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Topis in Applied Mathematis & Mathematial Physis© 2008, Editura Aademiei RomânePrefaeThe inreased interest in obtaining more e�etive mathematial tools forboth fundamental and applied sienes has led in the past years to a stronginterplay between various sienti� domains, in partiular between appliedmathematis and mathematial physis.The present monograph ontains a olletion of review papers on the stateof the art and new results obtained in the researh ativity on several top-is of applied mathematis and mathematial physis. The topis are ofequal interest for several researh groups involved in the sienti� ativitiesof Romania. The main reason is the ommon mathematial onepts, analyt-ial and numerial tehniques, whih have imposed themselves as partiularyuseful in handling various problems related to the above topis.The proposed surveys are written by experts who attained full sienti�reognition by signi�ant ontributions to mathematis, applied mathematisand mathematial physis.At the same time, this book is the result of their joint e�ort in ommon re-searh ativities along several fruitful years, involving in this respet, �Ghe-orghe Miho�Caius Iaob� Institute of Mathematial Statistis and AppliedMathematis, �Simion Stoilow� Institute of Mathematis of the RomanianAademy, �Horia Hulubei� National Institute of Physis, and Institute ofSpae Sienes, all from Buharest.The paper �Quasi-free quantum statistial models for tunnelling juntion� byN. Angelesu and M. Bundaru deals with the desription of the stationarystates ourring when a nanosopi quanti system is onneted to thermalreservoirs having di�erent temperatures and ativities.�An introdution to monotoniity methods for nonlinear kineti equations�by Ceil Grünfeld is a survey upon the reent progress on the appliationof monotoniity methods (with respet to the order) to investigate the exis-tene of solutions of various Boltzmann-like nonlinear kineti equations. Tomotivate the topi, we �rst provide several examples of Boltzmann modelsfor omplex systems, with similar monotoniity properties, whih presentinterest in appliations. These are Smoluhowski's oagulation equation,Povzner-like models with dissipative ollisions and reative ollisions, respe-tively, a Boltzmann model for several hemial speies (with reations), anda von Neumann-Boltzmann quantum model. The ommon properties of the



8above models an be abstrated into a very general setting. One obtains alass of nonlinear evolution equations, formulated into an abstrat Lebesguespae, for whih one an state general riteria for the existene, uniquenessand positivity of global (in time) solutions. The proofs extend tehniquesthat were initially developed in the more partiular ontext of the spae-homogeneous version of the lassial Boltzmann equation. Finally we showhow the abstrat results an be applied to our examples of Boltzmann-likemodels.The paper �Estimating the number of negative eigenvalues of a relativistiHamiltonian with regular magneti �eld� by Viorel Iftimie, Marius M ntoiuand Radu Purie is onerned with the proof of the analog of the Cwikel-Lieb-Rosenblum estimation for the number of negative eigenvalues of a rela-tivisti Hamiltonian with magneti �eld B ∈ C∞
pol(R

d) and an eletri poten-tial V ∈ L1
loc(R

d). A diret onsequene is a Lieb-Thirring inequality for thesum of powers of the absolute values of the negative eigenvalues.The leture �Approximate inertial manifolds for nonlinear paraboli problemsand approximate solutions based upon these� by Ana Veronia Ion presentsthe notion of approximate inertial manifold of a semi-dynamial system gen-erated by a nonlinear evolution PDE (more preisely, a semilinear paraboliequation), as it appeared in the literature of the last twenty years. Theloalization of the attrators in the spae of phases was a �rst interestingappliation �eld of the a.i.m.s. Besides, a.i.m.s found very interesting appli-ations in the onstrution of some approximate solutions (and onsequentlyin the numerial integration) of the nonlinear evolution problems. Theseare ontained in the so-alled nonlinear Galerkin and postproessed Galerkinmethods.The hapter �Di�usion proesses. Physial models and numerial approxima-tion� by Stelian Ion deals with the numerial approximation of a lass of non-linear di�usion proesses that inludes the unsaturated water �ow throughporous media and the fast di�usion. The approximation method onsistsin the disretization of spae derivative operators using the �nite volumesheme and keeping the ontinuum time di�erentiation. Consequently, thesolution of the partial di�erential equations is approximated by the solutionof a system of ordinary di�erential equations. A sheme to approximate thedi�usion and onvetive term suh that one an obtain a quasi-monotoneODE system is de�ned. Further, it is proved that there exists a disreteomparison priniple, the solutions of the disrete model are bounded andthe upper and lower bounds are independent of the mesh size of triangula-tion. To perform the time numerial integration a lass of impliit bakward



9di�erentiation formulae with adaptive time step is used. Sine the impliitshemes require a nonlinear solver a method that mixes Broyden methodand an inexat Newton method is onstruted. The performanes of the newmethod are illustrated by some numerial results onerning the fast di�usionequation and water in�ltration through a layered soil.The paper �On a onvergent numerial method for nonlinear Boltzmann-type models� by Dorin Marinesu deals with the extensions of approximationtehniques of Nambu, Babovsky and Illner for the solutions of the lassialBoltzmann equation to a nonlinear generalized Boltzmann-type system ofequations solving nontrivial transport �ows in dilute gas mixtures. First,one proves the global existene and uniqueness of solutions. Then a weaktime-disretized version of equations for positive measures is provided. To ob-tain an algorithm, with small numerial e�ort (of order N logN) stohastimethods are introdued. Finally a numerial approximation sheme, on-verging almost surely, in some sense, to the solutions of exat equations isprovided.The �rst part of the paper �Mathematial models of di�usion in nonhomoge-neous porous media� by Gabriela Marinoshi introdues di�usive models ofwater �ow in saturated-unsaturated media, haraterized by a spae variationof the porosity. Then the analysis fouses on a model with mixed boundaryonditions involving a �ux on a part of the boundary and a nonhomogeneousDirihlet ondition orresponding to a singular situation (i.e., the blowing updi�usion oe�ient) on the other part of the domain boundary. From themathematial point of view, the problem resides in the study of a degeneratenonlinear variational inequality whih an be redued to a multivalued inlu-sion by an appropriate hange of the unknown funtion. Finally, existene,uniqueness and other properties of the solution are established.The editorsBuharest, July 2008
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Quantum Statistial Models 131. Introdution1.1. General frameDuring the last deade onsiderable progress has been ahieved in the statisti-al desription of non-equilibrium thermodynami proesses. While previouswork onentrated and provided a reasonable understanding of situationsnear thermal equilibrium, suh as stability of equilibrium states (approahto equilibrium) or linear response, a onsistent mathematial framework ini-tiated by Ruelle [16℄, is now available for aounting for the installation, atlarge time, of a non-equilibrium stationary state (NESS) even when the ini-tial state of the system is far from equilibrium (see [3℄ for a reent review).The typial physial situation whih �ts in this framework is that of severalreservoirs, Ri; i = 1, ..., r, oupled to a �nite quantum system, S (sample).One has to give aount for the �ow of energy and partiles through thesample in the large time asymptoti regime.The isolated sample S is a usual quantum system with Hilbert spae HS,algebra of observables AS equal to the algebra of all bounded operators on
HS , and unitary dynamis generated by the Hamiltonian HS. The Heisen-berg piture of the evolution is the automorphism group on AS de�ned as
αt

S(A) = exp (itHS)A exp (−itHS). We suppose that the sample is at time
t = 0 in an arbitrary invariant state ω0

S, i.e. the expetation of an observable
A ∈ AS is given by a density matrix: ω0

S(A) = tr(ρSA) and [ρS ,HS ] = 0.The desription of the reservoirs Ri is somewhat more elaborated. A reser-voir is an in�nite quantum system, whih, before the oupling to the sampleis swithed on, is in a ertain equilibrium state. Its desription in the initialstate �ts therefore in the well-established algebrai formalism of equilibriumquantum statistial mehanis [4℄. One starts with reservoirs �nitely ex-tended in some regions Λi of spae: the pure states are the unit vetors in aHilbert spae Hi,Λi , the algebra of observables Ai,Λi onsists of all boundedoperators on Hi,Λi and the (Heisenberg) dynamis on Ai,Λi is generated bya self-adjoint Hamiltonian Hi,Λi , αt
i,Λi

(A) = exp (itHi,Λi)A exp (−itHi,Λi); atgiven inverse temperature βi, the �nite reservoir i has one equilibrium state
ωi,βi,Λi

(A) = tr(Aρi,βi,Λi
) given by the Gibbs ansatz for the density matrix

ρi,βi,Λi
= (1/Zi,Λi(βi)) exp (−βiHi,Λi), where the statistial sum Zi,Λi(βi) isa normalizing fator. The in�nite reservoir is oneived as an idealizationbehaving like very large reservoirs, i.e., as a limit of the above struture:The algebra of observables Ai is the smallest C∗-algebra ontaining Ai,Λifor all �nite regions Λi, the (strongly ontinuous) dynamis αt

i(·) on it is



14 N. Angelesu et al.the strong limit (provided it exists) of the automorphism groups αt
i,Λi

(·),and the equilibrium state is a limit point ωi,βi
of ωi,βi,Λi

as Λi inreasesto the in�nite region Li oupied by the reservoir Ri. The in�nite reser-voirs in this sense an be represented as genuine quantum systems usingthe so-alled Gelfand-Neumark-Segal (GNS) onstrution. The latter on-sists essentially in the following: a state ω on a C∗-algebra A de�nes asesquilinear form on it by 〈A,B〉 = ω(A∗B); after division by the ideal I ofall I ∈ A suh that ω(I∗I) = 0, A/I beomes a pre-Hilbert spae, whoseompletion Hω is the representation spae. The representation πω(X) of anelement X ∈ A is the bounded operator whih sends the vetor Â into thevetor X̂A; thereby, 1̂ =: Ωω is a yli vetor for this representation, and
ω(A) = (Ωω, πω(A)Ωω). If, moreover, the state ω is invariant under the auto-morphism group αt (i.e. ω ◦αt = ω), then πω(αt(X)) = Uω(−t)πω(X)Uω(t),where Uω(t) = exp (−itHω) is a unitary group on Hω. The generator Hωof this group, named thermal Hamiltonian, has Ωω as an eigenvetor witheigenvalue 0.To simplify the notation, we no longer mention the referene states ω0

i = ωi,βiof the reservoirs, and simply denote {Hi, πi(·),Ωi,Hi} the GNS desrip-tion for the reservoir Ri orresponding to the equilibrium state ω0
i , i.e.,respetively, the Hilbert spae, the representation of the observable alge-bra Ai, the yli vetor and the thermal Hamiltonian generating the uni-tary implementation of the dynamial automorphism group: πi(α

t
i(A)) =

exp (itHi)A exp (−itHi). Likewise, we denote {HS , πS(·),ΩS ,HS} the GNSrepresentation of the sample assoiated to the state ω0
S invariant for the group

αt
S .The omposite system S+

∑
Ri is in turn an in�nite quantum system, whihis to be onstruted as above from a ertain referene state. The algebra ofobservables is taken as a C∗-tensor produt of the algebras Ai of the reservoirsand AS of the sample:
A = AS ⊗ (⊗iAi), (1.1)and the referene state is taken as the produt of the initial equilibriumstates ω0

i of the reservoirs and the αt
S-invariant state ω0

S(·) = (ΩS , ·ΩS) ofthe sample:
ω0 = ω0

S ⊗ ((⊗iω
0
i ). (1.2)On the algebra A one has the unoupled dynamis desribed by the auto-morphism group αt = αt

S ⊗ ((⊗iα
t
i), whih leaves invariant the state ω0:

ω0(αt(A)) = ω0(A), A ∈ A.At time t = 0, a oupling between reservoirs and the sample is swithed on,meaning that the dynamis of the system at positive times is given by another



Quantum Statistial Models 15automorphism group of A, τ t. The evolved referene state will thereforehange in time, and be, at time t > 0, the state for whih the expetation ofan observable equals the ω0-expetation of the observable evolved at time taording to the new dynamis:
ωt(A) = ω0(τ t(A)) = ω0(α−t · τ t(A)), (1.3)where the seond equality omes from the αt-invariane of ω0. Supposea stationary (τ t-invariant) state is approahed at large time. This an beexpressed as the existene of the limit of ωt(A) when t→ +∞ for all A ∈ A.The latter is ensured by the existene of the limits

lim
t→+∞

α−t · τ t(A) = Ω+(A), (1.4)i.e. by the existene of the Möller endomorphisms of the two groups. Inthis way, the existene of (and the onvergene to) a stationary state anbe presented as a sattering problem for two automorphism groups on a
C∗-algebra. As a rule, τ t is onstruted as a loal perturbation of αt via astrongly onvergent Dyson series; more preisely, if lim

t→0

1
t (α

t(A)−A) = δ0(A)for A in a dense subalgebra D ⊂ A, one supposes that there exists V ∈ A,suh that δV (A) := lim
t→0

1
t (τ

t(A) −A) = δ0(A) + i[V,A] for A ∈ D.As a onsequene of the hoie (1.2), the omposite system an be realizedin the tensor produt of Hilbert spaes H = HS ⊗ ((⊗iHi), whih arries theprodut representation of A, so that π(A) is the C∗-tensor produt of oper-ator algebras πS(AS) ⊗ ((⊗iπi(Ai)). Thereby, the independent (unoupled)dynamis of the reservoirs and of the sample is implemented in H by theunitary group U0(t) = exp (−itH0) = exp (−itHS) ⊗ ((⊗i exp (−itHi)). Theyli vetor Ω = ΩS ⊗ ((⊗iΩi) is an eigenvetor of H0 with eigenvalue 0.Also, the loally perturbed dynamis is implemented by the unitary group
U(t) = exp (−itH), where

H = H0 + π(V ). (1.5)In this way, the problem an be reformulated as a perturbation problem forselfadjoint operators on a Hilbert spae in a setting depending on the hosenreferene state.Of ourse, the onstrution of the perturbed dynamis and the proof thatthe Möller endomorphisms exist are to be done for the models under on-sideration of reservoirs, samples and ouplings between them. It happensthat the program outlined before an aommodate a few reservoir models ofphysial interest, suh as spin models or free partile models obeying Fermi



16 N. Angelesu et al.statistis, and samples with �nite-dimensional HS . One of the most restri-tive assumptions is the existene of the in�nite-volume dynamial group ofautomorphisms αt and its assumed strong ontinuity. A way out to a morepermissible framework for the reservoirs, Ri, is to onstrut as above thereferene states ω0
i as limit points of �nite-volume Gibbs states and furtherwork within the GNS representation assoiated to it. In partiular, a weaklyontinuous in�nite-volume dynamis may appear as a limit of the loal dy-namis αt

Λi
(·) viewed as automorphisms of the weak losures of the operatoralgebras πi(Ai) representing Ai, i.e. of the von Neumann algebras πi(Ai)

′′.This allows to de�ne a representation-dependent dynamis and self-adjointthermal Hamiltonian. Hene, the steps leading to a sattering problem in aHilbert spae are to be performed. In partiular, this is the ase of free-bosonreservoirs, see Se. 4. below.1.2. Quasi-free modelsIn the paper we shall onsider instanes of onrete realizations, within alass of very simple models, of the paradigm outlined above. Essentially, wesuppose that:1. The reservoirs are free quantum idential partile systems, obeyingFermi-Dira or Bose-Einstein statistis.2. The perturbed (oupled) dynamis is quasi-free.In more detail, point 1 means the following: Before taking the thermody-nami limit, i.e. when the reservoir is on�ned to a �nite region Λ, theappropriate Fok spae, whih bears the Fok representation of the anoni-al (anti)ommutation relations, an be used, whereby the number of parti-les NΛ = dΓ(1) and Hamiltonian HΛ = dΓ(h0
Λ). Aording to the grand-anonial presription, HΛ is to be replaed by HΛ−µNΛ in the Gibbs ansatzfor the equilibrium density matrix, where the multiplier µ is adjusted to en-sure given partile density in the reservoir. In the thermodynami limit, the

C∗-algebra of observables should "ontain" the loal operators, i.e. funtionsof a♯(f) with f having support in some �nite region. It is therefore naturalto take it as the anonial (anti)ommutation relations algebra, CAR(D),respetively CCR(D), over a ertain subspae of the spae of reservoir's one-partile states, D ⊂ H(1), ontaining at least the funtions with ompatsupport. The equilibrium states of the reservoir, i.e. the limit states of the



Quantum Statistial Models 17�nite-volume Gibbs states, are well-known (see e.g. [4℄), and turn out to bequasi-free states (i.e. states in whih there are no orrelations of order higherthan 2) over these C∗-algebras. D may be extended suh that the limit statesbe de�ned on the orresponding C∗-algebra. In the Fermi ase D = H(1).In the Bose ase, however, due to the phenomenon of Bose-Einstein onden-sation, D 6= H(1); in the paper, in order to avoid the domain problems, wesuppose also that the Bosons live on the lattie Zd, leaving the general asefor another publiation.The point 2 means that the evolution automorphism of the C∗-algebra isgiven by a unitary evolution e−ith inH(1) whih leavesD invariant: τ t(a♯(f)) =
a♯(eithf). As a onsequene, not only the initial (referene) state ω0, but alsoall ωt, t > 0 and the stationary state are quasi-free. Thereby, the problemis redued to a sattering problem for the one-partile Hamiltonians, whihan be expliitly solved.In this respet, the quasi-free models are trivial, in partiular they allowno interation between partiles and thus restrit onsideration to simpletunneling juntions, but they turn out to be a good laboratory for onjeturesonerning various phenomena and providing instanes of interesting physialbehavior. In partiular, the oupled dynamis no longer onserves the energyand number of partiles in the reservoirs, implying that, in the stationarystate, there exist persistent urrents of energy and partiles, depending onthe parameters �xing the initial equilibria of the reservoirs, and also on thegeometry of the sample and its oupling to them. In this way various formulaeof transport theory an be obtained beyond the linear response regime.1.3. SummaryThere is an extensive literature on quasi-free quantum systems. This workstarted as an attempt to systematize their appliation to the problems ofreturn to equilibrium and of approah to NESS in a more abstrat, om-prehensive frame, as outlined in the previous subsetion. In the meantime,we beame aware of two reent papers with the same purpose in the Fermiase [2℄, [12℄, so we limited to the more modest aim of giving a (hopefullymore friendly) presentation of their general result, of indiating its extensionto the Bose ase and of providing a few examples of alulation for ertaininteresting physial quantities.Setion 2 is onerned with the spetral and sattering problems for the one-partile Hamiltonians, as the same analysis applies to both Fermi and Bose



18 N. Angelesu et al.statistis. In order to have as far as possible expliit expressions, we onsider,as an appliation, in subsetions 2.3. and 2.4. the ase of two reservoirs, inwhih the partiles live on two d-dimensional latties, and those in the sampleon a hain ofN ≥ 0 sites; thereby, the oupling is a simple tunneling involvingone site of eah reservoir.Setion 3 is devoted to the Fermi statistis ase, whih is simpler in manyrespets, in partiular the C∗-framework is su�ient, as the in�nite-volumedynamis is a strongly ontinuous group of automorphisms of CAR(H(1)) .A omprehensive study of this ase has been performed in [2℄, the results ofwhih are brie�y presented. We make expliit their result for the partiularsetting in Setion 2.3. and point out a few peuliarities of the NESS, suh asthe resonant harater of the transport and the plateau e�et for the arrierdensity.Setion 4 is onerned with Bose reservoirs. This brings in several new phe-nomena and ompliations. First, at high density and low temperature,Bose ondensation may appear, implying the spontaneous gauge-symmetrybreaking, i.e. existene of several extremal equilibrium states labeled by aphase. Moreover, the in�nite volume dynamis annot be a strongly ontinu-ous group of the CCR algebra; fortunately, as quasi-free states are regular, itis ontinuous in the GNS representation orresponding to equilibrium states.The interesting question here is the dependene of the NESS on the partiularmixtures of phases onstituting the initial equilibria of the reservoirs. Thismay be viewed as a ariature of the Josephson tunneling of Cooper pairsbetween two superondutors. The approah to equilibrium in the preseneof a ondensate has been analyzed by Merkli [8℄. The problem of approahto a NESS, left open there, was onsidered by us in [1℄, the result of whihis presented in the present, slightly more general, setting.2. Sattering for the one-partile HamiltoniansThis setion is devoted to the spetral analysis of the one-partile Hamil-tonian h = h0 + v, where h0 is the one-partile Hamiltonian of the deou-pled system, i.e. the diret sum of the one-partile Hamiltonians hi (i =
1, ..., r), hS of the isolated reservoirs and sample and v desribes the tunnel-ing between them. We make the following assumptions:Assumption 2.1 The one-partile Hilbert spae is an orthogonal sum

H(1) = H(1)
S ⊕H(1)

R ; H(1)
R = ⊕r

i=1H
(1)
i ,



Quantum Statistial Models 19with dimH(1)
S = N < ∞. Let J : H(1)

R → H(1) and I : H(1)
S → H(1) be thenatural injetions:

Jf = 0 ⊕ f If = f ⊕ 0,Assumption 2.2 In the matrix representation assoiated to this deomposi-tion, the unperturbed Hamiltonian h0 is blok-diagonal:
h0 = hS ⊕ h0

ac; h0
ac = ⊕r

i=1hi,and the perturbation v has the following struture: There exist maps τi :

H(1)
i → H(1)

S , suh that
v = IτJ∗ + Jτ∗I∗,where

τ : H(1)
R → H(1)

S , τ(⊕r
i=1fi) =

r∑

i=1

τifi.Assumption 2.3 hi, i = 1, ..., r, have absolutely ontinuous spetra equalto the bounded intervals Ii ⊂ R. Thereby, we suppose that r⋃
i=1

Int(Ii) is aninterval (emin, emax). We denote Ri(z) = (hi − z)−1, (z ∈ C \ Ii) and R0
ac =

(hac −z)−1 = ⊕r
i=1Ri(z). Let pi, πi denote the right, respetively left, supportof τi (i.e. the orthogonal projetions onto the subspaes τi(H(1)

i ) ⊂ H(1)
S ,respetively τ∗i (H(1)

S ) ⊂ H(1)
i ). For all x ∈ Ii, the limits
lim
ǫց0

πiRi(x+ iǫ)|
πi(H

(1)
i )exist as operators in the orresponding subspaes and are ontinuous funtionsof x; thereby, for all interior points x of Ii, ,

lim
ǫց0

πiℑRi(x+ iǫ)|
πi(H

(1)
i )

> 0 (i = 1, ..., r).2.1. Resolvent and spetrum of the perturbed HamiltonianThe spetral deomposition of h = h0 + v is based on �nding a onvenientrepresentation of the resolvent operator R(z) = (h − z)−1. We shall use avariant of the Feshbah method, taking advantage of the fat that v has �niterange, what allows summing the perturbation series in losed form.We have to solve for fS, fi, i = 1, ..., r, the system of equations




(hi − z)fi + τ∗i fS = gi (i = 1, ...r)
r∑

i=1
τifi +(hS − z)fS = gS ,

(2.1)



20 N. Angelesu et al.where g = gS ⊕ (⊕r
i=1gi) ∈ H(1) is arbitrary.If z ∈ C \ [emin, emax], the �rst line in equation (2.1) provide fi in terms of

fS :
fi = Ri(z)(gi − τ∗i fS), (2.2)and the seond line beomes

(heff (z) − z)fS = Q(z)g, (2.3)where heff (z) : H(1)
S → H(1)

S and Q(z) : H(1) → H(1)
S are de�ned by:

heff (z) = hS −
r∑

i=1
τiRi(z)τ

∗
i = hS − τR0

ac(z)τ
∗,

Q(z) = I∗ − τR0
ac(z)J

∗.
(2.4)Whenever heff(z) − z is invertible, we denote Reff(z) = (heff(z) − z)−1, sothat Eq. (2.3) has the unique solution

fS = Reff(z)Q(z)g, (2.5)With fS given by Eq. (2.5) and fi given in terms of it by Eq. (2.2),
f = fS ⊕ (⊕r

i=1fi) = Q(z̄)∗fS provides the solution to the system (2.1).Therefore, remarking that ∪r
i=1Ii ⊂ σ(h) (by the invariane of the essentialspetrum under ompat perturbations), the following haraterization hasbeen proved:Lemma 2.1 The resolvent set of h is

ρ(h) = {z ∈ C \ [emin, emax]; ker (heff(z) − z) = {0}}.For all z ∈ ρ(h),
R(z) = JR0

ac(z)J
∗ +Q(z̄)∗Reff(z)Q(z). (2.6)The Kato-Rosenblum sattering theory [15℄ ensures the existene and om-pleteness of the wave operators W± : H(1)

R → H(1) for the unitary groups
e−ith, e−ith0

ac , i.e. the existene of the strong limits:
W± := (s) lim

t→±∞
eithJe−ith0

ac . (2.7)Hene,



Quantum Statistial Models 21Lemma 2.2 h has absolutely ontinuous spetrum σac(h) = [emin, emax] andno singular ontinuous spetrum. The absolutely ontinuous part hac of h,i.e. h restrited H(1)
ac (h) = W±(H(1)

R ), is unitarily equivalent to h0
ac via theintertwining relations hacW± = W±h

0
ac.Finally, we determine the point spetrum of h, σp(h).Let z ∈ σp(h), and f = fS ⊕ (⊕r

i=1fi) 6= 0 be an eigenvetor of h witheigenvalue z. Then f is a solution of Eq. (2.1) for g = 0.If, thereby, τ∗i fS = 0 for all i = 1, ..., r, then (hi − z)fi = 0, ∀i, hene fi = 0,beause hi have no point spetrum. If so, the seond line in (2.1) shows that
z ∈ σp(hS) and that fS ∈ ker τ∗i is a orresponding eigenvetor. Conversely,if fS ∈ ∩i ker τ

∗
i is an eigenvetor of hS , then fS ⊕ 0 is an eigenvetor of hwith the same eigenvalue.Suppose next that τ∗i fS 6= 0 for at least one i. If z 6∈ [emin, emax], Eq. (2.2),whih expresses fi in terms of fS , and Eq. (2.3) show that fS 6= 0 is aneigenvetor of heff(z) with eigenvalue z. Conversely, if ker (heff (z) − z) ∋

fS 6= 0, then z ∈ σp(h) and Q(z̄)∗fS is an eigenvetor of h with eigenvalue z(in partiular, we have that ℑz = 0). Let us onsider the family of self-adjointoperators {heff (x); z = x ∈ (−∞, emin)} and let λ1(x) ≤ ... ≤ λN (x) be theeigenvalues of heff (x) and ψ(x)
(1)
S , ..., ψ(x)

(N)
S the orresponding eigenvetors.As remarked before, x ∈ σp(h) if, and only if, x = λk(x) for some k = 1, ...,N .As heff (x) is a dereasing operator-valued funtion of x in the onsideredinterval, all its eigenvalues λk(x) are dereasing funtions, hene, the equation

x = λk(x) has a simple solution x = e−k if, and only if, lim
xրemin

λk(x) < emin.Then, every eigenvetor of heff (e−k ) with eigenvalue e−k an be ompleted toan eigenvetor of h with this eigenvalue. Likewise, on (emax,∞) the equation
x = λk(x) has a solution e+k if, and only if, lim

xցemax

λk(x) > emax, implying
e+k ∈ σp(h).Next, let fS ⊕f be an eigenvetor of h orresponding to x in (emin, emax) andsuh that τ∗i fS 6= 0 for some i = 1, ..., r. Let z = x + iy, with ℑz = y > 0.We have, by the �rst line of equations (2.1), fk = Rk(x+iy)(hk −x− iy)fk =
−Rk(x+ iy)τ∗kfS − iyRk(x+ iy)fk, whih, plugged into the seond equation,implies, in partiular, that

(fS , (heff (x+ iy) − x)fS) = iy
r∑

k=1

(τ∗kfS, Rk(x+ iy)fk)

= iy
r∑

k=1

(‖fk‖2 − iy(fk, Rk(x+ iy)fk)).Equating the imaginary parts of this equality, letting y ց 0 and using
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‖Rk(x+ iy)‖ = 1/y, we arrive at

ℑ(fS , τkRk(x+ i0)τ∗kfS) = 0, ∀k,whih ontradits assumption 2.3.In summary:Lemma 2.3 The point spetrum of h in R \ {emin, emax} onsists, besidesthe possible eigenvalues of hS possessing eigenvetors fS ∈
r⋂

i=1
ker τ∗i , of thesolutions e−k ∈ (−∞, emin) and e+k ∈ (emax,∞) of the equations λk(x) = x.The latter exist if, and only if, λk(emin − 0) < emin and λk(emax + 0) > emax,respetively.The values emin or emax may be eigenvalues of h, either if they are eigenvaluesof hS with eigenvetor fS ∈

r⋂
i=1

ker τ∗i , or if λk(x) = x and the orrespondingeigenvetor ψ(x)(k) ful�lls lim
x′→x

‖Ri(x
′)τ∗i ψ(x′)(k)‖ < ∞, ∀i. The latter on-dition, being dependent on the struture of h0 and τi, is to be heked foreah onrete model.2.2. Wave operators and sattering matrixIn this subsetion we derive the expressions of the wave operators and S-matrix using the formalism of stationary sattering theory [15℄, [17℄. Namely,with the spetral representation of the unitary groups e−ith =

∫
e−itxdE(x),

e−ithi =
∫

e−itxdEi(x), we an express the wave operators in terms of theresolvent R(z) of h. We have
W+ = (s) lim

ǫց0
ǫ
∫∞
0 e−tǫ exp (ith)J exp (−ith0)dt

= (s) lim
ǫց0

ǫ
∫

dE(x′)
∫
JdE0

ac(x)
∫∞
0 dteit(x′−x+iǫ)

= (s) lim
ǫց0

(iǫ)
∫
R(x− iǫ)JdE0

ac(x).

(2.8)where we denoted E0
ac(x) = ⊕r

i=1Ei(x). Similar alulations are valid forW−.Using Eq. (2.6) for R(z), taking into aount that ∓iǫR0
ac(x± iǫ)dE0

ac(x) =
dE0

ac(x) and Assumption 2.2, the following representation is obtained:
W± = J − (s) lim

ǫց0

∫
Q(x± iǫ)∗Reff(x∓ iǫ)τdE0

ac(x). (2.9)
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W ∗

± = J∗ − (s) lim
ǫ′ց0

∫
dE0

ac(x
′)τ∗Reff(x′ ± iǫ′)Q(x′ ± iǫ′). (2.10)Eqs. (2.9), (2.10) give for the S-matrix:

S = W ∗
+W− = 1 −J∗

∫
Q(x− i0)∗Reff(x+ i0)τdE0

ac(x)

−
∫

dE0
ac(x

′)τ∗Reff(x′ + i0)Q(x′ + i0)J

+ lim
ǫ′ց0

{lim
ǫց0

∫
dE0

ac(x
′)τ∗Reff(x′ + iǫ′)Q(x′ + iǫ′)

×
∫
Q(x− iǫ)∗Reff(x+ iǫ)τdE0

ac(x)}.

(2.11)We alulate the last term using the resolvent equation, whih implies
Q(x′ + iǫ′)Q(x− iǫ)∗ = 1 + τR0

ac(x
′ + iǫ′)R0

ac(x+ iǫ)τ∗

= 1 + (x′ − x+ i(ǫ′ − ǫ))−1τ [R0
ac(x

′ + iǫ′) −R0
ac(x+ iǫ)]τ∗

= (x′ − x+ i(ǫ′ − ǫ))−1[(heff (x+ iǫ) − x− iǫ) − (heff (x′ + iǫ′) − x′ − iǫ′)].Eah term of the latter expression, when plugged into Eq. (2.11), is sand-wihed between Reff , what, after making the obvious simpli�ation, allowsone of the integrals to be performed (e.g. ∫ dE0
ac(x

′)(x′−x+i(ǫ′− ǫ))−1τ∗ =
R0

ac(x− i(ǫ′−ǫ))τ∗ = J∗Q(x− i(ǫ−ǫ′))∗). Therefore, after taking the iteratedlimit, the last term of Eq. (2.11) equals
∫
J∗Q(x+ i0)∗Reff(x+ i0)τdE0

ac(x) +

∫
dE0

ac(x
′)τ∗Reff(x′ + i0)Q(x′ + i0)J.As Q(z)J = −τR0

ac(z), one obtains �nally
S = 1 + 2i

∫
ℑ(R0

ac(x+ i0))τ∗Reff(x+ i0)τdE0
ac(x). (2.12)Remark 2.1 It is sometimes useful to represent the Hilbert spae Hac(h

0) asa diret integral over energy of Hilbert "eigenspaes" Kx, i.e. there exists aunitary U : Hac(h
0) →

∫ ⊕
[emin,emax] Kydy =: K, suh that UE0

ac(Λ)U∗ = χΛ(·)(the operator of multipliation with the indiator of the measurable set Λ). Itis lear that, for ψ(·) ∈
∫ ⊕
[emin,emax] Kydy, (UR0(z)U∗ψ)(y) = (y − z)−1ψ(y).Also, τU∗ψ =

∫
[emin,emax] τy(ψ(y))dy, where τy : Ky → H(1)

S . Eq. (2.12)shows that, in this representation, the S-matrix is diagonal, i.e. USU∗ =∫ ⊕
[emin,emax] Sxdx, where Sx : Kx → Kx equals

Sx = 1 + 2πiτ∗xReff(x+ i0)τx =: 1 + Tx. (2.13)
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Tx is alled the on-shell T -matrix.Calulating, for f ∈ H(1)

ac , separately the omponent I∗W±f ∈ H(1)
S and

J∗W±f ∈ H(1)
ac of Eq. (2.9), one obtains

I∗W±f = −
∫
Reff(x∓ i0)τx(Uf)(x)dx,

[UJ∗W±f ] (x) = (Uf)(x)+
+
∫

1
x−x′∓i0τ

∗
xReff(x′ ∓ i0)τx′(Uf)(x′)dx′.

(2.14)Also, the ation of W ∗
± on f ∈ H(1) is given by

(UW ∗
±f)(x) = (UJ∗f)(x)−

−
∫

1
x−x′±i0τ

∗
xReff(x± i0)τx′(UJ∗f)(x′)dx′−

−τ∗xReff(x± i0)I∗f.

(2.15)2.3. An example: two half-in�nite lattie reservoirs oupledby a wireIn this subsetion we desribe, as an illustration of the more general settingof the model, a partiular geometry and dynamis: the system onsisting oftwo partile reservoirs, R1, R2, onneted by a one-dimensional wire, S.The reservoirs, Ri, i = 1, 2, are taken as in�nitely extended lattie quantumgases. The partiles in the reservoirs live, respetively, on the two (left,respetively, right) half-in�nite latties,
Li = Zd

i =
{
r = (r′, rd); r′ ∈ Zd−1, (−1)ird = 1, 2, ...

}
. (2.16)The Hilbert spae of one-partile states in Ri is therefore

H(1)
i = l2(Li) =



f = (fr)r∈Li ; ‖f‖2 =

∑

r∈Li

|fr|2 <∞



 . (2.17)The kineti energy operator of one partile in Ri is 1/2 times the lattieLaplae operator with free boundary onditions, i.e.

(hif)r = dfr −
1

2

∑

q∈Li,|q−r|=1

fq. (2.18)A omplete set of generalized eigenvetors of hi are ψi(k) ∈ l∞(Li), k ∈ Td
i ,where the index sets Td

i = {k = (k′, kd); k′ ∈ [0, 2π)d−1, kd ∈ (0, π)} are



Quantum Statistial Models 25idential (the subsript i has the only role to make the di�erene betweenthe two reservoirs, e.g. by Td
1 ∪ Td

2 we mean the disjoint union of two opiesthis set), and
ψi(k)r = 2(2π)−d/2 exp (ik′r′) sin (kd|rd|). (2.19)

ψi(k) orresponds to the generalized eigenvalue
ωi(k) = 2

d∑

α=1

sin2 (kα/2). (2.20)Again, though the two dispersion laws (2.20) are idential, we keep the label
i to mark the reservoir they orrespond to. Therefore the spetra of hi areabsolutely ontinuous and oinide with the intervals I1, I2 ⊂ R (both equalto [0, 2d]). In fat, we de�ne the unitary operators ui : H(1)

i → L2(T
d
i ) by

uif = (ψi(·), f); (2.21)then, uihiu
∗
i is the operator of multipliation with the funtion ωi(k) on

L2(T
d
i ).The sample S, providing our model of a nanowire, is a free quantum gas inwhih partiles live on the �nite set of sites {1, 2, ...,N}. The states withone partile are vetors f = (f1, ..., fN ) ∈ H(1)

S = l2({1, 2, ...,N}) ≡ CN andtheir evolution is ontrolled by the Hamiltonian
(hSf)i = (1+eg)fi−1/2(fi−1 +fi+1), i = 1, ...,N (f0 = fN+1 = 0), (2.22)where the parameter eg plays the role of an adjustable gate potential. Theeigenvalues of hS are εm = eg + 2 sin2 (qm/2);m = 1, ...,N , where qm =
mπ/(N + 1), with eigenvetors ψ(m):

ψ
(m)
i =

√
2

N + 1
sin (qmi). (2.23)The one-partile Hilbert spae for the entire system, S +R1 +R2 is

H(1) = H(1)
S ⊕H(1)

1 ⊕H(1)
2 = l2(L), where L = {1, 2, ...,N}∪L1 ∪L2. (2.24)The evolution of the one-partile states for the unoupled system is given bythe one-partile Hamiltonian

h0 = hS ⊕ h1 ⊕ h2 (2.25)



26 N. Angelesu et al.At t = 0, tunneling juntions are turned on between the reservoirs and theends of the wire through the pairs of sites (α1 = (0′,−1), {1}) and (α2 =
(0′, 1), {N}), N > 0. On H(1), this is given by the one-partile operator vde�ned by the matrix

vr,s =

{
t, if either {r, s} = {α1, 1} or {α2,N}
0, otherwise,

(2.26)Thus, the evolution of the one-partile states in the oupled system is gen-erated by the Hamiltonian:
h = h0 + v. (2.27)Proposition 2.1 The model de�ned above ful�lls the assumptions 2.1�2.3.Thereby, h has no eigenvalue embedded in (0, 2d).Proof. Assumptions 2.1 and 2.2 are obvious, with r = 2 and τ1, τ2 having allmatrix elements equal to 0, but for (τ1)1,α1 = (τ2)N,α2 = t. We have that

(τ1R1(z)τ
∗
1 )i,j = t2δi,1δj,1g(z), (2.28)where

g(z) = 4(2π)−d
∫

Td sin2 (kd)(ω1(k) − z)−1dk

= 4(2π)−d
2d∫
0

(y − z)−1dy
∫

Td(y)

sin2 (kd)dµy(k),
(2.29)where dµy(k) = |∇ω(k)|−1dσy(k) is the Gelfand-Leray measure on the levelset Td(y) = {k ∈ Td; ω(k) = y} (where dσy(k) is the area measure on thissurfae). Using the Sokhotski formula (x− i0)−1 = P( 1

x ) + iπδ(x) (where Pdenotes the prinipal part), we have
lim
yց0

ℑg(x+ iy) = 4(2π)−d

∫

Td(x)

sin2 (kd)dµx(k) > 0, ∀x ∈ (0, 2d). (2.30)Finally, the eigenfuntions (2.23) of hS ful�ll ψ(m)
1 =

√
2

N+1 sin (qm) 6=
0,∀m = 1, ..., N , implying that there are no eigenvalues embedded in (0, 2d).
�For this model one may de�ne the unitary U of Remark 2.1 as the ompo-sition the unitary u1 ⊕ u2 : Hac(H

0) → ⊕2
i=1L2(T

d
i ) (where ui are de�nedin Eq. (2.21)), with the unitary v1 ⊕ v2 : ⊕2

i=1L2(T
d
i ) →

∫ 2d
0

⊕Kxdx, with
Kx = ⊕2

i=1L2(T
d
i (x),dµi,x(k)), where (vifi)(x) is the restrition of fi to the
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i (x) and dµi,x is the Gelfand-Leray measure on the latter.Then, τf =

∫ 2d
0 dxτx(Uf(x)), where τx : Kx → H(1)

S is given by:
(τxφ)m = δm,1t

∫
Td

1(x) ψ
1(k)α1φ1(k)dµ1,x(k)+

+δm,N t
∫

Td
2(x) ψ

2(k)α2φ2(k)dµ2,x(k),
(2.31)and (Uτ∗f)(x) = τ∗xf , where τ∗x : H(1)

S → Kx is given by
(τ∗xf)(k) = tψ1(k)α1f1 ⊕ tψ2(k)α2fN . (2.32)We remind that ψi(k)αi = 2(2π)−d/2 sin (kd), see Eq. (2.19).Upon insertion of Eqs. (2.31), (2.32), the equations of the previous remarkare made expliit. For instane, the T -matrix Tx : Kx → Kx appearing inEq. (2.13) is an integral operator with matrix kernel:

Tx(k, k′)i,j =
4i

(2π)d−1
sin (kd)Reff(x+ i0)si,sj sin (k′

d
), (2.33)where s1 = 1, s2 = N.2.4. An example of diret tunneling between reservoirsThe ase when the reservoirs are diretly oupled through a tunneling jun-tion without any intermediate sample is speial. Indeed, e.g. for two reser-voirs, H(1) = Hac(h

0) = H(1)
1 ⊕H(1)

2 .In view of the appliation to Bose gases, where the surfae e�ets may bedrasti, we onsider now the translation invariant ase of lattie reservoirs,i.e. we suppose that partiles live on Li = Zd, i = 1, 2. The one-partileHilbert spaes H(1)
i and reservoir Hamiltonians hi are de�ned by Eqs.(2.17),(2.18), respetively. Then, the generalized eigenfuntions of hi are planewaves

ψi(k)r = (2π)−d/2 exp (ikr), k ∈ Td = [0, 2π)d, (2.34)with generalized eigenvalues ω(k), Eq. (2.20), and the unitaries ui are simplythe Fourier transform.The tunneling is between the origins of Li, i.e. we take αi = 0 ∈ Zd. Let
π0 = π1 ⊕π2 : H(1) → C2 denote the restrition to the pair α1, α2 of oupledsites:

π0(f1 ⊕ f2) = (f1)0 ⊕ (f2)0,
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σ0 =

(
1 0
0 1

) be the unit matrix in C2 and σ1 =

(
0 1
1 0

) be the �rstPauli matrix (interhange of 1 and 2). The interation an be represented as
v = tπ∗0σ1π0 (2.35)One an simplify signi�antly the expressions of R(z), Ω±, S by using theFourier representation (2.21) on both spaes: u = u1 ⊕ u2 : ⊕2

i=1H
(1)
i →

⊕2
i=1L2(T

d
i ). The resolvent equation (h − z)f = g redues in π0H(1) to theequation (σ0 + tπ0R

0(z)π∗0σ1)(π0f) = π0R
0(z)g, whih amounts to invertinga 2 × 2 matrix. Thereby,

π0R
0(z)π∗0 = g̃(z)σ0, (2.36)with g̃(z) given by

g̃(z) = (2π)−d

∫

Td

dk

ω(k) − z
. (2.37)It should be remarked that ℑg̃(x+ i0) > 0 for all x ∈ (0, 2d) (and is, as amatter of fat, π times the density of states of the lattie Laplaeian (2.18))and, for d ≥ 3, goes to 0 at the spetrum ends x = 0, 2d.We obtain �nally:Lemma 2.4 In the diret-oupling model desribed above1. The resolvent of h = h0 + v has the representation:

R(z) = R0(z) − tR0(z)π
∗
0(σ1 + tg̃(z)σ0)

−1π0R0(z),

(z ∈ C \ [0, 2d], t2g̃(z)2 6= 1).
(2.38)2. σac(h) = [0, 2d].3. If lim

xր0
g̃(x) > 1/t, the equation t2g̃(z)2 = 1 has two real solutions e0 < 0and 2d− e0, whih are simple eigenvalues of h; otherwise, σp(h) = ∅.Using this representation in Eq. (2.8) (in this ase, J = 1), one �nds thatthe wave operators have the form W± = 1 −K±, where uK±u

∗ are integraloperators in L2(T
d) ⊕ L2(T

d) with 2 × 2-matrix kernels
K±(k, k′) =

t(2π)−d

ω(k) − ω(k′) ± i0
(σ1 + tg̃(ω(k′) ∓ i0)σ0)

−1. (2.39)The S-matrix aquires the form S = 1+T with uTu∗ having the generalizedkernel
t(k, k′) =

iδ(ω(k) − ω(k′))

(2π)d−1
(σ1 + tg̃(ω(k′) + i0)σ0)

−1. (2.40)



Quantum Statistial Models 293. Quasi-free Fermion models3.1. The algebra of observables, the C∗-dynamis and thereferene stateWe onsider the physial situation desribed in the Introdution, with rreservoirs of free Fermi gases at equilibrium, oupled via a tunneling juntionwith a sample onsisting of free Fermi partiles with a �nite-dimensional one-partile state spae. The dynamis is supposed quasi-free, spei�ed by theone-partile Hamiltonian h = h0 + v, ful�lling the assumptions of Se. 2.This subsetion is devoted to a preise de�nition of the quantum systemunder onsideration. We use the notation of subsetions 2.1., 2.2..We start with de�ning the C∗-dynamial system:Let F(H(1)) be the antisymmetri Fok spae over the one-partile spaeof Assumption 2.1, and denote a∗(f)/a(f) the usual reation/annihilationoperators of one partile in the state f ∈ H(1); a∗(f) is linear and a(f)is antilinear with respet with f ∈ H(1). The following antiommutationrelations hold: for f, g ∈ H(1),
{a(f), a(g)} = {a∗(f), a∗(g)} = 0, {a(f), a∗(g)} = (f, g). (3.1)It follows that ‖a(f)‖ = ‖a∗(f)‖ = ‖f‖. The norm-losed operator algebragenerated by them, denoted CAR(H(1)) (alled the the algebra of anonialantiommutation relations), is taken as the algebra of loal observables of thesystem. As an instane, we shall onsider elements in CAR(H(1)) whih arethe seond quantization of one-partile operators: for a trae-lass operator

a ating in H(1) with anonial form a =
∑
sk(fk, ·)gk (where sk are thesingular values of a), dΓ(a) =

∑
ska

∗(gk)a(fk) ∈ CAR(H(1)).The one-partile Hamiltonians h0 and h de�ne two (strongly ontinuous)groups of automorphisms of CAR(H(1)) (orresponding to the unoupledand oupled dynamis, respetively) by
αt(a♯(f)) = a♯(eih0tf), τ t(a♯(f)) = a♯(eihtf). (3.2)Also, let φθ denote the gauge automorphism group of CAR(H(1)), i.e.

φθ(a♯(f)) = a♯(eiθf). (3.3)Corresponding to the deomposition H(1) = H(1)
S ⊕ (⊕r

i=1H
(1)
i ), one an de-�ne gauge automorphisms φi (i = 1, ..., r), φS of the kinematial algebras

CAR(H(1)
i ) (i = 1, ..., r), CAR(H(1)

S ) of the reservoirs and of the sample.



30 N. Angelesu et al.The states of the system are positive linear funtionals ω : CAR(H(1)) → Cof norm ‖ω‖ = ω(1) = 1. A state ω is gauge invariant (i.e. ω ◦ φθ = ω) if,and only if, ω(
n∏

i=1
a∗(gi)

m∏
i=1

a(fi)) = 0, ∀n 6= m. For any state ω, the formula
ω(a∗(g)a(f)) = (g, ρωf) (3.4)de�nes a self-adjoint operator 0 ≤ ρω ≤ 1 onH(1), alled its density operator.Given ρ self-adjoint with 0 ≤ ρ ≤ 1, there exists a unique quasi-free, gauge-invariant state ωρ with density operator ρ. The higher order expetationsare expressed in this state ωρ by

ωρ(a
∗(gm)...a∗(g1)a(f1)...a(fn)) = δm,n det {(fi, ρgj)}. (3.5)If the initial state ω0 of our system is quasi-free and αt-invariant, what hap-pens if its density operator ρ0 ommutes with h0, its evolution ωt under theperturbed dynamis τ t is likewise a quasi-free state with density operator:

ρt = [e−ith0
eith]∗ρ0e−ith0

eith; (3.6)indeed, using the α0-invariane of ω0,
ωt(a∗(g)a(f)) := ω0(τ t(a∗(g)a(f))) = ω0(α−t ◦ τ t(a∗(g)a(f))) =

= ω0(a∗(e−ith0
eithg)a(e−ith0

eithf)) = (e−ith0
eithg, ρ0e−ith0

eithf).The initial state is taken as a produt state ω0 = ωS ⊗(⊗r
i=1ωi), where ωi arethe equilibrium states of two lattie free Fermi gases with one-partile statespaes H(1)

i and one-partile Hamiltonians hi and ωS is an invariant state ofthe isolated sample.It is well-known [4℄ that, at given values of the temperature β−1 ≥ 0 andhemial potential µ ∈ R, a free Fermi gas has a unique equilibrium state: itis the gauge-invariant quasi-free state with density operator fβ,µ(h), where
h is the one-partile Hamiltonian, and fβ,µ is the Fermi-Dira funtion:

fβ,µ(x) =
1

1 + eβ(x−µ)
(3.7)This de�nes in partiular the initial states of the reservoirs ωi.3.2. Convergene to the NESS and urrentsWe present here the main results of [2℄ within the framework de�ned byAssumptions 2.1�2.3. As with our assumptions no regularization is neessary,



Quantum Statistial Models 31the proof an be made onsiderably more transparent, so we shall sketh theargument for reader's onveniene.As all states involved are quasi-free and gauge-invariant, it is su�ient, inview of Eq. (3.5), to establish the onvergene of the state on elements ofthe form a(g)a∗(f). This means to alulate the limit density operator as aweak limit of the density operators ρt.As shown in Se. 2, H(1) = Hac(h) ⊕Hp(h), with Hp(h) �nite-dimensional.Let Pac, Pp denote the orresponding orthogonal projetions. We alulatethe density operator:
ρ+ = (w) lim

T→+∞
(1/T )

∫ T

0
ρtdt. (3.8)For f ∈ Hac(h), we have, in view of Eq. (3.6),

lim
t→+∞

ρtf = W−ρ
0W ∗

−fbeause lim
t→+∞

e−ith0eithf = W ∗
−f exists. On the other hand, if f ∈ Hp(h),it is a �nite ombination of eigenvetors, so, we an suppose that f is aneigenvetor of h with eigenvalue e,

(w) lim
t→+∞

Pace−ithρ0eithf = (w) lim
t→+∞

Pace−it(h−e)(ρ0f) = 0by the Riemann-Lebesgue lemma, while, for any eigenvetor g of h witheigenvalue e′,
lim

T→+∞
(1/T )

∫ T

0
(g, ρtf)dt = lim

T→+∞
(1/T )

∫ T

0
eit(e−e′)(g, ρ0f)dt = δe,e′(g, ρ

0f).In summary,Proposition 3.1 The following limit exists for A ∈ CAR(H(1))

lim
T→+∞

(1/T )

∫ T

0
ωt(A)dt = ω+(A) (3.9)and is the quasi-free gauge invariant state of density operator

ρ+ = W−ρ
0W ∗

− +
∑

e∈σp(h)

Peρ
0Pe, (3.10)where Pe is the projetion onto the eigenspae of h orresponding to the eigen-value e. Thereby, the restrition of ω+ to CAR(Hac(h)) is the quasi-free stateof density W−ρ

0W ∗
−, and we have
lim

t→+∞
ωt(A) = ω+(A), A ∈ CAR(Hac(h)). (3.11)



32 N. Angelesu et al.Clearly, the state ω+ is τ t-invariant, in partiular, for any trae-lass operator
a on H(1), d

dtω+(τ t(dΓ(a))) = 0, implying that tr(ρ+[h, a]) = 0. However,if a is not a trae-lass operator (but ρ+[h, a] is trae-lass), it may happenthat tr(ρ+[h, a]) 6= 0. This is the ase for the extensive onserved harges ofthe isolated reservoirs, and it expresses the existene of the steady urrentsin the NESS ω+ onstruted above.Eah of the reservoirs Ri has two onserved quantities, the energy and thepartile number, whih orrespond formally to dΓ(h0Pi) and dΓ(Pi), where Piis the projetion ofH(1) ontoH(1)
i . This is expressed by the invariane of theirequilibrium states ωi under the dynamial and gauge automorphism groups,

αt
i and φθ

i , of the isolated reservoirs. The energy and partile urrents fromthe reservoirs Ri is alulated as the ω+-expetation of the orresponding�uxes Ii,en = dΓ(−i[h, h0Pi]) = dΓ(−i[v, h0Pi]) and Ii,part = dΓ(−i[h, Pi]) =
dΓ(−i[v, Pi]), respetively. Remark that, beause v is a �nite range operator,the ommutators are trae-lass in H(1), so the proposition 3.1 applies. As
Peh = hPe = ePe, the sum over the point spetrum in Eq. (3.10) does notontribute to any of the two urrents J = ω+(I). Hene,Proposition 3.2 The energy and partile urrents from the reservoirs Riare alulated aording to the formulas

Ji,en = −tr(ρ+i[v, h0Pi]) = −tr(W−ρ
0W ∗

−i[v, h0Pi]),

Ji,part = −tr(ρ+i[v, Pi]) = −tr(W−ρ
0W ∗

−i[v, Pi]).
(3.12)We shall next bring formulas (3.12) to a form, known as Landauer-Büttikerformulas, whih make lear that the urrents depend in fat only on the on-shell T -matrix Tx. We start with a statement [2℄ relative to a larger lass ofonserved reservoir observables.Proposition 3.3 Let a be a bounded self-adjoint operator in H(1)

ac (h0) om-muting with h0, so that, in the representation of Remark 2.1, UaU∗ =∫ ⊕
a(x)dx, with a(x) bounded self-adjoint operators in Kx. We denote â =

JaJ∗ its ounterpart in H(1). Let
J(a) := ω+(dΓ(−i[h, â])) = −trHac(h)(W−ρ

0W ∗
−i[h, â]) (3.13)be the "urrent" assoiated to a. Then,

J(a) = −
∫

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]}dx

2π
. (3.14)



Quantum Statistial Models 33Proof. The equality in Eq. (3.13), meaning that the sum over the pointspetrum of h in Eq. (3.10) vanishes, is shown in the same way as for Eq.(3.12).As, by Assumption 2.2, v = Jτ∗I∗ + IτJ∗, the ommutator in the r.h.s. of(3.13) equals [h, â] = [v, â] = IτaJ∗ − Jaτ∗I∗, whih has �nite-range. Usingthe permutation invariane of the trae,
trHac(h)(W−ρ

0W ∗
−[v, â]) = trK(Uρ0W ∗

−[v, â]W−U
∗).We show that the operator under trae is an integral operator on K, i.e. ofthe form Kψ(x) =

∫
dyk(x, y)ψ(y), where k(x, y) : Ky → Kx are ontinuous,trae-lass-operator valued funtions. Therefore, the trae an be alulatedas ∫ dxtrKxk(x, x).To this aim, we fatorize the two terms of the ommutator as

UW ∗
−[v, â]W−U

∗ = (UW ∗
−IτU

∗)(UaU∗)(UJ∗W−U
∗)

−(UW ∗
−JU

∗)(UaU∗)(Uτ∗I∗W−U
∗).Remembering the representation of τ, τ∗ in Remark 2.1 and the expressions(2.14), (2.15) of W−,W

∗
−, the generalized kernels of the operators in braketsare

(UW ∗
−JU

∗)(x, y) = δ(x− y) + (y − x+ i0)−1τ∗xReff(x− i0)τy;

(UJ∗W−U
∗)(x, y) = δ(x − y) + (x− y − i0)−1τ∗xReff(y + i0)τy ;

(UW ∗
−IτU

∗)(x, y) = −τ∗xReff(x− i0)τy;

(Uτ∗I∗W−U
∗)(x, y) = −τ∗xReff(y + i0)τy .The kernel k(x, y) is obtained as the omposition of the kernels of the fators.The ontinuity with respet with x, y is a onsequene of Assumption 2.2.The diagonal k(x, x) equals

−τ∗xReff(x− i0)τxa(x) + a(x)τ∗xReff(x− i0)τx−

−
∫

dx′τ∗xReff(x− i0)τ ′xa(x
′)τ∗x′Reff(x+ i0)τx×

×[(x′ − x− i0)−1 − (x′ − x+ i0)−1]

= 1
2πi [T

∗
xa(x) + a(x)Tx + T ∗

xa(x)Tx],where we used the Sokhotski formula (x − i0)−1 = P
(

1
x

)
+ iπδ(x) and thede�nition (2.13) of the T -matrix. Insertion of this alulation in Eq. (3.13)gives Eq. (3.14). �



34 N. Angelesu et al.We take now into aount the deomposition H(1)
ac (h0) =

⊕
i H

(1)
i . For anenergy x ∈ [emin, emax], we have Kx =

⊕
i Kx,i; thereby, if x 6∈ Ii, Kx,i = {0}.Aordingly, the operators under trKx in Eq. (3.14) have matrix representa-tions. The density ρ0(x) is the diagonal matrix with ρ0(x)i,i = fβi,µi

(x) · 1.Also, (Tx)i,j = 2πi(τ∗i )xReff(x + i0)(τj)x, whih vanishes for x 6∈ Ii ∩ Ij.What onerns a(x), as we are interested in observables assoiated withthe isolated reservoirs, we suppose that its matrix has blok-diagonal form:
a(x)i,j = δi,jai(x). In this ase,

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]} =
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)(Tx)i,i + (T ∗
x )i,iai(x) +

r∑
j=1

(T ∗
x )i,jaj(x)(Tx)j,i}.(3.15)This an be further simpli�ed using the unitarity of the S-matrix:

(Tx)i,i + (T ∗
x )i,i +

r∑

j=1

(Tx)i,j(T
∗
x )j,i = 0and the permutation invariane of the trae, whene

r∑
i=1

fβi,µi
(x)trKx,i{ai(x)(Tx)i,i + (T ∗

x )i,iai(x)}

= −
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)
r∑

j=1
(Tx)i,j(T

∗
x )j,i

= −
r∑

j=1
fβj ,µj

(x)trKx,i{
r∑

j=1
(T ∗

x )i,jaj(x)(Tx)j,i.Hene,Corollary 3.1 For a self-adjoint operator a in H(1)
ac (h0) suh that a(x)i,j =

δi,jai(x),∀x,
J(a) =

r∑

i,j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]trKx,i{ai(x)(Tx)i,j(T

∗
x )j,i}dx. (3.16)Thereby, (Tx)i,j 6= 0 only for x ∈ Ii ∩ Ij.In partiular, de�ning the transmission probability between reservoirs Ri and

Rj as ti,j(x) := trKx,i{(Tx)i,j(T
∗
x )j,i},

Ji,en =
r∑

j=1

∫
[fβi,µi

(x) − fβj ,µj
(x)]xti,j(x),

Ji,part =
r∑

j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]ti,j(x).

(3.17)



Quantum Statistial Models 353.3. Consequenes for the model of Se. 2.3We speialize here to the ase of two reservoirs (r = 2) of free lattie Fermigases desribed in Se. 2.3. and draw a few onlusions about its behavioras a funtion of the dimension of the latties di and of the wire length N .
• The urrents, Eq. (3.17), are a sum of two urrents, eah obtainedwhen one of the two reservoirs is put in turn in the Fok state (or-responding to the density matrix f+∞,−∞(hi) = 0. One may onsidertherefore only the partile urrent

J1,part(β, µ) =

∫
fβ,µ(x)t1,2(x). (3.18)

• The transmission probability
t1,2(x) =

∫

Td(x)
dµx(k)

∫

Td(x)
dµx(k)|T (k, k′)1,2|2has a resonant struture. In view of Eq. (2.33), one has to study theenergy dependene of the matrix element Reff(x+ i0)1,N . By analytiperturbation theory, as hS has simple eigenvalues εm, the eigenvalues

λm(x), m = 1, ..., N of heff(x + i0) are simple for su�iently smalltunneling onstant t. Let ψ(m)(x) be the orresponding eigenvetors;then ψ̄(m)(x) is the dual basis (i.e. (ψ̄(m)(x), ψ(m′)(x)) = δm,m′ . Hene,
Reff(x+ i0)1,N ∼

N∑

m=1

(λm(x) − x)−1ψ
(m)
1 (x)ψ

(m)
N (x).To lowest order in t, λm(x) ∼ εm − 2

N+1 t
2g(x + i0) sin2 qm, wherewe used Eq. (2.28) and the expliit form (2.23) of the eigenvetors

ψ(m) at t = 0, whih puts into evidene "resonanes" at x = εm −
2

N+1t
2ℜg(x+ i0) sin2 qm of "width" 2

N+1t
2ℑg(x+ i0) sin2 qm.

• The density pro�le
n(r) = ω+(a∗(δr)a(δr)) =

∑
(Peδr, ρ

0Peδr)+(W ∗
−δr, ρ

0W ∗
−δr) (3.19)is a sum over reservoirs of density pro�les orresponding to the otherreservoir put in its Fok state (due to the blok struture of ρ0 =∑L

i ρi). We alulate the seond term of (3.19) with ρ2 = 0. We need



36 N. Angelesu et al.therefore P1W
∗
−δr, where P1 is the projetion onto H(1)

1 . In view ofEq. (2.15), we have
(UP1W

∗
−δr)(x) = −tψ1(k)α1Reff(x− i0)1,r,if r ∈ {1, ..., N},

(UP1W
∗
−δr)(x) = ψ1(k)r + t2ψ1(k)α1Reff(x− i0)1,1R1(x+ i0)α1,rif r ∈ L1, and

(UP1W
∗
−δr)(x) = t2ψ1(k)α1Reff(x− i0)1,NR2(x+ i0)α2,r,if r ∈ L2.In partiular, the density pro�le inside R2 (the initially void reservoir),is given by

t4
∫

dkfβ1,µ1(ω1(k))|ψ1(k)α1Reff(ω1(k)− i0)1,N |2|R2(ω1(k) + i0)α2,r|2.It is to be remarked that, if d2 = 1 (whih is the model of in�nite leadsused in [6℄), the density of transmitted partiles has a nonzero limitas r → ∞; this seems improper for a reservoir, whih is expeted tokeep unhanged its "onserved harges" even after oupling it to otherreservoirs. For d2 > 1, the density deays like |r|−1 irrespetive of d2[14℄.4. Quasi-free Boson models4.1. The algebra of observables and the referene stateThe kinematial C∗-algebra of the model is the anonial ommutation rela-tion algebra CCR(D) over a suitable subspae D ⊂ H(1), whih is left invari-ant by the one-partile evolution groups: exp (ith0)D = D, exp (ith)D = D.
CCR(D) is generated by the Weyl operators {W(f); f ∈ D}, satisfying

W(f)W(g) = e− i
2
ℑ(f,g)W(f + g). (4.1)The de�ning equation (4.1) implies that W(0) = 1 and W(f) are unitaries(W(f)∗W(f) = 1). Aording to a theorem by Slawny, suh a C∗-algebra



Quantum Statistial Models 37is unique up to an isomorphism; in partiular, it an be shown (using thewell-known Fok representation) that ‖W(f) − 1‖ ≥
√

2 for f 6= 0, implyingthat the appliation f 7→ W(f) annot be norm-ontinuous [13℄.To any state ω on CCR(D) a funtion E : D → C is assoiated by
E(f) = ω(W(f)), (4.2)named its generating funtional. E satis�es: (i) normalization: E(0) = 1,(ii) unitarity: E(f) = E(−f), and (iii) positivity:

n∑

i,j=1

ziE(fi − fj)e− i
2
ℑ(fi,fj)z̄j ≥ 0, ∀n,∀zi ∈ C, fi ∈ D (i = 1, ..., n).Conversely, any E with these properties de�nes a unique state by Eq. (4.2).Therefore, in desribing the initial and evolved states of our model, it will besu�ient to speify the orresponding generating funtionals.A state ω is quasi-free if, and only if, E has the partiular form

E(f) = exp (i
√

2ℜ〈l, f〉 − 1

4
Q(f, f)), (4.3)where l ∈ D′ is a linear form and Q(·, ·) ≥ 1 a quadrati form on D × D.Quasi-free states ω are regular, i.e. in the assoiated GNS representation πω,for any f ∈ D, the unitary group R ∋ t 7→ πω(W(tf)) is weakly ontinuous.Hene, ∀f ∈ D, there exist self-adjoint operators ϕ(f) � "�eld operators",suh that πω(W(tf)) = exp (itϕ(f)). The �elds ϕ(f) are real-linear funtionsof f . In terms of the �elds ϕ(f) one an de�ne reation and annihilationoperators by a∗(f) = 2−1/2(ϕ(f) − iϕ(if)), a(f) = 2−1/2(ϕ(f) + iϕ(if)).Then, denoting Ωω the yli vetor of π, one has the followingProposition 4.1 In a quasi-free state with generating funtional (4.3), Ωωis in the domain of all powers of a♯(f), f ∈ D, and the following relationshold:

(Ωω, a
∗(f)Ωω) = (Ωω, a(f)Ωω) = 〈l, f〉,

(Ωω, a
∗(g)a(f)Ωω) − (Ωω, a

∗(g)Ωω)(Ωω, a(f)Ωω) = Q(f, g);

(4.4)all other trunated expetations vanish.The time evolutions αt, τ t, for the unoupled, respetively, oupled reservoirsand sample are the groups of Bogoliubov automorphisms on CCR(D) de�ned



38 N. Angelesu et al.by their ation on W(f):
αt(W(f)) = W(eih0tf),

τ t(W(f)) = W(eihtf).

