ are as in (3.46), with M1 ⊇ D∞

+ . Then f(t) ∈
D(Γ), t ≥ 0, and

‖Γf(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0). (3.53)In appli
ations, the 
hoi
e of Λ and Λ1 may be not unique. In some 
ases,the role of Λ1 and Γ may be played by suitable powers of Λ, while, in otherexamples, Λ = Λ1 = Γ.A 
orrespondent to Prop. 3.4, appli
able to Corollary 3.1, 
an be readilyobtained. The modi�
ations in the reformulation of the proposition are ob-vious and in
lude additional hypotheses for the 
ommutation of U t with Γ,et
.3.4. ProofsSket
h of the proof of Theorem 3.1In the following, we give an insight into the rather lengthy argument of The-orem 3.1 (see [11℄ for a detailed proof), and explain the role of assumptions(A0)-(A3).We start by observing that if f0 = 0 in (3.31), then, by Remark 3.1, 
learly
f(t) ≡ 0 is a solution to Eq. (3.31). It is the unique strong solution in
D(Λ2) ∩ X+, as it follows from (3.45). Moreover, if 0 6= f0 ∈ D(Λ2) ∩ X+,but a(‖Λf0‖) = 0, then Q±(t, f0) = 0, for a.e. t ≥ 0, by (3.44), hen
e
f(t) ≡ f0 is a solution to (3.31). It is the unique solution in D(Λ2) ∩ X+,be
ause any other solution f∗(t) ∈ D(Λ2) ∩ X+ must be a.e. 
onstant.Indeed, applying (3.45), and invoking the positivity and monotoni
ity of a,we obtain 0 ≤ a(‖Λf∗(t)‖) ≤ a(‖Λf0‖) = 0. This leads (again by (3.44)) to
Q±(t, f(t)) = 0 a.e.Therefore, one 
an assume below that f0 6= 0 and a(‖Λf0‖) 6= 0.We �rst refer to the existen
e part of the theorem. Inspired from [2℄, one
an 
onsider the problem

d

dt
f + a(‖Λf0‖)Λf = B(t, f, f), f(0) = f0 ∈ X+ (t ≥ 0). (3.54)
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ity Methods 73Here a is as in (A2), and B is formally de�ned by
B(t, g, h) := Q(t, g(t))+a

(
‖Λg(t)‖ +

∫ t

0
∆(s, h(s))ds

)
Λg(t) (t ≥ 0 a.e.)(3.55)for all g(t) ∈ D(Λ) ∩ X+ and h(t) ∈ D(Λ2) ∩ X+ with ΛQ±(·, h(·)) ∈

L1
loc(R+;X+).By (3.45), any strong positive solution of Eq. (3.31) is also a solution to(3.54). Conversely, any positive strong solution of problem (3.54) is a solutionof Eq. (3.31), provided that it satis�es (3.45).Re
all now that, by (A0) and Lemma 3.1b), the operator L = −a(‖Λf0‖)Λis the in�nitesimal generator of a C0 positive semigroup {V t

}
t≥0

, and
0 ≤ V th ≤ exp(−a(‖Λf0‖)λ0t)h ≤ h (h ∈ X+). (3.56)Thus any solution of Eq. (3.54) is also a solution of the mild problem

f(t) = V tf0 +

∫ t

0
V t−sB(s, f, f)ds , (3.57)the integral being in the sense of Bo
hner.Eq. (3.57) is useful for monotone iteration. Indeed, {V t

}
t≥0

is positive, andone 
an prove5 the following properties ([11℄).Lemma 3.3 Let gi, hi, i = 1, 2, satisfy the 
onditions of Remark 3.2. Sup-pose that g1(t) ≤ g2(t) and h1(t) ≤ h2(t) a.e. on R+. Then B(·, gi, hj) ∈
L1

loc(R+;X+), i, j = 1, 2. In addition, for a.e. t ≥ 0,
0 ≤ B(t, g1, h1) ≤ B(t, g2, h2). (3.58)Thus, formally, by (3.57) one 
ould 
onsider the following iteration, hopefully,in
reasing:
f1(t) = 0, f2(t) = V tf0, (3.59)

fn(t) = V tf0 +

∫ t

0
V t−sB(s, fn−1, fn−2)ds (n = 3, 4, ...). (3.60)Note that if {fn(t)}n is su�
iently regular, by di�erentiation, (3.60) gives

d

dt
fn(t) = B(t, fn−1, fn−2) − a(‖Λf0‖)Λfn(t) (t > 0 a.e., n ≥ 3),(3.61)5See the Appendix.
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il Pompiliu Grünfeldand integrating (3.61) one has
fn(t) = f0 +

∫ t

0
Q(s, fn−1(s))ds+

+

∫ t

0
a

(
‖Λfn−1(s)‖ +

∫ s

0
∆(τ, fn−2(τ))dτ

)
Λfn−1(s)ds.

−
∫ t

0
a(‖Λf0‖)Λfn(s)ds. (3.62)However, in general, B(·, g, h) does not exist for all g, h ∈ X. Hen
e we needgive a meaning to (3.60), at least for f0 in a su�
iently large set. Here 
omesthe role of D∞

+ (of D(Λ3) ∩ X+). Indeed, if f0 ∈ D∞
+ (f0 ∈ D(Λ3) ∩ X+),then one 
an show that fn(t) ∈ D∞

+ (f0 ∈ D(Λ3) ∩ X+), and is su�
ientlyregular. This is 
lari�ed in the lemma bellow, whi
h summarizes the mainresults6 of [11℄ on the properties of {fn(t)}n.Lemma 3.4 a) In addition, to the 
onditions of Theorem 3.1a), let f0 ∈ D∞
+ .Then fn(t), Q±(t, fn(t)) ∈ D∞

+ a.e. on R+. Moreover, ΛkQ±(·, fn(·)) ∈
L1

loc(R+;X+), k = 0, 1, ...., n = 1, 2, ... .b) Assume the 
onditions of Theorem 3.1b). Then fn(t) ∈ D(Λ3) ∩X+ and
Q±(fn(t)) ∈ D(Λ2) ∩ X+; t ≥ 0. Moreover, ΛkQ±(fn) ∈ L1

loc(R+;X+),
k = 0, 1, 2, , n = 1, 2, ... .
) In both 
ases a) and b), Λkfn ∈ C(R+;X+), k = 0, 1, 2, and fn is a.e.di�erentiable on R+ and satis�es (3.61) (and (3.62)). Moreover, for any
t ≥ 0, the sequen
e {fn(t)}n is in
reasing.d) If fn(t) is as in a) or b), and n ≥ 2, then

fn(t) ≤ f0 +

∫ t

0
Q(s, fn−1(s))ds (3.63)and

‖Λfn(t)‖ +

∫ t

0
∆(s, fn−1(s))ds ≤ ‖Λf0‖ . (3.64)e) If fn(t) is as in a) or b), and Γ is an operator of type D on D∞

+ , (on
D(Λ2) ∩X+) then for any t ≥ 0,

‖Γfn(t)‖ ≤ ‖Γf0‖ (n = 1, 2, ...). (3.65)6See the Appendix for a proof.
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ity Methods 75In parti
ular,
∥∥Λ2fn(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0, n = 1, 2, ...), (3.66)with ρ as in (3.42).f) Suppose that fn(t) is as in a) (as in b)). Let Γ : D(Γ) ⊂ X 7→ X besome 
losed, positive linear operator, satisfying (3.46), with M1 ⊇ D∞
+ (with

M1 ⊇ D(Λ3) ∩X+). Then for any t ≥ 0,
‖Γfn(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (n = 1, 2, ...), (3.67)with ρΓ as in (3.46).By the above lemma, {fn(t)}n is in
reasing, and the key inequality (3.64)shows that {fn(t)}n is norm bounded7. Thus {fn(t)}n is 
onvergent, be-
ause X is monotone 
omplete. One expe
ts the limit to satisfy (3.54) (and(3.57), too). The proof hinges on the appli
ation of Lebesgue's dominated
onvergen
e theorem to (3.62) (as the operators Q± are o-
losed, and Λ is
losed). To this end, the limit of {fn(t)}n must be in D(Λ2), whi
h followsfrom (3.66). Now, to prove that the limit of {fn(t)}n is a strong solution to(3.31), it remains to show that the above limit satis�es (3.45). This is doneby applying Gronwall's Lemma to an inequality to be obtained from (3.62)(by using (3.66) and the 
onvexity of a). But the above pro
edure providesthe existen
e part of the Theorem 3.1a) only for f0 ∈ D∞

+ , hen
e one morestep is needed. Sin
e D∞
+ is dense in X+ (
f. Lemma 3.1), any initial datumas in the assumptions of Theorem 3.1a), 
an be approximated by elementsof D∞

+ . This leads to a monotone s
heme approximating (3.60) and one 
anapply su

essively Lebesgue's 
onvergen
e theorem. In details, one pro
eedsas follows.Step A. If in addition to the 
onditions of Theorem 3.1 a), one assumes
f0 ∈ D∞

+ then Lemma 3.4 applies. As Λk is 
losed, 
learly, by (3.39) andthe monotone 
ompleteness of X, it follows that there is some f(t) ∈ D(Λk)su
h that Λkfn(t) ր Λkf(t) as n → ∞, t ≥ 0, k = 0, 1, 2. Consequently,
f(t) satis�es (3.47). Moreover, Remark 3.2 implies that Λkf , k = 0, 1, 2,
Q±(·, f(·)), and ΛQ±(·, f(·)) are in L1

loc(R+;X+). Then, applying Lebesgue'sdominated 
onvergen
e theorem in (3.62) and (3.64), we get
f(t) = f0 +

∫ t

0
Q(s, f(s))ds+7Inequality (3.64) motivates the 
onstru
tion (3.60) as a se
ond-order re
urren
e.Indeed, ex
ept for the 
ase ∆ ≡ 0, an inequality of the form (3.64) 
ould not beproved if (3.60) was rede�ned with B(s, fn−1, fn−1) instead of B(s, fn−1, fn−2).
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+

∫ t

0

[
a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)
− a(‖Λf0‖)

]
Λf(s)ds (t ≥ 0)(3.68)(i.e., f is a strong solution of Eq.(3.54)) and, also,

0 ≤ ψ(t) := ‖Λf0‖ − ‖Λf(t)‖ −
∫ t

0
∆(s, f(s))ds (t ≥ 0). (3.69)Obviously, (3.68) implies f,Λf ∈ C(R+;X+).Note now the usefulness of (3.68): to prove that f is a strong solution of(3.31), it is su�
ient to show that ψ ≡ 0 (whi
h means exa
tly (3.45)).To this end, �rst observe that sin
e, by (A2), a is non-de
reasing and lo
allyLips
hitz, then inequality (3.69) implies that there is a number 0 < c =

c(‖Λf0‖), depending only on ‖Λf0‖, su
h that
0 ≤ a(‖Λf0‖) − a

(
‖Λf(t)‖ +

∫ t

0
∆(τ, f(τ))dτ

)
< cψ(t). (3.70)Further rewriting Eq. (3.68) 
onveniently, and applying Λ to the resultingequation, one 
an invoke (3.26) and (3.27) to obtain

ψ(t) =

∫ t

0

[
a(‖Λf0‖) − a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)]∥∥Λ2f(s)
∥∥ds.(3.71)As f(t) satis�es (3.47), introdu
ing (3.70) in (3.71), we �nd

0 ≤ ψ(t) ≤ c

∫ t

0
ψ(s)

∥∥Λ2f(s)
∥∥ds ≤ cT

∫ t

0
ψ(s)ds (0 ≤ t ≤ T ), (3.72)for ea
h T > 0. Here, cT > 0 is a number depending only on T and f0.Now the Gronwall inequality implies ψ(t) = 0, 0 ≤ t ≤ T , for any T > 0.This 
on
ludes the existen
e part of the proof of the Theorem 3.1a), in the
ase f0 ∈ D∞

+ ).Step B. We use the result of the previous step to prove the existen
e partof Theorem 3.1 a), in the 
ase f0 ∈ D(Λ2) ∩ X+, as follows. First notethat by Lemma 3.1b), there is an in
reasing sequen
e {f0,i} ⊂ D∞
+ su
h that

f0,i ր f0, as i→ ∞. Then, by Step A, there is a sequen
e of strong solutions
{Fi}i of Eq. (3.31) with Fi(0) = f0,i, satisfying the properties of the theorem.In parti
ular,

∥∥Λ2Fi(t)
∥∥ ≤ exp [ρ(‖Λ1f0,i‖)]

∥∥Λ2f0,i

∥∥ (t ≥ 0). (3.73)
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Fi(t) = f0,i +

∫ t

0
Q(s, Fi(s))ds, (3.74)

ΛFi(t) = Λf0,i +

∫ t

0
ΛQ(s, Fi(s))ds, (3.75)and

‖ΛFi(t)‖ +

∫ t

0
∆(s, Fi(s))ds = ‖Λf0,i‖ . (3.76)Moreover, by Step A, ea
h Fi is the limit of an in
reasing sequen
e {fn,i(t)}nde�ned by (3.60) with fn,i(0) = f0,i. But the positivity of V t and Lemma3.3 imply that if f0,i ≤ f0,j, then fn,i(t) ≤ fn,j(t) for all n and t ≥ 0. Thenthe sequen
e {Fi} is in
reasing.Furthermore, sin
e ‖Λ1f0,i‖ ≤ ‖Λ1f0‖, ∥∥Λ2f0,i

∥∥ ≤
∥∥Λ2f0

∥∥, and sin
e ρ isnon-de
reasing, it follows from inequality (3.73) that
∥∥Λ2Fi(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.77)Now a 
onvergen
e argument, as in the beginning of Step A, implies thatthere is an element f ∈ L1
loc(R+;X+), with the properties stated in Re-mark 3.2, su
h that Fi(t) ր f(t) as i → ∞, a.e. It remains to apply, say,Lebesgue's 
onvergen
e theorem in (3.74)�(3.76) to 
on
lude the existen
epart of Theorem 3.1a).Existen
e in 
ase b). In this 
ase, Lemma 3.4 applies, 
orresponding to theful�llment of the 
onditions of Theorem 3.1b). Then, the proof is as in StepA of 
ase a).Finally, we prove the uniqueness part of Theorem 3.1.Let f be the solution of Eq. (3.31) provided by the existen
e part of thisproof, and re
all that it satis�es Eq. (3.45). If F is another positive solutionof Eq. (3.31) with regularity properties as in Theorem 3.1, then F satis�esEq. (3.45), too, hen
e

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ = ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))ds.By Lebesgue's 
onvergen
e theorem applied to (3.60), 
learly, f also solvesEq. (3.57). On the other hand, F is a solution to (3.57). But f ≤ F , be
auseof the form of (3.60), so that

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds < ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))dson some subset of R+ with nonzero Lebesgue measure. 2
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il Pompiliu GrünfeldProof of Theorem 3.2As in the proof of Theorem 3.1, to ex
lude trivial situations, we suppose the
‖f0‖ 6= 0 or a(‖f0‖) 6= 0. By Lemma 3.1, there is a sequen
e {fn,0}n ⊂ D∞

+su
h that fn,0 ր f0 as n → ∞. Then by Theorem 3.1a) the i.v.p. (3.31)with initial 
ondition fn,0 has a unique positive solutions Fn ∈ D(Λ2) ∩X+su
h that (3.31) provided by Theorem 3.1 with initial datum fn,0 forms anin
reasing sequen
e su
h that Fn,ΛFn ∈ C(R+;X+),
Fn(t) = fn,0 +

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, Fn(s))ds (t ≥ 0). (3.78)and

‖ΛFn(t)‖ +

∫ t

0
∆(s, Fn(s)ds = ‖Λfn,0‖ (t ≥ 0). (3.79)But ∆(s, Fn(s) ≥ 0 so that

‖ΛFn(t)‖ ≤ ‖Λfn,0‖ ≤ ‖Λf0‖ (t ≥ 0). (3.80)Note now that Fn, fn,0, Q±(t, Fn(t)) are positive. Then (3.26) and (3.27)imply
‖Fn(t)‖ = ‖fn,0‖ +

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, Fn(s))
∥∥ ds (t ≥ 0),(3.81)To prove the theorem, we need show that {Fn(t)}n and {Q±(t, Fn(t))}n are
onvergent, and, then we need to inter
hange the limits 
onveniently in (3.78)and (3.81).To this end, �rst observe that sin
e {fn,0}n is positive and in
reasing, andea
h Fn is the limit of a sequen
e of the form (3.60), we obtain by a sim-ple indu
tion (whi
h uses the positivity and isotoni
ity of B in (3.60)) that

{Fn(t)}n is in
reasing. Thus, by (A0), the positive sequen
e {ΛFn(t)}n isalso in
reasing. Then (A0) and (3.80) give ‖Fn(t)‖ ≤ λ0
−1 ‖ΛFn(t)‖ ≤

λ0
−1 ‖Λfn,0‖ ≤ λ0

−1 ‖Λf0‖. Hen
e, for ea
h t ≥ 0, both {Fn(t)}n and
{ΛFn(t)}n are 
onvergent, be
ause X is monotone 
omplete. Moreover, as Λis 
losed, the limit f(t) of {Fn(t)}n satis�es f(t) ∈ D(Λ) ∩X+, and we have
ΛFn(t) ր Λf(t) as n → ∞. Then, also {Q±(t, Fn(t))}n are in
reasing, and
Q±(t, Fn(t)) ≤ Q±(t, f(t)) a.e. In parti
ular, ‖Q±(t, Fn(t))‖ ≤ ‖Q±(t, f(t))‖a.e. Consequently, Q±(t, Fn(t)) ր Q±(t, f(t)) as n → ∞, t -a.e., be
ause Xis monotone 
omplete and Q±(t, ·) are o-
losed t-a.e.Now, applying (A2) and (3.80) we get

∥∥Q−(t, f(t))
∥∥ = lim

n→∞

∥∥Q−(t, Fn(t))
∥∥ ≤ a(‖Λf0‖) ‖Λf0‖ (3.82)



An Introdu
tion to Monotoni
ity Methods 79a.e., hen
e Q−(·, f) ∈ L1
loc(R+;X+).Thus we 
an take the limit n → ∞ in (3.78) and (3.81), and we 
an apply,say, Lebesgue's theorem to the se
ond term of (3.78) and (3.81), respe
tively.We obtain

f(t) = f0 + lim
n→∞

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, f(s))ds, (3.83)and, by (3.26),

‖f(t)‖ = ‖f0‖ + lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, f(s))
∥∥ ds. (3.84)Sin
e ‖f(t)‖ <∞ for t ≥ 0, and Q−(·, f) ∈ L1

loc(R+;X+), by (3.84), for ea
h
t ≥ 0,

lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds <∞. (3.85)Hen
e, applying, e.g., the monotone 
onvergen
e theorem, it follows that

Q+(·, f) is Bo
hner integrable and we 
an �nally pass to the limit under theintegral sign in (3.83), (3.84), (3.80), and in (3.79), to 
on
lude the proof oftheorem. 2Proof of Proposition 3.3Equality (3.51) follows observing that ∆(s, Fn(s)) ≡ 0 in (3.79), and takingthe ∞ limit. As in the uniqueness part of the proof of Theorem 3.1, thesolution f of (3.31) provided by Theorem 3.2 also solves the mild problem(3.57) (but here, ∆(t, f) = 0 in the expression (3.55) of B, by virtue of(3.51)). Now the uniqueness follows by an argument similar to the one usedin the uniqueness part of the proof of Theorem 3.1, taking now advantage ofthe property ∆(s, Fn(s)) ≡ 0 (hen
e of (3.51)). 2Proof of Proposition 3.4a) Let f0, {f0,i} , {fn,i(t)}n, and {Fi(t)}i be as in Step B of the proof ofTheorem 3.1a). Then for ea
h i, the sequen
e {Γfn,i(t)}n is positive andin
reasing. Moreover, it is norm-bounded be
ause
‖Γfn,i(t)‖ ≤ ‖Γf0‖ (t ≥ 0), (3.86)as a 
onsequen
e of (3.65) and of the property Γf0,i ≤ Γf0.
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il Pompiliu GrünfeldAs X is monotone 
omplete, it follows that {Γfn,i(t)}n is 
onvergent for all
i.Re
all that Γ is 
losed, and fn,i(t) ր Fi(t) as n→ ∞, for all i. Consequently,
Fi(t) ∈ D(Γ) and Γfn,i(t) ր ΓFi(t) as n → ∞, i = 1, 2, .... In addition,
‖ΓFi‖ ≤ ‖Γf0‖, t ≥ 0,i = 1, 2, .... Then, reasoning as before, we 
on
ludethat f(t) ∈ D(Γ), ΓFi(t) ր Γf(t) as i→ ∞, and that ‖Γf‖ satis�es (3.52).b) The proof of (3.53) follows as in a), with the only remark that instead of(3.86), we make use of the inequalities
‖Γfn,i(t)‖ ≤ exp(ρΓ(‖Λ1f0,i‖)t) ‖Γf0,i‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0),(3.87)whi
h are immediate by (3.67), be
ause ρΓ is non-de
reasing. 24. Appli
ations4.1. Smolu
howski's 
oagulation equationFor k ≥ 0, let L1

k := L1
k(R+; dy) be the spa
e of real measurable fun
tions

g : R+ 7→ R su
h that
‖g‖L1

k
:=

∫

R+

(1 + y)k |g(y)| dy <∞. (4.1)Denote L1
k,+ = {g ∈ L1

k : g ≥ 0}. Consider problem (2.2) in the spa
e
X = L1(R+; dy) (equipped with the usual norm ‖·‖ = ‖·‖L1 , and with thenatural order ≤).Consider L1

k as a subset of X. Let i = 0, 1 and de�ne the positive linearoperators Λc,i : D(Λc,i) ⊂ X 7→ X by D(Λc,i) = L1
γi
, (Λc,ig)(y) := λi(y)g(y),with λi(y) := (1 + y)γi, y ≥ 0 a.e., where γ0 = β and γ1 = α+ β.Note that (2.3) and (2.4) de�ne Q+

c and Q−
c as positive and isotone nonlinearoperators in X, respe
tively, with the 
ommon domain Dc := L1

β.Then the i.v.p. for (2.2) 
an be formulated in X as
d

dt
f = Qc(f) = Q+

c (f) −Q−
c (f) f(0) = f0, t > 0. (4.2)In this 
ase, one 
an apply Theorem 3.1a). The only point is to 
he
k that Λc,i(i = 0, 1) and Q±

c verify inequalities of the form (3.40) and (3.42). Indeed, if
g ∈ L1

2β,+, then starting from (2.7), we �nd
0 ≤

∥∥Λc,iQ
−
c (g)

∥∥ −
∥∥Λc,iQ

+
c (g)

∥∥ =
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=

1

2

∫

R2
+

[(1 + y)γi + (1 + y∗)
γi − (1 + y + y∗)

γi ]q(y, y∗)g(y)g(y∗)dydy∗,(4.3)be
ause 0 ≤ γi ≤ 1, and
(1 + y)γ + (1 + y∗)

γ

(1 + y + y∗)γ
≥ inf

x≥0

1 + xγ

(1 + x)γ
= 1 (0 ≤ γ ≤ 1, y, y′ ≥ 0). (4.4)Inequality (4.3) shows that g 7→ ∆c(g) := ‖Λc,0Q

−
c (g)‖−‖Λc,0Q

+
c (g)‖ de�nesa positive isotone map ∆c : D(∆c) 7→ R with domain D(∆c) = L1

2β,+.Starting again from (2.7), we �nd that if g ∈ L1
3β,+, then

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ =

=
1

2

∫

R2
+

[
(1 + y + y∗)

2β − (1 + y)2β − (1 + y∗)
2β
]
q(y, y∗)g(y)g(y∗)dydy∗.(4.5)If 0 ≤ β ≤ 1/2, applying again (4.4) in (4.5), we get

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ 0, (4.6)whi
h is of the form (3.42) with ρ ≡ 0.If 1/2 < β ≤ 1, then to estimate (4.5), we apply the following form ([11℄) ofPovzner's algebrai
 inequality, whi
h 
an be easily proved8:
(1+y+y∗)

2β −(1+y)2β −(1+y∗)
2β ≤ 2(1+y)β(1+y∗)

β (y, y∗ ≥ 0). (4.7)Thus, applying (4.7) in (4.5), we �nd that there is a number c > 0 su
h that
∥∥Λ2

c,0Q
+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ c ‖Λc,1g‖
∥∥Λ2

c,0g
∥∥ . (4.8)Clearly, inequality (4.8) is of the form (3.42) with ρ(x) = cx.Let ac(x) := a0x, for some 
onstant a0 > 0. If a0 is su�
iently large, then themap L1

β,+ ∋ g 7→ a0 ‖Λc,0g‖Λc,0g − Q−
c (g) ∈ X has the properties requiredin (A2).It appears that Q±

c , Λc,0, Λc,1 and ac verify the 
onditions of Theorem 3.1a)for Q±, Λ, Λ1 and a, respe
tively, provided that a0 is su�
iently large.Consequently, one 
an apply Theorem 3.1a) to the i.v.p. (4.2). We obtain8Indeed, (4.7) is equivalent to ζ(x) = 2xβ +1+x2β − (1+x)2β ≥ 0 for all x > 0.However, as ζ(x−1) = x−2βζ(x), to prove that ζ(x) ≥ 0 for x > 0, we need onlyshow that ζ(x) ≥ 0 on (0, 1], whi
h is immediate, be
ause 1/2 < β ≤ 1.
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il Pompiliu GrünfeldTheorem 4.1 Let f0 ∈ L1
2β,+ in problem (4.2). Then Eq. (4.2) has a uniquestrong solution f su
h that f(t) ∈ L1

2β,+, t ≥ 0, and ‖f(t)‖L1
2β

is lo
allybounded on R+. In addition f, (1 + y)βf ∈ C(R+;L1(R+,dy)),
‖f(t)‖L1

β
+

∫ t

0
∆c(f(s))ds = ‖f0‖L1

β
(t ≥ 0), (4.9)and there is a 
onstant c > 0 su
h that

‖f(t)‖L1
2β

≤ exp(c ‖f0‖L1
α+β

t) ‖f0‖L1
2β

(t ≥ 0). (4.10)Note here that if 0 ≤ 2β < 1, then Theorem 4.1 allows for the existen
eof solutions with in�nite initial mass (see also [22℄) i.e., f0 ∈ L1
2β,+, but

f0 /∈ L1
1. The theorem does not imply dire
tly the mass 
onservation, ex
eptfor the 
ase q1 > 0, β = 1 and α = 0. However, if f0 ∈ L1

2β,+ ∩ L1
1, thenthe solution f(t) has �nite mass: indeed, if Γ : L1

1 ⊂ L1 7→ L1 is de�ned by
(Γg)(y) = yg(y) a.e. on R+, then 
learly, Γ is of type D on ∩∞

k=1L
1
kβ,+, hen
eProp. 3.4a) applies, so that f ∈ L1

2β,+ ∩ L1
1, and ‖Γf(t)‖ ≤ ‖Γf0‖.Theorem 4.1 remains valid in the 
ase of the dis
rete Smolu
howski equation(2.10), with obvious 
hange in formulation9.4.2. Povzner-like model with dissipative 
ollisionsLet X = L1(R3 ×R3; dxdv) = L1, equipped with the norm ‖·‖ := ‖·‖L1 andthe natural order ≤. Denote by L1

k := L1
k(R

3 × R3; dxdv), k ∈ R, the spa
eof measurable fun
tions on g : R3 × R3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(x,v)| dxdv <∞. (4.11)As before, L1

k,+ denotes the positive 
one in L1
k. It 
an be seen that (2.15) and(2.16) de�ne Q±

d as positive and isotone operators on the 
ommon domain
D := L1

γ . This follows easily if we perform the 
hange of variable (0, R]×Ω ∋
(r,n) 7→ y := rn ∈ {z ∈R3 : |z| ≤ R} in (2.15) and (2.16), and then takeinto a

ount (2.17).Now, formulated in X, the i.v.p. (2.14) reads

d

dt
f = Af +Q+

d (f) −Q−
d (f), f(0) = f0 ≥ 0, (4.12)9Note that L1

r, de�ned before, must be now repla
ed by l1r(R) = {c = (cj) : cj ∈
R, j = 1, 2, ..., ‖c‖r :=

∑∞

j=1
jr |cj | <∞}, r ≥ 0.
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ity Methods 83where f = f(t,x,v) is the one-parti
le distribution fun
tion, A is the in-�nitesimal generator of the C0 group (U tf)(x,v) := f(x− tv,v), a.e.Let the positive linear operator Λd : L1
2 7→ X be de�ned by (Λdg)(x,v) :=

λ(v)g(x,v) a.e. on R3 ×R3, with λ(v) := (1 + |v|2). De�ne ad(x) := c0x forsome 
onstant c0 > 0. If c0 is su�
iently large, then ad, Λd and Q±
d verifythe 
onditions of Corollary 3.1 for a, Λ = Λ1 and Q±, respe
tively.Indeed, the operators Q±

d are p-saturated. Moreover, they are o-
losed, bythe monotone 
onvergen
e theorem. It is immediate that the domain 
on-ditions imposed in Corollary 3.1 are satis�ed. Further, applying (2.12) in(2.18), we obtain an inequality of the form (3.40), i.e., if g ∈ L1
4,+, then

0 ≤ ∆d(g) :=
∥∥ΛdQ

−
d (g)

∥∥ −
∥∥ΛdQ

+
d (g)

∥∥ =

=

∫ R

0
dr

∫

Ω×R3×R3×R3

π(r,n,v,w,x)g(x,v)g(x + rn,w)dndvdwdx,(4.13)where π(r,n,v,w,x) := β(n)(1−β(n)) |〈n,v − w〉|2+γ P (r,n). Remark herethat the map L1
4,+ ∋ g 7→ ∆d(g) ∈ R is positive and isotone. Moreover, for

c0 su�
iently large, the map L1
2,+ ∋ g 7→ c0 ‖Λdg‖Λdg −Q−

d (g) ∈ X is alsopositive and isotone. Further, to obtain an inequality of the form (3.42), notethat (2.12) gives λ(v′)2 + λ(w′)2 ≤ (2 + |v′|2 + | w′|2)2 ≤ (2 + |v|2 + |w|2)2
= λ(v)2 + λ(w)2 + 2λ(v)λ(w), whi
h 
an be applied in ( 2.18) to 
on
ludeeasily that there are two 
onstants c1, c > 0 su
h that

∥∥Λ2
dQ

+
c (g)

∥∥ −
∥∥Λ2

dQ
−
d (g)

∥∥ ≤

≤ c1

∫ R

0
dr

∫

Ω×R3×R3×R3

r2λ(v)λ(w)1+
γ
2 g(x,v)g(x + rn,w)dndvdwdx ≤

≤ c ‖Λdg‖
∥∥Λ2

dg
∥∥ , (4.14)for all g ∈ L1

6,+. Finally, it is obvious that the group U t (generated by
A) 
ommutes with the semigroup V t generated by Λd, and ΛkQ+(U ·g) ∈
L1

loc(R+;X+) for all g ∈ ∩∞
n=1L

1
n,+, k = 1, 2, .....Therefore, by Corollary 3.1, we have the following result ([11℄):Theorem 4.2 Let f0 ∈ L1

4,+ in problem (4.12). Then Eq. (4.12) has aunique positive mild solution f su
h that f(t) ∈ L1
4,+, t ≥ 0, and ‖f(t)‖L1

4
islo
ally bounded on R+. In addition, f , (1 + |v|2)f ∈ C(R+;L1),

‖f(t)‖L1
2
+

∫ t

0
∆d(f(s))ds = ‖f0‖L1

2
(t ≥ 0), (4.15)
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il Pompiliu Grünfeldand there is a 
onstant c > 0 su
h that
‖f(t)‖L1

4
≤ exp(c ‖f0‖L1

2
t) ‖f0‖L1

4
(t ≥ 0). (4.16)The argument of Theorem 4.2 
an be repeated with obvious modi�
ationsto provide a similar result for the spa
e-homogeneous version of Eq. (2.14),whi
h 
oin
ides with the for
e-free, three dimensional spa
e-homogeneousBoltzmann model for granular �ows, [5, 6℄.4.3. Povzner-like model with 
hemi
al rea
tionsLet X := L1(R3 ×R3; dxdv)N be equipped with the order ≤ indu
ed by theorder of the 
omponents (i.e., the natural order of L1). The norm on X isde�ned as

‖g‖ :=
N∑

i=1

∫

R3×R3

|gi(x,v)| dxdv =
N∑

i=1

‖gi‖L1 . (4.17)Denote by L1
k := L1

k(R
3×R3; dxdv), k ∈ R, the spa
e of measurable fun
tions

g : R3 × R3 7→ R satisfying
‖g‖L1

k
:=

∫

R3×R3

(1 + |v|2 )
k
2 |g(x,v)| dxdv (4.18)and let L1

k,+ be the positive 
one in L1
k.It is natural to formulate the i.v.p. (2.29) in the spa
e X.Under the 
onditions of the model, (2.30) and (2.31) de�ne Q+

i and Q−
i ,

1 ≤ i ≤ N , as operators from the 
ommon domain (L1
2)

N ⊂ X to L1(R3; dv).De�ning the operators Q±
B : (L1

2)
N ⊂ X 7→ X by Q±

B = (Q±
1 , ....., Q

±
N ), we
an write the i.v.p. for Eq. (2.29) in X as

d

dt
f +A = Q+

B(t, f) −Q−
B(t, f), 0 ≤ f(0) = f0 ∈ X (t > 0), (4.19)where A is the in�nitesimal generator of the C0 group of isometries {U t}t∈Ron X, given by (U tf)(x,v) := f((x− tv,v).De�ne the positive 
losed linear operator ΛB : (L1

2)
N 7→ X by (ΛBg)i(v) =

λi(v)g(v) a.e. on R3 × R3 , where λi(v) := mi +mi |v|2 /2 +Ei, 1 ≤ i ≤ N.One 
an state the following result ([12℄):
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ity Methods 85Theorem 4.3 Suppose that in problem (4.19), f0,i ∈ L1
4,+ , 1 ≤ i ≤ N .Then Eq. (4.19) has a unique mild solution f(t) = (f1, ..., fN ) su
h that

fi(t) ∈ L1
4,+, t ≥ 0, and ‖fi(t)‖L1

4
is lo
ally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.20)and there is a 
onstant ρ0 > 0 su
h that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρ0 ‖ΛBf0‖ t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.21)The above result follows by applying Theorem 3.1 in the 
ase Λ = Λ1 = ΛB .Indeed, the domain 
onditions of Theorem 3.1, as well as properties (A0),(A1) 
an be immediately 
he
ked (with ∆ = 0, owing to (2.38). Next, let
a0 > 0 be some 
onstant, and de�ne a(x) := a0x. Owing to (2.38), for a0su�
iently large, the map L1

2,+ ∋ g → a0 ‖ΛBg‖ΛBg −Q−(g) ∈ X satis�es(A2). Finally, note that, as a 
onsequen
e of (2.39) (and of (2.37)), thereexists a number ρ0 > 0 su
h that
N∑

i=1

∫

R3

(Ψ
(0)
i + Ψ

(4)
i )2

[
Q+

i (g) −Q−
i (g)

]
dxdv ≤

≤ ρ0

∥∥∥(1 + |v|4 )g
∥∥∥

L1

∥∥∥(1 + |v|2 )g
∥∥∥

L1
, (4.22)for, say, all g ∈ (L1

6+)N .Then inequality (3.13) gives exa
tly (A3) with ρ(x) := ρ0x.4.4. Boltzmann model with inelasti
 
ollisions and rea
tionsLet X := (L1(R3; dv))N be equipped with the order ≤ indu
ed by the orderof the 
omponents (i.e., the natural order of L1). The norm on X is de�nedas
‖g‖ :=

N∑

i=1

∫

R3

|gi(v)| dv =
N∑

i=1

‖gi‖L1 . (4.23)Denote by L1
k := L1

k(R
3; dv), k ∈ R, the spa
e of measurable fun
tions

g : R3 × R3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(v)| dv <∞ (4.24)



86 Ce
il Pompiliu Grünfeldand let L1
k,+ be the positive 
one in L1

k.It is natural to formulate the i.v.p. for Eq. (2.47) in the spa
e X. Underthe above 
onditions, (2.48) and (2.49) de�ne Q+
i and Q−

i , 1 ≤ i ≤ N ,respe
tively, as operators from the 
ommon domain D = (L1
2)

N ⊂ X to
L1(R3; dv). De�ning Q±

B : D ⊂ X 7→ X by Q±
B = (Q±

1 , ....., Q
±
N ), we 
anwrite the i.v.p. for Eq. (2.47) in X

d

dt
f = Q+

B(f) −Q−
B(f), f(0) = f0 = (f0,1, ..., f0,N ) ∈ X+. (4.25)We shall prove the existen
e of solutions to problem (4.25), by applyingTheorem 3.1a) (in the 
ase Λ = Λ1). To this end, let the positive 
losedlinear operator ΛB : (L1
2)

N 7→ X be de�ned on 
omponents by (ΛBg)i(v) =
λi(v)g(v) a.e. on R3 × R3, where λi(v) := mi +mi |v|2 /2 + Ei, 1 ≤ i ≤ N .Denote lγ(w) :=

∑
i∈N (γ)

∑γi
j=1 λi(wi,j); γ ∈ M. Then 
learly, lγ(w) =

Mγ +Wγ(w), hen
e
0 ≤Wγ(w) < lγ(w). (4.26)In addition, de�ning λγ(w) :=
∏

i∈N (γ)

∏γi
j=1 λi(wi,j), γ ∈ M, we have

lγ(w) ≤ |γ|E1−|γ|λγ(w), (4.27)where E := min{mi + Ei : 1 ≤ i ≤ N}. It is useful to remark that, sin
e
Wγ(w) ≥ E |γ| > 0, and 0 ≤ q ≤ 1, then by (2.56), (4.26) and (4.27),

νβ,α(w) ≤ Cλα(w) (w ∈ R|α|, a.e.), (4.28)for all α, β ∈ M. Here C = C(E,K) > 0 is a number depending on E and
K (re
all that K is the maximum number of partners in a rea
tion 
hannel).To apply Theorem 3.1a) to (4.25), �rst remark that Q±

B and ΛB verify thedomain 
onditions imposed to Q± and Λ by the theorem. Moreover, ΛB hasthe properties required for Λ in (A0). Further, observe that formula (2.57)provides a 
orrespondent to (3.40), spe
i�
ally,
∆B(g) :=

∥∥ΛBQ
−
B(g)

∥∥ −
∥∥ΛBQ

+
B(g)

∥∥ = 0 (g ∈ (L1
4,+)N ). (4.29)To obtain a 
orrespondent to (3.42), let sγ(w) :=

∑
i∈N (γ)

∑γi
j=1 λi( wi,j)

2.Next, using the de�nition of Q+
B and property (B2), and applying the obviousinequality sα(w) ≤ lα(w)2, we �nd that if g ∈ (L1

6,+)N , then
∥∥Λ2

BQ
+
B(g)

∥∥ =
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn ≤
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≤

∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn. (4.30)We apply property (3.9) in the last integral. Then inter
hanging α and β,we get
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈ M

∫

R3|α|×Ωβ

(lβ ◦ uβ,α)2(w,n)rβ,α(w,n)gα(w)dwdn.(4.31)Sin
e lβ(w) = Mβ +Wβ(w), property (B3) implies that (lβ ◦ uβ,α)(w,n) =
lα(w) for all (α, β) ∈ CM , w ∈ D+

β,α. This and (B1) enable us to dedu
efrom (4.31) that
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2rβ,α(w,n)gα(w)dwdn. (4.32)Now, using the de�nitions of lα(w) and Q−
B , and then, taking advantage of(2.56) and (4.26), we obtain from (4.32)

∥∥Λ2
BQ

+
B(g)

∥∥ ≤

≤
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)rβ,α(w,n)gα(w)dwdn + ρB(‖ΛBg‖)
∥∥Λ2

Bg
∥∥ =

=
∥∥Λ2

BQ
−
B(g)

∥∥ + ρB(‖(ΛBg‖)
∥∥Λ2

Bg
∥∥ , (4.33)where ρB is a positive non-de
reasing (polynomial) fun
tion.Therefore, the last inequality is the required 
orrespondent to (3.42) (in the
ase Λ = Λ1).Further, let a0 > 0 be some 
onstant, and de�ne a(x) := a0

∑NK
p=1 x

p, x ≥ 0.Therefore, a(‖ΛBg‖) = a0
∑NK

p=1 ‖ΛBg‖p. But ea
h term ‖ΛBg‖p in the r.h.sof the last equality 
an be expressed by (4.23), and the resulting expression
an be expanded by the multinomial formula. Then, after some elementaryalgebra we get the following useful expression
a(‖ΛBg‖) = a0

∑

γ∈M, |γ|≥1

cγ,i

∫

R3|γ|

λγ(w)gγ(w)dw, (4.34)where cγ,i > 0 are stri
tly positive, 
onstant 
oe�
ients, γ ∈ M, |γ| ≥ 1,
1 ≤ i ≤ N .
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il Pompiliu GrünfeldWe show that if a0 is large enough, then (L1
2,+)N ∋ g 7→ a(‖ΛBf‖)ΛBg −

Q−
B(g) ∈ X is positive and isotone. To this end, �rst note that one 
an write
Q−

i (g)(v) = Ri(g)(v) gi(v), (g ∈ (L1
2,+)N , v ∈ R3 a.e., 1 ≤ i ≤ N),(4.35)where

Ri(g)(v) :=
∑

α,β∈M

αi

∫

R3|α|−3


νβ,α(w)

∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.36)with νβ,α as in (2.56). Hen
e,
a(‖ΛBg‖)(ΛBg)i(v)−Q−

i (g)(v) = [a(‖ΛBg‖)λi(v) −Ri(g)(v)] gi(v). (4.37)It is 
onvenient to set
RA

i (g)(v) := C
∑

α,β∈M

αi

∫

R3|α|−3


λ

α(w)
∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.38)with C as in (4.28). Summing on β in (4.38), using the expli
it form of
λα(w), and invoking property (B1), we are easily led to

RA
i (g)(v) = Cλi(v)

∑

γ∈M, |γ|≥1

qγ,i

∫

R3|γ|

λγ(w)gγ(w) dw, (4.39)where qγ,i ≥ 0 are 
onstant 
oe�
ients, γ ∈ M, |γ| ≥ 1, 1 ≤ i ≤ N .We introdu
e (4.34) and (4.38) in (4.37). Consequently, for v ∈ R3 a.e.,
a(‖ΛBg‖)(ΛBg)i(v) −Q−

i (g)(v) = [RA
i (g)(v) −Ri(g)(v)]gi(v) + Ti(g)(v),(4.40)where

Ti(g)(v) := λi(v)gi(v)
∑

γ∈M, |γ|≥1

(a0cγ,i −Cqγ,i)

∫

R3|γ|

λγ(w)gγ(w)dw. (4.41)Now we 
ompare (4.36) and (4.38), by taking advantage of (4.28). It fol-lows that the map (L1
2,+)N ∋ g 7→ [RA

i (g) − Ri(g)]gi ∈ L1 is positive and
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ity Methods 89isotone, 1 ≤ i ≤ N . Moreover, be
ause of the form of Ti(g), if a0 > 0is su�
iently large, then the mapping (L1
2,+)N ∋ g 7→ Ti(g)(v) ∈ L1 ispositive and isotone for all i. In this 
ase, by virtue of (4.40), the map

(L1
2,+)N ∋ g 7→ a(‖ΛBg‖)ΛBg −Q−

B(g) ∈ X is also positive and isotone.In 
on
lusion, the 
onditions of Theorem 3.1a) are ful�lled (in the 
ase Λ =
Λ1), so that we are in position to state the following result ([11℄):Theorem 4.4 Suppose that in problem (4.25), f0,i ∈ L1

4,+, 1 ≤ i ≤ N .Then Eq. (4.25) has a unique strong solution f(t) = (f1, ..., fN ) su
h that
fi(t) ∈ L1

4,+, t ≥ 0, and ‖fi(t)‖L1
4
is lo
ally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.42)and there is a non-de
reasing fun
tion ρB : R+ 7→ R+ su
h that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρB(‖f0‖)t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.43)Theorem 4.4 does not state the 
onservation of mass, momentum and en-ergy, but the 
onservation (in arbitrary units) of the quantity mass+(total)energy. However, the properties of f(t), 
f. Theorem 4.4, allow for 
he
kingimmediately the separate 
onservation for ea
h of the above quantities.Theorem 4.4 redu
es to the main monotoni
ity result of [2℄ when Eq. (4.25)is parti
ularized to the 
ase of the 
lassi
al Boltzmann equation. Moreover,in that 
ase, using suitable additional Povzner-like estimations, we 
an re-obtain the general moment estimations of [2℄, as appli
ation of Prop. 3.4b).Finally, remark that similar analyses as for Theorems 4.2 and 4.4 
an bedeveloped for the main model 
onsidered, e.g., in [27℄.4.5. Nonlinear von Neumann-Boltzmann equationAs Λ is unbounded (by 
onstru
tion), the existen
e of solutions to problem(2.62) seems not immediate from general 
onsiderations.However, one 
an show that the 
onditions of Theorem 3.1 are ful�lled with
a(x) = x.First re
all that Tr[Λk(Q+ − Q−)](F ) = 0, for all 0 ≤ F ∈ D(Λk) ∩ X+,
k = 0, 1. Then observe that, sin
e Λ ≥ I, it follows easily that Tr[Λ2(Q+ −
Q−)](F ) ≤ εTr(ΛF )TrF ≤ εTr(ΛF )Tr(Λ2F ) for all 0 ≤ F ∈ D(Λ3) ∩X+.So we 
an now formulate our existen
e result ([12℄):



90 Ce
il Pompiliu GrünfeldTheorem 4.5 Suppose that in problem (2.62), 0 ≤ F0 ∈ D(Λ2). ThenEq. (2.62) has a unique mild solution 0 ≤ F (t) ∈ D(Λ2), and TrF (t) islo
ally bounded. Moreover, F,ΛF ∈ C(R+;X), TrF (t) = TrF0, Tr(ΛF )(t) =
Tr(ΛF0) and Tr(Λ2F )(t) ≤ exp(tεTr(ΛF0))Tr(Λ2F0) (t ≥ 0).5. Con
luding remarksThe results of the previous se
tion of appli
ations 
an be easily 
ompletedtaking advantage of Theorem 3.2. As an example, the previous Theorem 4.1
an be 
ompleted as followsProposition 5.1 Let f0 ∈ L1

β,+ in problem (4.2). Then Eq. (4.2) has astrong solution f(t) ∈ L1
β,+, t ≥ 0.As mentioned before, the uniqueness is no longer ensured in the latter 
ase.Theorem 3.2 extends the main existen
e result of [11℄. The other generalexisten
e results formulated in [11℄ 
an be similarly 
ompleted, with obviousmodi�
ations. This allows to re
onsider the appli
ations of [11℄, a

ordingly,in an obvious manner.Prop. 3.3 provides uniqueness of the solutions in the spe
ial 
ase when ∆vanishes on a rather large set. This 
an be applied, for instan
e, to thespa
e-homogeneous Boltzmann equation with hard potentials, to obtain asimilar existen
e result as in, e.g., [20℄. However, in a more general 
ase,the uniqueness problem, under the 
onditions of Theorem 3.2, remains open.Here we 
an however remark that the regularity 
onditions required in thetheorem might be ne
essary to ensure the uniqueness of the strong solutions.Indeed, examples of non-unique (but) less regular solutions of the Boltzmannequation have been re
ently dis
overed, [26℄, [19℄.In this 
hapter, we presented various examples of existen
e results for gen-eralized Boltzmann models obtained by monotoni
ity methods. The abovemethods are potentially appli
able to investigate other evolution problems.On the other hand, the results presented in this review des
ribe only par-tially the properties of the models 
onsidered. They must be 
ompleted bya thorough study of other properties of the models, e.g. the existen
e of sta-tionary or/and equilibrium solutions, Lyapunov fun
tionals, H-theorems (seee.g. [7℄), asymptoti
 properties, 
onstru
tion of e�e
tive numeri
al methods.



An Introdu
tion to Monotoni
ity Methods 916. Appendix1) Sket
h of the Proof of Lemma 3.3Property B(·, gi, hj) ∈ L1
loc(R+;X+), i, j = 1, 2, follows from (A1), (A2) andRemark 3.2.To prove (3.58), let

yi(t) :=

∫ t

0
∆(s, hi(s))ds (i = 1, 2). (6.1)Clearly, 0 ≤ y1(t) ≤ y2(t), be
ause of the isotoni
ity of ∆(t, ·) (
f. (A1)).Further, de�ne F (x, y) := a(x+ y)− a(x), with a as in (A2). The propertiesof a (
f.(A2)) imply

F (x∗, y) − F (x, y) =

∫ y

0

[
a′(x∗ + ξ) − a′(x+ ξ)

]
dξ ≥ 0 (6.2)for all 0 ≤ x ≤ x∗ and y ≥ 0. Then one 
an show easily (invoking (A2), theisotoni
ity of Q+(t, ·) and the obvious inequality Λg1(t) ≤ Λg2(t)) that

0 ≤ B(t, g1, h1) = B(t, g1, 0) + F (‖Λg1(t)‖ , y1(t)) Λg1(t) ≤

≤ B(t, g2, 0) + F (‖Λg1(t)‖ , y1(t)) Λg2(t) (6.3)and
0 ≤ F (‖Λg1(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y2(t)) . (6.4)Inequalities (6.3) and (6.4) 
an be now easily 
ombined to obtain (3.58). 22) Sket
h of the Proof of Lemma 3.4a) Sin
e D∞

+ is p-saturated and ΛkQ±(t, ·) are positive and isotone, the keypoint is to show that for ea
h T > 0 and n = 1, 2, ..., there is gn,T ∈ D∞
+su
h that

0 ≤ fn(t) ≤ gn,T (0 ≤ t ≤ T a.e.). (6.5)Then (3.41) gives Q−(t, gn,T ) ∈ D∞
+ a.e. on R+, hen
e ΛkQ−(·, gn,T ) ∈

L1
loc(R+;X+) for all k = 0, 1, 2, .... The same properties hold for Q+(t, gn,T )and ΛkQ+(·, gn,T ), respe
tively (by virtue of the assumptions of Theorem3.1a) and by (3.44)).Inequality (6.5) 
an be proved by indu
tion.Indeed, note that (6.5) is trivially veri�ed for n = 1 by g1,T := 0, and for

n = 2 by g2,T := f0. Further, at the indu
tion step, assuming that (6.5) is
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il Pompiliu Grünfeldful�lled for n = 1, 2, ..q − 1 (with q ≥ 3) applying, in essen
e, the propertiesof ∆, a, and (3.28), one �rst obtains
Λk

∫ t

0
B(s, gn−1,T , gn−2,T )ds =

∫ t

0
ΛkB(s, gn−1,T , gn−2,T )ds (0 ≤ t ≤ T ),(6.6)for all k = 1, 2, ... and n = 1, 2, ..., q − 1. Then observe that fq−1(t) ≤ gq−1,Tand fq−2(t) ≤ gq−2,T satisfy the 
onditions of Lemma 3.3 for g1 ≤ g2 and

h1 ≤ h2, respe
tively. Thus, applying 
onveniently (3.56) and (3.58) in(3.60), and invoking (6.6), we get
0 ≤ fq(t) ≤ f0 +

∫ T

0
B(s, gq−1,T , gq−2,T )ds := gq,T ∈ D∞

+ (0 ≤ t ≤ T ).(6.7)b) As before, it is su�
ient to show by indu
tion that property (6.5) is veri�edby gn,T ∈ D(Λ3) ∩X+.First note that if g1,T = 0 and g2,T = f0, then (6.5) is trivially veri�ed for
n = 1, 2, respe
tively.The indu
tion step is simpler than in a), be
ause now one 
an make use ofthe fa
t that V t is C0. Then, ∫ t

0 V
shds ∈ D(Λ) for all h ∈ X, t ≥ 0, whi
h,in our 
ase, implies (for any 0 ≤ t ≤ T )

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds =

∫ t

0
V sB(T, gq−1,T , gq−2,T )ds ∈ D(Λ3)∩X+.(6.8)Sin
e, in our 
ase, B(t, gq−1,T , gq−2,T ) ≤ B(T, gq−1,T , gq−2,T ), we 
on
ludethe indu
tion step, using property (6.8) with the key inequality

0 ≤ fq(t) ≤ f0 +

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds (0 ≤ t ≤ T ), (6.9)whi
h follows, in essen
e, by Lemma 3.3, and by applying (3.56) and (3.58)in (3.60).
) The statement follows from simple regularity 
onsiderations and somedire
t 
omputation.d) Obviously, 0 = f1(t) ≤ f2(t) ≤ f3(t) a.e.. Then a straightforward indu
-tion, applying (3.58), shows that {fn(t)} is a.e. in
reasing.For the rest of the proof, note that (3.63) implies (3.64). Inequality (3.63) 
anbe proved by indu
tion. Indeed, sin
e 0 = f1 ≤ f2(t) ≤ f0, and ∆(t, 0) = 0a.e. (
f. Remark 3.1), formula (3.63) is trivially veri�ed for n = 2. Let q ≥ 3
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ity Methods 93and suppose inequality (3.63) to be valid for n = 2, 3, ..., q − 1. If n = q in(3.62), then the positivity of a and 0 ≤ Λfq−1(t) ≤ Λfq(t) give
fq(t) ≤ f0 +

∫ t

0
Q(s, fq−1(s))ds+

+

∫ t

0

[
a

(
‖Λfq−1(s)‖ +

∫ s

0
∆(τ, fq−2(τ))dτ

)
− a (‖Λf0‖)

]
Λfq(s)ds.(6.10)A

ording to the indu
tion hypothesis, (3.63) holds true for n = q−1. Hen
e(3.64) is also valid for n = q − 1, as 
on
luded before. Then a(‖Λfq−1(s)‖ +∫ s

0 ∆(τ, fq−2(τ))dτ)) ≤ a (‖Λf0‖), be
ause a is non-de
reasing. As Λfq(s) ispositive, 
learly the integral term 
ontaining Λfq(s), in the r.h.s. of (6.10) isnegative. Then (3.63) be
omes true for n = q.e) Note that Q±(t, fn(t)) ∈ D(Γ), for a.e. t ≥ 0. Also, ΓQ±(·, fn(·)) ∈
L1

loc(R+;X+). Indeed, let T > 0 and gn,T ≥ fn(t) be as in a). If Γ is of typeD on D∞
+ (on D(Λ2) ∩ X+), then (3.36) and (3.41) give ‖ΓQ±(t, fn(t))‖ ≤

‖ΓQ±(t, gn,T )‖ ≤ ‖ΓQ−(t, gn,T )‖ ≤ a(‖gn,T ‖) ‖ΓΛgn,T ‖ for a.e. 0 ≤ t ≤ T .On the other hand, if Γ satis�es (3.46), then (3.41) implies
∥∥ΓQ+(t, fn(t))

∥∥ ≤
∥∥ΓQ−(t, fn(t))

∥∥+ ρΓ(‖Λ1gn,T ‖) ‖Γgn,T ‖ ≤

≤ a(‖gn,T ‖) ‖ΓΛgn,T‖ + ρΓ(‖Λ1gn,T‖) ‖Γgn,T‖ (0 ≤ t ≤ T a.e.).But (3.63) is of the form (3.37), and the above 
onsiderations show thatLemma 3.2 applies (with Γ instead of Λ). Hen
e,
‖Γfn(t)‖ +

∫ t

0
∆(s, fn−1(s); Γ, Q)ds ≤ ‖Γf0‖ (t ≥ 0, n ≥ 2). (6.11)Now the proof 
an be immediately 
on
luded: if n = 1, then formula (3.65)is trivially satis�ed; if n ≥ 2, then (3.65) is dire
tly implied by (6.11).To obtain (3.66) observe that Λ2 satis�es the 
onditions for Γ in e).f) First apply inequality (3.46) in (6.11). It follows that

‖Γfn(t)‖ ≤ ‖Γf0‖ +

∫ t

0
ρΓ(‖Λ1fn−1(s)‖) ‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2).(6.12)But Λ1 satis�es the 
onditions of e) in the present lemma, hen
e ‖Λ1fn(t)‖ ≤

‖Λ1f0‖, t ≥ 0, n = 1, 2, ... . Introdu
ing the last inequality in (4.16), weobtain
‖Γfn(t)‖ ≤ ‖Γf0‖+ ρΓ(‖Λ1f0‖)

∫ t

0
‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2). (6.13)



94 Ce
il Pompiliu GrünfeldFinally, sin
e (3.67) is obviously satis�ed for n = 1, 2, a straightforward(Gronwall type) indu
tion in (6.13) 
on
ludes the proof. 2Referen
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98 V. Iftimie et al.1. Introdu
tionFor the S
hrödinger operator −∆ + V on L2(Rd) (d ≥ 3), one has the well-known CLR (Cwikel-Lieb-Rosenblum) estimation for N(V ), the number ofnegative eigenvalues:
N(V ) ≤ c(d)

∫

Rd

dx |V−(x)|d/2 . (1.1)
V is the multipli
ation operator with the fun
tion V ∈ L1

loc(R
d) and V− :=

(|V |−V )/2 ∈ Ld/2(Rd); the 
onstant c(d) > 0 only depends on the dimension
d ≥ 3 (see [47℄, Th. XII.12).There exist at least four di�erent proofs of this inequality. Rosenblum [35℄uses "pie
e-wise polynomial approximation in Sobolev spa
es". Lieb [25℄relies on the Feynman-Ka
 formula. Cwi
kel [4℄ uses ideas from interpolationtheory. Finally, Li and Yau [31℄ make a heat kernel analysis.The inequality (1.1) has been extended in [1℄ and [48℄ to the 
ase of operatorswith magneti
 �elds (−i∇ − A)2 + V , where the 
omponents of the ve
torpotential A = (A1, . . . , Ad) belong to L2

loc(R
d). The basi
 ingredient of theproof is the Feynman-Ka
-Ito formula. Melgaard and Rosenblum [41℄ gener-alizes this result (by a di�erent method) to a 
lass of di�erential operators ofse
ond order with variable 
oe�
ients. The idea for treating the relativisti
Hamiltonian (without a magneti
 �eld), by repla
ing Brownian motion witha Lévy pro
ess, appears in [5℄ and we follow it in our work giving all thete
hni
al details. Some similar results but for a di�erent Hamiltonian andwith di�erent te
hniques have been obtained re
ently in [8℄.Our aim in this paper is to obtain an estimation of the type (1.1) for anoperator that is a good 
andidate for a relativisti
 Hamiltonian with mag-neti
 �eld (for s
alar parti
les); it is gauge 
ovariant and obtained througha quantization pro
edure from the 
lassi
al 
andidate. We shall make useof a "magneti
 pseudodi�erential 
al
ulus" that has been introdu
ed anddeveloped in some previous papers [34℄, [35℄, [27℄, [28℄, [36℄, [38℄, [24℄.Let us denote by C∞

pol(R
d) the family of fun
tions f ∈ C∞(Rd) for whi
h allthe derivatives ∂αf , α ∈ Nd have polynomial growth.Let B be a magneti
 �eld (a 2-form) with 
omponents Bjk ∈ C∞

pol(R
d). Itis known that it 
an be expressed as the di�erential B = dA of a ve
torpotential (a 1-form) A = (A1, . . . , Ad) with Aj ∈ C∞

pol(R
d), j = 1, . . . , d; an



eigenvalues of a relativisti
 Hamiltonian 99example is the transversal gauge:
Aj(x) = −

n∑

k=1

∫ 1

0
ds Bjk(sx)sxk.We denote by

ΓA(x, y) :=

∫ 1

0
dsA((1 − s)x+ sy) =

∫

[x,y]
A, x, y ∈ Rd. (1.2)the 
ir
ulation of A along the segment [x, y], x, y ∈ Rd. If a is a symbolon Rd, one de�nes by an os
illatory integral the linear 
ontinuous operator

OpA(a) : S(Rd) → S∗(Rd) by
[
OpA(a)

]
(x) := (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξe
−i

R
[x,y]

A
a

(
x+ y

2
, ξ

)
u(y),(1.3)The 
orresponden
e a 7→ OpA(a) is meant to be a quantization and 
ouldbe regarded as a fun
tional 
al
ulus OpA(a) = a(Q,ΠA) for the family ofnon-
ommuting operators (Q1, . . . , Qd; Π

A
1 , . . . ,Π

A
d ), where Q is the positionoperator, ΠA := D −A(Q) is the magneti
 momentum, with D := −i∇.If a belongs to the S
hwartz spa
e S(R2d), then OpA(a) a
ts 
ontinuously inthe spa
es S(Rd) and S∗(Rd), respe
tively. It enjoys the important physi
alproperty of being gauge 
ovariant: if ϕ ∈ C∞

pol(R
d) is a real fun
tion, Aand A′ := A + dϕ de�ne the same magneti
 �eld and one prove easily that

OpA′
(a) = eiϕOpA(a)e−iϕ. The property is not shared by the quantization

a 7→ OpA(a) := Op(a ◦ νA), where Op is the usual Weyl quantization and
νA : Rd → Rd, νA(x, ξ) := (x, ξ−A(a)) is an implementation of "the minimal
oupling".We mention that in the referen
es quoted above, a symboli
 
al
ulus isdeveloped for the magneti
 pseudodi�erential operators (1.3). In parti
u-lar, a symbol 
omposition (a, b) 7→ a♯Bb is de�ned and studied, verifying
OpA(a)OpA(b) = OpA(a♯Bb). It depends only on the magneti
 �eld B, no
hoi
e of a gauge being needed. The formalism has a C∗-algebrai
 interpre-tation in terms of twisted 
rossed produ
ts, 
f. [35℄, [37℄, [39℄ and it has beenused in [40℄ for the spe
tral theory of quantum Hamiltonians with anisotropi
potentials and magneti
 �elds.We shall denote byHA the unbounded operator in L2(Rd) de�ned on C∞

0 (Rd)by HAu := OpA(h)u, with h(x, ξ) ≡ h(ξ) := 〈ξ〉 − 1 = (1 + |ξ|2)1/2 − 1. One
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an express it as
(HAu) (x) = (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξh
(
ξ − ΓA(x, y)

)
u(y). (1.4)

HA is a symmetri
 operator and, as seen below, essentially self-adjoint on
C∞

0 (Rd). Also denoting its 
losure by HA, we will have HA ≥ 0.I
hinose and Tamura [19℄, [20℄, using the quantization a 7→ (Op)A(a), studyanother relativisti
 Hamiltonian with magneti
 �eld de�ned by
(
H ′

Au
)
(x) = (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξh

(
ξ −A

(
x+ y

2

))
u(y), (1.5)for whi
h they prove many interesting properties. Unfortunately, H ′

A is notgauge 
ovariant (
f. [24℄). Many of the properties of H ′
A also hold for HA(by repla
ing A (x+y

2

) with ΓA(x, y) in the statements and proofs) and thiswill be used in the sequel.Aside the magneti
 �eld B = dA, we shall also 
onsider an ele
tri
 potential
V ∈ L1

loc(R
d), real fun
tion expressed as V = V+ − V−, V± ≥ 0, su
h that

V− ∈ Ld+k(Rd)∩Ld/2+k(Rd) for some k ≥ 0. We are interested in the opera-tor H(A,V ) := HA +V ; it will be shown that it is well-de�ned in form senseas a self-adjoint operator in L2(Rd), with essential spe
trum in
luded intothe positive real axis. Taking advantage of gauge 
ovarian
e, we denote by
N(B,V ) the number of stri
tly negative eigenvalues of H(A,V ) (multipli
ity
ounted); it only depends on the potential V and the magneti
 �eld B.The main result of the arti
le isTheorem 1.1 Let B = dA be a magneti
 �eld with Bjk ∈ C∞

pol(R
d), Aj ∈

C∞
pol(R

d) and let V = V+ − V− ∈ L1
loc(Rd)

be a real fun
tion with V± ≥ 0 and
V− ∈ Ld(Rd)∩Ld/2(Rd). Then there exists a 
onstant Cd, only depending onthe dimension d ≥ 3, su
h that

N(B,V ) ≤ Cd

(∫

Rd

dxV−(x)d +

∫

Rd

dxV−(x)d/2

)
. (1.6)A standard 
onsequen
e is the next Lieb-Thirring-type estimation:Corollary 1.1 We assume that the 
omponents of B belong to C∞

pol(R
d)and that V = V+ − V− ∈ L1

loc(R
d) is a real fun
tion with V± ≥ 0 and

V− ∈ Ld+k(Rd) ∩ Ld/2+k(Rd), k > 0. We denote by λ1 ≤ λ2 ≤ . . . the
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tly negative eigenvalues of H(A,V ) (with multipli
ity). For any d ≥ 2there exists a 
onstant Cd(k) su
h that
∑

j

|λj |k ≤ Cd(k)

(∫

Rd

dxV−(x)d+k +

∫

Rd

dxV−(x)d/2+k

)
. (1.7)Se
tions 2, 3, 4 will 
ontain essentially known fa
ts (usually presented with-out proofs), needed for 
he
king Theorem 1.1. So, in Se
tion 2 we introdu
ethe Feller semigroup ([20℄, [17℄, [26℄) asso
iated to the operatorH0 := 〈D〉−1.In the third se
tion we de�ne properly the operator H(A,V ) and study itsbasi
 properties. In Se
tion 4 we re
all some probabilisti
 results, as theMarkov pro
ess asso
iated to the semigroup de�ned by H0 ([25℄, [6℄, [26℄)and the Feynman-Ka
-It� formula adapted to a Lévy pro
ess ([20℄).In Se
tion 5 we prove Theorem 1.1 for B = 0, using some of Lieb's ideasfor the non-relativisti
 
ase (see [48℄) in the setting proposed in [5℄. Thelast se
tion 
ontains the proof of Theorem 1.1 with magneti
 �eld as well asCorollary 1.1. The main ingredient is the Feynman-Ka
-It� formula.2. The Feller semigroupWe 
onsider the following symbol (interpreted as a 
lassi
al relativisti
 Hamil-tonian for m = 1, c = 1) h : Rd → R+ de�ned by h(ξ) := 〈ξ〉 − 1 ≡√

1 + |ξ|2 − 1. Let us observe (as in [17℄) that it de�nes a 
onditional nega-tive de�nite fun
tion (see [47℄) and thus has a Lévy-Khin
in de
omposition(see Appendix 2 to Se
tion XIII of [47℄). Computing (∇h)(ξ) and (∆h)(ξ)and using the general Lévy-Khin
in de
omposition (see for example [47℄), oneobtains that there exists a Lévy measure n(dy), i.e. a non-negative, σ-�nitemeasure on Rd, for whi
h min{1, |y|2} is integrable on Rd, su
h that
h(ξ) = −

∫

Rd

n(dy)
{

eiy·ξ − 1 − i (y · ξ) I{|x|<1}(y)
}
, (2.1)where I{|x|<1} is the 
hara
teristi
 fun
tion of the open unit ball in Rd. Onehas the following expli
it formula (see [17℄):

n(dy) = 2(2π)−(d+1)/2 |y|−(d+1)/2K(d+1)/2(|y|) dy, (2.2)with Kν the modi�ed Bessel fun
tion of third type and order ν. We re
allthe following asymtoti
 behaviour of these fun
tions:
0 < Kν(r) ≤ Cmax(r−ν , r−1/2)e−r, ∀r > 0, ∀ν > 0. (2.3)



102 V. Iftimie et al.We shall denote byHs(Rd) the usual Sobolev spa
es of order s ∈ R on Rd andby H0 the pseudodi�erential operator h(D) ≡ Op(h) 
onsidered either as a
ontinuous operator on S(Rd) and on S∗(Rd) or as a self-adjoint operator in
L2(Rd) with domain H1(Rd). The semigroup generated by H0 is expli
itlygiven by the 
onvolution with the following fun
tion (for t > 0 and x ∈ Rd):

◦
℘t(x) := (2π)−d t√

|x|2 + t2

∫

Rd

dξ e

“
t−
√

(|x|2+t2)(|ξ|2+1)
”

=

= 2−(d−1)/2 π−(d+1)/2 tet(|x|2 + t2)−(d+1)/4K(d+1)/2(
√

|x|2 + t2) (2.4)(see [20℄, [2℄). We have
◦
℘t(x) > 0 and ∫

Rd

dx
◦
℘t(x) = 1. (2.5)From (2.3) one easily 
an dedu
e the following estimation

∃C > 0 su
h that ◦
℘t(0) ≤ Ct−d(1 + td/2), ∀t > 0. (2.6)Let us set

C∞(Rd) :=

{
f ∈ C(Rd) | lim

|x|→∞
f(x) = 0

} (2.7)and endow it with the Bana
h norm ‖f‖∞ := supx∈Rd |f(x)|. Using theabove properties of the fun
tion ◦
℘t we 
an extend e−tH0 to a well-de�nedbounded operator P (t) a
ting in C∞(Rd).Remark 2.1 One 
an easily verify that {P (t)}t≥0 is a Feller semigroup, i.e.:1. P (t) is a 
ontra
tion: ‖P (t)f‖∞ ≤ ‖f‖∞, ∀f ∈ C∞(Rd);2. {P (t)}t≥0 is a semigroup: P (t+ s) = P (t)P (s);3. P (t) preserves positivity: P (t)f ≥ 0 for any f ≥ 0 in C∞(Rd);4. We have limtց0 ‖P (t)f − f‖∞ = 0, ∀f ∈ C∞(Rd).3. The perturbed HamiltonianSuppose given a magneti
 �eld of 
lass C∞

pol(R
d) and let us 
hoose a potentialve
tor A, su
h that B = dA, with 
omponents also of 
lass C∞

pol(R
d) (thisis always possible, as said before). We shall denote by HA the operator
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OpA(h), 
onsidered either as a 
ontinuous operator on S(Rd) and on S∗(Rd)(by duality) or as an unbounded operator on L2(Rd) with domain C∞

0 (Rd).Using the Fourier transform one easily proves that for u ∈ C∞
0 (Rd):

[H0u](x) = −
∫

Rd

n(dy)
[
u(x+ y) − u(x) − I{|z|<1}(y) (y · ∂xu) (x)

]
. (3.1)Re
alling the de�nition of OpA(h), we remark that

[HAu](x) =
[
OpA(h)u

]
(x) =

[
Op(h)

(
ei(x−.)·ΓA(x,.)u

)]
(x) = (3.2)

=
[
H0

(
ei(x−.)·ΓA(x,.)u

)]
(x).Combining the above two equations one gets easily

[HAu](x) = −
∫

Rd

n(dy)
[
e−iy·ΓA(x,x+y)u(x+ y) − u(x)− (3.3)

−I{|z|<1}(y) (y · (∂x − iA(x))u) (x)
]
.Repeating the arguments in [17℄ with ΓA(x, x + y) repla
ing A((x + y)/2)one proves the following results similar to those in [17℄.Proposition 3.1 Considered as unbounded operator in L2(Rd), HA is es-sential self-adjoint on C∞

0 (Rd). Its 
losure, also denoted by HA, is a positiveoperator.Proposition 3.2 For any u ∈ L2(Rd) su
h that HAu ∈ L1
loc(R

d)

ℜ [(signu)(HAu)] ≥ H0|u|.Using the method in [49℄ we 
an prove the following result.Proposition 3.3 For any u ∈ L2(Rd) we have:1. for any λ > 0 and for any r > 0

∣∣(HA + λ)−r u
∣∣ ≤ (H0 + λ)−r |u|; (3.4)2. for any t ≥ 0 ∣∣e−tHAu
∣∣ ≤ e−tH0 |u|. (3.5)
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iate to HA its sesquilinear form
D(hA) = D(H

1/2
A ),

hA(u, v) := (H
1/2
A u,H

1/2
A v), ∀(u, v) ∈ D(hA)2. (3.6)Consider now a fun
tion V ∈ L1

loc(R
d), V ≥ 0 and asso
iate to it thesesquilinear form

D(qV ) := {u ∈ L2(Rd) |
√
V u ∈ L2(Rd)},

qV (u, v) :=

∫

Rd

dxV (x)u(x)v(x), ∀(u, v) ∈ D(qV )2. (3.7)Both these sesquilinear forms are symmetri
, 
losed and positive. We shallabbreviate hA(u) ≡ hA(u, u) and qV (u) ≡ qV (u, u).Proposition 3.4 Let V : Rd → R be a measurable fun
tion that 
an bede
omposed as V = V+ − V− with V± ≥ 0 and V± ∈ L1
loc(R

d). Moreover letus suppose that the sesquilinear form qV− is small with respe
t to h0 (i.e. it is
h0-relatively bounded with bound stri
tly less then 1). Then the sesquilinearform hA + qV+ − qV− , that is well de�ned on D(hA)

⋂D(qV+), is symmetri
,
losed and bounded from below, de�ning thus an inferior semibounded self-adjoint operator H(A;V ) ≡ H := HA ∔ V (sum in sense of forms).Proof. The sesquilinear form hA+qV+ (de�ned on the interse
tion of the formdomains) is 
learly positive, symmetri
 and 
losed. We shall prove now thatthe sesquilinear form qV− is hA + qV+ -bounded with bound stri
tly less then1, so that the 
on
lusion of the proposition follows by standard arguments.Let us denote by H+ := HA ∔ V+ the unique positive self-adjoint operatorasso
iated to the sesquilinear form hA + qV+ by the representation theorem2.6 in �VI.2 of [29℄. As V+ ∈ L1
loc(R

d), we have C∞
0 (Rd) ⊂ D(hA)

⋂D(qV+)and thus we 
an use the form version of the Kato-Trotter formula from [30℄:
e−tH+ = s− lim

n→∞

(
e−(t/n)HA e−(t/n)V+

)n
, ∀t ≥ 0. (3.8)Let us re
all the formula (r > 0 and λ > 0)

(H+ + λ)−r = Γ(r)−1

∫ ∞

0
dt tr−1 e−tλ e−tH+ . (3.9)
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∣∣(H+ + λ)−rf

∣∣ ≤ Γ(r)−1

∫ ∞

0
dt tr−1 e−tλ

∣∣e−tH+f
∣∣ = (3.10)

= Γ(r)−1

∫ ∞

0
dt tr−1

∣∣∣∣s− lim
n→∞

(
e−(t/n)HA e−(t/n)V+

)n
f

∣∣∣∣ ≤

≤ (H0 + λ)−r|f |,by using the se
ond point of Proposition 3.3.Taking u = (H0 +λ)−1/2g with g ∈ L2(Rd) arbitrary and λ > 0 large enoughand using the hypothesis on V− we dedu
e that there exists a ∈ [0, 1), b ≥ 0and a′ ∈ [0, 1) su
h that
qV−(u) ≤ a‖H1/2

0 u‖2+b‖u‖2 = a‖H1/2
0 (H0+λ)−1/2g‖2+b‖(H0+λ)−1/2g‖2 ≤

≤ (a+ b/λ)‖g‖2 ≤ a′‖g‖2. (3.11)For any v ∈ D(hA)
⋂D(qV+) let f := (H+ + λ)1/2v and g := |f |. Using now(3.10) with r = 1/2, (3.11) and the expli
it form of qV− we 
on
lude that

qV−(v) = qV−

(
(H+ + λ)−1/2f

)
≤ qV−

(
(H0 + λ)−1/2g

)
≤ (3.12)

≤ a′‖g‖2 = a′
∥∥∥(H+ + λ)1/2v

∥∥∥
2

= a′
[
hA(v) + q+(v) + λ‖v‖2

]
.Definition 3.1 For a potential fun
tion V satisfying the hypothesis of Propo-sition 3.4, we 
all the operator H = H(A;V ) introdu
ed in the same propo-sition the relativisti
 Hamiltonian with potential V and magneti
 ve
tor po-tential A.The spe
tral properties of H only depend on the magneti
 �eld B, di�erent
hoi
es of a gauge giving unitarly equivalent Hamiltonians, due to the gauge
ovarian
e of our quantization pro
edure.Proposition 3.5 Let B be a magneti
 �eld with C∞

pol(R
d) 
omponents and

A a ve
tor potential for B also having C∞
pol(R

d) 
omponents. Assume that
V : Rd → R is a measurable fun
tion that 
an be de
omposed as V = V+−V−with V± ≥ 0, V+ ∈ L1

loc(R
d) and V− ∈ Lp(Rd) with p ≥ d. Then1. qV− is a h0-bounded sesquilinear form with relative bound 0;



106 V. Iftimie et al.2. the Hamiltonian H de�ned in De�nition 3.1 is bounded from below andwe have σess(H) = σess(HA ∔ V+) ⊂ [0,∞).Proof. 1. Using Observation 3 in �2.8.1 from [37℄, we 
on
lude that for d > 1,the Sobolev spa
e H1/2(Rd) (that is the domain of the sesquilinear form h0)is 
ontinuously embedded in Lr(Rd) for 2 ≤ r ≤ 2d/(d− 1) <∞. Also usingHölder inequality, we dedu
e that for r = 2p/(p − 1) ∈ [2, 2d/(d − 1)], for
p ≥ d

‖V 1/2
− u‖2

2 ≤ ‖V−‖p‖u‖2
r ≤ c‖V−‖p‖u‖2

H1/2(Rd)
, (3.13)

∀u ∈ H1/2(Rd) = D(h0). Thus V 1/2
− ∈ B(H1/2(Rd);L2(Rd)); now let us provethat it is even 
ompa
t. Let us observe that for d ≤ p <∞, C∞

0 (Rd) is densein Lp(Rd). Thus, for d ≤ p <∞ let {Wǫ}ǫ>0 ⊂ C∞
0 (Rd) be an approximatingfamily for V 1/2

− in L2p(Rd), i.e. ‖V 1/2
− − Wǫ‖2p ≤ ǫ. Moreover, for anysequen
e {uj} ⊂ H1/2(Rd) 
ontained in the unit ball (i.e. ‖uj‖H1/2 ≤ 1) wemay suppose that it 
onverges to u ∈ H1/2(Rd) for the weak topology on

H1/2(Rd) and thus ‖u‖H1/2 ≤ 1. It follows that Wǫuj 
onverges to Wǫu in
L2(Rd) and due to (3.13) we have:
‖(V 1/2

− −Wǫ)(u−uj)‖ ≤ C1/2‖V 1/2
− −Wǫ‖L2p‖u−uj‖H1/2 ≤ 2c1/2ǫ, ∀j ≥ 1.We 
on
lude that V 1/2

− uj 
onverges in L2(Rd) to V 1/2
− u and using the dualitywe also get that V− is a 
ompa
t operator fromH1/2(Rd) toH−1/2(Rd). Usingexer
ise 39 in 
h. XIII of [47℄ we dedu
e that q− has zero relative bound withrespe
t to h0.2. The 
on
lusion of point 1 implies that the operator V 1/2

− (H0 + 1)−1/2 ∈
B[L2(Rd)] is 
ompa
t. Using the �rst point of Proposition 3.3 with λ =
−1 and r = 1/2, and Pitt Theorem in [45℄, we 
on
lude that the operator
V

1/2
− (HA∔V++1)−1/2 ∈ B[L2(Rd)] is also 
ompa
t. Thus V− : D(hA+qV+) →

D(hA + qV+) is 
ompa
t and the 
on
lusion (2) follows from exer
ise 39 in
h. XIII of [47℄.4. The Feynman-Ka
-It� formulaIn this se
tion we gather some probabilisti
 notions and results needed inthe proof of Theorem 1.1. The main idea is that we obtain a Feynman-Ka
-It� formula (following [20℄) for the semigroup de�ned by H(A,V ) and this
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e the problem to the 
ase B = 0. For this last one werepeat then the proof in [5℄ giving all the ne
essary details for the 
ase ofsingular potentials V ; here an essential point is an expli
it formula for theintegral kernel of the operator e−tH(0,V ) in terms of a Lévy pro
ess.Let (Ω,F,P) be a probability spa
e, i.e. F is a σ-algebra of subsets of Ω and Pis a non-negative σ-aditive fun
tion on F with P(Ω) = 1. For any integrablerandom variable X : Ω → R we denote its expe
tation value by
E(X) :=

∫

Ω
X(ω)P(dω). (4.1)For any sub-σ-algebra G ⊂ F we denote its asso
iated 
onditional expe
tationby E(X | G); this is the unique G-measurable random variable Y : Ω → Rsatisfying

∫

B
Y (ω)P(dω) =

∫

B
X(ω)P(dω), ∀B ∈ G. (4.2)Let us re
all the following properties of the 
onditional expe
tation (see forexample [26℄):

E (E(X | G)) = E(X), (4.3)
E(XZ | G) = ZE(X | G), (4.4)for any G-measurable random variable Z : Ω → R, su
h that ZX is inte-grable.We also re
all the Jensen inequality ([48℄, [26℄): for any 
onvex fun
tion

ϕ : R → R, and for any lower bounded random variable X : Ω → R thefollowing inequality is valid
ϕ(E(X)) ≤ E(ϕ(X)). (4.5)Following [6℄, we 
an asso
iate to our Feller semigroup {P (t)}t≥0, de�nedin Se
tion 2, a Markov pro
ess {(Ω,F,Px), {Xt}t≥0, {θt}t≥0}; that we brie�yre
all here:

• Ω is the set of "
adlag" fun
tions on [0,∞), i.e. fun
tions ω : [0,∞) →
Rd (paths) that are 
ontinuous to the right and have a limit to the leftin any point of [0,∞).
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• F is the smallest σ-algebra for whi
h the 
oordinate fun
tions {Xt}t≥0,with Xt(ω) := ω(t), are measurable.
• Px is a probability on Ω su
h that for any n ∈ N∗, for any ordered set

{0 < t1 ≤ . . . ≤ tn} and any family {B1, . . . , Bn} of Borel subsets in
Rd, we have

Px {Xt1 ∈ B1, . . . ,Xtn ∈ Bn} = (4.6)
=

∫

B1

dx1
◦
℘

t1
(x− x1)

∫

B2

dx2
◦
℘

t2−t1
(x1 − x2) . . .

∫

Bn

dxn
◦
℘

tn−tn−1
(xn−1 − xn).One 
an dedu
e that, if Ex denotes the expe
tation value with respe
tto Px, then for any f ∈ C∞(Rd) and for any t ≥ 0 one has

Ex(f ◦Xt) = [P (t)f ] (x). (4.7)We also remark that Px is the image of the probability P0 ≡ P underthe map Sx : Ω → Ω de�ned by [Sxω] (t) := x+ ω(t).
• For any t ≥ 0, the map θt : Ω → Ω is de�ned by [θtω] (s) := ω(s + t).If we denote by Ft the sub-σ-algebra of F generated by the pro
esses

{Xs}0≤s≤t, then for any t ≥ 0 and any bounded random variable
Y : Ω → R

Ex (Y ◦ θt | Ft) (ω) = EXt(ω)(Y ), Px − a.e. on Ω. (4.8)We use the fa
t that (see [25℄, [20℄) the probability Px is 
on
entrated on theset of paths Xt su
h that X0 = x and by the Lévy-Ito Theorem:
Xt = x+

∫ t+

0

∫

Rd

y ÑX(ds dy). (4.9)Here ÑX(ds dy) := NX(ds dy)− N̂X(ds dy), N̂X(ds dy) := Ex(NX(ds dy)) =
ds n(dy) with n(dy) the Lévy measure appearing in (2.1) and NX a '
ountingmeasure' on [0,∞) × Rd that for 0 < t < t′ and B a Borel subset of Rd isde�ned as NX((t, t′] ×B) :=

:= ‖=
{
s ∈ (t, t′] | Xs 6= Xs−, XsXs− ∈ B

}
. (4.10)Following the pro
edure developped in [20℄ by I
hinose and Tamura one ob-tains a Feynman-Ka
-It� formula for Hamiltonians of the type H = HA ∔V .In fa
t we have
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onditions as in De�nition 3.1, for anyfun
tion u ∈ L2(Rd) we have
(
e−tHu

)
(x) = Ex

(
(u ◦Xt) e−S(t,X)

)
, t ≥ 0, x ∈ Rd (4.11)where

S(t,X) := i

∫ t+

0

∫

Rd

ÑX(ds dy)

〈∫ 1

0
dr
(
A(Xs− + ry)

)
, y

〉
+

+ i

∫ t

0

∫

Rd

N̂X(ds dy)

〈(∫ 1

0
dr A(Xs + ry) −A(Xs)

)
, y

〉
+

+

∫ t

0
ds V (Xs). (4.12)In the sequel we shall take A = 0 and V ∈ C∞

0 (Rd). As it is proved in [6℄,the operator e−t(H0∔V ) has an integral kernel that 
an be des
ribed in thefollowing way. Let us denote by Ft− the sub-σ-algebra of F generated by therandom variables {Xs}0≤s<t. For any pair (x, y) ∈ [Rd]2 and any t > 0 wede�ne a measure µt,y
0,x on the Borel spa
e (Ω,Ft−) by the equality
µt,y

0,x(M) := Ex

[
χM

◦
℘t−s(Xs − y)

]
, (4.13)for any M ∈ Fs and 0 ≤ s < t, where χM is the 
hara
teristi
 fun
tion of

M . This measure is 
on
entrated on the family of 'paths' {ω ∈ Ω | X0(ω) =

x,Xt−(ω) = y} and we have µt,y
0,x(Ω) =

◦
℘t(x− y).Proposition 4.2 Let F : Ω → R be a non-negative Ft−-measurable randomvariable and let f : Rd → R be a positive borelian fun
tion. Then the followingequality holds for any t > 0 and any x ∈ Rd:

∫

Rd

dy

{∫

Ω
µt,y

0,x(dω)F (ω) e−
R t
0 ds V (Xs)

}
f(y) = (4.14)

= Ex

(
F e−

R t
0 ds V (Xs) f(Xt)

)
.Proof. This is a dire
t 
onsequen
e of relations (2.29) and (2.33) from [6℄.Let us now take A = 0 in Proposition 4.1 and F = 1 in Proposition 4.2in order to dedu
e that the operator e−t(H0∔V ) is an integral operator withintegral kernel given by the fun
tion

℘t(x, y) :=

∫

Ω
µt,y

0,x(dω) e−
R t
0 ds V (Xs), t > 0, (x, y) ∈ Rd × Rd. (4.15)



110 V. Iftimie et al.Proposition 3.3 from [6℄ implies that the fun
tion [0,∞)×Rd×Rd ∋ (t, x, y) 7→
℘t(x, y) ∈ R is non-negative, 
ontinuous and veri�es ℘t(x, y) = ℘t(y, x). Weshall also need the following result.Proposition 4.3 For any t > 0, any x ∈ Rd and any fun
tion g : Ω → Rthat is integrable with respe
t to the measure µt,x

0,x we have the equality:
∫

Ω
µt,x

0,x(dω) g(ω) =

∫

Ω
µt,0

0,0(dω) g(x+ ω). (4.16)Proof. It is evidently su�
ient to prove that for any s ∈ [0, t) and anyM ∈ Fswe have
µt,x

0,x(M) =
(
µt,0

0,0 ◦ S−1
x

)
(M)where the map Sx : Ω → Ω is de�ned by (Sx(ω)(t) := x+ ω(t). We noti
edpreviously the identity Px = P0 ◦ S−1

x ; thus for any fun
tion F : Ω → Rintegrable with respe
t to Px we have Ex(F ) = E0(F ◦ Sx). We remark that
Xs(ω + x) = ω(s) + x = Xs(ω) + x, and using the de�nition of the measure
µt,x

0,x in (4.13), we obtain
µt,x

0,x(M) = Ex

[
χM

◦
℘t−s(Xs − x)

]
= E0

[
(χM ◦ Sx)

◦
℘t−s(Xs)

]
= (4.17)

= E0

[
(χS−1

x (M)

◦
℘t−s(Xs)

]
= µt,0

0,0

(
S−1

x (M)
)

=
[
µt,0

0,0 ◦ S−1
x

]
(M).

5. Proof of the bound for N(0; V )In this Se
tion we will 
onsider A = 0 and we shall work only with a potential
V = V+ − V− satisfying the properties:

• V± ≥ 0,
• V+ ∈ L1

loc(R
d),

• V− ∈ Ld(Rd) ∩ Ld/2(Rd).We shall use the notations H := H0 ∔V , H+ := H0 ∔V+, H− := H0 ∔(−V−)for the operators asso
iated to the sesquilinear forms h = h0 + qV , h+ =
h0 + qV+ , h− = h0 − qV− .
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 Hamiltonian 111Due to the results of Proposition 3.5 we have σess(H) = σess(H+) ⊂ σ(H+) ⊂
[0,∞) and σess(H−) = σess(H0) = σ(H0) = [0,∞).For any potential fun
tion W verifying the same 
onditions as V above, wedenote by N(W ) the number of stri
tly negative eigenvalues (
ounted withtheir multipli
ity) of the operator H0 ∔W . The following result redu
es ourstudy to the 
ase V+ = 0.Lemma 5.1 The following inequality is true:

N(V ) ≤ N(−V−).In parti
ular we have that N(V ) = ∞ implies that N(−V−) = ∞.Proof. We apply the Min-Max prin
iple (see Theorem XIII.2 in [47℄) noti
ingthat D(h−) = D(h0) ⊃ D(h) and h− ≤ h and we dedu
e that the operator
H− has at least N(V ) stri
tly negative eigenvalues.Thus we shall suppose from now on that V+ = 0.5.1. Redu
tion to smooth, 
ompa
tly supported potentialsIn this subse
tion we shall prove that we 
an suppose V− ∈ C∞

0 (Rd). Thiswill be done by approximation, using a result of the type of Theorem 4.1from [50℄.Lemma 5.2 Let V and Vn (n ≥ 1) fun
tions as in Proposition 3.4. Inaddition, V+ = Vn,+ = 0 for all n ≥ 1 and limn→∞ Vn,− = V− in L1
loc(R

d)and Vn,− are uniformly h0-bounded with relative bound < 1. We set Hn :=
HA ∔ Vn. Then Hn → H when n→ ∞ in strong resolvent sense.Proof. We denote by hn the quadrati
 form asso
iated to Hn, i.e. hn =
hA − qn,−, where qn,− is asso
iated to Vn,− by (3.7). We have D(hn) =
D(hA) ⊂ D(qn,−), and a

ording to Proposition 3.4 there exist α ∈ (0, 1)and β > 0 su
h that

qn,−(v) ≤ αhA(v) + β ‖ v ‖, ∀v ∈ D(hA), ∀n ≥ 1. (5.1)It follows that hn are uniformly lower bounded and the norms de�ned on
D(hA) by hA and hn are equivalent, uniformly with respe
t to n ≥ 1. More-over, C∞

0 (Rd) is a 
ore for HA, thus for hA, h and hn also.



112 V. Iftimie et al.Let f ∈ L2(Rd) and un := (Hn + i)−1f ∈ D(Hn) ⊂ D(hA), n ≥ 1. We have
learly
‖ un ‖≤‖ f ‖, |hn(un)| = |(Hnun, un)| ≤‖ f ‖, ∀n ≥ 1. (5.2)From (5.1), the subsequent 
omments and (5.2) it follows that the sequen
e

(un)n≥1 is bounded in D(hA), while the sequen
e (V 1/2
n,−un

)
n≥1

is bounded in
L2(Rd). Let u ∈ L2(Rd) be a limit point of the sequen
e (un)n≥1 with respe
tto the weak topology on L2(Rd). By restri
ting maybe to a subsequen
e, wemay assume that there exist ψ, η ∈ L2(Rd) su
h that H1/2

A un →
n→∞

ψ and
V

1/2
n,−un →

n→∞
η in the weak topology of L2(Rd). For g ∈ D

(
H

1/2
A

) we have
(
H

1/2
A g, u

)
= lim

n→∞

(
H

1/2
A g, un

)
= lim

n→∞

(
g,H

1/2
A un

)
= (g, ψ),thus u ∈ D(H

1/2
A ) and H1/2

A u = ψ. Then u ∈ D(q−) and for any g ∈ C∞
0 (Rd)

(η, g) = lim
n→∞

(
V

1/2
n,−un, g

)
= lim

n→∞

(
un, V

1/2
n,−g

)
=
(
u, V

1/2
− g

)
=
(
V

1/2
− u, g

)
,implying V 1/2

− u = η.It follows that for every g ∈ C∞
0 (Rd) we have

(g, f) = (g, (Hn + i)un) = hn(g, un) − i(g, un) =

=
(
H

1/2
A g,H

1/2
A un

)
−
(
V

1/2
n,− g, V

1/2
n,−un

)
− i(g, un) → h(g, u) − i(g, u).Consequently, u ∈ D(H) and (H + i)u = f . Thus the sequen
e (un)n≥1 hasthe single limit point u = (H + i)−1f for the weak topology of L2(Rd). Itfollows that (Hn ± i)−1f → (H ± i)−1f weakly in L2(Rd) for n→ ∞.By the resolvent identity we get

‖ (Hn+i)−1f ‖2=
i

2

(
(f, (Hn − i)−1f) − (f, (Hn + i)−1f)

)
→‖ (H+i)−1f ‖2,therefore (Hn + i)−1f → (H + i)−1f in L2(Rd).A dire
t 
onsequen
e of Lemma 5.2 and Theorem VIII.20 from [47℄ isCorollary 5.1 Under the hypothesis of Lemma 5.2, for any fun
tion fbounded and 
ontinuous on R and any u ∈ L2(Rd), we have f(Hn)u →

f(H)u.
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 Hamiltonian 113Approximating V− is done by the standard pro
edures: 
uto�s and regular-ization. The �rst of the lemmas below is obvious.Lemma 5.3 Let V− ∈ L1
loc(R

d) with V− ≥ 0 and assume that its asso
iatedsesquilinear form is h0-bounded with relative bound stri
tly less then 1. Let
θ ∈ C∞

0 ([0,∞)) satisfy the following: 0 ≤ θ ≤ 1, θ is a de
reasing fun
tion,
θ(t) = 1 for t ∈ [0, 1] and θ(t) = 0 for t ∈ [2,∞).If we denote by θn(x) := θ(|x|/n) and V n

− = θnV−, then V n
− → V− in

L1
loc(R

d), 0 ≤ V n
− ≤ V n+1

− and the sesquilinear forms asso
iated to V n
− are

h0-bounded with relative bound stri
tly less then 1, uniformly in n ∈ N∗.Moreover, if we denote by hn the sesquilinear form asso
iated to the operator
HA ∔ (−V n

− ), we have h(n) ≥ h(n+1) ≥ h and h(n)(u) →
n→∞

h(u) for any
u ∈ D(hA).If, in addition, V− ∈ Lp(Rd), p ≥ 1, then V n

− ∈ Lp
comp(Rd), ‖V n

−‖Lp ≤
‖V−‖Lp for any n ≥ 1, and V n

− → V− in Lp(Rd).Lemma 5.4 (a) Let V− ∈ L1
loc(R

d), V− ≥ 0 and h0-bounded with relativebound < 1. Let θ ∈ C∞
0 (Rd), θ ≥ 0 and ∫

Rd θ = 1. We set θn(x) := ndθ(nx),
x ∈ Rd, n ∈ N∗ and Vn,− := V− ∗ θn ∈ C∞

0 . In parti
ular, Vn,− ∈ C∞
0 (Rd) if

V− ∈ L1
comp(R

d).Then Vn,− → V− in L1
loc(R

d) for n → ∞ and the fun
tions Vn,− are non-negative and uniformly h0-bounded, with relative bound < 1. Moreover,
hn(u) → h(u) for any u ∈ D(hA), where hn is the quadrati
 form asso
i-ated to Hn := HA

·
+ (−Vn).(b) If, in addition, V− ∈ Lp(Rd) with p ≥ 1, then Vn,− ∈ Lp(Rd) ∩ C∞(Rd),

‖ Vn,− ‖Lp≤‖ V− ‖Lp , ∀n ≥ 1 and Vn,− → V− in Lp(Rd).Proof. (a) We have for any x ∈ Rd

Vn,−(x) =

∫

Rd

dy θn(y)V−(x− y) =

∫

Rd

dy θ(y)V−(x− n−1y). (5.3)By the Dominated Convergen
e Theorem, for any 
ompa
t K ⊂ Rd

∫

K
dx |Vn,−(x) − V−(x)| ≤

∫

Rd

dy θ(y)

∫

K
dx |V−(x− n−1y) − V−(x)| → 0,hen
e Vn,− 
onverges to V− in L1

loc(R
d) when n→ ∞.If V− is relatively small with respe
t to h0, we use the fa
t that H1/2

0 is a
onvolution operator (hen
e it 
ommutes with translations) and using the
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omments after inequality (5.1), we dedu
e that for any u ∈ C∞
0 (Rd) thereexists α ∈ (0, 1) and β ≥ 0 su
h that

∫

Rd

dxVn,−|u|2 =

∫

Rd

dy θn(y)

∫

Rd

dz V−(z)|u(z + y)|2 ≤

≤
∫

Rd

dy θn(y)
[
α ‖ H1/2

0 u(· + y) ‖2 +β ‖ u(· + y) ‖2
]

=

= α ‖ H1/2
0 u ‖2 +β ‖ u ‖2 .(b) From (5.3) it follows that

‖ Vn,− ‖Lp≤
∫

Rd

dy θn(y) ‖ V−(· − y) ‖Lp≤‖ V− ‖Lp .Also, using the Dominated Convergen
e Theorem, we infer that
‖ Vn,− − V− ‖Lp≤

∫

Rd

dy θ(y) ‖ V−(·) − V−(· − n−1y) ‖Lp→ 0.Thus Lemmas 5.3 and 5.4 imply, for a potential fun
tion V− satisfying thehypothesis of the Lemma, the existen
e of a sequen
e (Vn,−)n≥1 ⊂ C∞
0 (Rd)su
h that Vn,− ≥ 0, ‖ Vn,− ‖Lp≤‖ V− ‖Lp , ∀n ≥ 1, Vn,− → V− in Lp(Rd)(for p = d and p = d/2) when n → ∞ and the fun
tions Vn,− are uniformly

h0-bounded with relative bound < 1.Lemma 5.5 Assume that there exists a 
onstant C > 0, su
h that the in-equality
N(−Vn,−) ≤ C

(∫

Rd

dx |Vn,−(x)|d +

∫

Rd

dx |Vn,−(x)|d/2

) (5.4)holds for any n ≥ 1. Then one also has
N(−V−) ≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)
. (5.5)Proof. We set Hn,− := H0 ∔ (−Vn,−); (En,−(λ))λ∈R will be the spe
tralfamily of Hn,− and (E−(λ))λ∈R the spe
tral family of H−. For λ < 0, wedenote by Nλ(W ) the number of eigenvalues of H0 ∔ W whi
h are stri
tlysmaller than λ (for any potential fun
tion W satisfying the hypothesis at the
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tion). It su�
es to show that for any λ < 0 not belongingto the spe
trum of H−, one has the inequality
Nλ(−V−) ≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)
. (5.6)Sin
e Vn,− 
onverges to V− in L1

loc(R
d), 
f. Lemma 5.2, Hn,− will 
onvergeto H− in strong resolvent sense. By [29℄, Ch. VIII, Th. 1.15, this implies thestrong 
onvergen
e of En,−(λ) to E−(λ) for any λ /∈ σ(H−). By Lemmas 1.23and 1.24 from [29℄, Ch. VII, for λ < 0 su
h that λ /∈ σ(H−), one also has