(4.5)In view of the anonial ommutation relations (4.1), Eq. (4.5) is su�ient touniquely de�ne the ation of τ t on all elements of CCR(D). By the remarkabove, the two automorphism groups are not strongly ontinuous. However,in a quasi-free representation they are implemented by weakly ontinuousunitary groups. Moreover, the evolution of a quasi-free initial state undera dynamis of the form (4.5) is likewise quasi-free. This means that theevolved state at time t > 0 of Boson systems, whih, at t = 0, were in aquasi-free state, is uniquely determined by the evolved one-point and two-point funtions, i.e. by 〈lt, f〉 = 〈l, eihtf〉 and Qt(f, g) = Q(eihtf, eihtg). Inthis respet, their study parallels the study of Fermi systems in the previ-ous setion and the ounterpart of proposition 3.1 holds true. There appear,however, subtleties related to the hoie of the initial (referene) state; in par-tiular, unlike in the Fermi ase, the domain D (i.e. the kinematial algebra
CCR(D)) depends on the referene state. In order to keep the exposition ata reasonable level of omplexity, we shall explain them only for the model inSe. 2.4., i.e. diret tunneling between reservoirs on Zd with no intermediatesample. The onsideration of the general frame (given by assumptions 2.1�2.3, supplemented with speial requirements about the existene of a densityof energy levels in the in�nite volume limit) is left for another publiation.The equilibrium states of a free Bose gas are quasi-free; they have been stud-ied in detail in the literature [4℄. The peuliarity of the free Bose gas is that,under ertain onditions, it shows a phase transition at low temperatureand high density. It happens that, in the multi-phase region, the anoni-al and grand-anonial are inequivalent. As we are interested in partile�ows between reservoirs, it is natural to use the anonial desription for thereservoirs.We remind below the expressions of the generating funtionals for the anon-ial equilibrium states for our model of reservoir, obtained by an easy adap-tation of the derivation by Cannon [4℄, [11℄ for the ontinuum Bose gas.We start by desribing one reservoir R, onsisting of a free lattie Bose gasliving on Zd.Let β, ρ be �xed positive numbers and de�ne:

ρcr(β) = (2π)−d

∫

Td
1

1eβω(k) − 1
ddk ≤ +∞, (4.6)



Quantum Statistial Models 39where ω(k) is the dispersion law Eq. (2.20). As ω(k) ≈ 1
2 |k|2 around itsminimum at k = 0, one has that ρcr(β) is �nite for d ≥ 3 and is in�nite for

d = 1, 2.For ρ < ρcr(β), the fugaity z is de�ned to be the unique solution z(β, ρ) ofthe equation
ρ = (2π)−d

∫

Td

zeβω(k) − z
ddk,while, for ρ ≥ ρcr(β), put z(β, ρ) = 1. The momentum distribution for k 6= 0at the given β, ρ is proportional to

nβ,ρ(k) =
z(β, ρ)eβω(k) − z(β, ρ)

, (4.7)while the ondensate density is given by
ρ0 = max{0, ρ − ρcr(β)}. (4.8)Then, the generating funtional of the anonial equilibrium state at β, ρ isgiven by the formula

Eβ,ρ(f) = exp

{
−‖f‖2

4
− 1

2
(uf, nβ,ρ uf)

}
J0(
√

2(2π)dρ0 |(uf)(0)|), (4.9)where u is the Fourier transform and J0 is the Bessel funtion.For ρ ≤ ρcr(β), the anonial state de�ned by Eq. (4.9) is extremal, however,if ρcr(β) <∞ and ρ > ρcr(β), it has a nontrivial deomposition into extremalstates indexed by a phase eiθ:
Eβ,ρ(f) = (2π)−1

∫ 2π

0
Eθ

β,ρ(f)dθ, (4.10)where
Eθ

β,ρ(f) = exp

{
−‖f‖2

4
− (uf, nβ,ρ uf)

2
− i

√
2ρ0

(2π)d/2
ℜ(e−iθ(uf)(0))

}
. (4.11)Thereby, the test funtion spae D should be hosen suh that the funtion-als (4.11) are well de�ned for f ∈ D, e.g. taking D = l1(Zd) would su�e.Indeed, with this hoie uf is ontinuous on Td, ensuring both the integra-bility of nβ,ρ|uf |2 and the existene of (uf)(0). We shall impose, howevera stronger ondition ensuring that uf is Hölder-ontinuous, and take D as



40 N. Angelesu et al.the spae l1(Zd; |x|ǫ) for some ǫ > 0, onsisting of funtions f : Zd → C forwhih ‖f‖D :=
∑

x∈Zd

|x|ǫ|fx| <∞.Using the matrix notation assoiated with the diret sum H(1) = H(1)
1 ⊕H(1)

2 ,we take f = f1 ⊕ f2 ∈ D1 ⊕ D2 (where Di are opies of D) and the initialstate ω0 as a produt of anonial equilibrium states of Ri at temperatures
βi and densities ρi (i = 1, 2), respetively:

ω0(W(f)) = E0(f) = Eβ1,ρ1(f1)Eβ2,ρ2(f2), (4.12)where Eβi,ρi
(fi) are arbitrary mixtures (with probability measures dµ1,2(θ1,2))of the extremal state generating funtionals (4.11). Denoting ρ0,i the on-densate densities in Ri and

ñ0 =

(
nβ1,ρ1 0

0 nβ2,ρ2

)
, ρ̃0(θ1, θ2) =

(√
2ρ0,1e−iθ1

√
2ρ0,2e−iθ2

)
, (4.13)we have

E0(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
0 (f), (4.14)where

Eθ1,θ2
0 (f) = exp

{
−‖f‖2

4
− (uf, ñ0 uf)

2
− i

(2π)d/2
ℜ(ρ̃0(θ1, θ2)(uf)(0))

}
.(4.15)In partiular, the anonial states (4.9) are obtained for dµi(θ) = (2π)−1dθ.4.2. The approah to, and properties of, the NESSWe are interested in the time evolution of an initial state ω0 as de�ned byEq. (4.14) (whih is αt-invariant) under the oupled dynamis τ t, Eq. (4.5).We have

ωt(W(f)) = ω0(W(exp (ith)f) = ω0(W(exp (−ith0) exp (ith)f). (4.16)Using the analysis done in Se. 2.4., we obtain the following onvergeneresult, whih de�nes the stationary state.Proposition 4.2 Under the ondition above, the following limit exists andde�nes a quasi-free invariant state ωstat: ∀f ∈ D,
lim

T→∞

1

T

T∫

0

ωt(W(f))dt = Estat(f). (4.17)



Quantum Statistial Models 41Corresponding to the deomposition (4.14) of the initial state,
Estat(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
stat (f), (4.18)where

Eθ1,θ2
stat (f) = Eθ1,θ2

0 (W ∗
−Pacf)Eθ1,θ2

(p) (Ppf). (4.19)Thereby, the limit in mean is neessary only for the ontribution of thepoint spetrum, i.e. for f = Pacf , the limit lim
t→∞

ωt(W(f)) exists and equals
∫

dµ1(θ1)dµ2(θ2)E
θ1,θ2
0 (W ∗

−Pacf).Proof. We isolate, in the quadrati and linear forms appearing at the expo-nent in Eθ1,θ2
0 (eihtf), the terms whih do not depend on Pacf , i.e. Tp(t) :=

−1
4‖Ppf‖2 − 1

2(ueihtPpf, ñ0 ue
ihtPpf) − i(2π)−3/2ℜ(ρ̃0(θ1, θ2)(ue

ihtPpf)(0)).The t-dependene of Tp(t) omes from exponentials of the form eie0t, ei(2d−e0)tand ei2(d−e0)t, where e0, 2d − e0 are the two eigenvalues of h. Therefore,
eTp(t) is an almost-periodi funtion, what ensures that lim

T→∞

1
T

T∫
0

eTp(t)dt =:

Eθ1,θ2

(p) (Ppf) exists. Remark that (Ppf)r deays exponentially as r → ∞,therefore, if f ∈ D, Pacf ∈ D as well. Hene, ∫
Td(x)(uPacf)(k)dµx(k) isHölder ontinuous of x, therefore, by the Privalov theorem [7℄,

(uW ∗
−Pacf)(k) = (uPacf)(k)−

− t
(2π)d (σ1 + tg̃(ω(k) − i0)σ0)

−1
∫

Td
(uPacf)(k′)dk′

ω(k′)−ω(k)+i0

(4.20)is likewise Hölder ontinuous of ω(k) and, as suh, belongs to the domain of
Eθ1,θ2

0 . By an analysis like that in the proof of Proposition 3.1, the remainingterms have (usual) limits as t→ ∞, whih proves the assertion. �In view of the expliit forms (4.15) of the funtionals Eθ1,θ2
0 , Proposition 4.2provides a detailed desription of the stationary state and allows the alu-lation of various quantities of physial interest.We report below the analyti results for the energy and partile urrents.We point out that, like in the Fermi ase, the point spetrum of h gives noontribution to the urrents and the ontribution of the absolutely ontinu-ous spetrum may be expressed in terms of the S-matrix alone (Landauer-Büttiker-like formula). We shall not repeat here the proof of the latter,but perform the diret alulation based on Eq. (4.19). Thereby, if d ≥ 3,



42 N. Angelesu et al.we suppose, for simpliity, that we are in the weak oupling regime, where
σp(h) = ∅.In alulating the urrents between pure phases of the reservoirs, we take ad-vantage that the initial state, being a produt of extremal equilibrium states,an be approximated by �nite-volume states (possibly with weak symmetry-breaking perturbations), what allows to substantiate expressions (of the ur-rents from a reservoir in an extremal state) similar to those in the Fermi ase[1℄. As a preparation, we alulate, using Eq. (4.20), W ∗

−f for a few loalfuntions f appearing in these expressions:
• For (δ10)r = δ0,r

(
1
0

) and δ20 de�ned analogously for the seond reservoir,
(uPjW

∗
−δ

i
0)(k) =

1

(2π)d/2

{
δi,j − tg̃(ω(k) − i0)[(σ1 + tg̃(ω(k) − i0))−1]j,i

}
,where Pj projets onto the reservoir j and we used the de�nition (2.37) of g̃;

• For (h1
0)r = (dδx,0 − 1

2δ|x|,1)

(
1
0

),
(uPjW

∗
−h

1
0)(k) = 1

(2π)d/2 {ω(k)δj,1−
−t[(σ1 + tg̃(ω(k) − i0))−1]j,1[1 + ω(k)g̃(ω(k) − i0)]

}
.Proposition 4.3 In the diret tunneling model of Setion 2.4, the urrents�owing from R1 in the stationary state ωθ1,θ2

stat arising from extremal initialstates are given by:1. The partile urrent:
J1

part(θ1, θ2) = 2tℑωθ1,θ2
0 (a∗0(W

∗
−(δ10))a0(W

∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2|2d
3k

+
2t

(2π)d

√
ρ01ρ02

1 − g̃(0)2
sin(θ2 − θ1)2. The energy urrent:

J1
en(θ1, θ2) = 2tℑωθ1,θ2

0 (a∗0(W
∗
−(h1

0))a0(W
∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ω(k)ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2
|2d3k.Several remarks are in order:



Quantum Statistial Models 43If both reservoirs are ondensed, i.e. ρ0,1, and ρ0,2 are both di�erent fromzero, the partile urrent shows a peuliar dependene on the phase di�erene.This is not true for the energy urrent, where the seond term, oming fromthe expetations of the reation/annihilation operators does not ontribute(as expeted, as the k = 0 states arry no energy). Also, if ρ0,1ρ0,2 6= 0 and
β1 = β2, then n1(k) = n2(k), in whih ase the integral terms in the urrents,representing the ontribution of the exited states, vanish, therefore partilesare exhanged only between the k = 0 states, and there is no energy �ow.In order to obtain the urrents in the anonial state, we have still to integratethe expressions of the urrents over the phases θi of the two ondensates.This has the e�et that the partile urrents between the k = 0 states areaveraged out, and only the �rst term in the expression of the partile urrentsurvives. In partiular, there is no urrent if the temperatures are equal andeither ρ1 = ρ2 ≤ ρcr(β), or both densities are overritial (irrespetive oftheir values).As a matter of fat, Proposition 4.3 implies that the presene of the on-densates in the reservoirs has little in�uene on the urrents, as long as oneonsiders non-symmetry-breaking states. We onjeture that this holds truefor more general juntions.Referenes[1℄ Angelesu, N., Bundaru, M., On the transport between ondensedphases, J. Phys. A: Math. Theor. 40 (2007), pp. 5565�5573.[2℄ Ashbaher, W., Jak²i¢, V., Pautrat, Y. and Pillet, C.-A.,Transport properties of quasi-free Fermions, J. Math. Phys., 48 (2007),032101.[3℄ Ashbaher, W., Jak²i¢, V., Pautrat, Y. and Pillet, C.-A., Topisin Non-Equilibrium Quantum Statistial Mehanis, Leture Notes inMathematis, Vol. 1882, pp. 1�66 (Springer, New York, 2006).[4℄ Bratteli, O. and Robinson, D. W., Operator Algebras and QuantumStatistial Mehanis II (Springer, New York, 1981).[5℄ Cannon, J. T., In�nite volume limits of the anonial free Bose gas onthe Weyl algebra, Comm. Math. Phys. 29 (1973), pp. 89�104.[6℄ Cornean, H. D., Jensen, A. and Moldoveanu, V., A rigorous proofof the Landauer-Büttiker formula, J. Math. Phys. 46 (2005), 042106.
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An Introdution to Monotoniity Methods 471. IntrodutionMany nonlinear kineti equations for omplex systems appear as generaliza-tion of the lassial Boltzmann equation (see, e.g. [4℄). The last years havebeen marked by an inreased interest in the mathematial properties of suhmodels. This an be explained by various appliations not only in physis,astrophysis and hemistry (e.g. studies of simple and omplex/reating �u-ids, granular media, oagulation-fragmentation, formation of planetary rings,galaxy ollision) but also in modeling evolution proesses in immunology,tra� �ow, ommuniation networks, et.In many situations, the above equations are phenomenologial or mirosopimodels that desribe the evolution of various populations (marosopi sys-tems) of many well individualized, objets (e.g. rare�ed gas partiles, ellsnetworks signals et.) interating among themselves. The interations are(loalized) mirosopi proesses: a) any interation has a very short du-ration, with respet to the time-sale of the marosopi evolution; b) thenumber of partners of any interation is very small, with respet to the totalnumber of the omponents of the population. Depending on the model, an in-teration may hange the state, nature and/or the number of the partiipantsin interation. This may result in modi�ations of the values of the physialquantities haraterizing the states of the interating objets. However, suhmodi�ations must be onsistent with ertain balane laws (e.g. onservation/dissipation laws ) imposed by the peuliarities of the mirosopi proesses.The problem of the existene and uniqueness of solutions of the above modelsis not only of an aademi interest. Indeed, good riteria for the existene ofgeneral solutions and a detailed study of the properties of the solutions anbe partiularly useful in obtaining e�etive onvergent numerial shemes forthe models.The above models present some mathematial properties, similar to those ofthe lassial Boltzmann equation, in partiular similar monotoniity proper-ties (with respet to the order). This made possible to extend nontriviallymonotoniity methods, initially introdued for the lassial Boltzmann equa-tion, [2℄ (see also [28℄) to study these models [18℄, [27℄, [9℄, [7℄. Reentlythe ideas of [2℄ and [28℄) have been reonsidered nontrivially within a moregeneral, abstrat framework, [11℄, [12℄, [13℄. The present work is a surveyof the reent progress in the domain, and inludes �ve setions and an Ap-pendix. This Introdution is the �rst Setion. The next Setion, is a briefpresentation, at formal level, of some relevant examples of Boltzmann modelsfor omplex systems. In Setion 3, we introdue a lass of abstrat evolution



48 Ceil Pompiliu Grünfeldproblems, as a generalization of the examples onsidered in Setion 2. Thenwe develop the general existene theory based on monotoniity arguments.Setion 4 is devoted to appliations. Finally, Setion 5 ontains onlusionsand open problems.2. Boltzmann-like kineti modelsIn this setion we present several nonlinear models with nonlinear singulari-ties, that exhibit similar isotoniity properties. In very general terms, theseequations are essentially desribed by nonlinear evolution equations of theform
df

dt
= Af +Q(t, f), t > 0, (2.1)formulated in the positive one of some suitable ordered funtion spae X,usually an ordered Banah spae. The unknown f = f(t) haraterizes thestate of the marosopi system at time t. The two terms of the r.h.s. ofEq.(2.1), Af (possibly A = 0) and Q(t, f) desribe the free motion and theontribution of the interation proesses, respetively. From a mathematialpoint of view, A is the generator of a evolution linear group in X, while

Q(t, ·) is a nonlinear integral operator.In many situations, we an write Q(t, ·) = Q+(t, ·)−Q−(t, ·), where Q+(t, ·)and Q−(t, ·) are positive and isotone with respet to the order of X. More-over, Q+(t, ·) and Q−(t, ·) satisfy ertain relations -marosopi balane laws-determined by the mirosopi balane properties.In this work we are interested in solving the initial value problem (i.v.p.) forEq.(2.1), whih an take various formulations, depending on the model.2.1. Smoluhowski's oagulation equationSmoluhowski's oagulation equation, [21, 25℄ (see also, e.g., [1℄, for a reentreview), desribes the irreversible evolution of partiles that may oaleseinto larger lusters. The ontinuous version of the Smoluhowski's equationreads
∂

∂t
f = Qc(f) = Q+

c (f) −Q−
c (f) (2.2)



An Introdution to Monotoniity Methods 49for the unknown f(t, y) ≥ 0, the density of lusters of size y ∈ R+ := [0,∞)at time t ≥ 0. Here
Q+

c (g)(y) =
1

2

∫ y

0
q(y − y∗, y∗)g(y − y∗)g(y∗)dy∗, (2.3)

Q−
c (g)(y) = g(y)

∫ ∞

0
q(y, y∗)g(y∗)dy∗, (2.4)with the (oagulation) kernel q : R+ × R+ 7→ R+ a symmetri, measurablefuntion.We assume that there exist the onstants q0, q1 ≥ 0 and 0 ≤ α ≤ β, suhthat

q(y, y∗) ≤ q0 + q1(y
αyβ

∗ + yβyα
∗ ) (y, y∗ ≥ 0), (2.5)where

α+ β ≤ 1. (2.6)Condition (2.5) inludes the ase when either q0 = 0 or q1 = 0. Withoutloss of generality, we an assume that q1 > 0 (indeed the situation when qis bounded by a onstant an be onsidered as a partiularization of (2.5) tothe ase where q1 > 0 and α = β = 0).The following property of the Smoluhowski's model is essential for our anal-ysis. Formally, if g, ψ : R+ 7→ R are measurable, then
∫ ∞

0
ψ(y)

[
Q+

c (g)(y) −Q−
c (g)(y)

]
dy =

=
1

2

∫ ∞

0

∫ ∞

0
ψ̃(y, y∗)q(y, y∗)g(y)g(y∗)dydy∗, (2.7)(provided that the integrals exist), where

ψ̃(y, y∗) := ψ(y + y∗) − ψ(y) − ψ(y∗). (2.8)Property (2.7) follows from the hange of variables (y, y∗) → (y − y∗, y∗) inthe �rst term of the l.h.s. of (2.7), and then applying Fubini's theorem.In partiular, if ψ(y) = y in (2.7), then
∫ ∞

0
Qc(g)(y)ydy = 0. (2.9)This gives formally the mass onservation for Eq. (2.2).



50 Ceil Pompiliu GrünfeldSimilar onsiderations as before an be made for the disrete version of theSmoluhowski equation
ċj =

1

2

j−1∑

k=1

Qj−k,k(c(t)) −
∞∑

k=1

Qj,k(c(t)), cj(0) = cj,0 ≥ 0 (j = 1, 2, ...),(2.10)where Qj,k(c) := q(k, j)ckcj , is de�ned by the same symmetri oagulationkernel introdued before, subjet to (2.5), (2.6), and the omponent cj(t) ≥ 0of c(t) := (cj(t)) is interpreted as the onentration of lusters of size j attime t ≥ 0.2.2. Povzner-like model with dissipative ollisionsThe model desribes a rare�ed mono-omponent �uid of partiles of unitmass, evolving in the free spae with dissipative (onservative) binary olli-sions, i.e., ollisions resulting in the loss (onservation) of the kineti energyof the enounters.Aording to the model, [7℄, the post-ollision veloities v′, w′ are related tothe pre-ollision veloities v and w by
v

′
= v− (1− β(n))〈v − w,n〉n, w

′
= w + (1− β(n))〈v−w,n〉n, (2.11)where 〈·, ·〉 is the Eulidean produt in R3 and n ∈ Ω - the unit sphere in R3.Here, β : Ω 7→ [0, 1/2) is a given measurable funtion. The total momentumis onserved in ollisions, v′ + w′ = v + w, but the kineti energy is lost

∣∣v′
∣∣2 +

∣∣w′
∣∣2 = |v|2 + |w|2 − 2β(n)(1 − β(n)) |〈v − w,n〉|2 , (2.12)exepting the ase β = 0, when the ollisions beome elasti.For eah �xed n ∈ Ω, the transformation R3 × R3 ∋ (v, w) 7→ (v′,w′) ∈

R3 × R3 is invertible. The inversion formulae are
v̂ = v −

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n, ŵ = w +

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n.(2.13)Formally the above model reads

∂

∂t
f = −v · ∇xf +Q+

d (f) −Q−
d (f) (2.14)where f = f(t,x,v) is the one-partile distribution funtion, depending ontime t ≥ 0, position x ∈R3, and veloity v ∈R3 of the so-alled test partile,
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Q+

d and Q−
d are the so-alled nonlinear gain and loss operators, respetively,and desribe the in�uene of the ollisions on the evolution of f . They areformally given by

Q+
d (g)(x,v) =

=

∫ R

0
dr

∫

Ω×R3

|〈n,v − w〉|γ

(1 − 2β(n))1+γ P (r,n)g(x, v̂)g(x + rn, ŵ)dndw (2.15)and
Q−

d (g)(x,v) = g(x,v)

∫ R

0
dr

∫

Ω×R3

|〈n,v −w〉|γ P (r,n)g(x + rn,w)dndw,(2.16)respetively, where P : R+ × Ω 7→ R+ is a given measurable funtion with
P (r,n) = P (r,−n) assumed to satisfy

P (r,n) ≤ c0r
2 (r ≥ 0, n ∈Ω), (2.17)for some onstants c0 > 0, 0 ≤ γ ≤ 1, and R > 0, spei� to the ollisionproesses.The basi property of the model is the formal identity

∫

R3

ψ(v)
[
Q+

d (g) −Q−
d (g)

]
dv =

=

∫

Ω×R3×R3

ψ̃(v,w,v′,w′)
|〈n,w − v〉|γ

2
P (r,n)g(x,v)g(x + rn,w)dndvdw,(2.18)where ψ : R3 7→ R and g : R3 × R3 7→ R are measurable funtions suh that(2.18) is well de�ned, and

ψ̃(v,w,v′,w′) := ψ(v′) + ψ(w′) − ψ(v) − ψ(w), (2.19)with v′ and w′ given by (2.11). We dedue easily (2.18), performing thehange of variable (v,w) → (v̂, ŵ) in the �rst term of the l.h.s (2.18).If β ≡ 0, then (2.14) yields a version of the so-alled generalized Boltzmannequation with binary elasti (onservative) ollisions, analyzed in [3℄.2.3. Povzner-like model with hemial reationsWe reall here a Povzner-like model with hemial reations introdued in [8℄for a reating gas mixture of N speies Ai and mass mi, 1 ≤ i ≤ N , withoutinteration with photon �elds. We assume binary reations
Ai +Aj → Ak +Al, 1 ≤ i, j, k, l ≤ N, (2.20)



52 Ceil Pompiliu Grünfeldwhere ase i = j = k = l orresponds to non-reative (elasti) proesses.Aording to the model of [8℄, for eah speies i, the gas partiles have oneinternal energy state, say Ei ≥ 0, 1 ≤ i ≤ N . It is assumed that the reationsare onsistent with the onservation of mass, momentum and total energy,i.e., mi +mj = mk +ml, and miv +mjw = mkv
′ +mlw

′, as well as
mi |v|2

2
+ Ei +

mj |w|2
2

+ Ej =
mk |v′|2

2
+ Ek +

ml |w′|2
2

+ El, (2.21)where (v,w) are the pre-reation veloities of the partiles (i, j) and (v′,w′)are the post-reation veloities of the partiles (k, l)The onservation relations give
mkml |v′ −w′|2

2(mk +ml)
=
mimj |v − w|2

2(mi +mj)
+Ei+Ej−Ek−El := tkl,ij(v,w) (2.22)and obviously, (2.20) ours, provided that

tkl,ij(v,w) ≥ 0. (2.23)It an be easily seen that (v′,w′) an be represented in terms of the pre-reation veloities (v, w) and of the unit vetor n = (v′ −w′) |v′ − w′|−1as
v′ =

miv +mjw

mi +mj
+

21/2(ml)
1/2

m
1/2
k (mi +mj)1/2

tkl,ij(v,w)1/2n := vkl,ij(v,w,n)(2.24)and
w′ =

miv +mjw

mi +mj
− 21/2(mk)

1/2

m
1/2
l (mi +mj)1/2

tkl,ij(v,w)1/2n := wkl,ij(v,w,n)(2.25)It is onvenient to extend the de�nitions of vkl,ij(v,w,n) and wkl,ij(v,w,n)by setting
vkl,ij(v,w,n) = wkl,ij(v,w,n) =

miv +mjw

mi +mj
(2.26)whenever tkl,ij(v,w) < 0. By virtue of the above formulae one has

vkl,ij(v,w,n) = vkl,ji(w,v,n) = wlk,ij(v,w, −n) (2.27)and
wkl,ij(v,w,n) = wkl,ji(w,v,n) = vlk,ij(v,w, −n). (2.28)



An Introdution to Monotoniity Methods 53Eah speies 1 ≤ i ≤ N is desribed by the one-partile distribution funtion
fi = fi(t,x,v) depending on time t ≥ 0, position x and veloity v.Assuming moleular haos and (instant) point loalized reations, the kinetimodel is derived following the original argument for the lassial Boltzmannequation. The obtained model reads, [8℄,

∂

∂t
fi = −v · ∇xfi +Q+

i (f) −Q−
i (f), 1 ≤ i ≤ N, (2.29)where f = (f1, ..., fN ) and, formally,

Q+
i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×S2

pkl,ij(y,v,w,n)gk(t,x,vkl,ij)gl(t,x + y,wkl,ij)dydwdn,(2.30)
Q−

i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×Ω
rkl,ij(y, v,w,n)gi(t,x,v)gj(t,x + y,w)dydwdn. (2.31)Here, g := (g1, ...gN ) with gi : R3 × R3 → R+, Ω := {n ∈ R3 : |n| =

1}, gk(·, ·,vkl,ij) = gk(·, ·,vkl,ij(v,w), gl(·, ·,wkl,ij) = gl(·, ·,wkl,ij(v,w,n)).Moreover, pkl,ij, rkl,ij : R3×R3×R3×Ω → [0,∞), are given measurable mapswith the property that if (v,w) /∈ Dij,kl := {(v,w) ∈ R3 ×R3 : tij,kl(v,w) ≥
0}, then

pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0. (2.32)One assumes that the following properties are satis�ed a.e.:
pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0 (y > R), (2.33)

pkl,ij(y,v,w,n) = pkl,ij(−y,v,w,n),

rkl,ij(y,v,w,n) = rkl,ij(−y,v,w,n), (2.34)
pkl,ij(y,v,w,n) = pkl,ji(y,w,v,n) = plk,ij(y,v,w,−n), (2.35)
rkl,ij(y,v,w,n) = rkl,ji(y,w,v,n) = rlk,ij(y,v,w,−n). (2.36)Moreover,
∫

R3×R3×Ω
ϕ(v,w)pkl,ij(y,v,w,n)ψ(vkl,ij ,wkl,ij)dvdwdn =
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=

∫

R3×R3×Ω
ϕ(vij,kl,wij,kl)rij,kl(y,v,w,n)ψ(v,w)dvdwdn (2.37)for all (ψ,ϕ) : R3×R3 → R, provided that whihever side of (2.37) is de�ned.The kernels pkl,ij, rkl,ij : R3 × R3 × Ω → [0,∞) arry the information of thereation proesses. For a gas omposed by one speies of partiles with elastiollisions, the above system of equations redues to the so-alled generalizedBoltzmann equation.Our main hypothesis is as follows:Assumption 2.1 There exist onstants cq > 0 and 0 ≤ q ≤ 1 suh that

∫

Ω
rkl,ij(y,v,w,n)dn ≤ cq

[
1 + |v|2 + |w|2

]q
. (2.38)Observe that sine rkl,ij and pkl,ij are related by (2.37), then the abovehypothesis is also an impliit ondition on pkl,ij.Under Assumption (2.38), one an show that, at least, formally,

N∑

i=1

∫

R3×R3

[Q+
i (g)(x,v) −Q−

i (g)(x,v)]hi(x,v)dvdx =

=
1

4

N∑

i,j,k,l=1

∫

D
[pkl,ij(y,v,w,n)gk(x,vkl,ij)gl(x + y,wkl,ij)

−rkl,ij(y,v,w,n)gi(x,v)gj(x + y,w)]

×[hi(x,v) + hj(x + y,w) − hk(x,vkl,ij) − hl(x + y,wkl,ij)]dxdydvdwdn(2.39)for all g=(g1, ...gN ) and h=(h1, ...hN ), with gi, hi ≥ 0, for whih the integralsare de�ned. Here, D := R3 × R3 × R3 × R3 × Ω. The last property followsby applying (2.27), (2.28), (2.32)�(2.37), as well as the invariane propertiesof the sums in (2.39), with respet to the hange of variables (x,y,n) →
(x′,y′,n′) := (x + y,−y,−n), and a suitable interhanges of summationindies.At least, at formal level, property (2.39) implies the bulk onservation formass, momentum, and total energy,

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(t,x,v)dxdv =

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(0,x,v)dxdv(2.40)



An Introdution to Monotoniity Methods 55(0 ≤ j ≤ 4), where fi(t) are the omponents of the solution f of Eq. (2.29),and
Ψ

(0)
i (x,v) := mi, Ψ

(4)
i (x,v) := mi |v|2 /2 + Ei, Ψ

(j)
i (x,v) := mivj(2.41)(j = 1, 2, 3), with vj are the omponents of v.2.4. A model with inelasti ollisions and hemial reationsIn this example, we onsider an abstrat system of a Boltzmann-like phe-nomenologial equations, [9, 10, 14℄, for a multi-omponent reating gasof partiles with internal states and disrete values of the internal energy.Thinking a real gas mixture of partiles with internal struture as a mixtureof several hemial speies of mass points with unique internal state, one anassume that any gas partile of the model has only one internal state. Speif-ially, the model refers to a gas onsisting of N hemial speies. A partileof speies n = 1, 2, ..., N is haraterized by mass mn > 0 and internal energy

En. Without loss of generality, one an assume that En ≥ 0, 1 ≤ n ≤ N .It is assumed that the hemial reations are indued by inelasti (possibly)multi-body, instant ollisions. A reation is identi�ed with a ouple (α, β) ∈
M×M, where M := {γ = (γn)1≤n≤N | γn ∈ {0, 1, . . . ,K}} is a multi-indexset. Here α = (α1, . . . , αN ) ∈ M and β = (β1, . . . , βN ) ∈ M designate thepre-ollision and post-ollision hannels, respetively, with 0 ≤ αn, βn ≤ Kpartiipants of speies n; 1 ≤ n ≤ N . Any ouple of the form (γ, γ) ∈ M×Mis identi�ed with a multi-body elasti ollision with γn ollision partners ofspeies n; 1 ≤ n ≤ N . The number of partiles in some hannel γ ∈ M is
|γ| :=

∑N
i=1 γi. The family of hemial speies partiipating in hannel γ isdenoted by N (γ) := {i : γi > 0, 1 ≤ i ≤ N}.LetMγ , Vγ(w) andWγ(w) denote the total mass, veloity of the mass enterand total energy, respetively, for the partiles in hannel γ, i.e.,

Mγ :=

N∑

i=1

γimi, (2.42)
Vγ(w) :=

1

Mγ

∑

i∈N (γ)

γi∑

j=1

miwi,j, (2.43)
Wγ(w) :=

∑

i∈N (γ)

γi∑

j=1

(2−1miw
2
i,j + Ei), (2.44)



56 Ceil Pompiliu Grünfeldwhere w = ((wk,i)i∈{1,...,αk})k∈N (γ) represents the ensemble of veloities ofthe partiles in hannel γ. Then, the kineti energy of the partiles (withveloities w) in hannel γ, relative to the frame of the mass enter, reads
Wr,γ(w) = Wγ(w) − MγVγ(w)2

2
−

N∑

i=1

γiEi. (2.45)Obviously, Wr,γ(w) ≥ 0.A gas reation (α, β) may take plae only if it is onsistent with the onser-vation of mass, momentum and energy, i.e.,
Mα = Mβ , Vα(w) = Vβ(u), Wα(w) = Wβ(u). (2.46)We will assume here that elasti ollisions are always present. Therefore, theset CM := {(α, β) ∈ M×M : Mα = Mβ} is nonempty.The Boltzmann-like system of equations for the above model is

∂

∂t
fi = Q+

i (f) −Q−
i (f). (2.47)Here the unknown fi : R+ × R3 7→ R+ is the one partile distribution fun-tions fi = fi(t,v) (t-time, v-veloity) of the partiles of speies 1 ≤ i ≤ N .In Eq. (2.47), Q+

i (f) and Q−
i (f), with f := (f1, . . . , fN ), are the so-alledloss and gain (nonlinear) operators for the partiles of speies i, respetively.Formally,

Q+
i (g)(v) =

∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[
pβ,α(w,n)(gβ ◦ uβ,α)(w,n)

]
wi,αi

=v
dw̃idn,(2.48)

Q−
i (g)(v) =

∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[rβ,α(w,n)gα(w)]
wi,αi

=v
dw̃idn, (2.49)where

gγ(w) :=
∏

i∈N (γ)

γi∏

j=1

gi(wi,j), γ ∈ M, (2.50)
Ωγ is the unit sphere in R3|γ|−3, with γ ∈ M, and dw̃i is the Eulidean ele-ment of area on {w ∈R3|α| | wi,αi = v

}. Here, the funtions uβ,α ∈ C(R3|α|×
Ωβ; R3|β|), and the measurable funtions rβ,α, pβ,α : R3|α| × Ωβ 7→ R+ aregiven.



An Introdution to Monotoniity Methods 57The following onditions are assumed ([9, 11, 14℄):(B1) rβ,α = pβ,α = 0 unless: |α| ≥ 2 , |β| ≥ 2, (α, β) ∈ CM , and w ∈ D+
β,α :={

w′ ∈ R3|α| : Wr,α(w′) +
N∑

i=1
(αi − βi)Ei ≥ 0

}.(B2) For eah i ∈ N (α) �xed, pβ,α(w,n), rβ,α(w,n), and uβ,α(w) are in-variant with respet to the interhange of the omponents wi,1, ...,wi,αi of
w.(B3) If (α, β) ∈ CM , w ∈ D+

β,α, then
(Vβ ◦ uβ,α)(w,n) = Vα(w), (Wβ ◦ uβ,α)(w,n) = Wα(w), (2.51)for all n ∈ Ωβ, and

∫

R3|α|×Ωβ

pβ,α(w,n)ϕ(w,n)(ψ ◦ uβ,α)(w,n)dwdn =

=

∫

R3|β|×Ωα

rα,β(w,n)(ϕ ◦ uα,β)(w,n)ψ(w,n)dwdn, (2.52)for all ϕ : R3|α| 7→ R and ψ : R3|β| 7→ R, for whih the integrals are wellde�ned.We suppose that the reations are reversible, i.e., if rβ,α 6= 0 for some (α, β),then also rα,β 6= 0.From (3.9), it follows that pβ,α and rβ,α are related one to another. Indeed, amore expliit relationship between pβ,α and rβ,α an be derived, as it resultsfrom a general example onstruted in [9, 14℄. Note also here that if oneassumes a mono-omponent gas of partiles with binary elasti ollisions(i.e., N = 1, K = 2, and pβ,α = rβ,α = 0 unless α = β = (1, 1)), then Eq.(2.47) redues to the spae homogeneous lassial Boltzmann equation
∂

∂t
f = Q+(f) −Q−(f), (2.53)where

Q+(f)(v) =

∫

R3×Ω

q(v,w,n)f(v′)f(w′)dwdn, (2.54)
Q−(f)(v) =

∫

R3×Ω

q(v,w,n)f(v)f(w)dwdn. (2.55)



58 Ceil Pompiliu GrünfeldThe notations are f = f(t,v) � the one-partile distribution funtion, v′ =
v − 〈v − w,n〉n, w

′
= w + 〈v − w,n〉n, and n ∈ Ω � the unit sphere in

R3. Here, the Boltzmann ollision law q is a positive measurable funtion(depending, in our ase, on v and w through the variable v − w).The last ondition of the model onerns the behavior of rβ,α (see [9℄):Assumption 2.2 There are some onstants 0 ≤ q ≤ 1 and cq > 0 suh that
νβ,α(w) :=

∫

Ωβ

rβ,α(w,n)dn ≤ cq(1 +Wα(w))q (w ∈ R|α|, a.e.), (2.56)for all α, β ∈ M.Obviously, νβ,α(w) = 0, unless (α, β) ∈ CM .A onsequene of (B1), (B2) and (2.56) is the key equality
N∑

i=1

∫

R3

Ψ
(j)
i (v)

[
Q+

i (g)(v) −Q−
i (g)(v)

]
dv = 0 (0 ≤ j ≤ 4), (2.57)for all g = (g1, ..., gN ) with (1+ |v|2)1+qgi ∈ L1(R3; dv), i = 1, 2, ...,N . Here,

Ψ
(0)
i (v) := mi, Ψ

(4)
i (v) :=

1

2
mi |v|2 +Ei, Ψ

(j)
i (v) := mivj (1 ≤ i ≤ N),(2.58)where vj is the j-omponent, j = 1, 2, 3, of v. Equality (2.57) implies, at lestformally, the bulk onservation of mass, momentum and total energy.2.5. A nonlinear von Neumann-Boltzmann equationBesides lassial models, we an also onsider "quantum" kineti models withmonotoniity properties similar to lassial ones.Let X = T (H) be the spae of trae lass selfadjoint operators in someseparable Hilbert spae H. On X, we onsider the order F ≤ G i� (f, Ff) ≤

(f,Gf), ∀f ∈ D(F ) ∩ D(G). Let ‖F‖ := Tr(|F |) be the norm on X.For some orthogonal base {e0, e1, ...} ⊂ H, de�ne the selfadjoint operator
H =

∑

i≥0

µi(ei, ·)ei, (2.59)



An Introdution to Monotoniity Methods 59where {µn}n ⊂ R. Let {U t}t∈R denote the ontinuous group of positiveisometries on X, given by U t(F ) := exp(−iHt)F exp(iHt), i =
√
−1. Con-sider a seond sequene, 0 ≤ λ0 < λ1 < λ2 ≤ ... λn−1 ≤ λn ... ր ∞, as

n→ ∞. Let {V t
}

t≥0
be the C0 semigroup on X, de�ned by

(ei, V
t(F )ej) := (V t(F ))i,j = exp[−(1 + λiδi,j)t]Fi,j (2.60)where Fi,j := (ei, Fej), and let the in�nitesimal generator of {V t

}
t≥0

bedenoted by (−Λ). Then
(Λ)i,j(F ) := (1 + λiδi,j)Fi,j , (2.61)hene Λ ≥ I. Clearly, U t leaves D(Λ) ∩ X+ invariant and U tΛ = ΛU t on

D(Λ) ∩X+.Now we an onsider the following example of nonlinear von Neumann-Boltzmann equation X (see also [12℄):
dF

dt
+ i[H,F ] = Q+(F ) −Q−(F ) (2.62)with Q± : D(Λ) ⊂ X → X given by

Q−(F ) := F0,0Tr(ΛF )(

2∑

i=0

Pi), (2.63)and
Q+(F ) := Q−(F ) + L(F ), (2.64)where Pi := (ei, ·)ei and

L(F ) := F0,0Tr(ΛF )(

2∑

i=0

εiPi). (2.65)Here, ε0 = ε (λ1 − λ0)
−1 (λ2 − λ0)

−1, ε1 = −ε(λ1 − λ0)
−1 (λ2 − λ1)

−1, ε2 =
ε(λ2 − λ0)

−1 (λ2 − λ1)
−1 and 0 < ε < (λ0 − λ1) (λ0 − λ2). Thus Q± arepositive operators, and a simple omputation gives

TrQ+(F ) = TrQ−(F ) (2.66)for 0 ≤ F ∈ D(Λ), and
Tr(ΛQ+)(F ) = Tr(ΛQ−)(F ) (2.67)for 0 ≤ F ∈ D(Λ2), so that both TrF (t) and Tr(ΛF )(t) remain onstant withtime.



60 Ceil Pompiliu Grünfeld3. General theory3.1. A monotoniity result for the lassial Boltzmann equa-tionBefore proeeding to a more general analysis, we start with a relevant exam-ple - the Arkeryd's monotoniity result for the Boltzmann equation ([2℄).Spei�ally, in [2℄, the main interest is to solve the Cauhy problem for thespae homogeneous Boltzmann equation (2.47) in the positive one L1
+ of

L1 = L1(R3,dv), namely
d

dt
f = Q(f) ≡ Q+(f) −Q−(f), f(0) = f0 ≥ 0 (t ≥ 0) (3.1)with Q± de�ned by (2.54) and (2.55), respetively.The basi hypothesis is that the ollision kernel q satis�es
q(v,w,n) ≤ Cq(1 + |v|λ + |w|λ) (0 ≤ λ ≤ 2), (3.2)for some onstant Cq > 0. The initial data f0 is supposed to satisfy (at least)the ondition of �nite mass and energy, i.e. ‖f0‖2 <∞, where

‖g‖l :=

∫
(1 + |v|2) l

2 |g(v)| dv. (3.3)Unfortunately, under ondition (3.2), the operators Q± are too singular toallow for applying general methods to the above problem. The idea of [2℄is to approximate Q± by ollision-like operators Q±
m with bounded (henesimpler) kernels qm(v,w) := min{q(v,w),m}, m = 1, 2, ... .Thus one starts by solving the simple model

d

dt
f = Qm(f) ≡ Q+

m(f) −Q−
m(f), f(0) = f0 (t ≥ 0). (3.4)Note that, sine (3.4) is a Boltzmann-type equation, then for "many" g ∈ L1,

∫
ϕi(v)Qm(g)dv = 0, (3.5)where ϕ0(v) = 1, ϕi(v) = vi , i = 1, 2, 3, ϕ4(v) = |v|2. An immediateonsequene is that for any solution f = f(t,v) of (3.4),

‖f(t)‖0 = ‖f0‖0 (t ≥ 0). (3.6)



An Introdution to Monotoniity Methods 61Moreover, if also ‖f(t)‖2 <∞, then
‖f(t)‖2 = ‖f0‖2 . (3.7)Writing the solution of (3.4) as fm, one ould hope that if m → ∞, then

fm onverges somehow to a solution of the original problem (3.1). Anotherkey point in the analysis is to use the above equalities as a priori estimatesin order to replae (3.4) with other (somehow equivalent) equations, moresuitable for monotone iteration with respet to the natural order of L1.Thus, one an �rst prove the following result ([2℄).Proposition 3.1 There exists a unique non-negative solution fm(t,v) ∈ L1of (3.4) for every 0 ≤ f0 ∈ L1.Proof. By (3.6), the positive solutions (in L1) of (3.4) are exatly the positivesolutions of the equation
d

dt
f + C ‖f0‖0 f = Qm(f) + C ‖f(t)‖0 f, f(0) = f0 (t ≥ 0), (3.8)whih satisfy equality (3.6). Here C > 0 is some onstant. Let v(t) :=

exp(−C ‖f0‖0 t). Sine the operators Q±
m are loally Lipshitz in L1, (3.8)has a unique loal solution fm(t), whih is also a unique loal solution to themild equation

f(t) = v(t)f0 +

∫ t

0
v(t− s)[Qm(f)(s) + C ‖f(s)‖0 f(s)]ds. (3.9)De�ne the sequene {fn

m}n by
f1

m = 0, fn
m = v(t)f0 +

∫ t

0
v(t− s)[Qm(fn

m)(s) + C ‖fn
m(s)‖0 f

n
m(s)]ds.(3.10)If C is su�iently large, then the operator X ∋ g → Qm(g) + C ‖g‖0 g ∈ Xis positive. Then the sequene {fn

m(t)}n is positive and inreasing in L1. Asimple indution, making use of (3.5), gives ‖fn
m(t)‖0 ≤ ‖f0‖0. Then bythe monotone ompleteness of L1 (Levi's theorem) {fn

m(t)}n is onvergent,its limit gm(t) satis�es (3.9), and ‖gm(t)‖0 ≤ ‖f0‖0. But by virtue of theuniqueness of the aforementioned loal solution fm(t) (of both (3.8) and(3.9)), learly gm(t) = fm(t) ≥ 0 for t small enough. Moreover, gm(t) extends
fm(t), as the unique solution of (3.8), for all t ≥ 0. It remains to show that



62 Ceil Pompiliu Grünfeldthis solution satis�es (3.6). To this end, one integrates (3.8), with fm assolution, and rearrange onveniently the resulting expression as
fm +

∫ t

0
[Q−

m(fm)(s) + C ‖f0‖0 fm(s)]ds =

= f0 +

∫ t

0
[Q+

m(fm)(s) + C ‖fm(s)‖0 fm(s)]ds. (3.11)As fm(t), Q±
m(fm)(t) ≥ 0, invoking the additivity of the L1 norm, and theproperty ‖fm(t)‖0 ≤ ‖f0‖0, one �nally obtains

0 ≤ ‖f0‖0 − ‖fm(t)‖0 ≤ C ‖f0‖0

∫ t

0
(‖f0‖0 − ‖fm(s)‖0)ds. (3.12)Thus by Gronwall's inequality,

‖fm(t)‖0 = ‖f0‖0 , (t ≥ 0) (3.13)so the proof is onluded. 2An indution involving (3.10), and making use of (3.5) also shows ([2℄) thatif fm is as in Prop. 3.1, and (1 + |v|2)f0 ∈ L1, then (1 + |v|2)fm ∈ L1, and
‖fm(t)‖2 = ‖f0‖2 (t ≥ 0). (3.14)Another important property is the following estimation, uniform with respetto m (see [2℄): for any t∗ > 0,

‖fm(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4, (3.15)for some number 0 < K = K(t∗, ‖f0‖2 , Cq, l). The proof (see the slightlymore general Prop. 1.3 of [2℄) is indutive, and applies (3.10) and the basiinequality ∫

R3

(1 + |v|2) l
2Qm(fm)dv ≤

≤ 3

2
Cqβl[‖fm(t)‖l+λ−θ ‖fm(t)‖θ + ‖fm(t)‖l−θ ‖fm(t)‖λ+θ , (3.16)valid for some βl > 0 and for any 0 ≤ θ ≤ 2. Inequality (3.16) follows (see,e.g., [2℄) from an elementary inequality due to Povzner, [23℄, and will be alsoalled Povzner inequality2.One an prove that fm onverges to a solution of (3.1), under a strongerondition on f0 than in Prop. 3.1. Indeed, one has ([2℄)2Povzner-like inequalities an be also proved for the models presented in theprevious setions.



An Introdution to Monotoniity Methods 63Proposition 3.2 If ‖f0‖l < ∞ for some l ≥ 4, then there exists a uniquesolution f ≥ 0 of problem (3.1) suh that (1 + |v|l)f(t) ∈ L1. Moreover,
‖f(t)‖2 = ‖f0‖2 ( t ≥ 0), and for any t∗ > 0, there is some number K =
K(t∗, ‖f0‖2 , l) suh that ‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗).Proof. Consider the equation,

d

dt
f + hf = Qa

m(f), f(0) = f0 (t ≥ 0), (3.17)where h(v) := C(1 + |v|2) ‖f0(v)‖2 and Qa
m(f) := Qm + hf .If fm is as in Prop. 3.1, but f0 is as in Prop. 3.2, then fm is also the uniquepositive solution of Eq. (3.17), whih satis�es (3.14). Further, onsider

d

dt
f + hf = Qb

m(f), f(0) = f0 (t ≥ 0), (3.18)where Qb
m(f) := Q+

m(f) −Q−(f) + hf .Let V (t) := exp(−th). One an introdue reurrenes similar to (3.10),
f̃1,i

m = 0, f̃n+1,i
m = V (t)f0 +

∫ t

0
V (t− s)Qi

m(f̃n,i
m )(s)ds (n ≥ 1); i = a, b.(3.19)Under ondition (3.2), if C > 0 is su�iently large, the operators Qi

m arepositive and isotone so that the sequenes {f̃m
n,i

(t)
}

n
are positive and in-reasing (i = a, b). Moreover, if 0 ≤ (1 + |v|2)g ∈ L1, then Qa

m (g) ≥ Qb
m(g)and Qb

m (g) ≥ Qb
j(g) for all m, 0 ≤ j ≤ m. Using the above properties, one�nds by indution that

0 ≤ f̃j
n,b

(t) ≤ f̃m
n,b

(t) ≤ f̃n,a
m (t) ≤ fm(t); 0 ≤ j ≤ m. (3.20)Hene, the inreasing sequenes {f̃m

n,i
(t)
}

n
are onvergent. Note that ifwe set f b

m(t) := limn→∞ f̃m
n,b

(t), then 0 ≤ f b
j (t) ≤ f b

m(t) ≤ fm(t); 0 ≤
j ≤ m. Then {f b

m(t)
}

n
is inreasing and ∥∥f b

m(t)
∥∥

2
≤ ‖f0‖2, hene {f b

m(t)
}

nonverges to some limit f(t), as m→ ∞, and
‖f(t)‖2 ≤ ‖f0‖2 . (3.21)Moreover,

d

dt
f + hf = Q(f) + hf (3.22)
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‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4. (3.23)Thus f is a solution of (3.1) if there is equality in (3.21). This an be provedby estimating sm := fm − f b

m(t). Indeed, as fm is the solution of (3.17),(3.18), one an write
d

dt
sm + hsm = Qa

m(fm) −Qb
m(f b

m). (3.24)A short omputation, whih takes advantage that sm is non-negative, andapplies (3.23), gives (under hypothesis (3.2))
‖sm(t)‖2 ≤ tCK ‖f0‖4 sup

0≤s≤t∗

‖sm(s)‖2 + o(1) (3.25)as m→ ∞ (with C > 0 su�iently large, and K, t∗ as in (3.23)).Then for t su�iently small, ‖sm(t)‖2 → 0 as m → ∞, hene ‖f(t)‖2 =
limm→∞

∥∥f b
m(t)

∥∥
2

= limm→∞ ‖fm(t)‖2 = ‖f0‖2.To prove the uniqueness part of the proposition, observe that if g ≥ 0 satis�esEq. (3.1), and if ‖g(t)‖2 ≤ ∞, then ‖g(t)‖2 = ‖f0‖2. But g also satis�es themild form of (3.22). Then g ≥ f , by the onstrution of f . 2Variants of Arkeryd's monotoniity argument were suessfully applied toother models lose to the lassial Boltzmann equation, [18℄, [27℄, [9℄, [7℄.Thus, developing the above line of reasoning within a more general frameworkhas beome a tempting task. But this is not trivial, and requires new ideas (aswill be seen in this setion). Indeed, for instane, too key issues of Arkeryd'sanalysis seem rather spei� to the model onsidered in [2℄: a) hoie of apriori estimates; b) onstrution of suitable regular operator approximationsof the Boltzmann ollision operators.3.2. An abstrat modelWe begin with some terminology and fats related to Banah latties ([17,24℄).The frame of our analysis is a separable AL-spae X with norm ‖·‖, order
≤, and positive one X+. We reall that an (AL) spae, is a Banah lattiewhose norm satis�es

‖g + h‖ = ‖g‖ + ‖h‖ (g, h ∈ X+). (3.26)



An Introdution to Monotoniity Methods 65As X is an AL-spae, if h : R 7→ X+ is Bohner integrable, then property(3.26) gives ∥∥∥∥
∫

S
h(s)ds

∥∥∥∥ =

∫

S
‖h(s)‖ ds (3.27)for any measurable set S of R, the integral being in the sense of Lebesgue.Examples of AL-spaes are L1-real and the real subspae of self-adjoint trae-lass operators (with trae norm)3.Related to the order of X, we shall also use the standard notations (g ≥

h)⇔(h ≤ g), as well as (g < h)⇔( h > g)⇔(g ≤ h and g 6= h). AL-spaesare monotone omplete, in the sense that any inreasing (i.e., direted ≤)norm-bounded family onverges. The norm of an AL-spae is order ontin-uous, i.e., any direted ≥ �lters that onverges to 0 is also norm onvergentto 0 . A map Γ : D(Γ) ⊂ X 7→ X, with D(Γ) ∩ X+ 6= ∅, is alled positive(stritly positive) if 0 ≤ Γg for 0 ≤ g ∈ D(Γ) (if 0 < Γg for 0 < g ∈ D(Γ)).Further, Γ : D(Γ) ⊂ X 7→ X is alled isotone (stritly isotone) if Γg ≤ Γh,whenever g ≤ h (if Γg < Γh, whenever g < h), g, h ∈ D(Γ). Obviously,if Γ : D(Γ) ⊂ X 7→ X is isotone, 0 ∈ D(Γ) and 0 ≤ Γ(0), then Γ is posi-tive. We say that a subset M ⊂ X is p-saturated (positively saturated) if
M∩X+ 6= ∅, and from 0 ≤ g ≤ h ∈ M, it follows that g ∈ M. An operator
Γ : D(Γ) ⊂ X 7→ X will be alled o-losed (losed with respet to the or-der) if for any inreasing sequene {gn} ⊂ D(Γ) suh that {gn} is inreasingand onvergent (in symbols, ր) to some g, and {Γgn} is Cauhy, one has
g ∈ D(Γ) and limn→∞ Γgn = Γg. Clearly, any losed mapping is o-losed.We reall (see, e.g., [16℄) that if Γ : D(Γ) ⊂ X 7→ X is a losed linearoperator, then

Γ

∫

S

h(s)ds =

∫

S

Γh(s)ds. (3.28)for any funtion h Bohner integrable on some measurable set S ∈ R, withvalues in D(Γ), and suh that Γh is Bohner integrable.We reall that a positive C0 semigroup on X is a C0 semigroup of posi-tive linear operators on X. If {St
}

t≥0
is a positive C0 semigroup on X,then its in�nitesimal generator G is densely de�ned and losed (as the in-�nitesimal generator of a C0 semigroup). Moreover, Gk is densely de�nedand losed, k = 2, 3, ... . Additional useful properties are olleted in thefollowing lemma.Let I denote the identity on X. Set D∞

+ (G) := ∩∞
k=1D(Gk) ∩X+.3Atually, aording to Kakutani's theorem, [24℄, every AL-spae is isometriallyisomorphi (as an ordered vetor spae) to a spae of type L1.



66 Ceil Pompiliu GrünfeldLemma 3.1 ([11℄)a) The sets D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are dense in X+.b) Suppose that there is some number γ ≥ 0 suh that

(G+ γI)g ≤ 0 (g ∈ D(G) ∩X+). (3.29)Then D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are p-saturated. Moreover, forany h ∈ X+,

0 ≤ Sth ≤ exp(−γt)h (t ≥ 0), (3.30)and there is an inreasing sequene {hn} ⊂ D∞
+ , suh that hn ր h as n→ ∞.Motivated by the examples of the previous setion, it is of interest to onsiderthe following abstrat i.v.p., [11℄,

df

dt
= Q(t, f) = Q+(t, f) −Q−(t, f), f(0) = f0 ∈ X+ (t > 0), (3.31)formulated in X+ (the partiular autonomous ase is not exluded).In Eq. (3.31), Q+ and Q− are mappings de�ned from R+×D to X, for some

D ⊂ X suh that D ∩X+ is dense in X+.The following properties are assumed for Q±:a) For a.e. t ≥ 0, the operators Q±(t, ·) : D 7→ X are positive and isotone.b) The mappings R+ ∋ t 7→ Q±(t, g(t)) ∈ X+ are measurable for anyLebesgue measurable funtion g : R+ 7→ X that satis�es g(t) ∈ D ∩ X+a.e. on R+.) For a.e. t ≥ 0, the operators Q±(t, ·) are o-losed and their ommondomain D is p-saturated.We are interested in the existene and uniqueness of positive (i.e., in X+)strong solutions of Eq. (3.31) under additional hypotheses whih abstratfurther properties of the Boltzmann model.We reall that a funtion f : R+ 7→ X is a strong solution of Eq. (3.31), if itis absolutely ontinuous on R+, di�erentiable a.e. on R+, satis�es Eq. (3.31)a.e. on R+, and veri�es the initial ondition. Equivalently, f is a strongsolution of problem (3.31) if it is solution of the integral equation
f(t) = f0 +

∫ t

0
Q(s, f(s))ds (t ≥ 0), (3.32)where the integral is in the sense of Bohner.



An Introdution to Monotoniity Methods 67We also onsider the following problem related to Eq. (3.31)
df

dt
= Af +Q(t, f), f(0) = f0 ∈ X+ (t > 0), (3.33)with Q as in Eq. (3.31). Here A is the in�nitesimal generator of a C0 groupof positive linear isometries on X, whih ommutes with Λ.We are interested in the existene and uniqueness of mild solutions of Eq.(3.31) in X+, i.e, solutions of the integral equation

f(t) = U tf0 +

∫ t

0
U t−sQ(s, f(s))ds (t ≥ 0) (3.34)in X+, where {U t

}
t∈R

is the C0 group of positive linear isometries on X,generated by A (the integral is in the sense of Bohner).As the above model is still too general for developing an existene theory ofsolutions, additional hypotheses are needed. The examples of the previoussetion suggest to assume some sort of dissipation (onservation) property,[11℄. This laims the existene of a positive, densely de�ned, losed linearoperator Λ : D(Λ) ⊂ X 7→ X suh that, for any positive solution f(t) ∈
D(Λ2) of Eq. (3.31), the quantity ‖Λf(t)‖ is dissipated (onserved), i.e., isdereasing (onstant) in t, and ∥∥Λ2f(t)

∥∥ is loally bounded in t. The "lawof derease" of ‖Λf(t)‖ an be used as a "natural" a priori estimate4. Inpartiular,
‖Λf(t)‖ ≤ ‖Λf0‖ (t ≥ 0). (3.35)To be preise, we introdue the following "dissipation" property ([11℄). Let

M be a subset of D ∩X+ dense in X+.Definition 3.1 ([11℄) A losed positive linear operator Γ : D(Γ) ⊂ X 7→
X is alled of type D on M (with respet to Eq. (3.31)) if M ⊂D(Γ),
Q±(t,M) ⊂ D(Γ) a.e. on R+, and for any g ∈ M,

0 ≤ ∆(t, g; Γ, Q) :=
∥∥ΓQ−(t, g)

∥∥ −
∥∥ΓQ+(t, g)

∥∥ (t ≥ 0 a.e.). (3.36)If Γ is of type D on M, then the following property an be easily establishedby making use of (3.27) and (3.28).Lemma 3.2 ([11℄) Let g0, g(t), h(t) ∈ M, t ≥ 0 a.e., with Q±(·, h(·)),
ΓQ±(·, h(·)) ∈ L1

loc(R+;X+), and
g(t) ≤ g0 +

∫ t

0
Q(s, h(s))ds (t ≥ 0). (3.37)4This an take various forms in appliations, depending on the form of Λ and

Q, e.g., onservation energy, in the ase of the model of [2℄.
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‖Γg(t)‖ +

∫ t

0
∆(s, h(s); Γ, Q)ds ≤ ‖Γg0‖ (t ≥ 0). (3.38)Moreover, (3.38) holds with equality sign for any t ≥ 0, provided that thereis equality in (3.37) for all t ≥ 0.On the other hand, in determining the behavior of ∥∥Λ2f(t)

∥∥, a major role ap-pears to be played by the Povzner inequality (3.16). This has to be somehowinluded in the model.Now we are in position to omplete the setting of Eq. (3.31) with additionalhypotheses, making more preise the above onsiderations.Spei�ally, we assume that there is a linear operator Λ : D(Λ) ⊂ X 7→ X,with D(Λ) ⊂ D and Q±(t,D(Λk)∩X+) ⊂ D(Λk−1), t ≥ 0 a.e., k = 2, 3, suhthat:
(A0) The operator (−Λ) is the in�nitesimal generator of a C0 semigroup ofpositive linear operators on X, and there is a number λ0 > 0 suh that

(Λ − λ0I)g ≥ 0 (g ∈ D(Λ) ∩X+). (3.39)(A1) For a.e. t ≥ 0,
∆(t, g) := ∆(t, g; Λ, Q) ≥ 0 (g ∈ D(Λ2) ∩X+), (3.40)and the map D(Λ2) ∩X+ ∋ g 7→ ∆(t, g) ∈ R+ is isotone.(A2) There exists a non-dereasing onvex funtion a : R+ 7→ R+ suh that

a(‖Λg‖)Λg −Q−(t, g) ≥ 0, (g ∈ D(Λ) ∩X+, t ≥ a.e.), (3.41)and for a.e. t ≥ 0, the map D(Λ) ∩X+ ∋ g 7→ a(‖Λg‖)Λg − Q−(t, g)
∈ X is isotone.(A3) There exists a non-dereasing funtion ρ : R+ 7→ R+, and there is anoperator Λ1 : D(Λ1) ⊂ X 7→ X of type D on D(Λ2) ∩X+ suh that
−∆(t, g; Λ2, Q) ≤ ρ(‖Λ1g‖)

∥∥Λ2g
∥∥ (g ∈ D(Λ3) ∩X+, t ≥ 0 a.e.).(3.42)Some remarks are in order.First, observe that if g ∈ D(Λ2) ∩X+, then by (3.39), (3.40) and (3.41) wehave the simple inequalities

‖g‖ ≤ λ−1
0 ‖Λg‖ ≤ λ−2

0

∥∥Λ2g
∥∥ (3.43)
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∥∥ ≤ λ−1

0

∥∥ΛQ±(t, g)
∥∥ ≤ λ−1

0

∥∥ΛQ−(t, g)
∥∥ ≤

≤ a(‖Λg‖)λ−1
0

∥∥Λ2g
∥∥ ≤ a(λ−1

0

∥∥Λ2g
∥∥)λ−1

0

∥∥Λ2g
∥∥ (t ≥ 0 a.e.), (3.44)with the following obvious onsequenes.Remark 3.1 Q±(t, 0) = 0 and ∆(t, 0) = 0 a.e. on R+.Let Λ0 := I.Remark 3.2 If g : R+ 7→ X+ is measurable, with g(t) ∈ D(Λ2), t ≥

0, a.e., and ∥∥Λ2g
∥∥ ∈ L∞

loc(R+), then g, Λk+1g, and ΛkQ±(·, g(·)) are in
L1

loc(R+;X+), k = 0, 1.Lemma 3.1a) and (A0) imply that D(Λk) ∩ X+, k = 1, 2, ..., and D∞
+ :=

D∞
+ (Λ) are p-saturated and dense in X+. Obviously, (3.39) shows that Λ ispositive. Thus, by (3.40), the operator Λ is of type D on D(Λ2) ∩X+. Thishas the following important onsequene.If f(t) ∈ D(Λ2), t ≥ 0, a.e., and if Q±(·, f(·)), ΛQ±(·, f(·)) ∈ L1(R+;X+),then by (3.38), applied with equality sign,

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ (t ≥ 0). (3.45)Thus ‖Λf(t)‖ is dereasing in time and satis�es (3.35). In partiular, if

∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t ≥ 0 a.e., then ‖Λf(t)‖ is onserved forall t ≥ 0.Observe that inequality (3.42) is of the form
−∆(t, g; Γ, Q) ≤ ρΓ(‖Λ1g‖) ‖Γg‖ (g ∈ M1, t ≥ 0 a.e.), (3.46)where Γ : D(Γ) ⊂ X 7→ X is some positive linear operator, and M1 ⊂ D(Γ)∩

D(Λ2)∩X+ is suh that Q±(t,M1) ⊂ D(Γ), t ≥ 0 a.e., while ρΓ : R+ 7→ R+is some non-dereasing funtion.Formula (3.45) generalizes a priori estimates introdued in e.g., [2, 7, 8, 9, 27℄.Formula (3.46) an be regarded as an abstrat orrespondent to the Povznerinequality, [2, 23℄.We �nally remark that the above setting does not exlude the ase Λ1 = Λwhen, obviously, some of the above onditions beome redundant.



70 Ceil Pompiliu Grünfeld3.3. General results on the existene of solutionsWe are now in position to state some results ([11℄, [13℄) on the existeneof solutions to our abstrat model. The proofs will be skethes in the nextsubsetion (for more details, the reader is referred to [11℄ and [13℄). First weonsider problem (3.31).Theorem 3.1 Let either of the following two sets of onditions be ful�lled:a) Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., ΛkQ+(·,D∞
+ ) ⊂ L1

loc(R+;X+), k = 1, 2, ... .In problem (3.31), f0 ∈ D(Λ2) ∩X+.b) The operators Q± do not depend expliitly on t. In problem (3.31), f0 ∈
D(Λ3) ∩X+.Then there exists a unique positive strong solution of the i.v.p. (3.31) suhthat f(t) ∈ D(Λ2) for any t ≥ 0, and ∥∥Λ2f(·)

∥∥ is loally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es Eq. (3.45) and
∥∥Λ2f(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.47)Note here that Theorem 3.1a) is also appliable to the autonomous ase, but,learly, its onditions are di�erent from those of Theorem 3.1b).Theorem 3.1 has an immediate notieable onsequene, as follows:Consider Eq. (4.22) and let {U t
}

t∈R
be the C0 group of positive linearisometries on X, generated by A.If f is a solution of (3.34), then setting F (t) := U−tf(t) in (3.34), we get

F (t) = f0 +

∫ t

0
QU(s, F (s))ds (t ≥ 0), (3.48)hene, by di�erentiation,

d

dt
F = QU (t, F ) = Q+

U (t, F )−Q−
U (t, F ), F (0) = f0 (t ≥ 0 a.e.), (3.49)where QU (t, ·) := U−tQ(t, U t·) and Q±

U (t, ·) := U−tQ±(t, U t·).Suppose that U tD(Λ) = D(Λ) and U tΛ = ΛU t on D(Λ) for every t > 0.Also, let U tD(Λ1) = D(Λ1) and U tΛ1 = Λ1U
t on D(Λ1) for all t > 0.Now Q±

U and QU are well de�ned as maps from R+ × D(Λ) to X, the lastequation is of the form (3.31), and we an state the following onsequene([11℄) of Theorem 3.1a):



An Introdution to Monotoniity Methods 71Corollary 3.1 Let Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., and ΛkQ+(·, U ·g) ∈
L1

loc(R+;X+) for all g ∈ D∞
+ , k = 1, 2, ... . Suppose that f0 ∈ D(Λ2) ∩X+in (4.22). Then problem (4.22) has a unique positive mild solution f suhthat f(t) ∈ D(Λ2) for any t ≥ 0 and ∥∥Λ2f(·)

∥∥ is loally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es (3.45) and (3.47).The following result, [13℄, extends the existene of strong solutions of Eq.(3.31) to the ase of initial datum f0 ∈ D(Λ) ∩X+ (instead of D(Λ2) ∩X+,as assumed in Theorem 3.1).Theorem 3.2 Under the assumptions of Theorem 3.1a) on Λ and Q±, let
f0 ∈ D(Λ) ∩ X+ in Eq. (3.31). Then there exists a strong solution, f ∈
C([0,∞);X+), of the i.v.p. (3.31). Moreover, for any t ≥ 0, f(t) ∈ D(Λ),
‖Λf(t)‖ ≤ ‖Λf0‖, and

‖f(t)‖ = ‖f0‖ +

∫ t

0

∥∥Q+(s, f(s))
∥∥ −

∥∥Q−(s, f(s))
∥∥ ds. (3.50)Note here that if f is as in Theorem 3.2, we know only that f ∈ D(Λ)∩X+.Then ∆(t, f) and Λ2f may not be not well-de�ned. Therefore, we annotobtain inequalities of the form (3.45) (exept the ase when ∆ = 0 on D(Λ2)∩

X+,) or like (3.47), at the level of abstration of the theorem.Also remark that Theorem 3.2 leaves open the question on the uniqueness ofthe solution in the general ase (under the onditions of the theorem).However, uniqueness an be proved under additional onditions, [13℄.Proposition 3.3 If ∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t � a.e., then
‖Λf(t)‖ = ‖Λf0‖ (t ≥ 0), (3.51)and there is a unique solution of the i.v.p. (3.31) as in Theorem 3.2, whihsatis�es (3.51).A similar result like Corollary 3.1 an be formulated for Theorem 3.2.The following proposition yields additional useful estimates, [11℄, for the so-lutions of Eq. (3.31). For simpliity, we remain in the onditions of Theorem3.1a). However, similar results are valid when Theorem 3.1b) holds, as anbe seen by inspeting the proof of the proposition.Assume that Γ : D(Γ) ⊂ X 7→ X is a losed, positive linear operator. Let fbe a solution of problem (3.31), provided by Theorem 3.1a).



72 Ceil Pompiliu GrünfeldProposition 3.4 a) Suppose that Γ is of type D on D∞
+ . Then f(t) ∈ D(Γ),

t ≥ 0, and
‖Γf(t)‖ ≤ ‖Γf0‖ (t ≥ 0). (3.52)b) Suppose that Γ and ρΓ are as in (3.46), with M1 ⊇ D∞

+ . Then f(t) ∈
D(Γ), t ≥ 0, and

‖Γf(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0). (3.53)In appliations, the hoie of Λ and Λ1 may be not unique. In some ases,the role of Λ1 and Γ may be played by suitable powers of Λ, while, in otherexamples, Λ = Λ1 = Γ.A orrespondent to Prop. 3.4, appliable to Corollary 3.1, an be readilyobtained. The modi�ations in the reformulation of the proposition are ob-vious and inlude additional hypotheses for the ommutation of U t with Γ,et.3.4. ProofsSketh of the proof of Theorem 3.1In the following, we give an insight into the rather lengthy argument of The-orem 3.1 (see [11℄ for a detailed proof), and explain the role of assumptions(A0)-(A3).We start by observing that if f0 = 0 in (3.31), then, by Remark 3.1, learly
f(t) ≡ 0 is a solution to Eq. (3.31). It is the unique strong solution in
D(Λ2) ∩ X+, as it follows from (3.45). Moreover, if 0 6= f0 ∈ D(Λ2) ∩ X+,but a(‖Λf0‖) = 0, then Q±(t, f0) = 0, for a.e. t ≥ 0, by (3.44), hene
f(t) ≡ f0 is a solution to (3.31). It is the unique solution in D(Λ2) ∩ X+,beause any other solution f∗(t) ∈ D(Λ2) ∩ X+ must be a.e. onstant.Indeed, applying (3.45), and invoking the positivity and monotoniity of a,we obtain 0 ≤ a(‖Λf∗(t)‖) ≤ a(‖Λf0‖) = 0. This leads (again by (3.44)) to
Q±(t, f(t)) = 0 a.e.Therefore, one an assume below that f0 6= 0 and a(‖Λf0‖) 6= 0.We �rst refer to the existene part of the theorem. Inspired from [2℄, onean onsider the problem

d

dt
f + a(‖Λf0‖)Λf = B(t, f, f), f(0) = f0 ∈ X+ (t ≥ 0). (3.54)



An Introdution to Monotoniity Methods 73Here a is as in (A2), and B is formally de�ned by
B(t, g, h) := Q(t, g(t))+a

(
‖Λg(t)‖ +

∫ t

0
∆(s, h(s))ds

)
Λg(t) (t ≥ 0 a.e.)(3.55)for all g(t) ∈ D(Λ) ∩ X+ and h(t) ∈ D(Λ2) ∩ X+ with ΛQ±(·, h(·)) ∈

L1
loc(R+;X+).By (3.45), any strong positive solution of Eq. (3.31) is also a solution to(3.54). Conversely, any positive strong solution of problem (3.54) is a solutionof Eq. (3.31), provided that it satis�es (3.45).Reall now that, by (A0) and Lemma 3.1b), the operator L = −a(‖Λf0‖)Λis the in�nitesimal generator of a C0 positive semigroup {V t

}
t≥0

, and
0 ≤ V th ≤ exp(−a(‖Λf0‖)λ0t)h ≤ h (h ∈ X+). (3.56)Thus any solution of Eq. (3.54) is also a solution of the mild problem

f(t) = V tf0 +

∫ t

0
V t−sB(s, f, f)ds , (3.57)the integral being in the sense of Bohner.Eq. (3.57) is useful for monotone iteration. Indeed, {V t

}
t≥0

is positive, andone an prove5 the following properties ([11℄).Lemma 3.3 Let gi, hi, i = 1, 2, satisfy the onditions of Remark 3.2. Sup-pose that g1(t) ≤ g2(t) and h1(t) ≤ h2(t) a.e. on R+. Then B(·, gi, hj) ∈
L1

loc(R+;X+), i, j = 1, 2. In addition, for a.e. t ≥ 0,
0 ≤ B(t, g1, h1) ≤ B(t, g2, h2). (3.58)Thus, formally, by (3.57) one ould onsider the following iteration, hopefully,inreasing:
f1(t) = 0, f2(t) = V tf0, (3.59)

fn(t) = V tf0 +

∫ t

0
V t−sB(s, fn−1, fn−2)ds (n = 3, 4, ...). (3.60)Note that if {fn(t)}n is su�iently regular, by di�erentiation, (3.60) gives

d

dt
fn(t) = B(t, fn−1, fn−2) − a(‖Λf0‖)Λfn(t) (t > 0 a.e., n ≥ 3),(3.61)5See the Appendix.



74 Ceil Pompiliu Grünfeldand integrating (3.61) one has
fn(t) = f0 +

∫ t

0
Q(s, fn−1(s))ds+

+

∫ t

0
a

(
‖Λfn−1(s)‖ +

∫ s

0
∆(τ, fn−2(τ))dτ

)
Λfn−1(s)ds.

−
∫ t

0
a(‖Λf0‖)Λfn(s)ds. (3.62)However, in general, B(·, g, h) does not exist for all g, h ∈ X. Hene we needgive a meaning to (3.60), at least for f0 in a su�iently large set. Here omesthe role of D∞

+ (of D(Λ3) ∩ X+). Indeed, if f0 ∈ D∞
+ (f0 ∈ D(Λ3) ∩ X+),then one an show that fn(t) ∈ D∞

+ (f0 ∈ D(Λ3) ∩ X+), and is su�ientlyregular. This is lari�ed in the lemma bellow, whih summarizes the mainresults6 of [11℄ on the properties of {fn(t)}n.Lemma 3.4 a) In addition, to the onditions of Theorem 3.1a), let f0 ∈ D∞
+ .Then fn(t), Q±(t, fn(t)) ∈ D∞

+ a.e. on R+. Moreover, ΛkQ±(·, fn(·)) ∈
L1

loc(R+;X+), k = 0, 1, ...., n = 1, 2, ... .b) Assume the onditions of Theorem 3.1b). Then fn(t) ∈ D(Λ3) ∩X+ and
Q±(fn(t)) ∈ D(Λ2) ∩ X+; t ≥ 0. Moreover, ΛkQ±(fn) ∈ L1

loc(R+;X+),
k = 0, 1, 2, , n = 1, 2, ... .) In both ases a) and b), Λkfn ∈ C(R+;X+), k = 0, 1, 2, and fn is a.e.di�erentiable on R+ and satis�es (3.61) (and (3.62)). Moreover, for any
t ≥ 0, the sequene {fn(t)}n is inreasing.d) If fn(t) is as in a) or b), and n ≥ 2, then

fn(t) ≤ f0 +

∫ t

0
Q(s, fn−1(s))ds (3.63)and

‖Λfn(t)‖ +

∫ t

0
∆(s, fn−1(s))ds ≤ ‖Λf0‖ . (3.64)e) If fn(t) is as in a) or b), and Γ is an operator of type D on D∞

+ , (on
D(Λ2) ∩X+) then for any t ≥ 0,

‖Γfn(t)‖ ≤ ‖Γf0‖ (n = 1, 2, ...). (3.65)6See the Appendix for a proof.
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∥∥Λ2fn(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0, n = 1, 2, ...), (3.66)with ρ as in (3.42).f) Suppose that fn(t) is as in a) (as in b)). Let Γ : D(Γ) ⊂ X 7→ X besome losed, positive linear operator, satisfying (3.46), with M1 ⊇ D∞
+ (with

M1 ⊇ D(Λ3) ∩X+). Then for any t ≥ 0,
‖Γfn(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (n = 1, 2, ...), (3.67)with ρΓ as in (3.46).By the above lemma, {fn(t)}n is inreasing, and the key inequality (3.64)shows that {fn(t)}n is norm bounded7. Thus {fn(t)}n is onvergent, be-ause X is monotone omplete. One expets the limit to satisfy (3.54) (and(3.57), too). The proof hinges on the appliation of Lebesgue's dominatedonvergene theorem to (3.62) (as the operators Q± are o-losed, and Λ islosed). To this end, the limit of {fn(t)}n must be in D(Λ2), whih followsfrom (3.66). Now, to prove that the limit of {fn(t)}n is a strong solution to(3.31), it remains to show that the above limit satis�es (3.45). This is doneby applying Gronwall's Lemma to an inequality to be obtained from (3.62)(by using (3.66) and the onvexity of a). But the above proedure providesthe existene part of the Theorem 3.1a) only for f0 ∈ D∞

+ , hene one morestep is needed. Sine D∞
+ is dense in X+ (f. Lemma 3.1), any initial datumas in the assumptions of Theorem 3.1a), an be approximated by elementsof D∞

+ . This leads to a monotone sheme approximating (3.60) and one anapply suessively Lebesgue's onvergene theorem. In details, one proeedsas follows.Step A. If in addition to the onditions of Theorem 3.1 a), one assumes
f0 ∈ D∞

+ then Lemma 3.4 applies. As Λk is losed, learly, by (3.39) andthe monotone ompleteness of X, it follows that there is some f(t) ∈ D(Λk)suh that Λkfn(t) ր Λkf(t) as n → ∞, t ≥ 0, k = 0, 1, 2. Consequently,
f(t) satis�es (3.47). Moreover, Remark 3.2 implies that Λkf , k = 0, 1, 2,
Q±(·, f(·)), and ΛQ±(·, f(·)) are in L1

loc(R+;X+). Then, applying Lebesgue'sdominated onvergene theorem in (3.62) and (3.64), we get
f(t) = f0 +

∫ t

0
Q(s, f(s))ds+7Inequality (3.64) motivates the onstrution (3.60) as a seond-order reurrene.Indeed, exept for the ase ∆ ≡ 0, an inequality of the form (3.64) ould not beproved if (3.60) was rede�ned with B(s, fn−1, fn−1) instead of B(s, fn−1, fn−2).



76 Ceil Pompiliu Grünfeld
+

∫ t

0

[
a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)
− a(‖Λf0‖)

]
Λf(s)ds (t ≥ 0)(3.68)(i.e., f is a strong solution of Eq.(3.54)) and, also,

0 ≤ ψ(t) := ‖Λf0‖ − ‖Λf(t)‖ −
∫ t

0
∆(s, f(s))ds (t ≥ 0). (3.69)Obviously, (3.68) implies f,Λf ∈ C(R+;X+).Note now the usefulness of (3.68): to prove that f is a strong solution of(3.31), it is su�ient to show that ψ ≡ 0 (whih means exatly (3.45)).To this end, �rst observe that sine, by (A2), a is non-dereasing and loallyLipshitz, then inequality (3.69) implies that there is a number 0 < c =

c(‖Λf0‖), depending only on ‖Λf0‖, suh that
0 ≤ a(‖Λf0‖) − a

(
‖Λf(t)‖ +

∫ t

0
∆(τ, f(τ))dτ

)
< cψ(t). (3.70)Further rewriting Eq. (3.68) onveniently, and applying Λ to the resultingequation, one an invoke (3.26) and (3.27) to obtain

ψ(t) =

∫ t

0

[
a(‖Λf0‖) − a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)]∥∥Λ2f(s)
∥∥ds.(3.71)As f(t) satis�es (3.47), introduing (3.70) in (3.71), we �nd

0 ≤ ψ(t) ≤ c

∫ t

0
ψ(s)

∥∥Λ2f(s)
∥∥ds ≤ cT

∫ t

0
ψ(s)ds (0 ≤ t ≤ T ), (3.72)for eah T > 0. Here, cT > 0 is a number depending only on T and f0.Now the Gronwall inequality implies ψ(t) = 0, 0 ≤ t ≤ T , for any T > 0.This onludes the existene part of the proof of the Theorem 3.1a), in thease f0 ∈ D∞

+ ).Step B. We use the result of the previous step to prove the existene partof Theorem 3.1 a), in the ase f0 ∈ D(Λ2) ∩ X+, as follows. First notethat by Lemma 3.1b), there is an inreasing sequene {f0,i} ⊂ D∞
+ suh that

f0,i ր f0, as i→ ∞. Then, by Step A, there is a sequene of strong solutions
{Fi}i of Eq. (3.31) with Fi(0) = f0,i, satisfying the properties of the theorem.In partiular,

∥∥Λ2Fi(t)
∥∥ ≤ exp [ρ(‖Λ1f0,i‖)]

∥∥Λ2f0,i

∥∥ (t ≥ 0). (3.73)
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Fi(t) = f0,i +

∫ t

0
Q(s, Fi(s))ds, (3.74)

ΛFi(t) = Λf0,i +

∫ t

0
ΛQ(s, Fi(s))ds, (3.75)and

‖ΛFi(t)‖ +

∫ t

0
∆(s, Fi(s))ds = ‖Λf0,i‖ . (3.76)Moreover, by Step A, eah Fi is the limit of an inreasing sequene {fn,i(t)}nde�ned by (3.60) with fn,i(0) = f0,i. But the positivity of V t and Lemma3.3 imply that if f0,i ≤ f0,j, then fn,i(t) ≤ fn,j(t) for all n and t ≥ 0. Thenthe sequene {Fi} is inreasing.Furthermore, sine ‖Λ1f0,i‖ ≤ ‖Λ1f0‖, ∥∥Λ2f0,i

∥∥ ≤
∥∥Λ2f0

∥∥, and sine ρ isnon-dereasing, it follows from inequality (3.73) that
∥∥Λ2Fi(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.77)Now a onvergene argument, as in the beginning of Step A, implies thatthere is an element f ∈ L1
loc(R+;X+), with the properties stated in Re-mark 3.2, suh that Fi(t) ր f(t) as i → ∞, a.e. It remains to apply, say,Lebesgue's onvergene theorem in (3.74)�(3.76) to onlude the existenepart of Theorem 3.1a).Existene in ase b). In this ase, Lemma 3.4 applies, orresponding to theful�llment of the onditions of Theorem 3.1b). Then, the proof is as in StepA of ase a).Finally, we prove the uniqueness part of Theorem 3.1.Let f be the solution of Eq. (3.31) provided by the existene part of thisproof, and reall that it satis�es Eq. (3.45). If F is another positive solutionof Eq. (3.31) with regularity properties as in Theorem 3.1, then F satis�esEq. (3.45), too, hene

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ = ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))ds.By Lebesgue's onvergene theorem applied to (3.60), learly, f also solvesEq. (3.57). On the other hand, F is a solution to (3.57). But f ≤ F , beauseof the form of (3.60), so that

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds < ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))dson some subset of R+ with nonzero Lebesgue measure. 2



78 Ceil Pompiliu GrünfeldProof of Theorem 3.2As in the proof of Theorem 3.1, to exlude trivial situations, we suppose the
‖f0‖ 6= 0 or a(‖f0‖) 6= 0. By Lemma 3.1, there is a sequene {fn,0}n ⊂ D∞

+suh that fn,0 ր f0 as n → ∞. Then by Theorem 3.1a) the i.v.p. (3.31)with initial ondition fn,0 has a unique positive solutions Fn ∈ D(Λ2) ∩X+suh that (3.31) provided by Theorem 3.1 with initial datum fn,0 forms aninreasing sequene suh that Fn,ΛFn ∈ C(R+;X+),
Fn(t) = fn,0 +

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, Fn(s))ds (t ≥ 0). (3.78)and

‖ΛFn(t)‖ +

∫ t

0
∆(s, Fn(s)ds = ‖Λfn,0‖ (t ≥ 0). (3.79)But ∆(s, Fn(s) ≥ 0 so that

‖ΛFn(t)‖ ≤ ‖Λfn,0‖ ≤ ‖Λf0‖ (t ≥ 0). (3.80)Note now that Fn, fn,0, Q±(t, Fn(t)) are positive. Then (3.26) and (3.27)imply
‖Fn(t)‖ = ‖fn,0‖ +

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, Fn(s))
∥∥ ds (t ≥ 0),(3.81)To prove the theorem, we need show that {Fn(t)}n and {Q±(t, Fn(t))}n areonvergent, and, then we need to interhange the limits onveniently in (3.78)and (3.81).To this end, �rst observe that sine {fn,0}n is positive and inreasing, andeah Fn is the limit of a sequene of the form (3.60), we obtain by a sim-ple indution (whih uses the positivity and isotoniity of B in (3.60)) that

{Fn(t)}n is inreasing. Thus, by (A0), the positive sequene {ΛFn(t)}n isalso inreasing. Then (A0) and (3.80) give ‖Fn(t)‖ ≤ λ0
−1 ‖ΛFn(t)‖ ≤

λ0
−1 ‖Λfn,0‖ ≤ λ0

−1 ‖Λf0‖. Hene, for eah t ≥ 0, both {Fn(t)}n and
{ΛFn(t)}n are onvergent, beause X is monotone omplete. Moreover, as Λis losed, the limit f(t) of {Fn(t)}n satis�es f(t) ∈ D(Λ) ∩X+, and we have
ΛFn(t) ր Λf(t) as n → ∞. Then, also {Q±(t, Fn(t))}n are inreasing, and
Q±(t, Fn(t)) ≤ Q±(t, f(t)) a.e. In partiular, ‖Q±(t, Fn(t))‖ ≤ ‖Q±(t, f(t))‖a.e. Consequently, Q±(t, Fn(t)) ր Q±(t, f(t)) as n → ∞, t -a.e., beause Xis monotone omplete and Q±(t, ·) are o-losed t-a.e.Now, applying (A2) and (3.80) we get

∥∥Q−(t, f(t))
∥∥ = lim

n→∞

∥∥Q−(t, Fn(t))
∥∥ ≤ a(‖Λf0‖) ‖Λf0‖ (3.82)



An Introdution to Monotoniity Methods 79a.e., hene Q−(·, f) ∈ L1
loc(R+;X+).Thus we an take the limit n → ∞ in (3.78) and (3.81), and we an apply,say, Lebesgue's theorem to the seond term of (3.78) and (3.81), respetively.We obtain

f(t) = f0 + lim
n→∞

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, f(s))ds, (3.83)and, by (3.26),

‖f(t)‖ = ‖f0‖ + lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, f(s))
∥∥ ds. (3.84)Sine ‖f(t)‖ <∞ for t ≥ 0, and Q−(·, f) ∈ L1

loc(R+;X+), by (3.84), for eah
t ≥ 0,

lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds <∞. (3.85)Hene, applying, e.g., the monotone onvergene theorem, it follows that

Q+(·, f) is Bohner integrable and we an �nally pass to the limit under theintegral sign in (3.83), (3.84), (3.80), and in (3.79), to onlude the proof oftheorem. 2Proof of Proposition 3.3Equality (3.51) follows observing that ∆(s, Fn(s)) ≡ 0 in (3.79), and takingthe ∞ limit. As in the uniqueness part of the proof of Theorem 3.1, thesolution f of (3.31) provided by Theorem 3.2 also solves the mild problem(3.57) (but here, ∆(t, f) = 0 in the expression (3.55) of B, by virtue of(3.51)). Now the uniqueness follows by an argument similar to the one usedin the uniqueness part of the proof of Theorem 3.1, taking now advantage ofthe property ∆(s, Fn(s)) ≡ 0 (hene of (3.51)). 2Proof of Proposition 3.4a) Let f0, {f0,i} , {fn,i(t)}n, and {Fi(t)}i be as in Step B of the proof ofTheorem 3.1a). Then for eah i, the sequene {Γfn,i(t)}n is positive andinreasing. Moreover, it is norm-bounded beause
‖Γfn,i(t)‖ ≤ ‖Γf0‖ (t ≥ 0), (3.86)as a onsequene of (3.65) and of the property Γf0,i ≤ Γf0.



80 Ceil Pompiliu GrünfeldAs X is monotone omplete, it follows that {Γfn,i(t)}n is onvergent for all
i.Reall that Γ is losed, and fn,i(t) ր Fi(t) as n→ ∞, for all i. Consequently,
Fi(t) ∈ D(Γ) and Γfn,i(t) ր ΓFi(t) as n → ∞, i = 1, 2, .... In addition,
‖ΓFi‖ ≤ ‖Γf0‖, t ≥ 0,i = 1, 2, .... Then, reasoning as before, we onludethat f(t) ∈ D(Γ), ΓFi(t) ր Γf(t) as i→ ∞, and that ‖Γf‖ satis�es (3.52).b) The proof of (3.53) follows as in a), with the only remark that instead of(3.86), we make use of the inequalities
‖Γfn,i(t)‖ ≤ exp(ρΓ(‖Λ1f0,i‖)t) ‖Γf0,i‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0),(3.87)whih are immediate by (3.67), beause ρΓ is non-dereasing. 24. Appliations4.1. Smoluhowski's oagulation equationFor k ≥ 0, let L1

k := L1
k(R+; dy) be the spae of real measurable funtions

g : R+ 7→ R suh that
‖g‖L1

k
:=

∫

R+

(1 + y)k |g(y)| dy <∞. (4.1)Denote L1
k,+ = {g ∈ L1

k : g ≥ 0}. Consider problem (2.2) in the spae
X = L1(R+; dy) (equipped with the usual norm ‖·‖ = ‖·‖L1 , and with thenatural order ≤).Consider L1

k as a subset of X. Let i = 0, 1 and de�ne the positive linearoperators Λc,i : D(Λc,i) ⊂ X 7→ X by D(Λc,i) = L1
γi
, (Λc,ig)(y) := λi(y)g(y),with λi(y) := (1 + y)γi, y ≥ 0 a.e., where γ0 = β and γ1 = α+ β.Note that (2.3) and (2.4) de�ne Q+

c and Q−
c as positive and isotone nonlinearoperators in X, respetively, with the ommon domain Dc := L1

β.Then the i.v.p. for (2.2) an be formulated in X as
d

dt
f = Qc(f) = Q+

c (f) −Q−
c (f) f(0) = f0, t > 0. (4.2)In this ase, one an apply Theorem 3.1a). The only point is to hek that Λc,i(i = 0, 1) and Q±

c verify inequalities of the form (3.40) and (3.42). Indeed, if
g ∈ L1

2β,+, then starting from (2.7), we �nd
0 ≤

∥∥Λc,iQ
−
c (g)

∥∥ −
∥∥Λc,iQ

+
c (g)

∥∥ =
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=

1

2

∫

R2
+

[(1 + y)γi + (1 + y∗)
γi − (1 + y + y∗)

γi ]q(y, y∗)g(y)g(y∗)dydy∗,(4.3)beause 0 ≤ γi ≤ 1, and
(1 + y)γ + (1 + y∗)

γ

(1 + y + y∗)γ
≥ inf

x≥0

1 + xγ

(1 + x)γ
= 1 (0 ≤ γ ≤ 1, y, y′ ≥ 0). (4.4)Inequality (4.3) shows that g 7→ ∆c(g) := ‖Λc,0Q

−
c (g)‖−‖Λc,0Q

+
c (g)‖ de�nesa positive isotone map ∆c : D(∆c) 7→ R with domain D(∆c) = L1

2β,+.Starting again from (2.7), we �nd that if g ∈ L1
3β,+, then

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ =

=
1

2

∫

R2
+

[
(1 + y + y∗)

2β − (1 + y)2β − (1 + y∗)
2β
]
q(y, y∗)g(y)g(y∗)dydy∗.(4.5)If 0 ≤ β ≤ 1/2, applying again (4.4) in (4.5), we get

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ 0, (4.6)whih is of the form (3.42) with ρ ≡ 0.If 1/2 < β ≤ 1, then to estimate (4.5), we apply the following form ([11℄) ofPovzner's algebrai inequality, whih an be easily proved8:
(1+y+y∗)

2β −(1+y)2β −(1+y∗)
2β ≤ 2(1+y)β(1+y∗)

β (y, y∗ ≥ 0). (4.7)Thus, applying (4.7) in (4.5), we �nd that there is a number c > 0 suh that
∥∥Λ2

c,0Q
+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ c ‖Λc,1g‖
∥∥Λ2

c,0g
∥∥ . (4.8)Clearly, inequality (4.8) is of the form (3.42) with ρ(x) = cx.Let ac(x) := a0x, for some onstant a0 > 0. If a0 is su�iently large, then themap L1

β,+ ∋ g 7→ a0 ‖Λc,0g‖Λc,0g − Q−
c (g) ∈ X has the properties requiredin (A2).It appears that Q±

c , Λc,0, Λc,1 and ac verify the onditions of Theorem 3.1a)for Q±, Λ, Λ1 and a, respetively, provided that a0 is su�iently large.Consequently, one an apply Theorem 3.1a) to the i.v.p. (4.2). We obtain8Indeed, (4.7) is equivalent to ζ(x) = 2xβ +1+x2β − (1+x)2β ≥ 0 for all x > 0.However, as ζ(x−1) = x−2βζ(x), to prove that ζ(x) ≥ 0 for x > 0, we need onlyshow that ζ(x) ≥ 0 on (0, 1], whih is immediate, beause 1/2 < β ≤ 1.



82 Ceil Pompiliu GrünfeldTheorem 4.1 Let f0 ∈ L1
2β,+ in problem (4.2). Then Eq. (4.2) has a uniquestrong solution f suh that f(t) ∈ L1

2β,+, t ≥ 0, and ‖f(t)‖L1
2β

is loallybounded on R+. In addition f, (1 + y)βf ∈ C(R+;L1(R+,dy)),
‖f(t)‖L1

β
+

∫ t

0
∆c(f(s))ds = ‖f0‖L1

β
(t ≥ 0), (4.9)and there is a onstant c > 0 suh that

‖f(t)‖L1
2β

≤ exp(c ‖f0‖L1
α+β

t) ‖f0‖L1
2β

(t ≥ 0). (4.10)Note here that if 0 ≤ 2β < 1, then Theorem 4.1 allows for the existeneof solutions with in�nite initial mass (see also [22℄) i.e., f0 ∈ L1
2β,+, but

f0 /∈ L1
1. The theorem does not imply diretly the mass onservation, exeptfor the ase q1 > 0, β = 1 and α = 0. However, if f0 ∈ L1

2β,+ ∩ L1
1, thenthe solution f(t) has �nite mass: indeed, if Γ : L1

1 ⊂ L1 7→ L1 is de�ned by
(Γg)(y) = yg(y) a.e. on R+, then learly, Γ is of type D on ∩∞

k=1L
1
kβ,+, heneProp. 3.4a) applies, so that f ∈ L1

2β,+ ∩ L1
1, and ‖Γf(t)‖ ≤ ‖Γf0‖.Theorem 4.1 remains valid in the ase of the disrete Smoluhowski equation(2.10), with obvious hange in formulation9.4.2. Povzner-like model with dissipative ollisionsLet X = L1(R3 ×R3; dxdv) = L1, equipped with the norm ‖·‖ := ‖·‖L1 andthe natural order ≤. Denote by L1

k := L1
k(R

3 × R3; dxdv), k ∈ R, the spaeof measurable funtions on g : R3 × R3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(x,v)| dxdv <∞. (4.11)As before, L1

k,+ denotes the positive one in L1
k. It an be seen that (2.15) and(2.16) de�ne Q±

d as positive and isotone operators on the ommon domain
D := L1

γ . This follows easily if we perform the hange of variable (0, R]×Ω ∋
(r,n) 7→ y := rn ∈ {z ∈R3 : |z| ≤ R} in (2.15) and (2.16), and then takeinto aount (2.17).Now, formulated in X, the i.v.p. (2.14) reads

d

dt
f = Af +Q+

d (f) −Q−
d (f), f(0) = f0 ≥ 0, (4.12)9Note that L1

r, de�ned before, must be now replaed by l1r(R) = {c = (cj) : cj ∈
R, j = 1, 2, ..., ‖c‖r :=

∑∞

j=1
jr |cj | <∞}, r ≥ 0.



An Introdution to Monotoniity Methods 83where f = f(t,x,v) is the one-partile distribution funtion, A is the in-�nitesimal generator of the C0 group (U tf)(x,v) := f(x− tv,v), a.e.Let the positive linear operator Λd : L1
2 7→ X be de�ned by (Λdg)(x,v) :=

λ(v)g(x,v) a.e. on R3 ×R3, with λ(v) := (1 + |v|2). De�ne ad(x) := c0x forsome onstant c0 > 0. If c0 is su�iently large, then ad, Λd and Q±
d verifythe onditions of Corollary 3.1 for a, Λ = Λ1 and Q±, respetively.Indeed, the operators Q±

d are p-saturated. Moreover, they are o-losed, bythe monotone onvergene theorem. It is immediate that the domain on-ditions imposed in Corollary 3.1 are satis�ed. Further, applying (2.12) in(2.18), we obtain an inequality of the form (3.40), i.e., if g ∈ L1
4,+, then

0 ≤ ∆d(g) :=
∥∥ΛdQ

−
d (g)

∥∥ −
∥∥ΛdQ

+
d (g)

∥∥ =

=

∫ R

0
dr

∫

Ω×R3×R3×R3

π(r,n,v,w,x)g(x,v)g(x + rn,w)dndvdwdx,(4.13)where π(r,n,v,w,x) := β(n)(1−β(n)) |〈n,v − w〉|2+γ P (r,n). Remark herethat the map L1
4,+ ∋ g 7→ ∆d(g) ∈ R is positive and isotone. Moreover, for

c0 su�iently large, the map L1
2,+ ∋ g 7→ c0 ‖Λdg‖Λdg −Q−

d (g) ∈ X is alsopositive and isotone. Further, to obtain an inequality of the form (3.42), notethat (2.12) gives λ(v′)2 + λ(w′)2 ≤ (2 + |v′|2 + | w′|2)2 ≤ (2 + |v|2 + |w|2)2
= λ(v)2 + λ(w)2 + 2λ(v)λ(w), whih an be applied in ( 2.18) to onludeeasily that there are two onstants c1, c > 0 suh that

∥∥Λ2
dQ

+
c (g)

∥∥ −
∥∥Λ2

dQ
−
d (g)

∥∥ ≤

≤ c1

∫ R

0
dr

∫

Ω×R3×R3×R3

r2λ(v)λ(w)1+
γ
2 g(x,v)g(x + rn,w)dndvdwdx ≤

≤ c ‖Λdg‖
∥∥Λ2

dg
∥∥ , (4.14)for all g ∈ L1

6,+. Finally, it is obvious that the group U t (generated by
A) ommutes with the semigroup V t generated by Λd, and ΛkQ+(U ·g) ∈
L1

loc(R+;X+) for all g ∈ ∩∞
n=1L

1
n,+, k = 1, 2, .....Therefore, by Corollary 3.1, we have the following result ([11℄):Theorem 4.2 Let f0 ∈ L1

4,+ in problem (4.12). Then Eq. (4.12) has aunique positive mild solution f suh that f(t) ∈ L1
4,+, t ≥ 0, and ‖f(t)‖L1

4
isloally bounded on R+. In addition, f , (1 + |v|2)f ∈ C(R+;L1),

‖f(t)‖L1
2
+

∫ t

0
∆d(f(s))ds = ‖f0‖L1

2
(t ≥ 0), (4.15)



84 Ceil Pompiliu Grünfeldand there is a onstant c > 0 suh that
‖f(t)‖L1

4
≤ exp(c ‖f0‖L1

2
t) ‖f0‖L1

4
(t ≥ 0). (4.16)The argument of Theorem 4.2 an be repeated with obvious modi�ationsto provide a similar result for the spae-homogeneous version of Eq. (2.14),whih oinides with the fore-free, three dimensional spae-homogeneousBoltzmann model for granular �ows, [5, 6℄.4.3. Povzner-like model with hemial reationsLet X := L1(R3 ×R3; dxdv)N be equipped with the order ≤ indued by theorder of the omponents (i.e., the natural order of L1). The norm on X isde�ned as

‖g‖ :=
N∑

i=1

∫

R3×R3

|gi(x,v)| dxdv =
N∑

i=1

‖gi‖L1 . (4.17)Denote by L1
k := L1

k(R
3×R3; dxdv), k ∈ R, the spae of measurable funtions

g : R3 × R3 7→ R satisfying
‖g‖L1

k
:=

∫

R3×R3

(1 + |v|2 )
k
2 |g(x,v)| dxdv (4.18)and let L1

k,+ be the positive one in L1
k.It is natural to formulate the i.v.p. (2.29) in the spae X.Under the onditions of the model, (2.30) and (2.31) de�ne Q+

i and Q−
i ,

1 ≤ i ≤ N , as operators from the ommon domain (L1
2)

N ⊂ X to L1(R3; dv).De�ning the operators Q±
B : (L1

2)
N ⊂ X 7→ X by Q±

B = (Q±
1 , ....., Q

±
N ), wean write the i.v.p. for Eq. (2.29) in X as

d

dt
f +A = Q+

B(t, f) −Q−
B(t, f), 0 ≤ f(0) = f0 ∈ X (t > 0), (4.19)where A is the in�nitesimal generator of the C0 group of isometries {U t}t∈Ron X, given by (U tf)(x,v) := f((x− tv,v).De�ne the positive losed linear operator ΛB : (L1

2)
N 7→ X by (ΛBg)i(v) =

λi(v)g(v) a.e. on R3 × R3 , where λi(v) := mi +mi |v|2 /2 +Ei, 1 ≤ i ≤ N.One an state the following result ([12℄):



An Introdution to Monotoniity Methods 85Theorem 4.3 Suppose that in problem (4.19), f0,i ∈ L1
4,+ , 1 ≤ i ≤ N .Then Eq. (4.19) has a unique mild solution f(t) = (f1, ..., fN ) suh that

fi(t) ∈ L1
4,+, t ≥ 0, and ‖fi(t)‖L1

4
is loally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.20)and there is a onstant ρ0 > 0 suh that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρ0 ‖ΛBf0‖ t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.21)The above result follows by applying Theorem 3.1 in the ase Λ = Λ1 = ΛB .Indeed, the domain onditions of Theorem 3.1, as well as properties (A0),(A1) an be immediately heked (with ∆ = 0, owing to (2.38). Next, let
a0 > 0 be some onstant, and de�ne a(x) := a0x. Owing to (2.38), for a0su�iently large, the map L1

2,+ ∋ g → a0 ‖ΛBg‖ΛBg −Q−(g) ∈ X satis�es(A2). Finally, note that, as a onsequene of (2.39) (and of (2.37)), thereexists a number ρ0 > 0 suh that
N∑

i=1

∫

R3

(Ψ
(0)
i + Ψ

(4)
i )2

[
Q+

i (g) −Q−
i (g)

]
dxdv ≤

≤ ρ0

∥∥∥(1 + |v|4 )g
∥∥∥

L1

∥∥∥(1 + |v|2 )g
∥∥∥

L1
, (4.22)for, say, all g ∈ (L1

6+)N .Then inequality (3.13) gives exatly (A3) with ρ(x) := ρ0x.4.4. Boltzmann model with inelasti ollisions and reationsLet X := (L1(R3; dv))N be equipped with the order ≤ indued by the orderof the omponents (i.e., the natural order of L1). The norm on X is de�nedas
‖g‖ :=

N∑

i=1

∫

R3

|gi(v)| dv =
N∑

i=1

‖gi‖L1 . (4.23)Denote by L1
k := L1

k(R
3; dv), k ∈ R, the spae of measurable funtions

g : R3 × R3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(v)| dv <∞ (4.24)



86 Ceil Pompiliu Grünfeldand let L1
k,+ be the positive one in L1

k.It is natural to formulate the i.v.p. for Eq. (2.47) in the spae X. Underthe above onditions, (2.48) and (2.49) de�ne Q+
i and Q−

i , 1 ≤ i ≤ N ,respetively, as operators from the ommon domain D = (L1
2)

N ⊂ X to
L1(R3; dv). De�ning Q±

B : D ⊂ X 7→ X by Q±
B = (Q±

1 , ....., Q
±
N ), we anwrite the i.v.p. for Eq. (2.47) in X

d

dt
f = Q+

B(f) −Q−
B(f), f(0) = f0 = (f0,1, ..., f0,N ) ∈ X+. (4.25)We shall prove the existene of solutions to problem (4.25), by applyingTheorem 3.1a) (in the ase Λ = Λ1). To this end, let the positive losedlinear operator ΛB : (L1
2)

N 7→ X be de�ned on omponents by (ΛBg)i(v) =
λi(v)g(v) a.e. on R3 × R3, where λi(v) := mi +mi |v|2 /2 + Ei, 1 ≤ i ≤ N .Denote lγ(w) :=

∑
i∈N (γ)

∑γi
j=1 λi(wi,j); γ ∈ M. Then learly, lγ(w) =

Mγ +Wγ(w), hene
0 ≤Wγ(w) < lγ(w). (4.26)In addition, de�ning λγ(w) :=
∏

i∈N (γ)

∏γi
j=1 λi(wi,j), γ ∈ M, we have

lγ(w) ≤ |γ|E1−|γ|λγ(w), (4.27)where E := min{mi + Ei : 1 ≤ i ≤ N}. It is useful to remark that, sine
Wγ(w) ≥ E |γ| > 0, and 0 ≤ q ≤ 1, then by (2.56), (4.26) and (4.27),

νβ,α(w) ≤ Cλα(w) (w ∈ R|α|, a.e.), (4.28)for all α, β ∈ M. Here C = C(E,K) > 0 is a number depending on E and
K (reall that K is the maximum number of partners in a reation hannel).To apply Theorem 3.1a) to (4.25), �rst remark that Q±

B and ΛB verify thedomain onditions imposed to Q± and Λ by the theorem. Moreover, ΛB hasthe properties required for Λ in (A0). Further, observe that formula (2.57)provides a orrespondent to (3.40), spei�ally,
∆B(g) :=

∥∥ΛBQ
−
B(g)

∥∥ −
∥∥ΛBQ

+
B(g)

∥∥ = 0 (g ∈ (L1
4,+)N ). (4.29)To obtain a orrespondent to (3.42), let sγ(w) :=

∑
i∈N (γ)

∑γi
j=1 λi( wi,j)

2.Next, using the de�nition of Q+
B and property (B2), and applying the obviousinequality sα(w) ≤ lα(w)2, we �nd that if g ∈ (L1

6,+)N , then
∥∥Λ2

BQ
+
B(g)

∥∥ =
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn ≤
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≤

∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn. (4.30)We apply property (3.9) in the last integral. Then interhanging α and β,we get
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈ M

∫

R3|α|×Ωβ

(lβ ◦ uβ,α)2(w,n)rβ,α(w,n)gα(w)dwdn.(4.31)Sine lβ(w) = Mβ +Wβ(w), property (B3) implies that (lβ ◦ uβ,α)(w,n) =
lα(w) for all (α, β) ∈ CM , w ∈ D+

β,α. This and (B1) enable us to deduefrom (4.31) that
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2rβ,α(w,n)gα(w)dwdn. (4.32)Now, using the de�nitions of lα(w) and Q−
B , and then, taking advantage of(2.56) and (4.26), we obtain from (4.32)

∥∥Λ2
BQ

+
B(g)

∥∥ ≤

≤
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)rβ,α(w,n)gα(w)dwdn + ρB(‖ΛBg‖)
∥∥Λ2

Bg
∥∥ =

=
∥∥Λ2

BQ
−
B(g)

∥∥ + ρB(‖(ΛBg‖)
∥∥Λ2

Bg
∥∥ , (4.33)where ρB is a positive non-dereasing (polynomial) funtion.Therefore, the last inequality is the required orrespondent to (3.42) (in thease Λ = Λ1).Further, let a0 > 0 be some onstant, and de�ne a(x) := a0

∑NK
p=1 x

p, x ≥ 0.Therefore, a(‖ΛBg‖) = a0
∑NK

p=1 ‖ΛBg‖p. But eah term ‖ΛBg‖p in the r.h.sof the last equality an be expressed by (4.23), and the resulting expressionan be expanded by the multinomial formula. Then, after some elementaryalgebra we get the following useful expression
a(‖ΛBg‖) = a0

∑

γ∈M, |γ|≥1

cγ,i

∫

R3|γ|

λγ(w)gγ(w)dw, (4.34)where cγ,i > 0 are stritly positive, onstant oe�ients, γ ∈ M, |γ| ≥ 1,
1 ≤ i ≤ N .



88 Ceil Pompiliu GrünfeldWe show that if a0 is large enough, then (L1
2,+)N ∋ g 7→ a(‖ΛBf‖)ΛBg −

Q−
B(g) ∈ X is positive and isotone. To this end, �rst note that one an write
Q−

i (g)(v) = Ri(g)(v) gi(v), (g ∈ (L1
2,+)N , v ∈ R3 a.e., 1 ≤ i ≤ N),(4.35)where

Ri(g)(v) :=
∑

α,β∈M

αi

∫

R3|α|−3


νβ,α(w)

∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.36)with νβ,α as in (2.56). Hene,
a(‖ΛBg‖)(ΛBg)i(v)−Q−

i (g)(v) = [a(‖ΛBg‖)λi(v) −Ri(g)(v)] gi(v). (4.37)It is onvenient to set
RA

i (g)(v) := C
∑

α,β∈M

αi

∫

R3|α|−3


λ

α(w)
∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.38)with C as in (4.28). Summing on β in (4.38), using the expliit form of
λα(w), and invoking property (B1), we are easily led to

RA
i (g)(v) = Cλi(v)

∑

γ∈M, |γ|≥1

qγ,i

∫

R3|γ|

λγ(w)gγ(w) dw, (4.39)where qγ,i ≥ 0 are onstant oe�ients, γ ∈ M, |γ| ≥ 1, 1 ≤ i ≤ N .We introdue (4.34) and (4.38) in (4.37). Consequently, for v ∈ R3 a.e.,
a(‖ΛBg‖)(ΛBg)i(v) −Q−

i (g)(v) = [RA
i (g)(v) −Ri(g)(v)]gi(v) + Ti(g)(v),(4.40)where

Ti(g)(v) := λi(v)gi(v)
∑

γ∈M, |γ|≥1

(a0cγ,i −Cqγ,i)

∫

R3|γ|

λγ(w)gγ(w)dw. (4.41)Now we ompare (4.36) and (4.38), by taking advantage of (4.28). It fol-lows that the map (L1
2,+)N ∋ g 7→ [RA

i (g) − Ri(g)]gi ∈ L1 is positive and



An Introdution to Monotoniity Methods 89isotone, 1 ≤ i ≤ N . Moreover, beause of the form of Ti(g), if a0 > 0is su�iently large, then the mapping (L1
2,+)N ∋ g 7→ Ti(g)(v) ∈ L1 ispositive and isotone for all i. In this ase, by virtue of (4.40), the map

(L1
2,+)N ∋ g 7→ a(‖ΛBg‖)ΛBg −Q−

B(g) ∈ X is also positive and isotone.In onlusion, the onditions of Theorem 3.1a) are ful�lled (in the ase Λ =
Λ1), so that we are in position to state the following result ([11℄):Theorem 4.4 Suppose that in problem (4.25), f0,i ∈ L1

4,+, 1 ≤ i ≤ N .Then Eq. (4.25) has a unique strong solution f(t) = (f1, ..., fN ) suh that
fi(t) ∈ L1

4,+, t ≥ 0, and ‖fi(t)‖L1
4
is loally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.42)and there is a non-dereasing funtion ρB : R+ 7→ R+ suh that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρB(‖f0‖)t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.43)Theorem 4.4 does not state the onservation of mass, momentum and en-ergy, but the onservation (in arbitrary units) of the quantity mass+(total)energy. However, the properties of f(t), f. Theorem 4.4, allow for hekingimmediately the separate onservation for eah of the above quantities.Theorem 4.4 redues to the main monotoniity result of [2℄ when Eq. (4.25)is partiularized to the ase of the lassial Boltzmann equation. Moreover,in that ase, using suitable additional Povzner-like estimations, we an re-obtain the general moment estimations of [2℄, as appliation of Prop. 3.4b).Finally, remark that similar analyses as for Theorems 4.2 and 4.4 an bedeveloped for the main model onsidered, e.g., in [27℄.4.5. Nonlinear von Neumann-Boltzmann equationAs Λ is unbounded (by onstrution), the existene of solutions to problem(2.62) seems not immediate from general onsiderations.However, one an show that the onditions of Theorem 3.1 are ful�lled with
a(x) = x.First reall that Tr[Λk(Q+ − Q−)](F ) = 0, for all 0 ≤ F ∈ D(Λk) ∩ X+,
k = 0, 1. Then observe that, sine Λ ≥ I, it follows easily that Tr[Λ2(Q+ −
Q−)](F ) ≤ εTr(ΛF )TrF ≤ εTr(ΛF )Tr(Λ2F ) for all 0 ≤ F ∈ D(Λ3) ∩X+.So we an now formulate our existene result ([12℄):



90 Ceil Pompiliu GrünfeldTheorem 4.5 Suppose that in problem (2.62), 0 ≤ F0 ∈ D(Λ2). ThenEq. (2.62) has a unique mild solution 0 ≤ F (t) ∈ D(Λ2), and TrF (t) isloally bounded. Moreover, F,ΛF ∈ C(R+;X), TrF (t) = TrF0, Tr(ΛF )(t) =
Tr(ΛF0) and Tr(Λ2F )(t) ≤ exp(tεTr(ΛF0))Tr(Λ2F0) (t ≥ 0).5. Conluding remarksThe results of the previous setion of appliations an be easily ompletedtaking advantage of Theorem 3.2. As an example, the previous Theorem 4.1an be ompleted as followsProposition 5.1 Let f0 ∈ L1

β,+ in problem (4.2). Then Eq. (4.2) has astrong solution f(t) ∈ L1
β,+, t ≥ 0.As mentioned before, the uniqueness is no longer ensured in the latter ase.Theorem 3.2 extends the main existene result of [11℄. The other generalexistene results formulated in [11℄ an be similarly ompleted, with obviousmodi�ations. This allows to reonsider the appliations of [11℄, aordingly,in an obvious manner.Prop. 3.3 provides uniqueness of the solutions in the speial ase when ∆vanishes on a rather large set. This an be applied, for instane, to thespae-homogeneous Boltzmann equation with hard potentials, to obtain asimilar existene result as in, e.g., [20℄. However, in a more general ase,the uniqueness problem, under the onditions of Theorem 3.2, remains open.Here we an however remark that the regularity onditions required in thetheorem might be neessary to ensure the uniqueness of the strong solutions.Indeed, examples of non-unique (but) less regular solutions of the Boltzmannequation have been reently disovered, [26℄, [19℄.In this hapter, we presented various examples of existene results for gen-eralized Boltzmann models obtained by monotoniity methods. The abovemethods are potentially appliable to investigate other evolution problems.On the other hand, the results presented in this review desribe only par-tially the properties of the models onsidered. They must be ompleted bya thorough study of other properties of the models, e.g. the existene of sta-tionary or/and equilibrium solutions, Lyapunov funtionals, H-theorems (seee.g. [7℄), asymptoti properties, onstrution of e�etive numerial methods.



An Introdution to Monotoniity Methods 916. Appendix1) Sketh of the Proof of Lemma 3.3Property B(·, gi, hj) ∈ L1
loc(R+;X+), i, j = 1, 2, follows from (A1), (A2) andRemark 3.2.To prove (3.58), let

yi(t) :=

∫ t

0
∆(s, hi(s))ds (i = 1, 2). (6.1)Clearly, 0 ≤ y1(t) ≤ y2(t), beause of the isotoniity of ∆(t, ·) (f. (A1)).Further, de�ne F (x, y) := a(x+ y)− a(x), with a as in (A2). The propertiesof a (f.(A2)) imply

F (x∗, y) − F (x, y) =

∫ y

0

[
a′(x∗ + ξ) − a′(x+ ξ)

]
dξ ≥ 0 (6.2)for all 0 ≤ x ≤ x∗ and y ≥ 0. Then one an show easily (invoking (A2), theisotoniity of Q+(t, ·) and the obvious inequality Λg1(t) ≤ Λg2(t)) that

0 ≤ B(t, g1, h1) = B(t, g1, 0) + F (‖Λg1(t)‖ , y1(t)) Λg1(t) ≤

≤ B(t, g2, 0) + F (‖Λg1(t)‖ , y1(t)) Λg2(t) (6.3)and
0 ≤ F (‖Λg1(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y2(t)) . (6.4)Inequalities (6.3) and (6.4) an be now easily ombined to obtain (3.58). 22) Sketh of the Proof of Lemma 3.4a) Sine D∞

+ is p-saturated and ΛkQ±(t, ·) are positive and isotone, the keypoint is to show that for eah T > 0 and n = 1, 2, ..., there is gn,T ∈ D∞
+suh that

0 ≤ fn(t) ≤ gn,T (0 ≤ t ≤ T a.e.). (6.5)Then (3.41) gives Q−(t, gn,T ) ∈ D∞
+ a.e. on R+, hene ΛkQ−(·, gn,T ) ∈

L1
loc(R+;X+) for all k = 0, 1, 2, .... The same properties hold for Q+(t, gn,T )and ΛkQ+(·, gn,T ), respetively (by virtue of the assumptions of Theorem3.1a) and by (3.44)).Inequality (6.5) an be proved by indution.Indeed, note that (6.5) is trivially veri�ed for n = 1 by g1,T := 0, and for

n = 2 by g2,T := f0. Further, at the indution step, assuming that (6.5) is



92 Ceil Pompiliu Grünfeldful�lled for n = 1, 2, ..q − 1 (with q ≥ 3) applying, in essene, the propertiesof ∆, a, and (3.28), one �rst obtains
Λk

∫ t

0
B(s, gn−1,T , gn−2,T )ds =

∫ t

0
ΛkB(s, gn−1,T , gn−2,T )ds (0 ≤ t ≤ T ),(6.6)for all k = 1, 2, ... and n = 1, 2, ..., q − 1. Then observe that fq−1(t) ≤ gq−1,Tand fq−2(t) ≤ gq−2,T satisfy the onditions of Lemma 3.3 for g1 ≤ g2 and

h1 ≤ h2, respetively. Thus, applying onveniently (3.56) and (3.58) in(3.60), and invoking (6.6), we get
0 ≤ fq(t) ≤ f0 +

∫ T

0
B(s, gq−1,T , gq−2,T )ds := gq,T ∈ D∞

+ (0 ≤ t ≤ T ).(6.7)b) As before, it is su�ient to show by indution that property (6.5) is veri�edby gn,T ∈ D(Λ3) ∩X+.First note that if g1,T = 0 and g2,T = f0, then (6.5) is trivially veri�ed for
n = 1, 2, respetively.The indution step is simpler than in a), beause now one an make use ofthe fat that V t is C0. Then, ∫ t

0 V
shds ∈ D(Λ) for all h ∈ X, t ≥ 0, whih,in our ase, implies (for any 0 ≤ t ≤ T )

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds =

∫ t

0
V sB(T, gq−1,T , gq−2,T )ds ∈ D(Λ3)∩X+.(6.8)Sine, in our ase, B(t, gq−1,T , gq−2,T ) ≤ B(T, gq−1,T , gq−2,T ), we onludethe indution step, using property (6.8) with the key inequality

0 ≤ fq(t) ≤ f0 +

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds (0 ≤ t ≤ T ), (6.9)whih follows, in essene, by Lemma 3.3, and by applying (3.56) and (3.58)in (3.60).) The statement follows from simple regularity onsiderations and somediret omputation.d) Obviously, 0 = f1(t) ≤ f2(t) ≤ f3(t) a.e.. Then a straightforward indu-tion, applying (3.58), shows that {fn(t)} is a.e. inreasing.For the rest of the proof, note that (3.63) implies (3.64). Inequality (3.63) anbe proved by indution. Indeed, sine 0 = f1 ≤ f2(t) ≤ f0, and ∆(t, 0) = 0a.e. (f. Remark 3.1), formula (3.63) is trivially veri�ed for n = 2. Let q ≥ 3



An Introdution to Monotoniity Methods 93and suppose inequality (3.63) to be valid for n = 2, 3, ..., q − 1. If n = q in(3.62), then the positivity of a and 0 ≤ Λfq−1(t) ≤ Λfq(t) give
fq(t) ≤ f0 +

∫ t

0
Q(s, fq−1(s))ds+

+

∫ t

0

[
a

(
‖Λfq−1(s)‖ +

∫ s

0
∆(τ, fq−2(τ))dτ

)
− a (‖Λf0‖)

]
Λfq(s)ds.(6.10)Aording to the indution hypothesis, (3.63) holds true for n = q−1. Hene(3.64) is also valid for n = q − 1, as onluded before. Then a(‖Λfq−1(s)‖ +∫ s

0 ∆(τ, fq−2(τ))dτ)) ≤ a (‖Λf0‖), beause a is non-dereasing. As Λfq(s) ispositive, learly the integral term ontaining Λfq(s), in the r.h.s. of (6.10) isnegative. Then (3.63) beomes true for n = q.e) Note that Q±(t, fn(t)) ∈ D(Γ), for a.e. t ≥ 0. Also, ΓQ±(·, fn(·)) ∈
L1

loc(R+;X+). Indeed, let T > 0 and gn,T ≥ fn(t) be as in a). If Γ is of typeD on D∞
+ (on D(Λ2) ∩ X+), then (3.36) and (3.41) give ‖ΓQ±(t, fn(t))‖ ≤

‖ΓQ±(t, gn,T )‖ ≤ ‖ΓQ−(t, gn,T )‖ ≤ a(‖gn,T ‖) ‖ΓΛgn,T ‖ for a.e. 0 ≤ t ≤ T .On the other hand, if Γ satis�es (3.46), then (3.41) implies
∥∥ΓQ+(t, fn(t))

∥∥ ≤
∥∥ΓQ−(t, fn(t))

∥∥+ ρΓ(‖Λ1gn,T ‖) ‖Γgn,T ‖ ≤

≤ a(‖gn,T ‖) ‖ΓΛgn,T‖ + ρΓ(‖Λ1gn,T‖) ‖Γgn,T‖ (0 ≤ t ≤ T a.e.).But (3.63) is of the form (3.37), and the above onsiderations show thatLemma 3.2 applies (with Γ instead of Λ). Hene,
‖Γfn(t)‖ +

∫ t

0
∆(s, fn−1(s); Γ, Q)ds ≤ ‖Γf0‖ (t ≥ 0, n ≥ 2). (6.11)Now the proof an be immediately onluded: if n = 1, then formula (3.65)is trivially satis�ed; if n ≥ 2, then (3.65) is diretly implied by (6.11).To obtain (3.66) observe that Λ2 satis�es the onditions for Γ in e).f) First apply inequality (3.46) in (6.11). It follows that

‖Γfn(t)‖ ≤ ‖Γf0‖ +

∫ t

0
ρΓ(‖Λ1fn−1(s)‖) ‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2).(6.12)But Λ1 satis�es the onditions of e) in the present lemma, hene ‖Λ1fn(t)‖ ≤

‖Λ1f0‖, t ≥ 0, n = 1, 2, ... . Introduing the last inequality in (4.16), weobtain
‖Γfn(t)‖ ≤ ‖Γf0‖+ ρΓ(‖Λ1f0‖)

∫ t

0
‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2). (6.13)



94 Ceil Pompiliu GrünfeldFinally, sine (3.67) is obviously satis�ed for n = 1, 2, a straightforward(Gronwall type) indution in (6.13) onludes the proof. 2Referenes[1℄ Aldous, D. J., Deterministi and stohasti models for oalesene(aggregation and oagulation): A review of the mean-�eld theory forprobabilists, Bernoulli, 5 (1999), pp. 3�48.[2℄ Arkeryd, L., On the Boltzmann equation I & II, Arh. Ration. Meh.Anal., 45 (1972), pp. 1�34.[3℄ Bellomo, N., Polewzak, J., The generalized Boltzmann equationsolution and exponential trend to equilibrium, Transport Theory Statist.Phys., 26 (1997), pp. 661�677.[4℄ Bellomo, N., Pulvirenti M., Eds., Modeling in Applied Sienes:A Kineti Theory Approah, Series:, Model. Simul. Si. Eng. Tehnol.,Birkhäuser, Boston, 2000.[5℄ Benedetto, D., Caglioti, E., Pulvirenti, M., Colletive Be-haviour of One-Dimensional Granular Media, in Modeling in AppliedSienes: A Kineti Theory Approah, Series: Model. Simul. Si. Eng.Tehnol., pp. 81�110, Bellomo, N., Pulvirenti, M., Eds., Birkhäuser,Boston, 2000.[6℄ Bobylev, A. V., Cerginani, C. Self-Similar asymptotis for theBoltzmann equation with inelasti and elasti interations, J. Satist.Phys., 110 (2003), pp. 333�375.[7℄ De Angelis, E.,Grünfeld, C. P., The Cauhy problem for the gener-alized Boltzmann equation with dissipative ollisions, Appl. Math. Lett.,14 (2001), pp. 941�947.[8℄ De Angelis, E., Grünfeld, C. P., Modeling and analyti problemsfor a generalized Boltzmann equation for a multiomponent reating gas,Nonlinear Anal. Real World Appl., 4 (2003), pp. 189�202.[9℄ Grünfeld, C. P., Nonlinear Kineti Models with Chemial Reations,in Modeling in Applied Sienes: A Kineti Theory Approah, Series:Model. Simul. Si. Eng. Tehnol., pp. 173�224, Bellomo, N., Pulvirenti,M., Eds., Birkhäuser, Boston, 2000.