‖ En,−(λ) − E−(λ) ‖→ 0. Let us suppose that there exists some λ < 0 notbelonging to σ(H−) and su
h that for it the inequality (5.6) is not veri�ed.Thus for the given λ < 0 we have ∀n ≥ 1:
N(−Vn,−) ≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)
< Nλ(−V−).But for n large enough, one has Nλ(−V−) = Nλ(−Vn,−) and thus

Nλ(−V−) = Nλ(−Vn,−) ≤ N(−Vn,−) ≤

≤ C

(∫

Rd

dx |Vn,−(x)|d +

∫

Rd

dx |Vn,−(x)|d/2

)
≤

≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)that is a 
ontradi
tion with our initial hypothesis.5.2. Proof of the Theorem 1.1 without magneti
 �eldWe shall assume from now on that V+ = 0 and 0 ≤ V− ∈ C∞
0 (Rd). We 
he
ka Birman-S
hwinger prin
iple. For α > 0 we set Kα := V

1/2
− (H0 +α)−1V

1/2
− ;it is a positive 
ompa
t operator on L2(Rd).Lemma 5.6

N−α(−V−) ≤ ‖= {µ > 1 | µ eigenvalue of Kα}. (5.7)Proof. We introdu
e the sequen
e of fun
tions µn : [0,∞) → (−∞, 0], n ≥ 1,where µn(λ) is the n'th eigenvalue of H0 − λV− if this operator has at least
n stri
tly negative eigenvalues and µn(λ) = 0 if not. Cf. [47℄, �XIII.3, µn is
ontinuous and de
reasing (even stri
tly de
reasing on intervals on whi
h it
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tly negative). Obviously, we have N−α(−V−) ≤‖= {n ≥ 1 | µn(1) <
−α}. Now �x some n su
h that µn(1) < −α and re
all that µn(0) = 0.The fun
tion µn is 
ontinuous and inje
tive on the interval [ǫn, 1], where
ǫn := sup{λ ≥ 0 | µn(λ) = 0}, therefore it exists a unique λ ∈ (0, 1) su
hthat µn(λ) = −α. Thus

N−α(−V−) = ‖= {λ ∈ (0, 1) | ∃n ≥ 1 s.t. µn(λ) = −α} =

= ‖= {λ ∈ (0, 1) | ∃ϕ ∈ D(H0) \ {0} s.t. (H0 − λV−)ϕ = −αϕ} ≤
≤ ‖= {λ ∈ (0, 1) | ∃ψ ∈ L2(Rd) \ {0} s.t. Kαψ = λ−1ψ},where for the last inequality we set ψ := V

1/2
− ϕ, noti
ing that the equality

(H0 + α)ϕ = λV−ϕ implies ψ 6= 0.Lemma 5.7 Let F : [0,∞) → [0,∞) be a stri
tly in
reasing 
ontinuousfun
tion with F (0) = 0. Then F (Kα) is a positive 
ompa
t operator and thenext inequality holds:
N−α(−V−) ≤ F (1)−1

∑

F (µ)∈σ[F (Kα)],F (µ)>F (1)

F (µ).Proof. The �rst part is obvious. Using (5.7) and F 's monotony, we get
N−α(−V−) ≤ ♯{µ > 1 | µ ∈ σ(Kα)} = ‖= {F (µ) | µ > 1, F (µ) ∈ σ[F (Kα)]} =

=
∑

µ>1,F (µ)∈σ[F (Kα)]

F (µ)

F (µ)
≤ F (1)−1

∑

µ>1,F (µ)∈σ[F (Kα)]

F (µ).So, we shall be interested in �nding fun
tions F having the properties in thestatement above, su
h that F (Kα) ∈ B1 (the ideal of tra
e-
lass operatorsin L2(Rd)) and su
h that Tr [F(Kα)] is 
onveniently estimated.Using an idea from [48℄, we are going to 
onsider fun
tions of the form
F (t) := t

∫ ∞

0
ds e−sg(ts), t ≥ 0,where g : [0,∞) → [0,∞) is 
ontinuous, bounded and g ≡� 0. Plainly, F :

[0,∞) → [0,∞) is 
ontinuous, F (0) = 0, satis�es F (t) ≤ Ct for some C > 0and the identity
F (t) =

∫ ∞

0
dr e−rt−1

g(r)
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tly in
reasing. We shall use the notations F = Φ(g),
g̃(t) := tg(t).In parti
ular, gλ(t) = e−λt, λ > 0 leads to Fλ(t) = t(1+λt)−1. In the sequel,relations valid for this parti
ular 
ase will be extended to the following 
ase,that we shall be interested in:
g∞ : [0,∞) → [0,∞), g∞(t) = 0 if 0 ≤ t ≤ 1, g∞(t) = 1 − 1/t if t > 1,(5.8)by using an approximation that we now introdu
e. The �rst lemma is obvi-ous.Lemma 5.8 Let g∞ be given by (5.8). For n ≥ 1 we de�ne gn : [0,∞) →

[0, 1], gn(t) = g(t) for 0 ≤ t ≤ n, gn(t) = 2n−1
t − 1 for n ≤ t ≤ 2n − 1,

gn(t) = 0 for t ≥ 2n − 1. Then gn ∈ C0((0,∞)), 0 ≤ gn ≤ gn+1 ≤ g∞, ∀nand gn → g∞ when n→ ∞ uniformly on any 
ompa
t subset of [0,∞).Lemma 5.9 Let f be a nonnegative 
ontinuous fun
tion on [0,∞) su
h that
limt→∞ f(t) = 0. There exists a sequen
e (fk)k≥1 of real fun
tions on [0,∞)with the properties(a) Every fk is a �nite linear 
ombination of fun
tions of the form gλ, λ > 0.(b) fk ≥ fk+1 ≥ f ≥ 0 on [0,∞), ∀k ≥ 1,(
) fk → f uniformly on [0,∞) when k → ∞.Proof. We de�ne the fun
tion h : [0, 1] → [0,∞), h(s) := f(−lns) for s ∈
(0, 1], h(0) := 0. It follows that h ∈ C([0, 1]). We 
an 
hose now twosequen
es of positive numbers {ǫk}k≥1 and {δk}k≥1 verifying the properties:
lim

k→∞
(ǫk + δk) = 0 and δk − ǫk ≥ ǫk+1 + δk+1 > 0,∀k ≥ 1 (for example we maytake δk = (k+ 2)−1 and ǫk = (k+ 2)−3). Using the Weierstrass Theorem wemay �nd for any k ≥ 1 a real polynomial P ′

k su
h that sup
s∈[0,1]

|h(s)−P ′
k(s)| ≤ ǫkand let us denote by Pk := P ′

k + δk. We get:
sup

s∈[0,1]
|h(s) − Pk(s)| ≤ ǫk + δk →

k→∞
0,

h ≤ h+ δk+1 − ǫk+1 ≤ P ′
k+1 + δk+1 = Pk+1 ≤ h+ δk+1 + ǫk+1 ≤

≤ h+ δk − ǫk ≤ P ′
k + δk = Pkon [0, 1]. Thus fk(t) := Pk(e

−t) de�ned on [0,∞) for k ≥ 1 have the requiredproperties.



118 V. Iftimie et al.Proposition 5.1 Let F∞ := Φ(g∞). The operator F∞(Kα) is self-adjoint,positive and 
ompa
t on L2(Rd). It admits an integral kernel of the form
[F∞(Kα)] (x, y) = (5.9)

= V
1/2
− (x)V

1/2
− (y)

∫ ∞

0
dt e−αt

∫

Ω
µt,y

0,x(dω)g∞

(∫ t

0
ds V−(Xs)

)
,whi
h is 
ontinuous, symmetri
, with [F∞(Kα)] (x, x) ≥ 0.Proof. The �rst part is 
lear. To establish (3.27), we treat �rst the operator

Bλ := Fλ(Kα), λ > 0. We have
Bλ = Kα(1 + λKα)−1 =⇒ Bλ = Kα − λBλKα. (5.10)The se
ond resolvent identity gives

(H0 + α)−1 − (H0 + λV− + α)−1 = λ(H0 + λV− + α)−1V−(H0 + α)−1.Multiplying by V
1/2
− to the left and to the right and taking into a

ount(5.10) and the de�nition of Kα, one gets

Bλ = V
1/2
− (H0 + λV− + α)−1V

1/2
− = V

1/2
−

[∫ ∞

0
dt e−αte−t(H0+λV−)

]
V

1/2
− .By Proposition 4.2 and its 
onsequen
es, for any u ∈ C0(R

d), u ≥ 0, we have
[Fλ(Kα)u] (x) = (5.11)

= V
1/2
− (x)

∫ ∞

0
dte−αt

∫

Rd

dy

[∫

Ω
µt,y

0,x(dω) gλ

(∫ t

0
ds V−(Xs)

)]
V

1/2
− (y)u(y).Sin
e Φ maps monotonous 
onvergent sequen
es into monotonous 
onvergentsequen
es, by applying Lemmas 5.8 and 5.9 and the Monotonous Convergen
eTheorem (B. Levi), we get (5.11) for λ = ∞, for the 
ouple (g∞, F∞).We introdu
e the notation

Gλ(t;x, y) :=

∫

Ω
µt,y

0,x(dω) gλ

(∫ t

0
ds V−(Xs)

)
, (5.12)for t > 0, x, y ∈ Rd, 0 < λ ≤ ∞. By the 
onsequen
es of Proposition 4.2,for any 0 < λ < ∞ the fun
tion Gλ is 
ontinuous on (0,∞) × Rd × Rd andsymmetri
 in x, y. To obtain the same properties for λ = ∞, we approximate

g∞ by using on
e again Lemmas 5.8 and 5.9. So it exists a sequen
e (fn)n≥1 ofreal 
ontinuous fun
tions on [0,∞), ea
h one being a �nite linear 
ombination
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tions of the form gλ, su
h that fn 
onverges to g∞ uniformly on any
ompa
t subset of [0,∞). On the other hand, if M > 0 is an upper boundfor V−, we have
0 ≤

∫ t

0
ds V−(Xs) ≤Mt,and µt,y

0,x(Ω) =
◦
℘t(x−y). It follows that G∞ is, uniformly on 
ompa
t subsetsof [0,∞) × Rd × Rd, the limit of a sequen
e of 
ontinuous fun
tions, whi
hare symmetri
 in x, y. Thus G∞ has the same properties. Moreover, sin
e

0 ≤ g∞ ≤ 1 and g∞(t) = 0 for 0 ≤ t ≤ 1, we have G∞(t;x, y) = 0 for
t ≤ 1/M . Using (2.4) and (2.3), there is a 
onstant C > 0 su
h that

0 ≤ G∞(t;x, y) ≤ C, ∀t > 0, ∀x, y ∈ Rd. (5.13)From (5.11) for λ = ∞, we infer that F∞(Kα) has an integral kernel of theform
[F∞(Kα)] (x, y) = V

1/2
− (x)V

1/2
− (y)

∫ ∞

0
dt e−αtG∞(t;x, y), (5.14)so (3.27) is veri�ed. The 
ontinuity of F∞(Kα) follows from the DominatedConvergen
e Theorem and from (5.13). The symmetry is obvious, and thelast property of the statement follows from F∞(Kα) ≥ 0.Remark 5.1 By a lemma from [47℄, �XI.4, F∞(Kα) ∈ B1 if the fun
tion

Rd ∋ x 7→ [F∞(Kα)] (x, x) is integrable and one has
Tr [F∞(Kα)] =

∫

Rd

dx [F∞(Kα)] (x, x). (5.15)Setting D∞(t;x) := V−(x)G∞(t;x, x), t > 0, x ∈ Rd, we have
[F∞(Kα)] (x, x) =

∫ ∞

0
dt e−αtD∞(t;x). (5.16)To 
he
k the integrability of this fun
tion, one introdu
es

Ψ∞ : (0,∞) × Rd → R+,

Ψ∞(t;x) := t−1

∫

Ω
µt,x

0,x(dω) g̃∞

(∫ t

0
ds V−(Xs)

)
,where g̃∞(t) := tg∞(t). The role of this fun
tion is stressed by



120 V. Iftimie et al.Lemma 5.10 For d ≥ 3 
onsider the following 
onstant depending only on
d:
Cd := C

(∫ ∞

1
ds s−d g∞(s) ∨

∫ ∞

1
ds s−d/2 g∞(s)

)
= C

∫ ∞

1
ds s−d/2 g∞(s)where C is the 
onstant verifying (2.6). One has

∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x) ≤ Cd

(∫

Rd

dxV d
−(x) +

∫

Rd

dxV
d/2
− (x)

)
.(5.17)Proof. The fun
tion g̃∞ is 
onvex and ds

t is a probability on (0, t); thus bythe Jensen inequality we obtain
g̃∞

(∫ t

0
ds V−(Xs)

)
≤
∫ t

0

ds

t
g̃∞ (t V−(Xs)) .Let us also remark that for the 
onstant Cd to be �nite we have to ask that

d ≥ 3 for the fa
tor s−d/2 to be integrable at in�nity, be
ause the 
onvexity
ondition on g̃∞ rather implies that g∞ 
annot vanish at in�nity.Then ∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x) ≤

≤
∫ ∞

0
dt t−2 e−αt

∫

Rd

dx

[∫

Ω
µt,x

0,x(dω)

∫ t

0
ds g̃∞ (tV−(Xs))

]
.Using now Proposition 4.3, the last expression is equal to:

∫ ∞

0
dt t−2 e−αt

∫

Rd

dx

[∫

Ω
µt,0

0,0(dω)

∫ t

0
ds g̃∞ (tV−(x+ ω(s)))

]
=

=

∫ ∞

0
dt t−2 e−αt

[∫

Ω
µt,0

0,0(dω)

∫ t

0
ds

∫

Rd

dx g̃∞ (tV−(x))

]
=

=

∫ ∞

0
dt t−1 e−αt

[∫

Ω
µt,0

0,0(dω)

] ∫

Rd

dx g̃∞ (tV−(x)) =

=

∫ ∞

0
dt t−1 e−αt ◦℘t(0)

∫

Rd

dx g̃∞ (tV−(x)) ≤

≤ C

∫

Rd

dx

[∫ ∞

0
dt t−d−1(1 + td/2)g̃∞ (tV−(x))

]
≤

≤ Cd

(∫

Rd

dxV d
−(x) +

∫

Rd

dxV
d/2
− (x)

)
,where we have used the fa
t that s < 1 implies g∞(s) = 0.
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onne
tion between D∞ and Ψ∞:Proposition 5.2
∫

Rd

dxD∞(t, x) =

∫

Rd

dxΨ∞(t, x).Proof. First let us verify the following identity for any t > 0:
∫

Rd

dxDλ(t, x) =

∫

Rd

dxΨλ(t, x), for λ ∈ (0,∞) (5.18)where Dλ and Ψλ are de�ned in terms of gλ in the same way that D∞ and
Ψ∞ are de�ned in terms of g∞. Let us point out that both Dλ and Ψλ arepositive measurable fun
tions on (0,∞) × Rd but only the integral on theleft hand side of (5.18) is evidently �nite by what we have proven so far. Forsimplifying the writing we shall take λ = 1. For any r ∈ [0, t] we denote by

Sr := e−r(H0+V−)V−e−(t−r)(H0+V−).Following the remarks after Proposition 4.2 above, for r ∈ (0, t), both expo-nentials appearing in the above right hand side are integral operators withnon-negative 
ontinuous integral kernels; thus Sr will also be an integral op-erator with non-negative 
ontinuous kernel that we shall denote by Kr, andwe 
an 
ompute it expli
itely as follows. For a non-negative u ∈ C0(R
d),using Proposition 4.1 with A = 0 gives

(Sru)(x) = Ex

{
e−

R r
0

V−(Xρ)dρV−(Xr)EXr

[
e−

R t−r
0

V−(Xσ)dσu(Xt−r)
]}and using the Markov property (4.8) we obtain

EXr

[
e−

R t−r
0

V−(Xσ)dσu(Xt−r)
]

= Ex

[
e−

R t−r
0

V−(Xσ◦θr)dσu(Xt) | Fr

]
=

= Ex

[
e−

R t
r V−(Xσ)dσu(Xt) | Fr

]
.As the fun
tion e−

R r
0 V−(Xρ)dρV−(Xr) : Ω → R is evidently Fr-measurable,we get (using the property (4.4) of 
onditional expe
tations)

(Sru)(x) = Ex

{
Ex

(
V−(Xr)e

−
R t
0 V−(Xσ)dσu(Xt) | Fr

)}
.We use now the property (4.3) and Proposition 4.2 taking F := V−(Xr) inorder to get

(Sru)(x) = Ex

{
V−(Xr)e

−
R t
0

V−(Xσ)dσu(Xt)
}

=
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=

∫

Rd

dy

{∫

Ω
µt,y

0,x(dω)V−(Xr)e
−

R t
0

V−(Xσ)dσ

}
u(y).In 
on
lusion for any (x, y) ∈ Rd × Rd we have

Kr(x, y) =

∫

Ω
µt,y

0,x(dω)V−(Xr)e
−

R t
0

V−(Xσ)dσ . (5.19)Using Proposition 4.3 we obtain
∫

Rd

dxKr(x, x) ≤
∫

Rd

dx

[∫

Ω
µt,x

0,x(dω)V−(ω(r))

]
=

∫

Rd

dx

[∫

Ω
µt,x

0,0(dω)V−(x+ ω(r))

]
=

◦
℘t(0)

∫

Rd

dxV−(x) < ∞, ∀t > 0.Thus, for any r ∈ [0, t] the operator Sr is tra
e 
lass. Moreover, due to theproperties of the tra
e we have TrSr = TrS0, ∀r ∈ [0, t]. We have:
TrS0 =

1

t

∫ t

0
dr (TrS0) =

1

t

∫ t

0
dr (TrSr) =

1

t

∫ t

0
dr

[∫

Rd

dxKr(x, x)

]
=

=
1

t

∫

Rd

dx

[∫

Ω
µt,x

0,x(dω)g̃1

(∫ t

0
ds V−(Xs)

)]
=

∫

Rd

dxΨ1(t, x)In parti
ular, for any t > 0, Ψ1(t; ·) is integrable on Rd.On the other hand
TrS0 =

∫

Rd

K0(x, x)dx =

∫

Rd

dxV−(x)

∫

Ω
µt,x

0,x(dω)e−
R t
0 dρ V−(Xρ)

=

∫

Rd

dxV−(x)G1(t;x, x) =

∫

Rd

dxD1(t;x).One uses the approximation properties 
ontained in Lemmas 5.8 and 5.9 aswell as the Monotone Convergen
e Theorem.Proof. of Theorem 1.1 for B = 0We 
an assume V+ = 0 and V− ∈ C∞
0 (Rd). Lemma 5.7 implies that for any

α > 0 one has
N−α(−V−) ≤ F∞(1)−1Tr [F∞(Kα)] .Using (5.15), (5.16), we obtain

Tr [F∞(Kα)] =

∫ ∞

0
dt e−αt

∫

Rd

dxD∞(t;x) =
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=

∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x). (5.20)Inequality (6.1) for B = 0 follows from (5.20) and Lemma 5.10. In addition
Cd = F∞(1)−1Cd.6. Proof of the bounds in the magneti
 
aseProof. of Theorem 1.1 for B 6= 0.Analogously to Se
tion 5, we 
an assume V+ = 0 and V− ∈ C∞

0 (Rd). For
α > 0 one sets Kα(A) := V

1/2
− (HA +α)−1V

1/2
− . By inequality (3.4) for r = 1and also using Pitt's Theorem [45℄,Kα(A) is a positive 
ompa
t operator, andthe same 
an be said about F∞ [Kα(A)]. We show that F∞ [Kα(A)] ∈ B1 andwe estimate the tra
e-norm. Repeating the arguments from the beginning ofthe proof of Proposition 5.1,

Fλ [Kα(A)] = V
1/2
−

∫ ∞

0
dt e−αte−t(HA+λV−)V

1/2
− . (6.1)By using Proposition 4.1, we get for any u ∈ C0(R

d), u ≥ 0

[Fλ [Kα(A)] u] (x) = (6.2)
= V

1/2
− (x)

∫ ∞

0
dt e−αtEx

[
u(Xt)V

1/2
− (Xt)e

−iSA(t,X)gλ

(∫ t

0
ds V−(Xs)

)]
.Approximating g∞ by means of Lemmas 5.8 and 5.9 and using the MonotoneConvergen
e Theorem, we see that (6.2) also holds for the pair (g∞, F∞). Thenext inequality follows:

|F∞ [Kα(A)] u| ≤ F∞(Kα)|u|, ∀u ∈ L2(Rd). (6.3)By Lemma 15.11 from [48℄, we have F∞ [Kα(A)] ∈ B1 and
Tr (F∞ [Kα(A)]) ≤ Tr (F∞ [Kα]) . (6.4)Denoting by N−α(B,−V−) the number of eigenvalues of HA − V− stri
tlyless than −α, analogously to Lemmas 5.6 and 5.7, we dedu
e that

N−α(B,−V−) ≤ F∞(1)−1Tr (F∞ [Kα]) . (6.5)Inequality (6.1) follows from (6.5) by using the estimations at the end ofSe
tion 5. The 
onstant Cd is the same as for the 
ase B = 0.



124 V. Iftimie et al.Proof. of Corollary 1.1. The idea of the proof is standard (
f. [48℄ forinstan
e), but one has to use parts of the arguments from the proof of The-orem 1.1 in the 
ase B = 0.1. We show that it is enough to treat the 
ase V+ = 0.We denote by N (resp. N−) the number of stri
tly negative eigenvalues of
HA ∔ V (resp. HA ∔ (−V−)). We have N,N− ∈ [0,∞] and the min-maxprin
iple shows that N ≤ N−. In addition, if HA ∔ V has stri
tly negativeeigenvalues λ1 ≤ λ2 ≤ . . . , then HA∔(−V−) has stri
tly negative eigenvalues
λ−1 ≤ λ−2 ≤ . . . and λ−j ≤ λj, j ≥ 1. Therefore, one has ∑j≥1 |λj |k ≤∑

j≥1 |λ−j |k.2. We show that treating 
ompa
tly supported V− is enough (remark thatthis property implies that V− ∈ Lp(Rd) for any p ∈ [1, d + k]).We take into a

ount the approximation sequen
e de�ned in Lemma 5.3. Thesequen
e of forms (hn)n≥1 satis�es the hypothesis of Theorem 3.11, Ch. VIIIfrom [29℄. If we denote by λ1 ≤ λ2 ≤ . . . the stri
tly negative eigenvaluesof HA

·
+ V and by λ

(n)
1 ≤ λ

(n)
2 ≤ . . . the stri
tly negative eigenvalues of

H(n) := HA

·
+ V (n), on
e again by Theorem 3.15, Ch. VIII from [29℄, wehave λ(n)

j ≥ λj , ∀j, n ∈ N∗ and λ(n)
j 
onverges to λj . So it will be su�
ientto prove (6.1) for the operators H(n).3. We assume from now on that V = −V−, V− ∈ Ld+k(Rd) (k > 0) and that

supp(V−) is 
ompa
t. Let β0 > 0 and for β ∈ (0, β0] let
λ1 ≤ λ2 ≤ · · · ≤ λN−β

< −βbe the eigenvalues of H = HA

·
+ (−V−) stri
tly smaller than −β and let

λ1 ≤ λ2 ≤ · · · ≤ λM(β) < −βbe the distin
t eigenvalues with mj the multipli
ity of λj , 1 ≤ j ≤ M(β).We have N−α := N−α(B,−V−). Using the de�nition of the Stieltjes integraland integration by parts, we get
N−β∑

j=1

|λj |k =

M(β)∑

j=1

mj|λj|k =

M(β)∑

j=1

|λj|k
(
Nλj+1

−Nλj

)
=

∫ −β

λ1

|λ|kdNλ =

= |β|kN−β + k

∫ −β

λ1

|λ|k−1Nλ dλ. (6.6)
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 Hamiltonian 125We denote by I the last integral and use (6.5) and (5.20) and the argumentsin the proof of Lemma 5.10 to estimate I:
I =

∫ −λ1

β
αk−1N−αdα = [F∞(1)]−1

∫ −λ1

β
αk−1TrF∞(Kα)dα =

= [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dtΨ∞(t, x)

∫ −λ1

β
dααk−1e−αt ≤

≤ [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dt t−1 ◦

℘t(0)g̃∞(tV−(x))

∫ −λ1

β
dααk−1e−αt ≤

≤ C [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dt
(
t−d−1+ t−d/2−1

)
g̃∞(tV−(x))

∫ −λ1

β
dααk−1e−αt.The α integral may be bounded by

∫ ∞

0
dααk−1e−αt = t−k

∫ ∞

0
ds sk−1e−s ≤ Ct−k.Re
alling that g̃∞(t) = 0 for t ≤ 1 and g̃∞(t) = t − 1 for t > 1, we get that

g̃∞(tV−(x)) = 0 for V−(x) = 0 and for V−(x) > 0

∫ ∞

0
dt t−k

(
t−d−1 + t−d/2−1

)
g̃∞(tV−(x)) =

= [V−(x)]d+k
∫ ∞

1
s−d−k−1(s− 1)ds + [V−(x)]d/2+k

∫ ∞

1
s−d/2−k−1(s− 1)ds,the integrals being 
onvergent for d ≥ 2.Using these estimations in (6.6) we 
on
lude that

N−β∑

j=1

(
|λj |k − |β|k

)
≤ C

{∫

Rd

[V−(x)]d+k dx +

∫

Rd

[V−(x)]d/2+k dx

}
,thus

N−(β0)∑

j=1

(
|λj |k − |β|k

)
≤ C

{∫

Rd

[V−(x)]d+k dx +

∫

Rd

[V−(x)]d/2+k dx

}
,with the 
onstant C not depending on β or β0. Taking the limit β ց 0 endsthe proof.



126 V. Iftimie et al.Referen
es[1℄ Avron, J., Herbst, I., Simon, B., S
hrödinger operators with mag-neti
 �elds. I General intera
tions, Duke Math. J. 45, 4 (1978), pp.847�883.[2℄ Carmona, R., Masters, W.C., Simon, B., Relativisti
 S
hrödingeroperators: Asymptoti
 behaviour of eigenfun
tions, Journal of Fun
-tional Analysis 91 (1990), pp. 117�143.[3℄ Cy
on, H.L., Froese, R.G., Kirs
h, W., Simon, B., S
hrödingerOperators with Appli
ations to Quantum Me
hani
s and Global Geome-try, Springer, Berlin, 1987.[4℄ Cwi
kel, M., Weak type estimates for singular values and the numberof bound states of S
hrödinger operators, Ann. Math. 206 (1977), pp.93�100.[5℄ Daube
hies, I., An un
ertainty prin
iple for fermions with generalizedkineti
 energy, Commun. Math. Phys. 90 (1983), pp. 511�520.[6℄ Demuth, M., van Casteren, J.A., Sto
hasti
 spe
tral theory for self-adjoint Feller operators, Birkhäuser, 2000.[7℄ Dimassi, M., Raikov, G., Spe
tral asymptoti
s for quantum Hamilto-nians in strong magneti
 �elds, Cubo Mat. Edu
. 3 (2001), pp. 317�391.[8℄ Frank, R.L., Lieb, E.H., Seiringer, R., Hardy-Lieb-Thirring in-equalities for fra
tional S
hrödinger operators, J. Amer. Math. So
. 21(2008), pp. 925�950.[9℄ Gérard, C.,Martinez, A. Sjöstrand, J., A mathemati
al approa
hto the e�e
tive Hamiltonian in perturbed periodi
 problems, Commun.Math. Phys. 142 (1991), pp. 217�244.[10℄ Hörmander, L., The Weyl 
al
ulus of pseudo-di�erential operators,Comm. Pure Appl. Math. 32 (1979), pp. 359�443.[11℄ Hörmander, L., The Analysis of Linear Partial Di�erential Operators,III, Springer-Verlag, New York, 1985.[12℄ Hörmander, L., The Analysis of Linear Partial Di�erential Operators,IV, Springer-Verlag, New York, 1985.



eigenvalues of a relativisti
 Hamiltonian 127[13℄ Helffer, B., Sjöstrand, J., Equation de S
hrödinger ave
 
hampmagnetique et équation de Harper, in Springer Le
ture Notes in Physi
s,345 (1989), pp. 118�197.[14℄ Helffer, B., Sjöstrand, J., On diamagnetism and de Haas-vanAlphen e�e
t, Ann. I.H.P. 52 (1990), pp. 303�375.[15℄ Hempel, R., Herbst, I., Strong magneti
 �elds, Diri
hlet boundaries,and spe
tral gaps, Comm. Math. Phys. 169 (1995), pp. 237�259.[16℄ I
hinose, I., The nonrelativisti
 limit problem for a relativisti
 spinlessparti
le in an ele
tromagneti
 �eld, J. Fun
t. Anal. 73, 2 (1987), pp.233�257.[17℄ I
hinose, I., Essential selfadjointness of the Weyl quantized relativisti
Hamiltonian, Ann. Inst. H. Poin
aré Phys. Théor. 51, 3 (1989), pp.265�297.[18℄ I
hinose, T., I
hinose, W., On the essential self-adjointness of therelativisti
 Hamiltonian with a negative s
alar potential, Rev. Math.Phys. 7, 5 (1995), pp. 709�721.[19℄ I
hinose, T., Tamura, H., Path integral for the Weyl quantized rela-tivisti
 Hamiltonian, Pro
. Japan A
ad. Ser. A Math. S
i. 62, 3 (1986),pp. 91�93.[20℄ I
hinose, T., Tamura, H., Imaginary-time path integral for a rela-tivisti
 spinless parti
le in an ele
tromagneti
 �eld, Comm. Math. Phys.105, 2 (1986), pp. 239�257.[21℄ I
hinose, T., Tsu
hida, T., On Kato's inequality for the Weyl quan-tized relativisti
 Hamiltonian, Manus
ripta Math. 76, 3-4 (1992), pp.269�280.[22℄ I
hinose, T., Tsu
hida, T., On essential selfadjointness of the Weylquantized relativisti
 Hamiltonian, Forum Math. 5, 6 (1993), pp. 539�559.[23℄ Iftimie, V., Uniqueness and existen
e of the integrated density of statesfor S
hrödinger operators with magneti
 �eld and ele
tri
 potential withsingular negative part, Publ. Res. Inst. Math. S
i. 41 (2005), pp. 307�327.[24℄ Iftimie, V., M ntoiu, M. Puri
e, R., Magneti
 pseudodi�erentialoperators, Publ. Res. Inst. Math. S
i. 43 (2007), pp. 585�623.



128 V. Iftimie et al.[25℄ Ikeda W., Watanabe, S., Sto
hasti
 di�erential equations and di�u-sion pro
esses, North-Holland, 1981.[26℄ Ja
ob, N., Pseudodi�erential operators and Markov pro
esses. IIIMarkov pro
esses and appli
ations, World S
ienti�
, 2005.[27℄ Karasev, M.V., Osborn, T.A., Symple
ti
 areas, quantization anddynami
s in ele
tromagneti
 �elds, J. Math. Phys. 43, 2 (2002), pp.756�788.[28℄ Karasev, M.V., Osborn, T.A., Quantum magneti
 algebra and mag-neti
 
urvature, J. Phys. A 37, 6 (2004), pp. 2345�2363.[29℄ Kato, T., Perturbation theory for linear operators, Springer, 1976.[30℄ Kato, T., Masuda, K., Trotter's produ
t formula for nonlinear semi-groups generated by the subdi�erentials of 
onvex fun
tionals, Journal ofthe Mathemati
al So
iety of Japan 30 (1978), pp. 169�178.[31℄ Li, P., Yau, S.T., On the S
hrödinger equation and the eigenvalueproblem, Comm. Math. Phys. 88 (1983), pp. 309�318.[32℄ Lieb, E.: Bounds on the eigenvalues of the Lapla
e and S
hrödingeroperators, Bull. Amer. Math. So
. 82, 5 (1976), pp. 751�753.[33℄ Lieb, E., Thirring, W., Bounds for the kineti
 energy of fermionswhi
h proves the stability of matter, Phys. Rev. Lett. 35 (1975), pp.687�689.[34℄ Müller, M., Produ
t rule for gauge invariant Weyl symbols and itsappli
ations to the semi
lassi
al des
ription of guiding 
enter motion, J.Phys. A 32 (1999), pp. 1035�1052.[35℄ M ntoiu, M., Puri
e, R., The algebra of observables in a magneti
�eld, Mathemati
al Results in Quantum Me
hani
s (Tax
o, 2001), Con-temporary Mathemati
s 307, Amer. Math. So
., Providen
e, RI (2002),pp. 239�245.[36℄ M ntoiu, M., Puri
e, R., The Magneti
 Weyl 
al
ulus, J. Math.Phys. 45 (2004), pp. 1394�1417.[37℄ M ntoiu, M., Puri
e, R., Stri
t deformation quantization for a par-ti
le in a magneti
 �eld, J. Math. Phys. 46, (2005), 15 pp.[38℄ M ntoiu, M., Puri
e, R., The mathemati
al formalism of a parti
lein a magneti
 �eld, in Mathemati
al physi
s of quantum me
hani
s, pp.417�434, Le
ture Notes in Phys., 690, Springer, 2006.



eigenvalues of a relativisti
 Hamiltonian 129[39℄ M ntoiu, M., Puri
e, R., Ri
hard, S., Twisted 
rossed produ
tsand magneti
 pseudodi�erential operators, in Advan
es in operator alge-bras and mathemati
al physi
s, pp. 137�172, Theta Ser. Adv. Math., 5,Theta, 2005.[40℄ M ntoiu, M., Puri
e, R., Ri
hard, S., Spe
tral and propagationresults for S
hrödinger magneti
 operators, J. Fun
t. Anal. 250 (2007),pp. 42�67. (2007).[41℄ Melgaard, M., Rozenblum, G.V., Spe
tral estimates for magneti
operators, Math. S
and. 79 (1996), pp. 237�254.[42℄ Nagase, M., Umeda, T., Weyl quantized Hamiltonians of relativisti
spinless parti
les in magneti
 �elds, J. Fun
t. Anal. 92 (1990), pp. 136�164.[43℄ Nagase, M., Umeda, T., Spe
tra of relativisti
 S
hrödinger operatoreswith magneti
 ve
tor potentials, Osaka J. Math. 30 (1993), pp. 839�853.[44℄ Pas
u, M., On the essential spe
trum of the relativisti
 magneti
S
hrödinger operator, Osaka J. Math. 39, 4 (2002), pp. 963�978.[45℄ Pitt, L.D., A 
ompa
tness 
ondition for linear operators on fun
tionspa
es, Journal of Operator Theory 1 (1979), 49�54.[46℄ Rozenblum, G., Distribution of the dis
rete spe
trum of singular dif-ferential operators, Izvestia Vuz, Mathematika, 20, 2 (1976), pp. 75�86.[47℄ Reed, M., Simon, B., Methods of modern mathemati
al physi
s, I�IV,A
ademi
 Press, 1972�1979.[48℄ Simon, B., Fun
tional integration and quantum physi
s, A
ademi
Press, 1979.[49℄ Simon, B., Kato's inequality and the 
omparaison of semigroups, J.Fun
t. Anal. 32 (1979), pp. 97�101.[50℄ Simon, B., Maximal and minimal S
hrödinger forms, J. Oper. Th. 32(1979), pp. 37�47.[51℄ Triebel, H., Interpolation theory, fun
tion spa
es, di�erential opera-tors, VFB Deuts
her Verlag der Wiessens
haften, Berlin, 1978.[52℄ Umeda, T., Absolutely 
ontinuous spe
tra of relativisti
 S
hrödingeroperators with magneti
 ve
tor potentials, Pro
. Japan A
ad. 70 (1994),Ser. A, pp. 290�291.





Topi
s in Applied Mathemati
s & Mathemati
al Physi
s
© 2008, Editura A
ademiei Române
Approximate inertial manifolds, indu
ed traje
tories,and approximate solutions for semilinear paraboli
equations, based upon these; appli
ations to �ow anddi�usion problemsby An
a-Veroni
a Ion 1
Contents1. Introdu
tion . . . . . . . . . . . . . . . . . . . . . 1331.1. The Galerkin method . . . . . . . . . . . . . . . . 1352. Modi�ed Galerkin methods . . . . . . . . . . . . 1372.1. Families of a.i.m.s used in the modi�ed Galerkinmethods . . . . . . . . . . . . . . . . . . . . . . . 1372.2. The nonlinear Galerkin methods . . . . . . . . . . 1382.3. Post-pro
essed Galerkin methods . . . . . . . . . 1382.4. A new modi�ed Galerkin method . . . . . . . . . 1393. Modi�ed Galerkin methods for the Navier-Stokesequation . . . . . . . . . . . . . . . . . . . . . . . 1423.1. The setting of the problem . . . . . . . . . . . . . 1423.2. The de
omposition of the spa
e, the proje
tedequations . . . . . . . . . . . . . . . . . . . . . . 1433.3. Indu
ed traje
tories for the Navier-Stokes problem1443.4. A family of approximate inertial manifolds for theNavier-Stokes equations . . . . . . . . . . . . . . 1451�Gheorghe Miho
�Caius Ia
ob� Institute of Mathemati
al Statisti
s and Ap-plied Mathemati
s, Bu
harest, Romania, e-mail: averionro�yahoo.
om.The paper was supported by CEEX Grant CEEX05-D11-25/2005.



132 An
a-Veroni
a Ion3.5. Nonlinear Galerkin method for the Navier Stokesequations . . . . . . . . . . . . . . . . . . . . . . 1473.6. Post-pro
essed Galerkin method for the Navier-Stokes equations . . . . . . . . . . . . . . . . . . 1483.7. The repeatedly adjusted and post-pro
essed Galerkinmethod for the Navier-Stokes equation . . . . . . 1493.8. The error of the R-APP Galerkin method . . . . 1513.9. R-APP Galerkin method 
ompared to the high-order a

ura
y NLPP Galerkin method . . . . . . 1524. Modi�ed Galerkin methods for a rea
tion-di�usionproblem . . . . . . . . . . . . . . . . . . . . . . . 1554.1. The splitting of the spa
e . . . . . . . . . . . . . 1564.2. Indu
ed traje
tories for the rea
tion-di�usion prob-lem . . . . . . . . . . . . . . . . . . . . . . . . . . 1564.3. Approximate inertial manifolds for the rea
tion-di�usion equation . . . . . . . . . . . . . . . . . . 1594.4. �Indu
ed traje
tories� inspired by a.i.m.s . . . . . 1604.5. The NL Galerkin method for the RDE . . . . . . 1614.6. The PP NL Galerkin method for the RDE . . . . 1614.7. The R-APP Galerkin method for the RDE . . . . 1624.8. Estimates of the error . . . . . . . . . . . . . . . 1644.9. Comments on the method . . . . . . . . . . . . . 164



approximate inertial manifolds 1331. Introdu
tionIn the study of dissipative semi-dynami
al systems generated by semilinearparaboli
 equations, the theory of qualitative behavior of the system at largetimes plays an important role. By paraboli
 semilinear equations we meanpartial di�erential equations that 
an be written as abstra
t equations in aHilbert spa
e, of the form:
du

dt
+ νAu+R(u) = f, (1.1)where u is a fun
tion of time with values in a Hilbert spa
e H (whose de�-nition 
omprises the boundary value 
onditions imposed to equation (1.1)).We atta
h to the above equation an initial 
ondition
u(0) = u0, (1.2)with u0 in H. We assume that A is a linear operator, de�ned on a densesubspa
e D(A) of H, self-adjoint, positive de�nite, with 
ompa
t inverse,while R is a nonlinear operator de�ned on D(R) ⊂ D(A). We do not insisthere on the hypotheses on R, but we assume that it is su
h that the Cau
hyproblem (1)-(2) has an unique solution on [0, T ], for every u0 ∈ H and every

T > 0. Hen
e a semi-dynami
al system is generated by the above problem,by setting S(t)u0 = u(t, u0), where u(t, u0) is the solution of (1.1)�(1.2).For this presentation we assume that f is in H. We also assume that thesemi-dynami
al system generated by (1.1) is dissipative in the sense thatthere is a bounded absorbing set for it. An absorbing set is a set B havingthe property that, for every bounded set M ⊂ H, there is a value of t,depending on M, let us denote it by tM , with the property that, S(t)M ⊂ Bfor t ≥ tM . For the parti
ular problems we 
onsider here, there also areabsorbing balls in some subspa
e V of H, with D(A) ⊂ V ⊂ H.In the theory of qualitative behavior at large times of solutions of equationsof the form (1.1), the notion of global attra
tor plays an important role.A global attra
tor [3℄ is a 
ompa
t set of the phase spa
e H, invariant tothe semigroup S(t)t≥0, that attra
ts the bounded sets of the phase spa
e,when time tends to in�nity. This means that the global attra
tor bears inits stru
ture the properties of the behavior of the semi-dynami
al system atlarge times. For many problems of interest the existen
e of an attra
tor wasproved [37℄.The study of the geometri
al and topologi
al properties of the global attra
-tors �ourished sin
e the last two de
ades of the XXth 
entury and the major
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a-Veroni
a Ionhope was that a 
onne
tion between the stru
ture of the attra
tor and very
omplex phenomena like turbulen
e in the �ow of the �uids will be found.In this 
ontext, another interesting notion appeared, that of inertial mani-fold (i.m.) [11℄. It is a �nite dimensional, invariant and at least Lips
hitzmanifold having the property that it exponentially attra
ts all the traje
to-ries of the problem. More than that, an i.m. has the property of asymptoti

ompleteness meaning that for every u0 in H there is a v0 on the i.m. su
hthat the distan
e between the traje
tories passing through the two pointsde
reases exponentially with time.The invarian
e of the i.m. implies the fa
t that we 
an 
onstru
t a restri
tionof the problem to this manifold. The restri
ted problem is named inertialform [11℄, [37℄ and, sin
e the i.m. is �nite dimensional, is equivalent witha system of ODEs. The above de�ned asymptoti
 
ompleteness of the i.m.implies that the asymptoti
 behavior at large times of the dynami
al systemis des
ribed by the asymptoti
 behavior of the inertial form. Hen
e the largetimes study of the initial semi-dynami
al system (in�nite dimensional sin
eits phase spa
e is H) 
an be redu
ed to that of a �nite-dimensional one.Another important 
onsequen
e of the properties of the i.m.s is that, when aglobal attra
tor exists, it is 
ontained in the i.m. These 
onsiderations explainthe large interest shown by the s
ienti�
 
ommunity in inertial manifolds.From among the great number of papers devoted to the inertial manifoldswe remind: [11℄ (with the extended version [12℄), [8℄, [9℄, [5℄, [36℄. Theimportant monograph [37℄ had a se
ond edition in 1997.From a theoreti
al point of view, the i.m.s looked very promising, but majorobsta
les appeared in trying to use their properties in the study of 
on
reteproblems. One is due to the fa
t that existen
e of i.m.s is in most papersproved by a �xed point theorem, and is not 
onstru
tive. There is a 
on-stru
tive proof in [2℄ but it uses some integral manifolds whose 
onstru
tionis equivalent with solving the equation. Another problem is a restri
tivehypothesis among the hypothesis of the existen
e theorems- the hypothesisof a spe
tral gap that imposes the existen
e of two su

essive eigenvaluesof A situated at a �large enough� distan
e [1℄, [12℄, [37℄. This hypothesis isnot ful�lled by many problems, (e.g. is not ful�lled for the two-dimensionalNavier-Stokes equations).In this situation the approximate inertial manifolds were de�ned as approxi-mations of i.m.s or as substitutes of these, when the i.m.s 
ould not be provedto exist. An approximate inertial manifold (a.i.m.) is a �nite dimensional, atleast Lips
hitz manifold in the spa
e H, with the property that all the traje
-tories of the dynami
al system enter a narrow neighborhood of the manifold
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ertain moment and never leave the neighborhood after. Even if it hasnot the invarian
e property, an a.i.m. is important be
ause, if the problemhas a global attra
tor, it is 
ontained in the narrow neighborhood mentionedabove.The lo
alization of the attra
tors in the spa
e of phases was a �rst interestingappli
ation �eld of the a.i.m.s. Besides this, a.i.m.s found very interestingappli
ations in the 
onstru
tion of some approximate solutions (the numeri
alintegration) of the nonlinear evolution problems. Examples of papers devotedto a.i.m.s are: [10℄, [13℄, [23℄, [26℄, [27℄, [28℄, [33℄, [35℄, [37℄, [38℄, [39℄.In Se
tion 2 we present some methods, that use a.i.m.s, for the 
onstru
tionof approximate solutions for problems of the type (1.1)�(1.2), the so-
allednon-linear Galerkin method and post-pro
essed Galerkin method.We in
lude a method 
on
eived by us, that we named repeatedly adjusted andpost-pro
essed Galerkin method, that is 
onne
ted to the pre
eding methodsbut brings some simpli�
ations to these. In Se
tion 3 we present the waythese method work for the two-dimensional Navier-Stokes equations with pe-riodi
 boundary 
onditions, and in Se
tion 4, for a two-dimensional rea
tion-di�usion equation, with Von Neumann boundary 
onditions.In order to settle the notations and the fun
tional framework of our presenta-tion, we shortly remind below the Galerkin spe
tral method for the abstra
tequation (1.1).1.1. The Galerkin methodIn the hypotheses we assumed on the operator A of equation (1.1), it followsthat A has positive eigenvalues that form a tending to in�nity sequen
e:
0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ..., λn →

n→∞
∞.The eigenfun
tions of A form a total (orthonormal) system for H. We 
on-sider the set, denoted Γm, of the �rst distin
t m eigenvalues (in in
reasingorder) and the eigenfun
tions 
orresponding to these. We denote by P theorthogonal proje
tion operator on the subspa
e spanned by these eigenfun
-tions and we set Q = I − P (where I is the identity appli
ation on H). Thesolution u of (1.1)�(1.2) is proje
ted by the two proje
tors and we set

p = Pu,

q = Qu.
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a IonIt follows that the fun
tions p and q are solutions of
dp

dt
+ νAp+ PR(p+ q) = Pf, (1.3)

dq

dt
+ νAq +QR(p+ q) = Qf, (1.4)

p(0) = Pu0, (1.5)
q(0) = Qu0. (1.6)Usually, the 
omponent q of the solution is proved to be, at large times, �little�in the norm of H 
ompared to the p 
omponent. That is, an inequality ofthe form

|q (t)| ≤ C0δ
a, (1.7)where

δ =
λ1

λm+1
, (1.8)and a is some positive number, is true. For the Navier-Stokes equations it isproved in [38℄ that a inequality of the type (1.7) holds, with a = 1 and C0depending onm. We proved in [19℄ that the inequality 
an be improved in thesense that it is true with a C0 that does not depend on m. For the rea
tion-di�usion equation, |q(t)| is of the order of δ for large enough times [4℄.If in the equation (1.4) q is negle
ted in the presen
e of p, we �nd the equation

dp

dt
+ νAp+ PR(p) = Pf. (1.9)This is the Galerkin approximation of the equation (1.1). The solution of theproblem (1.9) with the initial 
ondition (1.5), that we denote by pG(.), is theGalerkin approximation of the solution of (1.1)-(1.2). For several problemsit is proved in the literature that inequalities of the type
|u(t) − pG(t)| ≤ Cδα,where u(t) is the solution of the problem (1.1)-(1.2), δ > 0 is de�ned by (1.8),and α > 0.As example, for a rea
tion-di�usion equation with Neumann boundary valuesand for the two-dimensional Navier-Stokes equations, α = 1 (in the hypoth-esis f ∈ H). The problem (1.9), (1.5) is equivalent to a system of ordinarydi�erential equations for the 
oordinates of p(t) along the eigenfun
tions thatspan PH. The de�nition of δ shows that the greater will be m, (hen
e thedimension of PH), the smaller will be the error.
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onstru
tion of the Galerkin equation, the q 
omponent of the solution(that is proved to be small for large times) is approximated with 0. Thenonlinear Galerkin (and/or post-pro
essed) methods of approximation arebased upon the idea of approximating q(t) by using a a.i.m instead of themanifold q0.2. Modi�ed Galerkin methodsThe nonlinear Galerkin (and/or post-pro
essed) methods of approximationare based upon the idea of approximating q(t) by using an a.i.m instead oftaking q ≃ 0.2.1. Families of a.i.m.s used in the modi�ed Galerkin meth-odsThere are several types of a.i.m.s de�ned in the literature. Among them,those de�ned in [10℄, [38℄, [39℄ (for the Navier-Stokes equations � NSE) gen-erated new numeri
al integration methods, based on the Galerkin method.They form a family {Mj}j≥0 and are the graphs of some fun
tions
Φj : PH → QH. The de�nitions of these a.i.m.s for the NSE are presented inSe
tion 3 while those for the RDE are given in Se
tion 4. A.i.m.s of the typeof those 
ited above may be (and were) de�ned for many parti
ular problemsof the form (1.1)�(1.2). The main property of these a.i.m.s, on whi
h theiruse in the 
onstru
tion of the numeri
al methods is based, is the following:the distan
e (in the norm of H) between q(t) and the image of p(t) on thea.i.m. Mn is of the order of δa(n) that is

|q(t) − Φn(p(t))| ≤ Cδa(n), (2.1)where a(n) is in
reasing with n.For example, for the two-dimensional NSE it is proved [38℄, [39℄ that a(n) =
= (n+3)/2. Sin
e, for NSE, about the H norm of q(t) only the fa
t of beingof the order of δ is known, it is 
lear that any of the above a.i.m.s providesa better approximation of q(t) than the so-
alled plane manifold q = 0, forthe mentioned problem.
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onsiders, instead of the Galerkin equation (3.25), theequation
dp

dt
+ νAp+ PR(p+ Φ0(p)) = Pf, (2.2)with initial 
ondition (1.5). By denoting with p̃0(.) the solution of this prob-lem, the approximate solution of (1.1)�(1.2) is taken as
v0(t) = p̃0(t) + Φ0(p̃0(t)).As it is natural, sin
e Φn (p(t)) approximates q(t) better and better with thein
rease of n, the next idea, appeared in [6℄, was to 
onsider the equation

dp

dt
+ νAp+ PR(p+ Φn(p)) = Pf, (2.3)with the initial 
ondition (1.5). Let p̃n(.) the solution of this problem. Theapproximate solution is then de�ned as
vn(t) = p̃n(t) + Φn(p̃n(t)).For the problems 
onsidered in the 
ontext of nonlinear Galerkin problems,it is proved that the error is of the order of δb(n), where b(n) is in
reasingwith n.E.g., for the Navier-Stokes equations it is proved in [7℄ that b(n) = (n+3)/2,while for the rea
tion-di�usion equation it is asserted in [32℄ that b(n) = n+2provided f ∈ H.2.3. Post-pro
essed Galerkin methodsIn [14℄ the following modi�ed Galerkin method is proposed, that also usesa.i.m.s. Let again pG(.) be the solution of (1.9), (1.5). Then the value of