An Introdution to Monotoniity Methods 95[10℄ Grünfeld, C. P., On a lass of kineti equations for reating gas mix-tures with multiple ollisions, C. R. Aad. Si. Paris Sér. I Math., 316(1993), pp. 953�958.[11℄ Grünfeld, C. P., A Nonlinear Evolution Equation in an OrderedSpae, Arising from Kineti Theory, Commun. in Contemp. Math., 9(2007), pp. 217�251.[12℄ Grünfeld, C. P., On an Evolution Equation in an Ordered Spae,Anal. Univ. Bu., series Mathematis, LV (2006), pp. 79�90.[13℄ Grünfeld, C. P., On a Class of Nonlinear Evolution Equations in anAbstrat Lebesgue Spae, to appear in Proeedings of the Fifth Interna-tional Conferene on Dynami Systems and Appliations, May 30-June2, 2007, Atlanta, USA, Dynami Publishers, In.[14℄ Grünfeld, C. P., Georgesu, E., On a lass of kineti equations forreating gas mixtures, Mat. Fiz. Anal. Geom., 2 (1995), pp. 408�435.[15℄ Grünfeld, C. P., Marinesu, D., On the numerial simulation ofa lass of reative Boltzmann type equations, Transport Theory Statist.Phys., 26 (1997), pp. 287�318.[16℄ Hille, E., Phillips, R. S., Funtional Analysis and Semi-Groups,Amerian Mathematial Soiety, Providene, 1974.[17℄ Kantorovih, L. V., Akilov, G. P., Funtional Analysis, PergamonPress, Oxford � Elmsford � N.Y., 1982.[18℄ Lahowiz, M. Pulvirenti, M., A stohasti system of partiles mod-elling the Euler equations, Arh. Ration. Meh. Anal., 109 (1990), pp.81�93.[19℄ Lu, X., Wennberg, B., Solutions with inreasing energy for the spa-tially homogeneous Boltzmann equation, Nonlinear Anal. Real WorldAppl, 3 (2002), pp. 243�258.[20℄ Mishler, S., Wennberg, B., On the spatially homogeneous Boltz-mann equation, Ann. de l'I.H.P., setion C, 16 (1999), pp. 467�501.[21℄ Müller, H. Zur allgemeinen Theorie der rashen Koagulation, Kolloid-Beih., 27 (1928), pp. 223�250.[22℄ Norris, J. R., Smoluhowski's oagulation equation: Uniqueness,nonuniqueness and a hydrodynami limit for the stohasti oalesent,Ann. Appl. Probab., 9 (1999), pp. 78�109.



96 Ceil Pompiliu Grünfeld[23℄ Povzner, A. Ya., The Boltzmann equation in the kineti theory ofgases, Mat. Sb. (N. S.), 58(100) (1962), pp. 65�86.[24℄ Shaefer, H. H., Banah Latties and Positive Operators, Springer-Verlag, N. Y. � Heidelberg, 1974.[25℄ von Smoluhowski, M., Drei Vorträge über Di�usion, BrownsheMolekular-bewegung und Koagulation von Kolloidteilhen, Phys. Z., 17(1916), pp. 557�571, 585�599.[26℄ Wennberg, B., An example of nonuniqueness for solutions to the ho-mogeneous Boltzmann equation, J. Statist. Phys., 95 (1999), pp. 1�2.[27℄ Wiesen, B., On a phenomenologial generalized Boltzmann equation,J. Math. Phys. 33 (1992) pp. 1786�1798.[28℄ Wild, E., On Boltzmann's equation in the kineti theory of gases, Pro.Camb. Philos. So., 47 (1951), pp. 602�609.



Topis in Applied Mathematis & Mathematial Physis© 2008, Editura Aademiei RomâneEstimating the number of negative eigenvalues of arelativisti Hamiltonian with regular magneti �eldV. Iftimie∗ 1 2, M. M ntoiu† 1 3 and R. Purie∗ 1 4
Contents1. Introdution . . . . . . . . . . . . . . . . . . . . . 982. The Feller semigroup . . . . . . . . . . . . . . . 1013. The perturbed Hamiltonian . . . . . . . . . . . 1024. The Feynman-Ka-It� formula . . . . . . . . . . 1065. Proof of the bound for N(0; V ) . . . . . . . . . 1105.1. Redution to smooth, ompatly supported po-tentials . . . . . . . . . . . . . . . . . . . . . . . . 1115.2. Proof of the Theorem 1.1 without magneti �eld . 1156. Proof of the bounds in the magneti ase . . . 123

1Institute of Mathematis "Simion Stoilow" of the Romanian Aademy,2The Faulty of Mathematis and Informatis of the Buharest University,e-mail: Viorel.Iftimie�imar.ro3Departamento de Matematias, Faultad de Cienias, Universidad de Chile,Santiago de Chile, e-mail: Marius.Mantoiu�imar.ro4Laboratoire Europeen Assoie CNRS Math-Mode,e-mail: Radu.Purie�imar.ro
∗ Partial support from the Contrat no. 2-CEx06-11-18/2006
† Partial support from Contrat no 2-CEx06-11-34/25.07.2006 and from ProyetoFondeyt no. 1085162.



98 V. Iftimie et al.1. IntrodutionFor the Shrödinger operator −∆ + V on L2(Rd) (d ≥ 3), one has the well-known CLR (Cwikel-Lieb-Rosenblum) estimation for N(V ), the number ofnegative eigenvalues:
N(V ) ≤ c(d)

∫

Rd

dx |V−(x)|d/2 . (1.1)
V is the multipliation operator with the funtion V ∈ L1

loc(R
d) and V− :=

(|V |−V )/2 ∈ Ld/2(Rd); the onstant c(d) > 0 only depends on the dimension
d ≥ 3 (see [47℄, Th. XII.12).There exist at least four di�erent proofs of this inequality. Rosenblum [35℄uses "piee-wise polynomial approximation in Sobolev spaes". Lieb [25℄relies on the Feynman-Ka formula. Cwikel [4℄ uses ideas from interpolationtheory. Finally, Li and Yau [31℄ make a heat kernel analysis.The inequality (1.1) has been extended in [1℄ and [48℄ to the ase of operatorswith magneti �elds (−i∇ − A)2 + V , where the omponents of the vetorpotential A = (A1, . . . , Ad) belong to L2

loc(R
d). The basi ingredient of theproof is the Feynman-Ka-Ito formula. Melgaard and Rosenblum [41℄ gener-alizes this result (by a di�erent method) to a lass of di�erential operators ofseond order with variable oe�ients. The idea for treating the relativistiHamiltonian (without a magneti �eld), by replaing Brownian motion witha Lévy proess, appears in [5℄ and we follow it in our work giving all thetehnial details. Some similar results but for a di�erent Hamiltonian andwith di�erent tehniques have been obtained reently in [8℄.Our aim in this paper is to obtain an estimation of the type (1.1) for anoperator that is a good andidate for a relativisti Hamiltonian with mag-neti �eld (for salar partiles); it is gauge ovariant and obtained througha quantization proedure from the lassial andidate. We shall make useof a "magneti pseudodi�erential alulus" that has been introdued anddeveloped in some previous papers [34℄, [35℄, [27℄, [28℄, [36℄, [38℄, [24℄.Let us denote by C∞

pol(R
d) the family of funtions f ∈ C∞(Rd) for whih allthe derivatives ∂αf , α ∈ Nd have polynomial growth.Let B be a magneti �eld (a 2-form) with omponents Bjk ∈ C∞

pol(R
d). Itis known that it an be expressed as the di�erential B = dA of a vetorpotential (a 1-form) A = (A1, . . . , Ad) with Aj ∈ C∞

pol(R
d), j = 1, . . . , d; an



eigenvalues of a relativisti Hamiltonian 99example is the transversal gauge:
Aj(x) = −

n∑

k=1

∫ 1

0
ds Bjk(sx)sxk.We denote by

ΓA(x, y) :=

∫ 1

0
dsA((1 − s)x+ sy) =

∫

[x,y]
A, x, y ∈ Rd. (1.2)the irulation of A along the segment [x, y], x, y ∈ Rd. If a is a symbolon Rd, one de�nes by an osillatory integral the linear ontinuous operator

OpA(a) : S(Rd) → S∗(Rd) by
[
OpA(a)

]
(x) := (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξe
−i

R
[x,y]

A
a

(
x+ y

2
, ξ

)
u(y),(1.3)The orrespondene a 7→ OpA(a) is meant to be a quantization and ouldbe regarded as a funtional alulus OpA(a) = a(Q,ΠA) for the family ofnon-ommuting operators (Q1, . . . , Qd; Π

A
1 , . . . ,Π

A
d ), where Q is the positionoperator, ΠA := D −A(Q) is the magneti momentum, with D := −i∇.If a belongs to the Shwartz spae S(R2d), then OpA(a) ats ontinuously inthe spaes S(Rd) and S∗(Rd), respetively. It enjoys the important physialproperty of being gauge ovariant: if ϕ ∈ C∞

pol(R
d) is a real funtion, Aand A′ := A + dϕ de�ne the same magneti �eld and one prove easily that

OpA′
(a) = eiϕOpA(a)e−iϕ. The property is not shared by the quantization

a 7→ OpA(a) := Op(a ◦ νA), where Op is the usual Weyl quantization and
νA : Rd → Rd, νA(x, ξ) := (x, ξ−A(a)) is an implementation of "the minimaloupling".We mention that in the referenes quoted above, a symboli alulus isdeveloped for the magneti pseudodi�erential operators (1.3). In partiu-lar, a symbol omposition (a, b) 7→ a♯Bb is de�ned and studied, verifying
OpA(a)OpA(b) = OpA(a♯Bb). It depends only on the magneti �eld B, nohoie of a gauge being needed. The formalism has a C∗-algebrai interpre-tation in terms of twisted rossed produts, f. [35℄, [37℄, [39℄ and it has beenused in [40℄ for the spetral theory of quantum Hamiltonians with anisotropipotentials and magneti �elds.We shall denote byHA the unbounded operator in L2(Rd) de�ned on C∞

0 (Rd)by HAu := OpA(h)u, with h(x, ξ) ≡ h(ξ) := 〈ξ〉 − 1 = (1 + |ξ|2)1/2 − 1. One



100 V. Iftimie et al.an express it as
(HAu) (x) = (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξh
(
ξ − ΓA(x, y)

)
u(y). (1.4)

HA is a symmetri operator and, as seen below, essentially self-adjoint on
C∞

0 (Rd). Also denoting its losure by HA, we will have HA ≥ 0.Ihinose and Tamura [19℄, [20℄, using the quantization a 7→ (Op)A(a), studyanother relativisti Hamiltonian with magneti �eld de�ned by
(
H ′

Au
)
(x) = (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξh

(
ξ −A

(
x+ y

2

))
u(y), (1.5)for whih they prove many interesting properties. Unfortunately, H ′

A is notgauge ovariant (f. [24℄). Many of the properties of H ′
A also hold for HA(by replaing A (x+y

2

) with ΓA(x, y) in the statements and proofs) and thiswill be used in the sequel.Aside the magneti �eld B = dA, we shall also onsider an eletri potential
V ∈ L1

loc(R
d), real funtion expressed as V = V+ − V−, V± ≥ 0, suh that

V− ∈ Ld+k(Rd)∩Ld/2+k(Rd) for some k ≥ 0. We are interested in the opera-tor H(A,V ) := HA +V ; it will be shown that it is well-de�ned in form senseas a self-adjoint operator in L2(Rd), with essential spetrum inluded intothe positive real axis. Taking advantage of gauge ovariane, we denote by
N(B,V ) the number of stritly negative eigenvalues of H(A,V ) (multipliityounted); it only depends on the potential V and the magneti �eld B.The main result of the artile isTheorem 1.1 Let B = dA be a magneti �eld with Bjk ∈ C∞

pol(R
d), Aj ∈

C∞
pol(R

d) and let V = V+ − V− ∈ L1
loc(Rd)

be a real funtion with V± ≥ 0 and
V− ∈ Ld(Rd)∩Ld/2(Rd). Then there exists a onstant Cd, only depending onthe dimension d ≥ 3, suh that

N(B,V ) ≤ Cd

(∫

Rd

dxV−(x)d +

∫

Rd

dxV−(x)d/2

)
. (1.6)A standard onsequene is the next Lieb-Thirring-type estimation:Corollary 1.1 We assume that the omponents of B belong to C∞

pol(R
d)and that V = V+ − V− ∈ L1

loc(R
d) is a real funtion with V± ≥ 0 and

V− ∈ Ld+k(Rd) ∩ Ld/2+k(Rd), k > 0. We denote by λ1 ≤ λ2 ≤ . . . the



eigenvalues of a relativisti Hamiltonian 101stritly negative eigenvalues of H(A,V ) (with multipliity). For any d ≥ 2there exists a onstant Cd(k) suh that
∑

j

|λj |k ≤ Cd(k)

(∫

Rd

dxV−(x)d+k +

∫

Rd

dxV−(x)d/2+k

)
. (1.7)Setions 2, 3, 4 will ontain essentially known fats (usually presented with-out proofs), needed for heking Theorem 1.1. So, in Setion 2 we introduethe Feller semigroup ([20℄, [17℄, [26℄) assoiated to the operatorH0 := 〈D〉−1.In the third setion we de�ne properly the operator H(A,V ) and study itsbasi properties. In Setion 4 we reall some probabilisti results, as theMarkov proess assoiated to the semigroup de�ned by H0 ([25℄, [6℄, [26℄)and the Feynman-Ka-It� formula adapted to a Lévy proess ([20℄).In Setion 5 we prove Theorem 1.1 for B = 0, using some of Lieb's ideasfor the non-relativisti ase (see [48℄) in the setting proposed in [5℄. Thelast setion ontains the proof of Theorem 1.1 with magneti �eld as well asCorollary 1.1. The main ingredient is the Feynman-Ka-It� formula.2. The Feller semigroupWe onsider the following symbol (interpreted as a lassial relativisti Hamil-tonian for m = 1, c = 1) h : Rd → R+ de�ned by h(ξ) := 〈ξ〉 − 1 ≡√

1 + |ξ|2 − 1. Let us observe (as in [17℄) that it de�nes a onditional nega-tive de�nite funtion (see [47℄) and thus has a Lévy-Khinin deomposition(see Appendix 2 to Setion XIII of [47℄). Computing (∇h)(ξ) and (∆h)(ξ)and using the general Lévy-Khinin deomposition (see for example [47℄), oneobtains that there exists a Lévy measure n(dy), i.e. a non-negative, σ-�nitemeasure on Rd, for whih min{1, |y|2} is integrable on Rd, suh that
h(ξ) = −

∫

Rd

n(dy)
{

eiy·ξ − 1 − i (y · ξ) I{|x|<1}(y)
}
, (2.1)where I{|x|<1} is the harateristi funtion of the open unit ball in Rd. Onehas the following expliit formula (see [17℄):

n(dy) = 2(2π)−(d+1)/2 |y|−(d+1)/2K(d+1)/2(|y|) dy, (2.2)with Kν the modi�ed Bessel funtion of third type and order ν. We reallthe following asymtoti behaviour of these funtions:
0 < Kν(r) ≤ Cmax(r−ν , r−1/2)e−r, ∀r > 0, ∀ν > 0. (2.3)



102 V. Iftimie et al.We shall denote byHs(Rd) the usual Sobolev spaes of order s ∈ R on Rd andby H0 the pseudodi�erential operator h(D) ≡ Op(h) onsidered either as aontinuous operator on S(Rd) and on S∗(Rd) or as a self-adjoint operator in
L2(Rd) with domain H1(Rd). The semigroup generated by H0 is expliitlygiven by the onvolution with the following funtion (for t > 0 and x ∈ Rd):

◦
℘t(x) := (2π)−d t√

|x|2 + t2

∫

Rd

dξ e

“
t−
√

(|x|2+t2)(|ξ|2+1)
”

=

= 2−(d−1)/2 π−(d+1)/2 tet(|x|2 + t2)−(d+1)/4K(d+1)/2(
√

|x|2 + t2) (2.4)(see [20℄, [2℄). We have
◦
℘t(x) > 0 and ∫

Rd

dx
◦
℘t(x) = 1. (2.5)From (2.3) one easily an dedue the following estimation

∃C > 0 suh that ◦
℘t(0) ≤ Ct−d(1 + td/2), ∀t > 0. (2.6)Let us set

C∞(Rd) :=

{
f ∈ C(Rd) | lim

|x|→∞
f(x) = 0

} (2.7)and endow it with the Banah norm ‖f‖∞ := supx∈Rd |f(x)|. Using theabove properties of the funtion ◦
℘t we an extend e−tH0 to a well-de�nedbounded operator P (t) ating in C∞(Rd).Remark 2.1 One an easily verify that {P (t)}t≥0 is a Feller semigroup, i.e.:1. P (t) is a ontration: ‖P (t)f‖∞ ≤ ‖f‖∞, ∀f ∈ C∞(Rd);2. {P (t)}t≥0 is a semigroup: P (t+ s) = P (t)P (s);3. P (t) preserves positivity: P (t)f ≥ 0 for any f ≥ 0 in C∞(Rd);4. We have limtց0 ‖P (t)f − f‖∞ = 0, ∀f ∈ C∞(Rd).3. The perturbed HamiltonianSuppose given a magneti �eld of lass C∞

pol(R
d) and let us hoose a potentialvetor A, suh that B = dA, with omponents also of lass C∞

pol(R
d) (thisis always possible, as said before). We shall denote by HA the operator
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OpA(h), onsidered either as a ontinuous operator on S(Rd) and on S∗(Rd)(by duality) or as an unbounded operator on L2(Rd) with domain C∞

0 (Rd).Using the Fourier transform one easily proves that for u ∈ C∞
0 (Rd):

[H0u](x) = −
∫

Rd

n(dy)
[
u(x+ y) − u(x) − I{|z|<1}(y) (y · ∂xu) (x)

]
. (3.1)Realling the de�nition of OpA(h), we remark that

[HAu](x) =
[
OpA(h)u

]
(x) =

[
Op(h)

(
ei(x−.)·ΓA(x,.)u

)]
(x) = (3.2)

=
[
H0

(
ei(x−.)·ΓA(x,.)u

)]
(x).Combining the above two equations one gets easily

[HAu](x) = −
∫

Rd

n(dy)
[
e−iy·ΓA(x,x+y)u(x+ y) − u(x)− (3.3)

−I{|z|<1}(y) (y · (∂x − iA(x))u) (x)
]
.Repeating the arguments in [17℄ with ΓA(x, x + y) replaing A((x + y)/2)one proves the following results similar to those in [17℄.Proposition 3.1 Considered as unbounded operator in L2(Rd), HA is es-sential self-adjoint on C∞

0 (Rd). Its losure, also denoted by HA, is a positiveoperator.Proposition 3.2 For any u ∈ L2(Rd) suh that HAu ∈ L1
loc(R

d)

ℜ [(signu)(HAu)] ≥ H0|u|.Using the method in [49℄ we an prove the following result.Proposition 3.3 For any u ∈ L2(Rd) we have:1. for any λ > 0 and for any r > 0

∣∣(HA + λ)−r u
∣∣ ≤ (H0 + λ)−r |u|; (3.4)2. for any t ≥ 0 ∣∣e−tHAu
∣∣ ≤ e−tH0 |u|. (3.5)



104 V. Iftimie et al.We assoiate to HA its sesquilinear form
D(hA) = D(H

1/2
A ),

hA(u, v) := (H
1/2
A u,H

1/2
A v), ∀(u, v) ∈ D(hA)2. (3.6)Consider now a funtion V ∈ L1

loc(R
d), V ≥ 0 and assoiate to it thesesquilinear form

D(qV ) := {u ∈ L2(Rd) |
√
V u ∈ L2(Rd)},

qV (u, v) :=

∫

Rd

dxV (x)u(x)v(x), ∀(u, v) ∈ D(qV )2. (3.7)Both these sesquilinear forms are symmetri, losed and positive. We shallabbreviate hA(u) ≡ hA(u, u) and qV (u) ≡ qV (u, u).Proposition 3.4 Let V : Rd → R be a measurable funtion that an bedeomposed as V = V+ − V− with V± ≥ 0 and V± ∈ L1
loc(R

d). Moreover letus suppose that the sesquilinear form qV− is small with respet to h0 (i.e. it is
h0-relatively bounded with bound stritly less then 1). Then the sesquilinearform hA + qV+ − qV− , that is well de�ned on D(hA)

⋂D(qV+), is symmetri,losed and bounded from below, de�ning thus an inferior semibounded self-adjoint operator H(A;V ) ≡ H := HA ∔ V (sum in sense of forms).Proof. The sesquilinear form hA+qV+ (de�ned on the intersetion of the formdomains) is learly positive, symmetri and losed. We shall prove now thatthe sesquilinear form qV− is hA + qV+ -bounded with bound stritly less then1, so that the onlusion of the proposition follows by standard arguments.Let us denote by H+ := HA ∔ V+ the unique positive self-adjoint operatorassoiated to the sesquilinear form hA + qV+ by the representation theorem2.6 in �VI.2 of [29℄. As V+ ∈ L1
loc(R

d), we have C∞
0 (Rd) ⊂ D(hA)

⋂D(qV+)and thus we an use the form version of the Kato-Trotter formula from [30℄:
e−tH+ = s− lim

n→∞

(
e−(t/n)HA e−(t/n)V+

)n
, ∀t ≥ 0. (3.8)Let us reall the formula (r > 0 and λ > 0)

(H+ + λ)−r = Γ(r)−1

∫ ∞

0
dt tr−1 e−tλ e−tH+ . (3.9)
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∣∣(H+ + λ)−rf

∣∣ ≤ Γ(r)−1

∫ ∞

0
dt tr−1 e−tλ

∣∣e−tH+f
∣∣ = (3.10)

= Γ(r)−1

∫ ∞

0
dt tr−1

∣∣∣∣s− lim
n→∞

(
e−(t/n)HA e−(t/n)V+

)n
f

∣∣∣∣ ≤

≤ (H0 + λ)−r|f |,by using the seond point of Proposition 3.3.Taking u = (H0 +λ)−1/2g with g ∈ L2(Rd) arbitrary and λ > 0 large enoughand using the hypothesis on V− we dedue that there exists a ∈ [0, 1), b ≥ 0and a′ ∈ [0, 1) suh that
qV−(u) ≤ a‖H1/2

0 u‖2+b‖u‖2 = a‖H1/2
0 (H0+λ)−1/2g‖2+b‖(H0+λ)−1/2g‖2 ≤

≤ (a+ b/λ)‖g‖2 ≤ a′‖g‖2. (3.11)For any v ∈ D(hA)
⋂D(qV+) let f := (H+ + λ)1/2v and g := |f |. Using now(3.10) with r = 1/2, (3.11) and the expliit form of qV− we onlude that

qV−(v) = qV−

(
(H+ + λ)−1/2f

)
≤ qV−

(
(H0 + λ)−1/2g

)
≤ (3.12)

≤ a′‖g‖2 = a′
∥∥∥(H+ + λ)1/2v

∥∥∥
2

= a′
[
hA(v) + q+(v) + λ‖v‖2

]
.Definition 3.1 For a potential funtion V satisfying the hypothesis of Propo-sition 3.4, we all the operator H = H(A;V ) introdued in the same propo-sition the relativisti Hamiltonian with potential V and magneti vetor po-tential A.The spetral properties of H only depend on the magneti �eld B, di�erenthoies of a gauge giving unitarly equivalent Hamiltonians, due to the gaugeovariane of our quantization proedure.Proposition 3.5 Let B be a magneti �eld with C∞

pol(R
d) omponents and

A a vetor potential for B also having C∞
pol(R

d) omponents. Assume that
V : Rd → R is a measurable funtion that an be deomposed as V = V+−V−with V± ≥ 0, V+ ∈ L1

loc(R
d) and V− ∈ Lp(Rd) with p ≥ d. Then1. qV− is a h0-bounded sesquilinear form with relative bound 0;



106 V. Iftimie et al.2. the Hamiltonian H de�ned in De�nition 3.1 is bounded from below andwe have σess(H) = σess(HA ∔ V+) ⊂ [0,∞).Proof. 1. Using Observation 3 in �2.8.1 from [37℄, we onlude that for d > 1,the Sobolev spae H1/2(Rd) (that is the domain of the sesquilinear form h0)is ontinuously embedded in Lr(Rd) for 2 ≤ r ≤ 2d/(d− 1) <∞. Also usingHölder inequality, we dedue that for r = 2p/(p − 1) ∈ [2, 2d/(d − 1)], for
p ≥ d

‖V 1/2
− u‖2

2 ≤ ‖V−‖p‖u‖2
r ≤ c‖V−‖p‖u‖2

H1/2(Rd)
, (3.13)

∀u ∈ H1/2(Rd) = D(h0). Thus V 1/2
− ∈ B(H1/2(Rd);L2(Rd)); now let us provethat it is even ompat. Let us observe that for d ≤ p <∞, C∞

0 (Rd) is densein Lp(Rd). Thus, for d ≤ p <∞ let {Wǫ}ǫ>0 ⊂ C∞
0 (Rd) be an approximatingfamily for V 1/2

− in L2p(Rd), i.e. ‖V 1/2
− − Wǫ‖2p ≤ ǫ. Moreover, for anysequene {uj} ⊂ H1/2(Rd) ontained in the unit ball (i.e. ‖uj‖H1/2 ≤ 1) wemay suppose that it onverges to u ∈ H1/2(Rd) for the weak topology on

H1/2(Rd) and thus ‖u‖H1/2 ≤ 1. It follows that Wǫuj onverges to Wǫu in
L2(Rd) and due to (3.13) we have:
‖(V 1/2

− −Wǫ)(u−uj)‖ ≤ C1/2‖V 1/2
− −Wǫ‖L2p‖u−uj‖H1/2 ≤ 2c1/2ǫ, ∀j ≥ 1.We onlude that V 1/2

− uj onverges in L2(Rd) to V 1/2
− u and using the dualitywe also get that V− is a ompat operator fromH1/2(Rd) toH−1/2(Rd). Usingexerise 39 in h. XIII of [47℄ we dedue that q− has zero relative bound withrespet to h0.2. The onlusion of point 1 implies that the operator V 1/2

− (H0 + 1)−1/2 ∈
B[L2(Rd)] is ompat. Using the �rst point of Proposition 3.3 with λ =
−1 and r = 1/2, and Pitt Theorem in [45℄, we onlude that the operator
V

1/2
− (HA∔V++1)−1/2 ∈ B[L2(Rd)] is also ompat. Thus V− : D(hA+qV+) →

D(hA + qV+) is ompat and the onlusion (2) follows from exerise 39 inh. XIII of [47℄.4. The Feynman-Ka-It� formulaIn this setion we gather some probabilisti notions and results needed inthe proof of Theorem 1.1. The main idea is that we obtain a Feynman-Ka-It� formula (following [20℄) for the semigroup de�ned by H(A,V ) and this



eigenvalues of a relativisti Hamiltonian 107allows us to redue the problem to the ase B = 0. For this last one werepeat then the proof in [5℄ giving all the neessary details for the ase ofsingular potentials V ; here an essential point is an expliit formula for theintegral kernel of the operator e−tH(0,V ) in terms of a Lévy proess.Let (Ω,F,P) be a probability spae, i.e. F is a σ-algebra of subsets of Ω and Pis a non-negative σ-aditive funtion on F with P(Ω) = 1. For any integrablerandom variable X : Ω → R we denote its expetation value by
E(X) :=

∫

Ω
X(ω)P(dω). (4.1)For any sub-σ-algebra G ⊂ F we denote its assoiated onditional expetationby E(X | G); this is the unique G-measurable random variable Y : Ω → Rsatisfying

∫

B
Y (ω)P(dω) =

∫

B
X(ω)P(dω), ∀B ∈ G. (4.2)Let us reall the following properties of the onditional expetation (see forexample [26℄):

E (E(X | G)) = E(X), (4.3)
E(XZ | G) = ZE(X | G), (4.4)for any G-measurable random variable Z : Ω → R, suh that ZX is inte-grable.We also reall the Jensen inequality ([48℄, [26℄): for any onvex funtion

ϕ : R → R, and for any lower bounded random variable X : Ω → R thefollowing inequality is valid
ϕ(E(X)) ≤ E(ϕ(X)). (4.5)Following [6℄, we an assoiate to our Feller semigroup {P (t)}t≥0, de�nedin Setion 2, a Markov proess {(Ω,F,Px), {Xt}t≥0, {θt}t≥0}; that we brie�yreall here:

• Ω is the set of "adlag" funtions on [0,∞), i.e. funtions ω : [0,∞) →
Rd (paths) that are ontinuous to the right and have a limit to the leftin any point of [0,∞).
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• F is the smallest σ-algebra for whih the oordinate funtions {Xt}t≥0,with Xt(ω) := ω(t), are measurable.
• Px is a probability on Ω suh that for any n ∈ N∗, for any ordered set

{0 < t1 ≤ . . . ≤ tn} and any family {B1, . . . , Bn} of Borel subsets in
Rd, we have

Px {Xt1 ∈ B1, . . . ,Xtn ∈ Bn} = (4.6)
=

∫

B1

dx1
◦
℘

t1
(x− x1)

∫

B2

dx2
◦
℘

t2−t1
(x1 − x2) . . .

∫

Bn

dxn
◦
℘

tn−tn−1
(xn−1 − xn).One an dedue that, if Ex denotes the expetation value with respetto Px, then for any f ∈ C∞(Rd) and for any t ≥ 0 one has

Ex(f ◦Xt) = [P (t)f ] (x). (4.7)We also remark that Px is the image of the probability P0 ≡ P underthe map Sx : Ω → Ω de�ned by [Sxω] (t) := x+ ω(t).
• For any t ≥ 0, the map θt : Ω → Ω is de�ned by [θtω] (s) := ω(s + t).If we denote by Ft the sub-σ-algebra of F generated by the proesses

{Xs}0≤s≤t, then for any t ≥ 0 and any bounded random variable
Y : Ω → R

Ex (Y ◦ θt | Ft) (ω) = EXt(ω)(Y ), Px − a.e. on Ω. (4.8)We use the fat that (see [25℄, [20℄) the probability Px is onentrated on theset of paths Xt suh that X0 = x and by the Lévy-Ito Theorem:
Xt = x+

∫ t+

0

∫

Rd

y ÑX(ds dy). (4.9)Here ÑX(ds dy) := NX(ds dy)− N̂X(ds dy), N̂X(ds dy) := Ex(NX(ds dy)) =
ds n(dy) with n(dy) the Lévy measure appearing in (2.1) and NX a 'ountingmeasure' on [0,∞) × Rd that for 0 < t < t′ and B a Borel subset of Rd isde�ned as NX((t, t′] ×B) :=

:= ‖=
{
s ∈ (t, t′] | Xs 6= Xs−, XsXs− ∈ B

}
. (4.10)Following the proedure developped in [20℄ by Ihinose and Tamura one ob-tains a Feynman-Ka-It� formula for Hamiltonians of the type H = HA ∔V .In fat we have



eigenvalues of a relativisti Hamiltonian 109Proposition 4.1 Under the same onditions as in De�nition 3.1, for anyfuntion u ∈ L2(Rd) we have
(
e−tHu

)
(x) = Ex

(
(u ◦Xt) e−S(t,X)

)
, t ≥ 0, x ∈ Rd (4.11)where

S(t,X) := i

∫ t+

0

∫

Rd

ÑX(ds dy)

〈∫ 1

0
dr
(
A(Xs− + ry)

)
, y

〉
+

+ i

∫ t

0

∫

Rd

N̂X(ds dy)

〈(∫ 1

0
dr A(Xs + ry) −A(Xs)

)
, y

〉
+

+

∫ t

0
ds V (Xs). (4.12)In the sequel we shall take A = 0 and V ∈ C∞

0 (Rd). As it is proved in [6℄,the operator e−t(H0∔V ) has an integral kernel that an be desribed in thefollowing way. Let us denote by Ft− the sub-σ-algebra of F generated by therandom variables {Xs}0≤s<t. For any pair (x, y) ∈ [Rd]2 and any t > 0 wede�ne a measure µt,y
0,x on the Borel spae (Ω,Ft−) by the equality
µt,y

0,x(M) := Ex

[
χM

◦
℘t−s(Xs − y)

]
, (4.13)for any M ∈ Fs and 0 ≤ s < t, where χM is the harateristi funtion of

M . This measure is onentrated on the family of 'paths' {ω ∈ Ω | X0(ω) =

x,Xt−(ω) = y} and we have µt,y
0,x(Ω) =

◦
℘t(x− y).Proposition 4.2 Let F : Ω → R be a non-negative Ft−-measurable randomvariable and let f : Rd → R be a positive borelian funtion. Then the followingequality holds for any t > 0 and any x ∈ Rd:

∫

Rd

dy

{∫

Ω
µt,y

0,x(dω)F (ω) e−
R t
0 ds V (Xs)

}
f(y) = (4.14)

= Ex

(
F e−

R t
0 ds V (Xs) f(Xt)

)
.Proof. This is a diret onsequene of relations (2.29) and (2.33) from [6℄.Let us now take A = 0 in Proposition 4.1 and F = 1 in Proposition 4.2in order to dedue that the operator e−t(H0∔V ) is an integral operator withintegral kernel given by the funtion

℘t(x, y) :=

∫

Ω
µt,y

0,x(dω) e−
R t
0 ds V (Xs), t > 0, (x, y) ∈ Rd × Rd. (4.15)



110 V. Iftimie et al.Proposition 3.3 from [6℄ implies that the funtion [0,∞)×Rd×Rd ∋ (t, x, y) 7→
℘t(x, y) ∈ R is non-negative, ontinuous and veri�es ℘t(x, y) = ℘t(y, x). Weshall also need the following result.Proposition 4.3 For any t > 0, any x ∈ Rd and any funtion g : Ω → Rthat is integrable with respet to the measure µt,x

0,x we have the equality:
∫

Ω
µt,x

0,x(dω) g(ω) =

∫

Ω
µt,0

0,0(dω) g(x+ ω). (4.16)Proof. It is evidently su�ient to prove that for any s ∈ [0, t) and anyM ∈ Fswe have
µt,x

0,x(M) =
(
µt,0

0,0 ◦ S−1
x

)
(M)where the map Sx : Ω → Ω is de�ned by (Sx(ω)(t) := x+ ω(t). We notiedpreviously the identity Px = P0 ◦ S−1

x ; thus for any funtion F : Ω → Rintegrable with respet to Px we have Ex(F ) = E0(F ◦ Sx). We remark that
Xs(ω + x) = ω(s) + x = Xs(ω) + x, and using the de�nition of the measure
µt,x

0,x in (4.13), we obtain
µt,x

0,x(M) = Ex

[
χM

◦
℘t−s(Xs − x)

]
= E0

[
(χM ◦ Sx)

◦
℘t−s(Xs)

]
= (4.17)

= E0

[
(χS−1

x (M)

◦
℘t−s(Xs)

]
= µt,0

0,0

(
S−1

x (M)
)

=
[
µt,0

0,0 ◦ S−1
x

]
(M).

5. Proof of the bound for N(0; V )In this Setion we will onsider A = 0 and we shall work only with a potential
V = V+ − V− satisfying the properties:

• V± ≥ 0,
• V+ ∈ L1

loc(R
d),

• V− ∈ Ld(Rd) ∩ Ld/2(Rd).We shall use the notations H := H0 ∔V , H+ := H0 ∔V+, H− := H0 ∔(−V−)for the operators assoiated to the sesquilinear forms h = h0 + qV , h+ =
h0 + qV+ , h− = h0 − qV− .



eigenvalues of a relativisti Hamiltonian 111Due to the results of Proposition 3.5 we have σess(H) = σess(H+) ⊂ σ(H+) ⊂
[0,∞) and σess(H−) = σess(H0) = σ(H0) = [0,∞).For any potential funtion W verifying the same onditions as V above, wedenote by N(W ) the number of stritly negative eigenvalues (ounted withtheir multipliity) of the operator H0 ∔W . The following result redues ourstudy to the ase V+ = 0.Lemma 5.1 The following inequality is true:

N(V ) ≤ N(−V−).In partiular we have that N(V ) = ∞ implies that N(−V−) = ∞.Proof. We apply the Min-Max priniple (see Theorem XIII.2 in [47℄) notiingthat D(h−) = D(h0) ⊃ D(h) and h− ≤ h and we dedue that the operator
H− has at least N(V ) stritly negative eigenvalues.Thus we shall suppose from now on that V+ = 0.5.1. Redution to smooth, ompatly supported potentialsIn this subsetion we shall prove that we an suppose V− ∈ C∞

0 (Rd). Thiswill be done by approximation, using a result of the type of Theorem 4.1from [50℄.Lemma 5.2 Let V and Vn (n ≥ 1) funtions as in Proposition 3.4. Inaddition, V+ = Vn,+ = 0 for all n ≥ 1 and limn→∞ Vn,− = V− in L1
loc(R

d)and Vn,− are uniformly h0-bounded with relative bound < 1. We set Hn :=
HA ∔ Vn. Then Hn → H when n→ ∞ in strong resolvent sense.Proof. We denote by hn the quadrati form assoiated to Hn, i.e. hn =
hA − qn,−, where qn,− is assoiated to Vn,− by (3.7). We have D(hn) =
D(hA) ⊂ D(qn,−), and aording to Proposition 3.4 there exist α ∈ (0, 1)and β > 0 suh that

qn,−(v) ≤ αhA(v) + β ‖ v ‖, ∀v ∈ D(hA), ∀n ≥ 1. (5.1)It follows that hn are uniformly lower bounded and the norms de�ned on
D(hA) by hA and hn are equivalent, uniformly with respet to n ≥ 1. More-over, C∞

0 (Rd) is a ore for HA, thus for hA, h and hn also.



112 V. Iftimie et al.Let f ∈ L2(Rd) and un := (Hn + i)−1f ∈ D(Hn) ⊂ D(hA), n ≥ 1. We havelearly
‖ un ‖≤‖ f ‖, |hn(un)| = |(Hnun, un)| ≤‖ f ‖, ∀n ≥ 1. (5.2)From (5.1), the subsequent omments and (5.2) it follows that the sequene

(un)n≥1 is bounded in D(hA), while the sequene (V 1/2
n,−un

)
n≥1

is bounded in
L2(Rd). Let u ∈ L2(Rd) be a limit point of the sequene (un)n≥1 with respetto the weak topology on L2(Rd). By restriting maybe to a subsequene, wemay assume that there exist ψ, η ∈ L2(Rd) suh that H1/2

A un →
n→∞

ψ and
V

1/2
n,−un →

n→∞
η in the weak topology of L2(Rd). For g ∈ D

(
H

1/2
A

) we have
(
H

1/2
A g, u

)
= lim

n→∞

(
H

1/2
A g, un

)
= lim

n→∞

(
g,H

1/2
A un

)
= (g, ψ),thus u ∈ D(H

1/2
A ) and H1/2

A u = ψ. Then u ∈ D(q−) and for any g ∈ C∞
0 (Rd)

(η, g) = lim
n→∞

(
V

1/2
n,−un, g

)
= lim

n→∞

(
un, V

1/2
n,−g

)
=
(
u, V

1/2
− g

)
=
(
V

1/2
− u, g

)
,implying V 1/2

− u = η.It follows that for every g ∈ C∞
0 (Rd) we have

(g, f) = (g, (Hn + i)un) = hn(g, un) − i(g, un) =

=
(
H

1/2
A g,H

1/2
A un

)
−
(
V

1/2
n,− g, V

1/2
n,−un

)
− i(g, un) → h(g, u) − i(g, u).Consequently, u ∈ D(H) and (H + i)u = f . Thus the sequene (un)n≥1 hasthe single limit point u = (H + i)−1f for the weak topology of L2(Rd). Itfollows that (Hn ± i)−1f → (H ± i)−1f weakly in L2(Rd) for n→ ∞.By the resolvent identity we get

‖ (Hn+i)−1f ‖2=
i

2

(
(f, (Hn − i)−1f) − (f, (Hn + i)−1f)

)
→‖ (H+i)−1f ‖2,therefore (Hn + i)−1f → (H + i)−1f in L2(Rd).A diret onsequene of Lemma 5.2 and Theorem VIII.20 from [47℄ isCorollary 5.1 Under the hypothesis of Lemma 5.2, for any funtion fbounded and ontinuous on R and any u ∈ L2(Rd), we have f(Hn)u →

f(H)u.



eigenvalues of a relativisti Hamiltonian 113Approximating V− is done by the standard proedures: uto�s and regular-ization. The �rst of the lemmas below is obvious.Lemma 5.3 Let V− ∈ L1
loc(R

d) with V− ≥ 0 and assume that its assoiatedsesquilinear form is h0-bounded with relative bound stritly less then 1. Let
θ ∈ C∞

0 ([0,∞)) satisfy the following: 0 ≤ θ ≤ 1, θ is a dereasing funtion,
θ(t) = 1 for t ∈ [0, 1] and θ(t) = 0 for t ∈ [2,∞).If we denote by θn(x) := θ(|x|/n) and V n

− = θnV−, then V n
− → V− in

L1
loc(R

d), 0 ≤ V n
− ≤ V n+1

− and the sesquilinear forms assoiated to V n
− are

h0-bounded with relative bound stritly less then 1, uniformly in n ∈ N∗.Moreover, if we denote by hn the sesquilinear form assoiated to the operator
HA ∔ (−V n

− ), we have h(n) ≥ h(n+1) ≥ h and h(n)(u) →
n→∞

h(u) for any
u ∈ D(hA).If, in addition, V− ∈ Lp(Rd), p ≥ 1, then V n

− ∈ Lp
comp(Rd), ‖V n

−‖Lp ≤
‖V−‖Lp for any n ≥ 1, and V n

− → V− in Lp(Rd).Lemma 5.4 (a) Let V− ∈ L1
loc(R

d), V− ≥ 0 and h0-bounded with relativebound < 1. Let θ ∈ C∞
0 (Rd), θ ≥ 0 and ∫

Rd θ = 1. We set θn(x) := ndθ(nx),
x ∈ Rd, n ∈ N∗ and Vn,− := V− ∗ θn ∈ C∞

0 . In partiular, Vn,− ∈ C∞
0 (Rd) if

V− ∈ L1
comp(R

d).Then Vn,− → V− in L1
loc(R

d) for n → ∞ and the funtions Vn,− are non-negative and uniformly h0-bounded, with relative bound < 1. Moreover,
hn(u) → h(u) for any u ∈ D(hA), where hn is the quadrati form assoi-ated to Hn := HA

·
+ (−Vn).(b) If, in addition, V− ∈ Lp(Rd) with p ≥ 1, then Vn,− ∈ Lp(Rd) ∩ C∞(Rd),

‖ Vn,− ‖Lp≤‖ V− ‖Lp , ∀n ≥ 1 and Vn,− → V− in Lp(Rd).Proof. (a) We have for any x ∈ Rd

Vn,−(x) =

∫

Rd

dy θn(y)V−(x− y) =

∫

Rd

dy θ(y)V−(x− n−1y). (5.3)By the Dominated Convergene Theorem, for any ompat K ⊂ Rd

∫

K
dx |Vn,−(x) − V−(x)| ≤

∫

Rd

dy θ(y)

∫

K
dx |V−(x− n−1y) − V−(x)| → 0,hene Vn,− onverges to V− in L1

loc(R
d) when n→ ∞.If V− is relatively small with respet to h0, we use the fat that H1/2

0 is aonvolution operator (hene it ommutes with translations) and using the



114 V. Iftimie et al.omments after inequality (5.1), we dedue that for any u ∈ C∞
0 (Rd) thereexists α ∈ (0, 1) and β ≥ 0 suh that

∫

Rd

dxVn,−|u|2 =

∫

Rd

dy θn(y)

∫

Rd

dz V−(z)|u(z + y)|2 ≤

≤
∫

Rd

dy θn(y)
[
α ‖ H1/2

0 u(· + y) ‖2 +β ‖ u(· + y) ‖2
]

=

= α ‖ H1/2
0 u ‖2 +β ‖ u ‖2 .(b) From (5.3) it follows that

‖ Vn,− ‖Lp≤
∫

Rd

dy θn(y) ‖ V−(· − y) ‖Lp≤‖ V− ‖Lp .Also, using the Dominated Convergene Theorem, we infer that
‖ Vn,− − V− ‖Lp≤

∫

Rd

dy θ(y) ‖ V−(·) − V−(· − n−1y) ‖Lp→ 0.Thus Lemmas 5.3 and 5.4 imply, for a potential funtion V− satisfying thehypothesis of the Lemma, the existene of a sequene (Vn,−)n≥1 ⊂ C∞
0 (Rd)suh that Vn,− ≥ 0, ‖ Vn,− ‖Lp≤‖ V− ‖Lp , ∀n ≥ 1, Vn,− → V− in Lp(Rd)(for p = d and p = d/2) when n → ∞ and the funtions Vn,− are uniformly

h0-bounded with relative bound < 1.Lemma 5.5 Assume that there exists a onstant C > 0, suh that the in-equality
N(−Vn,−) ≤ C

(∫

Rd

dx |Vn,−(x)|d +

∫

Rd

dx |Vn,−(x)|d/2

) (5.4)holds for any n ≥ 1. Then one also has
N(−V−) ≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)
. (5.5)Proof. We set Hn,− := H0 ∔ (−Vn,−); (En,−(λ))λ∈R will be the spetralfamily of Hn,− and (E−(λ))λ∈R the spetral family of H−. For λ < 0, wedenote by Nλ(W ) the number of eigenvalues of H0 ∔ W whih are stritlysmaller than λ (for any potential funtion W satisfying the hypothesis at the



eigenvalues of a relativisti Hamiltonian 115begining of this setion). It su�es to show that for any λ < 0 not belongingto the spetrum of H−, one has the inequality
Nλ(−V−) ≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)
. (5.6)Sine Vn,− onverges to V− in L1

loc(R
d), f. Lemma 5.2, Hn,− will onvergeto H− in strong resolvent sense. By [29℄, Ch. VIII, Th. 1.15, this implies thestrong onvergene of En,−(λ) to E−(λ) for any λ /∈ σ(H−). By Lemmas 1.23and 1.24 from [29℄, Ch. VII, for λ < 0 suh that λ /∈ σ(H−), one also has

‖ En,−(λ) − E−(λ) ‖→ 0. Let us suppose that there exists some λ < 0 notbelonging to σ(H−) and suh that for it the inequality (5.6) is not veri�ed.Thus for the given λ < 0 we have ∀n ≥ 1:
N(−Vn,−) ≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)
< Nλ(−V−).But for n large enough, one has Nλ(−V−) = Nλ(−Vn,−) and thus

Nλ(−V−) = Nλ(−Vn,−) ≤ N(−Vn,−) ≤

≤ C

(∫

Rd

dx |Vn,−(x)|d +

∫

Rd

dx |Vn,−(x)|d/2

)
≤

≤ C

(∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)that is a ontradition with our initial hypothesis.5.2. Proof of the Theorem 1.1 without magneti �eldWe shall assume from now on that V+ = 0 and 0 ≤ V− ∈ C∞
0 (Rd). We heka Birman-Shwinger priniple. For α > 0 we set Kα := V

1/2
− (H0 +α)−1V

1/2
− ;it is a positive ompat operator on L2(Rd).Lemma 5.6

N−α(−V−) ≤ ‖= {µ > 1 | µ eigenvalue of Kα}. (5.7)Proof. We introdue the sequene of funtions µn : [0,∞) → (−∞, 0], n ≥ 1,where µn(λ) is the n'th eigenvalue of H0 − λV− if this operator has at least
n stritly negative eigenvalues and µn(λ) = 0 if not. Cf. [47℄, �XIII.3, µn isontinuous and dereasing (even stritly dereasing on intervals on whih it



116 V. Iftimie et al.is stritly negative). Obviously, we have N−α(−V−) ≤‖= {n ≥ 1 | µn(1) <
−α}. Now �x some n suh that µn(1) < −α and reall that µn(0) = 0.The funtion µn is ontinuous and injetive on the interval [ǫn, 1], where
ǫn := sup{λ ≥ 0 | µn(λ) = 0}, therefore it exists a unique λ ∈ (0, 1) suhthat µn(λ) = −α. Thus

N−α(−V−) = ‖= {λ ∈ (0, 1) | ∃n ≥ 1 s.t. µn(λ) = −α} =

= ‖= {λ ∈ (0, 1) | ∃ϕ ∈ D(H0) \ {0} s.t. (H0 − λV−)ϕ = −αϕ} ≤
≤ ‖= {λ ∈ (0, 1) | ∃ψ ∈ L2(Rd) \ {0} s.t. Kαψ = λ−1ψ},where for the last inequality we set ψ := V

1/2
− ϕ, notiing that the equality

(H0 + α)ϕ = λV−ϕ implies ψ 6= 0.Lemma 5.7 Let F : [0,∞) → [0,∞) be a stritly inreasing ontinuousfuntion with F (0) = 0. Then F (Kα) is a positive ompat operator and thenext inequality holds:
N−α(−V−) ≤ F (1)−1

∑

F (µ)∈σ[F (Kα)],F (µ)>F (1)

F (µ).Proof. The �rst part is obvious. Using (5.7) and F 's monotony, we get
N−α(−V−) ≤ ♯{µ > 1 | µ ∈ σ(Kα)} = ‖= {F (µ) | µ > 1, F (µ) ∈ σ[F (Kα)]} =

=
∑

µ>1,F (µ)∈σ[F (Kα)]

F (µ)

F (µ)
≤ F (1)−1

∑

µ>1,F (µ)∈σ[F (Kα)]

F (µ).So, we shall be interested in �nding funtions F having the properties in thestatement above, suh that F (Kα) ∈ B1 (the ideal of trae-lass operatorsin L2(Rd)) and suh that Tr [F(Kα)] is onveniently estimated.Using an idea from [48℄, we are going to onsider funtions of the form
F (t) := t

∫ ∞

0
ds e−sg(ts), t ≥ 0,where g : [0,∞) → [0,∞) is ontinuous, bounded and g ≡� 0. Plainly, F :

[0,∞) → [0,∞) is ontinuous, F (0) = 0, satis�es F (t) ≤ Ct for some C > 0and the identity
F (t) =

∫ ∞

0
dr e−rt−1

g(r)



eigenvalues of a relativisti Hamiltonian 117implies that F is stritly inreasing. We shall use the notations F = Φ(g),
g̃(t) := tg(t).In partiular, gλ(t) = e−λt, λ > 0 leads to Fλ(t) = t(1+λt)−1. In the sequel,relations valid for this partiular ase will be extended to the following ase,that we shall be interested in:
g∞ : [0,∞) → [0,∞), g∞(t) = 0 if 0 ≤ t ≤ 1, g∞(t) = 1 − 1/t if t > 1,(5.8)by using an approximation that we now introdue. The �rst lemma is obvi-ous.Lemma 5.8 Let g∞ be given by (5.8). For n ≥ 1 we de�ne gn : [0,∞) →

[0, 1], gn(t) = g(t) for 0 ≤ t ≤ n, gn(t) = 2n−1
t − 1 for n ≤ t ≤ 2n − 1,

gn(t) = 0 for t ≥ 2n − 1. Then gn ∈ C0((0,∞)), 0 ≤ gn ≤ gn+1 ≤ g∞, ∀nand gn → g∞ when n→ ∞ uniformly on any ompat subset of [0,∞).Lemma 5.9 Let f be a nonnegative ontinuous funtion on [0,∞) suh that
limt→∞ f(t) = 0. There exists a sequene (fk)k≥1 of real funtions on [0,∞)with the properties(a) Every fk is a �nite linear ombination of funtions of the form gλ, λ > 0.(b) fk ≥ fk+1 ≥ f ≥ 0 on [0,∞), ∀k ≥ 1,() fk → f uniformly on [0,∞) when k → ∞.Proof. We de�ne the funtion h : [0, 1] → [0,∞), h(s) := f(−lns) for s ∈
(0, 1], h(0) := 0. It follows that h ∈ C([0, 1]). We an hose now twosequenes of positive numbers {ǫk}k≥1 and {δk}k≥1 verifying the properties:
lim

k→∞
(ǫk + δk) = 0 and δk − ǫk ≥ ǫk+1 + δk+1 > 0,∀k ≥ 1 (for example we maytake δk = (k+ 2)−1 and ǫk = (k+ 2)−3). Using the Weierstrass Theorem wemay �nd for any k ≥ 1 a real polynomial P ′

k suh that sup
s∈[0,1]

|h(s)−P ′
k(s)| ≤ ǫkand let us denote by Pk := P ′

k + δk. We get:
sup

s∈[0,1]
|h(s) − Pk(s)| ≤ ǫk + δk →

k→∞
0,

h ≤ h+ δk+1 − ǫk+1 ≤ P ′
k+1 + δk+1 = Pk+1 ≤ h+ δk+1 + ǫk+1 ≤

≤ h+ δk − ǫk ≤ P ′
k + δk = Pkon [0, 1]. Thus fk(t) := Pk(e

−t) de�ned on [0,∞) for k ≥ 1 have the requiredproperties.



118 V. Iftimie et al.Proposition 5.1 Let F∞ := Φ(g∞). The operator F∞(Kα) is self-adjoint,positive and ompat on L2(Rd). It admits an integral kernel of the form
[F∞(Kα)] (x, y) = (5.9)

= V
1/2
− (x)V

1/2
− (y)

∫ ∞

0
dt e−αt

∫

Ω
µt,y

0,x(dω)g∞

(∫ t

0
ds V−(Xs)

)
,whih is ontinuous, symmetri, with [F∞(Kα)] (x, x) ≥ 0.Proof. The �rst part is lear. To establish (3.27), we treat �rst the operator

Bλ := Fλ(Kα), λ > 0. We have
Bλ = Kα(1 + λKα)−1 =⇒ Bλ = Kα − λBλKα. (5.10)The seond resolvent identity gives

(H0 + α)−1 − (H0 + λV− + α)−1 = λ(H0 + λV− + α)−1V−(H0 + α)−1.Multiplying by V
1/2
− to the left and to the right and taking into aount(5.10) and the de�nition of Kα, one gets

Bλ = V
1/2
− (H0 + λV− + α)−1V

1/2
− = V

1/2
−

[∫ ∞

0
dt e−αte−t(H0+λV−)

]
V

1/2
− .By Proposition 4.2 and its onsequenes, for any u ∈ C0(R

d), u ≥ 0, we have
[Fλ(Kα)u] (x) = (5.11)

= V
1/2
− (x)

∫ ∞

0
dte−αt

∫

Rd

dy

[∫

Ω
µt,y

0,x(dω) gλ

(∫ t

0
ds V−(Xs)

)]
V

1/2
− (y)u(y).Sine Φ maps monotonous onvergent sequenes into monotonous onvergentsequenes, by applying Lemmas 5.8 and 5.9 and the Monotonous ConvergeneTheorem (B. Levi), we get (5.11) for λ = ∞, for the ouple (g∞, F∞).We introdue the notation

Gλ(t;x, y) :=

∫

Ω
µt,y

0,x(dω) gλ

(∫ t

0
ds V−(Xs)

)
, (5.12)for t > 0, x, y ∈ Rd, 0 < λ ≤ ∞. By the onsequenes of Proposition 4.2,for any 0 < λ < ∞ the funtion Gλ is ontinuous on (0,∞) × Rd × Rd andsymmetri in x, y. To obtain the same properties for λ = ∞, we approximate

g∞ by using one again Lemmas 5.8 and 5.9. So it exists a sequene (fn)n≥1 ofreal ontinuous funtions on [0,∞), eah one being a �nite linear ombination



eigenvalues of a relativisti Hamiltonian 119of funtions of the form gλ, suh that fn onverges to g∞ uniformly on anyompat subset of [0,∞). On the other hand, if M > 0 is an upper boundfor V−, we have
0 ≤

∫ t

0
ds V−(Xs) ≤Mt,and µt,y

0,x(Ω) =
◦
℘t(x−y). It follows that G∞ is, uniformly on ompat subsetsof [0,∞) × Rd × Rd, the limit of a sequene of ontinuous funtions, whihare symmetri in x, y. Thus G∞ has the same properties. Moreover, sine

0 ≤ g∞ ≤ 1 and g∞(t) = 0 for 0 ≤ t ≤ 1, we have G∞(t;x, y) = 0 for
t ≤ 1/M . Using (2.4) and (2.3), there is a onstant C > 0 suh that

0 ≤ G∞(t;x, y) ≤ C, ∀t > 0, ∀x, y ∈ Rd. (5.13)From (5.11) for λ = ∞, we infer that F∞(Kα) has an integral kernel of theform
[F∞(Kα)] (x, y) = V

1/2
− (x)V

1/2
− (y)

∫ ∞

0
dt e−αtG∞(t;x, y), (5.14)so (3.27) is veri�ed. The ontinuity of F∞(Kα) follows from the DominatedConvergene Theorem and from (5.13). The symmetry is obvious, and thelast property of the statement follows from F∞(Kα) ≥ 0.Remark 5.1 By a lemma from [47℄, �XI.4, F∞(Kα) ∈ B1 if the funtion

Rd ∋ x 7→ [F∞(Kα)] (x, x) is integrable and one has
Tr [F∞(Kα)] =

∫

Rd

dx [F∞(Kα)] (x, x). (5.15)Setting D∞(t;x) := V−(x)G∞(t;x, x), t > 0, x ∈ Rd, we have
[F∞(Kα)] (x, x) =

∫ ∞

0
dt e−αtD∞(t;x). (5.16)To hek the integrability of this funtion, one introdues

Ψ∞ : (0,∞) × Rd → R+,

Ψ∞(t;x) := t−1

∫

Ω
µt,x

0,x(dω) g̃∞

(∫ t

0
ds V−(Xs)

)
,where g̃∞(t) := tg∞(t). The role of this funtion is stressed by



120 V. Iftimie et al.Lemma 5.10 For d ≥ 3 onsider the following onstant depending only on
d:
Cd := C

(∫ ∞

1
ds s−d g∞(s) ∨

∫ ∞

1
ds s−d/2 g∞(s)

)
= C

∫ ∞

1
ds s−d/2 g∞(s)where C is the onstant verifying (2.6). One has

∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x) ≤ Cd

(∫

Rd

dxV d
−(x) +

∫

Rd

dxV
d/2
− (x)

)
.(5.17)Proof. The funtion g̃∞ is onvex and ds

t is a probability on (0, t); thus bythe Jensen inequality we obtain
g̃∞

(∫ t

0
ds V−(Xs)

)
≤
∫ t

0

ds

t
g̃∞ (t V−(Xs)) .Let us also remark that for the onstant Cd to be �nite we have to ask that

d ≥ 3 for the fator s−d/2 to be integrable at in�nity, beause the onvexityondition on g̃∞ rather implies that g∞ annot vanish at in�nity.Then ∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x) ≤

≤
∫ ∞

0
dt t−2 e−αt

∫

Rd

dx

[∫

Ω
µt,x

0,x(dω)

∫ t

0
ds g̃∞ (tV−(Xs))

]
.Using now Proposition 4.3, the last expression is equal to:

∫ ∞

0
dt t−2 e−αt

∫

Rd

dx

[∫

Ω
µt,0

0,0(dω)

∫ t

0
ds g̃∞ (tV−(x+ ω(s)))

]
=

=

∫ ∞

0
dt t−2 e−αt

[∫

Ω
µt,0

0,0(dω)

∫ t

0
ds

∫

Rd

dx g̃∞ (tV−(x))

]
=

=

∫ ∞

0
dt t−1 e−αt

[∫

Ω
µt,0

0,0(dω)

] ∫

Rd

dx g̃∞ (tV−(x)) =

=

∫ ∞

0
dt t−1 e−αt ◦℘t(0)

∫

Rd

dx g̃∞ (tV−(x)) ≤

≤ C

∫

Rd

dx

[∫ ∞

0
dt t−d−1(1 + td/2)g̃∞ (tV−(x))

]
≤

≤ Cd

(∫

Rd

dxV d
−(x) +

∫

Rd

dxV
d/2
− (x)

)
,where we have used the fat that s < 1 implies g∞(s) = 0.



eigenvalues of a relativisti Hamiltonian 121The next result gives the onnetion between D∞ and Ψ∞:Proposition 5.2
∫

Rd

dxD∞(t, x) =

∫

Rd

dxΨ∞(t, x).Proof. First let us verify the following identity for any t > 0:
∫

Rd

dxDλ(t, x) =

∫

Rd

dxΨλ(t, x), for λ ∈ (0,∞) (5.18)where Dλ and Ψλ are de�ned in terms of gλ in the same way that D∞ and
Ψ∞ are de�ned in terms of g∞. Let us point out that both Dλ and Ψλ arepositive measurable funtions on (0,∞) × Rd but only the integral on theleft hand side of (5.18) is evidently �nite by what we have proven so far. Forsimplifying the writing we shall take λ = 1. For any r ∈ [0, t] we denote by

Sr := e−r(H0+V−)V−e−(t−r)(H0+V−).Following the remarks after Proposition 4.2 above, for r ∈ (0, t), both expo-nentials appearing in the above right hand side are integral operators withnon-negative ontinuous integral kernels; thus Sr will also be an integral op-erator with non-negative ontinuous kernel that we shall denote by Kr, andwe an ompute it expliitely as follows. For a non-negative u ∈ C0(R
d),using Proposition 4.1 with A = 0 gives

(Sru)(x) = Ex

{
e−

R r
0

V−(Xρ)dρV−(Xr)EXr

[
e−

R t−r
0

V−(Xσ)dσu(Xt−r)
]}and using the Markov property (4.8) we obtain

EXr

[
e−

R t−r
0

V−(Xσ)dσu(Xt−r)
]

= Ex

[
e−

R t−r
0

V−(Xσ◦θr)dσu(Xt) | Fr

]
=

= Ex

[
e−

R t
r V−(Xσ)dσu(Xt) | Fr

]
.As the funtion e−

R r
0 V−(Xρ)dρV−(Xr) : Ω → R is evidently Fr-measurable,we get (using the property (4.4) of onditional expetations)

(Sru)(x) = Ex

{
Ex

(
V−(Xr)e

−
R t
0 V−(Xσ)dσu(Xt) | Fr

)}
.We use now the property (4.3) and Proposition 4.2 taking F := V−(Xr) inorder to get

(Sru)(x) = Ex

{
V−(Xr)e

−
R t
0

V−(Xσ)dσu(Xt)
}

=
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=

∫

Rd

dy

{∫

Ω
µt,y

0,x(dω)V−(Xr)e
−

R t
0

V−(Xσ)dσ

}
u(y).In onlusion for any (x, y) ∈ Rd × Rd we have

Kr(x, y) =

∫

Ω
µt,y

0,x(dω)V−(Xr)e
−

R t
0

V−(Xσ)dσ . (5.19)Using Proposition 4.3 we obtain
∫

Rd

dxKr(x, x) ≤
∫

Rd

dx

[∫

Ω
µt,x

0,x(dω)V−(ω(r))

]
=

∫

Rd

dx

[∫

Ω
µt,x

0,0(dω)V−(x+ ω(r))

]
=

◦
℘t(0)

∫

Rd

dxV−(x) < ∞, ∀t > 0.Thus, for any r ∈ [0, t] the operator Sr is trae lass. Moreover, due to theproperties of the trae we have TrSr = TrS0, ∀r ∈ [0, t]. We have:
TrS0 =

1

t

∫ t

0
dr (TrS0) =

1

t

∫ t

0
dr (TrSr) =

1

t

∫ t

0
dr

[∫

Rd

dxKr(x, x)

]
=

=
1

t

∫

Rd

dx

[∫

Ω
µt,x

0,x(dω)g̃1

(∫ t

0
ds V−(Xs)

)]
=

∫

Rd

dxΨ1(t, x)In partiular, for any t > 0, Ψ1(t; ·) is integrable on Rd.On the other hand
TrS0 =

∫

Rd

K0(x, x)dx =

∫

Rd

dxV−(x)

∫

Ω
µt,x

0,x(dω)e−
R t
0 dρ V−(Xρ)

=

∫

Rd

dxV−(x)G1(t;x, x) =

∫

Rd

dxD1(t;x).One uses the approximation properties ontained in Lemmas 5.8 and 5.9 aswell as the Monotone Convergene Theorem.Proof. of Theorem 1.1 for B = 0We an assume V+ = 0 and V− ∈ C∞
0 (Rd). Lemma 5.7 implies that for any

α > 0 one has
N−α(−V−) ≤ F∞(1)−1Tr [F∞(Kα)] .Using (5.15), (5.16), we obtain

Tr [F∞(Kα)] =

∫ ∞

0
dt e−αt

∫

Rd

dxD∞(t;x) =
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=

∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x). (5.20)Inequality (6.1) for B = 0 follows from (5.20) and Lemma 5.10. In addition
Cd = F∞(1)−1Cd.6. Proof of the bounds in the magneti aseProof. of Theorem 1.1 for B 6= 0.Analogously to Setion 5, we an assume V+ = 0 and V− ∈ C∞

0 (Rd). For
α > 0 one sets Kα(A) := V

1/2
− (HA +α)−1V

1/2
− . By inequality (3.4) for r = 1and also using Pitt's Theorem [45℄,Kα(A) is a positive ompat operator, andthe same an be said about F∞ [Kα(A)]. We show that F∞ [Kα(A)] ∈ B1 andwe estimate the trae-norm. Repeating the arguments from the beginning ofthe proof of Proposition 5.1,

Fλ [Kα(A)] = V
1/2
−

∫ ∞

0
dt e−αte−t(HA+λV−)V

1/2
− . (6.1)By using Proposition 4.1, we get for any u ∈ C0(R

d), u ≥ 0

[Fλ [Kα(A)] u] (x) = (6.2)
= V

1/2
− (x)

∫ ∞

0
dt e−αtEx

[
u(Xt)V

1/2
− (Xt)e

−iSA(t,X)gλ

(∫ t

0
ds V−(Xs)

)]
.Approximating g∞ by means of Lemmas 5.8 and 5.9 and using the MonotoneConvergene Theorem, we see that (6.2) also holds for the pair (g∞, F∞). Thenext inequality follows:

|F∞ [Kα(A)] u| ≤ F∞(Kα)|u|, ∀u ∈ L2(Rd). (6.3)By Lemma 15.11 from [48℄, we have F∞ [Kα(A)] ∈ B1 and
Tr (F∞ [Kα(A)]) ≤ Tr (F∞ [Kα]) . (6.4)Denoting by N−α(B,−V−) the number of eigenvalues of HA − V− stritlyless than −α, analogously to Lemmas 5.6 and 5.7, we dedue that

N−α(B,−V−) ≤ F∞(1)−1Tr (F∞ [Kα]) . (6.5)Inequality (6.1) follows from (6.5) by using the estimations at the end ofSetion 5. The onstant Cd is the same as for the ase B = 0.



124 V. Iftimie et al.Proof. of Corollary 1.1. The idea of the proof is standard (f. [48℄ forinstane), but one has to use parts of the arguments from the proof of The-orem 1.1 in the ase B = 0.1. We show that it is enough to treat the ase V+ = 0.We denote by N (resp. N−) the number of stritly negative eigenvalues of
HA ∔ V (resp. HA ∔ (−V−)). We have N,N− ∈ [0,∞] and the min-maxpriniple shows that N ≤ N−. In addition, if HA ∔ V has stritly negativeeigenvalues λ1 ≤ λ2 ≤ . . . , then HA∔(−V−) has stritly negative eigenvalues
λ−1 ≤ λ−2 ≤ . . . and λ−j ≤ λj, j ≥ 1. Therefore, one has ∑j≥1 |λj |k ≤∑

j≥1 |λ−j |k.2. We show that treating ompatly supported V− is enough (remark thatthis property implies that V− ∈ Lp(Rd) for any p ∈ [1, d + k]).We take into aount the approximation sequene de�ned in Lemma 5.3. Thesequene of forms (hn)n≥1 satis�es the hypothesis of Theorem 3.11, Ch. VIIIfrom [29℄. If we denote by λ1 ≤ λ2 ≤ . . . the stritly negative eigenvaluesof HA

·
+ V and by λ

(n)
1 ≤ λ

(n)
2 ≤ . . . the stritly negative eigenvalues of

H(n) := HA

·
+ V (n), one again by Theorem 3.15, Ch. VIII from [29℄, wehave λ(n)

j ≥ λj , ∀j, n ∈ N∗ and λ(n)
j onverges to λj . So it will be su�ientto prove (6.1) for the operators H(n).3. We assume from now on that V = −V−, V− ∈ Ld+k(Rd) (k > 0) and that

supp(V−) is ompat. Let β0 > 0 and for β ∈ (0, β0] let
λ1 ≤ λ2 ≤ · · · ≤ λN−β

< −βbe the eigenvalues of H = HA

·
+ (−V−) stritly smaller than −β and let

λ1 ≤ λ2 ≤ · · · ≤ λM(β) < −βbe the distint eigenvalues with mj the multipliity of λj , 1 ≤ j ≤ M(β).We have N−α := N−α(B,−V−). Using the de�nition of the Stieltjes integraland integration by parts, we get
N−β∑

j=1

|λj |k =

M(β)∑

j=1

mj|λj|k =

M(β)∑

j=1

|λj|k
(
Nλj+1

−Nλj

)
=

∫ −β

λ1

|λ|kdNλ =

= |β|kN−β + k

∫ −β

λ1

|λ|k−1Nλ dλ. (6.6)



eigenvalues of a relativisti Hamiltonian 125We denote by I the last integral and use (6.5) and (5.20) and the argumentsin the proof of Lemma 5.10 to estimate I:
I =

∫ −λ1

β
αk−1N−αdα = [F∞(1)]−1

∫ −λ1

β
αk−1TrF∞(Kα)dα =

= [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dtΨ∞(t, x)

∫ −λ1

β
dααk−1e−αt ≤

≤ [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dt t−1 ◦

℘t(0)g̃∞(tV−(x))

∫ −λ1

β
dααk−1e−αt ≤

≤ C [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dt
(
t−d−1+ t−d/2−1

)
g̃∞(tV−(x))

∫ −λ1

β
dααk−1e−αt.The α integral may be bounded by

∫ ∞

0
dααk−1e−αt = t−k

∫ ∞

0
ds sk−1e−s ≤ Ct−k.Realling that g̃∞(t) = 0 for t ≤ 1 and g̃∞(t) = t − 1 for t > 1, we get that

g̃∞(tV−(x)) = 0 for V−(x) = 0 and for V−(x) > 0

∫ ∞

0
dt t−k

(
t−d−1 + t−d/2−1

)
g̃∞(tV−(x)) =

= [V−(x)]d+k
∫ ∞

1
s−d−k−1(s− 1)ds + [V−(x)]d/2+k

∫ ∞

1
s−d/2−k−1(s− 1)ds,the integrals being onvergent for d ≥ 2.Using these estimations in (6.6) we onlude that

N−β∑

j=1

(
|λj |k − |β|k

)
≤ C

{∫

Rd

[V−(x)]d+k dx +

∫

Rd

[V−(x)]d/2+k dx

}
,thus

N−(β0)∑

j=1

(
|λj |k − |β|k

)
≤ C

{∫

Rd

[V−(x)]d+k dx +

∫

Rd

[V−(x)]d/2+k dx

}
,with the onstant C not depending on β or β0. Taking the limit β ց 0 endsthe proof.
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approximate inertial manifolds 1331. IntrodutionIn the study of dissipative semi-dynamial systems generated by semilinearparaboli equations, the theory of qualitative behavior of the system at largetimes plays an important role. By paraboli semilinear equations we meanpartial di�erential equations that an be written as abstrat equations in aHilbert spae, of the form:
du

dt
+ νAu+R(u) = f, (1.1)where u is a funtion of time with values in a Hilbert spae H (whose de�-nition omprises the boundary value onditions imposed to equation (1.1)).We attah to the above equation an initial ondition
u(0) = u0, (1.2)with u0 in H. We assume that A is a linear operator, de�ned on a densesubspae D(A) of H, self-adjoint, positive de�nite, with ompat inverse,while R is a nonlinear operator de�ned on D(R) ⊂ D(A). We do not insisthere on the hypotheses on R, but we assume that it is suh that the Cauhyproblem (1)-(2) has an unique solution on [0, T ], for every u0 ∈ H and every

T > 0. Hene a semi-dynamial system is generated by the above problem,by setting S(t)u0 = u(t, u0), where u(t, u0) is the solution of (1.1)�(1.2).For this presentation we assume that f is in H. We also assume that thesemi-dynamial system generated by (1.1) is dissipative in the sense thatthere is a bounded absorbing set for it. An absorbing set is a set B havingthe property that, for every bounded set M ⊂ H, there is a value of t,depending on M, let us denote it by tM , with the property that, S(t)M ⊂ Bfor t ≥ tM . For the partiular problems we onsider here, there also areabsorbing balls in some subspae V of H, with D(A) ⊂ V ⊂ H.In the theory of qualitative behavior at large times of solutions of equationsof the form (1.1), the notion of global attrator plays an important role.A global attrator [3℄ is a ompat set of the phase spae H, invariant tothe semigroup S(t)t≥0, that attrats the bounded sets of the phase spae,when time tends to in�nity. This means that the global attrator bears inits struture the properties of the behavior of the semi-dynamial system atlarge times. For many problems of interest the existene of an attrator wasproved [37℄.The study of the geometrial and topologial properties of the global attra-tors �ourished sine the last two deades of the XXth entury and the major



134 Ana-Veronia Ionhope was that a onnetion between the struture of the attrator and veryomplex phenomena like turbulene in the �ow of the �uids will be found.In this ontext, another interesting notion appeared, that of inertial mani-fold (i.m.) [11℄. It is a �nite dimensional, invariant and at least Lipshitzmanifold having the property that it exponentially attrats all the trajeto-ries of the problem. More than that, an i.m. has the property of asymptotiompleteness meaning that for every u0 in H there is a v0 on the i.m. suhthat the distane between the trajetories passing through the two pointsdereases exponentially with time.The invariane of the i.m. implies the fat that we an onstrut a restritionof the problem to this manifold. The restrited problem is named inertialform [11℄, [37℄ and, sine the i.m. is �nite dimensional, is equivalent witha system of ODEs. The above de�ned asymptoti ompleteness of the i.m.implies that the asymptoti behavior at large times of the dynamial systemis desribed by the asymptoti behavior of the inertial form. Hene the largetimes study of the initial semi-dynamial system (in�nite dimensional sineits phase spae is H) an be redued to that of a �nite-dimensional one.Another important onsequene of the properties of the i.m.s is that, when aglobal attrator exists, it is ontained in the i.m. These onsiderations explainthe large interest shown by the sienti� ommunity in inertial manifolds.From among the great number of papers devoted to the inertial manifoldswe remind: [11℄ (with the extended version [12℄), [8℄, [9℄, [5℄, [36℄. Theimportant monograph [37℄ had a seond edition in 1997.From a theoretial point of view, the i.m.s looked very promising, but majorobstales appeared in trying to use their properties in the study of onreteproblems. One is due to the fat that existene of i.m.s is in most papersproved by a �xed point theorem, and is not onstrutive. There is a on-strutive proof in [2℄ but it uses some integral manifolds whose onstrutionis equivalent with solving the equation. Another problem is a restritivehypothesis among the hypothesis of the existene theorems- the hypothesisof a spetral gap that imposes the existene of two suessive eigenvaluesof A situated at a �large enough� distane [1℄, [12℄, [37℄. This hypothesis isnot ful�lled by many problems, (e.g. is not ful�lled for the two-dimensionalNavier-Stokes equations).In this situation the approximate inertial manifolds were de�ned as approxi-mations of i.m.s or as substitutes of these, when the i.m.s ould not be provedto exist. An approximate inertial manifold (a.i.m.) is a �nite dimensional, atleast Lipshitz manifold in the spae H, with the property that all the traje-tories of the dynamial system enter a narrow neighborhood of the manifold



approximate inertial manifolds 135at a ertain moment and never leave the neighborhood after. Even if it hasnot the invariane property, an a.i.m. is important beause, if the problemhas a global attrator, it is ontained in the narrow neighborhood mentionedabove.The loalization of the attrators in the spae of phases was a �rst interestingappliation �eld of the a.i.m.s. Besides this, a.i.m.s found very interestingappliations in the onstrution of some approximate solutions (the numerialintegration) of the nonlinear evolution problems. Examples of papers devotedto a.i.m.s are: [10℄, [13℄, [23℄, [26℄, [27℄, [28℄, [33℄, [35℄, [37℄, [38℄, [39℄.In Setion 2 we present some methods, that use a.i.m.s, for the onstrutionof approximate solutions for problems of the type (1.1)�(1.2), the so-allednon-linear Galerkin method and post-proessed Galerkin method.We inlude a method oneived by us, that we named repeatedly adjusted andpost-proessed Galerkin method, that is onneted to the preeding methodsbut brings some simpli�ations to these. In Setion 3 we present the waythese method work for the two-dimensional Navier-Stokes equations with pe-riodi boundary onditions, and in Setion 4, for a two-dimensional reation-di�usion equation, with Von Neumann boundary onditions.In order to settle the notations and the funtional framework of our presenta-tion, we shortly remind below the Galerkin spetral method for the abstratequation (1.1).1.1. The Galerkin methodIn the hypotheses we assumed on the operator A of equation (1.1), it followsthat A has positive eigenvalues that form a tending to in�nity sequene:
0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ..., λn →

n→∞
∞.The eigenfuntions of A form a total (orthonormal) system for H. We on-sider the set, denoted Γm, of the �rst distint m eigenvalues (in inreasingorder) and the eigenfuntions orresponding to these. We denote by P theorthogonal projetion operator on the subspae spanned by these eigenfun-tions and we set Q = I − P (where I is the identity appliation on H). Thesolution u of (1.1)�(1.2) is projeted by the two projetors and we set

p = Pu,

q = Qu.



136 Ana-Veronia IonIt follows that the funtions p and q are solutions of
dp

dt
+ νAp+ PR(p+ q) = Pf, (1.3)

dq

dt
+ νAq +QR(p+ q) = Qf, (1.4)

p(0) = Pu0, (1.5)
q(0) = Qu0. (1.6)Usually, the omponent q of the solution is proved to be, at large times, �little�in the norm of H ompared to the p omponent. That is, an inequality ofthe form

|q (t)| ≤ C0δ
a, (1.7)where

δ =
λ1

λm+1
, (1.8)and a is some positive number, is true. For the Navier-Stokes equations it isproved in [38℄ that a inequality of the type (1.7) holds, with a = 1 and C0depending onm. We proved in [19℄ that the inequality an be improved in thesense that it is true with a C0 that does not depend on m. For the reation-di�usion equation, |q(t)| is of the order of δ for large enough times [4℄.If in the equation (1.4) q is negleted in the presene of p, we �nd the equation

dp

dt
+ νAp+ PR(p) = Pf. (1.9)This is the Galerkin approximation of the equation (1.1). The solution of theproblem (1.9) with the initial ondition (1.5), that we denote by pG(.), is theGalerkin approximation of the solution of (1.1)-(1.2). For several problemsit is proved in the literature that inequalities of the type
|u(t) − pG(t)| ≤ Cδα,where u(t) is the solution of the problem (1.1)-(1.2), δ > 0 is de�ned by (1.8),and α > 0.As example, for a reation-di�usion equation with Neumann boundary valuesand for the two-dimensional Navier-Stokes equations, α = 1 (in the hypoth-esis f ∈ H). The problem (1.9), (1.5) is equivalent to a system of ordinarydi�erential equations for the oordinates of p(t) along the eigenfuntions thatspan PH. The de�nition of δ shows that the greater will be m, (hene thedimension of PH), the smaller will be the error.



approximate inertial manifolds 137In the onstrution of the Galerkin equation, the q omponent of the solution(that is proved to be small for large times) is approximated with 0. Thenonlinear Galerkin (and/or post-proessed) methods of approximation arebased upon the idea of approximating q(t) by using a a.i.m instead of themanifold q0.2. Modi�ed Galerkin methodsThe nonlinear Galerkin (and/or post-proessed) methods of approximationare based upon the idea of approximating q(t) by using an a.i.m instead oftaking q ≃ 0.2.1. Families of a.i.m.s used in the modi�ed Galerkin meth-odsThere are several types of a.i.m.s de�ned in the literature. Among them,those de�ned in [10℄, [38℄, [39℄ (for the Navier-Stokes equations � NSE) gen-erated new numerial integration methods, based on the Galerkin method.They form a family {Mj}j≥0 and are the graphs of some funtions
Φj : PH → QH. The de�nitions of these a.i.m.s for the NSE are presented inSetion 3 while those for the RDE are given in Setion 4. A.i.m.s of the typeof those ited above may be (and were) de�ned for many partiular problemsof the form (1.1)�(1.2). The main property of these a.i.m.s, on whih theiruse in the onstrution of the numerial methods is based, is the following:the distane (in the norm of H) between q(t) and the image of p(t) on thea.i.m. Mn is of the order of δa(n) that is

|q(t) − Φn(p(t))| ≤ Cδa(n), (2.1)where a(n) is inreasing with n.For example, for the two-dimensional NSE it is proved [38℄, [39℄ that a(n) =
= (n+3)/2. Sine, for NSE, about the H norm of q(t) only the fat of beingof the order of δ is known, it is lear that any of the above a.i.m.s providesa better approximation of q(t) than the so-alled plane manifold q = 0, forthe mentioned problem.



138 Ana-Veronia Ion2.2. The nonlinear Galerkin methodsThe nonlinear Galerkin method (NL Galerkin method) was �rst de�ned in[29℄. The method relies on the idea that Φ0(p(t)) is a better approximationof q(t) than 0, and onsiders, instead of the Galerkin equation (3.25), theequation
dp

dt
+ νAp+ PR(p+ Φ0(p)) = Pf, (2.2)with initial ondition (1.5). By denoting with p̃0(.) the solution of this prob-lem, the approximate solution of (1.1)�(1.2) is taken as
v0(t) = p̃0(t) + Φ0(p̃0(t)).As it is natural, sine Φn (p(t)) approximates q(t) better and better with theinrease of n, the next idea, appeared in [6℄, was to onsider the equation

dp

dt
+ νAp+ PR(p+ Φn(p)) = Pf, (2.3)with the initial ondition (1.5). Let p̃n(.) the solution of this problem. Theapproximate solution is then de�ned as
vn(t) = p̃n(t) + Φn(p̃n(t)).For the problems onsidered in the ontext of nonlinear Galerkin problems,it is proved that the error is of the order of δb(n), where b(n) is inreasingwith n.E.g., for the Navier-Stokes equations it is proved in [7℄ that b(n) = (n+3)/2,while for the reation-di�usion equation it is asserted in [32℄ that b(n) = n+2provided f ∈ H.2.3. Post-proessed Galerkin methodsIn [14℄ the following modi�ed Galerkin method is proposed, that also usesa.i.m.s. Let again pG(.) be the solution of (1.9), (1.5). Then the value of

Φ0(pG(t)) is omputed at the right end side of the time interval [0, T ], thatis in T . The approximate solution in T is de�ned as
w(T ) = pG(T ) + Φ0(pG(T )).



approximate inertial manifolds 139This method is named the post-proessed Galerkin method (PP Galerkinmethod) beause the solution of the Galerkin problem is orreted only in the�nal phase, after �nishing the numerial integration of the Galerkin prob-lem, by using the �rst a.i.m. of the family desribed in 2.1 (hene post-proessed). The error of this approximate solution is less than that of theGalerkin method. Thus, for the two-dimensional Navier-Stokes equations, itis shown in [14℄ to be of the order of δ5/4. Another estimate is proved in [15℄,i.e. the error is proved to be of the order of L2δ3/2, where L = 1 + ln(2m2).This latter estimate of the error is not neessary better than the formerbeause of the oe�ient L2.The next idea appeared in the literature [32℄ was to postproess the NLGalerkin method of the preeding setion. More preisely, the equation (2.3)is onsidered, it is integrated on all the time interval [0, T ], then Φn+1(p̃n(T )),is omputed, and the approximate solution in T is de�ned as
wn(T ) = p̃n(T ) + Φn+1(p̃n(T )).This method is alled the nonlinear post-proessed Galerkin method (NLPP Galerkin method). In [32℄ the use of the method is exempli�ed on thereation-di�usion equation and it is proved that, if f ∈ H, then the error isof the order of lnmδn+3.2.4. A new modi�ed Galerkin methodIn [38℄, in the ontext of the study of the NSE, a family of funtions,

{qj}j≥0, qj : R+ → QH, having the property
|qj(t) − q(t)| ≤ kjL

1+j/2δ(3+j)/2 (2.4)for large enough times is onstruted. Here the oe�ients kj depend on thedata of the problem (ν, |f |, λ1), and L = 1 + lnλm+1

λ1
. Atually, the funtion

q0 is of the form
q0 = Φ0(p),while, for j ≥ 1, qj are reursively de�ned by relations of the type

qj = Fj(Qf, p, q0, ..., qj−1). (2.5)The funtions uj = p + qj, j ≥ 0 de�ne the so-alled indued trajetories,
{uj(t); t ≥ 0}, assoiated to the trajetory {u(t); t ≥ 0} of the dynamialsystem. Relation (2.4) shows that the funtions uj , j ≥ 0, are approximations



140 Ana-Veronia Ionof the exat solution, of inreasing with j auray. The de�nition of thea.i.m.s Mj used in the nonlinear Galerkin methods for the NSE are basedupon the de�nitions of the funtions qj.In [20℄, for the two-dimensional NSE with periodi boundary onditions, wede�ned a new type of modi�ed Galerkin method, that uses some approxima-tions of the indued trajetories and not the a.i.m.s. We desribe here themethod in the general ontext of equation (1.1). The purpose of the methodis that of working with a very low-dimensional projetion spae PH, and theidea from whih we started is that, however small is the dimension of PH, ifwe have a very good approximation for q, let us denote it by q̃, then a verygood approximation for p will be obtained by solving the equation
dp

dt
+ νAp+ g(p + q̃) = Pf.In onsequene, a good approximation of u may be obtained. The methodis strutured on several levels. One of the ideas we followed in developingthis method is that of having to integrate only di�erential equations of thesame level of di�ulty as the Galerkin equation. This was possible by usingapproximations of indued trajetories instead of a.i.m.s.Level 0. This level has two stages. The �rst is the lassial Galerkin method,i.e. we solve the problem (1.9), (1.5) and we onsider its solution, pG(.).The seond stage onsists in de�ning the funtion of time, with values in

QH:
q̃0(t) = Φ0(pG(t)), (2.6)the funtion Φ0 being the one that de�nes the �rst a.i.m. of the family itedin 2.1.Then we de�ne the approximate solution at this �rst level as
ũ0 = pG + q̃0.Sine the funtion q̃0(t) will be used at the seond level of our method, in thenumerial implementation of this method, the funtion q̃0 should be om-puted in eah point of the time mesh, unlike in the post-proessing de�nedin [14℄, where it is omputed only at the �nal point of the integration in-terval [0, T ]. Besides this, Level 0 of our method is essentially the Galerkinpost-proessed method.Level 1. We onsider the problem

dp

dt
+ νAp+ PR(p+ q̃0) = Pf, (2.7)

p(0) = Pu0



approximate inertial manifolds 141and we denote by p̃0 its solution. This is an "adjusted" Galerkin problem.This equation is essentially di�erent from the orresponding one of the NLGalerkin method (see equation (2.3)) sine q̃0 is known from Level 1.Then we de�ne
q̃1(t) = F1(Qf, p̃0(t), q̃0(t)).The approximate solution is

ũ1 = p̃0 + q̃1.Level j > 1.We assume that q̃0, q̃1, q̃2, ..., q̃j−1 were onstruted. The problem
dp

dt
+ νAp+ PR(p+ q̃j−1) = Pf, (2.8)

p(0) = Pu0,is onsidered and its solution is denoted by p̃j−1. Then we denote
q̃j = Fj (Qf, p̃j−1, q̃0, q̃1, ..., q̃j−1)and the approximate solution is̃

uj = p̃j−1 + q̃j.At �rst sight, the idea of performing several time integrations seems a badidea, sine every suh integration involves a large amount of omputations.However, a areful analysis shows that the amount of omputations involvedin the NL Galerkin method (based upon the a.i.m. Mj) is greater thanthat involved in solving the problems from Level 1 to the eq. (2.8) of Levelj, inlusive. Suh an analysis is performed for the Navier-Stokes equationsin 3.8. Hene our method, that we all the repeatedly adjusted and post-proessed Galerkin method (R-APP Galerkin method) is an alternative tothe NL Galerkin method. The �nal post-proessing, by adding q̃j to p̃j−1 isequivalent to the post-proessing of NL Galerkin method and does not implya large amount of aluli sine it will be performed only in some seletedmoments of time (eventually only at the last moment, T ). In what onernsthe error, for the problems disussed below we an prove that the error ofR-APP Galerkin method is of the same order of magnitude as that for NLPP Galerkin method, for the two partiular problems in Setions 3 and 4.



142 Ana-Veronia Ion3. Modi�ed Galerkin methods for the Navier-StokesequationWe present here the modi�ed Galerkin methods for the Navier-Stokes equa-tions: the NL, NL PP Galerkin methods already de�ned in the literature andour R-APP Galerkin method.3.1. The setting of the problemWe onsider the problem of the two-dimensional �ow of a inompressibleNewtonian �uid, modeled by the Navier-Stokes equations. We impose pe-riodi boundary onditions and hoose the periodiity ell to be a square,
Ω = (0, l) × (0, l). Thus the problem is

∂u

∂t
− ν∆u + (u · ∇)u+∇p = f , (3.1)divu = 0, (3.2)where u (t,x) ∈ R2 is the veloity of the �uid, t ≥ 0, x ∈Ω, p (t,x) ∈ R is thepressure of the �uid, ν is the kinemati visosity, and f is the volume fore.We add the initial ondition

u (0, ·) = u0(·). (3.3)We assume that f is independent of time and is an element of [L2
per (Ω)

]2. Asis usual in the study of the Navier-Stokes equations with periodi boundaryonditions, we assume that [40℄, [34℄
f =

1

l2

∫

Ω
f (x) dx = 0, (3.4)and that the pressure is a periodi funtion on Ω. For simpliity we willassume also that the average u of the veloity over the periodiity ell iszero.The veloity u is thus looked for in the spae H =

{
v; v ∈

[
L2

per (Ω)
]2
,divv = 0, v = 0} with the salar produt (u,v) =

∫
Ω (u1v1 + u2v2) dx,(where u = (u1, u2) , v = (v1, v2)) and the indued norm is denoted by

|·|. Let us also onsider the spae V =
{
u ∈

[
H1

per (Ω)
]2
, div u = 0,u = 0

}
,with the salar produt ((u,v)) =

∑2
i,j=1

(
∂ui
∂xj

, ∂vi
∂xj

)
, and the indued norm,denoted by ‖·‖ .



approximate inertial manifolds 143The variational formulation of the Navier-Stokes equations [40℄ leads, for theperiodi boundary onditions, to the Cauhy problem
du

dt
− ν∆u + (u · ∇)u = f in V ′, (3.5)

u (0) = u0, u0 ∈ H. (3.6)The notations
B(u,v) = (u · ∇)v, (3.7)

B(u) = B(u,u), (3.8)will be used below.We remind here the lassial existene and uniqueness results for the Navier-Stokes equations in R2, with periodi boundary onditions.We denote A = −∆. The de�nition domain of the linear operator A is
D(A) = V ∩H2

per(Ω).Theorem 3.1 [40℄. a) If u0 ∈ H, f ∈ H, then the problem (3.5), (3.6)has an unique solution u ∈ C0 ([0, T ];H) ∩ L2 (0, T ;V) . b) If, in addition,
u0 ∈ V, then u ∈ C0 ([0, T ];V) ∩ L2 (0, T ;D(A)) . The solution is, in thislatter ase, analyti in time on the positive real axis.The semi-dynamial system {S (t)}t≥0 generated by problem (3.5) is dissi-pative [37℄. More preisely, there is a ρ0 > 0 suh that for every R > 0,there is a t0(R) > 0 with the property that for every u0 ∈ H with |u0| ≤ R,we have |S (t)u0| ≤ ρ0 for t > t0(R). In addition, there are absorbing ballsin V and D (A) for {S (t)}t≥0, [34℄ i.e. there are ρ1 > 0, ρ2 > 0 and, forevery R > 0, there are t1(R), t2(R) with t2(R) ≥ t1(R) ≥ t0(R) suh that
|u0| ≤ R implies ‖S (t)u0‖ ≤ ρ1 for t > t1(R) and |AS (t)u0| ≤ ρ2 for
t > t2(R).3.2. The deomposition of the spae, the projeted equationsThe eigenvalues of A are λj1,j2 = 4π2

l2

(
j21 + j22

)
, (j1, j2) ∈ N2\ {(0, 0)} , andthe orresponding eigenfuntions are

ws±
j1,j2

=

√
2

l

(j2,∓j1)
|j| sin

(
2π
j1x1 ± j2x2

l

)
,

wc±
j1,j2

=

√
2

l

(j2,∓j1)
|j| cos

(
2π
j1x1 ± j2x2

l

)
,



144 Ana-Veronia Ionwhere |j| =
(
j21 + j22

) 1
2 [38℄. These eigenfuntions form a total system for H.For a �xed m ∈ N we onsider the set Γm of eigenvalues λj1,j2 having

0 ≤ j1, j2 ≤ m. We de�ne
λ := λ1,0 = λ0,1 =

4π2

l2
,

Λ := λm+1,0 = λ0,m+1 =
4π2

l2
(m+ 1)2 ,

δ = δ (m) :=
λ

Λ
=

1

(m+ 1)2
.

Λ is the least eigenvalue not belonging to Γm. The eigenfuntions orre-sponding to the eigenvalues of Γm span a �nite-dimensional subspae of H.We denote by P the orthogonal projetion operator on this subspae and by
Q the orthogonal projetion operator on the omplementary subspae. Wewrite for the solution u of (3.5), (3.6), u = p + q, where p = Pu, q = Qu.By projeting equation (3.5) on the above onstruted spaes, we obtain

dp

dt
− ν∆p + PB(p + q) = Pf , (3.9)

dq

dt
− ν∆q + QB(p + q) = Qf . (3.10)In [10℄ is proved that for every R > 0, there is a moment t3 (R) ≥ t2(R) suhthat for every |u0| ≤ R,

|q (t)| ≤ K0L
1
2 δ, ‖q (t)‖ ≤ K1L

1
2 δ

1
2 , (3.11)

∣∣q′ (t)
∣∣ ≤ K ′

0L
1
2 δ, |∆q (t)| ≤ K2L

1
2 , t ≥ t3 (R) ,where, for our hoie of the set of eigenvalues Γm, L = 1 + ln(2m2). In [19℄we proved that estimates of the same order are true for the various norms of

q (t) above, but with oe�ients of the powers of δ not depending on m.3.3. Indued trajetories for the Navier-Stokes problemIn [38℄ the notion of indued trajetory is de�ned and a family of induedtrajetories is onstruted for this problem. The asymptoti expansions thatrely behind this onstrution are not made expliit there.



approximate inertial manifolds 145A family of funtions, {qj; j ∈ N} , that satisfy the equations
−ν∆q0 + QB (p) = Qf ,(3.12)

−ν∆q1 + QB (p) + QB (p,q0) + QB (q0,p) = Qf ,(3.13)
−ν∆q2 + QB(p) + QB (p,q1) + QB (q1,p) + QB(q0,q0) + q′

0 = Qf ,(3.14)
−ν∆qj + q′

j−2 + QB (p) + QB (p,qj−1)+ (3.15)
+QB (qj−1,p) + QB (qj−2,qj−2) = Qf , j ≥ 2,is de�ned.If p (t) is, as above, the P projetion of the solution u(t) of the NSE, thesets {uj(t) = p (t) + qj (t) ; t ≥ 0} are alled indued trajetories assoiatedto the trajetory {u(t) = p (t) + q (t) ; t ≥ 0}. The inequalities

|qj | ≤ κjδL
1/2, ‖qj‖ ≤ κjδ

1/2L1/2,
∣∣q′

j

∣∣ ≤ κjδL
1/2,are proved in [38℄, as well as the following

|q(t) − qj(t)| ≤
_
κjL

(1+j)/2δ(3+j)/2. (3.16)3.4. A family of approximate inertial manifolds for the Navier-Stokes equationsThe family of indued trajetories above, more preisely the funtions qj , j ≥
0, form the starting point for the onstrution of a family of approximate in-ertial manifolds de�ned in the literature, the �rst one in [10℄ and the followingin [38℄ and [39℄. The �rst a.i.m. of this family is the graphM0 of the funtion
Φ0 : PH →QH, that satis�es the relation

−ν∆Φ0 (X) + QB(X) = Qf ,where X ∈ PH. Thus Φ0 (X) is expliitly given by
Φ0 (X) = (−ν∆)−1 (Qf − QB(X)) . (3.17)



146 Ana-Veronia IonThe onnetion between this de�nition and the de�nition (3.12) of q0 isobvious: the set of points {p(t) + q0(t); t ≥ 0} lies on M0. The next a.i.m.de�ned in [38℄ is M1, the graph of the funtion Φ1 : PH →QH, given by thesolution of the problem
−ν∆Φ1 (X) + QB(X) + QB(X,Φ0 (X)) + QB(Φ0 (X) ,X) = Qf ,that is

Φ1(X) = − (ν∆)−1 [Qf − QB(X) − QB(X,Φ0 (X)) − QB(Φ0 (X) ,X)] .(3.18)The relation with the de�nition (3.13) of the orresponding funtion q1 islear.For j ≥ 2, inspired by the de�nition (3.15) of qj , the a.i.m. Mj is de�nedas the graph of Φj : PH →QH, with Φj (X) the solution of
−ν∆Φj (X) + QB(X) + QB(X,Φj−1 (X)) + QB(Φj−1 (X) ,X)+

+QB(Φj−2 (X)) + DΦj−2 (X) Γj−2 (X) = Qf ,where DΦj−2 (X) Γj−2 (X) is the Fréhet di�erential of Φj−2 (X), applied to
Γj−2 (X) = ν∆X− PB (X + Φj−2 (X)) + Pf . (3.19)Hene

Φj (X) = − (ν∆)−1 [Qf − QB (X) − QB (X,Φj−1 (X))− (3.20)
−QB (Φj−1 (X) ,X) − QB(Φj−2 (X)) − DΦj−2 (X) Γj−2 (X)] .The inequalities (3.16) allow us to estimate the distane between the traje-tories of the problem and the a.i.m.s. This is immediate for the �rst twoa.i.m.s, sine for j = 0, 1, we have uj(t) ∈ Mj , and thus
distH (u(t), Mj) ≤ dist (u(t),uj(t)) = |q(t) − qj(t)| .For the a.i.m.s Mj with j > 1, some extra work is neessary, sine

DΦj−2 (p(t)) Γj−2 (p (t)) is only an approximation of [qj−2(p (t))]′ . How-ever, in [38℄ and [39℄ it is proved that
distH (u (t) ,Mj) ≤

_
κjL

(1+j)/2δ(3+j)/2.



approximate inertial manifolds 1473.5. Nonlinear Galerkin method for the Navier Stokes equa-tionsThe nonlinear Galerkin method was �rst presented in [29℄. It is de�ned for alass of equations that ontains the Navier-Stokes equations as a partiularase, i.e. an equation of the type (1.1) with
R(u) = B(u) +Cu,where B(u) = B(u, u), B(., .) is a bilinear operator having essentially theproperties of B and C is a linear operator. It is assumed that A + C ispositive in H and C is bounded from V = D(A1/2) to H.We write the method for the Navier-Stokes problem we onsidered here (thatis we take A = −ν∆, B = B, C = 0). It onsists in approximating in theP projetion of the equation, the funtion q with help of the �rst a.i.m. ofthe family desribed above. That is, instead of the Galerkin equation, theequation

dp

dt
− ν∆p + P [B(p) + B(p,Φ0(p)) + B(Φ0(p),p)] = Pf , (3.21)with the initial ondition

p(0) = Pu0,is onsidered, where Φ0 is given by (3.17) (the notations are adapted toours). We see from the term PB(p + Φ0(p)) the term PB(Φ0(p),Φ0(p))is missing. This is beause it is of lower order than the preeding terms.As for the equation of Φ0, this is taken in [29℄ as
Φ0 (p) = (−ν∆)−1 Q2m [f − B(p)] , (3.22)where Q2m is the projetion operator de�ned as Q2m = QP2m, where P2mis the projetor on the spae spanned by the eigenfuntions orresponding tothe eigenvalues in Γ2m (of λj1,j2 having 0 ≤ j1, j2 ≤ 2m). This is beausethe spae QH is in�nite dimensional and a trunation must be made (atleast for f , sine for periodi boundary onditions, if X ∈ PH then B(X) isanyway in P2mH).Let us denote, together with the authors of [29℄, the solution of (3.21) by

um. It is proved in the paper we refer at, that, if u0 ∈ H then um →
m→∞

u in L2 (0, T ;V) , um →
m→∞

u in Lp (0, T ;H) , strongly (for any T > 0, p ≥
1) and um →

m→∞
u in L∞ (R+;H) weak-star.



148 Ana-Veronia IonIf u0 ∈ V then um →
m→∞

u in L2 (0, T ;D(A)) , um →
m→∞

u in Lp (0, T ;V) ,strongly (for any T > 0, p ≥ 1) and um →
m→∞

u in L∞ (R+;V) weak-star.As an alternative nonlinear Galerkin method, that starting from the equation(similar to (2.2))
dp

dt
− ν∆p + PB(p + Φ0(p)) = Pf , (3.23)with Φ0 de�ned by (3.22) is also given in [29℄. Convergene results similarto those asserted above are proved.In [7℄ an estimate of the error of the method is given

|u(t)− [um(t) + Φ0(um(t))]| ≤ C(t)δ3/2.In [6℄ the NL Galerkin method is improved by using more aurate a.i.m.s.The equation that provides the approximate solution is (we write it here alsofor the N-S equations)
dp

dt
− ν∆p + PB(p + Φj(p))] = Pf , (3.24)where Φj is the the funtion whose graph is the orresponding a.i.m. (similarto that de�ned in (3.20), but slightly di�erent). Let us denote by um,jthe solution of (3.24) and by vm,j = um,j + Φj(um,j). It is proved in [6℄that if u0 ∈ V, both um,j and vm,j onverge to u (when m → ∞) in

L2 (0, T ;D(A)) and in Lp (0, T ;V) , strongly (for all p ≥ 1 and all T > 0),and in L∞ (R+;V) weak-star. It is also proved that, for a �x j, zm,j =
Φj(um) onverges (when m → ∞) to 0 in L∞ (R+;V) and L2 (0, T ;D(A))strongly for any T > 0. In [7℄ some estimates for the error are obtained. Morepreisely, for the NSE, it is shown that (with our numbering of the a.i.m.s)

|u(t) − vm,j(t)| ≤ KjL
(j+3)/2
m δ(j+3)/2.3.6. Post-proessed Galerkin method for the Navier-StokesequationsThe ideas on whih the post-proessed Galerkin method relies are exposed in2.3. In [14℄ a general equation is onsidered and the Navier-Stokes equation



approximate inertial manifolds 149is treated as a partiular ase. The solution pG of the Galerkin equation,
dp

dt
− ν∆p + PB(p) = Pf , (3.25)

p(0) = Pu0,is post-proessed. This means, at a ertain moment T (the end of the timeinterval on whih the integration of (3.25) was performed) the image of pGon the �rst a.i.m. M0, that is Φ0 (pG(T )) , is omputed and is added to
pG (T ) . It is proved that, if f ∈ H, then

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ Cδ5/4. (3.26)In a subsequent paper, [15℄, the same authors prove another estimate for theNavier-Stokes problem. More exatly, they prove that, for f ∈H,

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ CL2δ3/2. (3.27)Estimate (3.27) is not neessarily better than (3.26), sine the oe�ient L2appears (as before, L = 1 + ln(2m2)). In [32℄ the method is improved. Thatpaper onsiders a reation-di�usion equation, but the algorithm works forthe Navier-Stokes equations as well. Instead of the Galerkin equations, theNL Galerkin equations (3.24) are onsidered. The solution um,j(t) of theseequations is post-proessed, i.e. the sum
um,j(T ) + Φj+1 (um,j(T ))is onsidered and proposed as an approximate solution. The estimate of theerror is made in [32℄ for the reation-di�usion equation, hene is not relevantfor the Navier-Stokes equation.3.7. The repeatedly adjusted and post-proessed Galerkinmethod for the Navier-Stokes equationWe adapt the general method presented in 2.4 to the Navier-Stokes equations.Level 0. We de�ne the �rst step of this level as the lassial Galerkinmethod. Let us onsider the Cauhy problem

dp

dt
− ν∆p + PB (p) = Pf , (3.28)

p(0) = Pu0.



150 Ana-Veronia IonWe denote by pG (t) its solution and de�ne
q̃0(t) = Φ0 (pG (t)) .In the implementation of the method, the equation (3.28) must be numeri-ally integrated. We remark that the values of q̃0(t) must be omputed inevery point of the time mesh used in the ourse of the numerial integration,sine they will be used at the next level of the method.We de�ne the funtion

ũ0 (t) = pG (t) + q̃0(t). (3.29)This preliminary level di�ers from the PP Galerkin method only in the post-proessing part, in the fat that we ompute q̃0(t) at any moment of timeand not only at the end of the time interval on whih (3.28) is integrated.Level 1. Now we onsider the problem
dp

dt
− ν∆p + PB (p+q̃0) = Pf , (3.30)

p(0) = Pu0,with q̃0(t) omputed at the preeding step. Sine q̃0(t) is already known, thisequation is not more di�ult to integrate than the simple Galerkin equationattahed to the Navier-Stokes equation. It is an adjusted Galerkin equationsine the nonlinear term is adjusted by adding to p(t) the term q̃0(t) thatapproximates q(t) better than 0 does. We denote by p̃0 (t) the solution ofproblem (3.30). The omputation of the error showed that p̃0 is a betterapproximation of p than pG (see the omments in 3.8).Then we de�ne
q̃1(t) = −(ν△)−1 [Qf − QB (p̃0(t)) − QB (p̃0(t), q̃0(t))−

−QB (q̃0(t), p̃0(t))]The approximate solution will be de�ned at this level as
ũ1 (t) = p̃0 (t) + q̃1(t). (3.31)This funtion is an approximation of u1 that de�nes the seond induedtrajetories.



approximate inertial manifolds 151Level j (j ≥ 2).We assume that we onstruted the funtions q̃j−2, q̃j−1(t).We onsider the adjusted Galerkin problem
dp

dt
− ν∆p + PB (p+q̃j−1) = Pf , (3.32)

p(0) = Pu0,and denote by p̃j−1 (t) its solution. Then we set
q̃j (t) = (−ν∆)−1

[
Qf − QB(p̃j−1 (t)) − QB(p̃j−1 (t) , q̃j−1 (t))− (3.33)

−QB(q̃j−1 (t) , p̃j−1 (t)) − QB(q̃j−2 (t) , q̃j−2 (t)) − q̃ ′
j−2 (t)

]
.We de�ne the approximate solution at this level as

ũj(t) = p̃j−1 (t) + q̃j(t).We remark that ũj (t) is an approximation of uj (t) (that de�nes a induedtrajetory of the family onstruted in [38℄).We must say that, at the last level, as in the NL PP Galerkin method, wemay orret p̃j−1 by adding q̃j only at some moments of interest (the �nalpostproessing step).We also must remark that, when the method is numerially implemented,the projetor Q must be replaed by a �nite dimensional projetor as, e.g.
Q2m de�ned in Setion 3.5.3.8. The error of the R-APP Galerkin methodIt is not the purpose of this work to present the expliit alulus of the errorof the methods presented. We proved in [20℄ that

|p(t) − p̃j(t)| ≤ Cδ5/4+j/2and
|q(t) − q̃j(t)| ≤ Cδ3/2+j/2,where C depends on the data of the problem: Ω, f , ν, λ1, and on t but noton m.With other methods, other estimates may be obtained. If we start fromestimates of [15℄ of |p (t) − pG (t)| , where pG (t) is, as before, the lassialGalerkin approximation of the solution, that is
|p (t) − pG (t)| ≤ C ′L2δ3/2,



152 Ana-Veronia Ionan improvement of the estimate of the error of the suessive solutions by afator of δ1/4 seems to be obtained. However, the appearane of the fator
L2 (L = 1 + ln(2m2)) diminishes this suess. A very areful analysis of theonstants C, C ′ should be performed in order to see what approah is better.Anyway, the R-APP Galerkin provides approximates solutions as aurateas those provided by the NL PP Galerkin method.3.9. R-APP Galerkin method ompared to the high-orderauray NLPP Galerkin methodThe R-APP Galerkin method is intended to bring some simpli�ations to theNL Galerkin methods that use high auray approximate inertial manifolds.Hene this method makes sense only if more of its levels are passed through.The simpli�ations ome from the following fats:a) the use of some already known funtions (the q̃js) for the adjustment ofthe Galerkin equation, makes the equations for the approximations of p tohave essentially the same struture as the Galerkin equation; this imply sim-pli�ations of the algorithms for the numerial integration of these equations,ompared to the orresponding equations of the NL Galerkin equations;b) the use of the "approximate indued trajetories" instead of the ap-proximate inertial manifolds makes some omputations easier, beause, inthe funtion q̃j the term q̃′

j−2 appears instead of the orresponding term
DΦj−2 (X) Γj−2 (X) of the a.i.m. Φj; the term q̃′

j−2 an be approximatedby the numerial derivative (sine we know its values in the points of thetime mesh);) when we proeed to Level j of the method, all we need are the values of
q̃j−2 and q̃j−1, while all values of p̃k, k < j − 1 and q̃k, k < j − 2 may beerased from the memory of the omputer; this must be ompared to the NLGalerkin method that uses Mj , where in the ourse of a single numerialintegration one must handle the values of all funtions Φk, k ≤ j, and allthese must be stored in the memory of the omputer.In order to ompare the R-APP Galerkin method with the NL PP Galerkinmethod, we must look at the levels j with j ≥ 2.Let us analyze in parallel the �rst stage of Level 3 (that delivers us thefuntion p̃2) of our method and the orresponding NL Galerkin method (thatuses the a.i.m. M2). It is easier to follow our reasoning on this partiularase than than on the general one.



approximate inertial manifolds 153In order to make the following as lear as possible, we desribe the ompu-tations neessary for the simple Euler integration method. Of ourse, moreelaborated algorithms must be used, but the di�ulties added by these shouldbe evaluated for eah spei� algorithm individually.In order to proeed, we onsider a time-mesh 0 = t0 < t1 < t2 < ... < tk <
... < tN = T on the time integration interval [0, T ].Let us make the notations

ΓG (p) = Pf + ν∆p− PB (p)

Γ̃j (p) = Pf + ν∆p− PB (p+q̃j) .R-APP Galerkin method, at the third level, requires the following om-putations for the determination of p̃2(t):at Level 0 � omputation of pG(tk), k = 1, ...,N, by numerial integration ofeq. (3.28) (this is equivalent with the omputation of ΓG (pG(tk−1))); thenomputation of q̃0(tk);at Level 1 � omputation of p̃0(tk), k = 1, ...,N, by numerial integrationof eq. (3.30) (this is equivalent with the omputation of Γ̃0 (p̃(tk−1))); thenomputation of q̃1(tk);at Level 2 � omputation of p̃1(tk), k = 1, ...,N, by numerial integra-tion of eq. (3.32) with j = 2, (this is equivalent with the omputation of
Γ̃1 (p̃1(tk−1))), then omputation of q̃2(tk);at Level 3 � omputation of p̃2(tk), by numerial integration of eq. (3.32)with j = 3 (this is equivalent with the omputation of Γ̃2 (p̃2(tk−1))).NL Galerkin method that uses M2, presented in [29℄, onsists in theintegration of the system of ODEs

dp

dt
− ν∆p + P [B(p + Φ2(p))] = Pf , (3.34)

p (0) = Pu0,where the funtion Φ2 is given by
−ν∆Φ2(p) + Q2mB (p + Φ1(p))+q1

1 = Q2mf , (3.35)
−ν∆q1

1 + Q2m

[
B(
(
p1

0, p + Φ1(p)
)
+B

(
p + Φ1(p),p1

0

)]
= 0,

p1
0 − ν∆p + P [B(p + Φ1(p))] = Pf ,

−ν∆Φ1(p) + Q2mB(p + Φ0(p)) = Q2mf ,

−ν∆Φ0(p) + Q2mB(p) = Q2mf .



154 Ana-Veronia IonWe reprodued here the de�nition of M2 from [29℄, but we adapted thenotations from [29℄ to our notations and we started ounting a.i.m.s with 0,as in [38℄, while in [29℄ this ount begins with 1.In the ourse of the numerial integration, with p(tk−1), k = 1, ...,N, alreadydetermined, in order to �nd p(tk), we have to ompute:
Φ0(p (tk−1)), Φ1(p (tk−1)), Γ1 (p (tk−1)) (for the alulation of p1

0 (tk) , with
Γ1 given by (3.19), j = 3), q1

1 (tk−1) , Φ2(p (tk−1)), and �nally Γ2 (p (tk−1)) .This will yield p(tk).Now we an ompare the two methods from the point of view of the ompu-tations involved. We have the following:� omputation of q̃0(tj) is equivalent to that of Φ0(p (tj));� omputation of q̃1(tj) is equivalent to that of Φ1(p (tj));� omputation of Γ̃1 (p̃1 (tj)) is equivalent to that of Γ1 (p (tj)) ;� omputation of q̃2(tj) is equivalent to that of Φ2(p (tj)), assuming that
q1

1 (tj) is already omputed;� �nally we observe that the omputation of pG(tj) and p̃0(tj) (from R-APPGalerkin method) together, involve less omputations than that of q1
1(tj)(from the NL Galerkin method).This is beause in omputing pG(tj) we have to ompute a number of 4m2 +

2m projetions of the term ΓG (pG(tj−1)) and in omputing p̃0(tj) we have toompute 4m2 + 2m projetions of the term Γ̃0 (p̃(tj−1)), while in omputing
q1

1 (tj) we have to ompute 12m2 + 6m projetions.At the following level, indued trajetories, respetively a.i.m.s, of higherorder are used. The de�nition of these involves approximations of the deriva-tives similar to the above. Hene, the di�erene in the amounts of ompu-tations between the two methods inreases with the order of the method.It follows that the R-APP Galerkin method involves a smaller amount ofomputations than the NL Galerkin method.The omputational e�ort involved in the �nal post-proessing part is eased inthe R-APP Galerkin method by the fat that, by using approximations of theindued trajetories we an approximate diretly (by numerial derivative)the funtion q′, while in the NL PP Galerkin method it is approximatedby the di�erential DΦj−2 (X) Γj−2 (X). In onlusion, the R-APP Galerkinmethod brings simpli�ations to the NL PP Galerkin method relying onhigher auray a.i.m.s.



approximate inertial manifolds 1554. Modi�ed Galerkin methods for a reation-di�usionproblemWe onsider a reation-di�usion (RD) equation of the form
∂u

∂t
−D (∆u−u) + g(u) = f, (4.1)where u is a real-valued funtion, u = u(t,x), x ∈ Ω = (0, l)× (0, l), l > 0,

D is the di�usion oe�ient and the funtion g is a polynomial funtion ofodd degree. In order to simplify the following onsiderations we take here apolynomial funtion of degree 3,
g(u) = b0 + b1u+ b2u

2 + b3u
3, bi ∈ R, b3 > 0.We take f∈L2 (Ω) . To the equation (4.1) we assoiate an initial ondition

u(0) = u0 (4.2)and the boundary ondition
∂u

∂n

∣∣∣∣
∂Ω

= 0. (4.3)The phase spae is here H =L2(Ω). We onsider also the spae V = H1 (Ω)with the usual norm.The operator A = −∆ + I is a positive-de�nite, self�adjoint, with ompatinverse operator with de�nition domain D(A) = H2 (Ω). The following exis-tene result may be obtained by the Galerkin-Faedo method [37℄, [34℄Theorem 4.1 If u0 ∈ H, then there exists a unique solution u ∈ C (R+; H) ,
u ∈ L2(0, T ; V) ∩ L2p(0, T ;L2p(Ω)) where p > 1, T > 0. If, more than that,
u0 ∈ V, then u ∈ C([0, T ); V) ∩ L2(0, T ; H2 (Ω)).The semi-dynamial system {S(t)}t≥0 , generated by (4.1) is proved to bedissipative in H and V [37℄, [34℄. Hene there is a ρ0 > 0 (respetively a
ρ1 > 0), suh that for every R > 0, there is a moment t0(R) (respetively
t1(R) > t0(R)) with the property that for every u0∈ H with |u0| ≤ R, wehave |S(t)u0| < ρ0, for t ≥ t0(R) (respetively ‖S(t)u0‖ < ρ1, for t ≥ t1(R)).



156 Ana-Veronia Ion4.1. The splitting of the spaeThe eigenvalues of A are
λj,k =

π2

l2
[j2 + k2] + 1and the orresponding eigenfuntions are

wj,k =

√
αjαk

l
cos

jπx

l
cos

kπy

l
,where αj = 1 for j = 0 and αj = 2 for j 6= 0.As for the Navier-Stokes equations, we onsider the set Γm of eigenvalues

λj1,j2 with 0 ≤ j1, j2 ≤ m. We make the notations
Λ = λm+1,0 = λ0,m+1,

δ =
1

Λ
.We also onsider the spae spanned by the eigenfuntions orresponding tothese eigenvalues and we denote by P the projetor on this spae. We set

Q = I − P, where I is the identity on H, p = Pu, q = Qu.We projet the equation (4.1) by using these projetors, to obtain
dp

dt
−D (∆p−p) + Pg(p + q) = Pf,

dq

dt
−D (∆q−q) +Qg(p + q) = Qf.It an be proved (e.g. [4℄) that

|q| ≤ Cδfor t great enough, where the oe�ient C depends on the data of the prob-lem.4.2. Indued trajetories for the reation-di�usion problemIn onstruting a family of indued trajetories for the reation-di�usionproblem, we try an asymptoti analysis of the RD equations. We developthe funtion q in series of powers of δ
q = δ

(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
. (4.4)
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g(p+ q) = g(p) + g′(p)q +

1

2
g′′(p)q2 +

1

6
g′′′(p)q3 =

= g(p) + g′(p)δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
+

+
1

2
g′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]2
+

+
1

6
g′′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]3
,hene, by ordering the terms after the powers of δ,

g(p + q) = g(p) + δg′(p)k0+ (4.5)
+ δ2

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3
[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4
[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... .Then, by substituting (4.4) in the equation for q, we obtain

δk′0 + δ2k′1 + δ3k′2 + δ4k′3 + ...

−D
[
δ∆k0 + δ2∆k1 + δ3∆k2 + δ4∆k3 + δ5∆k4 + ...

]
+

+D
[
δk0 + δ2k1 + δ3k2 + δ4k3 + δ5k4 + ...

]
+

+Qg(p) + δQg′(p)k0 + δ2Q

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3Q

[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4Q

[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... = Qf.In ordering the terms in (4.5) we simply performed an algebrai alulus, andtreated the right-hand side as a polynomial in δ, but when we look for theterms of the same order of magnitude, a areful analysis should be performed.Sine kj(t) ∈ QH, we have

|∆kj| ≥ Λ |kj | =
1

δ
|kj | (4.6)and it follows that the term δj+1ν∆kj is of the order of j. We also mustevaluate arefully the terms ontaining produts or powers of kjs. E.g., forthe term 1

2g
′′(p)k2

0 we have the estimates
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∣∣∣∣
1

2
g′′(p)k2

0

∣∣∣∣ =
(∫

Ω

(
g′′(p)

)2
k4
0dx

)1/2

≤
(∫

Ω

(
g′′(p)

)4
dx

)1/4(∫

Ω
k8
0dx

)1/4

.Sobolev embedding theorem gives
‖u‖Lp(Ω) ≤ C(p, s) ‖u‖s ,with 1/p = 1/2 − s/2, s < 1, and, sine

‖u‖s ≤ C ‖u‖1 ,we obtain
(∫

Ω
k8
0dx

)1/4

= ‖k0‖2
L8(Ω) ≤ C2(8,

3

4
) ‖k0‖2

3/4 ≤ C2(8,
3

4
) ‖k0‖2

1 .In a similar way we see that (∫Ω (g′′(p))4 dx
)1/4 is a funtion of ρ0 and ρ1.This together with inequality ‖k0‖1 ≥

(
1
δ

)1/2 |k0| show that all we an sayabout the term 1
2δ

2g′′(p)k2
0 is that it is of order δ and we have to onsiderit together with the terms of the same order. Similar reasonings will beonsidered impliit for the other terms ontaining produts or powers of kjs.Thus we obtain the relations:

−δD∆k0 +Qg(p) = Qf,

δk′0 − δ2D∆k1 + δDk0 + δQg′(p)k0 +
1

2
δ2Qg′′(p)k2

0 = 0,

δ2k′1 − δ3D∆k2 + δ2Dk1 + δ2Qg′(p)k1+

+
1

2
δ3Qg′′(p)2k0k1 +

1

6
δ3Qg′′′(p)k3

0 = 0,

δ3k′2 − δ4D∆k3 + δ3Dk2 + δ3Qg′(p)k2+

1

2
δ4Qg′′(p)

(
k2
1 + 2k0k2

)
+

1

6
δ4Qg′′′(p)3k2

0k1 = 0,...Now we de�ne the funtions
qj = δk0 + δ2k1 + δ3k2 + δ4k3 + ...+ δj+1kj .



approximate inertial manifolds 159By summing the equations for kj , we obtain equations for qj :
−D∆q0 +Qg(p) = Qf, (4.7)

q′0 −D∆q1 +Dq0 +Qg (p) +Qg′(p)q0 +
1

2
Qg′′(p)q20 = Qf,

q′1 −D∆q2 +Dq1 +Qg (p) +Qg′ (p) q1+

1

2
Qg′′(p)q20 +

1

2
Qg′′(p)2q0 (q1 − q0) +

1

6
Qg′′′(p)q30 = Qf,

q′2 −D∆q3 +Dq2 +Qg (p) +Qg′ (p) q2+

1

2
Qg′′(p)q21 +

1

6
Qg′′′(p)3q20 (q1 − q0) = Qf,...We see that the nonlinearity of the polynomial makes the equations neither�beautiful�, nor with a lear struture. However, we onsider the funtions

uj(t) = p(t) + qj(t),and de�ne the indued trajetories of the problem as the sets {uj(t); t ≥ 0} .These will be used to de�ne the R-APP method for the reation-di�usionequations.4.3. Approximate inertial manifolds for the reation-di�usionequationIn the NL Galerkin method and in the NL PP Galerkin method desribed inliterature [32℄, the following a.i.m.s are de�ned for the RD equation: for any
j ≥ 0, Mj is the graph of the funtion Φj : PH →QH, desribed below

DAΦ0(p) +Qg(p) = Qf, (4.8)
q1j−1 +DAΦj(p) +Qg (p+ Φj−1(p)) = Qf, j ≥ 1. (4.9)Here q1j−1 = DΦj−1(p)Γj−1(p), with DΦj−1(p) the Fréhet di�erential of

Φj−1 omputed in p and applied to Γj−1(p) = Pf −DAp−Pg(p+Φj−1(p)).If we would want to onstrut a family of a.i.m.s M̃j starting from theindued trajetories we de�ned above (as is done in [38℄ for the Navier-Stokes equation), the �rst a.i.m. of the family, M̃0, would be idential with
M0 sine the funtion Φ̃0 de�ning it would be idential to Φ0 of (4.8), as theequation for q0(t) shows.



160 Ana-Veronia IonThe seond a.i.m., M̃1, would be quite di�erent from M1 above. That is, itwould be the graph of the funtion Φ̃1 de�ned by the equation
DQΦ̃0(p)Γ0(p) −D∆Φ̃1 (p) +DΦ̃0(p) +Qg (p)+

+Qg′(p)Φ̃0(p)+
1
2Qg

′′(p)Φ̃0(p)
2 = Qf,

(4.10)with Γ0(p) = Pf + D (∆p−p) − Pg(p + Φ̃0(p)). We see that the di�erenebetween this equation and that for Φ1, that we write expliitly below
DΦ0(p)Γ0(p) −D∆Φ1(p) +DΦ1(p) +Qg (p+ Φ0(p)) = Qf, (4.11)onsists essentially in the presene of the term 1

6g
′′′(p)Φ0(p)

3 in this lat-ter equation. If the polynomial g would be of higher degree, the di�erenebetween the two families of a.i.m.s, that de�ned starting from the induedtrajetories and the one de�ned by the relations (4.8) and (4.9) would in-rease. However, for the sake of the elegane of the de�nitions, (4.11) maybe taken as the equation for Φ1(p) even if it does not spring from an aurateasymptoti analysis. The presene of the higher order terms does not a�etthe order of magnitude of the distane between the exat solution of the R-Dequation and the �rst a.i.m. [21℄.4.4. �Indued trajetories� inspired by a.i.m.sFor the sake of the simpliity of the de�nitions and having in mind somesimpli�ations of the omputations in the R-APP Galerkin method below,we an hoose an alternate de�nition for the indued trajetories of the R-Dproblem, inspired from the de�nitions of the a.i.m. of [32℄. That is, we de�nethe funtions q̃j through the relations
DAq̃0 +Qg(p) = Qf, (4.12)

q̃ ′
j−1 +DAq̃j +Qg (p+ q̃j−1) = Qf, j ≥ 1,where p(t) = Pu(t). The funtions̃

uj = p+ q̃jde�ne the new �indued trajetories� {ũj(t); t ≥ 0}.



approximate inertial manifolds 1614.5. The NL Galerkin method for the RDEThe NL Galerkin method for RDE onsists in integrating the di�erentialequation:
dp

dt
+DAu+ g(p + Φ0(p)) = Pf, (4.13)with the initial ondition

p(0) = Pu0. (4.14)If we denote by ym its solution, the approximate solution is taken as
ym(t) + Φ0(ym(t)).In [32℄ it is asserted that, for large enough t,

|u(t) − (ym(t) + Φ0(ym(t)))| ≤ Cδ2.Improved NL Galerkin methods make use of the higher auray a.i.m.s,
Mj , j ≥ 1. That is an equation of the type

dp

dt
+DAu+ g(p + Φj(p)) = Pf, (4.15)with the initial ondition (4.14) is solved, let ym,j be its solution. The ap-proximate solution of the RDE is taken as:
ym,j(t) + Φj(ym,j(t)).In [32℄ it is proved that the H norm of the error of this approximate solutionis of the order of C(t)δj+2.4.6. The PP NL Galerkin method for the RDEAlso in [32℄ the NL Galerkin method is post-proessed, i.e. to the solution

ym,j of the NL Galerkin problem, onsidered in T, the quantity Φj+1(ym,j(T ))is added and
ym,j(T ) + Φj+1(ym,j(T ))is taken as the approximate solution in T . It is proved in [32℄ that

|u(t) − (ym,j(t) + Φj+1(ym,j(t)))| ≤ C lnmδj+3.