Φ0(pG(t)) is 
omputed at the right end side of the time interval [0, T ], thatis in T . The approximate solution in T is de�ned as
w(T ) = pG(T ) + Φ0(pG(T )).
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essed Galerkin method (PP Galerkinmethod) be
ause the solution of the Galerkin problem is 
orre
ted only in the�nal phase, after �nishing the numeri
al integration of the Galerkin prob-lem, by using the �rst a.i.m. of the family des
ribed in 2.1 (hen
e post-pro
essed). The error of this approximate solution is less than that of theGalerkin method. Thus, for the two-dimensional Navier-Stokes equations, itis shown in [14℄ to be of the order of δ5/4. Another estimate is proved in [15℄,i.e. the error is proved to be of the order of L2δ3/2, where L = 1 + ln(2m2).This latter estimate of the error is not ne
essary better than the formerbe
ause of the 
oe�
ient L2.The next idea appeared in the literature [32℄ was to postpro
ess the NLGalerkin method of the pre
eding se
tion. More pre
isely, the equation (2.3)is 
onsidered, it is integrated on all the time interval [0, T ], then Φn+1(p̃n(T )),is 
omputed, and the approximate solution in T is de�ned as
wn(T ) = p̃n(T ) + Φn+1(p̃n(T )).This method is 
alled the nonlinear post-pro
essed Galerkin method (NLPP Galerkin method). In [32℄ the use of the method is exempli�ed on therea
tion-di�usion equation and it is proved that, if f ∈ H, then the error isof the order of lnmδn+3.2.4. A new modi�ed Galerkin methodIn [38℄, in the 
ontext of the study of the NSE, a family of fun
tions,

{qj}j≥0, qj : R+ → QH, having the property
|qj(t) − q(t)| ≤ kjL

1+j/2δ(3+j)/2 (2.4)for large enough times is 
onstru
ted. Here the 
oe�
ients kj depend on thedata of the problem (ν, |f |, λ1), and L = 1 + lnλm+1

λ1
. A
tually, the fun
tion

q0 is of the form
q0 = Φ0(p),while, for j ≥ 1, qj are re
ursively de�ned by relations of the type

qj = Fj(Qf, p, q0, ..., qj−1). (2.5)The fun
tions uj = p + qj, j ≥ 0 de�ne the so-
alled indu
ed traje
tories,
{uj(t); t ≥ 0}, asso
iated to the traje
tory {u(t); t ≥ 0} of the dynami
alsystem. Relation (2.4) shows that the fun
tions uj , j ≥ 0, are approximations
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t solution, of in
reasing with j a

ura
y. The de�nition of thea.i.m.s Mj used in the nonlinear Galerkin methods for the NSE are basedupon the de�nitions of the fun
tions qj.In [20℄, for the two-dimensional NSE with periodi
 boundary 
onditions, wede�ned a new type of modi�ed Galerkin method, that uses some approxima-tions of the indu
ed traje
tories and not the a.i.m.s. We des
ribe here themethod in the general 
ontext of equation (1.1). The purpose of the methodis that of working with a very low-dimensional proje
tion spa
e PH, and theidea from whi
h we started is that, however small is the dimension of PH, ifwe have a very good approximation for q, let us denote it by q̃, then a verygood approximation for p will be obtained by solving the equation
dp

dt
+ νAp+ g(p + q̃) = Pf.In 
onsequen
e, a good approximation of u may be obtained. The methodis stru
tured on several levels. One of the ideas we followed in developingthis method is that of having to integrate only di�erential equations of thesame level of di�
ulty as the Galerkin equation. This was possible by usingapproximations of indu
ed traje
tories instead of a.i.m.s.Level 0. This level has two stages. The �rst is the 
lassi
al Galerkin method,i.e. we solve the problem (1.9), (1.5) and we 
onsider its solution, pG(.).The se
ond stage 
onsists in de�ning the fun
tion of time, with values in

QH:
q̃0(t) = Φ0(pG(t)), (2.6)the fun
tion Φ0 being the one that de�nes the �rst a.i.m. of the family 
itedin 2.1.Then we de�ne the approximate solution at this �rst level as
ũ0 = pG + q̃0.Sin
e the fun
tion q̃0(t) will be used at the se
ond level of our method, in thenumeri
al implementation of this method, the fun
tion q̃0 should be 
om-puted in ea
h point of the time mesh, unlike in the post-pro
essing de�nedin [14℄, where it is 
omputed only at the �nal point of the integration in-terval [0, T ]. Besides this, Level 0 of our method is essentially the Galerkinpost-pro
essed method.Level 1. We 
onsider the problem

dp

dt
+ νAp+ PR(p+ q̃0) = Pf, (2.7)

p(0) = Pu0



approximate inertial manifolds 141and we denote by p̃0 its solution. This is an "adjusted" Galerkin problem.This equation is essentially di�erent from the 
orresponding one of the NLGalerkin method (see equation (2.3)) sin
e q̃0 is known from Level 1.Then we de�ne
q̃1(t) = F1(Qf, p̃0(t), q̃0(t)).The approximate solution is

ũ1 = p̃0 + q̃1.Level j > 1.We assume that q̃0, q̃1, q̃2, ..., q̃j−1 were 
onstru
ted. The problem
dp

dt
+ νAp+ PR(p+ q̃j−1) = Pf, (2.8)

p(0) = Pu0,is 
onsidered and its solution is denoted by p̃j−1. Then we denote
q̃j = Fj (Qf, p̃j−1, q̃0, q̃1, ..., q̃j−1)and the approximate solution is̃

uj = p̃j−1 + q̃j.At �rst sight, the idea of performing several time integrations seems a badidea, sin
e every su
h integration involves a large amount of 
omputations.However, a 
areful analysis shows that the amount of 
omputations involvedin the NL Galerkin method (based upon the a.i.m. Mj) is greater thanthat involved in solving the problems from Level 1 to the eq. (2.8) of Levelj, in
lusive. Su
h an analysis is performed for the Navier-Stokes equationsin 3.8. Hen
e our method, that we 
all the repeatedly adjusted and post-pro
essed Galerkin method (R-APP Galerkin method) is an alternative tothe NL Galerkin method. The �nal post-pro
essing, by adding q̃j to p̃j−1 isequivalent to the post-pro
essing of NL Galerkin method and does not implya large amount of 
al
uli sin
e it will be performed only in some sele
tedmoments of time (eventually only at the last moment, T ). In what 
on
ernsthe error, for the problems dis
ussed below we 
an prove that the error ofR-APP Galerkin method is of the same order of magnitude as that for NLPP Galerkin method, for the two parti
ular problems in Se
tions 3 and 4.



142 An
a-Veroni
a Ion3. Modi�ed Galerkin methods for the Navier-StokesequationWe present here the modi�ed Galerkin methods for the Navier-Stokes equa-tions: the NL, NL PP Galerkin methods already de�ned in the literature andour R-APP Galerkin method.3.1. The setting of the problemWe 
onsider the problem of the two-dimensional �ow of a in
ompressibleNewtonian �uid, modeled by the Navier-Stokes equations. We impose pe-riodi
 boundary 
onditions and 
hoose the periodi
ity 
ell to be a square,
Ω = (0, l) × (0, l). Thus the problem is

∂u

∂t
− ν∆u + (u · ∇)u+∇p = f , (3.1)divu = 0, (3.2)where u (t,x) ∈ R2 is the velo
ity of the �uid, t ≥ 0, x ∈Ω, p (t,x) ∈ R is thepressure of the �uid, ν is the kinemati
 vis
osity, and f is the volume for
e.We add the initial 
ondition

u (0, ·) = u0(·). (3.3)We assume that f is independent of time and is an element of [L2
per (Ω)

]2. Asis usual in the study of the Navier-Stokes equations with periodi
 boundary
onditions, we assume that [40℄, [34℄
f =

1

l2

∫

Ω
f (x) dx = 0, (3.4)and that the pressure is a periodi
 fun
tion on Ω. For simpli
ity we willassume also that the average u of the velo
ity over the periodi
ity 
ell iszero.The velo
ity u is thus looked for in the spa
e H =

{
v; v ∈

[
L2

per (Ω)
]2
,divv = 0, v = 0} with the s
alar produ
t (u,v) =

∫
Ω (u1v1 + u2v2) dx,(where u = (u1, u2) , v = (v1, v2)) and the indu
ed norm is denoted by

|·|. Let us also 
onsider the spa
e V =
{
u ∈

[
H1

per (Ω)
]2
, div u = 0,u = 0

}
,with the s
alar produ
t ((u,v)) =

∑2
i,j=1

(
∂ui
∂xj

, ∂vi
∂xj

)
, and the indu
ed norm,denoted by ‖·‖ .
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 boundary 
onditions, to the Cau
hy problem
du

dt
− ν∆u + (u · ∇)u = f in V ′, (3.5)

u (0) = u0, u0 ∈ H. (3.6)The notations
B(u,v) = (u · ∇)v, (3.7)

B(u) = B(u,u), (3.8)will be used below.We remind here the 
lassi
al existen
e and uniqueness results for the Navier-Stokes equations in R2, with periodi
 boundary 
onditions.We denote A = −∆. The de�nition domain of the linear operator A is
D(A) = V ∩H2

per(Ω).Theorem 3.1 [40℄. a) If u0 ∈ H, f ∈ H, then the problem (3.5), (3.6)has an unique solution u ∈ C0 ([0, T ];H) ∩ L2 (0, T ;V) . b) If, in addition,
u0 ∈ V, then u ∈ C0 ([0, T ];V) ∩ L2 (0, T ;D(A)) . The solution is, in thislatter 
ase, analyti
 in time on the positive real axis.The semi-dynami
al system {S (t)}t≥0 generated by problem (3.5) is dissi-pative [37℄. More pre
isely, there is a ρ0 > 0 su
h that for every R > 0,there is a t0(R) > 0 with the property that for every u0 ∈ H with |u0| ≤ R,we have |S (t)u0| ≤ ρ0 for t > t0(R). In addition, there are absorbing ballsin V and D (A) for {S (t)}t≥0, [34℄ i.e. there are ρ1 > 0, ρ2 > 0 and, forevery R > 0, there are t1(R), t2(R) with t2(R) ≥ t1(R) ≥ t0(R) su
h that
|u0| ≤ R implies ‖S (t)u0‖ ≤ ρ1 for t > t1(R) and |AS (t)u0| ≤ ρ2 for
t > t2(R).3.2. The de
omposition of the spa
e, the proje
ted equationsThe eigenvalues of A are λj1,j2 = 4π2

l2

(
j21 + j22

)
, (j1, j2) ∈ N2\ {(0, 0)} , andthe 
orresponding eigenfun
tions are

ws±
j1,j2

=

√
2

l

(j2,∓j1)
|j| sin

(
2π
j1x1 ± j2x2

l

)
,

wc±
j1,j2

=

√
2

l

(j2,∓j1)
|j| cos

(
2π
j1x1 ± j2x2

l

)
,
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(
j21 + j22

) 1
2 [38℄. These eigenfun
tions form a total system for H.For a �xed m ∈ N we 
onsider the set Γm of eigenvalues λj1,j2 having

0 ≤ j1, j2 ≤ m. We de�ne
λ := λ1,0 = λ0,1 =

4π2

l2
,

Λ := λm+1,0 = λ0,m+1 =
4π2

l2
(m+ 1)2 ,

δ = δ (m) :=
λ

Λ
=

1

(m+ 1)2
.

Λ is the least eigenvalue not belonging to Γm. The eigenfun
tions 
orre-sponding to the eigenvalues of Γm span a �nite-dimensional subspa
e of H.We denote by P the orthogonal proje
tion operator on this subspa
e and by
Q the orthogonal proje
tion operator on the 
omplementary subspa
e. Wewrite for the solution u of (3.5), (3.6), u = p + q, where p = Pu, q = Qu.By proje
ting equation (3.5) on the above 
onstru
ted spa
es, we obtain

dp

dt
− ν∆p + PB(p + q) = Pf , (3.9)

dq

dt
− ν∆q + QB(p + q) = Qf . (3.10)In [10℄ is proved that for every R > 0, there is a moment t3 (R) ≥ t2(R) su
hthat for every |u0| ≤ R,

|q (t)| ≤ K0L
1
2 δ, ‖q (t)‖ ≤ K1L

1
2 δ

1
2 , (3.11)

∣∣q′ (t)
∣∣ ≤ K ′

0L
1
2 δ, |∆q (t)| ≤ K2L

1
2 , t ≥ t3 (R) ,where, for our 
hoi
e of the set of eigenvalues Γm, L = 1 + ln(2m2). In [19℄we proved that estimates of the same order are true for the various norms of

q (t) above, but with 
oe�
ients of the powers of δ not depending on m.3.3. Indu
ed traje
tories for the Navier-Stokes problemIn [38℄ the notion of indu
ed traje
tory is de�ned and a family of indu
edtraje
tories is 
onstru
ted for this problem. The asymptoti
 expansions thatrely behind this 
onstru
tion are not made expli
it there.
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tions, {qj; j ∈ N} , that satisfy the equations
−ν∆q0 + QB (p) = Qf ,(3.12)

−ν∆q1 + QB (p) + QB (p,q0) + QB (q0,p) = Qf ,(3.13)
−ν∆q2 + QB(p) + QB (p,q1) + QB (q1,p) + QB(q0,q0) + q′

0 = Qf ,(3.14)
−ν∆qj + q′

j−2 + QB (p) + QB (p,qj−1)+ (3.15)
+QB (qj−1,p) + QB (qj−2,qj−2) = Qf , j ≥ 2,is de�ned.If p (t) is, as above, the P proje
tion of the solution u(t) of the NSE, thesets {uj(t) = p (t) + qj (t) ; t ≥ 0} are 
alled indu
ed traje
tories asso
iatedto the traje
tory {u(t) = p (t) + q (t) ; t ≥ 0}. The inequalities

|qj | ≤ κjδL
1/2, ‖qj‖ ≤ κjδ

1/2L1/2,
∣∣q′

j

∣∣ ≤ κjδL
1/2,are proved in [38℄, as well as the following

|q(t) − qj(t)| ≤
_
κjL

(1+j)/2δ(3+j)/2. (3.16)3.4. A family of approximate inertial manifolds for the Navier-Stokes equationsThe family of indu
ed traje
tories above, more pre
isely the fun
tions qj , j ≥
0, form the starting point for the 
onstru
tion of a family of approximate in-ertial manifolds de�ned in the literature, the �rst one in [10℄ and the followingin [38℄ and [39℄. The �rst a.i.m. of this family is the graphM0 of the fun
tion
Φ0 : PH →QH, that satis�es the relation

−ν∆Φ0 (X) + QB(X) = Qf ,where X ∈ PH. Thus Φ0 (X) is expli
itly given by
Φ0 (X) = (−ν∆)−1 (Qf − QB(X)) . (3.17)
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onne
tion between this de�nition and the de�nition (3.12) of q0 isobvious: the set of points {p(t) + q0(t); t ≥ 0} lies on M0. The next a.i.m.de�ned in [38℄ is M1, the graph of the fun
tion Φ1 : PH →QH, given by thesolution of the problem
−ν∆Φ1 (X) + QB(X) + QB(X,Φ0 (X)) + QB(Φ0 (X) ,X) = Qf ,that is

Φ1(X) = − (ν∆)−1 [Qf − QB(X) − QB(X,Φ0 (X)) − QB(Φ0 (X) ,X)] .(3.18)The relation with the de�nition (3.13) of the 
orresponding fun
tion q1 is
lear.For j ≥ 2, inspired by the de�nition (3.15) of qj , the a.i.m. Mj is de�nedas the graph of Φj : PH →QH, with Φj (X) the solution of
−ν∆Φj (X) + QB(X) + QB(X,Φj−1 (X)) + QB(Φj−1 (X) ,X)+

+QB(Φj−2 (X)) + DΦj−2 (X) Γj−2 (X) = Qf ,where DΦj−2 (X) Γj−2 (X) is the Fré
het di�erential of Φj−2 (X), applied to
Γj−2 (X) = ν∆X− PB (X + Φj−2 (X)) + Pf . (3.19)Hen
e

Φj (X) = − (ν∆)−1 [Qf − QB (X) − QB (X,Φj−1 (X))− (3.20)
−QB (Φj−1 (X) ,X) − QB(Φj−2 (X)) − DΦj−2 (X) Γj−2 (X)] .The inequalities (3.16) allow us to estimate the distan
e between the traje
-tories of the problem and the a.i.m.s. This is immediate for the �rst twoa.i.m.s, sin
e for j = 0, 1, we have uj(t) ∈ Mj , and thus
distH (u(t), Mj) ≤ dist (u(t),uj(t)) = |q(t) − qj(t)| .For the a.i.m.s Mj with j > 1, some extra work is ne
essary, sin
e

DΦj−2 (p(t)) Γj−2 (p (t)) is only an approximation of [qj−2(p (t))]′ . How-ever, in [38℄ and [39℄ it is proved that
distH (u (t) ,Mj) ≤

_
κjL

(1+j)/2δ(3+j)/2.



approximate inertial manifolds 1473.5. Nonlinear Galerkin method for the Navier Stokes equa-tionsThe nonlinear Galerkin method was �rst presented in [29℄. It is de�ned for a
lass of equations that 
ontains the Navier-Stokes equations as a parti
ular
ase, i.e. an equation of the type (1.1) with
R(u) = B(u) +Cu,where B(u) = B(u, u), B(., .) is a bilinear operator having essentially theproperties of B and C is a linear operator. It is assumed that A + C ispositive in H and C is bounded from V = D(A1/2) to H.We write the method for the Navier-Stokes problem we 
onsidered here (thatis we take A = −ν∆, B = B, C = 0). It 
onsists in approximating in theP proje
tion of the equation, the fun
tion q with help of the �rst a.i.m. ofthe family des
ribed above. That is, instead of the Galerkin equation, theequation

dp

dt
− ν∆p + P [B(p) + B(p,Φ0(p)) + B(Φ0(p),p)] = Pf , (3.21)with the initial 
ondition

p(0) = Pu0,is 
onsidered, where Φ0 is given by (3.17) (the notations are adapted toours). We see from the term PB(p + Φ0(p)) the term PB(Φ0(p),Φ0(p))is missing. This is be
ause it is of lower order than the pre
eding terms.As for the equation of Φ0, this is taken in [29℄ as
Φ0 (p) = (−ν∆)−1 Q2m [f − B(p)] , (3.22)where Q2m is the proje
tion operator de�ned as Q2m = QP2m, where P2mis the proje
tor on the spa
e spanned by the eigenfun
tions 
orresponding tothe eigenvalues in Γ2m (of λj1,j2 having 0 ≤ j1, j2 ≤ 2m). This is be
ausethe spa
e QH is in�nite dimensional and a trun
ation must be made (atleast for f , sin
e for periodi
 boundary 
onditions, if X ∈ PH then B(X) isanyway in P2mH).Let us denote, together with the authors of [29℄, the solution of (3.21) by

um. It is proved in the paper we refer at, that, if u0 ∈ H then um →
m→∞

u in L2 (0, T ;V) , um →
m→∞

u in Lp (0, T ;H) , strongly (for any T > 0, p ≥
1) and um →

m→∞
u in L∞ (R+;H) weak-star.
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m→∞

u in L2 (0, T ;D(A)) , um →
m→∞

u in Lp (0, T ;V) ,strongly (for any T > 0, p ≥ 1) and um →
m→∞

u in L∞ (R+;V) weak-star.As an alternative nonlinear Galerkin method, that starting from the equation(similar to (2.2))
dp

dt
− ν∆p + PB(p + Φ0(p)) = Pf , (3.23)with Φ0 de�ned by (3.22) is also given in [29℄. Convergen
e results similarto those asserted above are proved.In [7℄ an estimate of the error of the method is given

|u(t)− [um(t) + Φ0(um(t))]| ≤ C(t)δ3/2.In [6℄ the NL Galerkin method is improved by using more a

urate a.i.m.s.The equation that provides the approximate solution is (we write it here alsofor the N-S equations)
dp

dt
− ν∆p + PB(p + Φj(p))] = Pf , (3.24)where Φj is the the fun
tion whose graph is the 
orresponding a.i.m. (similarto that de�ned in (3.20), but slightly di�erent). Let us denote by um,jthe solution of (3.24) and by vm,j = um,j + Φj(um,j). It is proved in [6℄that if u0 ∈ V, both um,j and vm,j 
onverge to u (when m → ∞) in

L2 (0, T ;D(A)) and in Lp (0, T ;V) , strongly (for all p ≥ 1 and all T > 0),and in L∞ (R+;V) weak-star. It is also proved that, for a �x j, zm,j =
Φj(um) 
onverges (when m → ∞) to 0 in L∞ (R+;V) and L2 (0, T ;D(A))strongly for any T > 0. In [7℄ some estimates for the error are obtained. Morepre
isely, for the NSE, it is shown that (with our numbering of the a.i.m.s)

|u(t) − vm,j(t)| ≤ KjL
(j+3)/2
m δ(j+3)/2.3.6. Post-pro
essed Galerkin method for the Navier-StokesequationsThe ideas on whi
h the post-pro
essed Galerkin method relies are exposed in2.3. In [14℄ a general equation is 
onsidered and the Navier-Stokes equation
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ular 
ase. The solution pG of the Galerkin equation,
dp

dt
− ν∆p + PB(p) = Pf , (3.25)

p(0) = Pu0,is post-pro
essed. This means, at a 
ertain moment T (the end of the timeinterval on whi
h the integration of (3.25) was performed) the image of pGon the �rst a.i.m. M0, that is Φ0 (pG(T )) , is 
omputed and is added to
pG (T ) . It is proved that, if f ∈ H, then

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ Cδ5/4. (3.26)In a subsequent paper, [15℄, the same authors prove another estimate for theNavier-Stokes problem. More exa
tly, they prove that, for f ∈H,

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ CL2δ3/2. (3.27)Estimate (3.27) is not ne
essarily better than (3.26), sin
e the 
oe�
ient L2appears (as before, L = 1 + ln(2m2)). In [32℄ the method is improved. Thatpaper 
onsiders a rea
tion-di�usion equation, but the algorithm works forthe Navier-Stokes equations as well. Instead of the Galerkin equations, theNL Galerkin equations (3.24) are 
onsidered. The solution um,j(t) of theseequations is post-pro
essed, i.e. the sum
um,j(T ) + Φj+1 (um,j(T ))is 
onsidered and proposed as an approximate solution. The estimate of theerror is made in [32℄ for the rea
tion-di�usion equation, hen
e is not relevantfor the Navier-Stokes equation.3.7. The repeatedly adjusted and post-pro
essed Galerkinmethod for the Navier-Stokes equationWe adapt the general method presented in 2.4 to the Navier-Stokes equations.Level 0. We de�ne the �rst step of this level as the 
lassi
al Galerkinmethod. Let us 
onsider the Cau
hy problem

dp

dt
− ν∆p + PB (p) = Pf , (3.28)

p(0) = Pu0.
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q̃0(t) = Φ0 (pG (t)) .In the implementation of the method, the equation (3.28) must be numeri-
ally integrated. We remark that the values of q̃0(t) must be 
omputed inevery point of the time mesh used in the 
ourse of the numeri
al integration,sin
e they will be used at the next level of the method.We de�ne the fun
tion

ũ0 (t) = pG (t) + q̃0(t). (3.29)This preliminary level di�ers from the PP Galerkin method only in the post-pro
essing part, in the fa
t that we 
ompute q̃0(t) at any moment of timeand not only at the end of the time interval on whi
h (3.28) is integrated.Level 1. Now we 
onsider the problem
dp

dt
− ν∆p + PB (p+q̃0) = Pf , (3.30)

p(0) = Pu0,with q̃0(t) 
omputed at the pre
eding step. Sin
e q̃0(t) is already known, thisequation is not more di�
ult to integrate than the simple Galerkin equationatta
hed to the Navier-Stokes equation. It is an adjusted Galerkin equationsin
e the nonlinear term is adjusted by adding to p(t) the term q̃0(t) thatapproximates q(t) better than 0 does. We denote by p̃0 (t) the solution ofproblem (3.30). The 
omputation of the error showed that p̃0 is a betterapproximation of p than pG (see the 
omments in 3.8).Then we de�ne
q̃1(t) = −(ν△)−1 [Qf − QB (p̃0(t)) − QB (p̃0(t), q̃0(t))−

−QB (q̃0(t), p̃0(t))]The approximate solution will be de�ned at this level as
ũ1 (t) = p̃0 (t) + q̃1(t). (3.31)This fun
tion is an approximation of u1 that de�nes the se
ond indu
edtraje
tories.
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onstru
ted the fun
tions q̃j−2, q̃j−1(t).We 
onsider the adjusted Galerkin problem
dp

dt
− ν∆p + PB (p+q̃j−1) = Pf , (3.32)

p(0) = Pu0,and denote by p̃j−1 (t) its solution. Then we set
q̃j (t) = (−ν∆)−1

[
Qf − QB(p̃j−1 (t)) − QB(p̃j−1 (t) , q̃j−1 (t))− (3.33)

−QB(q̃j−1 (t) , p̃j−1 (t)) − QB(q̃j−2 (t) , q̃j−2 (t)) − q̃ ′
j−2 (t)

]
.We de�ne the approximate solution at this level as

ũj(t) = p̃j−1 (t) + q̃j(t).We remark that ũj (t) is an approximation of uj (t) (that de�nes a indu
edtraje
tory of the family 
onstru
ted in [38℄).We must say that, at the last level, as in the NL PP Galerkin method, wemay 
orre
t p̃j−1 by adding q̃j only at some moments of interest (the �nalpostpro
essing step).We also must remark that, when the method is numeri
ally implemented,the proje
tor Q must be repla
ed by a �nite dimensional proje
tor as, e.g.
Q2m de�ned in Se
tion 3.5.3.8. The error of the R-APP Galerkin methodIt is not the purpose of this work to present the expli
it 
al
ulus of the errorof the methods presented. We proved in [20℄ that

|p(t) − p̃j(t)| ≤ Cδ5/4+j/2and
|q(t) − q̃j(t)| ≤ Cδ3/2+j/2,where C depends on the data of the problem: Ω, f , ν, λ1, and on t but noton m.With other methods, other estimates may be obtained. If we start fromestimates of [15℄ of |p (t) − pG (t)| , where pG (t) is, as before, the 
lassi
alGalerkin approximation of the solution, that is
|p (t) − pG (t)| ≤ C ′L2δ3/2,
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essive solutions by afa
tor of δ1/4 seems to be obtained. However, the appearan
e of the fa
tor
L2 (L = 1 + ln(2m2)) diminishes this su

ess. A very 
areful analysis of the
onstants C, C ′ should be performed in order to see what approa
h is better.Anyway, the R-APP Galerkin provides approximates solutions as a

urateas those provided by the NL PP Galerkin method.3.9. R-APP Galerkin method 
ompared to the high-ordera

ura
y NLPP Galerkin methodThe R-APP Galerkin method is intended to bring some simpli�
ations to theNL Galerkin methods that use high a

ura
y approximate inertial manifolds.Hen
e this method makes sense only if more of its levels are passed through.The simpli�
ations 
ome from the following fa
ts:a) the use of some already known fun
tions (the q̃js) for the adjustment ofthe Galerkin equation, makes the equations for the approximations of p tohave essentially the same stru
ture as the Galerkin equation; this imply sim-pli�
ations of the algorithms for the numeri
al integration of these equations,
ompared to the 
orresponding equations of the NL Galerkin equations;b) the use of the "approximate indu
ed traje
tories" instead of the ap-proximate inertial manifolds makes some 
omputations easier, be
ause, inthe fun
tion q̃j the term q̃′

j−2 appears instead of the 
orresponding term
DΦj−2 (X) Γj−2 (X) of the a.i.m. Φj; the term q̃′

j−2 
an be approximatedby the numeri
al derivative (sin
e we know its values in the points of thetime mesh);
) when we pro
eed to Level j of the method, all we need are the values of
q̃j−2 and q̃j−1, while all values of p̃k, k < j − 1 and q̃k, k < j − 2 may beerased from the memory of the 
omputer; this must be 
ompared to the NLGalerkin method that uses Mj , where in the 
ourse of a single numeri
alintegration one must handle the values of all fun
tions Φk, k ≤ j, and allthese must be stored in the memory of the 
omputer.In order to 
ompare the R-APP Galerkin method with the NL PP Galerkinmethod, we must look at the levels j with j ≥ 2.Let us analyze in parallel the �rst stage of Level 3 (that delivers us thefun
tion p̃2) of our method and the 
orresponding NL Galerkin method (thatuses the a.i.m. M2). It is easier to follow our reasoning on this parti
ular
ase than than on the general one.
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lear as possible, we des
ribe the 
ompu-tations ne
essary for the simple Euler integration method. Of 
ourse, moreelaborated algorithms must be used, but the di�
ulties added by these shouldbe evaluated for ea
h spe
i�
 algorithm individually.In order to pro
eed, we 
onsider a time-mesh 0 = t0 < t1 < t2 < ... < tk <
... < tN = T on the time integration interval [0, T ].Let us make the notations

ΓG (p) = Pf + ν∆p− PB (p)

Γ̃j (p) = Pf + ν∆p− PB (p+q̃j) .R-APP Galerkin method, at the third level, requires the following 
om-putations for the determination of p̃2(t):at Level 0 � 
omputation of pG(tk), k = 1, ...,N, by numeri
al integration ofeq. (3.28) (this is equivalent with the 
omputation of ΓG (pG(tk−1))); then
omputation of q̃0(tk);at Level 1 � 
omputation of p̃0(tk), k = 1, ...,N, by numeri
al integrationof eq. (3.30) (this is equivalent with the 
omputation of Γ̃0 (p̃(tk−1))); then
omputation of q̃1(tk);at Level 2 � 
omputation of p̃1(tk), k = 1, ...,N, by numeri
al integra-tion of eq. (3.32) with j = 2, (this is equivalent with the 
omputation of
Γ̃1 (p̃1(tk−1))), then 
omputation of q̃2(tk);at Level 3 � 
omputation of p̃2(tk), by numeri
al integration of eq. (3.32)with j = 3 (this is equivalent with the 
omputation of Γ̃2 (p̃2(tk−1))).NL Galerkin method that uses M2, presented in [29℄, 
onsists in theintegration of the system of ODEs

dp

dt
− ν∆p + P [B(p + Φ2(p))] = Pf , (3.34)

p (0) = Pu0,where the fun
tion Φ2 is given by
−ν∆Φ2(p) + Q2mB (p + Φ1(p))+q1

1 = Q2mf , (3.35)
−ν∆q1

1 + Q2m

[
B(
(
p1

0, p + Φ1(p)
)
+B

(
p + Φ1(p),p1

0

)]
= 0,

p1
0 − ν∆p + P [B(p + Φ1(p))] = Pf ,

−ν∆Φ1(p) + Q2mB(p + Φ0(p)) = Q2mf ,

−ν∆Φ0(p) + Q2mB(p) = Q2mf .



154 An
a-Veroni
a IonWe reprodu
ed here the de�nition of M2 from [29℄, but we adapted thenotations from [29℄ to our notations and we started 
ounting a.i.m.s with 0,as in [38℄, while in [29℄ this 
ount begins with 1.In the 
ourse of the numeri
al integration, with p(tk−1), k = 1, ...,N, alreadydetermined, in order to �nd p(tk), we have to 
ompute:
Φ0(p (tk−1)), Φ1(p (tk−1)), Γ1 (p (tk−1)) (for the 
al
ulation of p1

0 (tk) , with
Γ1 given by (3.19), j = 3), q1

1 (tk−1) , Φ2(p (tk−1)), and �nally Γ2 (p (tk−1)) .This will yield p(tk).Now we 
an 
ompare the two methods from the point of view of the 
ompu-tations involved. We have the following:� 
omputation of q̃0(tj) is equivalent to that of Φ0(p (tj));� 
omputation of q̃1(tj) is equivalent to that of Φ1(p (tj));� 
omputation of Γ̃1 (p̃1 (tj)) is equivalent to that of Γ1 (p (tj)) ;� 
omputation of q̃2(tj) is equivalent to that of Φ2(p (tj)), assuming that
q1

1 (tj) is already 
omputed;� �nally we observe that the 
omputation of pG(tj) and p̃0(tj) (from R-APPGalerkin method) together, involve less 
omputations than that of q1
1(tj)(from the NL Galerkin method).This is be
ause in 
omputing pG(tj) we have to 
ompute a number of 4m2 +

2m proje
tions of the term ΓG (pG(tj−1)) and in 
omputing p̃0(tj) we have to
ompute 4m2 + 2m proje
tions of the term Γ̃0 (p̃(tj−1)), while in 
omputing
q1

1 (tj) we have to 
ompute 12m2 + 6m proje
tions.At the following level, indu
ed traje
tories, respe
tively a.i.m.s, of higherorder are used. The de�nition of these involves approximations of the deriva-tives similar to the above. Hen
e, the di�eren
e in the amounts of 
ompu-tations between the two methods in
reases with the order of the method.It follows that the R-APP Galerkin method involves a smaller amount of
omputations than the NL Galerkin method.The 
omputational e�ort involved in the �nal post-pro
essing part is eased inthe R-APP Galerkin method by the fa
t that, by using approximations of theindu
ed traje
tories we 
an approximate dire
tly (by numeri
al derivative)the fun
tion q′, while in the NL PP Galerkin method it is approximatedby the di�erential DΦj−2 (X) Γj−2 (X). In 
on
lusion, the R-APP Galerkinmethod brings simpli�
ations to the NL PP Galerkin method relying onhigher a

ura
y a.i.m.s.
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tion-di�usionproblemWe 
onsider a rea
tion-di�usion (RD) equation of the form
∂u

∂t
−D (∆u−u) + g(u) = f, (4.1)where u is a real-valued fun
tion, u = u(t,x), x ∈ Ω = (0, l)× (0, l), l > 0,

D is the di�usion 
oe�
ient and the fun
tion g is a polynomial fun
tion ofodd degree. In order to simplify the following 
onsiderations we take here apolynomial fun
tion of degree 3,
g(u) = b0 + b1u+ b2u

2 + b3u
3, bi ∈ R, b3 > 0.We take f∈L2 (Ω) . To the equation (4.1) we asso
iate an initial 
ondition

u(0) = u0 (4.2)and the boundary 
ondition
∂u

∂n

∣∣∣∣
∂Ω

= 0. (4.3)The phase spa
e is here H =L2(Ω). We 
onsider also the spa
e V = H1 (Ω)with the usual norm.The operator A = −∆ + I is a positive-de�nite, self�adjoint, with 
ompa
tinverse operator with de�nition domain D(A) = H2 (Ω). The following exis-ten
e result may be obtained by the Galerkin-Faedo method [37℄, [34℄Theorem 4.1 If u0 ∈ H, then there exists a unique solution u ∈ C (R+; H) ,
u ∈ L2(0, T ; V) ∩ L2p(0, T ;L2p(Ω)) where p > 1, T > 0. If, more than that,
u0 ∈ V, then u ∈ C([0, T ); V) ∩ L2(0, T ; H2 (Ω)).The semi-dynami
al system {S(t)}t≥0 , generated by (4.1) is proved to bedissipative in H and V [37℄, [34℄. Hen
e there is a ρ0 > 0 (respe
tively a
ρ1 > 0), su
h that for every R > 0, there is a moment t0(R) (respe
tively
t1(R) > t0(R)) with the property that for every u0∈ H with |u0| ≤ R, wehave |S(t)u0| < ρ0, for t ≥ t0(R) (respe
tively ‖S(t)u0‖ < ρ1, for t ≥ t1(R)).
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eThe eigenvalues of A are
λj,k =

π2

l2
[j2 + k2] + 1and the 
orresponding eigenfun
tions are

wj,k =

√
αjαk

l
cos

jπx

l
cos

kπy

l
,where αj = 1 for j = 0 and αj = 2 for j 6= 0.As for the Navier-Stokes equations, we 
onsider the set Γm of eigenvalues

λj1,j2 with 0 ≤ j1, j2 ≤ m. We make the notations
Λ = λm+1,0 = λ0,m+1,

δ =
1

Λ
.We also 
onsider the spa
e spanned by the eigenfun
tions 
orresponding tothese eigenvalues and we denote by P the proje
tor on this spa
e. We set

Q = I − P, where I is the identity on H, p = Pu, q = Qu.We proje
t the equation (4.1) by using these proje
tors, to obtain
dp

dt
−D (∆p−p) + Pg(p + q) = Pf,

dq

dt
−D (∆q−q) +Qg(p + q) = Qf.It 
an be proved (e.g. [4℄) that

|q| ≤ Cδfor t great enough, where the 
oe�
ient C depends on the data of the prob-lem.4.2. Indu
ed traje
tories for the rea
tion-di�usion problemIn 
onstru
ting a family of indu
ed traje
tories for the rea
tion-di�usionproblem, we try an asymptoti
 analysis of the RD equations. We developthe fun
tion q in series of powers of δ
q = δ

(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
. (4.4)



approximate inertial manifolds 157We have
g(p+ q) = g(p) + g′(p)q +

1

2
g′′(p)q2 +

1

6
g′′′(p)q3 =

= g(p) + g′(p)δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
+

+
1

2
g′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]2
+

+
1

6
g′′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]3
,hen
e, by ordering the terms after the powers of δ,

g(p + q) = g(p) + δg′(p)k0+ (4.5)
+ δ2

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3
[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4
[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... .Then, by substituting (4.4) in the equation for q, we obtain

δk′0 + δ2k′1 + δ3k′2 + δ4k′3 + ...

−D
[
δ∆k0 + δ2∆k1 + δ3∆k2 + δ4∆k3 + δ5∆k4 + ...

]
+

+D
[
δk0 + δ2k1 + δ3k2 + δ4k3 + δ5k4 + ...

]
+

+Qg(p) + δQg′(p)k0 + δ2Q

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3Q

[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4Q

[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... = Qf.In ordering the terms in (4.5) we simply performed an algebrai
 
al
ulus, andtreated the right-hand side as a polynomial in δ, but when we look for theterms of the same order of magnitude, a 
areful analysis should be performed.Sin
e kj(t) ∈ QH, we have

|∆kj| ≥ Λ |kj | =
1

δ
|kj | (4.6)and it follows that the term δj+1ν∆kj is of the order of j. We also mustevaluate 
arefully the terms 
ontaining produ
ts or powers of kjs. E.g., forthe term 1

2g
′′(p)k2

0 we have the estimates
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∣∣∣∣
1

2
g′′(p)k2

0

∣∣∣∣ =
(∫

Ω

(
g′′(p)

)2
k4
0dx

)1/2

≤
(∫

Ω

(
g′′(p)

)4
dx

)1/4(∫

Ω
k8
0dx

)1/4

.Sobolev embedding theorem gives
‖u‖Lp(Ω) ≤ C(p, s) ‖u‖s ,with 1/p = 1/2 − s/2, s < 1, and, sin
e

‖u‖s ≤ C ‖u‖1 ,we obtain
(∫

Ω
k8
0dx

)1/4

= ‖k0‖2
L8(Ω) ≤ C2(8,

3

4
) ‖k0‖2

3/4 ≤ C2(8,
3

4
) ‖k0‖2

1 .In a similar way we see that (∫Ω (g′′(p))4 dx
)1/4 is a fun
tion of ρ0 and ρ1.This together with inequality ‖k0‖1 ≥

(
1
δ

)1/2 |k0| show that all we 
an sayabout the term 1
2δ

2g′′(p)k2
0 is that it is of order δ and we have to 
onsiderit together with the terms of the same order. Similar reasonings will be
onsidered impli
it for the other terms 
ontaining produ
ts or powers of kjs.Thus we obtain the relations:

−δD∆k0 +Qg(p) = Qf,

δk′0 − δ2D∆k1 + δDk0 + δQg′(p)k0 +
1

2
δ2Qg′′(p)k2

0 = 0,

δ2k′1 − δ3D∆k2 + δ2Dk1 + δ2Qg′(p)k1+

+
1

2
δ3Qg′′(p)2k0k1 +

1

6
δ3Qg′′′(p)k3

0 = 0,

δ3k′2 − δ4D∆k3 + δ3Dk2 + δ3Qg′(p)k2+

1

2
δ4Qg′′(p)

(
k2
1 + 2k0k2

)
+

1

6
δ4Qg′′′(p)3k2

0k1 = 0,...Now we de�ne the fun
tions
qj = δk0 + δ2k1 + δ3k2 + δ4k3 + ...+ δj+1kj .



approximate inertial manifolds 159By summing the equations for kj , we obtain equations for qj :
−D∆q0 +Qg(p) = Qf, (4.7)

q′0 −D∆q1 +Dq0 +Qg (p) +Qg′(p)q0 +
1

2
Qg′′(p)q20 = Qf,

q′1 −D∆q2 +Dq1 +Qg (p) +Qg′ (p) q1+

1

2
Qg′′(p)q20 +

1

2
Qg′′(p)2q0 (q1 − q0) +

1

6
Qg′′′(p)q30 = Qf,

q′2 −D∆q3 +Dq2 +Qg (p) +Qg′ (p) q2+

1

2
Qg′′(p)q21 +

1

6
Qg′′′(p)3q20 (q1 − q0) = Qf,...We see that the nonlinearity of the polynomial makes the equations neither�beautiful�, nor with a 
lear stru
ture. However, we 
onsider the fun
tions

uj(t) = p(t) + qj(t),and de�ne the indu
ed traje
tories of the problem as the sets {uj(t); t ≥ 0} .These will be used to de�ne the R-APP method for the rea
tion-di�usionequations.4.3. Approximate inertial manifolds for the rea
tion-di�usionequationIn the NL Galerkin method and in the NL PP Galerkin method des
ribed inliterature [32℄, the following a.i.m.s are de�ned for the RD equation: for any
j ≥ 0, Mj is the graph of the fun
tion Φj : PH →QH, des
ribed below

DAΦ0(p) +Qg(p) = Qf, (4.8)
q1j−1 +DAΦj(p) +Qg (p+ Φj−1(p)) = Qf, j ≥ 1. (4.9)Here q1j−1 = DΦj−1(p)Γj−1(p), with DΦj−1(p) the Fré
het di�erential of

Φj−1 
omputed in p and applied to Γj−1(p) = Pf −DAp−Pg(p+Φj−1(p)).If we would want to 
onstru
t a family of a.i.m.s M̃j starting from theindu
ed traje
tories we de�ned above (as is done in [38℄ for the Navier-Stokes equation), the �rst a.i.m. of the family, M̃0, would be identi
al with
M0 sin
e the fun
tion Φ̃0 de�ning it would be identi
al to Φ0 of (4.8), as theequation for q0(t) shows.
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a IonThe se
ond a.i.m., M̃1, would be quite di�erent from M1 above. That is, itwould be the graph of the fun
tion Φ̃1 de�ned by the equation
DQΦ̃0(p)Γ0(p) −D∆Φ̃1 (p) +DΦ̃0(p) +Qg (p)+

+Qg′(p)Φ̃0(p)+
1
2Qg

′′(p)Φ̃0(p)
2 = Qf,

(4.10)with Γ0(p) = Pf + D (∆p−p) − Pg(p + Φ̃0(p)). We see that the di�eren
ebetween this equation and that for Φ1, that we write expli
itly below
DΦ0(p)Γ0(p) −D∆Φ1(p) +DΦ1(p) +Qg (p+ Φ0(p)) = Qf, (4.11)
onsists essentially in the presen
e of the term 1

6g
′′′(p)Φ0(p)

3 in this lat-ter equation. If the polynomial g would be of higher degree, the di�eren
ebetween the two families of a.i.m.s, that de�ned starting from the indu
edtraje
tories and the one de�ned by the relations (4.8) and (4.9) would in-
rease. However, for the sake of the elegan
e of the de�nitions, (4.11) maybe taken as the equation for Φ1(p) even if it does not spring from an a

urateasymptoti
 analysis. The presen
e of the higher order terms does not a�e
tthe order of magnitude of the distan
e between the exa
t solution of the R-Dequation and the �rst a.i.m. [21℄.4.4. �Indu
ed traje
tories� inspired by a.i.m.sFor the sake of the simpli
ity of the de�nitions and having in mind somesimpli�
ations of the 
omputations in the R-APP Galerkin method below,we 
an 
hoose an alternate de�nition for the indu
ed traje
tories of the R-Dproblem, inspired from the de�nitions of the a.i.m. of [32℄. That is, we de�nethe fun
tions q̃j through the relations
DAq̃0 +Qg(p) = Qf, (4.12)

q̃ ′
j−1 +DAq̃j +Qg (p+ q̃j−1) = Qf, j ≥ 1,where p(t) = Pu(t). The fun
tions̃

uj = p+ q̃jde�ne the new �indu
ed traje
tories� {ũj(t); t ≥ 0}.



approximate inertial manifolds 1614.5. The NL Galerkin method for the RDEThe NL Galerkin method for RDE 
onsists in integrating the di�erentialequation:
dp

dt
+DAu+ g(p + Φ0(p)) = Pf, (4.13)with the initial 
ondition

p(0) = Pu0. (4.14)If we denote by ym its solution, the approximate solution is taken as
ym(t) + Φ0(ym(t)).In [32℄ it is asserted that, for large enough t,

|u(t) − (ym(t) + Φ0(ym(t)))| ≤ Cδ2.Improved NL Galerkin methods make use of the higher a

ura
y a.i.m.s,
Mj , j ≥ 1. That is an equation of the type

dp

dt
+DAu+ g(p + Φj(p)) = Pf, (4.15)with the initial 
ondition (4.14) is solved, let ym,j be its solution. The ap-proximate solution of the RDE is taken as:
ym,j(t) + Φj(ym,j(t)).In [32℄ it is proved that the H norm of the error of this approximate solutionis of the order of C(t)δj+2.4.6. The PP NL Galerkin method for the RDEAlso in [32℄ the NL Galerkin method is post-pro
essed, i.e. to the solution

ym,j of the NL Galerkin problem, 
onsidered in T, the quantity Φj+1(ym,j(T ))is added and
ym,j(T ) + Φj+1(ym,j(T ))is taken as the approximate solution in T . It is proved in [32℄ that

|u(t) − (ym,j(t) + Φj+1(ym,j(t)))| ≤ C lnmδj+3.
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a Ion4.7. The R-APP Galerkin method for the RDEWe des
ribe the R-APP Galerkin method for the rea
tion-di�usion equation.In [21℄ we presented a variant of our method that has as initial level a NLGalerkin method (this was meant to skip a numeri
al integration - that ofthe Galerkin problem). Let us denote generi
ally
qj = Fj(Qf, p, q0, q1, ..., qj−1),either the fun
tions given by the set of relations (4.7) or the fun
tions q̃jgiven by (4.12). We see that in this latter 
ase, Fj , j ≥ 1 a
tually dependsonly on Qf, p, qj−1, q
′
j−1.Level 0. We 
onsider the NL Galerkin problem
dp

dt
−D (∆p−p) + Pg(p) = Pf, (4.16)

p(0) = Pu0and denote it's solution by pG.Then we 
ompute, at every moment of time
q̃0 (t) = F0(Qf, pG (t)).When the numeri
al implementation of the method is a
tually done, this isequivalent to the 
omputation of q1 at the nodes of the time mesh, and q′0 (ti)is approximated by (q0(ti) − q0(ti−1))/(ti − ti−1). The approximate solutionis

u0 = pG + q̃0.Level 1. We 
onsider the equation
dp

dt
−D (∆p−p) + Pg(p + q̃0) = Pf,and denote its solution by p̃0. Then we 
ompute
q̃1 (t) = F1(Qf, p̃0 (t) , q̃0 (t)).The approximate solution at this level is de�ned as

ũj = p̃j−1 + q̃j.