162 Ana-Veronia Ion4.7. The R-APP Galerkin method for the RDEWe desribe the R-APP Galerkin method for the reation-di�usion equation.In [21℄ we presented a variant of our method that has as initial level a NLGalerkin method (this was meant to skip a numerial integration - that ofthe Galerkin problem). Let us denote generially
qj = Fj(Qf, p, q0, q1, ..., qj−1),either the funtions given by the set of relations (4.7) or the funtions q̃jgiven by (4.12). We see that in this latter ase, Fj , j ≥ 1 atually dependsonly on Qf, p, qj−1, q
′
j−1.Level 0. We onsider the NL Galerkin problem
dp

dt
−D (∆p−p) + Pg(p) = Pf, (4.16)

p(0) = Pu0and denote it's solution by pG.Then we ompute, at every moment of time
q̃0 (t) = F0(Qf, pG (t)).When the numerial implementation of the method is atually done, this isequivalent to the omputation of q1 at the nodes of the time mesh, and q′0 (ti)is approximated by (q0(ti) − q0(ti−1))/(ti − ti−1). The approximate solutionis

u0 = pG + q̃0.Level 1. We onsider the equation
dp

dt
−D (∆p−p) + Pg(p + q̃0) = Pf,and denote its solution by p̃0. Then we ompute
q̃1 (t) = F1(Qf, p̃0 (t) , q̃0 (t)).The approximate solution at this level is de�ned as

ũj = p̃j−1 + q̃j.



approximate inertial manifolds 163Level j > 1. We assume q̃0, q̃1, ..., q̃j−1 were suessively onstruted. Weonsider the equation
dp

dt
−D (∆p−p) + Pg(p + q̃j−1) = Pf,and denote its solution by p̃j−1. Then we ompute

q̃j (t) = Fj(Qf, p̃j−1 (t) , q̃0 (t) , q̃1(t), ..., q̃j−1(t), ).The approximate solution at this level is de�ned as
ũj = p̃j−1 + q̃j.Remarks: 1. While the equations for pj are equivalent to a �nite, onstantnumber, of (di�erential) equations, the equations for qj are equivalent to asystem of equations having (if Qf admits non-null projetions on an in�nitenumber of eigenfuntions) a in�nite number of equations.Hene a trunation must be done. In [6℄ the trunation is made by using aprojetor, denoted P2m, that is the analogous of P but with 2m instead of m.If Qf would have nonzero projetions only on a �nite number of eigenfun-tions, then qj would also be �nite dimensional. In this situation, we ouldalso ompute the dimension of qj, by using the onsequenes of the trigono-metrial relation 2 cosα cos β = cos (α+ β) + cos (α− β) , on the produtsof eigenfuntions. Then, in order to not a�et the estimate of the error pre-dited by our method, we ould take a trunation of Qf, let us denote it by

Qjf suh that ∣∣∆−1 (Qf −Qjf)
∣∣ is less that the error of the level j.2. Both families of {qj}j≥0 de�ned above present advantages and disadvan-tages one relative to the other. The �rst family, de�ned in (4.7), has theadvantage of demanding a smaller amount of omputations sine in (4.7)fewer terms than in (4.12) are taken into aount at a ertain level. Itpresents the disadvantage of realling all qi with i < j, at a ertain level j.The seond family of approximations of q, given by (4.12), realls at a ertainlevel j, only the values of qj−1. This is important from the point of view oforganizing the memory of the omputer in the numerial implementation ofthe method. However, this seond family takes into aount more terms inthe polynomial g. This inreases a lot the omputations when g has a highdegree.



164 Ana-Veronia Ion4.8. Estimates of the errorBy using the method of [32℄, we an prove that both families of induedtrajetories de�ned above lead to the same orders of error, for every level ofthe R-APP method, as the orresponding NL PP Galerkin method. That is,we an prove [22℄ that at the level j + 1 of our method
|p− p̃j| ≤ Cj (lnm ) δj+3and
|q − q̃j+1| ≤ Kjδ

j+3,and thus
|u− ũj+1| ≤ [Cj (lnm ) +Kj ] δ

j+3.4.9. Comments on the methodThe omparison of the omputational ost of the R-APP Galerkin methodto that of the NL Galerkin method is similar to that we performed for theNavier-Stokes equations. The onlusions are the same: the R-APP Galerkinmethod is more eonomi than the NL PP Galerkin method. The di�erenein the omputational ost between the two methods inreases with their level.Referenes[1℄ P. Constantin, C. Foia³, Navier-Stokes Equations, Chiago Letures inMath., Univ. of Chiago Press, IL, 1988.[2℄ P. Constantin, C. Foias, B. Nikolaenko, R. Temam, Spetral barriersand inertial manifolds for dissipative partial di�erential equations, J.Dynamis Di�erential Equations, 1 (1989), 45�73.[3℄ P. Constantin, C. Foia³, R. Temam, Attrators representing turbulent�ows, Mem. of AMS, 53 (1985), 314, AMS, Providene,USA.[4℄ A. Debusshe, M. Marion, On the onstrution of families of approxi-mate inertial manifolds, J. Di�. Eqns., 100 (1992), 173�201.[5℄ F. Demengel, J.M. Ghidaglia, Some remarks of the smoothness of theinertial manifolds, J. Math. Anal. Appl., 155 (1991), 177�225.
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170 Stelian Ion1. IntrodutionWe report some mathematial results on the numerial approximation of alass of nonlinear di�usion problems. We are onerned with the onvetion-di�usion-reation equation (CDRE)
∂b(u)

∂t
− div (κ(u)∇u+ f(u)) = g(t, x, u), (1.1)and generalized porous medium equation (GPME),

∂u

∂t
−△φ(u) = r(u), (1.2)where div and ∇ are taken with respet to x ∈ Rn; △ = div∇ is the Laplaeoperator and u(t, x) is the salar unknown funtion.There are some reasons to work with two di�erent equations. The bothequations quantify di�usion phenomena but in di�erent manner. The dif-fusion �ux is modeled by κ(u)∇u in the CDRE and by gradφ(u) in theGPME. In some ases the two forms an be interhanged but in other asesis not possible. For example, if κ(·) is an integrable funtion one an put

φ(u) =
∫ u

κ(s)ds. Although in almost any physialy interesting ases thistransformation an be done the alulation of the funtion φ, espeially whenone deals with numerial approximation, an be a hard problem. In suh aase is reomandable to use the CDRE form. On the other hand if φ(·) isa di�erentiable funtion one has κ(u) = φ′(u). If φ(·) is onlya ontinuousfuntion it is not posible to evaluate the di�usion oe�ient.The outline of the paper follows.In Setion 2 we delineate some mehanial problems and we will make om-ments on the onstitutive funtions.In Setion 3 we present the essential fats relative to solvability of the Cauhyproblem. We revise the onepts of weak solution and weak entropy solutionand we will present a omparison riterion.Setion 4 is devoted to the numerial approximation.The numerial solution of the Cauhy problem is obtained in two steps. Inthe �rst step a system of ordinary di�erential equation is set up and in theseond step this ODE system is numerialy integrated.The mathematial properties of the ODE model are strongly determined bythe numerial di�usion �ux and the numerial onvetive �ux. We will de�nea numerial approximation of the di�usion �ux and a numerial approxima-tion of the onvetive �ux that lead to a quasimonotone ODE system. Using



Diffusion Proesses 171this property we will show that there exists a omparison priniple and wewill provide the bounds for the solutions of the disrete model that are inde-pendent of the mesh size of triangulation.In Setion 5 we give two numerial algorithms to solve GPME equationand Rihards' equation respetively. To integrate the ODE system whihapproximate the GPME equation we will use impliit Euler method and wewe will setup an iterative algorithm to solve the system of nonlinear algebraiequation that results.To solve Rihards' equation we use an adaptive time marhing sheme andan inexat Newton type method to solve nonlinear equation.2. Physial ModelsThe mathematial models (1.1) and (1.2) over a wide range of physialphenomena suh that: heat transfer, in�ltration of water through porousmedia, transport of ontaminant in porous media, the �ow of the gas throughporous media, plasma radiation, to remaind a few.The simplest example of the model problem (1.1) is the linear alori equa-tion:
∂u

∂t
= div(κ∇u), (2.1)where u models the temperature and κ > 0 represents the thermal on-dutivity. Here it is supposed that the alori �ux obeys the Fourier law

q = −κ∇T and that the thermal ondutivity is independent of tempera-ture. The ondition κ > 0 re�ets the fat that heat propagates from highto lower temperature.If the temperature of the body is high enough one must onsider the radi-ation e�ets and the temperature dependene of thermal ondutivity. Forexample, if the power radiated by a body to environment follows the Stefan-Boltzmann law of the forth powers, for both the body and the medium, theheat equation beomes [8℄
∂u

∂t
= div(κ(u)∇u) − kr(u

4 − u4
e). (2.2)The unsaturated water �ow through porous media is desribed by the wellknown Rihards' equations [7℄

∂θ(h)

∂t
− div(K(h)∇h+ e3K(h)) = 0, (2.3)



172 Stelian Ionwhere θ represents the relative volumetri water ontent, h represents thepressure head, K is the hydrauli ondutivity and e3 is the upward vertialversor. The funtion θ(h) is a ontinuous positive funtion and it is stritlyinreasing funtion on the interval (−∞, 0] and a onstant funtion on h > 0.Also the hydrauli ondutivity is a ontinuous positive funtion stritly in-reasing on (−∞, 0] and a onstant funtion on the set h > 0. The hydrauliondutivity beomes zero as h approahes −∞.The transport of ontaminant in porous media is governed by an equation ofthe form [9℄, [10℄
∂ (C + λCp)

∂t
+ v · ∇C = div(D∇C) + g(x,C), (2.4)where C represents the mass onentration of the ontaminant, v denotesthe veloity of the �uid �ow, supposed to be onstant. The term λCp, λ ≥ 0takes into aount the adsorption reation by means of Freundlih isotherm.The absorption reation is desribed by the term g(x,C) that usually is givenby

g = −αCq (2.5)with α > 0, q > 0 (the order of the reation).An extremely used form of the GPME is given by the
∂u

∂t
= △um + λur. (2.6)For m > 1 (slow di�usion) the equation models the �ow of the gas throughporous medium for m < 1 (fast di�usion) the model is enountered in plasmaphysis, kineti theory and solid state.The Stefan problem an be written as a GPME equation with

φ(u) = λ

{
max{0, (u − 1)}, if u ≥ 0,
u, if u < 0.3. Mathematial SettingsIn this setion we review some results onerning the solution of the nonlineardi�usion equations.The onstitutive funtions are supposed to satisfy:



Diffusion Proesses 173A1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ b : R → R, is a continuous and nondecreasing function,
κ : R → R+, is a continuous and nondecreasing function,
f : R → Rn, is a local Lipschitz vector function,
g : R+ × Ω × R → R, is a Caratheodory function.A2 ∣∣∣∣∣∣∣∣ φ ∈ C([0,∞)) ∪ C1((0,∞)), φ(0) = 0, nodecreasing function,
r ∈ C([0,∞)), r(0) = 0.We onsider the Cauhy problem for both equations. The domain Ω on whihthe problem is onsidered satis�es:A3 ∣∣∣∣ Ω ∈ Rn, is an open, bounded and connected set.The initial onditions and boundary data are written as

{
u(0, x) = u0(x), x ∈ Ω.
u = uD, t > 0, x ∈ ∂Ω.

(3.1)We assume thatA4 ∣∣∣∣∣∣∣∣ u0 ∈ L∞(Ω),
uD ∈ L2((0, T ) : W 1,2(Ω)) ∩ L∞((0, T ) × Ω).Cauhy problem for CDRE. The Cauhy problem is de�ned by theequation (1.1) in a domain Ω in Rn, the initial ondition and boundary data(3.1).Due to the nonlinear paraboli term b(u) and nonlinear di�usion oe�ient

κ(u) the problem (1.1) an be a degenerate problem and onsequently thereexists no lassial solutions.The notion of weak solution for the problem of the type (1.1) was introduedby Alt and Lukhaus in [1℄. By imposing some proper onditions on theonstitutive funtions, boundary data and initial onditions, the authors wereable to prove the existene of the weak solution in the ase of the paraboli-ellipti degeneration, b(u) is a onstant funtion on some interval of positivemeasure and the di�usion oe�ient is a strit positive funtion.Definition 3.1 (Weak Solution (H. W. Alt and S. Lukhaus)) A measurablefuntion u is a weak solution of the Cauhy problem (1.1) and (3.1) if itsatis�es:1) u− uD ∈ L2((0, T ) : W 1,2
0 (Ω)),2) b(u) ∈ L∞((0, T ) : L1(Ω)) and ∂b(u)

∂t
∈ L2((0, T ) : W−1,2(Ω)) with initial



174 Stelian Ionvalues b(u0), that is,
T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(b(u) − b(u0))
∂v

∂t
dxdt = 0 (3.2)for every v ∈ L2((0, T ) : W 1,2

0 (Ω)) ∩W 1,1((0, T ) : L1(Ω)), v(T, ·) ≡ 03) κ(u)∇u, g(·, ·, u(·, ·)) ∈ L2((0, T ) × Ω), f(u) ∈
(
L2((0, T ) × Ω)

)n and usatis�es the di�erential equation, that is,
T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(κ(u)∇u+ f(u)) · ∇vdxdt =

T∫

0

∫

Ω

g(t, x, u)vdxdt(3.3)for every test funtion v ∈ L2(0, T : W 1,2
0 (Ω)).In the paper [7℄ Carrillo extrapolates the onept of entropy solution intro-dued by Kruzhkov in theory of hyperboli PDE [14℄. He showed that thereexists a unique weak entropy solution of the Cauhy problem with homo-geneous boundary data, uD = 0, even in the ase of paraboli-hyperbolidegeneration. Suh kind of degeneration appears when the di�usion oe�-ient is a null funtion on some interval with the positive measure.The weak entropy solution is a weak solution that in addition satis�es anintegral entropy inequality.Let us introdue the funtion

K(u) =

u∫

0

κ(s)ds,Definition 3.2 (Weak entropy solution. Homogeneous ase (Carrillo)) Anweak entropy solution of the Cauhy problem (1.1) and (3.1) with uD = 0, is



Diffusion Proesses 175a weak solution whih in addition satis�es the entropy inequality
T∫

0

∫

Ω

H0(u− s)
(

(∇K(u) + f(u) − f(s)) · ∇v−

− (b(u) − b(s))
∂v

∂t
− gv

)
dxdt−

∫

Ω

(b(u0) − b(s))+v(0)dx ≤ 0,

T∫

0

∫

Ω

H0(−s− u)
(

(∇K(u) + f(u) − f(−s)) · ∇v−

− (b(u) − b(−s)) ∂v
∂t

− gv
)
dxdt−

∫

Ω

(b(u0) − b(−s))−v(0)dx ≥ 0,(3.4)for any (s, v) ∈ R ×
(
L2((0, T ) : W 1,2(Ω)) ∩W 1,1((0, t) : L∞(Ω))

) suh that
s ≥ 0, v ≥ 0 and v(T ) = 0.In the entropy onditions the following notations:

H0(s) =

{
1, if s > 0
0, if s ≤ 0

s+ =

{
s, if s > 0
0, if s ≤ 0were used. If κ > 0 then the two de�nitions of the weak solution oinideand any weak solution is an entropy solution [7℄.To deal with nonhomogeneous Dirihlet onditions for degenerate problemone supplementary di�ulty is to give a sense to boundary onditions. In thepaper [18℄ C. Masia, A. Porreta and A. Terraina proved the existene of theweak entropy solution of the Cauhy problem with nonhomogeneous Dirihletdata. Their de�nition is as follows. Denote by QT the diret produt QT =

(0, T ) × Ω. Also we use the notations:
E(u, v) = ∇ |K(u) −K(v)| + sgn(u− v)(f(u) − f(v)),

B(u, v,w) = E(u, v) + E(u,w) − E(v,w).The domain Ω is suh that there exists a C2�overing of ∂Ω, A = {Ui}i=1,m,of open sets suh that ∂Ω ⊂ ∪U i and, in some loal oordinates x = (x′, xn),there exists a C2 funtion xn = αi(x
′) suh that Ui ∩ ∂Ω = {xn = αi(x

′)},
Ui ∩ Ω = {xn < αi(x

′}.A sequene {ϑδ} of C2(Ω) ∩ C0(Ω) funtions is named a boundary layersequene if
lim

δ→0+
ϑδ = 1, pointwise in Ω, 0 ≤ ϑδ ≤ 1, ϑδ = 0 on ∂Ω.



176 Stelian IonDefinition 3.3 (Weak Entropy Solution. Nonhomogeneous ase (Masia etal.)) A funtion u ∈ L∞((0, T )×Ω) is an entropy solution of Cauhy problem(1.1) and (3.1) if1) (regularity)
K(u) ∈ L2((0, T ) : W 1,2(Ω))and for any U ∈ A, and any positive ψ ∈ C∞

0 (U) we have
(
− |u− uD|ψ, E(u, uD)ψ

)
∈ DM(Q)2,where DM(Q)2 is the set of divergene-measure vetor �elds in Q.2) (entropy ondition in interior of QT )

∫

QT

{
|b(u) − b(s)| ∂v

∂t
− E(u, s)∇v + gv

}
dxdt ≥ 0for any v ∈W 1,2

0 (QT ) and v ≥ 0 and s ∈ R.3) (initial ondition)
lim

t→0+

∫

Ω

|u(t, x) − u0(x)| dx = 04) (boundary onditions) in sense of trae in L2((0, T ) : W 1,2(Ω)) we have
K(u) = K(uD), t > 0, x ∈ ∂Ω,and for any boundary layer sequene ϑδ, and for any U ∈ A, and any positive

ψ ∈ C∞
0 (U) we have

lim inf
δ→0

∫

QT

B(u, s, uD)∇ϑδξψdxdt ≥ 0, ∀s ∈ R,for any ξ ∈ L2((0, T ) : W 1,2(Ω)), ξ ≥ 0.Cauhy problem for GPME. The Cauhy problem onsists in theequation (1.2) and the data (3.1).The existene of the weak solution was proved by many authors see for ex-ample, [4℄, [25℄.



Diffusion Proesses 177Definition 3.4 (M. Borelli and M. Ughi) A nonnegative funtion u de�nedon the Ω × [0, T ] is said to be a weak solution of the Cauhy problem (1.2)and (3.1) if1) u ∈ C
(
[0, T ];L1(Ω)

)
∩ L∞([0, T ] × Ω),2) for any test funtion η ∈ C1,0([0, T ]×Ω)∩C2,1((0, T ]×Ω) suh that η ≥ 0on (0, T ] × Ω) and η = 0 on (0, T ] × ∂Ω u satis�es the integral identity:

∫

Ω

u(t, x)η(t, x)dx =

∫

Ω

u0(x)η(0, x)dx −
t∫

0

∫

∂Ω

φ(uD)
∂η

∂n
+

+

t∫

0

∫

Ω

[u∂tη + φ(u)△η + r(u)η] dtdx

(3.5)for any 0 ≤ t ≤ T .The presene of the reation term and nonlinearity in the equation (1.2)generate interesting phenomena namely, extintion time or blow up of thesolution and the �nite speed of propagation of disturbane [25℄.Suh problems have been studied by several authors: Borelli-Ughi [4℄, Ferreira-Vasquez [13℄, Leoni [16℄, Levin-Saks [17℄, Peletier and Z. Junninig [23℄. Inthe ase r(u) = 0 and φ(s) = sm, 0 < m < 1, uD = 0 there exists an ex-tintion time Te suh that the problem (1.2 has a unique lassial solution,positive on Ω × [0, Te] and null for t ≥ Te, see [17℄.For generalized fast di�usion with strong absorption and Ω = R2 there alsoexists an extintion time and the support of the solution is bounded for anytime t > 0, [4℄.In the power ase, φ(s) = sm, r(s) = λps, λ > 0, the numerial methods toompute the solution of the similar problem (1.2) have been proposed byM.-N. Le Roux, [21℄ the ase m > 1, M.-N. Le Roux and P.-E. Mainge, [22℄.Pointwise omparison priniple. For both Cauhy problems CDREand GPME there exists several omparison riteria [1℄, [10℄, [25℄. We willgive here a result that allows one to ompare two solutions with respet totheir boundary and initial onditions.For any two real funtions f(x) and g(x) we write f ≤ g if f(x) ≤ g(x),∀x ∈
Ω. In addition to assumptions A1 the onstitutive funtions in CDRE prob-lem satisfy
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∣∣∣∣∣∣∣∣∣∣∣

(1)κ : R → R+, κ(u) ≥ η,

(2) |κ(u1) − κ(u2)| < C|u1 − u2|γ1 , γ1 >
1

2
, ∀u1, u2 ∈ R,

(3) |f (u1) − f(u2)| < C|u1 − u2|γ2 , γ2 >
1

2
, ∀u1, u2 ∈ R,

(4) g(u1) − g(u2) < C(b(u1) − b(u2)), for u1 > u2.Theorem 3.1 (Comparison Theorem) Let (uD, u0), (ûD, û0) be suh that
uD ≤ ûD, u0 ≤ û0. Let u and û) be two bounded weak solutions of the Cauhyproblem (1.1), (3.1) assoiated to (uD, u0) and (ûD, û0) respetively. Assume,in addition, that

b(u)t, b(û)t ∈ L1((0, T ) × Ω).Then
u ≤ ûon (0, T ) × Ω.Proof. We follow the main ideas from [1℄. As in [1℄ for any δ > 0 let

Ψδ(α) = min(1,max(0, α/δ)). The funtion w = Ψδ(u − û) belongs to
L2(0, T : W 1,2

0 (Ω)) and its gradient is given by
∇w =

{ 1

δ
(∇u−∇û) , if 0 < u− û < δ

0, otherwiseSet w as test funtion in (3.3). Then
t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt+
1

δ

t∫

0

∫

Ωδ

(κ(u)∇u− κ(û)∇û)∇(u− û)dxdt

︸ ︷︷ ︸
I1

+

+
1

δ

t∫

0

∫

Ωδ

(f(u) − f(û)) · ∇(u− û)dxdt

︸ ︷︷ ︸
I2

=

t∫

0

∫

Ω

(g(u) − g(û))wdxdt, (3.6)where Ωδ := {x|0 < h− ĥ < δ}. The integral I1 an be rewritten as
I1 =

t∫

0

∫

Ωδ

κ(u)||∇(u − û)||2dxdt+
t∫

0

∫

Ωδ

(κ(u) − κ(û))∇ũ · ∇(u− û)dxdt.



Diffusion Proesses 179Using Young inequality, ab ≤ C(ǫ)p−1ap + ǫq−1bq, and A1′-(1) we obtain
I1 ≥

(
η − ǫ

2

) t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− C(ǫ)

2

t∫

0

∫

Ωδ

(κ(u) − κ(û))2||∇ũ||2dxdtand
I2 ≥ − ǫ

2

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− C(ǫ)

2

t∫

0

∫

Ωδ

||f(u) − f(û)||2dxdt.Then
I1 + I2 ≥ (η − ǫ)

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− Cδ2γ

T∫

0

∫

Ωδ

(||∇ũ||2 + 1)dxdt.From A1′(4) the prodution an be estimate as
t∫

0

∫

Ω

(g(u) − g(û))wdxdt ≤
t∫

0

∫

Ω

1{u−bu>0} max{0, g(u) − g(û}dxdt ≤

≤ C

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt.Taking ǫ < η we obtain
t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt+
c

δ

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt ≤

≤ Cδ2γ−1

T∫

0

∫

Ωδ

(||∇ũ||2 + 1)dxdt+

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt.(3.7)For δ → 0 the �rst term on the right onverge to 0 and the �rst term on leftbeomes
lim
δ→0

t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt =

t∫

0

∫

Ω

1{u−bu>0} (b(u)t − b(û)t) dxdt =
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=

t∫

0

∫

Ω

∂t max{b(u) − b(û), 0}dxdt =

∫

Ω

max{b(u) − b(û), 0}(t, x)dx.One obtains
∫

Ω

max{0, b(u) − b(û)}dxdt ≤
t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt,and using Gronwall's inequality we get
b(u) ≤ b(û),and using this inequality in (3.7) we have ∇(u−û) = 0 on the set {0 < u−û}.So, we have u− û=onst. whih implies u− û ≤ 0 sine on boundary u ≤ û.As a orollary of the omparison priniple one an obtain an upper boundfor the solution of Cauhy problems in the both ase CDRE and GPMEequations.Corollary 3.1 Assume that A1 and A1′ are full�led and g(t, x, u) = g(u),

g(0) = 0. Let u be the solution of the problem (1.1), (3.1) on some interval
[0, T ]. Then1) if uD ≥ 0 and u0 ≥ 0 so is u ≥ 0,2) Let α = ||uD||L∞([0,T ]×∂Ω), β = max{||u0||∞, α}. If α > 0 we assume that
g(w) ≥ 0. Let w(t) be the solution of the di�erential equation

∂tb(w) = g(w)
w(0) = β.on the same interval t ∈ [0, T ]. Then the solution u satis�es
u < w on [0, T ].Proof. 1). One ompares the solution u with the trivial solution v = 0.2). De�ne the funtion v(t, x) = w(t),∀x ∈ Ω. The funtion v(t, x) veri�esthe equation (1.1), at the time t = 0 v(0, x) = β > u0 and on boundary

v(t, x)|x∈∂Ω = w(t) ≥ β > uD that implies u < v.Corollary 3.2 In the GPME the di�usion funtion and prodution fun-tion are given by φ(u) = um, r(u) = −λus respetively λ > 0,m > 0, s > 0.The initial onditions satisfy A4, u0 > 0 and uD = 0. Let β = ||u0||∞.1) If s > 1 then the solution u of the problem 1.2, 3.1 satis�es
||u||∞ < β

(
1 − λ(1 − s)βs−1t

) 1
1−s .



Diffusion Proesses 1812) If s < 1 then there exists a time T ∗, extintion time, given by
T ∗ =

1

λ

β1−s

1 − ssuh that the solution exists on the interval [0, T ∗] and it satis�es
||u||∞ < β

(
1 − t

T ∗

) 1
1−s

.Proof. In the generalized porous medium equation
∂tu = △um − λuswe make the substitution um = v and we obtain
∂tv

p = △v − λvr,

vt=0 = um
0 , v|x∈∂Ω = 0,where p = 1/m, r = s/m. By using the orollary 1 one obtain that thefuntion v is bounded from above by the solution of di�erential equation

pwp−1w′ = −λwr,
w(0) = βm,whih has the solution

w = βm(1 − λ(1 − s)βs−1t)
m

1−s .4. Quasimonotone ODE Approximation4.1. Disrete ApproximationBy the method of lines (MOL), one an assoiate an ordinary di�erentialsystem of equations (ODE) to a paraboli partial di�erential equation. TheMOL onsists in the disretization of the spae variable using one of thestandard methods as �nite element, �nite di�erenes or �nite-volume method(FVM). The FVM �ts very well to onservative equations and there exists alarge literature devoted to the method, we reall here the papers that dealwith Dirihlet problem, [6℄ for hyperboli PDE, [11℄, [12℄, [19℄ for nonlinearparaboli PDE.
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Fig. 1: Triangulation of polygonal domain in R2.The FVM deals with a deomposition of the domain Ω into small polygonaldomains ωi and a net of the inner knots xi. The assembly {ωi, xi} de�nesa triangulation of the domain and it is an admissible mesh if it satis�es thefollowing onditions, [12℄.Definition 4.1 (Admissible mesh) The triangulation T = {(ωi, xi)}i∈I isalled an admissible mesh if it satis�es:A5 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ωi is open poligonal set ⊆ Ω, xi ∈ ωi

(1) ∪i∈Iωi = Ω
(2) ∀i 6= j ∈ I and ωi ∩ ωj 6= Φ, either Hn−1(ωi ∩ ωj) = 0 or
σij := ωi ∩ ωj is a common (n − 1)-face of ωi and ωj

(3) for all σij, [xi, xj ] ⊥ σijHere Hn−1 is the (n − 1)-dimensional Hausdor� measure. For eah volume
ωi that has a ommon (n − 1)-fae with the boundary ∂Ω one de�nes anexternal volume ωib ∈ CΩ by the re�etion of the ωi with respet to the fae
σib = ωi∩∂Ω. Denotes by T b the olletion of all external volumes {(ωib , xib)}and by Ib the set of their indies. Let T e = T ∪ T b and IE = I ∪ Ib. Wesay that the volumes ωi, ωj ∈ T e are neighbours if they share a ommon
n− 1�fae and we denote by ni,j the unit normal vetor to the fae σij thatpoint to ωj.



Diffusion Proesses 183Disrete form of CDRE. The spae disretized equations are derivedfrom the integral form of (1.1) for eah ontrol volume ωi

∫

ωi

∂b(u)

∂t
dx−

∫

∂ωi

(κ(u)∇u+ f(u)) · nda =

∫

ωi

g(t, x, u)dx, ∀i ∈ I. (4.1)By a proper approximation of the volume integrals and surfae integrals oneobtains disrete form of CDRE.We de�ne the numerial di�usion oe�ient κ̃ : R × R → R+ by
κ̃(u, v) = max(κ(u), κ(v)). (4.2)It is easy to show that numerial di�usion oe�ient satis�esA6 ∣∣∣∣∣∣∣∣∣∣∣∣ κ̃(u, v) = κ̃(v, u), symmetry,

(κ̃(u1, v) − κ̃(u2, v))(u1 − u2) > 0, monotonicity,
κ̃(u, u) = κ(u), consistency.Corresponding to eah fae σij we admit that there exists a numerial �uxfuntion f̃ : R × R → R with the following properties:A7 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ f̃i,j(u, v) = −f̃j,i(v, u), conservation,

(f̃i,j(u1, v) − f̃i,j(u2, v))(u1 − u2) ≤ 0, monotonicity,

(f̃i,j(u, v1) − f̃i,j(u, v2))(v1 − v2) ≥ 0,

f̃i,j(u, u) = f(u) · ni,j, consistency.A numerial onvetive �ux whih satis�es A7 is systematialy used in theapproximation of hyperboli equation see, for example [6℄. The integrals in(4.1) will be approximated as follows:
∫

ωi

∂b(u)

∂t
dx ≈ m(ωi)

∂b(ui)

∂t
,

∫

∂ωi

κ(u)∇u · nda ≈
∑

j∈N (i)

m(σij)κ̃(ui, uj)
uj − ui

dij
,

∫

∂ωi

f(u) · nda ≈
∑

j∈N (i)

f̃i,j(ui, uj),

∫

ωi

g(t, x, u)dx ≈
∫

ωi

g(t, x, ui)dx := gi(t, ui).

N (i) denotes all neighbours in T e of ωi, m(ωi) represents the volume ofpolyhedron ωi and m(σij) represents the n − 1-dimensional measure of thefae σij and di,j = |xi − xj |.



184 Stelian IonThe initial data and boundary onditions are approximated by:
u0i =

1

m(ωi)

∫

ωi

u0(x)dx, (4.3)
uib =

1

m(σib)

∫

σib

uDda, (4.4)respetively.As a result one an de�ne a Cauhy problem for a system of ordinary di�eren-tila equations whose solution gives an approximation of the Cauhy problem(1.1), (3.1).




db(ui)

dt
=
∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij
+ f̃i,j(ui, uj)

]
+ gi(t, ui)

ui|t=0 = u0i, (4.5)for t > 0 and for any i ∈ I.Let us introdue the numerial di�usion-onvetion �ux funtions
Fi(u;uD) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij
+ f̃i,j(ui, uj)

] (4.6)then the ODE approximation reads as
db(ui)

dt
= Fi(u;uD) + gi(t, ui). (4.7)The boundary onditions are taken into aount by the volume elements nextto boundary ∂Ω. For suh element the ontribution of the boundary valuesto the Fi is given by

m(σib)

m(ωi)

[
κ̃(uib , uj)

uib − ui

dib

+ f̃i,ib(ui, uib)

]
. (4.8)In�ltration model. Here is an example of a numerial onvetive �ux thatsatis�es A7 with f(u) = e3K(u) that appears in the Rihards' equation(2.3).

f̃i,j(u, v) =
1

2
(e3 · ni,j + |e3 · ni,j|)K(v) +

1

2
(e3 · ni,j − |e3 · ni,j|)K(u).(4.9)



Diffusion Proesses 185Disrete form of GPME. For eah ontrol volume ωi we write∫

ωi

∂u

∂t
dx−

∫

∂ωi

∂φ(u)

∂n
da =

∫

ωi

r(u)dx, ∀i ∈ I. (4.10)To approximate (4.10) we use the same shemes as in previous paragraph.The new integral that ontains the di�usion funtion φ will be approximatedby ∫

∂ωi

∂φ(u)

∂n
da ≈

∑

j∈N (i)

m(σij)
φ(uj) − φ(ui)

dij
. (4.11)The ODE approximation of (4.10) is given by

∂ui

∂t
=
∑

j∈N (i)

m(σij)

m(ωi)

φ(uj) − φ(ui)

dij
+ r(ui). (4.12)The boundary onditions are taken into aount by the volume elements nextto boundary ∂Ω. For suh an element the boundary values enters into theplay by a term of the form

m(σie)

m(ωi)

φ(uie
D) − φ(ui)

de
ij

. (4.13)For shortness we introdue the notation
Gi =

∑

j∈N (i)

m(σij)

m(ωi)

φ(uj) − φ(ui)

dij
.4.2. ODE ModelAs in the ontinuum ase we want to prove that the solutions of ODE (4.5)and (4.10) obey a omparison riterion.For that, we �rstly prove that F and G satisfy Kamke onditions.Lemma 4.1 Assume A2, A6 and A7. Then

Fi(u
e) = 0, Gi(u

e) = 0 (4.14)for any onstant state ui = u,∀i ∈ Ie.
F and G satisfy Kamke onditions, that is

Fi(v
e) ≥ Fi(w

e), Gi(v
e) ≥ Gi(w

e), ∀i ∈ I, (4.15)for any two vetors that satisfy vk ≥ wk, ∀k ∈ Ie, and vi = wi.



186 Stelian IonProof. To prove (4.14) we have
Fi(u

e) =
∑

j∈N (i)

m(σij)

m(ωi)
f(u) · nij = 0.We only prouve the ounterpart relativ to F . To prove the Kamke onditionswe have

Fi(v
e) −Fi(w

e) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(u, vj)

vj − u

dij
+ f̃i,j(u, vj) − κ̃(u,wj)

wj − u

dij
− f̃i,j(u,wj)

]and from (4.2) and the monotoniity property of A7 the a�rmation results.As F and G are both quasimonotone and nondereasing with respet toboundary data vetorial funtions the next two results are equaly true fordisrete ODE (4.12).Assumptions on soure termA1′′ There exists the real numbers α < α < β < β suh that(1) b ∈ C1((α, β)) and b′ > 0 on (α, β).There exists two Lipshitz funtions g, g : R+ × R → R suh that(2) g(t, u) ≤ g(t, x, u) ≤ g(t, u), ∀u ∈ (α, β),(3) g(t, α) ≤ 0, g(t, β ≥ 0.Theorem 4.1 (Boundedness of disrete solutions) Consider the Cauhyproblem (4.5). Assume A1, A1′′, A4, A6, A7. We suppose also that initialonditions and boundary data satisfy
α ≤ u0(x) ≤ β, a.e x ∈ Ω, α ≤ uD(t, x) ≤ β, a.e (t, x) ∈ (0, T ) × Ω. (4.16)Let u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u)

|u|t=0 = α,

(4.17)
u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u)

|u|t=0 = β

(4.18)



Diffusion Proesses 187and Tsup = inf(sup{t|u(t) > α, u(t) < β}, T ) Then the solution u(t) of theCauhy problem is bounded by u and u on the interval [0, Tsup] i.e.,
u(t) ≤ ui(t) ≤ u(t)∀i ∈ I,∀t ∈ [0, Tsup] (4.19)Proof. The essential tool in the proof is the Nikel's theorem that provide themonotony of the solution of the quasimonotone ODE. The Kamke onditionsensure us that we deal with quasimonotone system.Observe that the onditions A1′′-3 guaranties that

α ≤ u(t) ≤ α, β ≤ u(t) ≤ β. (4.20)De�ne
F i(u) = Fi(u;u),F i(u) = Fi(u;u).From (4.4), (4.8), (4.15), (4.20) and the onditions A1′-2 one obtains

F i(u) + g(t, u) ≤ Fi(u;uD) + gi(t, u) ≤ F i(u) + g(t, u).Sine usup
i (t) = u(t),∀i ∈ I is a solution of the problem





db(ui)

dt
= F i(u) + g(t, ui)

ui|t=0 = β,
(4.21)

uinf
i (t) = u(t),∀i ∈ I is a solution of the problem





db(ui)

dt
= F i(u) + g(t, ui)

ui|t=0 = α,
(4.22)and α ≤ u0i < β one an apply the Nikel's theorem and one obtains

uinf
i (t) ≤ ui(t) ≤ usup

i (t),whih is (4.19).Theorem 4.2 (Comparison theorem. Disrete ase) Assume we are as inthe boundedness theorem. Let u(t) and û(t), t ∈ (0, T ), be the solutions ofthe problem (4.5) assoiated to (uD,u0) and (ûD, û0) respetively. Supposethat
uD ≤ ûD < 0, u0 ≤ û0 < 0.Then

u ≤ ûon (0, T ).Proof. The same as in the boundedness theorem.



188 Stelian Ion5. Numerial Algorithms and Numerial ResultsIn this setion we give two numerial algorithms to solve GPME equationand Rihards' equations respetively.5.1. Fast Di�usion with Strong AbsorptionWe will present here an algorithm to solve numerially (4.12) in the ase ofthe fast di�usion with strong absorption. In addition to assumptions A2 theonstitutive funtions φ and r satisfyA2′ ∣∣∣∣∣∣∣∣ φ is increasing function and lims→0 φ(x)/x = ∞,
r(s) ≤ 0, for s > 0,The ODE an be rewritten as

∂ui

∂t
= Aijφ(uj) + r(ui). (5.1)We use the lassial full impliit Euler time integration sheme to integratethe system. It follows

un+1 = un + △t
(
Aφ(un+1) + r(un+1)

)
, (5.2)where △t represents the time step. Depending on the initial data u0 andthe type of nonlinearity of the funtions φ and r to solve the arising systeman be a very hard problem, in the viinity of the zero the derivative of thefuntion φ in the ase of fast di�usion beome in�nite. We propose herean algorithm suggested by the Gauss-Sidel iterative method. The methoduses the very speial struture of the matrix A generated by �nite volumemethod. One writes the matrix A as

A = Ã+ Γ,where Γ is a diagonal matrix ontaining the diagonal entries of the matrix
A. We point the following properties of the two matries

Ãij ≥ 0, Γii < 0,
∑

j

Ãij ≤ −Γii. (5.3)We rewrite also the funtions φ and r as
φ(x) = φ̃(x) · x, r(x) = −r̃(x) · x. (5.4)



Diffusion Proesses 189The equation (5.2) an be written now as
(
I + △t

(
−Γφ̃(un+1) + r̃(un+1)

))
un+1 = un + △tÃφ(un+1). (5.5)The next theorem gives the main properties of the solution of impliit Eulermethod.Theorem 5.1 In addition of the onditions A2 and A2′ we assume that

φ̃ is a noninreasing funtion and r̃ ≥ 0. If the initial data and boundaryonditions are positive and upper bounded funtions, i.e.
0 ≤ u0 ≤ ρ, 0 ≤ uD ≤ ρ,then for any time step △t there exists a solution of the equation (5.2) thatsatis�es

0 ≤ un ≤ ρ, ∀n. (5.6)Proof. Let us assume that for a time level n there exists a solution un thatsatis�es (5.6). We will use the Browder �xed point theorem to demonstratethe existene of un+1 with the same properties. De�ne the RN -values funtion
Ψ by

Ψi(y) =
un

i + △t∑j Ãijφ(yj)

1 + △t
(
−Γiiφ̃(yi) + r̃(yi)

) .We laim that the funtion Ψ is a ontinuous funtion on the set [0, ρ]N andtake values in the same set. So, it has a �xed point.Sine φ̃ and r̃ are ontinuous funtions on (0,∞) and let us assume that theirlimits in 0 are �nite we an prolong by ontinuity the funtion Ψ in 0. It isobviously that Ψi > 0. For the upper bound we have
Ψi(y) − ρ ≤

un
i + △t∑j Ãijφ(yj)

1 −△tΓiiφ̃(yi)
− ρ =

=
un

i − ρ+ △t
(∑

j Ãijφ(yj) + ρΓiiφ̃(yi)
)

1 −△tΓiiφ̃(yi)
.For any y ∈ [0, ρ]N we have

∑

j

Ãijφ(yj) + ρΓiiφ̃(yi) ≤ φ(ρ)
∑

j

Ãij + ρΓiiφ̃(yi) ≤

≤ −φ(ρ)Γii + ρΓiiφ̃(yi) = −ρΓii(φ̃(ρ) − φ̃(yi)) ≤ 0.
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xη xη

φηφη xηηη

Fig. 2: The regularization of the �ux funtion.To obtain the �rst inequality one uses: assumptionsA2′ (φ is a nondereasingfuntion), boundary data is bounded from above by ρ and Ãij > 0, the seondinequality results from the struture of the matrix A and the last inequalityfrom the onstitutive assumption on the φ̃.So, we have
0 ≤ Ψi(y) ≤ ρand for it results the existenes of a �xed point, say u. Sine for any i onehas

1 + △t
(
−Γiiφ̃(yi) + r̃(yi)

)
<∞, on [0, ρ],it follows that the �x point u is a solution of the of the nonlinear equation(5.6).Let us analyse the ase in whih the funtions φ̃ and r̃ have in�nite limits in

0. One regularises the funtion φ̃ by
φ̃η(x) =

{
η, if φ̃(x) > η

φ̃(x), if φ̃(x) ≤ η
(5.7)and from it one has

φη(x) =

{
xη, if φ(x) > xη
φ(x), if φ(x) ≤ xη.

(5.8)Obviously
φη(x) ≤ φ(x), lim

η→∞
φη(x) = φ(x).In a similar manner we de�ne rη.With the funtions φη and rη we are in the previous ase and then resultsthat there exists a solution uη ∈ [0, ρ]N of the equation

uη = un + △t (Aφη(uη) + rη(uη)) . (5.9)



Diffusion Proesses 191As the sequene uη is bounded we an extrat a subsequene uηn that on-verges to a point u ∈ [0, ρ]N . The problem is to demonstrate that the limitpoint u is a solution of the original equation, i.e.
u = un + △t (Aφ(u) + r(u)) .Let us denote by Fη(u) and F r.h.s., of the preeding equations, respetively.We have

||u− F (u)||∞ = ||u− uηn + (Fηn(uηn) − Fηn(u)) + (Fηn(u) − F (u)||∞ ≤
≤ ||u− uηn ||∞ + ||Fηn(uηn) − Fηn(u)||∞ +
+ ||Fηn(u) − F (u)||∞ .We will show that, for any ε > 0,

||u− F (u)||∞ ≤ ε.Observe that the �rst term and the last term an be made arbitrary small,
||u− uηn ||∞ + ||Fηn(u) − F (u)||∞ <

ε

2for any n > nε. The middle term an be evaluate as ||·||∞
||Fηn(uηn) − Fηn(u)||∞ ≤ △t

(
||A(φηn(uηn) − φηn(u))||∞ +

+ ||rηn(uηn) − rηn(u)||∞
)
≤

≤ △t(||A|| ||φηn(uηn) − φηn(u)||∞ +
+ ||rηn(uηn) − rηn(u)||∞).For eah omponent i we look at

|φηn(uηni) − φηn(ui)|and note that if ui is not equal with zero then for a great enough number none has
|φηn(uηni) − φηn(ui)| = |φ(uηni) − φ(ui)| ,if ui equals zero then

|φηn(uηni) − φηn(ui)| = φηn(uηni) ≤ φ(uηni).Using the ontinuity of the funtion φ we an �nd a number nε
1 suh that

||φηn(uηn) − φηn(u)||∞ ≤ ε

4||A||△t



192 Stelian Ionfor any n > nε
1. Using the same arguments we an prove that

||rηn(uηn) − rηn(u)||∞) <
ε

4△tfor any n > nε
2. Hene, there exists a nε suh that

||Fηn(uηn) − Fηn(u)||∞ ≤ ǫ

2for any n > nǫ.This end the proof of the theorem.In our implementation we alulate the solution of the Euler sheme by thefollowing iterative solver
(
I + △t

(
−Γφ̃η(u

n+1,k) + r̃η(u
n+1,k)

))
un+1,k+1 =

un + △tÃφη(u
n+1,k).

(5.10)Numerial Simulation. For the numerial simulation we hose a verysimple domain Ω = [0, 1] × [0, 1]. The fast di�usion with absorption is mod-eled by φ(s) = sm, r(s) = −λ · sp.Table 1: Extintion phenomenon, extintion time T e = 0.18. φ(s) = s0.75, r(s) =
−21.× s0.5, uD = 0

 0.5

 0.5

 0

 0.5u

x
y

u

 0

 0.5

 1

 0  0.1  0.18

||u
||

timeInitial Pro�le Comparison of the numerial solution(solid line) with a theoretial estima-tion (points drawing).5.2. Water In�ltration through Strati�ed Soil. Rihard'sEquationWe onsider strati�ed soil. Hereafter the strati�ed soil means a blok-wisehomogeneous soil with horizontal parallel homogeneous strata, see �gure (3).
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z

Fig. 3: Strati�ed porous soil. Eah layer is mod-elled by di�erent onstitutive funtion.In the ase of strati�ed soil the di�erent mehanial properties of the soilsrequire di�erent onstitutive funtions whih in turn lead to a partial di�eren-tial equation with disontinuous oe�ient. On an interfae of two di�erentstrata one must impose some ompatible onditions to have a well de�nedproblem. Physial onsiderations require the ontinuity of the pressure headand normal omponents of the veloity. So, we have
h|− = h|+,

v · n|− = v · n|+. (5.11)Taking into aount the ompatibility relations (5.11) appear that it is moreonvenient to work with the θ − h form of Rihards' equation, i.e.,
∂t

∫

V
θdx =

∫

∂V
K(θ)

∂(h+ z)

∂n
ds,

θ = θ(h)

(5.12)We assume that the �ow domain is the 2D retangle Ω = [0, a]× [0, b] whihis strati�ed in Ns strata [0, a] × [Zi−1, Zi] with Z0 = 0, ZNs = b.Let 0 = x1/2 < x1+1/2 < · · · < xN+1/2 = a, 0 = z1/2 < z1+1/2 < · · · <
zM+1/2 = b be two partitions of the intervals [0, a] and [0, b] respetively.We de�ne the ontrol volumes ωi,j =

[
xi−1/2, xi+1/2

]
×
[
zj−1/2, zj+1/2

]
, i =

1, N, j = 1,M and the net inner knots ri,j = (xi, zj), xi =
xi−1/2 + xi+1/2

2
,

zj =
yj−1/2 + yj+1/2

2
, i = 1,N, j = 1,M . We assume that the partition

{ωi,j} is a onform partition with respet to strati�ation of the domain Ω,
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Conformal Mesh with respet tostrata Volumes of the ontrol.Fig. 4: 2D mesh.i.e for any j the line z = Zj does not interset the interior of any ontrolvolume ωi,j.On eah volume ωi,j one approximates the pressure by a onstant value
hi,j and water ontent by a onstant value θi,j. On the ommon boundary
σi+1/2,j = ωi,j ∪ ωi+1,j of two neighbors we approximate the �ux by

∫

σi+1/2,j

K(θ)
∂(h+ z)

∂n
ds ≈ Ki+1/2,j

hi+1,j − hi,j

△xi+1
(5.13)where the numerial hydrauli ondutivity Ki+1/2,j is an approximation ofthe hydrauli ondutivity K(θ),

Ki+1/2,j = K̃(θi,j, θi+1,j). (5.14)We assume that the funtion K̃(·, ·) is a symmetri and ontinuous funtionwith respet to its arguments. As result, we obtain a di�erential algebraisystem of equation (DAE), θ − h form of Rihards' equation,




mi,j
dθi,j

dt
= Ki+1/2,j

hi+1,j − hi,j

△xi+1
−Ki−1/2,j

hi,j − hi−1,j

△xi
+

+Ki,j+1/2

(
hi,j+1 − hi,j

△zj+1
+ 1

)
−Ki,j−1/2

(
hi,j − hi,j−1

△zj
+ 1

)
,

θi,j = θ(hi,j). (5.15)To integrate the DAE (5.15) we use an impliit multi-step method, [5℄.Let {tn−k, tn−k+1, ..., tn} be a sequene of moments of time and denotes by
θm = θ(tm) ∈ RNM , NM = N ×M . Supposing that one knows the values
{θn−k, θn−k+1, ..., θn}, the values θn+1 and hn+1 at the next moment of time
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tn+1 are alulated as follows. De�ne a preditor polynomial ωP (t) and aorretor polynomial ωC(t). The preditor polynomial interpolates the val-ues {θn−k, θn−k+1, ..., θn} at moments of time {tn−k, tn−k+1, ..., tn}, Lagrangeinterpolation,

ωP (t) =

k∑

j=0

qj(t)θ
n−j. (5.16)For eah j = 0, k the polynomial qj(t) is given by

qj(t) =

k∏

i=0,i6=j

t− tn−i

tn−j − tn−i
.The orretor polynomial ωC(t) interpolates the unknowns θn+1 and thevalues of ωP (t) at the moments of time tn+1 and {tn+1 − j△tn; j = 1, k},respetively. The unknowns θn+1 and hn+1 are determined by imposing tothe orretor polynomial ωC(t) and to hn+1 to satis�es the DAE. Then asystem of nonlinear equation results. By denoting

Fi,j(θ
n+1,hn+1) :=

Ki+1/2,j(θ
n+1)

hn+1
i+1,j − hn+1

i,j

△xi+1
−Ki−1/2,j(θ

n+1)
hn+1

i,j − hn+1
i−1,j

△xi
+

Ki,j+1/2(θ
n+1)

(
hn+1

i,j+1 − hn+1
i,j

△zj+1
+ 1

)
−Ki,j−1/2(θ

n+1)

(
hi,j − hi,j−1

△zj
+ 1

)(5.17)one obtains




mi,j

(
a

△tn θ
n+1
i,j − wP,n

i,j

)
= Fi,j

(
θn+1,hn+1

)
,

θn+1
i,j = θ(hn+1

i,j ),
(5.18)where wP,n

i,j are known quantities as funtions of the preeding values of θ.The nonlinear system (5.18) is solved iteratively using an inexat Newtonstep followed by a Broyden step until a desired auray is obtained. Let Rbe given by
R(θ,h) = m

(
a

△tn θ − wP,n

)
− F (θ,h) . (5.19)The matrix J (θ,h) of the iterative proess in INS is an approximation ofthe full Jaobian of the funtion R, the produt of it with a vetor w read
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J (θ,h)w = m

a

△tnC(h)w − F̃ (θ,w) , (5.20)where
F̃ (θ,w) = ∂hF (θ,w) (5.21)and

C(·) =
dθ(·)
dh

.The nonlinear solver is:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Inexact Newton step

J (θn+1,k,hn+1,k)δNS
h = −R

(
θn+1,k,hn+1,k

)
, ( s 1)

h
n+1,k+1

= hn+1,k + δNS
h , ( s 2)

θ
n+1,k+1

= θ(h
n+1,k+1

), ( s 2)

Broyden step

J (θn+1,k,hn+1,k)δBS
h = −R

(
θ

n+1,k
,h

n+1,k
)
, ( s 3)

δk+1
h = δBS

h

〈δNS
h , δNS

h 〉
〈δNS

h , δNS
h 〉 − 〈δNS

h , δBS
h 〉

, ( s 4)

hn+1,k+1 = h
n+1,k

+ δk+1
h , ( s 5)

θ n+1,k+1 = θ(hn+1,k+1). ( s 5)

(5.22)
The linear equations in the steps s1 and s3 are solved by Conjugate GradientMethod for linear system with symmetri and positive de�nite matrix. Wepresent some numerial tests obtained using the above algorithm. As empir-ial models for water ontent θ(h) and hydrauli ondutivity K(θ) we usethe van Genuhten model,

S(h) =

{
(1 + (αh)n)−m , h < 0,
1, h ≥ 0,

(5.23)
K(S) =

{
KsS

l
(
1 −

(
1 − S1/m

)m)2
, 0 < S < 1,

Ks, S ≥ 1,
(5.24)



Diffusion Proesses 197where S represents the relative water ontent
S =

θ − θr

θs − θr
.The soil in the test is a layered soil with two alternate strata.

h1 h2 h3

loam 

loam 

glendale

glendale

vn=0

vn=0

vn=0

1m

1m
Physial on�guration. The parameters for the loam soil in the van Genuthen modelare: n = 2, α = 3.35 m−1, l = 0.5, Ks = 0.3318 mh−1, θr = 0.012, θs = 0.368and for the Glendale soil are: n = 1.3954, α = 1.04 m−1, l = 0.5, Ks = 0.545 ×
10−2 mh−1, θr = 0.106, θs = 0.4686. The initial datum is h0 = −1.0 m in the wholedomain. The boundary onditions are of the mixt type.
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202 Dorin Marinesu1. IntrodutionIt is known that the lassial Boltzmann equation desribes the evolution ofthe simple gas. The Boltzmann equation represents the onneting bridgebetween the mirosopi and marosopi desription of the simple �uid evo-lution. The kinetis of the simple gas is essentially governed by elasti binaryollisions between strutureless partiles belonging to a unique speies, themultiple ollisions being very improbable Ref. [1℄. However, this equationis not able to desribe the evolution of the real gas with hemial reationsand/or ionization proesses. Then inelasti ollisions must be onsidered bythe kineti models. Boltzmann himself was aware of the importane of theinelasti ollisions in the real �uid evolution Ref. [9℄.The lassial Boltzmann equation is almost unanimously onsidered as ap-propriate for the kinetis of the rare�ed simple gas. A kineti theory forthe reative (real) gas is a more di�ult task Ref. [30, 21℄. As ompared tothe lassial Boltzmann equation for the simple gas, kineti reative mod-els exhibit new mathematial di�ulties due the ontribution of the partileinternal states to the gas evolution (in partiular the presene or reationthresholds) and the existene of ollision hannels with multiple reationpartiipants Ref. [8, 25, 24, 29℄. In the ase of the reating gas mixturesthe mass balane does not hold for a given speies. Then, the mass on-servation for a speie must be replaed by the total mass balane. In thereative models is present a transfer between the kineti energy and the in-ternal moleular energy. Consequently, the kineti energy balane must bereplaed by the total energy balane (i.e. kineti energy + internal moleularenergy). Then, the transport properties of the reating gas mixtures di�erfrom the properties of the simple gas.Various models have been introdued to desribe the kinetis of the real (re-ative) gas. An important role is played by the Boltzmann-like semi-quantumequations. A known example is the Wang-Chang-Uhlenbek-de Boer systemof kineti equations [32℄ for the real gas with binary ollisions. This modelrefers to a gas of partiles with lassial translational motion, but with quan-tum internal struture. Essentially, the di�erene from the Boltzmann modelRef. [11℄ for the simple gas is to assoiate to eah internal state a distributionfuntion, and to relate eah transition from one quantum internal state (ofsome hemial speies) to another with a ross-setion matrix.A more general model introdued by Ludwig and Heil [25℄ extends Wang-Chang-Uhlenbek-de Boer model. This model desribes reations in a di-atomi gas without emission or absorption of radiation. It inludes proesses



Reative Boltzmann Type Equation 203of reombinations by triple ollisions, as well as three post-ollisional prod-uts like dissoiation and ionization indued by ollisions Ref. [8, 25, 24℄.In some Wang-Chang-Uhlenbek-de Boer or Ludwig and Heil model the num-ber of equations depends on the number of distribution funtions, i.e. on thenumber of di�erent quantum internal states owned by the gas partiles dur-ing the gas evolution. It is known that, there exists only at most a ountableset of internal states. However, only a �nite number of internal states willsigni�antly ontribute to the gas kinetis. Consequently, the Wang-Chang-Uhlenbek-de Boer and Ludwig and Heil models are desribed by a �nitenumber of equations.For analytial purposes, in Ref. [16, 17, 18℄, the Wang-Chang-Uhlenbek-deBoer and Ludwig and Heil equations orresponding to the model with �nitenumber of internal states have been transribed in abstrat form, revealingthe mathematial struture of the equations. In Ref. [17℄ was proved theexistene and uniqueness of the solutions for the Cauhy problem. It wasshown that the solutions verify the onservation of the total mass, momentumand energy respetively. Moreover, it was proved the existene of equilibriumsolutions. H-theorem and a generalized law of the mass ation have beenrigorously proved under extended balane onditions.The interest for reative kinetis is not only intrinsi, but also of pratialnature, in plasma physis, nulear physis, physial hemistry of the highatmosphere, ombustion theory, modeling of missiles �ight.Aurate numerial modeling of nonlinear proesses in dilute, �ows is ritialfor solving transport problems both in fundamental and applied siene. Inthis respet Babovsky and Illner [4, 5℄ have proposed an e�ient numerialsheme onsistent with the lassial Boltzmann equation. Using Nambu'sideas [26℄, by time disretization and loal spae-homogenization, Babovskyand Illner have obtained a onvenient approximate form of the equation.At this point, the nonlinear harater of the ollision operators involve apower-like growth of the numerial omplexity. To provide an algorithm,with small numerial e�ort, they have introdued an additonal stohastiapproximation. Finally, they have proved the onvergene almost sure, insome sense, of the approximation sheme. The tehniques developed byNambu [26℄, Babovsky and Illner of [4, 5℄ were also applied Ref. [6℄ to Pullin'sequation [27℄ with Larsen-Borgnakke [10℄ sattering ross setion for the one-omponent diatomi gas with lassial internal degrees of freedom.For the abstrat model Ref. [16, 17, 18℄ desribing the real reating gas, inRef. [19℄ was introdued a rigorous and e�ient approximation sheme. Thismethod represents a nontrivial extension of the tehniques of Ref. [4, 5℄ for



204 Dorin Marinesusolving spae-homogeneous Boltzmann-like models of reating gas mixturesRef. [32, 8, 25, 24, 16, 17℄.The methods of this hapter have been tested Ref. [14, 13℄ on the Krook-Wu[22℄ two-omponent Boltzmann equation as well as on the reative Boltzmannmodels with three and four omponents Ref. [12, 20℄.This review presents the theoretial approximation method for the solutionsof the Boltzmann model introdued in Ref. [17℄ following the line of Ref. [19℄and adding some improvements skethed in Ref. [12℄.The present hapter is organized as follows.In the next setion one �rst realls the main features of the Boltzmann-likeequations introdued in Ref. [17℄. Then, one formulates the approximationproblem. In Setion 3 one investigates the initial value problem for the spae-homogeneous kineti equations of Setion 2, formulated in a suitable spaeof funtions. In Setion 4 one obtains a onvergent, time-disretized versionof the aforementioned Boltzmann-like equations. Setion 5 is devoted to thegeneralizations of ertain probabilisti seletion results of Ref. [4, 5℄. This ispossible due to some lari�ations with respet to the nature of the onver-gene introdued by Babovsky and Illner. More preisely, the probabilistipart of the onvergene proof of Ref. [4, 5℄ is based on the entral limit theo-rem for row-wise i.i.d. random variables and the Borel-Cantelli Lemma. Ourargument follows from a simple version of the strong law of large numbersfor arrays of (not neessarily identially distributed) row-wise independent,random variables. (Whih results from the Chebyshev inequality and theBorel-Cantelli Lemma.) In Setion 6, the results of Setion 5 are applied tothe disretized sheme obtained in Setion 4. Consequently, one obtains thenumerial algorithm for the original Cauhy problem. This represents ourmain result, namely the onvergene of the numerial sheme. Finally, wedisuss the limitations and possible generalizations of the model.2. The Kineti Model and the Approximation Pro-edureHere, we brie�y reall the features of the model presented in Ref. [17, 18℄(see also Ref. [16℄).The leading idea behind the model is that, unequal internal states of a gaspartile with internal struture an be onsidered as desribing struture-lesspartiles belonging to distint hemial speies. Then, a real gas mixture



Reative Boltzmann Type Equation 205of partiles with internal struture an be thought as a mixture of severalhemial speies of mass points with unique internal states.Spei�ally, the model refers to a gas onsisting of N distint speies of pointmasses, with one-state internal energy, evolving without external fores. Thefollowing assumptions are general: (i) gas partiles have free lassial motionin spae, between (in)elasti, instant, loal ollisions, without emission orabsorption of photons; (ii) ollision (reations) may hange momenta, as wellas the hemial nature (in partiular mass and internal energy) of the gaspartiles; any ollision ours with onservation of total mass, momentumand (kineti+internal) energy, aording to the laws of lassial mehanis.(iii) in eah ollision (reation) hannel, the number of idential partnersannot exeed some number, say M ≥ 2 and any ollision (reation) hannelontains, at least, two partiles.Denote by M the folowing multi-index set
M := {γ = (γk)k=1,...,N |γk ∈ {0, 1, . . . ,M}} . (2.1)A gas ollision (reation) proess is spei�ed by a ouple (α,β) ∈ M×M.Here, the multi-index α = (α1, . . . , αN ) represents the pre-ollision (in) han-nel, with αn ∈ {0, 1, . . . ,M} idential partiipants of the n− th speies. Themulti-index β = (β1, . . . , βN ) represents the post-ollision (out) hannel, with

βn ∈ {0, 1, . . . ,M} idential partiipants of the n− th speies.The pair of multi-indexes (α,β) orresponds to a reation of the followingtype
α1X1+, . . . ,+αNXN → β1X1+, . . . ,+βNXN , (2.2)between the speies X1,. . . ,XN , with stoihiometri oe�ients α1, . . . , αN ,

β1, .., βN . Note that if α = β, the ollision is elasti and if α 6= β, the ollisionis inelasti.For eah hannel γ ∈ M the family N (γ) := {k | γk > 0 for k = 1, . . . ,N}represents the speies existing in that hannel. Obviously, if k /∈ N (γ) thespeies k is not present inside the hannel γ. If k ∈ N (γ), then there are
γk idential partiles of the speies k in the hannel γ. We denote the totalnumber of partiles in the hannel γ by

|γ| :=

N∑

k=1

γk. (2.3)Their veloities are denoted by wk,1, . . . ,wk,γk
∈ R3. Also set w :

= ((wk,i)i=1,...,γk
)k∈N (γ), understanding that w ∈ R3|γ|. We denote by
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mk > 0 and Ek ∈ R, the mass and the internal energy, respetively of amass-point of the speies k = 1, . . . ,N .Let

Vγ(w) := (

N∑

k=1

γkmk)
−1

∑

k∈N (γ)

γk∑

i=1

mkwk,i, (2.4)and
Wγ(w) :=

∑

k∈N (γ)

γk∑

i=1

(2−1mkw
2
k,i + Ek). (2.5)be the lassial mass enter veloity and the total energy, respetively, forthe partiles in the hannel γ. Aording to the onservation assumptions,in the desription of the gas kinetis, for eah ouple (α,β) ∈ M × M weonsider only the ollisions satisfying the relations

N∑

k=1

mk(αk − βk) = 0, (2.6)
Vα(w) = Vβ(u), Wα(w) = Wβ(u), (2.7)In (2.7) w = ((wk,i)i=1,...,γk

)k∈N (α) and u = ((uk,i)i=1,...,βk
)k∈N (β) are theveloities of the partiles in the hannels α and β, respetively.Note that reations with at most one partile in some ollision hannel areexluded by (2.6) and (2.7), beause in the absene of radiative proesses, theonservation laws (2.6) and (2.7) annot be simultaneously ful�lled. There-fore, |γ| ≥ 2. This inequality explains the restrition M ≥ 2 in the de�ni-tion (2.1) of M. Remark that, the onservation of the total energy statedin (2.7) implies the existene of reation thresholds and shows what happenswith the internal energies of the partiles partiipating in reations. Forinstane in the ase of endothermi ollisions (α,β), i.e.

∑

k∈N (α)

αkEk <
∑

k∈N (β)

βkEk, (2.8)the kineti energy of the resulting produts is lost as binding energy. In suha ase the ollision an be forbidden if the kineti energy in the hannel αis bellow the reation threshold. Note that, the model aepts also reationthresholds for exothermi ollisions (α,β)

∑

k∈N (α)

αkEk >
∑

k∈N (β)

βkEk. (2.9)



Reative Boltzmann Type Equation 207Following the standard Boltzmann proedure (based on the moleular haosassumption) we introdue the system of kineti equations
∂tfk + v · ∇xfk = Pk(f) − Sk(f), for k = 1, . . . ,N, (2.10)as an abstrat transription of the Wang-Chang-Uhlenbek-de Boer andLudwig and Heil equations. Here fk : R+ × R3 × R3 → R+ are the un-knowns for k = 1, . . . , N , (with R+ := [0,∞)) and f := (f1, . . . , fN ). Eah

fk = fk(t,v,x) (t-time, v -veloity, x -position) is the one-partile distri-bution funtion for speies k = 1, . . . ,N of partiles. In (2.10) the gainoperators Pk and the loss operators Sk(f) desribe the ollision proesses.For g = (g1, . . . , gN ) (with g1, . . . , gN : R3 → R) de�ne,
gγ(w) :=

∏

k∈N (γ)

γk∏

i=1

gk(wk,i), γ ∈ M. (2.11)Formally the gain and the loss operators are de�ned by
Pk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|

σβ,α,k(u,w,v)gβ(u)dudw, (2.12)and
Sk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|
σα,β,k(w,u,v)gα(w)dudw. (2.13)Here, for eah (α,β) ∈ M×M and k = 1, . . . ,N ,

σα,β,k(w,u,v) := Kα,β(w,u)·

δ(wk,αk
− v) · δ(Vβ(u) − Vα(w)) · δ(Wβ(u) −Wα(w)),

(2.14)whereKα,β : R3|α|×R3|β| → R+ are given funtions related to the probabilityof the reation (α,β) ∈ M × M. The following general properties areassumed:1o Kα,β ≡ 0 if |α| < 0, or |β| < 0.2o Kα,β ≡ 0 when the probability of the ollision (α,β) is zero.3o Kα,β ≡ 0 if for some (α,β) ∈ M×M, the ondition (2.6) does not hold.4o Kα,β(w,u) is invariant at the permutation of the omponents wn,1, . . . ,
wn,αn of w for eah �xed u ∈ R3|α|, w ∈ R3|β| and n ∈ N (α); a similar



208 Dorin Marinesustatement holds for the omponents of u. (This ondition expresses the�indistinguishability� of idential ollision partners.)5o For all a ∈ R3 (α,β) ∈ M×M,
Kα,β(T (a)w, T (a)u) ≡ Kα,β(w,u), (2.15)where T (a)w is de�ned on omponents by (T (a)w)k,i = wk,i+a for k ∈ N (α)and i = 1, . . . , αk.6o There exist some given onstants C1, . . . , CN > 0, suh that
CβKα,β(w,u) ≡ CαKβ,α(u,w). (2.16)are veri�ed for all (w,u) ∈ R3|α| × R3|β| and (α,β) ∈ M×M, where

Cγ := Cγ1
1 · . . . · CγN

N , (2.17)for all γ ∈ M.Note that assumption 1o exludes the �spontaneous dissoiation� as well asthe �total fussion�. The ondition 3o refers to the mirosopi onservationof the mass. The form of σα,β,k in (2.14) takes into aount the mirosopionservation laws of the total energy and momentum. The expliit use of onlyone variable, wk,αk
in δ(wk,αk

− v), is possible due to �indistinguishability�of idential ollision partners (ondition 4o). Assumption 5o expresses theabsene of the external �elds. The generalization of the lassial ollisionreversibility is given by the ondition 6o.As announed before, we refer only to the spae-homogeneous version of(2.10), i.e.
∂tfk = Pk(f) − Sk(f), k = 1, . . . ,N. (2.18)Several properties (also valid in the spae-inhomogeneous ase [17, 18℄) an beformally established as for the Ludwig and Heil equations [25℄, and rigorouslyproved by giving a meaning to (2.18) and �nding lasses of solutions withonvenient regularity properties. Thus, formally,

N∑

k=1

∫

R3

Φi
k(v) [Pk(f)(v) − Sk(f)(v)] dv = 0, i = 0, . . . , 4, (2.19)provided that all integrals involved are onvergent, where Φ0

n(v) := mn,
Φi

n(v) = mnvi, for the omponent vi, i = 1, 2, 3, of v, and Φ4
n(v) :=

mnv
2/2 + En. By (2.19) the solutions of (2.18) are formally ompatible



Reative Boltzmann Type Equation 209with the onservation of the mass (i = 0), bulk momentum (i = 1, 2, 3) andenergy (i = 4), respetively.One an de�ne the H-funtion
H(f)(t) =

N∑

k=1

∫

R3

[logCkfk(t,v) − 1] fk(t,v)dv, (2.20)for those solutions f(t,v) of (2.18), with positive omponents, provided thatthe integrals exist. In (2.20) the onstants Ck are the same to the onstantsfrom the assumption 6o. Formally, by a few algebrai manipulations, oneobtains
d

dt
H(f)(t) =

N∑

k=1

∫

R3

[Pk(f)(t,v) − Sk(f)(t,v)] logCkfk(t,v)dv =

=
∑

α,β∈M

∫

R3|β|×R3|α|

Kβ,α(u,w)fβ(t,u)F

[
Cαfα(t,w)

Cβfβ(t,u)

]
dudw ≤ 0,(2.21)where F (x) := 1

2(1 − x) log x ≤ 0 for x ≥ 0.The equilibrium solutions of (2.18) are Maxwellian (Gaussian) funtions withdetermining onstants (onentration, bulk veloity and temperature) relatedto the internal energies En and the onstants Cn of (2.16), by the law of themass ation (for more details see e.g. Ref. [25, 17℄).We distinguish the following partiular ases:1. If M = 3 in (2.10-2.13), and the onditions of (2.16) are veri�ed, then(2.10) essentially redues to the Ludwig and Heil system of equationswith disrete internal energies.2. If M = 2 and the onditions of (2.16) are ful�lled with C1 = C2 = 1,then we obtain the Wang-Chang-Uhlenbek-de Boer system of equa-tions.3. If M = 2, N = 1, the ondition (2.16) are ful�lled and the transitionfuntions depend only on the relative veloities of the enounters ineah ollision hannel, then one gets the lassial Boltzmann equation.In order to introdue the numerial sheme assoiated to the equations (2.18),in the next setion we solve a Cauhy problem for (2.18) formulated in aprodut of L1 spaes. Besides the uniqueness and global existene of the



210 Dorin Marinesusolution, we also need the positivity of the solution and the marosopimass onservation. Note that, other onservation properties, as well as theexistene of a H-theorem play no role in this numerial sheme. In partiular,property (2.16) is not needed. However, we will state without proof a generalresult onerning the onservation relations and a H-theorem (only for thesake of ompleteness).Roughly speaking, we would like to approximate the measures dµt
k(v) :=

fk(t,v)dv indued by the solutions fk(t,v) of (2.18), k = 1, . . . ,N , by on-venient homogeneous sums of point measures, de�ned as follows.Let µ be a �nite positive measure on Rm. For an > 0, where n ∈ N∗ :=
{1, 2, . . .}, let

σn =
an

n

n∑

i=1

δxi,n , n ∈ N∗. (2.22)Here δxi,n is the Dira measure on Rm onentrated at point xi,n for i =
1, . . . , n. The sequene of measures (σn)n∈N∗ is alled a homogeneous sum ofpoint measures (HSPM) approximating the measure µ, if it onverges weaklyto µ (in the weak sens of the measures) i.e. σn ⇀ µ as n→ ∞.We all a sequene (σn)n∈N∗ of the form

σn =

n∑

i=1

ai,n

n
δxi,n , n ∈ N∗, (2.23)(where ai,n > 0 for i ∈ {1, . . . , n} and n ∈ N∗) a weighted sum of pointmeasures (WSPM) approximating the measure µ, if it onverges weakly to

µ, i.e. σn ⇀ µ as n → ∞. Obviously, if ai,n = aj,n for i, j ∈ {1, . . . , n} and
n ∈ N∗, the WSPM approximation beomes a HSPM approximation.The HSPM approximation is onvenient for numerial solving of equationswhere the solutions are �nite (probability) measures on Rm, and where onealso wishes to approximate moments of some (random) variables with respetto solutions. In this ase, the ontrol of the approximation an be made bymeans of the Koksma-Hlavka inequality Ref. [23℄, in terms of disrepany.We reall that, by de�nition Ref. [5, 15, 23℄, the disrepany between thenonnegative measures µ and ν on Rm is given by the following formula,

D(µ, ν) := sup
a∈Rm

|µ(Λ(a)) − ν(Λ(a))| , (2.24)where Λ(a) := {x ∈ Rm |xl ≤ al, l = 1, . . . ,m}.



Reative Boltzmann Type Equation 211We also reall, Ref. [5℄, that a sequene of measures µn is said to onvergeto µ with respet to disrepany if, D(µn, µ) → 0 as n→ ∞.It is known, Ref. [5℄, that if µ is a measure absolutely ontinuous with respetto the Lebesgue measure on Rm, then the onvergene of µn to µ with respetto disrepany is equivalent to the weak onvergene in the sense of measures.Starting with HSPM approximation for eah µ0
k indued by the initial data in(2.18), with k = 1, . . . , N , our purpose is to provide a onvergent algorithmgenerating HSPM approximations for the measures µt

k, where k = 1, . . . ,N ,at any t > 0.In this respet, one hooses some �xed timestep ∆t < T . Let
T∆ :=

[[
T

∆t

]]
, (2.25)where [[x]] denotes the integer part of x ∈ R. One assoiates a time-disretized version of equations to (2.18). Starting with an initial data, f0

k =

f0
k (v), k = 1, . . . , N , one obtains a family of funtions f j

k(v), j = 1, . . . , T∆verifying the disretized form of (2.18). The disretized version of (2.18)an be formulated in the weak form for the measures dµ̄j
k(v) := f j

k(v)dv,where k = 1, . . . , N . We shall prove that if, eah µ̄0
k is lose, to µ0

k, insome sense, then (for ∆t su�iently small), µ̄j
k is lose to µt

k on the inter-val ((j − 1)∆t, j∆t], with an error of order ∆t, for all j = 1, . . . , T∆ and
k = 1, . . . , N .The sheme is initialized for k = 1, . . . ,N by approximating for the measures
µ̄0

k by a HSPM approximation of the form:
µ0

k,n :=
ak,n

n

n∑

i=1

δvk,n
⇀µ̄0

k, as n→ ∞. (2.26)The above approximation provides for all j = 1, . . . , T∆ and k = 1, . . . ,Napproximations by disrete measures µj
k,n ⇀ µ̄j

k as n→ ∞.Beause of the nonlinearity of the initial problem, eah step of the iterationprodues a power-like growing number of terms in the sums of point measuresexpressing µj
k,n. In omputations, the numerial e�ort would also be power-like inreasing, so that the algorithm ould not be e�etive at this level.To approximate µ̄j

k by sums of Dira measures with a non-inreasing numberof terms, for tehnial reasons, it is neessary to have a HSPM approximation.However, in general, µj
k,n appears as a WSPM of the form (2.23). For thisreason we introdue a homogenization proedure of approximation to obtainmeasures of the form (2.22). At this level, one an redue the numerial



212 Dorin Marinesue�ort by using probabilisti tehniques of seletion. Then, the onvergeneof the numerial sheme is proved in probabilisti terms.3. The Existene of the SolutionDe�ne the spae X := L1(R3) × . . .× L1(R3)︸ ︷︷ ︸
N times � real, equipped with the norm

‖g‖
X

:=

N∑

k=1

mk ‖gk‖L1 , (3.1)where g = (g1, . . . , gN ) and gk ∈ L1(R3), k = 1, . . . ,N . We reall that
mk > 0 denotes the mass of a partile of speies k for eah k = 1, . . . ,N .Note that if g ≥ 0 (i.e. gk ≥ 0 a.e. for all k = 1, . . . ,N) then the norm ‖g‖

Xis equal to the mass of the gas in the state desribed by the distributionfuntions given by the omponents of g.For approximation purposes, we suppose that the funtions of the family
{Kα,β}α,β∈M are ontinuous. We formulate the Cauhy problem for (2.18)in the spae X.Before, we must give a meaning to the ollision operators Pk and Sk asoperators ating in the spae X. This an be performed, using regularizationas in Ref. [16, 17℄ to de�ne σα,β,k as distributions for all α,β ∈ M×M and
k = 1, . . . , N .Form ∈ N∗ denote by Cb(R

m) the spae of the bounded funtions of C(Rm; R),endowed with the usual sup norm. Let Cc(R
m) be the subset of the funtionsof Cb(R

m) with ompat support.Let J ∈ Cc(R) be positive and even funtion, suh that supp(J) = [−1, 1]and ‖J‖
L1 = 1. For ε > 0 denote by δε(t) =: ε−1J(ε−1 · t) and δ3ε(y) :=

δε(y1) · δε(y2) · δε(y3) , where y = (y1, y2, y3) ∈ R3. De�ne
σε,η

α,β(u,w) := Kα,β(w,u)δ3ε (Vβ(u) − Vα(w))δη(Wβ(u)) −Wα(w)), (3.2)
Pkεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
β,α(u,w)gβ(u)dudw̃k

]

wk,αk
=v(3.3)
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Skεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
α,β(w,u)gα(w)dudw̃k

]

wk,αk
=v

,(3.4)with gα and gβ as in (2.11), for all g ∈ Cc(R
3)N := Cc(R

3) × . . .× Cc(R
3)︸ ︷︷ ︸

N times ;
v ∈ R3, k ∈ 1, . . . , N . In (3.3) and (3.4), the terms with αk = 0, vanish,by de�nition, and dw̃k is the Eulidean element of area on the manifold{
w ∈ R3|α||wk,αk

= v
}.Let Ωγ be the unit sphere in R3|γ|−3, where γ ∈ M. The operators Pk and

Sk an be de�ned by means of the following result.Lemma 3.1 For eah g ∈ CN
c (R3), there exist the limits

Ṗk(g)(v) := lim
η→0

lim
ε→0

Pkεη(g)(v), Ṡk(g)(v) := lim
η→0

lim
ε→0

Skεη(g)(v).(3.5)There are the families of funtions {rβ,α}α,β∈M, {pβ,α}α,β∈M ⊂ C(R3|α| ×
Ωβ; R+) and {uβ,α}α,β∈M ⊂ C(R3|α| × Ωβ; R3|β|) suh that
Ṗk(g)(v)=

∑

α,β∈M

αk

[∫

R3|α|−3×Ωβ

pβ,α(w,n)gβ(uβ,α(w,n))dw̃kdn

]

wk,αk
=v

,(3.6)
Ṡk(g)(v) =

∑

α,β∈M

αk

[∫

R3|α|−3×Ωβ

rβ,α(w,n)gα(w)dw̃kdn

]

wk,αk
=v

, (3.7)for all g ∈ CN
c (R3), and the following properties are veri�ed:i) there are some onstants c, d > 0 suh that |uβ,α(w,n)| ≥ c |w| for all

|w| ≥ d and α,β ∈ M.ii) if Wα(w) − 2−1(
∑N

n=1 αnmn)Vα(w)2 −∑N
n=1 βnEn ≤ 0 for some w ∈

R3|α|, then
rβ,α(w,n) = pβ,α(w,n) = 0, for all n ∈ Ωβ and α,β ∈ M. (3.8)iii) for eah ϕ ∈ C(R3|α|) and f ∈ Cc(R

3|β|) and ∀α,β ∈ M
∫

R3|α|×Ωβ

ϕ(w) · pβ,α(w,n) · f(uβ,α(w,n))dwdn =

=

∫

R3|β|×Ωα

ϕ(uα,β(u,n)) · rα,β(u,n) · f(u)dudn.

(3.9)



214 Dorin MarinesuThe results of the above Lemma were obtained in Ref. [17℄. However, for thesake of ompleteness, the proof is outlined in Appendix2.Property (3.8) follows by the presene of reation thresholds (in the frameof the onservation relations (2.6) and (2.7)). Moreover, (3.6) and (3.7) arewell de�ned, beause of property i) in Lemma 3.1.From (3.7), we an write
Ṡk(g)(v) = Ṙk(g)(v)gk(v), (3.10)where

Ṙk(g)(v) :=

:=
∑

α,β∈M

αk

[∫

R3|α|−3×Ωβ

rβ,α(w,n)gγ;k(ws,i)dw̃kdn

]

wk,αk
=v

.
(3.11)In (3.11), for γ ∈ N (γ) we assumed the onvention

gγ;k(w) := gγ(w)/gk(wk,αk
), (3.12)where the r.h.s. makes sense and gγ;k(w) := 0 otherwise.Our results are based on the followingAssumptionThere is a onstant K > 0, suh that

∫

Ωβ

rβ,α(w,n)dn < K, (3.13)for all w ∈ R3|α| and α,β ∈ M.From (3.13), it is immediate that the maps
X ⊃ Cc(R

3)N ∋ g → Ṡk(g) ∈ L1(R3),

X ⊃ Cc(R
3)N ∋ g → Ṙk(g) ∈ Cb(R

3)

(3.14)are ontinuous for eah k = 1, . . . ,N . Moreover, using property (3.9) (with
ϕ = 1, f = gβ) ombined with Fubini's theorem, it also follows that the map

X ⊃ Cc(R
3)N ∋ g → Ṗk(g) ∈ L1(R3) (3.15)2Note that the funtions rα,β and pα,β appear in expliit form in the proof ofLemma 3.1 (see the Appendix).



Reative Boltzmann Type Equation 215is ontinuous for eah k = 1, . . . ,N .Sine Cc(R
3)N is dense in X, the maps given by (3.14-3.15) have ontinuousextensions to X. These extensions will be also denoted Sk, Rk and Pk,respetively.Note that (3.10) an be extended to all g ∈ X, in the sense that a.e.,

Sk(g)(v) = Rk(g)(v)gk(v), (3.16)for all k = 1, . . . , N .De�ne P,S : X → X by
P(g) = (P1(g), . . . , PN (g)),

S(g) = (S1(g), . . . , SN (g)),
(3.17)for all g ∈ X.We onsider the Cauhy problem for equation (2.18) in X.

dtf(f) = P(f(t)) − S(f(t)), f(0) = f0. (3.18)Theorem 3.1 Let f0 > 0. For eah T > 0, equation (3.18) has a uniquesolution f(t) in X on [0, T ]. Moreover, for all t ∈ [0, T ] one has f(t) > 0 and
N∑

k=1

mk

∫

R3

fk(t,v)dv =
N∑

k=1

mk

∫

R3

f0,k(v)dv. (3.19)Proof. One applies the Banah �xed point theorem to (3.18) written inonvenient form.Consider the one C+
T := {f ∈ C(0, T ; X)|f(t) ≥ 0, for all t ∈ [0, T ]} with thenorm

‖f‖ := sup
t∈[0,T ]

‖f(t)‖
X
. (3.20)Observe that for all k = 1, . . . ,N , if f ∈ C+

T then Rk(f), Pk(f) ≥ 0 (sine
rβ,α, pβ,α ≥ 0, for all α,β ∈ M). Moreover, if f ∈ C+

T , then Rk(f) ∈
C(0, T ;Cb(R

3)). Consequently the Riemann integral ∫ t
s Rk(f(τ))dτ is wellde�ned in Cb(R

3) for all s, t ∈ [0, T ] and k ∈ {1, . . . ,N}.Let f ∈ C+
T . We de�ne the map [0, T ] ∋t → I(f)(t) ∈ X by the omponentsof I(f)(t), as:



216 Dorin Marinesu
Ik(f)(t) = exp

[
−
∫ t

0
Rk(f(τ))dτ

]
· f0,k+

+

∫ t

0
exp

[
−
∫ t

s
Rk(f(τ))dτ

]
· Pk(f(s))ds,

(3.21)where t ∈ [0, T ]. Here, the integration with respet to ds is in the sense ofRiemann in L1(R3).Obviously Ik(f)(t) ≥ 0 for all t ∈ [0, T ], k = 1, . . . ,N .The problem (3.18) an be rewritten in C+
T , as it follows.

f = I(f) (3.22)Let R > ‖f0‖X
. De�ne

B(R) :=
{
f ∈ C+

T | ‖f‖ ≤ R, f (0) = f0
}
. (3.23)Using (3.11), (3.6) and (3.13), one an �nd some positive numbers k1(R) and

k2(R), suh that
‖I(f)‖ ≤ ‖f0‖X

+ T · k1(R), (3.24)and
‖I(f) − I(h)‖ ≤ T · k2(R) · ‖f − h‖ , (3.25)for all f ,h ∈ B(R). Obviously, from (3.24) and (3.25), for T small enough, themap I beomes a strit ontration on B(R). Consequently I : B(R) → B(R)and has a unique �xed point. This proves that (3.18) has a unique positivesolution on [0, T ].The positivity of fk, implies that

‖f(t)‖
X

=

N∑

k=1

mk

∫

R3

fk(t,v)dv, 0 ≤ t ≤ T. (3.26)By (3.18) and using (2.6), (3.11), (3.6) and (3.9) (applied to ϕ ≡ 1) oneobtains
dt ‖f(t)‖X

=

N∑

k=1

mk

∫

R3

[Pk(f) − Sk(f)] dv = 0, (3.27)whih proves (3.19). Moreover,
‖f‖ = sup

0≤t≤T
‖f(t)‖

X
= ‖f0‖X

. (3.28)



Reative Boltzmann Type Equation 217By ontinuation, and uniqueness, the loal solution f(t) an be made time-global. This ends the proof. 2For the sake of ompleteness we state the following result.Let Φi
n be as in (2.19) for i = 1, . . . , 4. With the remark that the massonservation (3.19) has been already proved, the solution of (3.18) has thefollowing properties.Proposition 3.1 Let f(t) be the solution of (3.18) given by Theorem 3.1.a) If

f0,k, (1 + v2)f0,k ∈ L1(R3) (3.29)for eah k = 1, . . . , N , then
(1 + v2)fk(t) ∈ L1(R3) (3.30)and

N∑

n=1

∫

R3

Φi
n(v)fn(t,v)dv =

N∑

n=1

∫

R3

Φi
n(v)f0,n(v)dv = 0, (3.31)for eah k = 1, . . . , N and i = 1, . . . , 4 and all t ≥ 0.b) In addition to the onditions (3.29), suppose that there are some onstants

C1, . . . , CN > 0 suh that onditions (2.16) hold. If
f0,k log f0,k ∈ L1(R3) (3.32)for eah k = 1, . . . , N , then

fk(t) log fk(t) ∈ L1(R3; dv) (3.33)and
H(f)(t) :=

N∑

n=1

∫

R3

[logCnfn(t,v) − 1] fn(t,v)dv (3.34)is non-inreasing as a funtion of t, for eah k = 1, . . . ,N and all t ≥ 0.The proof of this proposition is beyond the present purposes. Though, wemention that the proof uses Lemma 3.1 and the ideas introdued by of Ark-eryd [2, 3℄ to prove results of the same nature in the ase of the lassialspae-homogeneous Boltzmann equation.



218 Dorin Marinesu4. Time DisretizationLet ∆t ∈ (0, T ) be a �xed timestep. We onsider the following disretizedversion of (3.18).
f j = f j−1 + ∆t ·

[
P(f j−1) − S(f j−1)

]
,

f0 = f0 ≥ 0, a.e., j = 1, . . . , T∆,
(4.1)where f j = (f j

1 , . . . , f
j
N ) and f j

k = f j
k(v).The disretized sheme (4.1) may destroy the positivity of the funtions f jfor j ≥ 1. However, one an prove that for ∆t small enough, f j is positiveand lose, in some sense, to the solution f provided by Theorem 3.1.Proposition 4.1a) If ∆t is su�iently small, then f j ≥ 0 for all j = 1, . . . , T∆. Moreover,

∥∥f j
∥∥ = ‖f0‖ , (4.2)for all j = 1, . . . , T∆.b) There exists some number C = C(‖f0‖X

) > 0, depending only on ‖f0‖X
,suh that ∥∥f(t) − f j

∥∥
X
≤ C · ∆t, (4.3)for all j = 1, . . . , T∆ and t ∈ ((j − 1)∆t, j∆t].Proof. a) First we write (4.1) more onveniently.Let

U := {γ = (γ1, . . . , γN ) |γk ∈ {0, 1, . . . ,NM} , |γ| ≥ 2} . (4.4)For any ξ = (ξ1, ..., ξN ) ∈ RN for k = 1, ...,N and α ∈ M, denote
ξα,k :=





1

ξk

∏

n∈N (α)

ξαn
n if αk ≥ 1 and ξk 6= 0 ,

0 if αk = 0 or ξk = 0 .

(4.5)For k = 1, . . . , N and α ∈ M, using the multinomial formula, we get
NM∑

p=2

(ξ1 + . . .+ ξN )p−1 =

NM∑

p=2

p−1∂ξk
(ξ1 + . . .+ ξN )p =

∑

α∈U

cααkξα,k, (4.6)
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cα := (|α| − 1)!

(
N∏

k=1

αk!

)−1

. (4.7)If
ξ1 + . . . + ξN = 1, (4.8)then, by (4.6) we get

MN − 1 =


 1

(M + 1)N −N − 1

∑

α,β∈M

αkcαξα,k +
∑

α∈U\M

αkcαξα,k


 .(4.9)For eah k = 1, . . . , N , put

ξk = µkIk, (4.10)where
µk = mk

(
N∑

n=1

mn

∫

R3

f0,n(v)dv

)−1 (4.11)and
Ik =

∫

R3

f j
k(v)dv. (4.12)It follows that (4.8) is satis�ed, due to (4.19). Consequently, by (4.9),

1 =
∑

α,β∈M

αk · Γα,k · Iα,k +
∑

α∈U\M

Λα,k · Iα,k, (4.13)where the notation Iα,k is given by (4.5) for I = (I1, . . . ,IN ). In (4.13),
Λα,k :=

αkc
αµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN
N

MN − 1
(4.14)and

Γα,k :=
cαµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN
N

(MN − 1) [(M + 1)N −N − 1]
. (4.15)Multiplying on omponents (k = 1, . . . ,N), the �rst term of the right side of(4.1) by (4.13) and using (3.11), equation (4.1) beomes

f j
k = Qk(f

j−1) + Lk(f
j−1) + ∆t · Pk(f

j−1), (4.16)



220 Dorin Marinesufor k = 1, . . . , N . Here
Qk(f

j)(v) :=

=
∑

α,β∈M

αk

[∫

R3|α|−3

(
Γα,k− ∆t

∫

Ωβ

rβ,α(w,n)dn

)
f j
α(w)dw(k)

]

wα,k=v

,(4.17)
Lk(f

j)(v) :=
∑

α∈U\M

Λα,k

[∫

R3|α|−3

dw(k)f
j
α(w)

]

wα,k=v

. (4.18)IfK is the onstant introdued in (3.13), we an hoose ∆t suh that ∆t·K ≤
inf
α,k

Γα,k.Then, the positivity of f j, for all j = 1, . . . , T∆, follows by indution, usingAssumption (3.13). As f j ≥ 0 for all j = 1, . . . , T∆, then the mass onserva-tion is always ful�lled. Indeed, by indution and using the same argumentas in (3.27) we have
N∑

k=1

mk

∫

R3

f j
k(v)dv =

N∑

k=1

mk

∫

R3

fk,0(v)dv (4.19)for all j = 1, . . . , T∆.b) Combining (3.18) and (4.1), for all j = 1, . . . , T∆ we an write
∥∥f(j · ∆t) − f j

∥∥
X

≤
∥∥f(j − 1) · ∆t) − f j−1

∥∥
X

+

+

∫ j·∆t

(j−1)·∆t

∥∥P (f(s)) − P (f j−1)
∥∥

X
ds+

+

∫ j·∆t

(j−1)·∆t

∥∥S(f(s)) − S(f j−1)
∥∥

X
ds.

(4.20)
Denote by Oj :=

∥∥f(j∆t) − f j
∥∥

X
. Using the expliit forms of P and S, takingaount of the onservation relations (3.19) and (4.19), we �nd that there issome number c0 > 0, depending on ‖f0‖X

suh that Oj < Oj−1(1+ c0∆t) forall j = 2, . . . , T∆ and O1 ≤ c0∆t. Then
Oj ≤ O1(1 + c0∆t)

T∆ ≤ c1 · ∆t, (4.21)with c1 > 0 depending only on ‖f0‖X
. Suppose that t ∈ ((j − 1)∆t, j∆t].



Reative Boltzmann Type Equation 221The expliit forms of P and S together with (3.18) and (3.19) lead to
‖f(t) − f((j − 1)∆t)‖

X
≤

≤
∫ j∆t

(j−1)∆t
(‖P(f(s))‖

X
+ ‖S(f(s))‖

X
)ds ≤ c2 · ∆t,

(4.22)where c2 depends only on ‖f0‖X
. Now estimation (4.3) is an immediateonsequene of (4.21) and (4.22). 2For numerial purposes, one has to write the equation (4.1) in the weak formfor measures. In this respet, we assoiate the the following measures to thesolutions f(t) and f j appearing in Proposition 4.1. For k = 1, . . . ,N de�ne

dµt
k(v) := fk(t,v)dv, (4.23)where t ≥ 0, and

dµ̄j
k(v) := f j

k(v)dv, (4.24)for j = 1, . . . , T∆.Proposition 4.1 has the following onsequene expressed in terms of the dis-repany de�ned by (2.24).Corollary 4.1 If the onditions of Proposition 4.1 are ful�lled, then
max

k=1,...,N
max

j=1,...,T∆

D(µj∆t
k , µ̄j

k) → 0 as ∆t→ 0. (4.25)5. The Probabilisti FrameThe entral result of this setion extends, in some sense, the probabilistimethods of seletion used by Babovsky and Illner [4, 5℄ (see e.g. Lemma 2of Ref. [4℄).We start with a simple generalization (to row-wise independent random vari-ables) of the strong law of large numbers for independent random variableswith bounded fourth momentum (see, e.g., Theorem IV.�3-1 in Ref. [28℄,p.363).Let (Ω, β, P ) be a probability spae. For some real random variable X, by
〈X〉 we denote its mean with respet to P .Let N∗ ∋ n → qn ∈ N∗. We all the family ((Xn,i)i∈{1,...,qn})n∈N∗ of realvalued random variables on Ω an array of row-wise independent randomvariables, if for eah �xed n ∈ N∗ the random variables (Xn,i)i∈{1,...,qn} areindependent.



222 Dorin MarinesuProposition 5.1 Let ((Xn,i)i∈{1,...,qn})n∈N∗ be an array of row-wise inde-pendent random variables with zero mean. Denote An := sup
i∈{1,...,qn}

〈X4
n,i〉.If

∞∑

n=1

An

q2n
<∞, (5.1)then, with probability one,

1

qn

qn∑

i=1

Xn,i → 0, as n→ ∞. (5.2)Proof. Aording to a version of the Borel-Cantelli Lemma, it is su�ient toshow that for eah ε > 0,
∞∑

n=1

P

(∣∣∣∣∣
1

qn

qn∑

i=1

Xn,i

∣∣∣∣∣ > ε

)
<∞. (5.3)To this end, by Chebyshev's inequality, we obtain

P

(∣∣∣∣∣

qn∑

i=1

Xn,i

∣∣∣∣∣ > ε · qn
)

≤ 1

ε4q4n

〈∣∣∣∣∣

qn∑

i=1

Xn,i

∣∣∣∣∣

4〉
. (5.4)Expanding the fourth power, we invoke the independene of Xn,i and use thefat that 〈Xn,i〉 = 0. Then a simple omputation shows that for all ε > 0,

0 ≤
∞∑

n=1

P

(
1

qn

∣∣∣∣∣

qn∑

i=1

Xn,i

∣∣∣∣∣ > ε

)
≤ 3

ε4

∞∑

n=1

An

q2n
<∞. (5.5)This onludes the proof. 2Consider N∗ ∋ n→ mn ∈ N∗ a sequene, suh that mn → ∞ as n→ ∞.For eah n ∈ N∗, let In := {1, 2, . . . ,mn} be an index set and let Ip

n :=
In × . . .× In︸ ︷︷ ︸

p times for a �xed p ∈ N∗.Consider some given set X ⊂ Rm and a given sequene (Fn)n∈N∗ of funtions
Fn : X× Ip

n → R. De�ne Sn : X → R by
Sn(x) :=





1

mp
n

∑

j∈In

Fn(x, j) if p ≥ 2,

mn∑

j=1

an,jFn(x, j) if p = 1,

(5.6)



Reative Boltzmann Type Equation 223where ((an,l)l∈In)n∈N∗ is a family of nonnegative numbers, suh that
sup
n∈N∗

mn∑

l=1

an,j <∞,

mn∑

l=1

an,l > 0, for all n ∈ N∗.

(5.7)
Suppose that there is some funtion F : X → R suh that, for eah x ∈ X,

F (x) = lim
n→∞

Sn(x). (5.8)In general, for a given n, the sum Sn ontains mp
n terms. Roughly speaking,our problem is to onveniently diminish the numbers of terms in Sn, byrandom seletion of the terms in (5.6) and �renormalize� the resulting sumsuh that the onvergene to F (x) be kept, in some sense. In this respet,we de�ne some speial families of random variables.Let (Ω, β, P ) be a probability spae, where Ω := [0, 1)∞ (in the ountablesense) is endowed with the usual produt Borel σ−algebra β and P the usualprodut probability indued on Ω by the uniform distribution of [0, 1).For eah n ∈ N∗ and j ∈ In, de�ne the weights

pn,j :=
an,j

mn∑
l=1

an,l

, (5.9)where ((an,l)l∈In)n∈N∗ is the family with properties (5.7). For eah n ∈ N∗,let
qn,s :=





0 if s = 0,

s∑

j=1

pn,j if s ∈ In.
(5.10)For eah n ∈ N∗ and l ∈ In we onsider the random variables cn,l , c̃n,l : Ω →

In given by
cn,l(ω) := [[ωl ·mn]] + 1, (5.11)and

c̃n,l(ω) := s if ωl ∈ [qn,s−1, qn,s) , (5.12)



224 Dorin Marinesuwhere ωl is the lth omponent of ω = (ω1, ω2, . . .) ∈ Ω. In (5.12) we makethe onvention that [x, x) := φ (the void set) for any x ∈ R. Obviously, foreah j ∈ In

P (cn,l(ω) = j) =
1

mn
, (5.13)and

P (c̃n,l(ω) = j) = pn,j. (5.14)Consequently, ((cn,l)l∈In)n∈N∗ and ((c̃n,l)l∈In)n∈N∗ , are arrays of row-wiseindependent random variables.Remark that the random variables cn,l are partiular forms of c̃n,l, with
pn,j = m−1

n in (5.9).Let p ≥ 2. For n ∈ N∗ and l ∈ In, de�ne the random variables Jn,l : Ω → Ip
nby

Jn,l(ω) := (i, cn,(l−1)p+1(ω), cn,(l−1)p+2(ω), . . . , cn,lp−1(ω)), (5.15)where ω = (ω1, ω2, . . .) ∈ Ω.Observe that ip + j = i′p + j′ if and only if i = i′ and j = j′, for all
i, i′ ∈ N∗ and j, j′ ∈ {1, 2, . . . , p}. Then, using the row-wise independene of
((cn,l)l∈In)n∈N∗ , we onlude the row-wise independene of ((Jn,l)l∈In)n∈N∗ .Suppose that one of the following onditions is ful�lled:1. X is at most ountable.2. X is the whole Rm, the funtion F is ontinuous and eah Fn(·, j) isinreasing with respet to the order of Rm for eah �xed n ∈ N∗ and

j ∈ Ip
n. De�ne for eah n ∈ N∗ and x ∈ X by

an(x) := max
j∈Ip

n

|Fn(x, j)| . (5.16)Proposition 5.2 1. Let p ≥ 2. If
∞∑

n=1

an(x)4

m2
n

<∞ (5.17)for all x ∈ X, then for eah x ∈ X, with probability one,
lim

n→∞

1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i = F (x). (5.18)



Reative Boltzmann Type Equation 2252. Let p = 1. Consider N∗ ∋ n → kn ∈ N∗ a sequene suh that, kn → ∞ as
n→ ∞. If kn ≤ mn for all n ∈ N∗, and

∞∑

n=1

an(x)4

k2
n

<∞, (5.19)for all x ∈ X, then for all x ∈ X, with probability one,
lim

n→∞




mn∑

j−1

an,j


 1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i = F (x). (5.20)Proof. Remark that it is su�ient to onsider the ase in whih all funtions
Fn are positive.Case X ountable1. Let x ∈ X be �xed. For eah n ∈ N∗ and i ∈ In, de�ne

Yn,i := Fn(x, ·) ◦ Jn,i. (5.21)The row-wise independene of ((Jn,i)i∈In)n∈N∗ implies that ((Yn,i)i∈In)n∈N∗is an array of row-wise independent random variables. Let j = (j1, . . . , jp) ∈
Ip

n. Using (5.13) and the de�nition (5.15) of Jn,i, we get
P ({Jn,i(ω) = j}) =





m1−p
n if i = j1,

0 if i 6= j1,

(5.22)for all n ∈ N∗ and j ∈ In. Consequently,
〈Yn,i〉 =

1

mp−1
n

mn∑

j2,...,jp=1

Fn(x, (i, j2, . . . , jp)), (5.23)so that
1

mn

mn∑

i=1

〈Yn,i〉 =
1

mp
n

∑

j∈Ip
n

Fn(x, j) = Sn(x). (5.24)Put Xn,i := Yn,i − 〈Yn,i〉. Then, the family ((Xn,i)i∈In)n∈N∗ satis�es theonditions of Proposition 5.1, with An ≤ (2an(x))4. Therefore, for eah �xed
x, by (5.24) and (5.6) one obtains (5.18). For eah x ∈ X, let Ωx be thesubset of Ω where the limit (5.18) holds. De�ne ΩX :=

⋂
x∈X Ωx. Sine X isountable, we have P (ΩX) = 1, so that the argument is omplete.



226 Dorin Marinesu2. Let x ∈ X be �xed. For eah n ∈ N∗ and i ∈ In de�ne
Yn,i :=

(
mn∑

l=1

an,l

)
Fn(x, ·) ◦ c̃n,i. (5.25)The row-wise independene of ((c̃n,i)i∈In)n∈N∗ ensures that ((Yn,i)i∈In)n∈N∗is an array row-wise independent family of random variables. From (5.14),we get

〈Yn,i〉 =

mn∑

l=1

an,lFn(x, l), (5.26)for all i ∈ In and n ∈ N∗. Consequently,
1

kn

kn∑

i=1

〈Yn,i〉 = Sn(x). (5.27)De�ne Xn,i := Yn,i −〈Yn,i〉. From here the argument works similarly as in 1.Case X = Rm1. Observe that the argument with X ountable is valid on the ountable set
Qm of the vetors of Rm with rational omponents. Further, remark that forany x ∈ Rm \Qm and ε > 0, by the ontinuity of F and the monotoniity of
Fn, we an �nd two elements x−, x+ ∈ Qm, with x− ≤ x ≤ x+ suh that

F (x+) − 1

mn

mn∑

i=1

Fn(x+, ·) ◦ Jn,i(ω) − ε ≤

≤ F (x) − 1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i(ω) ≤

≤ F (x−) − 1

mn

mn∑

i=1

Fn(x−, ·) ◦ Jn,i(ω) + ε,

(5.28)
for all ω ∈ Ω. Now we approximate x by two sequenes {x+

p

}
p∈N

, {x−p }p∈N
⊂

Qm, with x−p ≤ x ≤ x+
p . Then, to onlude the proof in the ase X = Rm,we refer to the result in the ase X ountable.
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F (x+) − 1

kn

kn∑

i=1

Fn(x+, ·) ◦ c̃n,i(ω) − ε ≤

≤ F (x) − 1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i(ω) ≤

≤ F (x−) − 1

kn

kn∑

i=1

Fn(x−, ·) ◦ c̃n,i(ω) + ε,

(5.29)
one repeats step by step the arguments of the part 1 to onlude the proofof the part 2. 2The index set Ip

n being de�ned as before, let ((µn,j)j∈Ip
n
)n∈N∗ be a boundedfamily of positive measures on Rm, i.e. there exists some onstant a > 0, suhthat |µn,j| ≤ a for all j ∈ Ip

n and n ∈ N∗ (we reall the notation |µ| := µ(Rm)for some �nite measure µ on Rm).Let (Ω, β, P ) be the probability spae be as in Proposition 5.2 and the arraysof row-wise random variables ((Jn,i)i∈In)n∈N∗ and ((c̃n,i)i∈In)n∈N∗ de�ned by(5.15) and (5.12) respetively.Theorem 5.1 1. Let p ≥ 2. Suppose that there is a positive measure µ on
Rm, absolutely ontinuous with respet to the Lebesgue measure on Rm, suhthat

1

mp
n

∑

j∈Ip
n

µn,j ⇀ µ, as n→ ∞. (5.30)De�ne µn,i(ω) := µn,j|j=Jn,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. If
∞∑

n=1

1

m2
n

<∞, (5.31)then for P−almost all ω,
σ1,n(ω) :=

1

mn

mn∑

i=1

µn,i(ω) ⇀ µ as n→ ∞. (5.32)2. Let p = 1. Suppose that there is a positive measure µ on Rm, absolutelyontinuous with respet to the Lebesgue measure on Rm, suh that
mn∑

l=1

an,l · µn,l ⇀ µ, as n→ ∞. (5.33)



228 Dorin MarinesuDe�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n→ kn ∈ N∗ be a sequene suh that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

<∞. (5.34)Then, for P−almost all ω,
σ2,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n→ ∞. (5.35)Proof. De�ne for eah x ∈ Rm

Fn(x, j) :=

∫

y≤x
dµn, j(y), (5.36)and

F (x) :=

∫

y≤x
dµ(y). (5.37)Then it is su�ient to observe that F and Fn(x, j) satisfy the onditions ofProposition 5.2, (with an(x) = a) and the family {y ∈ Rm |y ≤ x}x∈Rm isdetermining, Ref. [28℄, for the weak onvergene of the measures µn, j. 2Remark 5.1 It an be easily seen that Babovsky Lemma (see Lemma 2 ofRef. [4℄) is a partiular ase of Theorem 5.1.1 with mn = n2, for all n ∈ N∗and with µn, j given by a produt of two point measures.Remark 5.2 As we have mentioned in Setion 1, our purpose is to approx-imate the solutions of (2.18) by sums of Dira measures of the form (2.22).Due to the nonlinear harater of the ollision operators P and S, at eahtimestep, the numerial omplexity inreases dramatially (power-like). Al-though, we are able to redue the omputational e�ort using repeatedly theTheorem 5.1.1.However, exept the ase of (2.18) modelling the one omponent gas withpurely elasti ollisions, a ertain step of the numerial sheme destroys thehomogeneity of the sums of Dira measures, i.e. instead of HSPM approx-imations one obtains WSPM approximations. This di�ulty will be sur-mounted by using Theorem 5.1.2, whih onverts the WSPM approximationsinto HSPM approximations.Theorem 5.1 will be the basi point of the probabilisti part of our numerialsheme for the solutions of (2.18) in the next setion.



Reative Boltzmann Type Equation 2296. The Main ResultFor our numerial sheme, we need a weak form of (4.16), where the funtions
f j

k are replaed by the measures µ̄j
k given by (4.24). Denote

(ϕ, h) :=

∫

R3

ϕ(v)h(v)dv, (6.1)for ϕ ∈ Cb(R
3) and h ∈ L1(R3). From (4.16) using (6.1) we get

(
ϕ, f j

k

)
= (ϕ,Qk(f

j−1)) + (ϕ,Lk(f j−1)) + ∆t · (ϕ,Pk(f j−1)) (6.2)for all ϕ ∈ Cb(R
3), all j = 1, . . . , T∆ and k = 1, . . . ,N . Denoting by

V (Ωβ) :=

∫

Ωβ

dn, (6.3)in (6.2),
(ϕ,Qk(f

j)) :=
∑

α,β∈M

αk

∫

R3|α|×Ωβ

(ϕ ◦ ik,α)(w)×

×
(

Γα,k

V (Ωβ)
− ∆t · rβ,α(w,n)

)
f j
α(w)dwdn,

(6.4)and
(ϕ,Lk(f

j)(v)) :=
∑

α∈U\M

Λα,k

∫

R3|α|
(ϕ ◦ ik,α)(w)f j

α(w)dw. (6.5)In the formulas (6.4) and (6.5), the projetion appliation ik,γ : R3|γ| → R3is de�ned by ik,γ(w) = wk,γk
, for γ ∈ M and k = 1, . . . ,N . Using (3.6) and(3.9) we get

(ϕ,Pk(f j)) =

=
∑

α,β∈M

βk

∫

R3|α|×Ωβ

ϕ ◦ ik,β(uβ,α(w,n))rβ,α(w,n)f j
α(w)dwdn,

(6.6)for all ϕ ∈ Cb(R
3), all j = 0, 1, . . . , T∆ and k = 1, . . . ,N .Now, we are able to formulate (6.2) as an equation for measures. For some

γ ∈ M and j = 0, 1, . . . , T∆, de�ne the measure µ̄j
γ on R3|γ| by

dµ̄j
γ(w) =

⊗

k∈Nγ

γk⊗

i=1

dµ̄j
k(wk,i). (6.7)



230 Dorin MarinesuFrom (6.2-6.6), using spherial oordinates
[0, π)3|β|−5 × [0, 2π) ∋ (θ, ϕ) → n(θ, ϕ) ∈ Ωβ, (6.8)to integrate on eah unit sphere Ωβ, it follows that there are some sets

A ⊂ U , B ⊂ M, the funtions qα,β,k ∈ C(R3|α| × [0, π)3|β|−5 × [0, 2π) ; R+)and Hα,β,k ∈ C(R3|α|× [0, π)3|β|−5× [0, 2π) ; R3) suh that we an write (6.2)in the ompressed form
∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

R3|α|

dµ̄j−1
α (w)×

×
∫

[0,π)3|β|−5
dθ

∫ 2π

0
(ϕ ◦Hα,β,k)(w, θ, φ)qα,β,k(w, θ, φ)dφ,

(6.9)for ϕ ∈ Cb(R
3) and k ∈ 1, . . . ,N .First, we onsider rβ,α verifying the properties of Lemma 3.1 and we on-strut the algorithm starting from (6.9). Then, we show how the numerialsheme an be improved, if one introdues additional onditions on rβ,α.Now, we write (6.9) in a more onvenient form. Note that, we an �nd some

L ∈ N∗ and1. a family {α(l)}l=1,...,L ⊂ U of multi-indexes,2. a family {q(l)}l=1,...,L ⊂ N∗,3. a family {πl}l=1,...,L of measures absolute ontinuous with respet tothe Lebesgue measure on Rq(l),4. a family {Rk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R+) of funtions,5. a family {hk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R3) of funtions,suh that (6.9) an be written
∫

R3

ϕ(v)dµ̄j
k(v) =

L∑

l=1

∫

R3|α(l)|+q(l)

Rk,l(z)(ϕ◦hk,l)(z)d(µ̄j−1
α(l)⊗πl)(z). (6.10)Let (Ω, β, P ) be as in Theorem 5.1.



Reative Boltzmann Type Equation 231a) For eah l = 1, . . . , L, we approximate πl by a onvenient HSPM of theform (2.22), ontaining n-terms, πl,n ⇀ πl as n→ ∞ (this an be done, e.g.by means of low disrepany, well distributed sequenes Ref. [6, 27℄).b) The initialization of the sheme is done by giving n-terms HSPM approx-imations ν0
k,n of the initial data µ̄0

k, where k = 1, . . . ,N .) The n-terms HSPM approximations ν1
k,n of µ̄1

k, with k = 1, . . . ,N , result-ing from the sheme, an be obtained as follows:Step 1 (�rst seletion). For eah l = 1, . . . , L and k = 1, . . . ,N we replae
µ̄0

k by ν0
k,n in (6.7) (for γ = α(l), j = 0). Then for eah l = 1, . . . , L, weobtain a sequene of �nite measures ν0

α(l),n ⇀ µ̄0
α(l) as n → ∞, implying

ν0
α(l),n ⊗ πl,n ⇀ µ̄0

α(l) ⊗ πl as n → ∞. Obviously, eah ν0
α(l),n ⊗ πl,n is asum of the form (5.30), ontaining n|α(l)|+1 terms. We apply the seletionalgorithm f. Theorem 5.1.1 (with mn = n and p = |α(l)|+1) to onstrut n- -terms HSPM approximations for all ν0

α(l),n⊗πl,n. Thus, by Theorem 5.1.1,for eah l = 1, . . . , L, there exists some set Ωl ⊂ Ω, with P (Ωl) = 1, suhthat from ν0
α(l),n ⊗ πl,n, one an extrat a n-terms HSPM approximation (ofthe form (5.32)) σ1,l,n(ωl) ⇀ µ̄0

α(l) ⊗ πl as n→ ∞, for almost all ωl ∈ Ωl.Step 2 (seond seletion). In the right side of (6.10), written for j = 1,replae eah µ̄0
α(l) ⊗ πl by the orresponding σ1,l,n. Then the right side of(6.10) de�nes the measures Mk,n on R3, for k = 1, . . . ,N and n ∈ N∗,
Mk,n =

1

n

L∑

l=1

n∑

i=1

alRk,l(zl,i,n(ωl))δhk,l(zl,i,n(ωl)), (6.11)onentrated at the points hk,l(zl,i,n(ωl)), where zl,i,n(ωl) ∈ R3|α(l)|+q(l) and
al ≥ 0 are some onstants (for l = 1, . . . , L and i = 1, . . . , n). By Step 1, itfollows that

Mk,n ⇀ µ̄1
k as n→ ∞, (6.12)for all ω1 ∈ Ω1, ω2 ∈ Ω2 , . . . , ωL ∈ ΩL and for k = 1, . . . ,N . Now, it anbe easily seen that (6.11) an be written as WSPM, ontaining, at most L ·nterms.As we mentioned before, we want to obtain HSPM approximations at the endof eah step of time. We �x, for the moment, some ω1 ∈ Ω1, . . . ,ω

L ∈ ΩL, sothat (6.12) holds. We apply the seletion algorithm formulated Theorem 5.1.2



232 Dorin Marinesufor eah �xed k = 1, . . . , N , as follows. For l = 1, . . . , L · n de�ning
ι(l) :=

[[
l − 1

L

]]
+ 1,

λ(l) :=

[[
l − 1

n

]]
+ 1,

(6.13)put
an,l =

1

n
aλ(l)Rk,λ(l)(zλ(l),ι(l),n(ωλ(l))). (6.14)We hoose mn = L · n and kn = n. Then, for eah k = 1, . . . ,N , there existssome ΩL+k ⊂ Ω, with P (ΩL+k) = 1, suh that from Mk,n, we obtain a n--terms HSPM approximation (of the form (5.35)) σ2,k,n(ωL+k;ω1, . . . ,ωL) ⇀

µ̄1
k as n → ∞, for all ωL+k ∈ ΩL+k. Set ν̄1

k,n(ω1, . . . ,ωL+k) :=

σ2,k,n(ωL+k;ω1, . . . ,ωL). Therefore for eah µ̄1
k in (6.10), we obtain a or-responding n-terms HSPM approximation ν̄1

k,n ⇀ µ̄1
k as n → ∞, for all

ω1 ∈ Ω1, . . . ,ω
L+k ∈ ΩL+k and for all k = 1, . . . ,N .e) The proedure an be repeated, with the entering data ν̄1

k,n, to obtainHSPM approximations ν̄2
k,n(ω1, . . . ,ω2L+N+k) of µ̄2

k for k = 1, . . . ,N .f) Repeating this proedure over and over, after j timesteps, we providethe n-terms HSPM approximations ν̄j
k,n(ω1, . . . ,ωjL+(j−1)N+k) ⇀ µ̄j

k for all
ω1 ∈ Ω1, ω2 ∈ Ω2,. . .,ωjL+(j−1)N+k ∈ ΩjL+(j−1)N+k, all j = 1, . . . , T∆ andall k = 1, . . . , N , where Ωl ⊂ Ω with P (Ωl) = 1, for l = 1, . . . , T∆(L+N).Now, observe that we an �nd a family {Ql}l∈N∗ of measurable maps Ql :
Ω → Ω, with P (Q−1

l (A)) = 1, for all A ⊂ Ω with P (A) = 1. For instane,we an onsider U, V : Ω → Ω, given by
U(ω) = U(ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω1, ω3, . . . ω2n−1, ω2n+1, . . .),(6.15)
V (ω) = V (ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω2, ω4, . . . , ω2n, ω2n+2, . . .),(6.16)respetively, for all ω = (ω1, ω2, . . . , ω2n−1, ω2n, . . .) ∈ Ω. Then it is su�ientto put Q1 = U and Ql := U ◦ V l−1, l = 2, 3, . . . Let

Ω∆t :=

T∆(L+N)⋂

l=1

Q−1
l (Ωl). (6.17)Sine P (Q−1

l (Ωl)) = 1 for all l = 1, . . . , T∆(L + N), learly P (Ω∆t) = 1.De�ning νj
k,n(ω) := ν̄j

k,n(Q1(ω), . . . , QjL+(j−1)N+k(ω)) for all ω ∈ Ω, j =
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1, . . . , T∆, k = 1, . . . , N , it follows that νj

k,n(ω) ⇀ µ̄j
k as n → ∞, for all

ω ∈ Ω∆t, j = 1, . . . , T∆, k = 1, . . . ,N .In partiular, if D(·, ·) is the disrepany introdued in Setion 2., then
lim

n→∞
max

k=1,...,N
max

j=1,...,T∆

D
(
νj

k,n(ω), µ̄j
k

)
= 0, (6.18)for almost all ω ∈ Ω.All these and Corollary 4.1 lead to our main result.Let f(t) be the solution of equation (3.18), provided by Theorem 3.1 andlet µt

k be given by dµt
k(v) := fk(t,v)dv, for all t ≥ 0 and k = 1, . . . ,N .Consider some family {∆tp}p∈N

of disretization timesteps as in Setion 4..For eah ∆tp and for the initial data µ̄0
k, onsider the solutions µ̄j

k,p of (6.10),with j = 1, . . . , T∆ and k = 1, . . . ,N . For eah µ̄j
k,p, denote by νj

k,p,n theorresponding n-terms HSPM approximation obtained by the above sheme.Similar to (2.25), we introdue the following notation T∆p := [[T/∆tp]], forall p ∈ N.Theorem 6.1 For eah sequene of timesteps ∆tp → 0 as p → ∞, there isa sequene of positive integers n(p) → ∞ as p→ ∞, suh that
lim

p→∞
max

k=1,...,N
max

j=1,...,T∆p

D
(
νj

k,p,n(p)(ω), µ
j·∆tp
k

)
= 0, (6.19)for almost all ω ∈ Ω.Proof. Let

dp,n(ω) := max
k=1,...,N

max
j=1,...,T∆p

D
(
νj

k,p,n(ω), µ̄j
k,p

)
. (6.20)Consider some positive sequene εp ↓ 0 as p → ∞. Using (6.18), for eah p,we obtain that

lim
n→∞

P (dp,n > εp) = 0. (6.21)Then, for eah p, we an hoose n = n(p), suh that
P (dp,n(p) > εp) ≤

1

p2
. (6.22)Consequently,

∞∑

p=1

P (dp,n(p) > εp) <∞. (6.23)



234 Dorin MarinesuThen, for almost all ω ∈ Ω,
lim

n→∞
dp,n(p)(ω) = 0. (6.24)Now, by Corollary 4.1, we onlude the proof of the Theorem. 2This theorem represents a spae homogeneous reative orrespondent to themain result in the Babovsky-Illner simulation sheme for the lassial Boltz-mann equation (Theorem 7.1 of Ref. [5℄).Note that the numerial e�ort of the method is at most, O(n log n) (thedominant ontribution being introdued by the random seletions of Theo-rem 5.1.2, i.e. (seond seletion) Step 2). However, under additional ondi-tions on rβ,α, the sum (6.10) the numerial e�ort an be improved.We onsider the following simple ase. Denote Dαβ :=

{
w′ ∈ R3|α||0 <

Wα(w′) − 2−1(
∑N

n=1 αnmn)Vα(w′)2 −∑N
n=1 βnEn

} (we reall that Wα(w)is the energy de�ned in Setion 2). By Lemma 3.1, rβ,α(w,n) ≥ 0 on
Dαβ ×Ωβ. Suppose that in (6.2 -6.6), we have rβ,α(w,n) > 0 on Dαβ ×Ωβfor all α, β ∈ M. Taking into aount the form of the element dn on Ωβ inspherial oordinates (when (6.9) is obtained from (6.2 -6.6)) it follows easilythat in (6.9), eah funtion qα,β,k(w, θ, φ) an be onstruted suh that theset {θ|qα,β,k(w, θ, φ) = 0} is �nite and does not depend on the hoie of
(w, φ) ∈ Dαβ × [0, 2π). Consequently, for eah β ∈ B, there is a measurableset Θβ ⊂ [0, π)3|β|−5 suh that qα,β,k(w, θ, φ) > 0, for all w ∈ Dαβ, θ ∈ Θβ,
φ ∈ [0, 2π), α ∈ A. Denote

Ik(φ;w, θ) :=

∫ φ

0
qα,β,k(w, θ, ρ)dρ, φ ∈ [0, 2π) . (6.25)Then, for all w ∈ Dαβ, θ ∈ Θβ, �xed, (6.25) de�nes an invertible map

[0, 2π) ∋ φ→ Ik(φ;w, θ) ∈ [0, Ik(2π;w, θ)) , (6.26)with the inverse I−1
k . In eah integral of (6.9), with respet to dφ, we performthe hange of variable φ = I−1

k (y;w, θ). De�ne
H̃α,β,k(w, θ, y) = Hα,β,k(w, θ, I

−1
k (y;w, θ)). (6.27)We an hoose some measurable sets

Cαβ ⊆ R3|α| × [0, π)3|β|−5 × R+, for α ∈ A,β ∈ B,suh that, (6.9) takes the following form
∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

Cαβ

(ϕ ◦ H̃α,β,k)(w, θ, y)dµ̄
j−1
α (w)dθdy. (6.28)



Reative Boltzmann Type Equation 235For appliations it is important to observe that the onlusion remains thesame if weaker onditions are imposed on rβ,α, e. g. if one supposes that foreah α,β ∈ M, rβ,α(w,n) > 0 on Dαβ × Ωβ exept a ountable set, et.Obviously, (6.28) has the form (6.10), but has the important property thatif µ̄j−1
k , for k = 1, . . . , N are HSPM, after Step 1 (�rst seletion) the outputmeasures are also a HSPM.In order to obtain µ̄j

k, for k = 1, . . . ,N as HSPM with the same number ofterms as µ̄j−1
k , we an apply the following immediate orollary of Theorem5.1.2, whih introdues a numerial omplexity of only O(n).Corollary 6.1 Suppose that there is a positive measure µ on Rm, absolutelyontinuous with respet to the Lebesgue measure on Rm, suh that

1

mn

mn∑

l=1

µn,l ⇀ µ, as n→ ∞. (6.29)De�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n→ kn ∈ N∗ be a sequene suh that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

<∞. (6.30)Then, for P−almost all ω,
σ3,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n→ ∞. (6.31)Further we an proeed as in the sheme onstruted before, but withoutapplying Theorem 5.1.2. Instead we apply Corollary 6.1. The sheme reduesto iterations alternating with seletions, and the onlusion of Theorem 6.1remains valid. The numerial e�ort beomes O(n).Finally remark that if (2.18) redues the lassial Boltzmann equation, forthe one-omponent simple gas, then the sum in the r.h.s of (6.28) an beompressed to a unique term as in Ref. [4℄. In general, this is not possible inthe ase of gas mixtures.7. Conluding RemarksFrom the above analysis, it follows that besides a onvenient existene theory,only the onservation of the total mass is needed to introdue the numer-



236 Dorin Marinesuial sheme desribed here. The other properties (e.g. detailed balane,H-Theorem) of the Wang-Chang-Uhlenbek-de Boer and Ludwig and Heilsystem of equations play no role in this algorithm. Note that, the numerialsheme an also be used and when the detailed balane does not hold, e.g.,for models where we ignore some reombination proesses (as in the situationwhen we onsider the ollisional dissoiation, but neglet the reombinationby triple ollisions Ref. [24℄).We disuss possible generalizations as well as some limitations of the results.10 In the ase of non-reating gas mixtures one an obtain similar numerialshemes for the spae-dependent equation (2.10), in the frame of the theoryof existene of solutions of Ref. [17℄. This an be done by adapting diretlythe spatial ell homogenization method of Ref. [5℄.20 In the ase of reating gas mixtures, one an also obtain similar numerialshemes for the spae-dependent equation (2.10). To this end, the adaptationof the spatial ell homogenization method of Ref. [5℄ is not as straightforwardas it appears. This is due to the ollisions that produe new partiles in agiven spaial ell. For this purpose, we need �to establish� the spae positionin the ell for eah �new born� partile and at the same time, to keep theontrol on onvergene.30 Assumption (3.13) replaes in the reative model the boundedness ondi-tion on the ollision law used in Ref. [4, 5℄. This ondition is essential forthe ontrol of the positivity of the solutions in the time-disretized equation(4.1). Indeed, Assumption (3.13) is restritive from an analytial point ofview. Nevertheless, for pratial purposes, it is satisfatory for those mod-els where the high energy-tail of the gas onsists of very few moleules (seeRef. [7℄).The existene of unique positive solutions to (2.10) and (2.18) an be provedfor more general transition funtions Kα,β (see Ref. [18℄). The simulationsheme an be also extended in this respet, but the (possible) singulari-ties of Kα,β must not destroy the ontinuity of the funtions rα,β and pα,β(neessary for the onvergene in the weak sense of the measures).40 One an improve the approximation algorithm as follows. Instead ofassigning to eah speies the same number of terms in HSPM, one an �x agiven number of terms n for all the speies. Then, when we apply the seletionalgorithm given by Theorem 5.1.2 (or Corollary 6.1), we an alloate to eahspeies a number of terms �proportional� to its mass, suh that the totalnumber of terms for all the speies to be (approximative) n. The same is alsovalid for the approximation of the initial data. By example if we designateby nk the number of terms orresponding to the speies k = 1, . . . ,N , then
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nk :=






n ·

mk

∫

R3

f0
k (v)dv

N∑

l=1

ml

∫

R3

f0
l (v)dv






. (7.1)50 In this numerial sheme there are three essential soures of approximationerrors.1. The errors from the approximation of the initial data.2. The errors produed by the time disretization.3. The errors introdued by stohasti seletions.The ontribution of the stohasti errors over the time disretized sheme anbe illustrated as it follows. Giving, for the hemial speies k = 1, . . . ,N , aninitial data, say ν0,0

k of the form (2.22) the algorithm follows the omputa-tional hain
ν0,0

k → ν1,1
k → ν2,2

k → . . .→ νT∆−1,T∆−1
k → νT∆,T∆

k (7.2)orresponding to the diagonal of the sheme
ν0,0

k −→ ν0,1
k −→ ν0,2

k −→ ... −→ ν0,T∆−1
k −→ ν0,T∆

k
≀≀
ν1,1

k −→ ν1,2
k −→ ... −→ ν1,T∆−1

k −→ ν1,T∆

k

≀≀
ν2,2

k −→ ... −→ ν2,T∆−1
k −→ ν2,T∆

k... ...
≀≀

νT∆−1,T∆−1
k −→ νT∆−1,T∆

k

≀≀
νT∆,T∆

k (7.3)Here, the horizontal hains represent the exat iterations of the time dis-retized equations, suh that for eah j = 0, . . . , T∆−1 and p = j+1, . . . , T∆the measure νj,p
k is given as (p − j) - th iteration for the input data νj,j

k . Inaddition, νj,j
k is provided by random seletion form νj−1,j

k , for j = 1, . . . , T∆.The above omputational hain shows that one an expet that the errors dueto the random seletions inrease when the timestep ∆t dereases. Indeed,



238 Dorin Marinesusuh a behavior was observed in numerial appliations Ref. [13, 12℄. Sometheoretial estimations on the errors Ref. [12℄ prove that the probabilistierrors ε behave like
ε ∼ 1

∆t · √n. (7.4)Consequently, when we derease the timestep (to improve the errors for thetime disretization, Proposition 4.1.b) we shall inrease the number of termsfor the initial approximation, in order to keep the stohasti errors in aept-able limits.8. AppendixProof of Lemma 3.1.Let n ∈ N∗ and let a1, . . . , an > 0, be some onstants. Consider the positivequadrati form de�ned on R3n by
T := T (v1, . . . ,vn) =

n∑

i=1

aiv
2
i , (8.1)where vi ∈ R3, for all i = 1, . . . , n. One introdues the Jaobi-type transfor-mation

R3n ∋ (v1, . . . ,vn) → (V , ξ) ∈ R3 × R3n−3, (8.2)where
V := (

n∑

i=1

ai)
−1

n∑

i=1

aivi, (8.3)and ξ := (ξ1, . . . , ξn−1), with
ξi :=




1

ai+1
+

1
i∑

j=1
aj




− 1
2

vi+1 −

i∑
j=1

ajvj

i∑
j=1

aj


 , (8.4)for i = 1, . . . , n− 1.By (8.2), the form T takes the form

T = T (V , ξ) =

(
n∑

i=1

ai

)
· V 2 + ξ2. (8.5)
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Wβ,α(w) := Wα(w) − 1

2

(
N∑

n=1

αnmn

)
· Vα(w)2 −

N∑

n=1

βnEn, (8.6)and
tβ,α(w) :=





[Wβ,α(w)]1/2 if Wβ,α(w) ≥ 0,

0, otherwise. (8.7)Now, onsider the form on R3|β|,
Tβ(u) := Wβ(u) −

N∑

n=1

βnEn (8.8)and a orresponding Jaobi-type transformation as in (8.2),
R3|β| ∋ u → (V , ξ) ∈ R3 × R3|β|−3, (8.9)with ξ := (ξ1, . . . , ξ|β|−1), where ξi ∈ R3, for all i = 1, . . . , |β| − 1. Denote by

∆β the Jaobian determinant of the transformation. Let ξ be represented inspherial oordinates on R3|β|−3, ξ = rn, with (r,n) ∈ [0,∞)×Ωβ. Considerthe inverse map
R3 × R+ × Ωβ ∋ (V , r,n) → u(V , r,n) ∈ R3|β| (8.10)of the transformation u → (V , r,n) and set

uβα(w,n) := u(V , r,n)| V =Vα(w),r=tβ,α(w). (8.11)Obviously, for all α,β ∈ M suh that (2.6) is satis�ed, we have
Vβ(uβ,α(w,n)) = Vα(w) Wβ(uβ,α(w,n)) = Wα(w). (8.12)De�ne
pβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kβ,α(uβα(w,n),w),

rβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kα,β(w,uβα(w,n)).