approximate inertial manifolds 163Level j > 1. We assume q̃0, q̃1, ..., q̃j−1 were su

essively 
onstru
ted. We
onsider the equation
dp

dt
−D (∆p−p) + Pg(p + q̃j−1) = Pf,and denote its solution by p̃j−1. Then we 
ompute

q̃j (t) = Fj(Qf, p̃j−1 (t) , q̃0 (t) , q̃1(t), ..., q̃j−1(t), ).The approximate solution at this level is de�ned as
ũj = p̃j−1 + q̃j.Remarks: 1. While the equations for pj are equivalent to a �nite, 
onstantnumber, of (di�erential) equations, the equations for qj are equivalent to asystem of equations having (if Qf admits non-null proje
tions on an in�nitenumber of eigenfun
tions) a in�nite number of equations.Hen
e a trun
ation must be done. In [6℄ the trun
ation is made by using aproje
tor, denoted P2m, that is the analogous of P but with 2m instead of m.If Qf would have nonzero proje
tions only on a �nite number of eigenfun
-tions, then qj would also be �nite dimensional. In this situation, we 
ouldalso 
ompute the dimension of qj, by using the 
onsequen
es of the trigono-metri
al relation 2 cosα cos β = cos (α+ β) + cos (α− β) , on the produ
tsof eigenfun
tions. Then, in order to not a�e
t the estimate of the error pre-di
ted by our method, we 
ould take a trun
ation of Qf, let us denote it by

Qjf su
h that ∣∣∆−1 (Qf −Qjf)
∣∣ is less that the error of the level j.2. Both families of {qj}j≥0 de�ned above present advantages and disadvan-tages one relative to the other. The �rst family, de�ned in (4.7), has theadvantage of demanding a smaller amount of 
omputations sin
e in (4.7)fewer terms than in (4.12) are taken into a

ount at a 
ertain level. Itpresents the disadvantage of re
alling all qi with i < j, at a 
ertain level j.The se
ond family of approximations of q, given by (4.12), re
alls at a 
ertainlevel j, only the values of qj−1. This is important from the point of view oforganizing the memory of the 
omputer in the numeri
al implementation ofthe method. However, this se
ond family takes into a

ount more terms inthe polynomial g. This in
reases a lot the 
omputations when g has a highdegree.
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an prove that both families of indu
edtraje
tories de�ned above lead to the same orders of error, for every level ofthe R-APP method, as the 
orresponding NL PP Galerkin method. That is,we 
an prove [22℄ that at the level j + 1 of our method
|p− p̃j| ≤ Cj (lnm ) δj+3and
|q − q̃j+1| ≤ Kjδ

j+3,and thus
|u− ũj+1| ≤ [Cj (lnm ) +Kj ] δ

j+3.4.9. Comments on the methodThe 
omparison of the 
omputational 
ost of the R-APP Galerkin methodto that of the NL Galerkin method is similar to that we performed for theNavier-Stokes equations. The 
on
lusions are the same: the R-APP Galerkinmethod is more e
onomi
 than the NL PP Galerkin method. The di�eren
ein the 
omputational 
ost between the two methods in
reases with their level.Referen
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170 Stelian Ion1. Introdu
tionWe report some mathemati
al results on the numeri
al approximation of a
lass of nonlinear di�usion problems. We are 
on
erned with the 
onve
tion-di�usion-rea
tion equation (CDRE)
∂b(u)

∂t
− div (κ(u)∇u+ f(u)) = g(t, x, u), (1.1)and generalized porous medium equation (GPME),

∂u

∂t
−△φ(u) = r(u), (1.2)where div and ∇ are taken with respe
t to x ∈ Rn; △ = div∇ is the Lapla
eoperator and u(t, x) is the s
alar unknown fun
tion.There are some reasons to work with two di�erent equations. The bothequations quantify di�usion phenomena but in di�erent manner. The dif-fusion �ux is modeled by κ(u)∇u in the CDRE and by gradφ(u) in theGPME. In some 
ases the two forms 
an be inter
hanged but in other 
asesis not possible. For example, if κ(·) is an integrable fun
tion one 
an put

φ(u) =
∫ u

κ(s)ds. Although in almost any physi
aly interesting 
ases thistransformation 
an be done the 
al
ulation of the fun
tion φ, espe
ially whenone deals with numeri
al approximation, 
an be a hard problem. In su
h a
ase is re
omandable to use the CDRE form. On the other hand if φ(·) isa di�erentiable fun
tion one has κ(u) = φ′(u). If φ(·) is onlya 
ontinuousfun
tion it is not posible to evaluate the di�usion 
oe�
ient.The outline of the paper follows.In Se
tion 2 we delineate some me
hani
al problems and we will make 
om-ments on the 
onstitutive fun
tions.In Se
tion 3 we present the essential fa
ts relative to solvability of the Cau
hyproblem. We revise the 
on
epts of weak solution and weak entropy solutionand we will present a 
omparison 
riterion.Se
tion 4 is devoted to the numeri
al approximation.The numeri
al solution of the Cau
hy problem is obtained in two steps. Inthe �rst step a system of ordinary di�erential equation is set up and in these
ond step this ODE system is numeri
aly integrated.The mathemati
al properties of the ODE model are strongly determined bythe numeri
al di�usion �ux and the numeri
al 
onve
tive �ux. We will de�nea numeri
al approximation of the di�usion �ux and a numeri
al approxima-tion of the 
onve
tive �ux that lead to a quasimonotone ODE system. Using
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esses 171this property we will show that there exists a 
omparison prin
iple and wewill provide the bounds for the solutions of the dis
rete model that are inde-pendent of the mesh size of triangulation.In Se
tion 5 we give two numeri
al algorithms to solve GPME equationand Ri
hards' equation respe
tively. To integrate the ODE system whi
happroximate the GPME equation we will use impli
it Euler method and wewe will setup an iterative algorithm to solve the system of nonlinear algebrai
equation that results.To solve Ri
hards' equation we use an adaptive time mar
hing s
heme andan inexa
t Newton type method to solve nonlinear equation.2. Physi
al ModelsThe mathemati
al models (1.1) and (1.2) 
over a wide range of physi
alphenomena su
h that: heat transfer, in�ltration of water through porousmedia, transport of 
ontaminant in porous media, the �ow of the gas throughporous media, plasma radiation, to remaind a few.The simplest example of the model problem (1.1) is the linear 
alori
 equa-tion:
∂u

∂t
= div(κ∇u), (2.1)where u models the temperature and κ > 0 represents the thermal 
on-du
tivity. Here it is supposed that the 
alori
 �ux obeys the Fourier law

q = −κ∇T and that the thermal 
ondu
tivity is independent of tempera-ture. The 
ondition κ > 0 re�e
ts the fa
t that heat propagates from highto lower temperature.If the temperature of the body is high enough one must 
onsider the radi-ation e�e
ts and the temperature dependen
e of thermal 
ondu
tivity. Forexample, if the power radiated by a body to environment follows the Stefan-Boltzmann law of the forth powers, for both the body and the medium, theheat equation be
omes [8℄
∂u

∂t
= div(κ(u)∇u) − kr(u

4 − u4
e). (2.2)The unsaturated water �ow through porous media is des
ribed by the wellknown Ri
hards' equations [7℄

∂θ(h)

∂t
− div(K(h)∇h+ e3K(h)) = 0, (2.3)



172 Stelian Ionwhere θ represents the relative volumetri
 water 
ontent, h represents thepressure head, K is the hydrauli
 
ondu
tivity and e3 is the upward verti
alversor. The fun
tion θ(h) is a 
ontinuous positive fun
tion and it is stri
tlyin
reasing fun
tion on the interval (−∞, 0] and a 
onstant fun
tion on h > 0.Also the hydrauli
 
ondu
tivity is a 
ontinuous positive fun
tion stri
tly in-
reasing on (−∞, 0] and a 
onstant fun
tion on the set h > 0. The hydrauli

ondu
tivity be
omes zero as h approa
hes −∞.The transport of 
ontaminant in porous media is governed by an equation ofthe form [9℄, [10℄
∂ (C + λCp)

∂t
+ v · ∇C = div(D∇C) + g(x,C), (2.4)where C represents the mass 
on
entration of the 
ontaminant, v denotesthe velo
ity of the �uid �ow, supposed to be 
onstant. The term λCp, λ ≥ 0takes into a

ount the adsorption rea
tion by means of Freundli
h isotherm.The absorption rea
tion is des
ribed by the term g(x,C) that usually is givenby

g = −αCq (2.5)with α > 0, q > 0 (the order of the rea
tion).An extremely used form of the GPME is given by the
∂u

∂t
= △um + λur. (2.6)For m > 1 (slow di�usion) the equation models the �ow of the gas throughporous medium for m < 1 (fast di�usion) the model is en
ountered in plasmaphysi
s, kineti
 theory and solid state.The Stefan problem 
an be written as a GPME equation with

φ(u) = λ

{
max{0, (u − 1)}, if u ≥ 0,
u, if u < 0.3. Mathemati
al SettingsIn this se
tion we review some results 
on
erning the solution of the nonlineardi�usion equations.The 
onstitutive fun
tions are supposed to satisfy:
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esses 173A1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ b : R → R, is a continuous and nondecreasing function,
κ : R → R+, is a continuous and nondecreasing function,
f : R → Rn, is a local Lipschitz vector function,
g : R+ × Ω × R → R, is a Caratheodory function.A2 ∣∣∣∣∣∣∣∣ φ ∈ C([0,∞)) ∪ C1((0,∞)), φ(0) = 0, nodecreasing function,
r ∈ C([0,∞)), r(0) = 0.We 
onsider the Cau
hy problem for both equations. The domain Ω on whi
hthe problem is 
onsidered satis�es:A3 ∣∣∣∣ Ω ∈ Rn, is an open, bounded and connected set.The initial 
onditions and boundary data are written as

{
u(0, x) = u0(x), x ∈ Ω.
u = uD, t > 0, x ∈ ∂Ω.

(3.1)We assume thatA4 ∣∣∣∣∣∣∣∣ u0 ∈ L∞(Ω),
uD ∈ L2((0, T ) : W 1,2(Ω)) ∩ L∞((0, T ) × Ω).Cau
hy problem for CDRE. The Cau
hy problem is de�ned by theequation (1.1) in a domain Ω in Rn, the initial 
ondition and boundary data(3.1).Due to the nonlinear paraboli
 term b(u) and nonlinear di�usion 
oe�
ient

κ(u) the problem (1.1) 
an be a degenerate problem and 
onsequently thereexists no 
lassi
al solutions.The notion of weak solution for the problem of the type (1.1) was introdu
edby Alt and Lu
khaus in [1℄. By imposing some proper 
onditions on the
onstitutive fun
tions, boundary data and initial 
onditions, the authors wereable to prove the existen
e of the weak solution in the 
ase of the paraboli
-ellipti
 degeneration, b(u) is a 
onstant fun
tion on some interval of positivemeasure and the di�usion 
oe�
ient is a stri
t positive fun
tion.Definition 3.1 (Weak Solution (H. W. Alt and S. Lu
khaus)) A measurablefun
tion u is a weak solution of the Cau
hy problem (1.1) and (3.1) if itsatis�es:1) u− uD ∈ L2((0, T ) : W 1,2
0 (Ω)),2) b(u) ∈ L∞((0, T ) : L1(Ω)) and ∂b(u)

∂t
∈ L2((0, T ) : W−1,2(Ω)) with initial



174 Stelian Ionvalues b(u0), that is,
T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(b(u) − b(u0))
∂v

∂t
dxdt = 0 (3.2)for every v ∈ L2((0, T ) : W 1,2

0 (Ω)) ∩W 1,1((0, T ) : L1(Ω)), v(T, ·) ≡ 03) κ(u)∇u, g(·, ·, u(·, ·)) ∈ L2((0, T ) × Ω), f(u) ∈
(
L2((0, T ) × Ω)

)n and usatis�es the di�erential equation, that is,
T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(κ(u)∇u+ f(u)) · ∇vdxdt =

T∫

0

∫

Ω

g(t, x, u)vdxdt(3.3)for every test fun
tion v ∈ L2(0, T : W 1,2
0 (Ω)).In the paper [7℄ Carrillo extrapolates the 
on
ept of entropy solution intro-du
ed by Kruzhkov in theory of hyperboli
 PDE [14℄. He showed that thereexists a unique weak entropy solution of the Cau
hy problem with homo-geneous boundary data, uD = 0, even in the 
ase of paraboli
-hyperboli
degeneration. Su
h kind of degeneration appears when the di�usion 
oe�-
ient is a null fun
tion on some interval with the positive measure.The weak entropy solution is a weak solution that in addition satis�es anintegral entropy inequality.Let us introdu
e the fun
tion

K(u) =

u∫

0

κ(s)ds,Definition 3.2 (Weak entropy solution. Homogeneous 
ase (Carrillo)) Anweak entropy solution of the Cau
hy problem (1.1) and (3.1) with uD = 0, is
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esses 175a weak solution whi
h in addition satis�es the entropy inequality
T∫

0

∫

Ω

H0(u− s)
(

(∇K(u) + f(u) − f(s)) · ∇v−

− (b(u) − b(s))
∂v

∂t
− gv

)
dxdt−

∫

Ω

(b(u0) − b(s))+v(0)dx ≤ 0,

T∫

0

∫

Ω

H0(−s− u)
(

(∇K(u) + f(u) − f(−s)) · ∇v−

− (b(u) − b(−s)) ∂v
∂t

− gv
)
dxdt−

∫

Ω

(b(u0) − b(−s))−v(0)dx ≥ 0,(3.4)for any (s, v) ∈ R ×
(
L2((0, T ) : W 1,2(Ω)) ∩W 1,1((0, t) : L∞(Ω))

) su
h that
s ≥ 0, v ≥ 0 and v(T ) = 0.In the entropy 
onditions the following notations:

H0(s) =

{
1, if s > 0
0, if s ≤ 0

s+ =

{
s, if s > 0
0, if s ≤ 0were used. If κ > 0 then the two de�nitions of the weak solution 
oin
ideand any weak solution is an entropy solution [7℄.To deal with nonhomogeneous Diri
hlet 
onditions for degenerate problemone supplementary di�
ulty is to give a sense to boundary 
onditions. In thepaper [18℄ C. Mas
ia, A. Porreta and A. Terra
ina proved the existen
e of theweak entropy solution of the Cau
hy problem with nonhomogeneous Diri
hletdata. Their de�nition is as follows. Denote by QT the dire
t produ
t QT =

(0, T ) × Ω. Also we use the notations:
E(u, v) = ∇ |K(u) −K(v)| + sgn(u− v)(f(u) − f(v)),

B(u, v,w) = E(u, v) + E(u,w) − E(v,w).The domain Ω is su
h that there exists a C2�
overing of ∂Ω, A = {Ui}i=1,m,of open sets su
h that ∂Ω ⊂ ∪U i and, in some lo
al 
oordinates x = (x′, xn),there exists a C2 fun
tion xn = αi(x
′) su
h that Ui ∩ ∂Ω = {xn = αi(x

′)},
Ui ∩ Ω = {xn < αi(x

′}.A sequen
e {ϑδ} of C2(Ω) ∩ C0(Ω) fun
tions is named a boundary layersequen
e if
lim

δ→0+
ϑδ = 1, pointwise in Ω, 0 ≤ ϑδ ≤ 1, ϑδ = 0 on ∂Ω.
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ase (Mas
ia etal.)) A fun
tion u ∈ L∞((0, T )×Ω) is an entropy solution of Cau
hy problem(1.1) and (3.1) if1) (regularity)
K(u) ∈ L2((0, T ) : W 1,2(Ω))and for any U ∈ A, and any positive ψ ∈ C∞

0 (U) we have
(
− |u− uD|ψ, E(u, uD)ψ

)
∈ DM(Q)2,where DM(Q)2 is the set of divergen
e-measure ve
tor �elds in Q.2) (entropy 
ondition in interior of QT )

∫

QT

{
|b(u) − b(s)| ∂v

∂t
− E(u, s)∇v + gv

}
dxdt ≥ 0for any v ∈W 1,2

0 (QT ) and v ≥ 0 and s ∈ R.3) (initial 
ondition)
lim

t→0+

∫

Ω

|u(t, x) − u0(x)| dx = 04) (boundary 
onditions) in sense of tra
e in L2((0, T ) : W 1,2(Ω)) we have
K(u) = K(uD), t > 0, x ∈ ∂Ω,and for any boundary layer sequen
e ϑδ, and for any U ∈ A, and any positive

ψ ∈ C∞
0 (U) we have

lim inf
δ→0

∫

QT

B(u, s, uD)∇ϑδξψdxdt ≥ 0, ∀s ∈ R,for any ξ ∈ L2((0, T ) : W 1,2(Ω)), ξ ≥ 0.Cau
hy problem for GPME. The Cau
hy problem 
onsists in theequation (1.2) and the data (3.1).The existen
e of the weak solution was proved by many authors see for ex-ample, [4℄, [25℄.
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esses 177Definition 3.4 (M. Borelli and M. Ughi) A nonnegative fun
tion u de�nedon the Ω × [0, T ] is said to be a weak solution of the Cau
hy problem (1.2)and (3.1) if1) u ∈ C
(
[0, T ];L1(Ω)

)
∩ L∞([0, T ] × Ω),2) for any test fun
tion η ∈ C1,0([0, T ]×Ω)∩C2,1((0, T ]×Ω) su
h that η ≥ 0on (0, T ] × Ω) and η = 0 on (0, T ] × ∂Ω u satis�es the integral identity:

∫

Ω

u(t, x)η(t, x)dx =

∫

Ω

u0(x)η(0, x)dx −
t∫

0

∫

∂Ω

φ(uD)
∂η

∂n
+

+

t∫

0

∫

Ω

[u∂tη + φ(u)△η + r(u)η] dtdx

(3.5)for any 0 ≤ t ≤ T .The presen
e of the rea
tion term and nonlinearity in the equation (1.2)generate interesting phenomena namely, extin
tion time or blow up of thesolution and the �nite speed of propagation of disturban
e [25℄.Su
h problems have been studied by several authors: Borelli-Ughi [4℄, Ferreira-Vasquez [13℄, Leoni [16℄, Levin-Sa
ks [17℄, Peletier and Z. Junninig [23℄. Inthe 
ase r(u) = 0 and φ(s) = sm, 0 < m < 1, uD = 0 there exists an ex-tin
tion time Te su
h that the problem (1.2 has a unique 
lassi
al solution,positive on Ω × [0, Te] and null for t ≥ Te, see [17℄.For generalized fast di�usion with strong absorption and Ω = R2 there alsoexists an extin
tion time and the support of the solution is bounded for anytime t > 0, [4℄.In the power 
ase, φ(s) = sm, r(s) = λps, λ > 0, the numeri
al methods to
ompute the solution of the similar problem (1.2) have been proposed byM.-N. Le Roux, [21℄ the 
ase m > 1, M.-N. Le Roux and P.-E. Mainge, [22℄.Pointwise 
omparison prin
iple. For both Cau
hy problems CDREand GPME there exists several 
omparison 
riteria [1℄, [10℄, [25℄. We willgive here a result that allows one to 
ompare two solutions with respe
t totheir boundary and initial 
onditions.For any two real fun
tions f(x) and g(x) we write f ≤ g if f(x) ≤ g(x),∀x ∈
Ω. In addition to assumptions A1 the 
onstitutive fun
tions in CDRE prob-lem satisfy
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∣∣∣∣∣∣∣∣∣∣∣

(1)κ : R → R+, κ(u) ≥ η,

(2) |κ(u1) − κ(u2)| < C|u1 − u2|γ1 , γ1 >
1

2
, ∀u1, u2 ∈ R,

(3) |f (u1) − f(u2)| < C|u1 − u2|γ2 , γ2 >
1

2
, ∀u1, u2 ∈ R,

(4) g(u1) − g(u2) < C(b(u1) − b(u2)), for u1 > u2.Theorem 3.1 (Comparison Theorem) Let (uD, u0), (ûD, û0) be su
h that
uD ≤ ûD, u0 ≤ û0. Let u and û) be two bounded weak solutions of the Cau
hyproblem (1.1), (3.1) asso
iated to (uD, u0) and (ûD, û0) respe
tively. Assume,in addition, that

b(u)t, b(û)t ∈ L1((0, T ) × Ω).Then
u ≤ ûon (0, T ) × Ω.Proof. We follow the main ideas from [1℄. As in [1℄ for any δ > 0 let

Ψδ(α) = min(1,max(0, α/δ)). The fun
tion w = Ψδ(u − û) belongs to
L2(0, T : W 1,2

0 (Ω)) and its gradient is given by
∇w =

{ 1

δ
(∇u−∇û) , if 0 < u− û < δ

0, otherwiseSet w as test fun
tion in (3.3). Then
t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt+
1

δ

t∫

0

∫

Ωδ

(κ(u)∇u− κ(û)∇û)∇(u− û)dxdt

︸ ︷︷ ︸
I1

+

+
1

δ

t∫

0

∫

Ωδ

(f(u) − f(û)) · ∇(u− û)dxdt

︸ ︷︷ ︸
I2

=

t∫

0

∫

Ω

(g(u) − g(û))wdxdt, (3.6)where Ωδ := {x|0 < h− ĥ < δ}. The integral I1 
an be rewritten as
I1 =

t∫

0

∫

Ωδ

κ(u)||∇(u − û)||2dxdt+
t∫

0

∫

Ωδ

(κ(u) − κ(û))∇ũ · ∇(u− û)dxdt.
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esses 179Using Young inequality, ab ≤ C(ǫ)p−1ap + ǫq−1bq, and A1′-(1) we obtain
I1 ≥

(
η − ǫ

2

) t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− C(ǫ)

2

t∫

0

∫

Ωδ

(κ(u) − κ(û))2||∇ũ||2dxdtand
I2 ≥ − ǫ

2

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− C(ǫ)

2

t∫

0

∫

Ωδ

||f(u) − f(û)||2dxdt.Then
I1 + I2 ≥ (η − ǫ)

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− Cδ2γ

T∫

0

∫

Ωδ

(||∇ũ||2 + 1)dxdt.From A1′(4) the produ
tion 
an be estimate as
t∫

0

∫

Ω

(g(u) − g(û))wdxdt ≤
t∫

0

∫

Ω

1{u−bu>0} max{0, g(u) − g(û}dxdt ≤

≤ C

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt.Taking ǫ < η we obtain
t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt+
c

δ

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt ≤

≤ Cδ2γ−1

T∫

0

∫

Ωδ

(||∇ũ||2 + 1)dxdt+

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt.(3.7)For δ → 0 the �rst term on the right 
onverge to 0 and the �rst term on leftbe
omes
lim
δ→0

t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt =

t∫

0

∫

Ω

1{u−bu>0} (b(u)t − b(û)t) dxdt =
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=

t∫

0

∫

Ω

∂t max{b(u) − b(û), 0}dxdt =

∫

Ω

max{b(u) − b(û), 0}(t, x)dx.One obtains
∫

Ω

max{0, b(u) − b(û)}dxdt ≤
t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt,and using Gronwall's inequality we get
b(u) ≤ b(û),and using this inequality in (3.7) we have ∇(u−û) = 0 on the set {0 < u−û}.So, we have u− û=
onst. whi
h implies u− û ≤ 0 sin
e on boundary u ≤ û.As a 
orollary of the 
omparison prin
iple one 
an obtain an upper boundfor the solution of Cau
hy problems in the both 
ase CDRE and GPMEequations.Corollary 3.1 Assume that A1 and A1′ are full�led and g(t, x, u) = g(u),

g(0) = 0. Let u be the solution of the problem (1.1), (3.1) on some interval
[0, T ]. Then1) if uD ≥ 0 and u0 ≥ 0 so is u ≥ 0,2) Let α = ||uD||L∞([0,T ]×∂Ω), β = max{||u0||∞, α}. If α > 0 we assume that
g(w) ≥ 0. Let w(t) be the solution of the di�erential equation

∂tb(w) = g(w)
w(0) = β.on the same interval t ∈ [0, T ]. Then the solution u satis�es
u < w on [0, T ].Proof. 1). One 
ompares the solution u with the trivial solution v = 0.2). De�ne the fun
tion v(t, x) = w(t),∀x ∈ Ω. The fun
tion v(t, x) veri�esthe equation (1.1), at the time t = 0 v(0, x) = β > u0 and on boundary

v(t, x)|x∈∂Ω = w(t) ≥ β > uD that implies u < v.Corollary 3.2 In the GPME the di�usion fun
tion and produ
tion fun
-tion are given by φ(u) = um, r(u) = −λus respe
tively λ > 0,m > 0, s > 0.The initial 
onditions satisfy A4, u0 > 0 and uD = 0. Let β = ||u0||∞.1) If s > 1 then the solution u of the problem 1.2, 3.1 satis�es
||u||∞ < β

(
1 − λ(1 − s)βs−1t

) 1
1−s .



Diffusion Pro
esses 1812) If s < 1 then there exists a time T ∗, extin
tion time, given by
T ∗ =

1

λ

β1−s

1 − ssu
h that the solution exists on the interval [0, T ∗] and it satis�es
||u||∞ < β

(
1 − t

T ∗

) 1
1−s

.Proof. In the generalized porous medium equation
∂tu = △um − λuswe make the substitution um = v and we obtain
∂tv

p = △v − λvr,

vt=0 = um
0 , v|x∈∂Ω = 0,where p = 1/m, r = s/m. By using the 
orollary 1 one obtain that thefun
tion v is bounded from above by the solution of di�erential equation

pwp−1w′ = −λwr,
w(0) = βm,whi
h has the solution

w = βm(1 − λ(1 − s)βs−1t)
m

1−s .4. Quasimonotone ODE Approximation4.1. Dis
rete ApproximationBy the method of lines (MOL), one 
an asso
iate an ordinary di�erentialsystem of equations (ODE) to a paraboli
 partial di�erential equation. TheMOL 
onsists in the dis
retization of the spa
e variable using one of thestandard methods as �nite element, �nite di�eren
es or �nite-volume method(FVM). The FVM �ts very well to 
onservative equations and there exists alarge literature devoted to the method, we re
all here the papers that dealwith Diri
hlet problem, [6℄ for hyperboli
 PDE, [11℄, [12℄, [19℄ for nonlinearparaboli
 PDE.
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x i

ω i

Ω

Du

Fig. 1: Triangulation of polygonal domain in R2.The FVM deals with a de
omposition of the domain Ω into small polygonaldomains ωi and a net of the inner knots xi. The assembly {ωi, xi} de�nesa triangulation of the domain and it is an admissible mesh if it satis�es thefollowing 
onditions, [12℄.Definition 4.1 (Admissible mesh) The triangulation T = {(ωi, xi)}i∈I is
alled an admissible mesh if it satis�es:A5 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ωi is open poligonal set ⊆ Ω, xi ∈ ωi

(1) ∪i∈Iωi = Ω
(2) ∀i 6= j ∈ I and ωi ∩ ωj 6= Φ, either Hn−1(ωi ∩ ωj) = 0 or
σij := ωi ∩ ωj is a common (n − 1)-face of ωi and ωj

(3) for all σij, [xi, xj ] ⊥ σijHere Hn−1 is the (n − 1)-dimensional Hausdor� measure. For ea
h volume
ωi that has a 
ommon (n − 1)-fa
e with the boundary ∂Ω one de�nes anexternal volume ωib ∈ CΩ by the re�e
tion of the ωi with respe
t to the fa
e
σib = ωi∩∂Ω. Denotes by T b the 
olle
tion of all external volumes {(ωib , xib)}and by Ib the set of their indi
es. Let T e = T ∪ T b and IE = I ∪ Ib. Wesay that the volumes ωi, ωj ∈ T e are neighbours if they share a 
ommon
n− 1�fa
e and we denote by ni,j the unit normal ve
tor to the fa
e σij thatpoint to ωj.
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esses 183Dis
rete form of CDRE. The spa
e dis
retized equations are derivedfrom the integral form of (1.1) for ea
h 
ontrol volume ωi

∫

ωi

∂b(u)

∂t
dx−

∫

∂ωi

(κ(u)∇u+ f(u)) · nda =

∫

ωi

g(t, x, u)dx, ∀i ∈ I. (4.1)By a proper approximation of the volume integrals and surfa
e integrals oneobtains dis
rete form of CDRE.We de�ne the numeri
al di�usion 
oe�
ient κ̃ : R × R → R+ by
κ̃(u, v) = max(κ(u), κ(v)). (4.2)It is easy to show that numeri
al di�usion 
oe�
ient satis�esA6 ∣∣∣∣∣∣∣∣∣∣∣∣ κ̃(u, v) = κ̃(v, u), symmetry,

(κ̃(u1, v) − κ̃(u2, v))(u1 − u2) > 0, monotonicity,
κ̃(u, u) = κ(u), consistency.Corresponding to ea
h fa
e σij we admit that there exists a numeri
al �uxfun
tion f̃ : R × R → R with the following properties:A7 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ f̃i,j(u, v) = −f̃j,i(v, u), conservation,

(f̃i,j(u1, v) − f̃i,j(u2, v))(u1 − u2) ≤ 0, monotonicity,

(f̃i,j(u, v1) − f̃i,j(u, v2))(v1 − v2) ≥ 0,

f̃i,j(u, u) = f(u) · ni,j, consistency.A numeri
al 
onve
tive �ux whi
h satis�es A7 is systemati
aly used in theapproximation of hyperboli
 equation see, for example [6℄. The integrals in(4.1) will be approximated as follows:
∫

ωi

∂b(u)

∂t
dx ≈ m(ωi)

∂b(ui)

∂t
,

∫

∂ωi

κ(u)∇u · nda ≈
∑

j∈N (i)

m(σij)κ̃(ui, uj)
uj − ui

dij
,

∫

∂ωi

f(u) · nda ≈
∑

j∈N (i)

f̃i,j(ui, uj),

∫

ωi

g(t, x, u)dx ≈
∫

ωi

g(t, x, ui)dx := gi(t, ui).

N (i) denotes all neighbours in T e of ωi, m(ωi) represents the volume ofpolyhedron ωi and m(σij) represents the n − 1-dimensional measure of thefa
e σij and di,j = |xi − xj |.



184 Stelian IonThe initial data and boundary 
onditions are approximated by:
u0i =

1

m(ωi)

∫

ωi

u0(x)dx, (4.3)
uib =

1

m(σib)

∫

σib

uDda, (4.4)respe
tively.As a result one 
an de�ne a Cau
hy problem for a system of ordinary di�eren-tila equations whose solution gives an approximation of the Cau
hy problem(1.1), (3.1).




db(ui)

dt
=
∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij
+ f̃i,j(ui, uj)

]
+ gi(t, ui)

ui|t=0 = u0i, (4.5)for t > 0 and for any i ∈ I.Let us introdu
e the numeri
al di�usion-
onve
tion �ux fun
tions
Fi(u;uD) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij
+ f̃i,j(ui, uj)

] (4.6)then the ODE approximation reads as
db(ui)

dt
= Fi(u;uD) + gi(t, ui). (4.7)The boundary 
onditions are taken into a

ount by the volume elements nextto boundary ∂Ω. For su
h element the 
ontribution of the boundary valuesto the Fi is given by

m(σib)

m(ωi)

[
κ̃(uib , uj)

uib − ui

dib

+ f̃i,ib(ui, uib)

]
. (4.8)In�ltration model. Here is an example of a numeri
al 
onve
tive �ux thatsatis�es A7 with f(u) = e3K(u) that appears in the Ri
hards' equation(2.3).

f̃i,j(u, v) =
1

2
(e3 · ni,j + |e3 · ni,j|)K(v) +

1

2
(e3 · ni,j − |e3 · ni,j|)K(u).(4.9)
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rete form of GPME. For ea
h 
ontrol volume ωi we write∫

ωi

∂u

∂t
dx−

∫

∂ωi

∂φ(u)

∂n
da =

∫

ωi

r(u)dx, ∀i ∈ I. (4.10)To approximate (4.10) we use the same s
hemes as in previous paragraph.The new integral that 
ontains the di�usion fun
tion φ will be approximatedby ∫

∂ωi

∂φ(u)

∂n
da ≈

∑

j∈N (i)

m(σij)
φ(uj) − φ(ui)

dij
. (4.11)The ODE approximation of (4.10) is given by

∂ui

∂t
=
∑

j∈N (i)

m(σij)

m(ωi)

φ(uj) − φ(ui)

dij
+ r(ui). (4.12)The boundary 
onditions are taken into a

ount by the volume elements nextto boundary ∂Ω. For su
h an element the boundary values enters into theplay by a term of the form

m(σie)

m(ωi)

φ(uie
D) − φ(ui)

de
ij

. (4.13)For shortness we introdu
e the notation
Gi =

∑

j∈N (i)

m(σij)

m(ωi)

φ(uj) − φ(ui)

dij
.4.2. ODE ModelAs in the 
ontinuum 
ase we want to prove that the solutions of ODE (4.5)and (4.10) obey a 
omparison 
riterion.For that, we �rstly prove that F and G satisfy Kamke 
onditions.Lemma 4.1 Assume A2, A6 and A7. Then

Fi(u
e) = 0, Gi(u

e) = 0 (4.14)for any 
onstant state ui = u,∀i ∈ Ie.
F and G satisfy Kamke 
onditions, that is

Fi(v
e) ≥ Fi(w

e), Gi(v
e) ≥ Gi(w

e), ∀i ∈ I, (4.15)for any two ve
tors that satisfy vk ≥ wk, ∀k ∈ Ie, and vi = wi.
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Fi(u

e) =
∑

j∈N (i)

m(σij)

m(ωi)
f(u) · nij = 0.We only prouve the 
ounterpart relativ to F . To prove the Kamke 
onditionswe have

Fi(v
e) −Fi(w

e) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(u, vj)

vj − u

dij
+ f̃i,j(u, vj) − κ̃(u,wj)

wj − u

dij
− f̃i,j(u,wj)

]and from (4.2) and the monotoni
ity property of A7 the a�rmation results.As F and G are both quasimonotone and nonde
reasing with respe
t toboundary data ve
torial fun
tions the next two results are equaly true fordis
rete ODE (4.12).Assumptions on sour
e termA1′′ There exists the real numbers α < α < β < β su
h that(1) b ∈ C1((α, β)) and b′ > 0 on (α, β).There exists two Lips
hitz fun
tions g, g : R+ × R → R su
h that(2) g(t, u) ≤ g(t, x, u) ≤ g(t, u), ∀u ∈ (α, β),(3) g(t, α) ≤ 0, g(t, β ≥ 0.Theorem 4.1 (Boundedness of dis
rete solutions) Consider the Cau
hyproblem (4.5). Assume A1, A1′′, A4, A6, A7. We suppose also that initial
onditions and boundary data satisfy
α ≤ u0(x) ≤ β, a.e x ∈ Ω, α ≤ uD(t, x) ≤ β, a.e (t, x) ∈ (0, T ) × Ω. (4.16)Let u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u)

|u|t=0 = α,

(4.17)
u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u)

|u|t=0 = β

(4.18)
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esses 187and Tsup = inf(sup{t|u(t) > α, u(t) < β}, T ) Then the solution u(t) of theCau
hy problem is bounded by u and u on the interval [0, Tsup] i.e.,
u(t) ≤ ui(t) ≤ u(t)∀i ∈ I,∀t ∈ [0, Tsup] (4.19)Proof. The essential tool in the proof is the Ni
kel's theorem that provide themonotony of the solution of the quasimonotone ODE. The Kamke 
onditionsensure us that we deal with quasimonotone system.Observe that the 
onditions A1′′-3 guaranties that

α ≤ u(t) ≤ α, β ≤ u(t) ≤ β. (4.20)De�ne
F i(u) = Fi(u;u),F i(u) = Fi(u;u).From (4.4), (4.8), (4.15), (4.20) and the 
onditions A1′-2 one obtains

F i(u) + g(t, u) ≤ Fi(u;uD) + gi(t, u) ≤ F i(u) + g(t, u).Sin
e usup
i (t) = u(t),∀i ∈ I is a solution of the problem





db(ui)

dt
= F i(u) + g(t, ui)

ui|t=0 = β,
(4.21)

uinf
i (t) = u(t),∀i ∈ I is a solution of the problem





db(ui)

dt
= F i(u) + g(t, ui)

ui|t=0 = α,
(4.22)and α ≤ u0i < β one 
an apply the Ni
kel's theorem and one obtains

uinf
i (t) ≤ ui(t) ≤ usup

i (t),whi
h is (4.19).Theorem 4.2 (Comparison theorem. Dis
rete 
ase) Assume we are as inthe boundedness theorem. Let u(t) and û(t), t ∈ (0, T ), be the solutions ofthe problem (4.5) asso
iated to (uD,u0) and (ûD, û0) respe
tively. Supposethat
uD ≤ ûD < 0, u0 ≤ û0 < 0.Then

u ≤ ûon (0, T ).Proof. The same as in the boundedness theorem.
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al Algorithms and Numeri
al ResultsIn this se
tion we give two numeri
al algorithms to solve GPME equationand Ri
hards' equations respe
tively.5.1. Fast Di�usion with Strong AbsorptionWe will present here an algorithm to solve numeri
ally (4.12) in the 
ase ofthe fast di�usion with strong absorption. In addition to assumptions A2 the
onstitutive fun
tions φ and r satisfyA2′ ∣∣∣∣∣∣∣∣ φ is increasing function and lims→0 φ(x)/x = ∞,
r(s) ≤ 0, for s > 0,The ODE 
an be rewritten as

∂ui

∂t
= Aijφ(uj) + r(ui). (5.1)We use the 
lassi
al full impli
it Euler time integration s
heme to integratethe system. It follows

un+1 = un + △t
(
Aφ(un+1) + r(un+1)

)
, (5.2)where △t represents the time step. Depending on the initial data u0 andthe type of nonlinearity of the fun
tions φ and r to solve the arising system
an be a very hard problem, in the vi
inity of the zero the derivative of thefun
tion φ in the 
ase of fast di�usion be
ome in�nite. We propose herean algorithm suggested by the Gauss-Sidel iterative method. The methoduses the very spe
ial stru
ture of the matrix A generated by �nite volumemethod. One writes the matrix A as

A = Ã+ Γ,where Γ is a diagonal matrix 
ontaining the diagonal entries of the matrix
A. We point the following properties of the two matri
es

Ãij ≥ 0, Γii < 0,
∑

j

Ãij ≤ −Γii. (5.3)We rewrite also the fun
tions φ and r as
φ(x) = φ̃(x) · x, r(x) = −r̃(x) · x. (5.4)
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esses 189The equation (5.2) 
an be written now as
(
I + △t

(
−Γφ̃(un+1) + r̃(un+1)

))
un+1 = un + △tÃφ(un+1). (5.5)The next theorem gives the main properties of the solution of impli
it Eulermethod.Theorem 5.1 In addition of the 
onditions A2 and A2′ we assume that

φ̃ is a nonin
reasing fun
tion and r̃ ≥ 0. If the initial data and boundary
onditions are positive and upper bounded fun
tions, i.e.
0 ≤ u0 ≤ ρ, 0 ≤ uD ≤ ρ,then for any time step △t there exists a solution of the equation (5.2) thatsatis�es

0 ≤ un ≤ ρ, ∀n. (5.6)Proof. Let us assume that for a time level n there exists a solution un thatsatis�es (5.6). We will use the Browder �xed point theorem to demonstratethe existen
e of un+1 with the same properties. De�ne the RN -values fun
tion
Ψ by

Ψi(y) =
un

i + △t∑j Ãijφ(yj)

1 + △t
(
−Γiiφ̃(yi) + r̃(yi)

) .We 
laim that the fun
tion Ψ is a 
ontinuous fun
tion on the set [0, ρ]N andtake values in the same set. So, it has a �xed point.Sin
e φ̃ and r̃ are 
ontinuous fun
tions on (0,∞) and let us assume that theirlimits in 0 are �nite we 
an prolong by 
ontinuity the fun
tion Ψ in 0. It isobviously that Ψi > 0. For the upper bound we have
Ψi(y) − ρ ≤

un
i + △t∑j Ãijφ(yj)

1 −△tΓiiφ̃(yi)
− ρ =

=
un

i − ρ+ △t
(∑

j Ãijφ(yj) + ρΓiiφ̃(yi)
)

1 −△tΓiiφ̃(yi)
.For any y ∈ [0, ρ]N we have

∑

j

Ãijφ(yj) + ρΓiiφ̃(yi) ≤ φ(ρ)
∑

j

Ãij + ρΓiiφ̃(yi) ≤

≤ −φ(ρ)Γii + ρΓiiφ̃(yi) = −ρΓii(φ̃(ρ) − φ̃(yi)) ≤ 0.
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xη xη

φηφη xηηη

Fig. 2: The regularization of the �ux fun
tion.To obtain the �rst inequality one uses: assumptionsA2′ (φ is a nonde
reasingfun
tion), boundary data is bounded from above by ρ and Ãij > 0, the se
ondinequality results from the stru
ture of the matrix A and the last inequalityfrom the 
onstitutive assumption on the φ̃.So, we have
0 ≤ Ψi(y) ≤ ρand for it results the existen
es of a �xed point, say u. Sin
e for any i onehas

1 + △t
(
−Γiiφ̃(yi) + r̃(yi)

)
<∞, on [0, ρ],it follows that the �x point u is a solution of the of the nonlinear equation(5.6).Let us analyse the 
ase in whi
h the fun
tions φ̃ and r̃ have in�nite limits in

0. One regularises the fun
tion φ̃ by
φ̃η(x) =

{
η, if φ̃(x) > η

φ̃(x), if φ̃(x) ≤ η
(5.7)and from it one has

φη(x) =

{
xη, if φ(x) > xη
φ(x), if φ(x) ≤ xη.

(5.8)Obviously
φη(x) ≤ φ(x), lim

η→∞
φη(x) = φ(x).In a similar manner we de�ne rη.With the fun
tions φη and rη we are in the previous 
ase and then resultsthat there exists a solution uη ∈ [0, ρ]N of the equation

uη = un + △t (Aφη(uη) + rη(uη)) . (5.9)
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esses 191As the sequen
e uη is bounded we 
an extra
t a subsequen
e uηn that 
on-verges to a point u ∈ [0, ρ]N . The problem is to demonstrate that the limitpoint u is a solution of the original equation, i.e.
u = un + △t (Aφ(u) + r(u)) .Let us denote by Fη(u) and F r.h.s., of the pre
eding equations, respe
tively.We have

||u− F (u)||∞ = ||u− uηn + (Fηn(uηn) − Fηn(u)) + (Fηn(u) − F (u)||∞ ≤
≤ ||u− uηn ||∞ + ||Fηn(uηn) − Fηn(u)||∞ +
+ ||Fηn(u) − F (u)||∞ .We will show that, for any ε > 0,

||u− F (u)||∞ ≤ ε.Observe that the �rst term and the last term 
an be made arbitrary small,
||u− uηn ||∞ + ||Fηn(u) − F (u)||∞ <

ε

2for any n > nε. The middle term 
an be evaluate as ||·||∞
||Fηn(uηn) − Fηn(u)||∞ ≤ △t

(
||A(φηn(uηn) − φηn(u))||∞ +

+ ||rηn(uηn) − rηn(u)||∞
)
≤

≤ △t(||A|| ||φηn(uηn) − φηn(u)||∞ +
+ ||rηn(uηn) − rηn(u)||∞).For ea
h 
omponent i we look at

|φηn(uηni) − φηn(ui)|and note that if ui is not equal with zero then for a great enough number none has
|φηn(uηni) − φηn(ui)| = |φ(uηni) − φ(ui)| ,if ui equals zero then

|φηn(uηni) − φηn(ui)| = φηn(uηni) ≤ φ(uηni).Using the 
ontinuity of the fun
tion φ we 
an �nd a number nε
1 su
h that

||φηn(uηn) − φηn(u)||∞ ≤ ε

4||A||△t



192 Stelian Ionfor any n > nε
1. Using the same arguments we 
an prove that

||rηn(uηn) − rηn(u)||∞) <
ε

4△tfor any n > nε
2. Hen
e, there exists a nε su
h that

||Fηn(uηn) − Fηn(u)||∞ ≤ ǫ

2for any n > nǫ.This end the proof of the theorem.In our implementation we 
al
ulate the solution of the Euler s
heme by thefollowing iterative solver
(
I + △t

(
−Γφ̃η(u

n+1,k) + r̃η(u
n+1,k)

))
un+1,k+1 =

un + △tÃφη(u
n+1,k).

(5.10)Numeri
al Simulation. For the numeri
al simulation we 
hose a verysimple domain Ω = [0, 1] × [0, 1]. The fast di�usion with absorption is mod-eled by φ(s) = sm, r(s) = −λ · sp.Table 1: Extin
tion phenomenon, extin
tion time T e = 0.18. φ(s) = s0.75, r(s) =
−21.× s0.5, uD = 0

 0.5

 0.5

 0

 0.5u

x
y

u

 0

 0.5

 1

 0  0.1  0.18

||u
||

timeInitial Pro�le Comparison of the numeri
al solution(solid line) with a theoreti
al estima-tion (points drawing).5.2. Water In�ltration through Strati�ed Soil. Ri
hard'sEquationWe 
onsider strati�ed soil. Hereafter the strati�ed soil means a blo
k-wisehomogeneous soil with horizontal parallel homogeneous strata, see �gure (3).
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z

Fig. 3: Strati�ed porous soil. Ea
h layer is mod-elled by di�erent 
onstitutive fun
tion.In the 
ase of strati�ed soil the di�erent me
hani
al properties of the soilsrequire di�erent 
onstitutive fun
tions whi
h in turn lead to a partial di�eren-tial equation with dis
ontinuous 
oe�
ient. On an interfa
e of two di�erentstrata one must impose some 
ompatible 
onditions to have a well de�nedproblem. Physi
al 
onsiderations require the 
ontinuity of the pressure headand normal 
omponents of the velo
ity. So, we have
h|− = h|+,

v · n|− = v · n|+. (5.11)Taking into a

ount the 
ompatibility relations (5.11) appear that it is more
onvenient to work with the θ − h form of Ri
hards' equation, i.e.,
∂t

∫

V
θdx =

∫

∂V
K(θ)

∂(h+ z)

∂n
ds,

θ = θ(h)

(5.12)We assume that the �ow domain is the 2D re
tangle Ω = [0, a]× [0, b] whi
his strati�ed in Ns strata [0, a] × [Zi−1, Zi] with Z0 = 0, ZNs = b.Let 0 = x1/2 < x1+1/2 < · · · < xN+1/2 = a, 0 = z1/2 < z1+1/2 < · · · <
zM+1/2 = b be two partitions of the intervals [0, a] and [0, b] respe
tively.We de�ne the 
ontrol volumes ωi,j =

[
xi−1/2, xi+1/2

]
×
[
zj−1/2, zj+1/2

]
, i =

1, N, j = 1,M and the net inner knots ri,j = (xi, zj), xi =
xi−1/2 + xi+1/2

2
,

zj =
yj−1/2 + yj+1/2

2
, i = 1,N, j = 1,M . We assume that the partition

{ωi,j} is a 
onform partition with respe
t to strati�
ation of the domain Ω,
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t tostrata Volumes of the 
ontrol.Fig. 4: 2D mesh.i.e for any j the line z = Zj does not interse
t the interior of any 
ontrolvolume ωi,j.On ea
h volume ωi,j one approximates the pressure by a 
onstant value
hi,j and water 
ontent by a 
onstant value θi,j. On the 
ommon boundary
σi+1/2,j = ωi,j ∪ ωi+1,j of two neighbors we approximate the �ux by

∫

σi+1/2,j

K(θ)
∂(h+ z)

∂n
ds ≈ Ki+1/2,j

hi+1,j − hi,j

△xi+1
(5.13)where the numeri
al hydrauli
 
ondu
tivity Ki+1/2,j is an approximation ofthe hydrauli
 
ondu
tivity K(θ),

Ki+1/2,j = K̃(θi,j, θi+1,j). (5.14)We assume that the fun
tion K̃(·, ·) is a symmetri
 and 
ontinuous fun
tionwith respe
t to its arguments. As result, we obtain a di�erential algebrai
system of equation (DAE), θ − h form of Ri
hards' equation,




mi,j
dθi,j

dt
= Ki+1/2,j

hi+1,j − hi,j

△xi+1
−Ki−1/2,j

hi,j − hi−1,j

△xi
+

+Ki,j+1/2

(
hi,j+1 − hi,j

△zj+1
+ 1

)
−Ki,j−1/2

(
hi,j − hi,j−1

△zj
+ 1

)
,

θi,j = θ(hi,j). (5.15)To integrate the DAE (5.15) we use an impli
it multi-step method, [5℄.Let {tn−k, tn−k+1, ..., tn} be a sequen
e of moments of time and denotes by
θm = θ(tm) ∈ RNM , NM = N ×M . Supposing that one knows the values
{θn−k, θn−k+1, ..., θn}, the values θn+1 and hn+1 at the next moment of time
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tn+1 are 
al
ulated as follows. De�ne a predi
tor polynomial ωP (t) and a
orre
tor polynomial ωC(t). The predi
tor polynomial interpolates the val-ues {θn−k, θn−k+1, ..., θn} at moments of time {tn−k, tn−k+1, ..., tn}, Lagrangeinterpolation,

ωP (t) =

k∑

j=0

qj(t)θ
n−j. (5.16)For ea
h j = 0, k the polynomial qj(t) is given by

qj(t) =

k∏

i=0,i6=j

t− tn−i

tn−j − tn−i
.The 
orre
tor polynomial ωC(t) interpolates the unknowns θn+1 and thevalues of ωP (t) at the moments of time tn+1 and {tn+1 − j△tn; j = 1, k},respe
tively. The unknowns θn+1 and hn+1 are determined by imposing tothe 
orre
tor polynomial ωC(t) and to hn+1 to satis�es the DAE. Then asystem of nonlinear equation results. By denoting

Fi,j(θ
n+1,hn+1) :=

Ki+1/2,j(θ
n+1)

hn+1
i+1,j − hn+1

i,j

△xi+1
−Ki−1/2,j(θ

n+1)
hn+1

i,j − hn+1
i−1,j

△xi
+

Ki,j+1/2(θ
n+1)

(
hn+1

i,j+1 − hn+1
i,j

△zj+1
+ 1

)
−Ki,j−1/2(θ

n+1)

(
hi,j − hi,j−1

△zj
+ 1

)(5.17)one obtains




mi,j

(
a

△tn θ
n+1
i,j − wP,n

i,j

)
= Fi,j

(
θn+1,hn+1

)
,

θn+1
i,j = θ(hn+1

i,j ),
(5.18)where wP,n

i,j are known quantities as fun
tions of the pre
eding values of θ.The nonlinear system (5.18) is solved iteratively using an inexa
t Newtonstep followed by a Broyden step until a desired a

ura
y is obtained. Let Rbe given by
R(θ,h) = m

(
a

△tn θ − wP,n

)
− F (θ,h) . (5.19)The matrix J (θ,h) of the iterative pro
ess in INS is an approximation ofthe full Ja
obian of the fun
tion R, the produ
t of it with a ve
tor w read
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J (θ,h)w = m

a

△tnC(h)w − F̃ (θ,w) , (5.20)where
F̃ (θ,w) = ∂hF (θ,w) (5.21)and

C(·) =
dθ(·)
dh

.The nonlinear solver is:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Inexact Newton step

J (θn+1,k,hn+1,k)δNS
h = −R

(
θn+1,k,hn+1,k

)
, ( s 1)

h
n+1,k+1

= hn+1,k + δNS
h , ( s 2)

θ
n+1,k+1

= θ(h
n+1,k+1

), ( s 2)

Broyden step

J (θn+1,k,hn+1,k)δBS
h = −R

(
θ

n+1,k
,h

n+1,k
)
, ( s 3)

δk+1
h = δBS

h

〈δNS
h , δNS

h 〉
〈δNS

h , δNS
h 〉 − 〈δNS

h , δBS
h 〉

, ( s 4)

hn+1,k+1 = h
n+1,k

+ δk+1
h , ( s 5)

θ n+1,k+1 = θ(hn+1,k+1). ( s 5)

(5.22)
The linear equations in the steps s1 and s3 are solved by Conjugate GradientMethod for linear system with symmetri
 and positive de�nite matrix. Wepresent some numeri
al tests obtained using the above algorithm. As empir-i
al models for water 
ontent θ(h) and hydrauli
 
ondu
tivity K(θ) we usethe van Genu
hten model,

S(h) =

{
(1 + (αh)n)−m , h < 0,
1, h ≥ 0,

(5.23)
K(S) =

{
KsS

l
(
1 −

(
1 − S1/m

)m)2
, 0 < S < 1,

Ks, S ≥ 1,
(5.24)
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esses 197where S represents the relative water 
ontent
S =

θ − θr

θs − θr
.The soil in the test is a layered soil with two alternate strata.

h1 h2 h3

loam 

loam 

glendale

glendale

vn=0

vn=0

vn=0

1m

1m
Physi
al 
on�guration. The parameters for the loam soil in the van Genuthen modelare: n = 2, α = 3.35 m−1, l = 0.5, Ks = 0.3318 mh−1, θr = 0.012, θs = 0.368and for the Glendale soil are: n = 1.3954, α = 1.04 m−1, l = 0.5, Ks = 0.545 ×
10−2 mh−1, θr = 0.106, θs = 0.4686. The initial datum is h0 = −1.0 m in the wholedomain. The boundary 
onditions are of the mixt type.
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202 Dorin Marines
u1. Introdu
tionIt is known that the 
lassi
al Boltzmann equation des
ribes the evolution ofthe simple gas. The Boltzmann equation represents the 
onne
ting bridgebetween the mi
ros
opi
 and ma
ros
opi
 des
ription of the simple �uid evo-lution. The kineti
s of the simple gas is essentially governed by elasti
 binary
ollisions between stru
tureless parti
les belonging to a unique spe
ies, themultiple 
ollisions being very improbable Ref. [1℄. However, this equationis not able to des
ribe the evolution of the real gas with 
hemi
al rea
tionsand/or ionization pro
esses. Then inelasti
 
ollisions must be 
onsidered bythe kineti
 models. Boltzmann himself was aware of the importan
e of theinelasti
 
ollisions in the real �uid evolution Ref. [9℄.The 
lassi
al Boltzmann equation is almost unanimously 
onsidered as ap-propriate for the kineti
s of the rare�ed simple gas. A kineti
 theory forthe rea
tive (real) gas is a more di�
ult task Ref. [30, 21℄. As 
ompared tothe 
lassi
al Boltzmann equation for the simple gas, kineti
 rea
tive mod-els exhibit new mathemati
al di�
ulties due the 
ontribution of the parti
leinternal states to the gas evolution (in parti
ular the presen
e or rea
tionthresholds) and the existen
e of 
ollision 
hannels with multiple rea
tionparti
ipants Ref. [8, 25, 24, 29℄. In the 
ase of the rea
ting gas mixturesthe mass balan
e does not hold for a given spe
ies. Then, the mass 
on-servation for a spe
ie must be repla
ed by the total mass balan
e. In therea
tive models is present a transfer between the kineti
 energy and the in-ternal mole
ular energy. Consequently, the kineti
 energy balan
e must berepla
ed by the total energy balan
e (i.e. kineti
 energy + internal mole
ularenergy). Then, the transport properties of the rea
ting gas mixtures di�erfrom the properties of the simple gas.Various models have been introdu
ed to des
ribe the kineti
s of the real (re-a
tive) gas. An important role is played by the Boltzmann-like semi-quantumequations. A known example is the Wang-Chang-Uhlenbe
k-de Boer systemof kineti
 equations [32℄ for the real gas with binary 
ollisions. This modelrefers to a gas of parti
les with 
lassi
al translational motion, but with quan-tum internal stru
ture. Essentially, the di�eren
e from the Boltzmann modelRef. [11℄ for the simple gas is to asso
iate to ea
h internal state a distributionfun
tion, and to relate ea
h transition from one quantum internal state (ofsome 
hemi
al spe
ies) to another with a 
ross-se
tion matrix.A more general model introdu
ed by Ludwig and Heil [25℄ extends Wang-Chang-Uhlenbe
k-de Boer model. This model des
ribes rea
tions in a di-atomi
 gas without emission or absorption of radiation. It in
ludes pro
esses
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tive Boltzmann Type Equation 203of re
ombinations by triple 
ollisions, as well as three post-
ollisional prod-u
ts like disso
iation and ionization indu
ed by 
ollisions Ref. [8, 25, 24℄.In some Wang-Chang-Uhlenbe
k-de Boer or Ludwig and Heil model the num-ber of equations depends on the number of distribution fun
tions, i.e. on thenumber of di�erent quantum internal states owned by the gas parti
les dur-ing the gas evolution. It is known that, there exists only at most a 
ountableset of internal states. However, only a �nite number of internal states willsigni�
antly 
ontribute to the gas kineti
s. Consequently, the Wang-Chang-Uhlenbe
k-de Boer and Ludwig and Heil models are des
ribed by a �nitenumber of equations.For analyti
al purposes, in Ref. [16, 17, 18℄, the Wang-Chang-Uhlenbe
k-deBoer and Ludwig and Heil equations 
orresponding to the model with �nitenumber of internal states have been trans
ribed in abstra
t form, revealingthe mathemati
al stru
ture of the equations. In Ref. [17℄ was proved theexisten
e and uniqueness of the solutions for the Cau
hy problem. It wasshown that the solutions verify the 
onservation of the total mass, momentumand energy respe
tively. Moreover, it was proved the existen
e of equilibriumsolutions. H-theorem and a generalized law of the mass a
tion have beenrigorously proved under extended balan
e 
onditions.The interest for rea
tive kineti
s is not only intrinsi
, but also of pra
ti
alnature, in plasma physi
s, nu
lear physi
s, physi
al 
hemistry of the highatmosphere, 
ombustion theory, modeling of missiles �ight.A

urate numeri
al modeling of nonlinear pro
esses in dilute, �ows is 
riti
alfor solving transport problems both in fundamental and applied s
ien
e. Inthis respe
t Babovsky and Illner [4, 5℄ have proposed an e�
ient numeri
als
heme 
onsistent with the 
lassi
al Boltzmann equation. Using Nambu'sideas [26℄, by time dis
retization and lo
al spa
e-homogenization, Babovskyand Illner have obtained a 
onvenient approximate form of the equation.At this point, the nonlinear 
hara
ter of the 
ollision operators involve apower-like growth of the numeri
al 
omplexity. To provide an algorithm,with small numeri
al e�ort, they have introdu
ed an additonal sto
hasti
approximation. Finally, they have proved the 
onvergen
e almost sure, insome sense, of the approximation s
heme. The te
hniques developed byNambu [26℄, Babovsky and Illner of [4, 5℄ were also applied Ref. [6℄ to Pullin'sequation [27℄ with Larsen-Borgnakke [10℄ s
attering 
ross se
tion for the one-
omponent diatomi
 gas with 
lassi
al internal degrees of freedom.For the abstra
t model Ref. [16, 17, 18℄ des
ribing the real rea
ting gas, inRef. [19℄ was introdu
ed a rigorous and e�
ient approximation s
heme. Thismethod represents a nontrivial extension of the te
hniques of Ref. [4, 5℄ for
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usolving spa
e-homogeneous Boltzmann-like models of rea
ting gas mixturesRef. [32, 8, 25, 24, 16, 17℄.The methods of this 
hapter have been tested Ref. [14, 13℄ on the Krook-Wu[22℄ two-
omponent Boltzmann equation as well as on the rea
tive Boltzmannmodels with three and four 
omponents Ref. [12, 20℄.This review presents the theoreti
al approximation method for the solutionsof the Boltzmann model introdu
ed in Ref. [17℄ following the line of Ref. [19℄and adding some improvements sket
hed in Ref. [12℄.The present 
hapter is organized as follows.In the next se
tion one �rst re
alls the main features of the Boltzmann-likeequations introdu
ed in Ref. [17℄. Then, one formulates the approximationproblem. In Se
tion 3 one investigates the initial value problem for the spa
e-homogeneous kineti
 equations of Se
tion 2, formulated in a suitable spa
eof fun
tions. In Se
tion 4 one obtains a 
onvergent, time-dis
retized versionof the aforementioned Boltzmann-like equations. Se
tion 5 is devoted to thegeneralizations of 
ertain probabilisti
 sele
tion results of Ref. [4, 5℄. This ispossible due to some 
lari�
ations with respe
t to the nature of the 
onver-gen
e introdu
ed by Babovsky and Illner. More pre
isely, the probabilisti
part of the 
onvergen
e proof of Ref. [4, 5℄ is based on the 
entral limit theo-rem for row-wise i.i.d. random variables and the Borel-Cantelli Lemma. Ourargument follows from a simple version of the strong law of large numbersfor arrays of (not ne
essarily identi
ally distributed) row-wise independent,random variables. (Whi
h results from the Chebyshev inequality and theBorel-Cantelli Lemma.) In Se
tion 6, the results of Se
tion 5 are applied tothe dis
retized s
heme obtained in Se
tion 4. Consequently, one obtains thenumeri
al algorithm for the original Cau
hy problem. This represents ourmain result, namely the 
onvergen
e of the numeri
al s
heme. Finally, wedis
uss the limitations and possible generalizations of the model.2. The Kineti
 Model and the Approximation Pro-
edureHere, we brie�y re
all the features of the model presented in Ref. [17, 18℄(see also Ref. [16℄).The leading idea behind the model is that, unequal internal states of a gasparti
le with internal stru
ture 
an be 
onsidered as des
ribing stru
ture-lessparti
les belonging to distin
t 
hemi
al spe
ies. Then, a real gas mixture



Rea
tive Boltzmann Type Equation 205of parti
les with internal stru
ture 
an be thought as a mixture of several
hemi
al spe
ies of mass points with unique internal states.Spe
i�
ally, the model refers to a gas 
onsisting of N distin
t spe
ies of pointmasses, with one-state internal energy, evolving without external for
es. Thefollowing assumptions are general: (i) gas parti
les have free 
lassi
al motionin spa
e, between (in)elasti
, instant, lo
al 
ollisions, without emission orabsorption of photons; (ii) 
ollision (rea
tions) may 
hange momenta, as wellas the 
hemi
al nature (in parti
ular mass and internal energy) of the gasparti
les; any 
ollision o

urs with 
onservation of total mass, momentumand (kineti
+internal) energy, a

ording to the laws of 
lassi
al me
hani
s.(iii) in ea
h 
ollision (rea
tion) 
hannel, the number of identi
al partners
annot ex
eed some number, say M ≥ 2 and any 
ollision (rea
tion) 
hannel
ontains, at least, two parti
les.Denote by M the folowing multi-index set
M := {γ = (γk)k=1,...,N |γk ∈ {0, 1, . . . ,M}} . (2.1)A gas 
ollision (rea
tion) pro
ess is spe
i�ed by a 
ouple (α,β) ∈ M×M.Here, the multi-index α = (α1, . . . , αN ) represents the pre-
ollision (in) 
han-nel, with αn ∈ {0, 1, . . . ,M} identi
al parti
ipants of the n− th spe
ies. Themulti-index β = (β1, . . . , βN ) represents the post-
ollision (out) 
hannel, with

βn ∈ {0, 1, . . . ,M} identi
al parti
ipants of the n− th spe
ies.The pair of multi-indexes (α,β) 
orresponds to a rea
tion of the followingtype
α1X1+, . . . ,+αNXN → β1X1+, . . . ,+βNXN , (2.2)between the spe
ies X1,. . . ,XN , with stoi
hiometri
 
oe�
ients α1, . . . , αN ,

β1, .., βN . Note that if α = β, the 
ollision is elasti
 and if α 6= β, the 
ollisionis inelasti
.For ea
h 
hannel γ ∈ M the family N (γ) := {k | γk > 0 for k = 1, . . . ,N}represents the spe
ies existing in that 
hannel. Obviously, if k /∈ N (γ) thespe
ies k is not present inside the 
hannel γ. If k ∈ N (γ), then there are
γk identi
al parti
les of the spe
ies k in the 
hannel γ. We denote the totalnumber of parti
les in the 
hannel γ by

|γ| :=

N∑

k=1

γk. (2.3)Their velo
ities are denoted by wk,1, . . . ,wk,γk
∈ R3. Also set w :

= ((wk,i)i=1,...,γk
)k∈N (γ), understanding that w ∈ R3|γ|. We denote by
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u
mk > 0 and Ek ∈ R, the mass and the internal energy, respe
tively of amass-point of the spe
ies k = 1, . . . ,N .Let

Vγ(w) := (

N∑

k=1

γkmk)
−1

∑

k∈N (γ)

γk∑

i=1

mkwk,i, (2.4)and
Wγ(w) :=

∑

k∈N (γ)

γk∑

i=1

(2−1mkw
2
k,i + Ek). (2.5)be the 
lassi
al mass 
enter velo
ity and the total energy, respe
tively, forthe parti
les in the 
hannel γ. A

ording to the 
onservation assumptions,in the des
ription of the gas kineti
s, for ea
h 
ouple (α,β) ∈ M × M we
onsider only the 
ollisions satisfying the relations

N∑

k=1

mk(αk − βk) = 0, (2.6)
Vα(w) = Vβ(u), Wα(w) = Wβ(u), (2.7)In (2.7) w = ((wk,i)i=1,...,γk

)k∈N (α) and u = ((uk,i)i=1,...,βk
)k∈N (β) are thevelo
ities of the parti
les in the 
hannels α and β, respe
tively.Note that rea
tions with at most one parti
le in some 
ollision 
hannel areex
luded by (2.6) and (2.7), be
ause in the absen
e of radiative pro
esses, the
onservation laws (2.6) and (2.7) 
annot be simultaneously ful�lled. There-fore, |γ| ≥ 2. This inequality explains the restri
tion M ≥ 2 in the de�ni-tion (2.1) of M. Remark that, the 
onservation of the total energy statedin (2.7) implies the existen
e of rea
tion thresholds and shows what happenswith the internal energies of the parti
les parti
ipating in rea
tions. Forinstan
e in the 
ase of endothermi
 
ollisions (α,β), i.e.

∑

k∈N (α)

αkEk <
∑

k∈N (β)

βkEk, (2.8)the kineti
 energy of the resulting produ
ts is lost as binding energy. In su
ha 
ase the 
ollision 
an be forbidden if the kineti
 energy in the 
hannel αis bellow the rea
tion threshold. Note that, the model a

epts also rea
tionthresholds for exothermi
 
ollisions (α,β)

∑

k∈N (α)

αkEk >
∑

k∈N (β)

βkEk. (2.9)
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tive Boltzmann Type Equation 207Following the standard Boltzmann pro
edure (based on the mole
ular 
haosassumption) we introdu
e the system of kineti
 equations
∂tfk + v · ∇xfk = Pk(f) − Sk(f), for k = 1, . . . ,N, (2.10)as an abstra
t trans
ription of the Wang-Chang-Uhlenbe
k-de Boer andLudwig and Heil equations. Here fk : R+ × R3 × R3 → R+ are the un-knowns for k = 1, . . . , N , (with R+ := [0,∞)) and f := (f1, . . . , fN ). Ea
h

fk = fk(t,v,x) (t-time, v -velo
ity, x -position) is the one-parti
le distri-bution fun
tion for spe
ies k = 1, . . . ,N of parti
les. In (2.10) the gainoperators Pk and the loss operators Sk(f) des
ribe the 
ollision pro
esses.For g = (g1, . . . , gN ) (with g1, . . . , gN : R3 → R) de�ne,
gγ(w) :=

∏

k∈N (γ)

γk∏

i=1

gk(wk,i), γ ∈ M. (2.11)Formally the gain and the loss operators are de�ned by
Pk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|

σβ,α,k(u,w,v)gβ(u)dudw, (2.12)and
Sk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|
σα,β,k(w,u,v)gα(w)dudw. (2.13)Here, for ea
h (α,β) ∈ M×M and k = 1, . . . ,N ,

σα,β,k(w,u,v) := Kα,β(w,u)·

δ(wk,αk
− v) · δ(Vβ(u) − Vα(w)) · δ(Wβ(u) −Wα(w)),

(2.14)whereKα,β : R3|α|×R3|β| → R+ are given fun
tions related to the probabilityof the rea
tion (α,β) ∈ M × M. The following general properties areassumed:1o Kα,β ≡ 0 if |α| < 0, or |β| < 0.2o Kα,β ≡ 0 when the probability of the 
ollision (α,β) is zero.3o Kα,β ≡ 0 if for some (α,β) ∈ M×M, the 
ondition (2.6) does not hold.4o Kα,β(w,u) is invariant at the permutation of the 
omponents wn,1, . . . ,
wn,αn of w for ea
h �xed u ∈ R3|α|, w ∈ R3|β| and n ∈ N (α); a similar
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ustatement holds for the 
omponents of u. (This 
ondition expresses the�indistinguishability� of identi
al 
ollision partners.)5o For all a ∈ R3 (α,β) ∈ M×M,
Kα,β(T (a)w, T (a)u) ≡ Kα,β(w,u), (2.15)where T (a)w is de�ned on 
omponents by (T (a)w)k,i = wk,i+a for k ∈ N (α)and i = 1, . . . , αk.6o There exist some given 
onstants C1, . . . , CN > 0, su
h that
CβKα,β(w,u) ≡ CαKβ,α(u,w). (2.16)are veri�ed for all (w,u) ∈ R3|α| × R3|β| and (α,β) ∈ M×M, where

Cγ := Cγ1
1 · . . . · CγN

N , (2.17)for all γ ∈ M.Note that assumption 1o ex
ludes the �spontaneous disso
iation� as well asthe �total fussion�. The 
ondition 3o refers to the mi
ros
opi
 
onservationof the mass. The form of σα,β,k in (2.14) takes into a

ount the mi
ros
opi

onservation laws of the total energy and momentum. The expli
it use of onlyone variable, wk,αk
in δ(wk,αk

− v), is possible due to �indistinguishability�of identi
al 
ollision partners (
ondition 4o). Assumption 5o expresses theabsen
e of the external �elds. The generalization of the 
lassi
al 
ollisionreversibility is given by the 
ondition 6o.As announ
ed before, we refer only to the spa
e-homogeneous version of(2.10), i.e.
∂tfk = Pk(f) − Sk(f), k = 1, . . . ,N. (2.18)Several properties (also valid in the spa
e-inhomogeneous 
ase [17, 18℄) 
an beformally established as for the Ludwig and Heil equations [25℄, and rigorouslyproved by giving a meaning to (2.18) and �nding 
lasses of solutions with
onvenient regularity properties. Thus, formally,

N∑

k=1

∫

R3

Φi
k(v) [Pk(f)(v) − Sk(f)(v)] dv = 0, i = 0, . . . , 4, (2.19)provided that all integrals involved are 
onvergent, where Φ0

n(v) := mn,
Φi

n(v) = mnvi, for the 
omponent vi, i = 1, 2, 3, of v, and Φ4
n(v) :=

mnv
2/2 + En. By (2.19) the solutions of (2.18) are formally 
ompatible
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onservation of the mass (i = 0), bulk momentum (i = 1, 2, 3) andenergy (i = 4), respe
tively.One 
an de�ne the H-fun
tion
H(f)(t) =

N∑

k=1

∫

R3

[logCkfk(t,v) − 1] fk(t,v)dv, (2.20)for those solutions f(t,v) of (2.18), with positive 
omponents, provided thatthe integrals exist. In (2.20) the 
onstants Ck are the same to the 
onstantsfrom the assumption 6o. Formally, by a few algebrai
 manipulations, oneobtains
d

dt
H(f)(t) =

N∑

k=1

∫

R3

[Pk(f)(t,v) − Sk(f)(t,v)] logCkfk(t,v)dv =

=
∑

α,β∈M

∫

R3|β|×R3|α|

Kβ,α(u,w)fβ(t,u)F

[
Cαfα(t,w)

Cβfβ(t,u)

]
dudw ≤ 0,(2.21)where F (x) := 1

2(1 − x) log x ≤ 0 for x ≥ 0.The equilibrium solutions of (2.18) are Maxwellian (Gaussian) fun
tions withdetermining 
onstants (
on
entration, bulk velo
ity and temperature) relatedto the internal energies En and the 
onstants Cn of (2.16), by the law of themass a
tion (for more details see e.g. Ref. [25, 17℄).We distinguish the following parti
ular 
ases:1. If M = 3 in (2.10-2.13), and the 
onditions of (2.16) are veri�ed, then(2.10) essentially redu
es to the Ludwig and Heil system of equationswith dis
rete internal energies.2. If M = 2 and the 
onditions of (2.16) are ful�lled with C1 = C2 = 1,then we obtain the Wang-Chang-Uhlenbe
k-de Boer system of equa-tions.3. If M = 2, N = 1, the 
ondition (2.16) are ful�lled and the transitionfun
tions depend only on the relative velo
ities of the en
ounters inea
h 
ollision 
hannel, then one gets the 
lassi
al Boltzmann equation.In order to introdu
e the numeri
al s
heme asso
iated to the equations (2.18),in the next se
tion we solve a Cau
hy problem for (2.18) formulated in aprodu
t of L1 spa
es. Besides the uniqueness and global existen
e of the
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usolution, we also need the positivity of the solution and the ma
ros
opi
mass 
onservation. Note that, other 
onservation properties, as well as theexisten
e of a H-theorem play no role in this numeri
al s
heme. In parti
ular,property (2.16) is not needed. However, we will state without proof a generalresult 
on
erning the 
onservation relations and a H-theorem (only for thesake of 
ompleteness).Roughly speaking, we would like to approximate the measures dµt
k(v) :=

fk(t,v)dv indu
ed by the solutions fk(t,v) of (2.18), k = 1, . . . ,N , by 
on-venient homogeneous sums of point measures, de�ned as follows.Let µ be a �nite positive measure on Rm. For an > 0, where n ∈ N∗ :=
{1, 2, . . .}, let

σn =
an

n

n∑

i=1

δxi,n , n ∈ N∗. (2.22)Here δxi,n is the Dira
 measure on Rm 
on
entrated at point xi,n for i =
1, . . . , n. The sequen
e of measures (σn)n∈N∗ is 
alled a homogeneous sum ofpoint measures (HSPM) approximating the measure µ, if it 
onverges weaklyto µ (in the weak sens of the measures) i.e. σn ⇀ µ as n→ ∞.We 
all a sequen
e (σn)n∈N∗ of the form

σn =

n∑

i=1

ai,n

n
δxi,n , n ∈ N∗, (2.23)(where ai,n > 0 for i ∈ {1, . . . , n} and n ∈ N∗) a weighted sum of pointmeasures (WSPM) approximating the measure µ, if it 
onverges weakly to

µ, i.e. σn ⇀ µ as n → ∞. Obviously, if ai,n = aj,n for i, j ∈ {1, . . . , n} and
n ∈ N∗, the WSPM approximation be
omes a HSPM approximation.The HSPM approximation is 
onvenient for numeri
al solving of equationswhere the solutions are �nite (probability) measures on Rm, and where onealso wishes to approximate moments of some (random) variables with respe
tto solutions. In this 
ase, the 
ontrol of the approximation 
an be made bymeans of the Koksma-Hlavka inequality Ref. [23℄, in terms of dis
repan
y.We re
all that, by de�nition Ref. [5, 15, 23℄, the dis
repan
y between thenonnegative measures µ and ν on Rm is given by the following formula,

D(µ, ν) := sup
a∈Rm

|µ(Λ(a)) − ν(Λ(a))| , (2.24)where Λ(a) := {x ∈ Rm |xl ≤ al, l = 1, . . . ,m}.
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all, Ref. [5℄, that a sequen
e of measures µn is said to 
onvergeto µ with respe
t to dis
repan
y if, D(µn, µ) → 0 as n→ ∞.It is known, Ref. [5℄, that if µ is a measure absolutely 
ontinuous with respe
tto the Lebesgue measure on Rm, then the 
onvergen
e of µn to µ with respe
tto dis
repan
y is equivalent to the weak 
onvergen
e in the sense of measures.Starting with HSPM approximation for ea
h µ0
k indu
ed by the initial data in(2.18), with k = 1, . . . , N , our purpose is to provide a 
onvergent algorithmgenerating HSPM approximations for the measures µt

k, where k = 1, . . . ,N ,at any t > 0.In this respe
t, one 
hooses some �xed timestep ∆t < T . Let
T∆ :=

[[
T

∆t

]]
, (2.25)where [[x]] denotes the integer part of x ∈ R. One asso
iates a time-dis
retized version of equations to (2.18). Starting with an initial data, f0

k =

f0
k (v), k = 1, . . . , N , one obtains a family of fun
tions f j

k(v), j = 1, . . . , T∆verifying the dis
retized form of (2.18). The dis
retized version of (2.18)
an be formulated in the weak form for the measures dµ̄j
k(v) := f j

k(v)dv,where k = 1, . . . , N . We shall prove that if, ea
h µ̄0
k is 
lose, to µ0

k, insome sense, then (for ∆t su�
iently small), µ̄j
k is 
lose to µt

k on the inter-val ((j − 1)∆t, j∆t], with an error of order ∆t, for all j = 1, . . . , T∆ and
k = 1, . . . , N .The s
heme is initialized for k = 1, . . . ,N by approximating for the measures
µ̄0

k by a HSPM approximation of the form:
µ0

k,n :=
ak,n

n

n∑

i=1

δvk,n
⇀µ̄0

k, as n→ ∞. (2.26)The above approximation provides for all j = 1, . . . , T∆ and k = 1, . . . ,Napproximations by dis
rete measures µj
k,n ⇀ µ̄j

k as n→ ∞.Be
ause of the nonlinearity of the initial problem, ea
h step of the iterationprodu
es a power-like growing number of terms in the sums of point measuresexpressing µj
k,n. In 
omputations, the numeri
al e�ort would also be power-like in
reasing, so that the algorithm 
ould not be e�e
tive at this level.To approximate µ̄j

k by sums of Dira
 measures with a non-in
reasing numberof terms, for te
hni
al reasons, it is ne
essary to have a HSPM approximation.However, in general, µj
k,n appears as a WSPM of the form (2.23). For thisreason we introdu
e a homogenization pro
edure of approximation to obtainmeasures of the form (2.22). At this level, one 
an redu
e the numeri
al
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ue�ort by using probabilisti
 te
hniques of sele
tion. Then, the 
onvergen
eof the numeri
al s
heme is proved in probabilisti
 terms.3. The Existen
e of the SolutionDe�ne the spa
e X := L1(R3) × . . .× L1(R3)︸ ︷︷ ︸
N times � real, equipped with the norm

‖g‖
X

:=

N∑

k=1

mk ‖gk‖L1 , (3.1)where g = (g1, . . . , gN ) and gk ∈ L1(R3), k = 1, . . . ,N . We re
all that
mk > 0 denotes the mass of a parti
le of spe
ies k for ea
h k = 1, . . . ,N .Note that if g ≥ 0 (i.e. gk ≥ 0 a.e. for all k = 1, . . . ,N) then the norm ‖g‖

Xis equal to the mass of the gas in the state des
ribed by the distributionfun
tions given by the 
omponents of g.For approximation purposes, we suppose that the fun
tions of the family
{Kα,β}α,β∈M are 
ontinuous. We formulate the Cau
hy problem for (2.18)in the spa
e X.Before, we must give a meaning to the 
ollision operators Pk and Sk asoperators a
ting in the spa
e X. This 
an be performed, using regularizationas in Ref. [16, 17℄ to de�ne σα,β,k as distributions for all α,β ∈ M×M and
k = 1, . . . , N .Form ∈ N∗ denote by Cb(R

m) the spa
e of the bounded fun
tions of C(Rm; R),endowed with the usual sup norm. Let Cc(R
m) be the subset of the fun
tionsof Cb(R

m) with 
ompa
t support.Let J ∈ Cc(R) be positive and even fun
tion, su
h that supp(J) = [−1, 1]and ‖J‖
L1 = 1. For ε > 0 denote by δε(t) =: ε−1J(ε−1 · t) and δ3ε(y) :=

δε(y1) · δε(y2) · δε(y3) , where y = (y1, y2, y3) ∈ R3. De�ne
σε,η

α,β(u,w) := Kα,β(w,u)δ3ε (Vβ(u) − Vα(w))δη(Wβ(u)) −Wα(w)), (3.2)
Pkεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
β,α(u,w)gβ(u)dudw̃k

]

wk,αk
=v(3.3)



Rea
tive Boltzmann Type Equation 213and
Skεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
α,β(w,u)gα(w)dudw̃k

]

wk,αk
=v

,(3.4)with gα and gβ as in (2.11), for all g ∈ Cc(R
3)N := Cc(R

3) × . . .× Cc(R
3)︸ ︷︷ ︸

N times ;
v ∈ R3, k ∈ 1, . . . , N . In (3.3) and (3.4), the terms with αk = 0, vanish,by de�nition, and dw̃k is the Eu
lidean element of area on the manifold{
w ∈ R3|α||wk,αk

= v
}.Let Ωγ be the unit sphere in R3|γ|−3, where γ ∈ M. The operators Pk and

Sk 
an be de�ned by means of the following result.Lemma 3.1 For ea
h g ∈ CN
c (R3), there exist the limits

Ṗk(g)(v) := lim
η→0

lim
ε→0

Pkεη(g)(v), Ṡk(g)(v) := lim
η→0

lim
ε→0

Skεη(g)(v).(3.5)There are the families of fun
tions {rβ,α}α,β∈M, {pβ,α}α,β∈M ⊂ C(R3|α| ×
Ωβ; R+) and {uβ,α}α,β∈M ⊂ C(R3|α| × Ωβ; R3|β|) su
h that
Ṗk(g)(v)=

∑

α,β∈M

αk

[∫

R3|α|−3×Ωβ

pβ,α(w,n)gβ(uβ,α(w,n))dw̃kdn

]

wk,αk
=v

,(3.6)
Ṡk(g)(v) =

∑

α,β∈M

αk

[∫

R3|α|−3×Ωβ

rβ,α(w,n)gα(w)dw̃kdn

]

wk,αk
=v

, (3.7)for all g ∈ CN
c (R3), and the following properties are veri�ed:i) there are some 
onstants c, d > 0 su
h that |uβ,α(w,n)| ≥ c |w| for all

|w| ≥ d and α,β ∈ M.ii) if Wα(w) − 2−1(
∑N

n=1 αnmn)Vα(w)2 −∑N
n=1 βnEn ≤ 0 for some w ∈

R3|α|, then
rβ,α(w,n) = pβ,α(w,n) = 0, for all n ∈ Ωβ and α,β ∈ M. (3.8)iii) for ea
h ϕ ∈ C(R3|α|) and f ∈ Cc(R

3|β|) and ∀α,β ∈ M
∫

R3|α|×Ωβ

ϕ(w) · pβ,α(w,n) · f(uβ,α(w,n))dwdn =

=

∫

R3|β|×Ωα

ϕ(uα,β(u,n)) · rα,β(u,n) · f(u)dudn.

(3.9)
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uThe results of the above Lemma were obtained in Ref. [17℄. However, for thesake of 
ompleteness, the proof is outlined in Appendix2.Property (3.8) follows by the presen
e of rea
tion thresholds (in the frameof the 
onservation relations (2.6) and (2.7)). Moreover, (3.6) and (3.7) arewell de�ned, be
ause of property i) in Lemma 3.1.From (3.7), we 
an write
Ṡk(g)(v) = Ṙk(g)(v)gk(v), (3.10)where

Ṙk(g)(v) :=

:=
∑

α,β∈M

αk

[∫

R3|α|−3×Ωβ

rβ,α(w,n)gγ;k(ws,i)dw̃kdn

]

wk,αk
=v

.
(3.11)In (3.11), for γ ∈ N (γ) we assumed the 
onvention

gγ;k(w) := gγ(w)/gk(wk,αk
), (3.12)where the r.h.s. makes sense and gγ;k(w) := 0 otherwise.Our results are based on the followingAssumptionThere is a 
onstant K > 0, su
h that

∫

Ωβ

rβ,α(w,n)dn < K, (3.13)for all w ∈ R3|α| and α,β ∈ M.From (3.13), it is immediate that the maps
X ⊃ Cc(R

3)N ∋ g → Ṡk(g) ∈ L1(R3),

X ⊃ Cc(R
3)N ∋ g → Ṙk(g) ∈ Cb(R

3)

(3.14)are 
ontinuous for ea
h k = 1, . . . ,N . Moreover, using property (3.9) (with
ϕ = 1, f = gβ) 
ombined with Fubini's theorem, it also follows that the map

X ⊃ Cc(R
3)N ∋ g → Ṗk(g) ∈ L1(R3) (3.15)2Note that the fun
tions rα,β and pα,β appear in expli
it form in the proof ofLemma 3.1 (see the Appendix).
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ontinuous for ea
h k = 1, . . . ,N .Sin
e Cc(R
3)N is dense in X, the maps given by (3.14-3.15) have 
ontinuousextensions to X. These extensions will be also denoted Sk, Rk and Pk,respe
tively.Note that (3.10) 
an be extended to all g ∈ X, in the sense that a.e.,

Sk(g)(v) = Rk(g)(v)gk(v), (3.16)for all k = 1, . . . , N .De�ne P,S : X → X by
P(g) = (P1(g), . . . , PN (g)),

S(g) = (S1(g), . . . , SN (g)),
(3.17)for all g ∈ X.We 
onsider the Cau
hy problem for equation (2.18) in X.

dtf(f) = P(f(t)) − S(f(t)), f(0) = f0. (3.18)Theorem 3.1 Let f0 > 0. For ea
h T > 0, equation (3.18) has a uniquesolution f(t) in X on [0, T ]. Moreover, for all t ∈ [0, T ] one has f(t) > 0 and
N∑

k=1

mk

∫

R3

fk(t,v)dv =
N∑

k=1

mk

∫

R3

f0,k(v)dv. (3.19)Proof. One applies the Bana
h �xed point theorem to (3.18) written in
onvenient form.Consider the 
one C+
T := {f ∈ C(0, T ; X)|f(t) ≥ 0, for all t ∈ [0, T ]} with thenorm

‖f‖ := sup
t∈[0,T ]

‖f(t)‖
X
. (3.20)Observe that for all k = 1, . . . ,N , if f ∈ C+

T then Rk(f), Pk(f) ≥ 0 (sin
e
rβ,α, pβ,α ≥ 0, for all α,β ∈ M). Moreover, if f ∈ C+

T , then Rk(f) ∈
C(0, T ;Cb(R

3)). Consequently the Riemann integral ∫ t
s Rk(f(τ))dτ is wellde�ned in Cb(R

3) for all s, t ∈ [0, T ] and k ∈ {1, . . . ,N}.Let f ∈ C+
T . We de�ne the map [0, T ] ∋t → I(f)(t) ∈ X by the 
omponentsof I(f)(t), as:
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u
Ik(f)(t) = exp

[
−
∫ t

0
Rk(f(τ))dτ

]
· f0,k+

+

∫ t

0
exp

[
−
∫ t

s
Rk(f(τ))dτ

]
· Pk(f(s))ds,

(3.21)where t ∈ [0, T ]. Here, the integration with respe
t to ds is in the sense ofRiemann in L1(R3).Obviously Ik(f)(t) ≥ 0 for all t ∈ [0, T ], k = 1, . . . ,N .The problem (3.18) 
an be rewritten in C+
T , as it follows.

f = I(f) (3.22)Let R > ‖f0‖X
. De�ne

B(R) :=
{
f ∈ C+

T | ‖f‖ ≤ R, f (0) = f0
}
. (3.23)Using (3.11), (3.6) and (3.13), one 
an �nd some positive numbers k1(R) and

k2(R), su
h that
‖I(f)‖ ≤ ‖f0‖X

+ T · k1(R), (3.24)and
‖I(f) − I(h)‖ ≤ T · k2(R) · ‖f − h‖ , (3.25)for all f ,h ∈ B(R). Obviously, from (3.24) and (3.25), for T small enough, themap I be
omes a stri
t 
ontra
tion on B(R). Consequently I : B(R) → B(R)and has a unique �xed point. This proves that (3.18) has a unique positivesolution on [0, T ].The positivity of fk, implies that

‖f(t)‖
X

=

N∑

k=1

mk

∫

R3

fk(t,v)dv, 0 ≤ t ≤ T. (3.26)By (3.18) and using (2.6), (3.11), (3.6) and (3.9) (applied to ϕ ≡ 1) oneobtains
dt ‖f(t)‖X

=

N∑

k=1

mk

∫

R3

[Pk(f) − Sk(f)] dv = 0, (3.27)whi
h proves (3.19). Moreover,
‖f‖ = sup

0≤t≤T
‖f(t)‖

X
= ‖f0‖X

. (3.28)
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tive Boltzmann Type Equation 217By 
ontinuation, and uniqueness, the lo
al solution f(t) 
an be made time-global. This ends the proof. 2For the sake of 
ompleteness we state the following result.Let Φi
n be as in (2.19) for i = 1, . . . , 4. With the remark that the mass
onservation (3.19) has been already proved, the solution of (3.18) has thefollowing properties.Proposition 3.1 Let f(t) be the solution of (3.18) given by Theorem 3.1.a) If

f0,k, (1 + v2)f0,k ∈ L1(R3) (3.29)for ea
h k = 1, . . . , N , then
(1 + v2)fk(t) ∈ L1(R3) (3.30)and

N∑

n=1

∫

R3

Φi
n(v)fn(t,v)dv =

N∑

n=1

∫

R3

Φi
n(v)f0,n(v)dv = 0, (3.31)for ea
h k = 1, . . . , N and i = 1, . . . , 4 and all t ≥ 0.b) In addition to the 
onditions (3.29), suppose that there are some 
onstants

C1, . . . , CN > 0 su
h that 
onditions (2.16) hold. If
f0,k log f0,k ∈ L1(R3) (3.32)for ea
h k = 1, . . . , N , then

fk(t) log fk(t) ∈ L1(R3; dv) (3.33)and
H(f)(t) :=

N∑

n=1

∫

R3

[logCnfn(t,v) − 1] fn(t,v)dv (3.34)is non-in
reasing as a fun
tion of t, for ea
h k = 1, . . . ,N and all t ≥ 0.The proof of this proposition is beyond the present purposes. Though, wemention that the proof uses Lemma 3.1 and the ideas introdu
ed by of Ark-eryd [2, 3℄ to prove results of the same nature in the 
ase of the 
lassi
alspa
e-homogeneous Boltzmann equation.
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u4. Time Dis
retizationLet ∆t ∈ (0, T ) be a �xed timestep. We 
onsider the following dis
retizedversion of (3.18).
f j = f j−1 + ∆t ·

[
P(f j−1) − S(f j−1)

]
,

f0 = f0 ≥ 0, a.e., j = 1, . . . , T∆,
(4.1)where f j = (f j

1 , . . . , f
j
N ) and f j

k = f j
k(v).The dis
retized s
heme (4.1) may destroy the positivity of the fun
tions f jfor j ≥ 1. However, one 
an prove that for ∆t small enough, f j is positiveand 
lose, in some sense, to the solution f provided by Theorem 3.1.Proposition 4.1a) If ∆t is su�
iently small, then f j ≥ 0 for all j = 1, . . . , T∆. Moreover,

∥∥f j
∥∥ = ‖f0‖ , (4.2)for all j = 1, . . . , T∆.b) There exists some number C = C(‖f0‖X

) > 0, depending only on ‖f0‖X
,su
h that ∥∥f(t) − f j

∥∥
X
≤ C · ∆t, (4.3)for all j = 1, . . . , T∆ and t ∈ ((j − 1)∆t, j∆t].Proof. a) First we write (4.1) more 
onveniently.Let

U := {γ = (γ1, . . . , γN ) |γk ∈ {0, 1, . . . ,NM} , |γ| ≥ 2} . (4.4)For any ξ = (ξ1, ..., ξN ) ∈ RN for k = 1, ...,N and α ∈ M, denote
ξα,k :=





1

ξk

∏

n∈N (α)

ξαn
n if αk ≥ 1 and ξk 6= 0 ,

0 if αk = 0 or ξk = 0 .

(4.5)For k = 1, . . . , N and α ∈ M, using the multinomial formula, we get
NM∑

p=2

(ξ1 + . . .+ ξN )p−1 =

NM∑

p=2

p−1∂ξk
(ξ1 + . . .+ ξN )p =

∑

α∈U

cααkξα,k, (4.6)
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cα := (|α| − 1)!

(
N∏

k=1

αk!

)−1

. (4.7)If
ξ1 + . . . + ξN = 1, (4.8)then, by (4.6) we get

MN − 1 =


 1

(M + 1)N −N − 1

∑

α,β∈M

αkcαξα,k +
∑

α∈U\M

αkcαξα,k


 .(4.9)For ea
h k = 1, . . . , N , put

ξk = µkIk, (4.10)where
µk = mk

(
N∑

n=1

mn

∫

R3

f0,n(v)dv

)−1 (4.11)and
Ik =

∫

R3

f j
k(v)dv. (4.12)It follows that (4.8) is satis�ed, due to (4.19). Consequently, by (4.9),

1 =
∑

α,β∈M

αk · Γα,k · Iα,k +
∑

α∈U\M

Λα,k · Iα,k, (4.13)where the notation Iα,k is given by (4.5) for I = (I1, . . . ,IN ). In (4.13),
Λα,k :=

αkc
αµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN
N

MN − 1
(4.14)and

Γα,k :=
cαµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN
N

(MN − 1) [(M + 1)N −N − 1]
. (4.15)Multiplying on 
omponents (k = 1, . . . ,N), the �rst term of the right side of(4.1) by (4.13) and using (3.11), equation (4.1) be
omes

f j
k = Qk(f

j−1) + Lk(f
j−1) + ∆t · Pk(f

j−1), (4.16)
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ufor k = 1, . . . , N . Here
Qk(f

j)(v) :=

=
∑

α,β∈M

αk

[∫

R3|α|−3

(
Γα,k− ∆t

∫

Ωβ

rβ,α(w,n)dn

)
f j
α(w)dw(k)

]

wα,k=v

,(4.17)
Lk(f

j)(v) :=
∑

α∈U\M

Λα,k

[∫

R3|α|−3

dw(k)f
j
α(w)

]

wα,k=v

. (4.18)IfK is the 
onstant introdu
ed in (3.13), we 
an 
hoose ∆t su
h that ∆t·K ≤
inf
α,k

Γα,k.Then, the positivity of f j, for all j = 1, . . . , T∆, follows by indu
tion, usingAssumption (3.13). As f j ≥ 0 for all j = 1, . . . , T∆, then the mass 
onserva-tion is always ful�lled. Indeed, by indu
tion and using the same argumentas in (3.27) we have
N∑

k=1

mk

∫

R3

f j
k(v)dv =

N∑

k=1

mk

∫

R3

fk,0(v)dv (4.19)for all j = 1, . . . , T∆.b) Combining (3.18) and (4.1), for all j = 1, . . . , T∆ we 
an write
∥∥f(j · ∆t) − f j

∥∥
X

≤
∥∥f(j − 1) · ∆t) − f j−1

∥∥
X

+

+

∫ j·∆t

(j−1)·∆t

∥∥P (f(s)) − P (f j−1)
∥∥

X
ds+

+

∫ j·∆t

(j−1)·∆t

∥∥S(f(s)) − S(f j−1)
∥∥

X
ds.

(4.20)
Denote by Oj :=

∥∥f(j∆t) − f j
∥∥

X
. Using the expli
it forms of P and S, takinga

ount of the 
onservation relations (3.19) and (4.19), we �nd that there issome number c0 > 0, depending on ‖f0‖X

su
h that Oj < Oj−1(1+ c0∆t) forall j = 2, . . . , T∆ and O1 ≤ c0∆t. Then
Oj ≤ O1(1 + c0∆t)

T∆ ≤ c1 · ∆t, (4.21)with c1 > 0 depending only on ‖f0‖X
. Suppose that t ∈ ((j − 1)∆t, j∆t].
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it forms of P and S together with (3.18) and (3.19) lead to
‖f(t) − f((j − 1)∆t)‖

X
≤

≤
∫ j∆t

(j−1)∆t
(‖P(f(s))‖

X
+ ‖S(f(s))‖

X
)ds ≤ c2 · ∆t,

(4.22)where c2 depends only on ‖f0‖X
. Now estimation (4.3) is an immediate
onsequen
e of (4.21) and (4.22). 2For numeri
al purposes, one has to write the equation (4.1) in the weak formfor measures. In this respe
t, we asso
iate the the following measures to thesolutions f(t) and f j appearing in Proposition 4.1. For k = 1, . . . ,N de�ne

dµt
k(v) := fk(t,v)dv, (4.23)where t ≥ 0, and

dµ̄j
k(v) := f j

k(v)dv, (4.24)for j = 1, . . . , T∆.Proposition 4.1 has the following 
onsequen
e expressed in terms of the dis-
repan
y de�ned by (2.24).Corollary 4.1 If the 
onditions of Proposition 4.1 are ful�lled, then
max

k=1,...,N
max

j=1,...,T∆

D(µj∆t
k , µ̄j

k) → 0 as ∆t→ 0. (4.25)5. The Probabilisti
 FrameThe 
entral result of this se
tion extends, in some sense, the probabilisti
methods of sele
tion used by Babovsky and Illner [4, 5℄ (see e.g. Lemma 2of Ref. [4℄).We start with a simple generalization (to row-wise independent random vari-ables) of the strong law of large numbers for independent random variableswith bounded fourth momentum (see, e.g., Theorem IV.�3-1 in Ref. [28℄,p.363).Let (Ω, β, P ) be a probability spa
e. For some real random variable X, by
〈X〉 we denote its mean with respe
t to P .Let N∗ ∋ n → qn ∈ N∗. We 
all the family ((Xn,i)i∈{1,...,qn})n∈N∗ of realvalued random variables on Ω an array of row-wise independent randomvariables, if for ea
h �xed n ∈ N∗ the random variables (Xn,i)i∈{1,...,qn} areindependent.
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uProposition 5.1 Let ((Xn,i)i∈{1,...,qn})n∈N∗ be an array of row-wise inde-pendent random variables with zero mean. Denote An := sup
i∈{1,...,qn}

〈X4
n,i〉.If

∞∑

n=1

An

q2n
<∞, (5.1)then, with probability one,

1

qn

qn∑

i=1

Xn,i → 0, as n→ ∞. (5.2)Proof. A

ording to a version of the Borel-Cantelli Lemma, it is su�
ient toshow that for ea
h ε > 0,
∞∑

n=1

P

(∣∣∣∣∣
1

qn

qn∑

i=1

Xn,i

∣∣∣∣∣ > ε

)
<∞. (5.3)To this end, by Chebyshev's inequality, we obtain

P

(∣∣∣∣∣

qn∑

i=1

Xn,i

∣∣∣∣∣ > ε · qn
)

≤ 1

ε4q4n

〈∣∣∣∣∣

qn∑

i=1

Xn,i

∣∣∣∣∣

4〉
. (5.4)Expanding the fourth power, we invoke the independen
e of Xn,i and use thefa
t that 〈Xn,i〉 = 0. Then a simple 
omputation shows that for all ε > 0,

0 ≤
∞∑

n=1

P

(
1

qn

∣∣∣∣∣

qn∑

i=1

Xn,i

∣∣∣∣∣ > ε

)
≤ 3

ε4

∞∑

n=1

An

q2n
<∞. (5.5)This 
on
ludes the proof. 2Consider N∗ ∋ n→ mn ∈ N∗ a sequen
e, su
h that mn → ∞ as n→ ∞.For ea
h n ∈ N∗, let In := {1, 2, . . . ,mn} be an index set and let Ip

n :=
In × . . .× In︸ ︷︷ ︸

p times for a �xed p ∈ N∗.Consider some given set X ⊂ Rm and a given sequen
e (Fn)n∈N∗ of fun
tions
Fn : X× Ip

n → R. De�ne Sn : X → R by
Sn(x) :=





1

mp
n

∑

j∈In

Fn(x, j) if p ≥ 2,

mn∑

j=1

an,jFn(x, j) if p = 1,

(5.6)
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tive Boltzmann Type Equation 223where ((an,l)l∈In)n∈N∗ is a family of nonnegative numbers, su
h that
sup
n∈N∗

mn∑

l=1

an,j <∞,

mn∑

l=1

an,l > 0, for all n ∈ N∗.

(5.7)
Suppose that there is some fun
tion F : X → R su
h that, for ea
h x ∈ X,

F (x) = lim
n→∞

Sn(x). (5.8)In general, for a given n, the sum Sn 
ontains mp
n terms. Roughly speaking,our problem is to 
onveniently diminish the numbers of terms in Sn, byrandom sele
tion of the terms in (5.6) and �renormalize� the resulting sumsu
h that the 
onvergen
e to F (x) be kept, in some sense. In this respe
t,we de�ne some spe
ial families of random variables.Let (Ω, β, P ) be a probability spa
e, where Ω := [0, 1)∞ (in the 
ountablesense) is endowed with the usual produ
t Borel σ−algebra β and P the usualprodu
t probability indu
ed on Ω by the uniform distribution of [0, 1).For ea
h n ∈ N∗ and j ∈ In, de�ne the weights

pn,j :=
an,j

mn∑
l=1

an,l

, (5.9)where ((an,l)l∈In)n∈N∗ is the family with properties (5.7). For ea
h n ∈ N∗,let
qn,s :=





0 if s = 0,

s∑

j=1

pn,j if s ∈ In.
(5.10)For ea
h n ∈ N∗ and l ∈ In we 
onsider the random variables cn,l , c̃n,l : Ω →

In given by
cn,l(ω) := [[ωl ·mn]] + 1, (5.11)and

c̃n,l(ω) := s if ωl ∈ [qn,s−1, qn,s) , (5.12)
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uwhere ωl is the lth 
omponent of ω = (ω1, ω2, . . .) ∈ Ω. In (5.12) we makethe 
onvention that [x, x) := φ (the void set) for any x ∈ R. Obviously, forea
h j ∈ In

P (cn,l(ω) = j) =
1

mn
, (5.13)and

P (c̃n,l(ω) = j) = pn,j. (5.14)Consequently, ((cn,l)l∈In)n∈N∗ and ((c̃n,l)l∈In)n∈N∗ , are arrays of row-wiseindependent random variables.Remark that the random variables cn,l are parti
ular forms of c̃n,l, with
pn,j = m−1

n in (5.9).Let p ≥ 2. For n ∈ N∗ and l ∈ In, de�ne the random variables Jn,l : Ω → Ip
nby

Jn,l(ω) := (i, cn,(l−1)p+1(ω), cn,(l−1)p+2(ω), . . . , cn,lp−1(ω)), (5.15)where ω = (ω1, ω2, . . .) ∈ Ω.Observe that ip + j = i′p + j′ if and only if i = i′ and j = j′, for all
i, i′ ∈ N∗ and j, j′ ∈ {1, 2, . . . , p}. Then, using the row-wise independen
e of
((cn,l)l∈In)n∈N∗ , we 
on
lude the row-wise independen
e of ((Jn,l)l∈In)n∈N∗ .Suppose that one of the following 
onditions is ful�lled:1. X is at most 
ountable.2. X is the whole Rm, the fun
tion F is 
ontinuous and ea
h Fn(·, j) isin
reasing with respe
t to the order of Rm for ea
h �xed n ∈ N∗ and

j ∈ Ip
n. De�ne for ea
h n ∈ N∗ and x ∈ X by

an(x) := max
j∈Ip

n

|Fn(x, j)| . (5.16)Proposition 5.2 1. Let p ≥ 2. If
∞∑

n=1

an(x)4

m2
n

<∞ (5.17)for all x ∈ X, then for ea
h x ∈ X, with probability one,
lim

n→∞

1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i = F (x). (5.18)
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tive Boltzmann Type Equation 2252. Let p = 1. Consider N∗ ∋ n → kn ∈ N∗ a sequen
e su
h that, kn → ∞ as
n→ ∞. If kn ≤ mn for all n ∈ N∗, and

∞∑

n=1

an(x)4

k2
n

<∞, (5.19)for all x ∈ X, then for all x ∈ X, with probability one,
lim

n→∞




mn∑

j−1

an,j


 1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i = F (x). (5.20)Proof. Remark that it is su�
ient to 
onsider the 
ase in whi
h all fun
tions
Fn are positive.Case X 
ountable1. Let x ∈ X be �xed. For ea
h n ∈ N∗ and i ∈ In, de�ne

Yn,i := Fn(x, ·) ◦ Jn,i. (5.21)The row-wise independen
e of ((Jn,i)i∈In)n∈N∗ implies that ((Yn,i)i∈In)n∈N∗is an array of row-wise independent random variables. Let j = (j1, . . . , jp) ∈
Ip

n. Using (5.13) and the de�nition (5.15) of Jn,i, we get
P ({Jn,i(ω) = j}) =





m1−p
n if i = j1,

0 if i 6= j1,

(5.22)for all n ∈ N∗ and j ∈ In. Consequently,
〈Yn,i〉 =

1

mp−1
n

mn∑

j2,...,jp=1

Fn(x, (i, j2, . . . , jp)), (5.23)so that
1

mn

mn∑

i=1

〈Yn,i〉 =
1

mp
n

∑

j∈Ip
n

Fn(x, j) = Sn(x). (5.24)Put Xn,i := Yn,i − 〈Yn,i〉. Then, the family ((Xn,i)i∈In)n∈N∗ satis�es the
onditions of Proposition 5.1, with An ≤ (2an(x))4. Therefore, for ea
h �xed
x, by (5.24) and (5.6) one obtains (5.18). For ea
h x ∈ X, let Ωx be thesubset of Ω where the limit (5.18) holds. De�ne ΩX :=

⋂
x∈X Ωx. Sin
e X is
ountable, we have P (ΩX) = 1, so that the argument is 
omplete.
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u2. Let x ∈ X be �xed. For ea
h n ∈ N∗ and i ∈ In de�ne
Yn,i :=

(
mn∑

l=1

an,l

)
Fn(x, ·) ◦ c̃n,i. (5.25)The row-wise independen
e of ((c̃n,i)i∈In)n∈N∗ ensures that ((Yn,i)i∈In)n∈N∗is an array row-wise independent family of random variables. From (5.14),we get

〈Yn,i〉 =

mn∑

l=1

an,lFn(x, l), (5.26)for all i ∈ In and n ∈ N∗. Consequently,
1

kn

kn∑

i=1

〈Yn,i〉 = Sn(x). (5.27)De�ne Xn,i := Yn,i −〈Yn,i〉. From here the argument works similarly as in 1.Case X = Rm1. Observe that the argument with X 
ountable is valid on the 
ountable set
Qm of the ve
tors of Rm with rational 
omponents. Further, remark that forany x ∈ Rm \Qm and ε > 0, by the 
ontinuity of F and the monotoni
ity of
Fn, we 
an �nd two elements x−, x+ ∈ Qm, with x− ≤ x ≤ x+ su
h that

F (x+) − 1

mn

mn∑

i=1

Fn(x+, ·) ◦ Jn,i(ω) − ε ≤

≤ F (x) − 1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i(ω) ≤

≤ F (x−) − 1

mn

mn∑

i=1

Fn(x−, ·) ◦ Jn,i(ω) + ε,

(5.28)
for all ω ∈ Ω. Now we approximate x by two sequen
es {x+

p

}
p∈N

, {x−p }p∈N
⊂

Qm, with x−p ≤ x ≤ x+
p . Then, to 
on
lude the proof in the 
ase X = Rm,we refer to the result in the 
ase X 
ountable.
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ing only (5.28) with
F (x+) − 1

kn

kn∑

i=1

Fn(x+, ·) ◦ c̃n,i(ω) − ε ≤

≤ F (x) − 1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i(ω) ≤

≤ F (x−) − 1

kn

kn∑

i=1

Fn(x−, ·) ◦ c̃n,i(ω) + ε,

(5.29)
one repeats step by step the arguments of the part 1 to 
on
lude the proofof the part 2. 2The index set Ip

n being de�ned as before, let ((µn,j)j∈Ip
n
)n∈N∗ be a boundedfamily of positive measures on Rm, i.e. there exists some 
onstant a > 0, su
hthat |µn,j| ≤ a for all j ∈ Ip

n and n ∈ N∗ (we re
all the notation |µ| := µ(Rm)for some �nite measure µ on Rm).Let (Ω, β, P ) be the probability spa
e be as in Proposition 5.2 and the arraysof row-wise random variables ((Jn,i)i∈In)n∈N∗ and ((c̃n,i)i∈In)n∈N∗ de�ned by(5.15) and (5.12) respe
tively.Theorem 5.1 1. Let p ≥ 2. Suppose that there is a positive measure µ on
Rm, absolutely 
ontinuous with respe
t to the Lebesgue measure on Rm, su
hthat

1

mp
n

∑

j∈Ip
n

µn,j ⇀ µ, as n→ ∞. (5.30)De�ne µn,i(ω) := µn,j|j=Jn,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. If
∞∑

n=1

1

m2
n

<∞, (5.31)then for P−almost all ω,
σ1,n(ω) :=

1

mn

mn∑

i=1

µn,i(ω) ⇀ µ as n→ ∞. (5.32)2. Let p = 1. Suppose that there is a positive measure µ on Rm, absolutely
ontinuous with respe
t to the Lebesgue measure on Rm, su
h that
mn∑

l=1

an,l · µn,l ⇀ µ, as n→ ∞. (5.33)
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uDe�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n→ kn ∈ N∗ be a sequen
e su
h that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

<∞. (5.34)Then, for P−almost all ω,
σ2,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n→ ∞. (5.35)Proof. De�ne for ea
h x ∈ Rm

Fn(x, j) :=

∫

y≤x
dµn, j(y), (5.36)and

F (x) :=

∫

y≤x
dµ(y). (5.37)Then it is su�
ient to observe that F and Fn(x, j) satisfy the 
onditions ofProposition 5.2, (with an(x) = a) and the family {y ∈ Rm |y ≤ x}x∈Rm isdetermining, Ref. [28℄, for the weak 
onvergen
e of the measures µn, j. 2Remark 5.1 It 
an be easily seen that Babovsky Lemma (see Lemma 2 ofRef. [4℄) is a parti
ular 
ase of Theorem 5.1.1 with mn = n2, for all n ∈ N∗and with µn, j given by a produ
t of two point measures.Remark 5.2 As we have mentioned in Se
tion 1, our purpose is to approx-imate the solutions of (2.18) by sums of Dira
 measures of the form (2.22).Due to the nonlinear 
hara
ter of the 
ollision operators P and S, at ea
htimestep, the numeri
al 
omplexity in
reases dramati
ally (power-like). Al-though, we are able to redu
e the 
omputational e�ort using repeatedly theTheorem 5.1.1.However, ex
ept the 
ase of (2.18) modelling the one 
omponent gas withpurely elasti
 
ollisions, a 
ertain step of the numeri
al s
heme destroys thehomogeneity of the sums of Dira
 measures, i.e. instead of HSPM approx-imations one obtains WSPM approximations. This di�
ulty will be sur-mounted by using Theorem 5.1.2, whi
h 
onverts the WSPM approximationsinto HSPM approximations.Theorem 5.1 will be the basi
 point of the probabilisti
 part of our numeri
als
heme for the solutions of (2.18) in the next se
tion.



Rea
tive Boltzmann Type Equation 2296. The Main ResultFor our numeri
al s
heme, we need a weak form of (4.16), where the fun
tions
f j

k are repla
ed by the measures µ̄j
k given by (4.24). Denote

(ϕ, h) :=

∫

R3

ϕ(v)h(v)dv, (6.1)for ϕ ∈ Cb(R
3) and h ∈ L1(R3). From (4.16) using (6.1) we get

(
ϕ, f j

k

)
= (ϕ,Qk(f

j−1)) + (ϕ,Lk(f j−1)) + ∆t · (ϕ,Pk(f j−1)) (6.2)for all ϕ ∈ Cb(R
3), all j = 1, . . . , T∆ and k = 1, . . . ,N . Denoting by

V (Ωβ) :=

∫

Ωβ

dn, (6.3)in (6.2),
(ϕ,Qk(f

j)) :=
∑

α,β∈M

αk

∫

R3|α|×Ωβ

(ϕ ◦ ik,α)(w)×

×
(

Γα,k

V (Ωβ)
− ∆t · rβ,α(w,n)

)
f j
α(w)dwdn,

(6.4)and
(ϕ,Lk(f

j)(v)) :=
∑

α∈U\M

Λα,k

∫

R3|α|
(ϕ ◦ ik,α)(w)f j

α(w)dw. (6.5)In the formulas (6.4) and (6.5), the proje
tion appli
ation ik,γ : R3|γ| → R3is de�ned by ik,γ(w) = wk,γk
, for γ ∈ M and k = 1, . . . ,N . Using (3.6) and(3.9) we get

(ϕ,Pk(f j)) =

=
∑

α,β∈M

βk

∫

R3|α|×Ωβ

ϕ ◦ ik,β(uβ,α(w,n))rβ,α(w,n)f j
α(w)dwdn,

(6.6)for all ϕ ∈ Cb(R
3), all j = 0, 1, . . . , T∆ and k = 1, . . . ,N .Now, we are able to formulate (6.2) as an equation for measures. For some

γ ∈ M and j = 0, 1, . . . , T∆, de�ne the measure µ̄j
γ on R3|γ| by

dµ̄j
γ(w) =

⊗

k∈Nγ

γk⊗

i=1

dµ̄j
k(wk,i). (6.7)
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uFrom (6.2-6.6), using spheri
al 
oordinates
[0, π)3|β|−5 × [0, 2π) ∋ (θ, ϕ) → n(θ, ϕ) ∈ Ωβ, (6.8)to integrate on ea
h unit sphere Ωβ, it follows that there are some sets

A ⊂ U , B ⊂ M, the fun
tions qα,β,k ∈ C(R3|α| × [0, π)3|β|−5 × [0, 2π) ; R+)and Hα,β,k ∈ C(R3|α|× [0, π)3|β|−5× [0, 2π) ; R3) su
h that we 
an write (6.2)in the 
ompressed form
∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

R3|α|

dµ̄j−1
α (w)×

×
∫

[0,π)3|β|−5
dθ

∫ 2π

0
(ϕ ◦Hα,β,k)(w, θ, φ)qα,β,k(w, θ, φ)dφ,

(6.9)for ϕ ∈ Cb(R
3) and k ∈ 1, . . . ,N .First, we 
onsider rβ,α verifying the properties of Lemma 3.1 and we 
on-stru
t the algorithm starting from (6.9). Then, we show how the numeri
als
heme 
an be improved, if one introdu
es additional 
onditions on rβ,α.Now, we write (6.9) in a more 
onvenient form. Note that, we 
an �nd some

L ∈ N∗ and1. a family {α(l)}l=1,...,L ⊂ U of multi-indexes,2. a family {q(l)}l=1,...,L ⊂ N∗,3. a family {πl}l=1,...,L of measures absolute 
ontinuous with respe
t tothe Lebesgue measure on Rq(l),4. a family {Rk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R+) of fun
tions,5. a family {hk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R3) of fun
tions,su
h that (6.9) 
an be written
∫

R3

ϕ(v)dµ̄j
k(v) =

L∑

l=1

∫

R3|α(l)|+q(l)

Rk,l(z)(ϕ◦hk,l)(z)d(µ̄j−1
α(l)⊗πl)(z). (6.10)Let (Ω, β, P ) be as in Theorem 5.1.
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h l = 1, . . . , L, we approximate πl by a 
onvenient HSPM of theform (2.22), 
ontaining n-terms, πl,n ⇀ πl as n→ ∞ (this 
an be done, e.g.by means of low dis
repan
y, well distributed sequen
es Ref. [6, 27℄).b) The initialization of the s
heme is done by giving n-terms HSPM approx-imations ν0
k,n of the initial data µ̄0

k, where k = 1, . . . ,N .
) The n-terms HSPM approximations ν1
k,n of µ̄1

k, with k = 1, . . . ,N , result-ing from the s
heme, 
an be obtained as follows:Step 1 (�rst sele
tion). For ea
h l = 1, . . . , L and k = 1, . . . ,N we repla
e
µ̄0

k by ν0
k,n in (6.7) (for γ = α(l), j = 0). Then for ea
h l = 1, . . . , L, weobtain a sequen
e of �nite measures ν0

α(l),n ⇀ µ̄0
α(l) as n → ∞, implying

ν0
α(l),n ⊗ πl,n ⇀ µ̄0

α(l) ⊗ πl as n → ∞. Obviously, ea
h ν0
α(l),n ⊗ πl,n is asum of the form (5.30), 
ontaining n|α(l)|+1 terms. We apply the sele
tionalgorithm 
f. Theorem 5.1.1 (with mn = n and p = |α(l)|+1) to 
onstru
t n- -terms HSPM approximations for all ν0

α(l),n⊗πl,n. Thus, by Theorem 5.1.1,for ea
h l = 1, . . . , L, there exists some set Ωl ⊂ Ω, with P (Ωl) = 1, su
hthat from ν0
α(l),n ⊗ πl,n, one 
an extra
t a n-terms HSPM approximation (ofthe form (5.32)) σ1,l,n(ωl) ⇀ µ̄0

α(l) ⊗ πl as n→ ∞, for almost all ωl ∈ Ωl.Step 2 (se
ond sele
tion). In the right side of (6.10), written for j = 1,repla
e ea
h µ̄0
α(l) ⊗ πl by the 
orresponding σ1,l,n. Then the right side of(6.10) de�nes the measures Mk,n on R3, for k = 1, . . . ,N and n ∈ N∗,
Mk,n =

1

n

L∑

l=1

n∑

i=1

alRk,l(zl,i,n(ωl))δhk,l(zl,i,n(ωl)), (6.11)
on
entrated at the points hk,l(zl,i,n(ωl)), where zl,i,n(ωl) ∈ R3|α(l)|+q(l) and
al ≥ 0 are some 
onstants (for l = 1, . . . , L and i = 1, . . . , n). By Step 1, itfollows that

Mk,n ⇀ µ̄1
k as n→ ∞, (6.12)for all ω1 ∈ Ω1, ω2 ∈ Ω2 , . . . , ωL ∈ ΩL and for k = 1, . . . ,N . Now, it 
anbe easily seen that (6.11) 
an be written as WSPM, 
ontaining, at most L ·nterms.As we mentioned before, we want to obtain HSPM approximations at the endof ea
h step of time. We �x, for the moment, some ω1 ∈ Ω1, . . . ,ω

L ∈ ΩL, sothat (6.12) holds. We apply the sele
tion algorithm formulated Theorem 5.1.2
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ufor ea
h �xed k = 1, . . . , N , as follows. For l = 1, . . . , L · n de�ning
ι(l) :=

[[
l − 1

L

]]
+ 1,

λ(l) :=

[[
l − 1

n

]]
+ 1,

(6.13)put
an,l =

1

n
aλ(l)Rk,λ(l)(zλ(l),ι(l),n(ωλ(l))). (6.14)We 
hoose mn = L · n and kn = n. Then, for ea
h k = 1, . . . ,N , there existssome ΩL+k ⊂ Ω, with P (ΩL+k) = 1, su
h that from Mk,n, we obtain a n--terms HSPM approximation (of the form (5.35)) σ2,k,n(ωL+k;ω1, . . . ,ωL) ⇀

µ̄1
k as n → ∞, for all ωL+k ∈ ΩL+k. Set ν̄1

k,n(ω1, . . . ,ωL+k) :=

σ2,k,n(ωL+k;ω1, . . . ,ωL). Therefore for ea
h µ̄1
k in (6.10), we obtain a 
or-responding n-terms HSPM approximation ν̄1

k,n ⇀ µ̄1
k as n → ∞, for all

ω1 ∈ Ω1, . . . ,ω
L+k ∈ ΩL+k and for all k = 1, . . . ,N .e) The pro
edure 
an be repeated, with the entering data ν̄1

k,n, to obtainHSPM approximations ν̄2
k,n(ω1, . . . ,ω2L+N+k) of µ̄2

k for k = 1, . . . ,N .f) Repeating this pro
edure over and over, after j timesteps, we providethe n-terms HSPM approximations ν̄j
k,n(ω1, . . . ,ωjL+(j−1)N+k) ⇀ µ̄j

k for all
ω1 ∈ Ω1, ω2 ∈ Ω2,. . .,ωjL+(j−1)N+k ∈ ΩjL+(j−1)N+k, all j = 1, . . . , T∆ andall k = 1, . . . , N , where Ωl ⊂ Ω with P (Ωl) = 1, for l = 1, . . . , T∆(L+N).Now, observe that we 
an �nd a family {Ql}l∈N∗ of measurable maps Ql :
Ω → Ω, with P (Q−1

l (A)) = 1, for all A ⊂ Ω with P (A) = 1. For instan
e,we 
an 
onsider U, V : Ω → Ω, given by
U(ω) = U(ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω1, ω3, . . . ω2n−1, ω2n+1, . . .),(6.15)
V (ω) = V (ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω2, ω4, . . . , ω2n, ω2n+2, . . .),(6.16)respe
tively, for all ω = (ω1, ω2, . . . , ω2n−1, ω2n, . . .) ∈ Ω. Then it is su�
ientto put Q1 = U and Ql := U ◦ V l−1, l = 2, 3, . . . Let

Ω∆t :=

T∆(L+N)⋂

l=1

Q−1
l (Ωl). (6.17)Sin
e P (Q−1

l (Ωl)) = 1 for all l = 1, . . . , T∆(L + N), 
learly P (Ω∆t) = 1.De�ning νj
k,n(ω) := ν̄j

k,n(Q1(ω), . . . , QjL+(j−1)N+k(ω)) for all ω ∈ Ω, j =
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1, . . . , T∆, k = 1, . . . , N , it follows that νj

k,n(ω) ⇀ µ̄j
k as n → ∞, for all

ω ∈ Ω∆t, j = 1, . . . , T∆, k = 1, . . . ,N .In parti
ular, if D(·, ·) is the dis
repan
y introdu
ed in Se
tion 2., then
lim

n→∞
max

k=1,...,N
max

j=1,...,T∆

D
(
νj

k,n(ω), µ̄j
k

)
= 0, (6.18)for almost all ω ∈ Ω.All these and Corollary 4.1 lead to our main result.Let f(t) be the solution of equation (3.18), provided by Theorem 3.1 andlet µt

k be given by dµt
k(v) := fk(t,v)dv, for all t ≥ 0 and k = 1, . . . ,N .Consider some family {∆tp}p∈N

of dis
retization timesteps as in Se
tion 4..For ea
h ∆tp and for the initial data µ̄0
k, 
onsider the solutions µ̄j

k,p of (6.10),with j = 1, . . . , T∆ and k = 1, . . . ,N . For ea
h µ̄j
k,p, denote by νj

k,p,n the
orresponding n-terms HSPM approximation obtained by the above s
heme.Similar to (2.25), we introdu
e the following notation T∆p := [[T/∆tp]], forall p ∈ N.Theorem 6.1 For ea
h sequen
e of timesteps ∆tp → 0 as p → ∞, there isa sequen
e of positive integers n(p) → ∞ as p→ ∞, su
h that
lim

p→∞
max

k=1,...,N
max

j=1,...,T∆p

D
(
νj

k,p,n(p)(ω), µ
j·∆tp
k

)
= 0, (6.19)for almost all ω ∈ Ω.Proof. Let

dp,n(ω) := max
k=1,...,N

max
j=1,...,T∆p

D
(
νj

k,p,n(ω), µ̄j
k,p

)
. (6.20)Consider some positive sequen
e εp ↓ 0 as p → ∞. Using (6.18), for ea
h p,we obtain that

lim
n→∞

P (dp,n > εp) = 0. (6.21)Then, for ea
h p, we 
an 
hoose n = n(p), su
h that
P (dp,n(p) > εp) ≤

1

p2
. (6.22)Consequently,

∞∑

p=1

P (dp,n(p) > εp) <∞. (6.23)
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uThen, for almost all ω ∈ Ω,
lim

n→∞
dp,n(p)(ω) = 0. (6.24)Now, by Corollary 4.1, we 
on
lude the proof of the Theorem. 2This theorem represents a spa
e homogeneous rea
tive 
orrespondent to themain result in the Babovsky-Illner simulation s
heme for the 
lassi
al Boltz-mann equation (Theorem 7.1 of Ref. [5℄).Note that the numeri
al e�ort of the method is at most, O(n log n) (thedominant 
ontribution being introdu
ed by the random sele
tions of Theo-rem 5.1.2, i.e. (se
ond sele
tion) Step 2). However, under additional 
ondi-tions on rβ,α, the sum (6.10) the numeri
al e�ort 
an be improved.We 
onsider the following simple 
ase. Denote Dαβ :=

{
w′ ∈ R3|α||0 <

Wα(w′) − 2−1(
∑N

n=1 αnmn)Vα(w′)2 −∑N
n=1 βnEn

} (we re
all that Wα(w)is the energy de�ned in Se
tion 2). By Lemma 3.1, rβ,α(w,n) ≥ 0 on
Dαβ ×Ωβ. Suppose that in (6.2 -6.6), we have rβ,α(w,n) > 0 on Dαβ ×Ωβfor all α, β ∈ M. Taking into a

ount the form of the element dn on Ωβ inspheri
al 
oordinates (when (6.9) is obtained from (6.2 -6.6)) it follows easilythat in (6.9), ea
h fun
tion qα,β,k(w, θ, φ) 
an be 
onstru
ted su
h that theset {θ|qα,β,k(w, θ, φ) = 0} is �nite and does not depend on the 
hoi
e of
(w, φ) ∈ Dαβ × [0, 2π). Consequently, for ea
h β ∈ B, there is a measurableset Θβ ⊂ [0, π)3|β|−5 su
h that qα,β,k(w, θ, φ) > 0, for all w ∈ Dαβ, θ ∈ Θβ,
φ ∈ [0, 2π), α ∈ A. Denote

Ik(φ;w, θ) :=

∫ φ

0
qα,β,k(w, θ, ρ)dρ, φ ∈ [0, 2π) . (6.25)Then, for all w ∈ Dαβ, θ ∈ Θβ, �xed, (6.25) de�nes an invertible map

[0, 2π) ∋ φ→ Ik(φ;w, θ) ∈ [0, Ik(2π;w, θ)) , (6.26)with the inverse I−1
k . In ea
h integral of (6.9), with respe
t to dφ, we performthe 
hange of variable φ = I−1

k (y;w, θ). De�ne
H̃α,β,k(w, θ, y) = Hα,β,k(w, θ, I

−1
k (y;w, θ)). (6.27)We 
an 
hoose some measurable sets

Cαβ ⊆ R3|α| × [0, π)3|β|−5 × R+, for α ∈ A,β ∈ B,su
h that, (6.9) takes the following form
∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

Cαβ

(ϕ ◦ H̃α,β,k)(w, θ, y)dµ̄
j−1
α (w)dθdy. (6.28)
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ations it is important to observe that the 
on
lusion remains thesame if weaker 
onditions are imposed on rβ,α, e. g. if one supposes that forea
h α,β ∈ M, rβ,α(w,n) > 0 on Dαβ × Ωβ ex
ept a 
ountable set, et
.Obviously, (6.28) has the form (6.10), but has the important property thatif µ̄j−1
k , for k = 1, . . . , N are HSPM, after Step 1 (�rst sele
tion) the outputmeasures are also a HSPM.In order to obtain µ̄j

k, for k = 1, . . . ,N as HSPM with the same number ofterms as µ̄j−1
k , we 
an apply the following immediate 
orollary of Theorem5.1.2, whi
h introdu
es a numeri
al 
omplexity of only O(n).Corollary 6.1 Suppose that there is a positive measure µ on Rm, absolutely
ontinuous with respe
t to the Lebesgue measure on Rm, su
h that

1

mn

mn∑

l=1

µn,l ⇀ µ, as n→ ∞. (6.29)De�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n→ kn ∈ N∗ be a sequen
e su
h that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

<∞. (6.30)Then, for P−almost all ω,
σ3,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n→ ∞. (6.31)Further we 
an pro
eed as in the s
heme 
onstru
ted before, but withoutapplying Theorem 5.1.2. Instead we apply Corollary 6.1. The s
heme redu
esto iterations alternating with sele
tions, and the 
on
lusion of Theorem 6.1remains valid. The numeri
al e�ort be
omes O(n).Finally remark that if (2.18) redu
es the 
lassi
al Boltzmann equation, forthe one-
omponent simple gas, then the sum in the r.h.s of (6.28) 
an be
ompressed to a unique term as in Ref. [4℄. In general, this is not possible inthe 
ase of gas mixtures.7. Con
luding RemarksFrom the above analysis, it follows that besides a 
onvenient existen
e theory,only the 
onservation of the total mass is needed to introdu
e the numer-
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ui
al s
heme des
ribed here. The other properties (e.g. detailed balan
e,H-Theorem) of the Wang-Chang-Uhlenbe
k-de Boer and Ludwig and Heilsystem of equations play no role in this algorithm. Note that, the numeri
als
heme 
an also be used and when the detailed balan
e does not hold, e.g.,for models where we ignore some re
ombination pro
esses (as in the situationwhen we 
onsider the 
ollisional disso
iation, but negle
t the re
ombinationby triple 
ollisions Ref. [24℄).We dis
uss possible generalizations as well as some limitations of the results.10 In the 
ase of non-rea
ting gas mixtures one 
an obtain similar numeri
als
hemes for the spa
e-dependent equation (2.10), in the frame of the theoryof existen
e of solutions of Ref. [17℄. This 
an be done by adapting dire
tlythe spatial 
ell homogenization method of Ref. [5℄.20 In the 
ase of rea
ting gas mixtures, one 
an also obtain similar numeri
als
hemes for the spa
e-dependent equation (2.10). To this end, the adaptationof the spatial 
ell homogenization method of Ref. [5℄ is not as straightforwardas it appears. This is due to the 
ollisions that produ
e new parti
les in agiven spa
ial 
ell. For this purpose, we need �to establish� the spa
e positionin the 
ell for ea
h �new born� parti
le and at the same time, to keep the
ontrol on 
onvergen
e.30 Assumption (3.13) repla
es in the rea
tive model the boundedness 
ondi-tion on the 
ollision law used in Ref. [4, 5℄. This 
ondition is essential forthe 
ontrol of the positivity of the solutions in the time-dis
retized equation(4.1). Indeed, Assumption (3.13) is restri
tive from an analyti
al point ofview. Nevertheless, for pra
ti
al purposes, it is satisfa
tory for those mod-els where the high energy-tail of the gas 
onsists of very few mole
ules (seeRef. [7℄).The existen
e of unique positive solutions to (2.10) and (2.18) 
an be provedfor more general transition fun
tions Kα,β (see Ref. [18℄). The simulations
heme 
an be also extended in this respe
t, but the (possible) singulari-ties of Kα,β must not destroy the 
ontinuity of the fun
tions rα,β and pα,β(ne
essary for the 
onvergen
e in the weak sense of the measures).40 One 
an improve the approximation algorithm as follows. Instead ofassigning to ea
h spe
ies the same number of terms in HSPM, one 
an �x agiven number of terms n for all the spe
ies. Then, when we apply the sele
tionalgorithm given by Theorem 5.1.2 (or Corollary 6.1), we 
an allo
ate to ea
hspe
ies a number of terms �proportional� to its mass, su
h that the totalnumber of terms for all the spe
ies to be (approximative) n. The same is alsovalid for the approximation of the initial data. By example if we designateby nk the number of terms 
orresponding to the spe
ies k = 1, . . . ,N , then
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nk :=






n ·

mk

∫

R3

f0
k (v)dv

N∑

l=1

ml

∫

R3

f0
l (v)dv






. (7.1)50 In this numeri
al s
heme there are three essential sour
es of approximationerrors.1. The errors from the approximation of the initial data.2. The errors produ
ed by the time dis
retization.3. The errors introdu
ed by sto
hasti
 sele
tions.The 
ontribution of the sto
hasti
 errors over the time dis
retized s
heme 
anbe illustrated as it follows. Giving, for the 
hemi
al spe
ies k = 1, . . . ,N , aninitial data, say ν0,0

k of the form (2.22) the algorithm follows the 
omputa-tional 
hain
ν0,0

k → ν1,1
k → ν2,2

k → . . .→ νT∆−1,T∆−1
k → νT∆,T∆

k (7.2)
orresponding to the diagonal of the s
heme
ν0,0

k −→ ν0,1
k −→ ν0,2

k −→ ... −→ ν0,T∆−1
k −→ ν0,T∆

k
≀≀
ν1,1

k −→ ν1,2
k −→ ... −→ ν1,T∆−1

k −→ ν1,T∆

k

≀≀
ν2,2

k −→ ... −→ ν2,T∆−1
k −→ ν2,T∆

k... ...
≀≀

νT∆−1,T∆−1
k −→ νT∆−1,T∆

k

≀≀
νT∆,T∆

k (7.3)Here, the horizontal 
hains represent the exa
t iterations of the time dis-
retized equations, su
h that for ea
h j = 0, . . . , T∆−1 and p = j+1, . . . , T∆the measure νj,p
k is given as (p − j) - th iteration for the input data νj,j

k . Inaddition, νj,j
k is provided by random sele
tion form νj−1,j

k , for j = 1, . . . , T∆.The above 
omputational 
hain shows that one 
an expe
t that the errors dueto the random sele
tions in
rease when the timestep ∆t de
reases. Indeed,
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usu
h a behavior was observed in numeri
al appli
ations Ref. [13, 12℄. Sometheoreti
al estimations on the errors Ref. [12℄ prove that the probabilisti
errors ε behave like
ε ∼ 1

∆t · √n. (7.4)Consequently, when we de
rease the timestep (to improve the errors for thetime dis
retization, Proposition 4.1.b) we shall in
rease the number of termsfor the initial approximation, in order to keep the sto
hasti
 errors in a

ept-able limits.8. AppendixProof of Lemma 3.1.Let n ∈ N∗ and let a1, . . . , an > 0, be some 
onstants. Consider the positivequadrati
 form de�ned on R3n by
T := T (v1, . . . ,vn) =

n∑

i=1

aiv
2
i , (8.1)where vi ∈ R3, for all i = 1, . . . , n. One introdu
es the Ja
obi-type transfor-mation

R3n ∋ (v1, . . . ,vn) → (V , ξ) ∈ R3 × R3n−3, (8.2)where
V := (

n∑

i=1

ai)
−1

n∑

i=1

aivi, (8.3)and ξ := (ξ1, . . . , ξn−1), with
ξi :=




1

ai+1
+

1
i∑

j=1
aj




− 1
2

vi+1 −

i∑
j=1

ajvj

i∑
j=1

aj


 , (8.4)for i = 1, . . . , n− 1.By (8.2), the form T takes the form

T = T (V , ξ) =

(
n∑

i=1

ai

)
· V 2 + ξ2. (8.5)
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Wβ,α(w) := Wα(w) − 1

2

(
N∑

n=1

αnmn

)
· Vα(w)2 −

N∑

n=1

βnEn, (8.6)and
tβ,α(w) :=





[Wβ,α(w)]1/2 if Wβ,α(w) ≥ 0,

0, otherwise. (8.7)Now, 
onsider the form on R3|β|,
Tβ(u) := Wβ(u) −

N∑

n=1

βnEn (8.8)and a 
orresponding Ja
obi-type transformation as in (8.2),
R3|β| ∋ u → (V , ξ) ∈ R3 × R3|β|−3, (8.9)with ξ := (ξ1, . . . , ξ|β|−1), where ξi ∈ R3, for all i = 1, . . . , |β| − 1. Denote by

∆β the Ja
obian determinant of the transformation. Let ξ be represented inspheri
al 
oordinates on R3|β|−3, ξ = rn, with (r,n) ∈ [0,∞)×Ωβ. Considerthe inverse map
R3 × R+ × Ωβ ∋ (V , r,n) → u(V , r,n) ∈ R3|β| (8.10)of the transformation u → (V , r,n) and set

uβα(w,n) := u(V , r,n)| V =Vα(w),r=tβ,α(w). (8.11)Obviously, for all α,β ∈ M su
h that (2.6) is satis�ed, we have
Vβ(uβ,α(w,n)) = Vα(w) Wβ(uβ,α(w,n)) = Wα(w). (8.12)De�ne
pβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kβ,α(uβα(w,n),w),

rβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kα,β(w,uβα(w,n)).

(8.13)From (8.12), one obtains property i) of the Lemma 3.1. Property ii) followsfrom the de�nitions introdu
ed in (8.7) and (8.13).
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uThe limits (3.6) and (3.7), 
an be obtained from (3.3) and (3.4). We startthe 
omputation with the integral upon du, by 
hoosing (V , r,n) as newintegration variables su
h that u = u(V , r,n). Sin
e fα ∈ Cc(R
3|α|) and

fβ ∈ Cc(R
3|β|), using the properties of Kα,β, δ3ε , δη and uβ,α, we obtain(3.6) and (3.7) by repeated appli
ation of Lebesgue's dominated 
onvergen
etheorem.Using a similar argument as in the proof (3.6), for all f ∈ Cc(R

3|β|) and
ϕ ∈ Cb(R

3|α|), we get
lim
η→0

lim
ε→0

∫

R3|α|×R3|β|
ϕ(w)σε,η

β,α(u,w)f(u)dwdu

=

∫

R3|α|×Ωβ

ϕ(w)pβ,α(w,n)f(uβ,α(w,n))dwdn,

(8.14)giving the left side of (3.9). To obtain the right side of (3.9), we repeatthe pro
edure, but �rst we perform the integral upon dw in the left sideof (8.14) (using the 
hange of variables indu
ed by the Ja
obi-type trans-formation R3|α| ∋ w → (V , ξ) ∈ R3 × R3|α|−3, asso
iated to the form
Tα(w) = Wα(w) − ∑N

n=1 αnEn, and then taking the representation of
ξ ∈ R3|α|−3 in spheri
al 
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244 Gabriela Marinos
hiThe general boundary value problem. Assume that the �ow do-main Ω is an open bounded subset of RN (N = 1, 2, 3), and the time runswithin the �nite time interval (0, T ). The boundary of Ω is denoted by Γ andit is 
onsidered pie
ewise smooth. The ve
tor of spa
e variables is denotedby x = (x1, x2, x3) ∈ Ω and the time by t ∈ (0, T ).We 
onsider the Ri
hards' equation des
ribing the water in�ltration intoan isotropi
, nonhomogeneous, unsaturated porous medium with a variableporosity, with initial data and various boundary 
onditions (see [7℄)
∂(m(x)Sw(h))

∂t
−∇ · (k(h)∇h) +

∂k(h)

∂x3
= f in Q = Ω × (0, T ), (1.1)

h(x, 0) = h0(x) in Ω, (1.2)boundary 
onditions for h on Σ = Γ × (0, T ). (1.3)The unknown in Ri
hards' equation is the 
apillary pressure h(x, t) (or pres-sure head, or water pressure in the unsaturated soil), Sw is the water satura-tion in pores, m is the medium porosity and θ = m(x)Sw is the volumetri
water 
ontent or soil moisture. In this work the dependen
e of m on xmodels the nonhomogeneity of the medium. The fun
tion k is the hydrauli

ondu
tivity, f(x, t) is a sour
e (or sink) in the �ow domain and h0 is theinitial pressure distribution in the domain, f and h0 being given. In general
m ∈ (0, 1) but a limit 
ase withm tending to 0 may have a physi
al relevan
e.The properties of the dependen
e of Sw and k on h will be spe
i�ed.In parti
ular, we shall exemplify the theory for the 
ase of the medium havinga part of the boundary, Γα semipermeable, allowing a water �ux a
ross itand the other part Γu at whi
h the pressure will be given. Here, Γu and
Γα are disjoint and Γ = Γu ∪ Γα. In in�ltration problems, we 
an oftenmeet the situation in whi
h water ponds on the soil surfa
e (let it be Γu).This happens when the rainfall rate is greater than the soil 
ondu
tivity atsaturation and the soil begins to saturate from the surfa
e, or when the soilsurfa
e is in 
onta
t with an open water body, for example the bottom of alake. In 
onsequen
e the boundary 
onditions we shall 
onsider are

h(x, t) = hu(x, t) ≥ 0 on Σu = Γu × (0, T ), (1.4)
q · ν = fα on Σα = Γα × (0, T ), (1.5)where q is the water �ux de�ned by
q(x, t) = k(h)i3 − k(h)∇h, (1.6)
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ν is the outer normal ve
tor at the boundary and i3 is the unit ve
tor of the
Ox3 axis, downwards dire
ted.We 
an reverse the boundary 
onditions by 
onsidering that Γα is the soilsurfa
e and Γu is the underground boundary. Thus we 
an interpret thatthe �ux through the soil surfa
e, is provided by a water supply as a rain orirrigation and that the lower part of the porous medium is in 
onta
t withthe phreati
 aquifer.Des
ription of the hydrauli
 model. The behaviour of an unsat-urated soil, i.e., partially �lled with water, is 
ompletely known from thehydrauli
 point of view if two fun
tions are given: one is the retention 
urve

Sw = C̃∗(h), (1.7)linking the water saturation Sw, to the pressure head h, and the other is thehydrauli
 
ondu
tivity
k = k(h), (1.8)both depending nonlinearly on h. For an isotropi
 soil the latter is a s
alarfun
tion.Sin
e we study the nonhystereti
 
ase, the retention 
urve and the hydrauli

ondu
tivity are assumed single-valued fun
tions of the pressure.In soil s
ien
es, the unsaturated pressure is 
onsidered negative (h < 0) andthe saturation is 
hara
terized by h = 0. Also, it is 
onsidered that thepro
ess of in�ltration-drainage (opposite to in�ltration) takes pla
e betweentwo limits of h. The lowest limit is denoted hr and at this pressure head thesoil is 
onsidered dry even if some water still resides in the pores and thehydrauli
 
ondu
tivity is still positive. The 
orresponding water saturationis denoted Sr and the volumetri
 water 
ontent θr is 
alled residual moisture(see [7℄). The upper limit is h = 0 where saturation is rea
hed and watersaturation be
omes equal to 1. However, we shall denote this value by Ss.At saturation, moisture attains its saturation value θs equal to the mediumporosity at this point (if the porosity is not 
onstant). The parts of themedium where h > 0 are 
ompletely saturated. We de�ne the derivative ofthe water saturation with respe
t to the pressure

C̃(h) =
dSw

dh
(h). (1.9)For the saturated �ow, when h ≥ 0, the previously fun
tions take 
onstantvalues.
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hiGenerally, the hydrauli
 models raise a di�
ult mathemati
al problem. Whenthe pressure head in the unsaturated soil 
omes 
lose to the saturation value,
C̃ vanishes and Ri
hards' equation degenerates. Correspondingly, the di�u-sion 
oe�
ient expressed as a fun
tion of moisture exhibits a blow-up de-velopment around saturation. In soil s
ien
es the model whi
h re�e
ts thisbehaviour is the strongly nonlinear Green-Ampt limit model, see [10℄. Thesituation in whi
h C̃(0) > 0 
orresponds to a less nonlinear hydrauli
 be-haviour, the typi
al model for this 
lass being the Burgers' model, see [10℄,too. Depending on the parti
ularities of the hydrauli
 fun
tions whi
h aredetermined by the soil pore stru
ture, the models of water in�ltration rangebetween these two limit models (see [44℄).Previous theoreti
al results. In the most mathemati
al literature de-voted to this subje
t the blow-up of the di�usivity in the di�usive form ofRi
hards' equation was avoided, by 
onsidering a �nite-valued di�usivity, orstudying the problem only in the pressure form (see [2℄, [4℄, [12℄, [19℄, [20℄,[25℄, [26℄, [27℄, [37℄, [38℄). More re
ently, in the paper [9℄ a model of thesaturated-unsaturated �ow lying on a spe
ial de�nition of the boundary 
on-ditions that 
hanges during the phenomenon evolution, has been developedalso for a �nite value of the di�usivity at saturation (whi
h was implied bythe assumption that C̃(0) > 0). Following the te
hnique presented in [20℄ themodel was redu
ed to systems in 
lass of Stefan-like problems of high-order,see [19℄.However, apart from spe
i�
 in�ltration problems, previous existen
e anduniqueness studies for solutions to the ellipti
-paraboli
 equation

∂(b(u))

∂t
+ ∇ · (a(∇u, b(u))) + f(b(u)) = 0 in Ω × (0, T )have been presented in the literature espe
ially using a te
hnique inspiredby the method of entropy solutions introdu
ed by S.N. Krushkov in [28℄.Originally, this method was devoted to prove L1-
ontra
tion for entropy so-lutions for s
alar 
onservation laws, i.e., generalized solutions in the sense ofdistributions satisfying admissibility 
onditions similar to those of entropygrowth in gas dynami
s (see also [8℄). J. Carillo applied Krushkov's methodto se
ond order equations (see [13℄, [14℄, [15℄, [16℄). F. Otto (see [35℄, [36℄)proved a L1-
ontra
tion prin
iple and uniqueness of solutions for this type ofequation by applying Krushkov's te
hnique only to the time variable. H.W.Alt and S. Lu
khaus showed in [1℄ that the natural solution spa
e for this
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tions u of �nite energy in the sense that
sup

t∈(0,T )

∫

Ω
Ψ(b(u(t)))dx+

∫

Q
|∇u|r dxdt <∞,

where Ψ is the Legendre transform of the primitive of b.We also mention the results of J.L. Vázquez regarding the fast di�usionequations (see [18℄, [40℄, [41℄, [42℄, [17℄ and the book [43℄).Con
erning the degenerate evolution equations, extensive studies have beenperformed for linear operators, relying on the properties of the resolvent ofan appropriate multivalued linear operator a

ounting for the multipli
ationby the fun
tion m (see [21℄, [23℄ and the monograph [22℄). We mention alsothe paper [24℄ related to a similar topi
 in whi
h a degenerate model withhomogeneous Diri
hlet boundary 
onditions and no transport was studied.The analysis of the well-posedness of the di�usive form of Ri
hards' equationin the unsaturated 
ase (θ < θs) with the porositym 
onstant, was developedin the papers [6℄, [29℄, [30℄, [31℄ within a fun
tional approa
h. The existen
eresults whi
h were dedu
ed showed that solutions rea
hing saturation 
an beobtained but only on zero-measure subsets of Q. Somehow, this was expe
tedbe
ause the unsaturated model re�e
ts a behaviour of a parti
ular soil onlyand not the general feature of the pro
ess whi
h in
ludes the possible soilsaturation.In the paper [32℄ a rigorous mathemati
al model able to des
ribe the sat-uration o

urren
e (with the blow-up of the di�usivity) was introdu
ed fora homogeneous porous medium (with m 
onstant) in the di�usive form anddeveloped then in [33℄.In the �rst part of this 
hapter we introdu
e the di�usive models of water�ow in saturated-unsaturated media 
hara
terized by a spa
e variation ofthe porosity. Then we analyze a model with mixed boundary 
onditions in-volving a �ux on a part of the boundary and a nonhomogeneous Diri
hlet
ondition 
orresponding to a singular situation on another part of the do-main boundary. The model will be degenerate be
ause we shall assume thatporosity 
an vanish on a subset of Ω.
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hi2. Di�usion models in nonhomogeneous porous me-diaWe intend �rst to reveal how the parti
ular 
hara
ter of the hydrauli
 modelsis determined by the behaviour of the fun
tions C̃∗ and k around 0.Mathemati
al hypotheses. For the unsaturated �ow, where h < 0, weassume the following:
(m1) C̃

∗ : [hr, 0) → [Sr, Ss) is single-valued, positive, di�erentiable on [hr, 0),monotoni
ally in
reasing ;
(m2) k : [hr, 0) → [Kr,Ks) is single-valued, positive, di�erentiable on [hr, 0),monotoni
ally in
reasing and satis�es the property k′(hr) = 0;
(m3) C̃ : [hr, 0) → (C̃0, C̃r] is single-valued, non-negative, di�erentiable on
[hr, 0) monotoni
ally de
reasing and satis�es C̃ ′(hr) = 0;In the saturated �ow we have
(m4) C̃

∗(h) = Ss, k(h) = Ks and C̃(h) = 0 for h ≥ 0.We denote
Ss = (C̃∗)(0) > 0, (2.1)

C̃0 = (C̃∗)′(0) = C̃(0) ≥ 0, (2.2)
Ks = k(0) > 0, (2.3)

K ′
0 = lim

hր0
k′(h), K ′

0 ∈ [0,∞). (2.4)Therefore, the unsaturated �ow is 
hara
terized either by h < 0 or Sw ∈
[Sr, Ss) while the saturated one is indi
ated by h ≥ 0 or Sw = Ss.The positive values Sr, Ss and their 
orresponding 
ondu
tivities Kr, Ksare soil 
hara
teristi
s and they are known for ea
h type of soil apart. Theproperties k′(hr) = 0 and C̃ ′(hr) = 0 were put into eviden
e by experiments(see [10℄).We noti
e that the fun
tions C̃∗ and k are 
ontinuous on [hr,∞), and hr isthe maximum point for C̃. Also C̃ is 
ontinuous on [hr,∞), ex
ept possiblyat the point 0.We stress the fa
t that these properties are veri�ed by the empiri
al hydrauli
models set up in the last de
ades (see e.g., [44℄).We emphasize that the main role is played by the in
rease rate of the fun
-tions C̃∗ and k around 0, the signi�
ant 
ontribution being given by thebehaviour of the retention 
urve C̃∗.



Nonhomogeneous Porous Media 2492.1. Strongly nonlinear saturated-unsaturated di�usive modelLet us assume (m1) − (m4) and
C̃0 = 0whi
h is the main 
hara
teristi
 of this 
ase. It follows then that C̃ is 
on-tinuous on [hr,∞) and we 
an write C̃∗ : [hr,∞) → [Sr, Ss], as

C̃∗(h) =

{
Sr +

∫ h
hr
C̃(ζ)dζ, h < 0,

Ss, h ≥ 0.
(2.5)Strongly nonlinear hydrauli
 
ondu
tivity. This situation 
orre-sponds to K ′

0 ∈ R+ = (0,∞).We de�ne a primitive of K by
K∗(h) =

{
K∗

r +
∫ h
hr
k(ζ)dζ, h < 0,

K∗
s +Ksh, h ≥ 0,

(2.6)where K∗ : [hr,∞) → [K∗
r ,∞) and

K∗
s = K∗(0) > 0. (2.7)The fun
tion K∗ is di�erentiable, monotoni
ally in
reasing on [hr,∞) andwith these notations Ri
hards' equation (1.1) be
omes

∂(m(x)Sw)

∂t
− ∆K∗(h) +

∂k(h)

∂x3
= f in Q. (2.8)By the initial 
ondition (1.2) we obtain

Sw(x, 0) = Sw0, Sw0 = C̃∗(h0).We 
an also 
onsider the initial 
ondition
m(x)Sw(x, 0) = θ0(x) in Ω, where θ0 = m(x)C̃∗(h0) (2.9)and 
orresponding repla
ements should be made in the boundary 
onditions(1.4)�(1.5).Sin
e it is more 
onvenient to work with the variable Sw, we introdu
e from(2.5) the inverse of C̃∗, (C̃∗)−1 : [Sr, Ss] → [hr,+∞), by

(C̃∗)−1(Sw) =

{
(C̃∗)−1(Sw), Sw ∈ [Sr, Ss),
[0,+∞), Sw = Ss,

(2.10)
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hiwhi
h is multivalued at Sw = θs and 
ontinuous and monotoni
ally in
reasingon [Sr, Ss). Then, we repla
e it all over in (1.1)�(1.5).Thus, instead of the 
ondu
tivity written in fun
tion of pressure, we obtainthe 
ondu
tivity expressed in terms of water saturation
K̃ : [Sr, Ss] → [Kr,Ks], K̃(Sw) = (k ◦ C̃∗)−1(Sw), Sw ∈ [Sr, Ss], (2.11)fun
tion that preserves some of the properties of k, i.e., it is positive, di�eren-tiable (ex
ept at Ss) and monotoni
ally in
reasing, sin
e for any Sw ∈ [Sr, Ss)we have that
K̃ ′(Sw) = k′((C̃∗)−1(Sw)) · ((C̃∗)−1)′(Sw) =

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
> 0. (2.12)We noti
e also that

K̃ ′(Sr) = 0 (2.13)and
lim

SwրSs

K̃ ′(Sw) = +∞. (2.14)However, for Sw ∈ [Sr, Sl] with Sl < Ss the derivative of K̃ is bounded, sothat K̃ follows to be Lips
hitz on intervals stri
tly in
luded in [Sr, Ss)
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤Ml

∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Sl], Sl < Ss, (2.15)where
Ml = max

Sw∈[Sr ,Sl]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
<∞. (2.16)Plugging (2.10) in (2.6) we get the fun
tion

β̃∗(Sw) =

{
(K∗ ◦ (C̃∗)−1)(Sw), Sw ∈ [Sr, Ss),
[K∗

s ,+∞), Sw = Ss
(2.17)that is multivalued at Sw = Ss but is 
ontinuous from the left at this point

lim
SwրSs

β̃∗(Sw) = K∗
s . (2.18)For Sw ∈ [Sr, Ss) the fun
tion (C̃∗)−1 is monotoni
ally in
reasing, so thatwe 
an 
al
ulate β̃∗(Sw) by 
hanging the variable in the integral (2.6) anddenoting ζ = (C̃∗)−1(ξ). In this way we get

β̃∗(Sw) = K∗
r +

∫ Sw

Sr

β(ξ)dξ, for Sw ∈ [Sr, Ss),
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β̃(Sw) =

k((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
, for Sw ∈ [Sr, Ss). (2.19)In this way we have rigorously re
overed the de�nition of the water di�usivityfun
tion.We noti
e that β̃ has two important properties

β̃(Sw) ≥ ρ̃ = β̃(Sr) =
Kr

C̃r

> 0, ∀Sw ∈ [Sr, Ss) (2.20)and
lim

SwրSs
β̃(Sw) = +∞. (2.21)Moreover, by the hypotheses made upon the fun
tions C̃ and k it followsthat β̃ is monotoni
ally in
reasing, i.e.,

β̃′ =
k′C̃ − kC̃ ′

C̃3
≥ 0, on [Sr, Ss), (2.22)

β̃′(Sr) = 0. (2.23)Hen
e, β̃∗ is twi
e di�erentiable and stri
tly monotoni
ally in
reasing on
[Sr, Ss) and as a matter of fa
t we 
an write

β̃∗(Sw) =

{
K∗

r +
∫ Sw

Sr
β̃(ξ)dξ for Sw ∈ [Sr, Ss),

[K∗
s ,+∞) for Sw = Ss.

(2.24)Moreover, by (2.20) and (2.24) we dedu
e that the fun
tion β̃∗ satis�es theinequality
(β̃∗(Sw) − β̃∗(Sw))(Sw − Sw) ≥ ρ(Sw − Sw)2,∀Sw, Sw ∈ [Sr, Ss]. (2.25)In 
on
lusion we 
an setModel 1. Let us assume (m1) − (m4), C̃0 = 0 and K ′

0 ∈ R+. Then, thedi�usive model of the strongly nonlinear saturated-unsaturated in�ltrationwith a strongly nonlinear hydrauli
 
ondu
tivity is given by
∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(Sw)

∂x3
= f in Q, (2.26)

m(x)Sw(x, 0) = θ0(x) in Ω, (2.27)boundary 
onditions in Sw on Σ, (2.28)
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hiwhere β̃∗ is the multivalued fun
tion de�ned by (2.24), β̃ is given by (2.19)and K̃ is the single-valued fun
tion (2.11). Moreover, β̃∗ is strongly mono-tone, β̃ satis�es (2.20)�(2.23) and K̃ has the properties (2.13)�(2.16).The boundary 
onditions (1.4)�(1.5) be
ome
Sw(x, t) = Ss on Σu, (2.29)

(
K̃(Sw)i3 −∇β̃∗(Sw)

)
· ν = fα on Σα. (2.30)The quali�er of strongly nonlinear is implied by the property of the fun
tion

β whi
h evolves highly nonlinear around the saturation point, Ss. This isjusti�ed by the fa
t that the typi
al representative for this behaviour (
or-related with that of its primitive β̃∗ whi
h is �nite at this point) is of theform
β̃(Sw) =

1

(Ss − Sw)1−p
for 0 < p < 1.We noti
e that this form of the di�usivity fun
tion reveals the 
hara
ter offast di�usion of this pro
ess (see the review of di�usion-type pro
esses in[3℄).However, β̃∗ is multivalued and the sign equal (=) in (2.26) is not properlyused. The appropriate symbol should be ∋ . Also, we shall spe
ify later theexa
t meaning of the solutions to (2.26)-(2.30). The fa
t that equation (2.26)is multivalued must not be surprising if one takes into a

ount that it modelsa free boundary problem. This means that, at ea
h time t, the domain Ω 
anbe de
omposed into two regions: the saturated one, {x; Sw(x, t) = Ss} andthe unsaturated one {x; Sw(x, t) < Ss}, separated by a free boundary. Theextension of a nonlinear fun
tion arising in su
h a problem to a multivaluedone is 
ommon in the theory of nonlinear di�erential equations with dis
on-tinuous 
oe�
ients as well as in that modelling free boundary pro
esses.Thus, equation (2.26) represents an extension of Ri
hards' equation (writtenfor the unsaturated in�ltration) to the simultaneous saturated-unsaturated�ow.Weakly nonlinear hydrauli
 
ondu
tivity. A strongly nonlinearmodel, but with a weaker nonlinear behaviour of the 
ondu
tivity may beobtained under 
onditions that lead to limSwրSs K̃

′(Sw) <∞. To rea
h su
ha situation we have to impose just from the beginning a stronger 
onditionfor k, namely that there exists M > 0, su
h that
k′(h) ≤MC̃(h), ∀h ∈ [hr, 0], (2.31)



Nonhomogeneous Porous Media 253whi
h implies that
K ′

0 = 0, lim
hր0

k′(h)

C̃(h)
= M. (2.32)In this way K̃ turns out to be Lips
hitz on [Sr, Ss] with the 
onstant M. Weobserve that the fun
tions β̃ and K̃ remain monotoni
ally in
reasing. Thissituation is put into eviden
e e.g., in the van Genu
hten model (see [39℄) forthe model parameter m 
lose to 1. This 
ase 
an be resumed inModel 2. Let us assume (m1) − (m4), C̃0 = 0 and (2.31)�(2.32). Then, thedi�usive model of strongly nonlinear saturated-unsaturated in�ltration with aweakly nonlinear hydrauli
 
ondu
tivity is given by (2.26)�(2.28), where thefun
tions β̃ and β̃∗ have the properties spe
i�ed in Model 1 ex
ept for K̃whi
h is given by (2.11), with

lim
SwրSs

K̃ ′(Sw) = M <∞.2.2. Weakly nonlinear saturated-unsaturated di�usive modelFor some hydrauli
 models the di�usivity is �nite at Sw = Ss. We intendto reveal whi
h properties of the fun
tions C̃∗ and k 
an provide su
h avalue. Let us suppose that the retention 
urve in
reases from the left to itsmaximum value with a nonzero rate at the left of zero,
C̃0 > 0,but very 
lose to 0. In this 
ase C̃∗ is not di�erentiable at h = 0 and thefun
tion

C̃ : [hr,∞) → [0, C̃r], C̃(h) =

{
dSw

dh
(h), h < 0

0, h ≥ 0
(2.33)is no longer 
ontinuous at h = 0, having the jump ∣∣∣C̃0

∣∣∣ = lim
hր0

dSw
dh .The fun
tions K̃ and β̃∗ and β̃ will be de�ned in the same way as before,but in this 
ase the value of β̃ at Sw = Ss exists and it is

lim
SwրSs

β̃(Sw) =
Ks

C̃0

<∞. (2.34)However, the fun
tion β̃∗(Sw) will be extended in a multivalued way, by
β̃∗(Sw) = K∗

s at Ss.
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hiWeakly nonlinear hydrauli
 
ondu
tivity. Assume that the deriva-tive of k at h = 0, has a �nite value, K ′
0 < ∞. Hen
e, K̃ is Lips
hitz withthe 
onstant

M = max
Sw∈[Sr,Ss]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
≤ K ′

0

C̃0

, (2.35)so that we 
an settleModel 3. Let us assume (m1) − (m4), C̃0 > 0 and K ′
0 <∞. Then, the di�u-sive model of weakly saturated-unsaturated in�ltration with a weakly nonlinearhydrauli
 
ondu
tivity is given by (2.26)-(2.28), where β̃∗ is the multivaluedfun
tion de�ned by (2.24), β̃ is given by (2.19) and K̃ is the single-valuedfun
tion (2.11) with K̃ ′(Sw) �nite on [Sr, Ss]. Moreover, β̃∗ is strongly mono-tone, (2.25), β̃ satis�es (2.20), (2.22)-(2.23) with

lim
SwրSs

β̃(Sw) < +∞ (2.36)and K is Lips
hitz on [Sr, Ss], i.e., there exists M > 0 su
h that
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤M
∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Ss]. (2.37)It is obvious that this situation whi
h is illustrated by nonsingular di�usivitiesin
luding also power fun
tions
β̃(Sw) = Sp

w, with p > 1,is related to a slow di�usion and to the well-known porous media equation(see [3℄).We write the model in the dimensionless form, introdu
ing for example
Sdim

w =
Sw − Sr

Ss − Sr
, K̃dim(Sdim

w ) =
K̃(Sw) −Kr

Ks −Kr
, β̃dim(Sw) =

β̃(Sw)

βd
,where βd is a 
hara
teristi
 value for the di�usivity. Without entering intodetails we spe
ify that the dimensionless model has the same form as (2.26)�(2.28). The dimensionless Sdim

wr = 0 and Kr = 0 and for 
onvenien
e, weshall extend β̃ and K̃ at the left of Sdim
wr by the 
onstant values ρ̃ and 0 (forall these details see [34℄). For simpli
ity, further we shall no longer indi
atedimensionless by the supers
ript dim.



Nonhomogeneous Porous Media 2553. Analysis of the porosity-degenerate modelIn this part we shall approa
h Model 2 given by (2.26)�(2.27), (2.29)�(2.30)
orresponding to the strongly nonlinear saturated-unsaturated 
ase with aweakly nonlinear hydrauli
 
ondu
tivity. We shall study a limit 
ase letting
m to vanish on a subset Ω0 stri
tly in
luded in Ω, see Fig. 1. This 
hara
-terizes the existen
e of possible solid intrusions in the soil and we shall 
allthis model porosity-degenerate.In fa
t we intend to treat a little more general mathemati
al problem, inwhi
h we shall 
onsider that the fun
tion 
ondu
tivity depends both on thespa
e variables and the solution. Therefore the model reads

∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(x, Sw)

∂x3
∋ f in Q, (3.1)

m(x)Sw(x, 0) = Sw0(x) in Ω, (3.2)
Sw(x, t) = Ss on Σu, (3.3)

(
K̃(x, Sw)i3 −∇β̃∗(Sw)

)
· ν ∋ fα on Σα. (3.4)

Fig. 1: The domain Ω.At the points where m vanishes the equation degenerates. The fun
tion mis supposed to be essentially bounded, m ∈ L∞(Ω) with 0 ≤ m(x) ≤ 1 a.e.
x ∈ Ω. However, we shall see that this assumption is not su�
ient to get the
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hisolution existen
e and a stronger hypothesis upon m is required. We spe
ifyon
e again the hypotheses made for the problem parameters, i.e.,
β̃(r) ≥ ρ̃ for r < Ss, β̃(r) = ρ̃ for r ≤ 0, lim

rրSs

β̃(r) = +∞, (3.5)
β̃∗(r) =

{ ∫ r
0 β̃(ξ)dξ, r < Ss

[K̃∗
s ,+∞), r = Ss,

(3.6)
lim

r→−∞
β̃∗(r) = −∞, lim

rրSs

β̃∗(r) = K̃∗
s > 0, (3.7)

(β̃∗(r) − β̃∗(r))(r − r) ≥ ρ̃(r − r)2,∀r, r ∈ (−∞, Ss]. (3.8)In what 
on
erns K̃ we assume that it has the form
K̃(x, r) =

{
K̃0(x) on {x; m(x) = 0}
K̃m(r) otherwise, (3.9)

K̃(x, r) = 0 for r ≤ 0 and K̃(x, r) = K̃s for r ≥ Ss, (3.10)where K̃s = K̃(x, Ss) > 0.Moreover, we assume that K̃0 ∈ H1(Ω0) and K̃ is Lips
hitz with respe
t to
r, uniformly with respe
t to x, i.e., there exists M > 0, su
h that(iK) ∣∣∣K̃(x, r) − K̃(x, r)

∣∣∣ ≤M |r − r| , ∀r, r ∈ R, ∀x ∈ Ω.Finally we shall impose that
m ∈ C1(Ω), 0 ≤ m(x) ≤ 1. (3.11)Fun
tional framework. We perform a fun
tion repla
ement by denot-ing

w = Sw − Ss, (3.12)so that we are led to the system
∂(m(x)w)

∂t
− ∆β̃∗(w + Ss) +

∂K̃(x,w + Ss)

∂x3
∋ f in Q, (3.13)

m(x)w(x, 0) = v0(x) in Ω, (3.14)
w(x, t) = 0 on Σu, (3.15)

(
K̃(x,w + Ss)i3 −∇β̃∗(w + Ss)

)
· ν ∋ fα on Σα, (3.16)
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h we are going to study. Here v0(x) = Sw0 −m(x)Ss. We shall indi
atethe value of w at saturation by ws (a
tually, by (3.12) it is equal to zero, butwe shall keep the notation ws in order to put into eviden
e the behaviour ofthe solution at this point).We 
onsider the spa
es L2(Ω) with the standard norm denoted ‖·‖ ,

V = {w ∈ H1(Ω); w = 0 on Γu}, (3.17)with the norm
‖ψ‖V =

(∫

Ω
|∇ψ|2 dx

)1/2

, (3.18)and its dual V ′ on whi
h we introdu
e the s
alar produ
t by
(w,w)V ′ = 〈w,ψ〉V ′,V ,where ψ is the solution to the boundary value problem

−∆ψ = w, ψ = 0 on Γu, ∇ψ · ν = 0 on Γα. (3.19)Let fα ∈ L2(0, T ;L2(Γα)). We de�ne the fun
tional fΓα ∈ L2(0, T ;V ′) by
fΓα(t)(ψ) = −

∫

Γα

fα(t)ψdσ for any ψ ∈ V (3.20)and noti
e that
‖fΓα(t)‖V ′ ≤ ctr ‖fα(t)‖L2(Γα)where ctr is the 
onstant provided by the tra
e theorem.For the further mathemati
al developments it is more 
onvenient to workwith the multivalued fun
tion
β∗(r) = β̃∗(r + Ss) − K̃∗

s . (3.21)Definition 3.1 Let
m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)), (3.22)
v0 ∈ L2(Ω),

v0
m

∈ L2(Ω), v0
m

≤ ws, a.e. x ∈ Ω.We 
all w a solution to (3.13)-(3.16) if
w ∈ L2(0, T ;V ), (3.23)
ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q,

mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′),
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hisatis�es the equation
〈

d(m(x)w)

dt
(t), ψ

〉

V ′,V

+

∫

Ω

(
∇ζ(t) · ∇ψ − K̃(x,w(t) + Ss)

∂ψ

∂x3

)
dx =

= 〈f(t), ψ〉V ′,V + 〈fΓα(t), ψ〉V ′,V , a.e. t ∈ (0, T ), ∀ψ ∈ V, (3.24)the initial 
ondition m(x)w(0) = v0 and the property
w ≤ ws, a.e. (x, t) ∈ Q. (3.25)Eq. (3.24) 
an be written also in the equivalent form

∫ T

0

〈
d(m(x)w)

dt
(t), φ(t)

〉

V ′,V

dt (3.26)
+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).Repla
ing Sw from (3.12) we get that Sw satis�es

Sw ∈ L2(0, T ;H1(Ω)),

ζ̃ ∈ L2(0, T ;H1(Ω)), ζ̃ ∈ β̃∗(Sw(x, t)) a.e. on Q,
mSw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′).We set
D(A) = {θ ∈ L2(Ω); ∃η ∈ V, η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω}and we introdu
e the multivalued operator A : D(A) ⊂ V ′ → V ′ by

〈Aθ,ψ〉V ′,V =

∫

Ω

(
∇η · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx,for any ψ ∈ V, where η ∈ β∗(θ) a.e. x ∈ Ω. Thus, we 
an write the problemd(m(x)w)

dt
+Aw ∋ f + fΓα , a.e. t ∈ (0, T ) (3.27)

m(x)w(0) = v0.We 
onsider now the multipli
ation operator
M : D(A) → L2(Ω), Mw = mw, (3.28)
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v(x, t) = m(x)w(x, t), (3.29)we 
an rewrite (3.27) in terms of v as

dv

dt
+AMv ∋ f + fΓα , a.e. t ∈ (0, T ) (3.30)

v(0) = v0,where AMv = AM−1v = A
(

v
m

) for any v ∈ D(AM ), where
D(AM ) =

{
v ∈ L2(Ω);

v

m
∈ L2(Ω),∃η ∈ V, η ∈ β∗

( v
m

) a.e. x ∈ Ω
}
.We see that v ∈ D(AM ) implies v

m ∈ D(A). Conversely, if w = v
m ∈ D(A),then v = mw ∈ D(AM ).We still de�ne j̃ : R → (−∞,+∞] by

j̃(r) =

{ ∫ r
0 β̃

∗(ξ)dξ, r ≤ Ss

+∞, r > Ss,where the left limit of β̃∗ at Ss is spe
i�ed in (3.7). This fun
tion is proper,
onvex, lower semi
ontinuous and
∂j̃(r) =





β̃∗(r), r < Ss,

[K̃∗
s ,+∞), r = Ss,

∅, r > Ss.

(3.31)(The proof is similar to that done for a slightly di�erent fun
tion in [34℄,Se
t. 5.3.)3.1. Approximating problemSin
e the operator AM is multivalued, in order to prove the existen
e for(3.27) we introdu
e an approximating problem repla
ing m by
mε(x) = m(x) + ε, for ε > 0and β̃∗ by the single-valued 
ontinuous fun
tion

β̃∗ε (r) =

{
β̃∗(r), r < Ss − ε

β̃∗(Ss − ε) +
eK∗

s−eβ∗(Ss−ε)
ε [r − (Ss − ε)] , r ≥ Ss − ε.
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hiThen we de�ne
β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s (3.32)and the single valued operator
Aε : D(Aε) ⊂ V ′ → V ′,

〈Aεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε (θ) · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx, ∀ψ ∈ V,with

D(Aε) = {θ ∈ L2(Ω);β∗ε (θ) ∈ V }.We 
an write the approximating Cau
hy problem (
orresponding to (3.27))d(mεwε)

dt
+Aεwε = f + fΓα , a.e. t ∈ (0, T ), (3.33)
mεwε(0) = v0ε,where

v0ε = mε
v0
m
. (3.34)Definition 3.2 Let ε > 0 and

m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0
m

∈ L2(Ω),
v0
m

≤ ws.A solution to (3.33) is a fun
tion wε that satis�es
wε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′),

β∗ε (wε) ∈ L2(0, T ;V ),

∫ T

0

〈
d(mεwε)

dt
(t), φ(t)

〉

V ′,V

dt

+

∫

Q

{
∇β∗ε (wε) · ∇φ− K̃ (x,wε + Ss)

∂φ

∂x3

}
dxdt (3.35)

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),and the initial 
ondition mεwε(0) = v0ε.



Nonhomogeneous Porous Media 261Then denoting
vε(x, t) = mε(x)wε(x, t), (3.36)we 
an write problem (3.33) in the equivalent form (
orresponding to (3.30))

dvε

dt
+Bεvε = f, a.e. t ∈ (0, T ), (3.37)
vε(0) = v0ε.The operator Bε : D(Bε) ⊂ V ′ → V ′ is single-valued, has the domain

D(Bε) =

{
θ ∈ L2(Ω); β∗ε

(
θ

mε

)
∈ V

}and is given by
〈Bεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε

(
θ

mε

)
· ∇ψ − K̃

(
x,

θ

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.Then (3.37) 
an be still written

∫ T

0

〈
dvε

dt
(t), φ(t)

〉

V ′,V

dt+ (3.38)
+

∫

Q

{
∇β∗ε

(
vε

mε

)
· ∇φ− K̃

(
x,

vε

mε
+ Ss

)
∂φ

∂x3

}
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),whi
h is in fa
t (3.35).For a later use we de�ne j̃ε : R → R,

j̃ε(r) =

∫ r

0
β̃∗ε (ξ)dξ,and noti
e that

∂j̃ε(r) = β̃∗ε (r), ∀r ∈ R. (3.39)First we shall prove that (3.37) has, for ea
h ε > 0, a unique solution, vε inappropriate fun
tional spa
es.
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hi3.2. Existen
e for the approximating problemProposition 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1,

f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0
m

∈ L2(Ω),
v0
m

≤ ws a.e. on Ω.Then, the Cau
hy problem (3.37) has, for ea
h ε > 0, a unique solution
vε ∈ C([0, T ];L2(0, T )) ∩W 1,2(0, T ;V ′) ∩ L2(0, T ;V ) (3.40)

β∗ε

(
vε

mε

)
∈ L2(0, T ;V ), (3.41)

j̃ε

(
vε

mε

)
∈ L∞(0, T ;L1(Ω)), (3.42)that satis�es the estimates

∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′
dτ +

+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.43)
≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,

∥∥∥∥
√
mε

(
vε

mε
(t)

)∥∥∥∥ ≤ c0, ∀t ∈ [0, T ], (3.44)
‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ], (3.45)where β0, c0 and c1 do not depend on ε.Moreover, if vε and vε are two solutions 
orresponding to the pairs of data f,

fΓα , v0 and f, fΓα , v0, we have the estimate
‖vε(t) − vε(t)‖2

V ′ +

∫ t

0
‖vε(τ) − vε(τ)‖2 dτ ≤ (3.46)

≤ α0(ε)
(
‖v0 − v0‖2

V ′ +

+

∫ T

0

∥∥f(t) − f(t)
∥∥2

V ′ dt+

∫ T

0

∥∥fα(t) − fα(t)
∥∥2

L2(Γα)
dt

)
.
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retivity of the operator Bεwhi
h is proved below. To show the quasi monotony we 
ompute
(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ = λ

∥∥θ − θ
∥∥2

V ′ +

+

∫

Ω
∇
(
β∗ε

(
θ

mε

)
− β∗ε

(
θ

mε

))
· ∇ψdx−

−
∫

Ω

(
K̃(x,

θ

mε
+ Ss) − K̃(x,

θ

mε
+ Ss)

)
∂ψ

∂x3
dx,where −∆ψ = θ − θ, ∇ψ · ν = 0 on Γα and ψ = 0 on Γu. Hen
e

(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ ≥

≥ λ
∥∥θ − θ

∥∥2

V ′ + ρ̃

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

−M

∥∥∥∥
θ − θ

mε

∥∥∥∥
∥∥θ − θ

∥∥
V ′ ≥

≥
(
λ− M2

2ρ̃ε

)∥∥θ − θ
∥∥2

V ′ +
ρ̃

2

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

> 0for λ > M2

2eρε . Here we used the fa
t that ε ≤ mε(x) ≤ 1 + ε.Next we have to prove that
R(I +Bε) = V ′,i.e., to show that the equation
vε +Bεvε = g (3.47)has a solution vε ∈ D(Bε) for any g ∈ V ′. Re
all that ε is �xed.If we denote β∗ε ( vε

mε

)
= ζ ∈ V, due to the fa
t that β∗ε is 
ontinuous andmonotoni
ally in
reasing on R and R(β∗ε ) = (−∞,∞) it follows that itsinverse

Gε(ζ) = mε(β
∗
ε )−1(ζ) (3.48)is 
ontinuous from V to L2(Ω) be
ause

∥∥Gε(ζ) −Gε(ζ)
∥∥ = (3.49)

=
∥∥mε

(
(β∗ε )−1(ζ) − (β∗ε )−1(ζ)

)∥∥ ≤

≤ 1 + ε

ρ̃

∥∥ζ − ζ
∥∥ ≤ (1 + ε)cΩ

ρ̃

∥∥ζ − ζ
∥∥

V
, ∀ζ, ζ ∈ V.Here we used (3.8) and Poin
aré's inequality (with the 
onstant cΩ). So,(3.47) 
an be rewritten as

Gε(ζ) +Bε
0ζ = g (3.50)
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hiwith Bε
0 : V → V

′ de�ned by
〈Bε

0ζ, ψ〉V ′,V =

∫

Ω

(
∇ζ · ∇ψ − K̃

(
x,
Gε(ζ)

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.(3.51)The operator Gε + Bε

0 is monotone, 
ontinuous and 
oer
ive for λ > M2

2eρε ,hen
e it is surje
tive. Therefore (3.50) has a solution ζ ∈ V, implying that(3.47) has a solution vε ∈ D(Bε).a) Now we assume that f ∈ W 1,1(0, T ;V ′), fα ∈ W 1,1(0, T ;L2(Ω)) and
v0
m ∈ V whi
h is equivalent to v0ε ∈ D(Bε).Therefore, the existen
e of a unique solution to (3.37)

vε ∈W 1,∞(0, T ;V ′) ∩ L∞(0, T ;D(Bε))follows from the general theorems for evolution equations with m-a

retiveoperators, hen
e β∗ε ( vε
mε

)
∈ L∞(0, T ;V ). Sin
e the inverse of β∗ε is Lips
hitzwe dedu
e that vε

mε
∈ L∞(0, T ;V ).It follows that (3.33) has a solution

wε =
vε

mεin the same spa
es.To prove estimate (3.43) we test (3.37) at β∗ε (vε) and integrate over (0, t).Taking into a

ount (3.36) and (3.32) we have
∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ +

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ
≤

∫ t

0

∥∥∥∥K̃
(
·, vε

mε
(τ)

)∥∥∥∥
∥∥∥∥β∗ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ

+

∫ t

0
‖f(τ)‖V ′

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
V

dτ +

∫ t

0
‖fΓα(τ)‖V ′

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
V

dτ

≤ 1

2

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)(τ)

)∥∥∥∥
2

V

dτ + C0,where we have used the boundedness of K̃ and
C0 =

3

2

{
K̃2

sTmeas(Ω) +

∫ T

0
‖f(τ)‖2

V ′ dτ + c2tr

∫ T

0
‖fα(τ)‖2

L2(Γα) dτ

}
.
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ount that
∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ

=

∫ t

0

〈
dvε

dτ
(τ), β̃∗ε

(
vε

mε
(τ) + Ss

)
− K̃∗

s

〉

V ′,V

dτ

=

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx−

∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx

−
∫

Ω
K̃∗

s vε(x, t)dx+

∫

Ω
K̃∗

s v0εdxand obtain that
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

1

2

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤
∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx+

∫

Ω
K̃∗

s vε(t)dx+ C1, (3.52)where
C1 =

1

2
K̃∗2

s meas(Ω) +
1

2

∥∥∥v0
m

∥∥∥
2
+ C0.Sin
e

j̃ε(r) ≥
ρ̃

2
r2, ∀r ∈ R,we have

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx ≥

≥ ρ̃

2

∫

Ω
mε(x)

(
vε(x, t)

mε
+ Ss

)2

dx ≥ ρ̃

2

∫

Ω
mε

{
1

2

(
vε(x, t)

mε

)2

− S2
s

}
dx.On the other hand we re
all that v0

m ≤ ws = 0 and noti
e that
j̃ε

(
v0ε

mε
+ Ss

)
=

∫ v0
m

+Ss

0
β̃∗ε (r)dr ≤

∫ Ss

0
β̃∗ε (r)dr =

= lim
δր0

∫ Ss−δ

0
β̃∗ε (r)dr = lim

δր0

∫ Ss−δ

0
β̃∗(r)dr ≤ K̃∗

sSs.



266 Gabriela Marinos
hiThus we obtain by (3.52) that
ρ̃

4

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.53)
≤ 2K̃∗

sSsmeas(Ω) +

∫

Ω
K̃∗

smε

(
vε

mε
(t)

)
dx+C1 +

ρ̃

2
S2

s

∫

Ω
mε(x)dx ≤

≤ C2 +
ρ̃

8

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+
4

ρ̃
K̃∗2

s meas(Ω).We have used several times that mε ≤ 1 + ε ≤ 2. We 
an 
on
lude that
∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥ ≤ c0, ∀t ∈ [0, T ]. (3.54)Next, from the relation
vε(t) =

√
mε

vε

mε
(t)

√
mε (3.55)we get that

‖vε(t)‖2 =

∫

Ω

(√
mε(x)

vε(t)

mε

)2

mε(x)dx ≤ 2

∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥
2and therefore

‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ] (3.56)where c0, c1, C0, C1, C2 are independent of ε. Repla
ing this in (3.52) wededu
e
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤(3.57)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
. (3.58)Then we multiply (3.37) s
alarly in V ′ by dvε

dt (t), integrate over (0, t) andpro
eeding as before we get
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ ≤ (3.59)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
.



Nonhomogeneous Porous Media 267Adding this relation with (3.58) we obtain
∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′
dτ + (3.60)

+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,with β0 independent of ε.To show the estimate (3.46) we write two equations (3.37) 
orresponding todi�erent pairs of data, subtra
t them, multiply the di�eren
e s
alarly in V ′by vε − vε and integrate over (0, t). We get

1

2
‖vε(t) − vε(t)‖2

V ′ +
ρ̃

2

∫ t

0

∫

Ω

1

mε
(vε(τ) − vε(τ))

2dτdx ≤

≤ 1

2
‖v0 − v0‖2

V ′ +
M2

2ρ̃ε

∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ t

0

∥∥f(τ) − f(τ)
∥∥2

V ′ ‖vε(τ) − vε(τ)‖V ′ dτ +

+c2tr

∫ t

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
‖vε(τ) − vε(τ)‖V ′ dτand moreover

‖vε(t) − vε(t)‖2
V ′ + ρ̃

∫ t

0

∫

Ω

(vε(τ) − vε(τ))
2

mε
dτdx ≤

≤ ‖v0 − v0‖2
V ′ +

(
M2

ρ̃ε
+ 2

)∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ T

0

∥∥f(τ) − f(τ)
∥∥2

V ′ dτ + c2tr

∫ T

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
dτ.We obtain the estimate (3.46), via Gronwall lemma with α0 depending on ε.b) Now, we assume that f ∈ L2(0, T ;V ′) and v0

m ∈ L2(Ω), v0
m ≤ ws.Due to some obvious densities we 
an take {fn}n≥1 ⊂W 1,1(0, T ;V ′), {fn

α}n≥1 ⊂
W 1,1(0, T ;L2(Γα)) and {vn

0 }n≥1 ⊂ D(Bε) = V, su
h that
fn → f strongly in L2(0, T ;V ′), (3.61)
fn

α → fα strongly in L2(0, T ;L2(Γα))

vn
0 → v0 strongly in L2(Ω).
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hiThen, for ea
h ε > 0, the problem
dvn

ε

dt
+Bεv

n
ε = fn + fn

Γα
, a.e. t ∈ (0, T ), (3.62)

vn
ε (0) = vn

0εhas a unique solution vn
ε a

ording to a), satisfying the estimate (3.60) withthe right-hand side independent of n, namely,

∫

Ω
mε(x)jε

(
vn
ε

mε
(t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvn

ε

dτ
(τ)

∥∥∥∥
2

V ′

dτ + (3.63)
+

∫ t

0

∥∥∥∥β∗ε
(
vn
ε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖fn(t)‖2

V ′ dt+

∫ T

0
‖fn

α (t)‖2
L2(Γα) dt+ 1

)
.We stress that ε is �xed and the se
ond term in the previous relation is uni-formly bounded due to (3.61). By this estimate we dedu
e that {β∗ε ( vn

ε
mε

)}
nis in a bounded subset of L2(0, T ;V ) and {dvn

ε
dt

}
n
is in a bounded subset of

L2(0, T ;V ′), so we 
an sele
t a subsequen
e su
h that
β∗ε

(
vn
ε

mε

)
→ ζε weakly in L2(0, T ;V ) as n→ ∞,and

dvn
ε

dt
→ dvε

dt
weakly in L2(0, T ;V ′) as n→ ∞.We get immediately that

vn
ε

mε
→ wε weakly in L2(0, T ;V ) as n→ ∞.But mε ∈ C1(Ω) and so the sequen
e {vε}n =

{
mε

vn
ε

mε

}
n
is bounded in

L2(0, T ;V ), when
e
vn
ε → vε weakly in L2(0, T ;V ) as n→ ∞.Sin
e V is 
ompa
t in L2(Ω) it follows by Lions-Aubin's theorem that

vn
ε → vε strongly in L2(0, T ;L2(Ω)) as n→ ∞. (3.64)By (3.37) we have that {Bεv

n
ε }n is bounded in L2(0, T ;V ′) so that

Bεv
n
ε → χ weakly in L2(0, T ;V ′) as n→ ∞. (3.65)
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retive so its realization on L2(0, T ;V ′) is quasi m-a

retive too, hen
e it is demi
losed and by (3.64) and (3.65) we get that
χ = Bvε a.e. on Q.Now we 
an pass to the limit in (3.62) as n→ ∞ and get (3.37), proving thusthat this problem has the solution vε ∈ C([0, T ], L2(Ω)) ∩W 1,2(0, T ;V ′) ∩
L2(0, T ;V ).Finally, passing to the limit in (3.63), as n → ∞, and using the lower semi-
ontinuity property we get (3.43) as 
laimed. Estimates (3.44)�(3.45) havebeen proved in (3.54)�(3.55).The uniqueness of the approximating solution follows by (3.46).3.3. Existen
e for the original problemAs we spe
i�ed before the domains

Ωm = {x ∈ Ω; m(x) > 0} and Ω0 = int{x ∈ Ω; m(x) = 0}have the 
ommon C1-boundary, ∂Ω0, see again Fig. 1. Here, the notation�int� represents the interior of the subset.Theorem 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1, f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0
m

∈ L2(Ω),
v0
m

≤ ws a.e. on Ω.Then, the Cau
hy problem (3.27) has a solution
w ∈ L2(0, T ;V ), (3.66)su
h that

ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q, (3.67)
mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′), (3.68)

w ≤ ws a.e. (x, t) ∈ Q. (3.69)Proof. By the hypotheses it follows that the approximating problem (3.37)(and 
onsequently (3.33)) has, for ea
h ε, a unique solution a

ording to
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hiProposition 3.1, in
luding the estimates (3.43)�(3.45). These do not dependon ε and imply that we 
an sele
t a subsequen
e su
h that
β∗ε

(
vε

mε

)
→ ζ weakly in L2(0, T ;V ), (3.70)

β̃∗ε

(
vε

mε
+ Ss

)
→ ζ + K̃∗

s weakly in L2(0, T ;H1(Ω)), (3.71)
dvε

dt
→ µ weakly in L2(0, T ;V ′), (3.72)

wε =
vε

mε
→ w weakly in L2(0, T ;V ). (3.73)We also get that the tra
e of β∗ε ( vε

mε

) on Σu is well de�ned and sin
e
β∗ε

(
vε
mε

)
∈ L2(0, T ;V ) it follows that ζ = 0 on Σu. Now

vε = mε
vε

mε
(3.74)and sin
e mε → m uniformly on Ω and m ∈ C(Ω) it follows that

vε → v weakly in L2(0, T ;L2(Ω)). (3.75)By (3.73) and (3.75) we get
v = mw (3.76)and obviously

v = 0, a.e. on Q0 = Ω0 × (0, T ). (3.77)Using (3.73), (3.74) and (3.75) we still obtain that
√
mε

vε

mε
→ √

mw weak-star in L∞(0, T ;L2(Ω)),

vε =
√
mε

vε

mε

√
mε → v weak-star in L∞(0, T ;L2(Ω)).Again by (3.74) and m ∈ C1(Ω) we dedu
e that

‖vε‖L2(0,T ;V ) ≤ 
onstant independent of ε. (3.78)By Lions-Aubin 
ompa
tness theorem we 
on
lude then that {vε}ε is 
om-pa
t in L2(0, T ;L2(Ω)), i.e.,
vε → v strongly in L2(0, T ;L2(Ω)) as ε→ 0, (3.79)
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dt . Also, by As
oli-Arzelà theorem we 
an prove that vε(t) → v(t)strongly in V ′ (using (3.72) and (3.78)). Using (3.76) we 
an dedu
e byletting ε→ 0 in the se
ond equation in (3.37) that

mw(0) = v0. (3.80)We set now
Ωδ = {x ∈ Ω; m(x) > δ} for arbitrary δ > 0,

Qδ = Ωδ × (0, T ), Qm = Ωm × (0, T ),and noti
e that Ωδ and Ωm are open be
ause m ∈ C1(Ω). We have
1

mε
=

1

m+ ε
<

1

m
<

1

δ
on Ωδand by (3.79)

wε =
1

mε
vε →

v

m
= w strongly in L2(0, T ;L2(Ωδ)), ∀δ > 0.Re
all that β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s .Let us �x (x, t) ∈ Qδ. Using the same argument like in the proof of Theorem3.1, in Se
t. 5.3 in [34℄, we obtain that
β̃∗ε (wε + Ss) → ζ̃ ∈ β̃∗(w + Ss) weakly in L2(0, T ;H1(Ωδ)).By (3.32) and (3.71) we get that
β∗ε (wε + Ss) → β̃∗(w + Ss) − K̃∗

s weakly in L2(0, T ;H1(Ωδ)).Sin
e δ is arbitrary we obtain
ζ(x, t) ∈ β̃∗(w(x, t) + Ss) − K̃∗

s a.e. (x, t) ∈ Qm =
⋃

δ>0

Qδ. (3.81)Proving that the subset
Q+

m = {(x, t) ∈ Qm; w(x, t) > ws}has a zero measure, we dedu
e similarly to the proof of Corollary 3.3 in Se
t.5.3 in [34℄, that w ≤ ws a.e. (x, t) ∈ Qm.
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hiFinally, sin
e {K̃(x,wε + Ss)
}

ε
is bounded in L2(Q), we have

K̃(x,wε + Ss) → κ weakly in L2(0, T ;L2(Ω)), (3.82)and we assert that
κ(x, t) = K̃(x,w(x, t)), a.e. (x, t) ∈ Q.Indeed, {K̃m(wε + Ss)

}
ε
is weakly 
onvergent to κ, on Qm, too. On theother hand, it is strongly 
onvergent to K̃m(w+Ss) on ea
h Qδ, be
ause K̃mis Lips
hitz. By the uniqueness of the limit the restri
tion of the weak limitto Qδ should 
oin
ide with K̃m(w + Ss). This implies that

κ = K̃(x,w + Ss), a.e. on Qm. (3.83)On the subset Q0 the fun
tion K̃ does not depend on w, so the limit is equalto K̃0(x).Now we 
an pass to limit as ε→ 0 in (3.38) and obtain
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ), (3.84)where ζ is given by (3.70).In (3.84) taking φ ∈ L2(0, T ;H1

0 (Ωm)) we still dedu
e that w is the solutionto (3.27) on Qm too,
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Qm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

)
dxdt =

=
∫ T
0 〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;H1

0 (Ωm)), (3.85)where ζ(x, t) ∈ β∗(w(x, t)) a.e. on Qm.Taking now φ ∈ L2(0, T ;H1
0 (Ω0)), we obtain the weak form of the equationon this subset

∫

Q0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt = 0, ∀φ ∈ L2(0, T ;H1

0 (Ω0)), (3.86)where ζ is given by (3.70).
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orresponds to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃(x,w + Ss)

∂x3
= f in Q, (3.87)

ζ = 0 on Σu,

(K̃(x,w + Ss)i3 −∇ζ) · ν = fα on Σα,and (3.85)�(3.86) to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃m(w + Ss)

∂x3
= f in Qm, (3.88)

−∆ζ +
∂K̃0(x)

∂x3
= f in Q0,

ζ = 0 on Σu,

(K̃m(w + Ss)i3 −∇ζ) · ν = fα on Σα.We re
all that the 
ommon boundary of the domains Ωm and Ω0 is regulardue to the fa
t that m ∈ C1(Ω). Sin
e ζ ∈ L2(0, T ;V ), we dedu
e that thetra
e of ζ(t) ∈ β∗(w(t)) belongs to V a.e. t, so it is 
ontinuous a
ross theboundary ∂Ω0 (more exa
tly along lines L that 
ross the boundary), a.e.
t ∈ (0, T ). Thus if we take x0 ∈ ∂Ω0 and denote

ζ+(t) = lim
x→x0, x∈L∩Ωm

ζ(t),then we have
ζ+(t) = lim

x→x0, x∈L∩Ω0

ζ(t) a.e. t ∈ (0, T ).We take into a

ount that ζ+ ∈ β∗(w(t)) a.e. on Qm, hen
e ζ turns out tobe the solution to the ellipti
 problem
−∆ζ(t) = f(t) + fΓα(t) in Ω0 (3.89)

ζ(t) = ζ+(t) ∈ β∗(w(t)) on ∂Ω0, a.e. t ∈ (0, T )for a.e. t �xed in (0, T ), and w is the solution to (3.85) (equivalently to(3.24)) in Qm.Then, we de�ne the fun
tion
w∗(x, t) =

{
w(x, t), if (x, t) ∈ Qm

(β∗)−1(ζ(x, t)), if (x, t) ∈ Q0 = Ω0 × (0, T ),
(3.90)where ζ is the solution to (3.89) and show that it is the solution to (3.27) inthe sense of De�nition 3.1. Indeed, ζ(x, t) ∈ β∗(w∗(x, t)) and ζ ∈ L2(0, T ;V ),



274 Gabriela Marinos
hiso it follows that w∗ ∈ D(A), implying that w∗ ≤ ws a.e. on Q. Then, mw∗belongs to the spa
es spe
i�ed in (3.23) (we take into a

ount that mw∗ = 0on Q0). Finally, we have to 
he
k that w∗ satis�es the equation (3.26) andthis follows by a straightforward 
omputation using (3.84)�(3.86). Indeed, ifwe repla
e w∗ in (3.26) we obtain
∫ T

0

〈
d(mw∗)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃(x,w∗)

∂φ

∂x3

) dxdt =

=

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα , φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).We took into a

ount the expressions assigned to w∗ and K̃(x,w + Ss) onea
h subset, (3.81) and (3.84). 2Corollary 3.1 Under the assumptions of Theorem 3.1 the solution to(3.27) is unique if in addition

ρ̃ > cΩM. (3.91)Proof. Let us denote by w∗
1 and w∗

2 two solutions to (3.27) 
orresponding tothe same data. We multiply the di�eren
e of equations (3.27) written for w∗
1and w∗

2 by (w∗
1 −w∗

2) s
alarly in V ′, integrate on (0, T ) and use the Lips
hitzproperty of K̃. We get
‖m(w∗

1(τ) −w∗
2(τ))‖2

V ′ + ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖2 dτ ≤ (3.92)

≤ M2

ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖ ‖w∗

1(τ) − w∗
2(τ)‖V ′ dτ ≤

≤ M2

ρ̃
c2Ω

∫ T

0
‖w∗

1(τ) −w∗
2(τ)‖2 dτ
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onstant in Poin
aré's inequality. Here we took into a

ountthat for w ∈ L2(Ω) we have ‖w‖V ′ ≤ cΩ ‖w‖ .It follows by (3.91) that mw∗
1 = mw∗

2 a.e. on Q and w∗
1 = w∗

2 a.e. on Qmwhere m(x) > 0. Now we subtra
t the equations (3.88) 
orresponding to w∗
1and w∗

2 and get
−∆(ζ1 − ζ2) = 0 in Q,

ζ1 − ζ2 = 0 on Σu,

−∇(ζ1 − ζ2) · ν = 0 on Σα,where ζ1 ∈ β∗(w∗
1), ζ2 ∈ β∗(w∗

2) a.e. on Q. Hen
e ζ1 = ζ2 and sin
e (β∗)−1is single valued then w∗
1 = w∗

2 a.e. on Q. 2Remark 3.1 We observe that in the degenerate 
ase the uniqueness of thesolution 
an be obtained only if the transport is dominated in a sense (see(3.91)) by the di�usivity. In parti
ular, this is true when K̃ = 0, i.e., whenwe deal with a horizontal in�ltration, also 
alled sorption.Remark 3.2 By the proof of the solution existen
e we also as
ertain a
onsequen
e that 
an be inferred at an intuitive level, i.e., the boundaryvalue problem is separated into two problems 
orresponding to the domains
Qm and Q0, 
onne
ted by the �ux 
ontinuity.Indeed, if we test the �rst two equations in (3.88) at φ ∈ L2(0, T ;V ) andintegrate the sum over (0, T ) we obtain

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

) dxdt−
−
∫ T

0

∫

∂Ωm

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+φdσdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt−

−
∫ T

0

∫

∂Ω0

(
K̃0(x)i3 −∇ζ

)
· ν−φdσdt =

=

∫ T

0

∫

Ω
〈f(t) + fΓα(t), φ(t)〉V ′,V dxdt,for any φ ∈ L2(0, T ;V ), where ν+ is the outer normal to ∂Ωm, ν

− is theouter normal to ∂Ω0 and ζ ∈ β∗(w) a.e. on Qm. Taking into a

ount (3.84)



276 Gabriela Marinos
hiwe obtain the �ux 
ontinuity on the 
ommon boundary ∂Ω0 × (0, T )

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+ =

(
K̃0(x)i3 −∇ζ

)
· ν+ on ∂Ω0 × (0, T ). (3.93)The previous integrals on ∂Ωm and ∂Ω0 are 
onsidered in the sense of dis-tributions, e.g., as the value of (K̃(x,w + Ss)i3 −∇ζ

)
· ν at φ. By the tra
etheorem we see that, generally, the �ux (K̃(x,w + Ss)i3 −∇ζ

)
· ν is wellde�ned as an element of the spa
e L2(0, T ;H−1/2(∂Ω0)).Referen
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