(8.13)From (8.12), one obtains property i) of the Lemma 3.1. Property ii) followsfrom the de�nitions introdued in (8.7) and (8.13).



240 Dorin MarinesuThe limits (3.6) and (3.7), an be obtained from (3.3) and (3.4). We startthe omputation with the integral upon du, by hoosing (V , r,n) as newintegration variables suh that u = u(V , r,n). Sine fα ∈ Cc(R
3|α|) and

fβ ∈ Cc(R
3|β|), using the properties of Kα,β, δ3ε , δη and uβ,α, we obtain(3.6) and (3.7) by repeated appliation of Lebesgue's dominated onvergenetheorem.Using a similar argument as in the proof (3.6), for all f ∈ Cc(R

3|β|) and
ϕ ∈ Cb(R

3|α|), we get
lim
η→0

lim
ε→0

∫

R3|α|×R3|β|
ϕ(w)σε,η

β,α(u,w)f(u)dwdu

=

∫

R3|α|×Ωβ

ϕ(w)pβ,α(w,n)f(uβ,α(w,n))dwdn,

(8.14)giving the left side of (3.9). To obtain the right side of (3.9), we repeatthe proedure, but �rst we perform the integral upon dw in the left sideof (8.14) (using the hange of variables indued by the Jaobi-type trans-formation R3|α| ∋ w → (V , ξ) ∈ R3 × R3|α|−3, assoiated to the form
Tα(w) = Wα(w) − ∑N

n=1 αnEn, and then taking the representation of
ξ ∈ R3|α|−3 in spherial oordinates). 2Referenes[1℄ Aizenman I., Duke Math. J. 45, 809 (1978).[2℄ Arkeryd L., Ahiv for Rat. Meh. and Anal. 45, 1 (1972).[3℄ Arkeryd L., Ahiv for Rat. Meh. and Anal. 45, 17 (1972).[4℄ Babovsky H., European Journal of Mehanis B/Fluids 8, 41 (1989).[5℄ Babovsky H., Illner R., SIAM J. Num. Anal. 26, 45 (1989).[6℄ Babovsky H., Gropengiesser F., Neunzert H., StrukmeierJ., Wiesen B., Low Disrepany Methods for the Boltzmann Equation,Beriht Nr. 32, Fahbereih Mathematik, Kaiserslautern Univ. (1988).[7℄ Babovsky H., Illner R., The Essene of Partile Simulation of theBoltzmann Equation, in Colletion �Multidimensional Hyperboli Prob-lems and Computations�, p. 13, J. Glimm and A. Majda Eds. (The IMAVol. in Math.and Appl., vol. 29) Springer, New York (1991).
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242 Dorin Marinesu7-9, 2004, Buharest, Geometry Balkan Press, Buharest, Romania, pp.60�72, (2005).[21℄ Hoffman D.K., Dahler J.S., J. Stat Phys. 1, 521 (1969).[22℄ Krook M., Wu T.T., Phys. Rev Lett. 38, 991 (1977).[23℄ Kuipers L., Niederreiter H., Uniform Distribution of Sequenes,John Wiley & Sons (1974).[24℄ Ku²£er I., Physia A 176, 542 (1991).[25℄ Ludwig G., Heil M., Boundary-Layer Theory with Dissoiation andIonization, in �Advanes in Applied Mehanis� vol. 6, p. 39, AademiPress, New York (1960).[26℄ Nambu K., J. Phys. So. Japan 49 2042 (1980).[27℄ Pullin D.I., Phys. Fluids 21, 209 (1978)[28℄ Shiryayev S.N., Probability, in Graduate Texts in Mathematis, vol. 95,Springer, Berlin (1984).[29℄ Smith F.T., Triple Collisions and Termoleular Reation Rates, in �Ki-neti proesses in gases and plasmas�, p. 321, A.R. Hohstim, Ed., Aa-demi Press (1969).[30℄ Snider R.F., Transport Properties of Dilute Gases with Internal Stru-ture, in �Transport Phenomena�, L.N. Phys. Vol. 31, p. 469, Springer,Berlin (1974).[31℄ Wang Chang C.S., Uhlenbek E., Transport phenomena in poly-atomi gases, Engineering Researh Report CM-681, University ofMihigan (1951).[32℄ Wang Chang C.S., Uhlenbek E., De Boer J., The Heat Con-dutivity and Visosity of Polyatomi Gases, in �Studies in StatistialMehanis�, J. De Boer and G.E. Uhlenbek Eds, vol. 2, Part C, p. 241,North Holland, Amsterdam (1964).



Topis in Applied Mathematis & Mathematial Physis© 2008, Editura Aademiei RomâneMathematial Models of Di�usion in Nonhomoge-neous Porous MediaGabriela Marinoshi 1
Contents1. Physial ontext and mathematial hypotheses 2432. Di�usion models in nonhomogeneous porous me-dia . . . . . . . . . . . . . . . . . . . . . . . . . . 2482.1. Strongly nonlinear saturated-unsaturateddi�usive model . . . . . . . . . . . . . . . . . . 2492.2. Weakly nonlinear saturated-unsaturated dif-fusive model . . . . . . . . . . . . . . . . . . . 2533. Analysis of the porosity-degenerate model . . . 2553.1. Approximating problem . . . . . . . . . . . . . . 2593.2. Existene for the approximating problem . . . . . 2623.3. Existene for the original problem . . . . . . . . . 269
1. Physial ontext and mathematial hypothesesFrom the hydrauli point of view, the problems we shall study are related to aDarian �ow of an inompressible �uid in an isotropi, nonhomogeneous non-deformable porous medium with a variable porosity and with no hysteresisdevelopment.1�Gheorghe Miho�Caius Iaob� Institute of Mathematial Statistis and Ap-plied Mathematis, Buharest, Romania, e-mail: gabimarinoshi�yahoo.om.This work was elaborated under the ontrat CEEX05-D11-25/2005.



244 Gabriela MarinoshiThe general boundary value problem. Assume that the �ow do-main Ω is an open bounded subset of RN (N = 1, 2, 3), and the time runswithin the �nite time interval (0, T ). The boundary of Ω is denoted by Γ andit is onsidered pieewise smooth. The vetor of spae variables is denotedby x = (x1, x2, x3) ∈ Ω and the time by t ∈ (0, T ).We onsider the Rihards' equation desribing the water in�ltration intoan isotropi, nonhomogeneous, unsaturated porous medium with a variableporosity, with initial data and various boundary onditions (see [7℄)
∂(m(x)Sw(h))

∂t
−∇ · (k(h)∇h) +

∂k(h)

∂x3
= f in Q = Ω × (0, T ), (1.1)

h(x, 0) = h0(x) in Ω, (1.2)boundary onditions for h on Σ = Γ × (0, T ). (1.3)The unknown in Rihards' equation is the apillary pressure h(x, t) (or pres-sure head, or water pressure in the unsaturated soil), Sw is the water satura-tion in pores, m is the medium porosity and θ = m(x)Sw is the volumetriwater ontent or soil moisture. In this work the dependene of m on xmodels the nonhomogeneity of the medium. The funtion k is the hydrauliondutivity, f(x, t) is a soure (or sink) in the �ow domain and h0 is theinitial pressure distribution in the domain, f and h0 being given. In general
m ∈ (0, 1) but a limit ase withm tending to 0 may have a physial relevane.The properties of the dependene of Sw and k on h will be spei�ed.In partiular, we shall exemplify the theory for the ase of the medium havinga part of the boundary, Γα semipermeable, allowing a water �ux aross itand the other part Γu at whih the pressure will be given. Here, Γu and
Γα are disjoint and Γ = Γu ∪ Γα. In in�ltration problems, we an oftenmeet the situation in whih water ponds on the soil surfae (let it be Γu).This happens when the rainfall rate is greater than the soil ondutivity atsaturation and the soil begins to saturate from the surfae, or when the soilsurfae is in ontat with an open water body, for example the bottom of alake. In onsequene the boundary onditions we shall onsider are

h(x, t) = hu(x, t) ≥ 0 on Σu = Γu × (0, T ), (1.4)
q · ν = fα on Σα = Γα × (0, T ), (1.5)where q is the water �ux de�ned by
q(x, t) = k(h)i3 − k(h)∇h, (1.6)
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ν is the outer normal vetor at the boundary and i3 is the unit vetor of the
Ox3 axis, downwards direted.We an reverse the boundary onditions by onsidering that Γα is the soilsurfae and Γu is the underground boundary. Thus we an interpret thatthe �ux through the soil surfae, is provided by a water supply as a rain orirrigation and that the lower part of the porous medium is in ontat withthe phreati aquifer.Desription of the hydrauli model. The behaviour of an unsat-urated soil, i.e., partially �lled with water, is ompletely known from thehydrauli point of view if two funtions are given: one is the retention urve

Sw = C̃∗(h), (1.7)linking the water saturation Sw, to the pressure head h, and the other is thehydrauli ondutivity
k = k(h), (1.8)both depending nonlinearly on h. For an isotropi soil the latter is a salarfuntion.Sine we study the nonhystereti ase, the retention urve and the hydrauliondutivity are assumed single-valued funtions of the pressure.In soil sienes, the unsaturated pressure is onsidered negative (h < 0) andthe saturation is haraterized by h = 0. Also, it is onsidered that theproess of in�ltration-drainage (opposite to in�ltration) takes plae betweentwo limits of h. The lowest limit is denoted hr and at this pressure head thesoil is onsidered dry even if some water still resides in the pores and thehydrauli ondutivity is still positive. The orresponding water saturationis denoted Sr and the volumetri water ontent θr is alled residual moisture(see [7℄). The upper limit is h = 0 where saturation is reahed and watersaturation beomes equal to 1. However, we shall denote this value by Ss.At saturation, moisture attains its saturation value θs equal to the mediumporosity at this point (if the porosity is not onstant). The parts of themedium where h > 0 are ompletely saturated. We de�ne the derivative ofthe water saturation with respet to the pressure

C̃(h) =
dSw

dh
(h). (1.9)For the saturated �ow, when h ≥ 0, the previously funtions take onstantvalues.



246 Gabriela MarinoshiGenerally, the hydrauli models raise a di�ult mathematial problem. Whenthe pressure head in the unsaturated soil omes lose to the saturation value,
C̃ vanishes and Rihards' equation degenerates. Correspondingly, the di�u-sion oe�ient expressed as a funtion of moisture exhibits a blow-up de-velopment around saturation. In soil sienes the model whih re�ets thisbehaviour is the strongly nonlinear Green-Ampt limit model, see [10℄. Thesituation in whih C̃(0) > 0 orresponds to a less nonlinear hydrauli be-haviour, the typial model for this lass being the Burgers' model, see [10℄,too. Depending on the partiularities of the hydrauli funtions whih aredetermined by the soil pore struture, the models of water in�ltration rangebetween these two limit models (see [44℄).Previous theoretial results. In the most mathematial literature de-voted to this subjet the blow-up of the di�usivity in the di�usive form ofRihards' equation was avoided, by onsidering a �nite-valued di�usivity, orstudying the problem only in the pressure form (see [2℄, [4℄, [12℄, [19℄, [20℄,[25℄, [26℄, [27℄, [37℄, [38℄). More reently, in the paper [9℄ a model of thesaturated-unsaturated �ow lying on a speial de�nition of the boundary on-ditions that hanges during the phenomenon evolution, has been developedalso for a �nite value of the di�usivity at saturation (whih was implied bythe assumption that C̃(0) > 0). Following the tehnique presented in [20℄ themodel was redued to systems in lass of Stefan-like problems of high-order,see [19℄.However, apart from spei� in�ltration problems, previous existene anduniqueness studies for solutions to the ellipti-paraboli equation

∂(b(u))

∂t
+ ∇ · (a(∇u, b(u))) + f(b(u)) = 0 in Ω × (0, T )have been presented in the literature espeially using a tehnique inspiredby the method of entropy solutions introdued by S.N. Krushkov in [28℄.Originally, this method was devoted to prove L1-ontration for entropy so-lutions for salar onservation laws, i.e., generalized solutions in the sense ofdistributions satisfying admissibility onditions similar to those of entropygrowth in gas dynamis (see also [8℄). J. Carillo applied Krushkov's methodto seond order equations (see [13℄, [14℄, [15℄, [16℄). F. Otto (see [35℄, [36℄)proved a L1-ontration priniple and uniqueness of solutions for this type ofequation by applying Krushkov's tehnique only to the time variable. H.W.Alt and S. Lukhaus showed in [1℄ that the natural solution spae for this



Nonhomogeneous Porous Media 247equation is given by all funtions u of �nite energy in the sense that
sup

t∈(0,T )

∫

Ω
Ψ(b(u(t)))dx+

∫

Q
|∇u|r dxdt <∞,

where Ψ is the Legendre transform of the primitive of b.We also mention the results of J.L. Vázquez regarding the fast di�usionequations (see [18℄, [40℄, [41℄, [42℄, [17℄ and the book [43℄).Conerning the degenerate evolution equations, extensive studies have beenperformed for linear operators, relying on the properties of the resolvent ofan appropriate multivalued linear operator aounting for the multipliationby the funtion m (see [21℄, [23℄ and the monograph [22℄). We mention alsothe paper [24℄ related to a similar topi in whih a degenerate model withhomogeneous Dirihlet boundary onditions and no transport was studied.The analysis of the well-posedness of the di�usive form of Rihards' equationin the unsaturated ase (θ < θs) with the porositym onstant, was developedin the papers [6℄, [29℄, [30℄, [31℄ within a funtional approah. The existeneresults whih were dedued showed that solutions reahing saturation an beobtained but only on zero-measure subsets of Q. Somehow, this was expetedbeause the unsaturated model re�ets a behaviour of a partiular soil onlyand not the general feature of the proess whih inludes the possible soilsaturation.In the paper [32℄ a rigorous mathematial model able to desribe the sat-uration ourrene (with the blow-up of the di�usivity) was introdued fora homogeneous porous medium (with m onstant) in the di�usive form anddeveloped then in [33℄.In the �rst part of this hapter we introdue the di�usive models of water�ow in saturated-unsaturated media haraterized by a spae variation ofthe porosity. Then we analyze a model with mixed boundary onditions in-volving a �ux on a part of the boundary and a nonhomogeneous Dirihletondition orresponding to a singular situation on another part of the do-main boundary. The model will be degenerate beause we shall assume thatporosity an vanish on a subset of Ω.



248 Gabriela Marinoshi2. Di�usion models in nonhomogeneous porous me-diaWe intend �rst to reveal how the partiular harater of the hydrauli modelsis determined by the behaviour of the funtions C̃∗ and k around 0.Mathematial hypotheses. For the unsaturated �ow, where h < 0, weassume the following:
(m1) C̃

∗ : [hr, 0) → [Sr, Ss) is single-valued, positive, di�erentiable on [hr, 0),monotonially inreasing ;
(m2) k : [hr, 0) → [Kr,Ks) is single-valued, positive, di�erentiable on [hr, 0),monotonially inreasing and satis�es the property k′(hr) = 0;
(m3) C̃ : [hr, 0) → (C̃0, C̃r] is single-valued, non-negative, di�erentiable on
[hr, 0) monotonially dereasing and satis�es C̃ ′(hr) = 0;In the saturated �ow we have
(m4) C̃

∗(h) = Ss, k(h) = Ks and C̃(h) = 0 for h ≥ 0.We denote
Ss = (C̃∗)(0) > 0, (2.1)

C̃0 = (C̃∗)′(0) = C̃(0) ≥ 0, (2.2)
Ks = k(0) > 0, (2.3)

K ′
0 = lim

hր0
k′(h), K ′

0 ∈ [0,∞). (2.4)Therefore, the unsaturated �ow is haraterized either by h < 0 or Sw ∈
[Sr, Ss) while the saturated one is indiated by h ≥ 0 or Sw = Ss.The positive values Sr, Ss and their orresponding ondutivities Kr, Ksare soil harateristis and they are known for eah type of soil apart. Theproperties k′(hr) = 0 and C̃ ′(hr) = 0 were put into evidene by experiments(see [10℄).We notie that the funtions C̃∗ and k are ontinuous on [hr,∞), and hr isthe maximum point for C̃. Also C̃ is ontinuous on [hr,∞), exept possiblyat the point 0.We stress the fat that these properties are veri�ed by the empirial hydraulimodels set up in the last deades (see e.g., [44℄).We emphasize that the main role is played by the inrease rate of the fun-tions C̃∗ and k around 0, the signi�ant ontribution being given by thebehaviour of the retention urve C̃∗.



Nonhomogeneous Porous Media 2492.1. Strongly nonlinear saturated-unsaturated di�usive modelLet us assume (m1) − (m4) and
C̃0 = 0whih is the main harateristi of this ase. It follows then that C̃ is on-tinuous on [hr,∞) and we an write C̃∗ : [hr,∞) → [Sr, Ss], as

C̃∗(h) =

{
Sr +

∫ h
hr
C̃(ζ)dζ, h < 0,

Ss, h ≥ 0.
(2.5)Strongly nonlinear hydrauli ondutivity. This situation orre-sponds to K ′

0 ∈ R+ = (0,∞).We de�ne a primitive of K by
K∗(h) =

{
K∗

r +
∫ h
hr
k(ζ)dζ, h < 0,

K∗
s +Ksh, h ≥ 0,

(2.6)where K∗ : [hr,∞) → [K∗
r ,∞) and

K∗
s = K∗(0) > 0. (2.7)The funtion K∗ is di�erentiable, monotonially inreasing on [hr,∞) andwith these notations Rihards' equation (1.1) beomes

∂(m(x)Sw)

∂t
− ∆K∗(h) +

∂k(h)

∂x3
= f in Q. (2.8)By the initial ondition (1.2) we obtain

Sw(x, 0) = Sw0, Sw0 = C̃∗(h0).We an also onsider the initial ondition
m(x)Sw(x, 0) = θ0(x) in Ω, where θ0 = m(x)C̃∗(h0) (2.9)and orresponding replaements should be made in the boundary onditions(1.4)�(1.5).Sine it is more onvenient to work with the variable Sw, we introdue from(2.5) the inverse of C̃∗, (C̃∗)−1 : [Sr, Ss] → [hr,+∞), by

(C̃∗)−1(Sw) =

{
(C̃∗)−1(Sw), Sw ∈ [Sr, Ss),
[0,+∞), Sw = Ss,

(2.10)



250 Gabriela Marinoshiwhih is multivalued at Sw = θs and ontinuous and monotonially inreasingon [Sr, Ss). Then, we replae it all over in (1.1)�(1.5).Thus, instead of the ondutivity written in funtion of pressure, we obtainthe ondutivity expressed in terms of water saturation
K̃ : [Sr, Ss] → [Kr,Ks], K̃(Sw) = (k ◦ C̃∗)−1(Sw), Sw ∈ [Sr, Ss], (2.11)funtion that preserves some of the properties of k, i.e., it is positive, di�eren-tiable (exept at Ss) and monotonially inreasing, sine for any Sw ∈ [Sr, Ss)we have that
K̃ ′(Sw) = k′((C̃∗)−1(Sw)) · ((C̃∗)−1)′(Sw) =

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
> 0. (2.12)We notie also that

K̃ ′(Sr) = 0 (2.13)and
lim

SwրSs

K̃ ′(Sw) = +∞. (2.14)However, for Sw ∈ [Sr, Sl] with Sl < Ss the derivative of K̃ is bounded, sothat K̃ follows to be Lipshitz on intervals stritly inluded in [Sr, Ss)
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤Ml

∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Sl], Sl < Ss, (2.15)where
Ml = max

Sw∈[Sr ,Sl]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
<∞. (2.16)Plugging (2.10) in (2.6) we get the funtion

β̃∗(Sw) =

{
(K∗ ◦ (C̃∗)−1)(Sw), Sw ∈ [Sr, Ss),
[K∗

s ,+∞), Sw = Ss
(2.17)that is multivalued at Sw = Ss but is ontinuous from the left at this point

lim
SwրSs

β̃∗(Sw) = K∗
s . (2.18)For Sw ∈ [Sr, Ss) the funtion (C̃∗)−1 is monotonially inreasing, so thatwe an alulate β̃∗(Sw) by hanging the variable in the integral (2.6) anddenoting ζ = (C̃∗)−1(ξ). In this way we get

β̃∗(Sw) = K∗
r +

∫ Sw

Sr

β(ξ)dξ, for Sw ∈ [Sr, Ss),
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β̃(Sw) =

k((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
, for Sw ∈ [Sr, Ss). (2.19)In this way we have rigorously reovered the de�nition of the water di�usivityfuntion.We notie that β̃ has two important properties

β̃(Sw) ≥ ρ̃ = β̃(Sr) =
Kr

C̃r

> 0, ∀Sw ∈ [Sr, Ss) (2.20)and
lim

SwրSs
β̃(Sw) = +∞. (2.21)Moreover, by the hypotheses made upon the funtions C̃ and k it followsthat β̃ is monotonially inreasing, i.e.,

β̃′ =
k′C̃ − kC̃ ′

C̃3
≥ 0, on [Sr, Ss), (2.22)

β̃′(Sr) = 0. (2.23)Hene, β̃∗ is twie di�erentiable and stritly monotonially inreasing on
[Sr, Ss) and as a matter of fat we an write

β̃∗(Sw) =

{
K∗

r +
∫ Sw

Sr
β̃(ξ)dξ for Sw ∈ [Sr, Ss),

[K∗
s ,+∞) for Sw = Ss.

(2.24)Moreover, by (2.20) and (2.24) we dedue that the funtion β̃∗ satis�es theinequality
(β̃∗(Sw) − β̃∗(Sw))(Sw − Sw) ≥ ρ(Sw − Sw)2,∀Sw, Sw ∈ [Sr, Ss]. (2.25)In onlusion we an setModel 1. Let us assume (m1) − (m4), C̃0 = 0 and K ′

0 ∈ R+. Then, thedi�usive model of the strongly nonlinear saturated-unsaturated in�ltrationwith a strongly nonlinear hydrauli ondutivity is given by
∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(Sw)

∂x3
= f in Q, (2.26)

m(x)Sw(x, 0) = θ0(x) in Ω, (2.27)boundary onditions in Sw on Σ, (2.28)



252 Gabriela Marinoshiwhere β̃∗ is the multivalued funtion de�ned by (2.24), β̃ is given by (2.19)and K̃ is the single-valued funtion (2.11). Moreover, β̃∗ is strongly mono-tone, β̃ satis�es (2.20)�(2.23) and K̃ has the properties (2.13)�(2.16).The boundary onditions (1.4)�(1.5) beome
Sw(x, t) = Ss on Σu, (2.29)

(
K̃(Sw)i3 −∇β̃∗(Sw)

)
· ν = fα on Σα. (2.30)The quali�er of strongly nonlinear is implied by the property of the funtion

β whih evolves highly nonlinear around the saturation point, Ss. This isjusti�ed by the fat that the typial representative for this behaviour (or-related with that of its primitive β̃∗ whih is �nite at this point) is of theform
β̃(Sw) =

1

(Ss − Sw)1−p
for 0 < p < 1.We notie that this form of the di�usivity funtion reveals the harater offast di�usion of this proess (see the review of di�usion-type proesses in[3℄).However, β̃∗ is multivalued and the sign equal (=) in (2.26) is not properlyused. The appropriate symbol should be ∋ . Also, we shall speify later theexat meaning of the solutions to (2.26)-(2.30). The fat that equation (2.26)is multivalued must not be surprising if one takes into aount that it modelsa free boundary problem. This means that, at eah time t, the domain Ω anbe deomposed into two regions: the saturated one, {x; Sw(x, t) = Ss} andthe unsaturated one {x; Sw(x, t) < Ss}, separated by a free boundary. Theextension of a nonlinear funtion arising in suh a problem to a multivaluedone is ommon in the theory of nonlinear di�erential equations with dison-tinuous oe�ients as well as in that modelling free boundary proesses.Thus, equation (2.26) represents an extension of Rihards' equation (writtenfor the unsaturated in�ltration) to the simultaneous saturated-unsaturated�ow.Weakly nonlinear hydrauli ondutivity. A strongly nonlinearmodel, but with a weaker nonlinear behaviour of the ondutivity may beobtained under onditions that lead to limSwրSs K̃

′(Sw) <∞. To reah suha situation we have to impose just from the beginning a stronger onditionfor k, namely that there exists M > 0, suh that
k′(h) ≤MC̃(h), ∀h ∈ [hr, 0], (2.31)
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K ′

0 = 0, lim
hր0

k′(h)

C̃(h)
= M. (2.32)In this way K̃ turns out to be Lipshitz on [Sr, Ss] with the onstant M. Weobserve that the funtions β̃ and K̃ remain monotonially inreasing. Thissituation is put into evidene e.g., in the van Genuhten model (see [39℄) forthe model parameter m lose to 1. This ase an be resumed inModel 2. Let us assume (m1) − (m4), C̃0 = 0 and (2.31)�(2.32). Then, thedi�usive model of strongly nonlinear saturated-unsaturated in�ltration with aweakly nonlinear hydrauli ondutivity is given by (2.26)�(2.28), where thefuntions β̃ and β̃∗ have the properties spei�ed in Model 1 exept for K̃whih is given by (2.11), with

lim
SwրSs

K̃ ′(Sw) = M <∞.2.2. Weakly nonlinear saturated-unsaturated di�usive modelFor some hydrauli models the di�usivity is �nite at Sw = Ss. We intendto reveal whih properties of the funtions C̃∗ and k an provide suh avalue. Let us suppose that the retention urve inreases from the left to itsmaximum value with a nonzero rate at the left of zero,
C̃0 > 0,but very lose to 0. In this ase C̃∗ is not di�erentiable at h = 0 and thefuntion

C̃ : [hr,∞) → [0, C̃r], C̃(h) =

{
dSw

dh
(h), h < 0

0, h ≥ 0
(2.33)is no longer ontinuous at h = 0, having the jump ∣∣∣C̃0

∣∣∣ = lim
hր0

dSw
dh .The funtions K̃ and β̃∗ and β̃ will be de�ned in the same way as before,but in this ase the value of β̃ at Sw = Ss exists and it is

lim
SwրSs

β̃(Sw) =
Ks

C̃0

<∞. (2.34)However, the funtion β̃∗(Sw) will be extended in a multivalued way, by
β̃∗(Sw) = K∗

s at Ss.



254 Gabriela MarinoshiWeakly nonlinear hydrauli ondutivity. Assume that the deriva-tive of k at h = 0, has a �nite value, K ′
0 < ∞. Hene, K̃ is Lipshitz withthe onstant

M = max
Sw∈[Sr,Ss]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
≤ K ′

0

C̃0

, (2.35)so that we an settleModel 3. Let us assume (m1) − (m4), C̃0 > 0 and K ′
0 <∞. Then, the di�u-sive model of weakly saturated-unsaturated in�ltration with a weakly nonlinearhydrauli ondutivity is given by (2.26)-(2.28), where β̃∗ is the multivaluedfuntion de�ned by (2.24), β̃ is given by (2.19) and K̃ is the single-valuedfuntion (2.11) with K̃ ′(Sw) �nite on [Sr, Ss]. Moreover, β̃∗ is strongly mono-tone, (2.25), β̃ satis�es (2.20), (2.22)-(2.23) with

lim
SwրSs

β̃(Sw) < +∞ (2.36)and K is Lipshitz on [Sr, Ss], i.e., there exists M > 0 suh that
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤M
∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Ss]. (2.37)It is obvious that this situation whih is illustrated by nonsingular di�usivitiesinluding also power funtions
β̃(Sw) = Sp

w, with p > 1,is related to a slow di�usion and to the well-known porous media equation(see [3℄).We write the model in the dimensionless form, introduing for example
Sdim

w =
Sw − Sr

Ss − Sr
, K̃dim(Sdim

w ) =
K̃(Sw) −Kr

Ks −Kr
, β̃dim(Sw) =

β̃(Sw)

βd
,where βd is a harateristi value for the di�usivity. Without entering intodetails we speify that the dimensionless model has the same form as (2.26)�(2.28). The dimensionless Sdim

wr = 0 and Kr = 0 and for onveniene, weshall extend β̃ and K̃ at the left of Sdim
wr by the onstant values ρ̃ and 0 (forall these details see [34℄). For simpliity, further we shall no longer indiatedimensionless by the supersript dim.



Nonhomogeneous Porous Media 2553. Analysis of the porosity-degenerate modelIn this part we shall approah Model 2 given by (2.26)�(2.27), (2.29)�(2.30)orresponding to the strongly nonlinear saturated-unsaturated ase with aweakly nonlinear hydrauli ondutivity. We shall study a limit ase letting
m to vanish on a subset Ω0 stritly inluded in Ω, see Fig. 1. This hara-terizes the existene of possible solid intrusions in the soil and we shall allthis model porosity-degenerate.In fat we intend to treat a little more general mathematial problem, inwhih we shall onsider that the funtion ondutivity depends both on thespae variables and the solution. Therefore the model reads

∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(x, Sw)

∂x3
∋ f in Q, (3.1)

m(x)Sw(x, 0) = Sw0(x) in Ω, (3.2)
Sw(x, t) = Ss on Σu, (3.3)

(
K̃(x, Sw)i3 −∇β̃∗(Sw)

)
· ν ∋ fα on Σα. (3.4)

Fig. 1: The domain Ω.At the points where m vanishes the equation degenerates. The funtion mis supposed to be essentially bounded, m ∈ L∞(Ω) with 0 ≤ m(x) ≤ 1 a.e.
x ∈ Ω. However, we shall see that this assumption is not su�ient to get the



256 Gabriela Marinoshisolution existene and a stronger hypothesis upon m is required. We speifyone again the hypotheses made for the problem parameters, i.e.,
β̃(r) ≥ ρ̃ for r < Ss, β̃(r) = ρ̃ for r ≤ 0, lim

rրSs

β̃(r) = +∞, (3.5)
β̃∗(r) =

{ ∫ r
0 β̃(ξ)dξ, r < Ss

[K̃∗
s ,+∞), r = Ss,

(3.6)
lim

r→−∞
β̃∗(r) = −∞, lim

rրSs

β̃∗(r) = K̃∗
s > 0, (3.7)

(β̃∗(r) − β̃∗(r))(r − r) ≥ ρ̃(r − r)2,∀r, r ∈ (−∞, Ss]. (3.8)In what onerns K̃ we assume that it has the form
K̃(x, r) =

{
K̃0(x) on {x; m(x) = 0}
K̃m(r) otherwise, (3.9)

K̃(x, r) = 0 for r ≤ 0 and K̃(x, r) = K̃s for r ≥ Ss, (3.10)where K̃s = K̃(x, Ss) > 0.Moreover, we assume that K̃0 ∈ H1(Ω0) and K̃ is Lipshitz with respet to
r, uniformly with respet to x, i.e., there exists M > 0, suh that(iK) ∣∣∣K̃(x, r) − K̃(x, r)

∣∣∣ ≤M |r − r| , ∀r, r ∈ R, ∀x ∈ Ω.Finally we shall impose that
m ∈ C1(Ω), 0 ≤ m(x) ≤ 1. (3.11)Funtional framework. We perform a funtion replaement by denot-ing

w = Sw − Ss, (3.12)so that we are led to the system
∂(m(x)w)

∂t
− ∆β̃∗(w + Ss) +

∂K̃(x,w + Ss)

∂x3
∋ f in Q, (3.13)

m(x)w(x, 0) = v0(x) in Ω, (3.14)
w(x, t) = 0 on Σu, (3.15)

(
K̃(x,w + Ss)i3 −∇β̃∗(w + Ss)

)
· ν ∋ fα on Σα, (3.16)



Nonhomogeneous Porous Media 257whih we are going to study. Here v0(x) = Sw0 −m(x)Ss. We shall indiatethe value of w at saturation by ws (atually, by (3.12) it is equal to zero, butwe shall keep the notation ws in order to put into evidene the behaviour ofthe solution at this point).We onsider the spaes L2(Ω) with the standard norm denoted ‖·‖ ,

V = {w ∈ H1(Ω); w = 0 on Γu}, (3.17)with the norm
‖ψ‖V =

(∫

Ω
|∇ψ|2 dx

)1/2

, (3.18)and its dual V ′ on whih we introdue the salar produt by
(w,w)V ′ = 〈w,ψ〉V ′,V ,where ψ is the solution to the boundary value problem

−∆ψ = w, ψ = 0 on Γu, ∇ψ · ν = 0 on Γα. (3.19)Let fα ∈ L2(0, T ;L2(Γα)). We de�ne the funtional fΓα ∈ L2(0, T ;V ′) by
fΓα(t)(ψ) = −

∫

Γα

fα(t)ψdσ for any ψ ∈ V (3.20)and notie that
‖fΓα(t)‖V ′ ≤ ctr ‖fα(t)‖L2(Γα)where ctr is the onstant provided by the trae theorem.For the further mathematial developments it is more onvenient to workwith the multivalued funtion
β∗(r) = β̃∗(r + Ss) − K̃∗

s . (3.21)Definition 3.1 Let
m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)), (3.22)
v0 ∈ L2(Ω),

v0
m

∈ L2(Ω), v0
m

≤ ws, a.e. x ∈ Ω.We all w a solution to (3.13)-(3.16) if
w ∈ L2(0, T ;V ), (3.23)
ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q,

mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′),



258 Gabriela Marinoshisatis�es the equation
〈

d(m(x)w)

dt
(t), ψ

〉

V ′,V

+

∫

Ω

(
∇ζ(t) · ∇ψ − K̃(x,w(t) + Ss)

∂ψ

∂x3

)
dx =

= 〈f(t), ψ〉V ′,V + 〈fΓα(t), ψ〉V ′,V , a.e. t ∈ (0, T ), ∀ψ ∈ V, (3.24)the initial ondition m(x)w(0) = v0 and the property
w ≤ ws, a.e. (x, t) ∈ Q. (3.25)Eq. (3.24) an be written also in the equivalent form

∫ T

0

〈
d(m(x)w)

dt
(t), φ(t)

〉

V ′,V

dt (3.26)
+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).Replaing Sw from (3.12) we get that Sw satis�es

Sw ∈ L2(0, T ;H1(Ω)),

ζ̃ ∈ L2(0, T ;H1(Ω)), ζ̃ ∈ β̃∗(Sw(x, t)) a.e. on Q,
mSw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′).We set
D(A) = {θ ∈ L2(Ω); ∃η ∈ V, η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω}and we introdue the multivalued operator A : D(A) ⊂ V ′ → V ′ by

〈Aθ,ψ〉V ′,V =

∫

Ω

(
∇η · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx,for any ψ ∈ V, where η ∈ β∗(θ) a.e. x ∈ Ω. Thus, we an write the problemd(m(x)w)

dt
+Aw ∋ f + fΓα , a.e. t ∈ (0, T ) (3.27)

m(x)w(0) = v0.We onsider now the multipliation operator
M : D(A) → L2(Ω), Mw = mw, (3.28)



Nonhomogeneous Porous Media 259whose inverse is multivalued and denoting
v(x, t) = m(x)w(x, t), (3.29)we an rewrite (3.27) in terms of v as

dv

dt
+AMv ∋ f + fΓα , a.e. t ∈ (0, T ) (3.30)

v(0) = v0,where AMv = AM−1v = A
(

v
m

) for any v ∈ D(AM ), where
D(AM ) =

{
v ∈ L2(Ω);

v

m
∈ L2(Ω),∃η ∈ V, η ∈ β∗

( v
m

) a.e. x ∈ Ω
}
.We see that v ∈ D(AM ) implies v

m ∈ D(A). Conversely, if w = v
m ∈ D(A),then v = mw ∈ D(AM ).We still de�ne j̃ : R → (−∞,+∞] by

j̃(r) =

{ ∫ r
0 β̃

∗(ξ)dξ, r ≤ Ss

+∞, r > Ss,where the left limit of β̃∗ at Ss is spei�ed in (3.7). This funtion is proper,onvex, lower semiontinuous and
∂j̃(r) =





β̃∗(r), r < Ss,

[K̃∗
s ,+∞), r = Ss,

∅, r > Ss.

(3.31)(The proof is similar to that done for a slightly di�erent funtion in [34℄,Set. 5.3.)3.1. Approximating problemSine the operator AM is multivalued, in order to prove the existene for(3.27) we introdue an approximating problem replaing m by
mε(x) = m(x) + ε, for ε > 0and β̃∗ by the single-valued ontinuous funtion

β̃∗ε (r) =

{
β̃∗(r), r < Ss − ε

β̃∗(Ss − ε) +
eK∗

s−eβ∗(Ss−ε)
ε [r − (Ss − ε)] , r ≥ Ss − ε.
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β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s (3.32)and the single valued operator
Aε : D(Aε) ⊂ V ′ → V ′,

〈Aεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε (θ) · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx, ∀ψ ∈ V,with

D(Aε) = {θ ∈ L2(Ω);β∗ε (θ) ∈ V }.We an write the approximating Cauhy problem (orresponding to (3.27))d(mεwε)

dt
+Aεwε = f + fΓα , a.e. t ∈ (0, T ), (3.33)
mεwε(0) = v0ε,where

v0ε = mε
v0
m
. (3.34)Definition 3.2 Let ε > 0 and

m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0
m

∈ L2(Ω),
v0
m

≤ ws.A solution to (3.33) is a funtion wε that satis�es
wε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′),

β∗ε (wε) ∈ L2(0, T ;V ),

∫ T

0

〈
d(mεwε)

dt
(t), φ(t)

〉

V ′,V

dt

+

∫

Q

{
∇β∗ε (wε) · ∇φ− K̃ (x,wε + Ss)

∂φ

∂x3

}
dxdt (3.35)

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),and the initial ondition mεwε(0) = v0ε.



Nonhomogeneous Porous Media 261Then denoting
vε(x, t) = mε(x)wε(x, t), (3.36)we an write problem (3.33) in the equivalent form (orresponding to (3.30))

dvε

dt
+Bεvε = f, a.e. t ∈ (0, T ), (3.37)
vε(0) = v0ε.The operator Bε : D(Bε) ⊂ V ′ → V ′ is single-valued, has the domain

D(Bε) =

{
θ ∈ L2(Ω); β∗ε

(
θ

mε

)
∈ V

}and is given by
〈Bεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε

(
θ

mε

)
· ∇ψ − K̃

(
x,

θ

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.Then (3.37) an be still written

∫ T

0

〈
dvε

dt
(t), φ(t)

〉

V ′,V

dt+ (3.38)
+

∫

Q

{
∇β∗ε

(
vε

mε

)
· ∇φ− K̃

(
x,

vε

mε
+ Ss

)
∂φ

∂x3

}
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),whih is in fat (3.35).For a later use we de�ne j̃ε : R → R,

j̃ε(r) =

∫ r

0
β̃∗ε (ξ)dξ,and notie that

∂j̃ε(r) = β̃∗ε (r), ∀r ∈ R. (3.39)First we shall prove that (3.37) has, for eah ε > 0, a unique solution, vε inappropriate funtional spaes.



262 Gabriela Marinoshi3.2. Existene for the approximating problemProposition 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1,

f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0
m

∈ L2(Ω),
v0
m

≤ ws a.e. on Ω.Then, the Cauhy problem (3.37) has, for eah ε > 0, a unique solution
vε ∈ C([0, T ];L2(0, T )) ∩W 1,2(0, T ;V ′) ∩ L2(0, T ;V ) (3.40)

β∗ε

(
vε

mε

)
∈ L2(0, T ;V ), (3.41)

j̃ε

(
vε

mε

)
∈ L∞(0, T ;L1(Ω)), (3.42)that satis�es the estimates

∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′
dτ +

+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.43)
≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,

∥∥∥∥
√
mε

(
vε

mε
(t)

)∥∥∥∥ ≤ c0, ∀t ∈ [0, T ], (3.44)
‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ], (3.45)where β0, c0 and c1 do not depend on ε.Moreover, if vε and vε are two solutions orresponding to the pairs of data f,

fΓα , v0 and f, fΓα , v0, we have the estimate
‖vε(t) − vε(t)‖2

V ′ +

∫ t

0
‖vε(τ) − vε(τ)‖2 dτ ≤ (3.46)

≤ α0(ε)
(
‖v0 − v0‖2

V ′ +

+

∫ T

0

∥∥f(t) − f(t)
∥∥2

V ′ dt+

∫ T

0

∥∥fα(t) − fα(t)
∥∥2

L2(Γα)
dt

)
.



Nonhomogeneous Porous Media 263Proof. The proof is based on the quasi m-aretivity of the operator Bεwhih is proved below. To show the quasi monotony we ompute
(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ = λ

∥∥θ − θ
∥∥2

V ′ +

+

∫

Ω
∇
(
β∗ε

(
θ

mε

)
− β∗ε

(
θ

mε

))
· ∇ψdx−

−
∫

Ω

(
K̃(x,

θ

mε
+ Ss) − K̃(x,

θ

mε
+ Ss)

)
∂ψ

∂x3
dx,where −∆ψ = θ − θ, ∇ψ · ν = 0 on Γα and ψ = 0 on Γu. Hene

(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ ≥

≥ λ
∥∥θ − θ

∥∥2

V ′ + ρ̃

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

−M

∥∥∥∥
θ − θ

mε

∥∥∥∥
∥∥θ − θ

∥∥
V ′ ≥

≥
(
λ− M2

2ρ̃ε

)∥∥θ − θ
∥∥2

V ′ +
ρ̃

2

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

> 0for λ > M2

2eρε . Here we used the fat that ε ≤ mε(x) ≤ 1 + ε.Next we have to prove that
R(I +Bε) = V ′,i.e., to show that the equation
vε +Bεvε = g (3.47)has a solution vε ∈ D(Bε) for any g ∈ V ′. Reall that ε is �xed.If we denote β∗ε ( vε

mε

)
= ζ ∈ V, due to the fat that β∗ε is ontinuous andmonotonially inreasing on R and R(β∗ε ) = (−∞,∞) it follows that itsinverse

Gε(ζ) = mε(β
∗
ε )−1(ζ) (3.48)is ontinuous from V to L2(Ω) beause

∥∥Gε(ζ) −Gε(ζ)
∥∥ = (3.49)

=
∥∥mε

(
(β∗ε )−1(ζ) − (β∗ε )−1(ζ)

)∥∥ ≤

≤ 1 + ε

ρ̃

∥∥ζ − ζ
∥∥ ≤ (1 + ε)cΩ

ρ̃

∥∥ζ − ζ
∥∥

V
, ∀ζ, ζ ∈ V.Here we used (3.8) and Poinaré's inequality (with the onstant cΩ). So,(3.47) an be rewritten as

Gε(ζ) +Bε
0ζ = g (3.50)
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0 : V → V

′ de�ned by
〈Bε

0ζ, ψ〉V ′,V =

∫

Ω

(
∇ζ · ∇ψ − K̃

(
x,
Gε(ζ)

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.(3.51)The operator Gε + Bε

0 is monotone, ontinuous and oerive for λ > M2

2eρε ,hene it is surjetive. Therefore (3.50) has a solution ζ ∈ V, implying that(3.47) has a solution vε ∈ D(Bε).a) Now we assume that f ∈ W 1,1(0, T ;V ′), fα ∈ W 1,1(0, T ;L2(Ω)) and
v0
m ∈ V whih is equivalent to v0ε ∈ D(Bε).Therefore, the existene of a unique solution to (3.37)

vε ∈W 1,∞(0, T ;V ′) ∩ L∞(0, T ;D(Bε))follows from the general theorems for evolution equations with m-aretiveoperators, hene β∗ε ( vε
mε

)
∈ L∞(0, T ;V ). Sine the inverse of β∗ε is Lipshitzwe dedue that vε

mε
∈ L∞(0, T ;V ).It follows that (3.33) has a solution

wε =
vε

mεin the same spaes.To prove estimate (3.43) we test (3.37) at β∗ε (vε) and integrate over (0, t).Taking into aount (3.36) and (3.32) we have
∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ +

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ
≤

∫ t

0

∥∥∥∥K̃
(
·, vε

mε
(τ)

)∥∥∥∥
∥∥∥∥β∗ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ

+

∫ t

0
‖f(τ)‖V ′

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
V

dτ +

∫ t

0
‖fΓα(τ)‖V ′

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
V

dτ

≤ 1

2

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)(τ)

)∥∥∥∥
2

V

dτ + C0,where we have used the boundedness of K̃ and
C0 =

3

2

{
K̃2

sTmeas(Ω) +

∫ T

0
‖f(τ)‖2

V ′ dτ + c2tr

∫ T

0
‖fα(τ)‖2

L2(Γα) dτ

}
.
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∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ

=

∫ t

0

〈
dvε

dτ
(τ), β̃∗ε

(
vε

mε
(τ) + Ss

)
− K̃∗

s

〉

V ′,V

dτ

=

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx−

∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx

−
∫

Ω
K̃∗

s vε(x, t)dx+

∫

Ω
K̃∗

s v0εdxand obtain that
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

1

2

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤
∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx+

∫

Ω
K̃∗

s vε(t)dx+ C1, (3.52)where
C1 =

1

2
K̃∗2

s meas(Ω) +
1

2

∥∥∥v0
m

∥∥∥
2
+ C0.Sine

j̃ε(r) ≥
ρ̃

2
r2, ∀r ∈ R,we have

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx ≥

≥ ρ̃

2

∫

Ω
mε(x)

(
vε(x, t)

mε
+ Ss

)2

dx ≥ ρ̃

2

∫

Ω
mε

{
1

2

(
vε(x, t)

mε

)2

− S2
s

}
dx.On the other hand we reall that v0

m ≤ ws = 0 and notie that
j̃ε

(
v0ε

mε
+ Ss

)
=

∫ v0
m

+Ss

0
β̃∗ε (r)dr ≤

∫ Ss

0
β̃∗ε (r)dr =

= lim
δր0

∫ Ss−δ

0
β̃∗ε (r)dr = lim

δր0

∫ Ss−δ

0
β̃∗(r)dr ≤ K̃∗

sSs.



266 Gabriela MarinoshiThus we obtain by (3.52) that
ρ̃

4

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.53)
≤ 2K̃∗

sSsmeas(Ω) +

∫

Ω
K̃∗

smε

(
vε

mε
(t)

)
dx+C1 +

ρ̃

2
S2

s

∫

Ω
mε(x)dx ≤

≤ C2 +
ρ̃

8

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+
4

ρ̃
K̃∗2

s meas(Ω).We have used several times that mε ≤ 1 + ε ≤ 2. We an onlude that
∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥ ≤ c0, ∀t ∈ [0, T ]. (3.54)Next, from the relation
vε(t) =

√
mε

vε

mε
(t)

√
mε (3.55)we get that

‖vε(t)‖2 =

∫

Ω

(√
mε(x)

vε(t)

mε

)2

mε(x)dx ≤ 2

∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥
2and therefore

‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ] (3.56)where c0, c1, C0, C1, C2 are independent of ε. Replaing this in (3.52) wededue
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤(3.57)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
. (3.58)Then we multiply (3.37) salarly in V ′ by dvε

dt (t), integrate over (0, t) andproeeding as before we get
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ ≤ (3.59)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
.



Nonhomogeneous Porous Media 267Adding this relation with (3.58) we obtain
∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′
dτ + (3.60)

+

∫ t

0

∥∥∥∥β∗ε
(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,with β0 independent of ε.To show the estimate (3.46) we write two equations (3.37) orresponding todi�erent pairs of data, subtrat them, multiply the di�erene salarly in V ′by vε − vε and integrate over (0, t). We get

1

2
‖vε(t) − vε(t)‖2

V ′ +
ρ̃

2

∫ t

0

∫

Ω

1

mε
(vε(τ) − vε(τ))

2dτdx ≤

≤ 1

2
‖v0 − v0‖2

V ′ +
M2

2ρ̃ε

∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ t

0

∥∥f(τ) − f(τ)
∥∥2

V ′ ‖vε(τ) − vε(τ)‖V ′ dτ +

+c2tr

∫ t

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
‖vε(τ) − vε(τ)‖V ′ dτand moreover

‖vε(t) − vε(t)‖2
V ′ + ρ̃

∫ t

0

∫

Ω

(vε(τ) − vε(τ))
2

mε
dτdx ≤

≤ ‖v0 − v0‖2
V ′ +

(
M2

ρ̃ε
+ 2

)∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ T

0

∥∥f(τ) − f(τ)
∥∥2

V ′ dτ + c2tr

∫ T

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
dτ.We obtain the estimate (3.46), via Gronwall lemma with α0 depending on ε.b) Now, we assume that f ∈ L2(0, T ;V ′) and v0

m ∈ L2(Ω), v0
m ≤ ws.Due to some obvious densities we an take {fn}n≥1 ⊂W 1,1(0, T ;V ′), {fn

α}n≥1 ⊂
W 1,1(0, T ;L2(Γα)) and {vn

0 }n≥1 ⊂ D(Bε) = V, suh that
fn → f strongly in L2(0, T ;V ′), (3.61)
fn

α → fα strongly in L2(0, T ;L2(Γα))

vn
0 → v0 strongly in L2(Ω).



268 Gabriela MarinoshiThen, for eah ε > 0, the problem
dvn

ε

dt
+Bεv

n
ε = fn + fn

Γα
, a.e. t ∈ (0, T ), (3.62)

vn
ε (0) = vn

0εhas a unique solution vn
ε aording to a), satisfying the estimate (3.60) withthe right-hand side independent of n, namely,

∫

Ω
mε(x)jε

(
vn
ε

mε
(t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvn

ε

dτ
(τ)

∥∥∥∥
2

V ′

dτ + (3.63)
+

∫ t

0

∥∥∥∥β∗ε
(
vn
ε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖fn(t)‖2

V ′ dt+

∫ T

0
‖fn

α (t)‖2
L2(Γα) dt+ 1

)
.We stress that ε is �xed and the seond term in the previous relation is uni-formly bounded due to (3.61). By this estimate we dedue that {β∗ε ( vn

ε
mε

)}
nis in a bounded subset of L2(0, T ;V ) and {dvn

ε
dt

}
n
is in a bounded subset of

L2(0, T ;V ′), so we an selet a subsequene suh that
β∗ε

(
vn
ε

mε

)
→ ζε weakly in L2(0, T ;V ) as n→ ∞,and

dvn
ε

dt
→ dvε

dt
weakly in L2(0, T ;V ′) as n→ ∞.We get immediately that

vn
ε

mε
→ wε weakly in L2(0, T ;V ) as n→ ∞.But mε ∈ C1(Ω) and so the sequene {vε}n =

{
mε

vn
ε

mε

}
n
is bounded in

L2(0, T ;V ), whene
vn
ε → vε weakly in L2(0, T ;V ) as n→ ∞.Sine V is ompat in L2(Ω) it follows by Lions-Aubin's theorem that

vn
ε → vε strongly in L2(0, T ;L2(Ω)) as n→ ∞. (3.64)By (3.37) we have that {Bεv

n
ε }n is bounded in L2(0, T ;V ′) so that

Bεv
n
ε → χ weakly in L2(0, T ;V ′) as n→ ∞. (3.65)



Nonhomogeneous Porous Media 269But Bε is quasi m-aretive so its realization on L2(0, T ;V ′) is quasi m-aretive too, hene it is demilosed and by (3.64) and (3.65) we get that
χ = Bvε a.e. on Q.Now we an pass to the limit in (3.62) as n→ ∞ and get (3.37), proving thusthat this problem has the solution vε ∈ C([0, T ], L2(Ω)) ∩W 1,2(0, T ;V ′) ∩
L2(0, T ;V ).Finally, passing to the limit in (3.63), as n → ∞, and using the lower semi-ontinuity property we get (3.43) as laimed. Estimates (3.44)�(3.45) havebeen proved in (3.54)�(3.55).The uniqueness of the approximating solution follows by (3.46).3.3. Existene for the original problemAs we spei�ed before the domains

Ωm = {x ∈ Ω; m(x) > 0} and Ω0 = int{x ∈ Ω; m(x) = 0}have the ommon C1-boundary, ∂Ω0, see again Fig. 1. Here, the notation�int� represents the interior of the subset.Theorem 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1, f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0
m

∈ L2(Ω),
v0
m

≤ ws a.e. on Ω.Then, the Cauhy problem (3.27) has a solution
w ∈ L2(0, T ;V ), (3.66)suh that

ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q, (3.67)
mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′), (3.68)

w ≤ ws a.e. (x, t) ∈ Q. (3.69)Proof. By the hypotheses it follows that the approximating problem (3.37)(and onsequently (3.33)) has, for eah ε, a unique solution aording to



270 Gabriela MarinoshiProposition 3.1, inluding the estimates (3.43)�(3.45). These do not dependon ε and imply that we an selet a subsequene suh that
β∗ε

(
vε

mε

)
→ ζ weakly in L2(0, T ;V ), (3.70)

β̃∗ε

(
vε

mε
+ Ss

)
→ ζ + K̃∗

s weakly in L2(0, T ;H1(Ω)), (3.71)
dvε

dt
→ µ weakly in L2(0, T ;V ′), (3.72)

wε =
vε

mε
→ w weakly in L2(0, T ;V ). (3.73)We also get that the trae of β∗ε ( vε

mε

) on Σu is well de�ned and sine
β∗ε

(
vε
mε

)
∈ L2(0, T ;V ) it follows that ζ = 0 on Σu. Now

vε = mε
vε

mε
(3.74)and sine mε → m uniformly on Ω and m ∈ C(Ω) it follows that

vε → v weakly in L2(0, T ;L2(Ω)). (3.75)By (3.73) and (3.75) we get
v = mw (3.76)and obviously

v = 0, a.e. on Q0 = Ω0 × (0, T ). (3.77)Using (3.73), (3.74) and (3.75) we still obtain that
√
mε

vε

mε
→ √

mw weak-star in L∞(0, T ;L2(Ω)),

vε =
√
mε

vε

mε

√
mε → v weak-star in L∞(0, T ;L2(Ω)).Again by (3.74) and m ∈ C1(Ω) we dedue that

‖vε‖L2(0,T ;V ) ≤ onstant independent of ε. (3.78)By Lions-Aubin ompatness theorem we onlude then that {vε}ε is om-pat in L2(0, T ;L2(Ω)), i.e.,
vε → v strongly in L2(0, T ;L2(Ω)) as ε→ 0, (3.79)
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dt . Also, by Asoli-Arzelà theorem we an prove that vε(t) → v(t)strongly in V ′ (using (3.72) and (3.78)). Using (3.76) we an dedue byletting ε→ 0 in the seond equation in (3.37) that

mw(0) = v0. (3.80)We set now
Ωδ = {x ∈ Ω; m(x) > δ} for arbitrary δ > 0,

Qδ = Ωδ × (0, T ), Qm = Ωm × (0, T ),and notie that Ωδ and Ωm are open beause m ∈ C1(Ω). We have
1

mε
=

1

m+ ε
<

1

m
<

1

δ
on Ωδand by (3.79)

wε =
1

mε
vε →

v

m
= w strongly in L2(0, T ;L2(Ωδ)), ∀δ > 0.Reall that β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s .Let us �x (x, t) ∈ Qδ. Using the same argument like in the proof of Theorem3.1, in Set. 5.3 in [34℄, we obtain that
β̃∗ε (wε + Ss) → ζ̃ ∈ β̃∗(w + Ss) weakly in L2(0, T ;H1(Ωδ)).By (3.32) and (3.71) we get that
β∗ε (wε + Ss) → β̃∗(w + Ss) − K̃∗

s weakly in L2(0, T ;H1(Ωδ)).Sine δ is arbitrary we obtain
ζ(x, t) ∈ β̃∗(w(x, t) + Ss) − K̃∗

s a.e. (x, t) ∈ Qm =
⋃

δ>0

Qδ. (3.81)Proving that the subset
Q+

m = {(x, t) ∈ Qm; w(x, t) > ws}has a zero measure, we dedue similarly to the proof of Corollary 3.3 in Set.5.3 in [34℄, that w ≤ ws a.e. (x, t) ∈ Qm.



272 Gabriela MarinoshiFinally, sine {K̃(x,wε + Ss)
}

ε
is bounded in L2(Q), we have

K̃(x,wε + Ss) → κ weakly in L2(0, T ;L2(Ω)), (3.82)and we assert that
κ(x, t) = K̃(x,w(x, t)), a.e. (x, t) ∈ Q.Indeed, {K̃m(wε + Ss)

}
ε
is weakly onvergent to κ, on Qm, too. On theother hand, it is strongly onvergent to K̃m(w+Ss) on eah Qδ, beause K̃mis Lipshitz. By the uniqueness of the limit the restrition of the weak limitto Qδ should oinide with K̃m(w + Ss). This implies that

κ = K̃(x,w + Ss), a.e. on Qm. (3.83)On the subset Q0 the funtion K̃ does not depend on w, so the limit is equalto K̃0(x).Now we an pass to limit as ε→ 0 in (3.38) and obtain
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ), (3.84)where ζ is given by (3.70).In (3.84) taking φ ∈ L2(0, T ;H1

0 (Ωm)) we still dedue that w is the solutionto (3.27) on Qm too,
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Qm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

)
dxdt =

=
∫ T
0 〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;H1

0 (Ωm)), (3.85)where ζ(x, t) ∈ β∗(w(x, t)) a.e. on Qm.Taking now φ ∈ L2(0, T ;H1
0 (Ω0)), we obtain the weak form of the equationon this subset

∫

Q0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt = 0, ∀φ ∈ L2(0, T ;H1

0 (Ω0)), (3.86)where ζ is given by (3.70).



Nonhomogeneous Porous Media 273On the other hand, (3.84) orresponds to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃(x,w + Ss)

∂x3
= f in Q, (3.87)

ζ = 0 on Σu,

(K̃(x,w + Ss)i3 −∇ζ) · ν = fα on Σα,and (3.85)�(3.86) to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃m(w + Ss)

∂x3
= f in Qm, (3.88)

−∆ζ +
∂K̃0(x)

∂x3
= f in Q0,

ζ = 0 on Σu,

(K̃m(w + Ss)i3 −∇ζ) · ν = fα on Σα.We reall that the ommon boundary of the domains Ωm and Ω0 is regulardue to the fat that m ∈ C1(Ω). Sine ζ ∈ L2(0, T ;V ), we dedue that thetrae of ζ(t) ∈ β∗(w(t)) belongs to V a.e. t, so it is ontinuous aross theboundary ∂Ω0 (more exatly along lines L that ross the boundary), a.e.
t ∈ (0, T ). Thus if we take x0 ∈ ∂Ω0 and denote

ζ+(t) = lim
x→x0, x∈L∩Ωm

ζ(t),then we have
ζ+(t) = lim

x→x0, x∈L∩Ω0

ζ(t) a.e. t ∈ (0, T ).We take into aount that ζ+ ∈ β∗(w(t)) a.e. on Qm, hene ζ turns out tobe the solution to the ellipti problem
−∆ζ(t) = f(t) + fΓα(t) in Ω0 (3.89)

ζ(t) = ζ+(t) ∈ β∗(w(t)) on ∂Ω0, a.e. t ∈ (0, T )for a.e. t �xed in (0, T ), and w is the solution to (3.85) (equivalently to(3.24)) in Qm.Then, we de�ne the funtion
w∗(x, t) =

{
w(x, t), if (x, t) ∈ Qm

(β∗)−1(ζ(x, t)), if (x, t) ∈ Q0 = Ω0 × (0, T ),
(3.90)where ζ is the solution to (3.89) and show that it is the solution to (3.27) inthe sense of De�nition 3.1. Indeed, ζ(x, t) ∈ β∗(w∗(x, t)) and ζ ∈ L2(0, T ;V ),



274 Gabriela Marinoshiso it follows that w∗ ∈ D(A), implying that w∗ ≤ ws a.e. on Q. Then, mw∗belongs to the spaes spei�ed in (3.23) (we take into aount that mw∗ = 0on Q0). Finally, we have to hek that w∗ satis�es the equation (3.26) andthis follows by a straightforward omputation using (3.84)�(3.86). Indeed, ifwe replae w∗ in (3.26) we obtain
∫ T

0

〈
d(mw∗)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃(x,w∗)

∂φ

∂x3

) dxdt =

=

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα , φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).We took into aount the expressions assigned to w∗ and K̃(x,w + Ss) oneah subset, (3.81) and (3.84). 2Corollary 3.1 Under the assumptions of Theorem 3.1 the solution to(3.27) is unique if in addition

ρ̃ > cΩM. (3.91)Proof. Let us denote by w∗
1 and w∗

2 two solutions to (3.27) orresponding tothe same data. We multiply the di�erene of equations (3.27) written for w∗
1and w∗

2 by (w∗
1 −w∗

2) salarly in V ′, integrate on (0, T ) and use the Lipshitzproperty of K̃. We get
‖m(w∗

1(τ) −w∗
2(τ))‖2

V ′ + ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖2 dτ ≤ (3.92)

≤ M2

ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖ ‖w∗

1(τ) − w∗
2(τ)‖V ′ dτ ≤

≤ M2

ρ̃
c2Ω

∫ T

0
‖w∗

1(τ) −w∗
2(τ)‖2 dτ



Nonhomogeneous Porous Media 275where cΩ is the onstant in Poinaré's inequality. Here we took into aountthat for w ∈ L2(Ω) we have ‖w‖V ′ ≤ cΩ ‖w‖ .It follows by (3.91) that mw∗
1 = mw∗

2 a.e. on Q and w∗
1 = w∗

2 a.e. on Qmwhere m(x) > 0. Now we subtrat the equations (3.88) orresponding to w∗
1and w∗

2 and get
−∆(ζ1 − ζ2) = 0 in Q,

ζ1 − ζ2 = 0 on Σu,

−∇(ζ1 − ζ2) · ν = 0 on Σα,where ζ1 ∈ β∗(w∗
1), ζ2 ∈ β∗(w∗

2) a.e. on Q. Hene ζ1 = ζ2 and sine (β∗)−1is single valued then w∗
1 = w∗

2 a.e. on Q. 2Remark 3.1 We observe that in the degenerate ase the uniqueness of thesolution an be obtained only if the transport is dominated in a sense (see(3.91)) by the di�usivity. In partiular, this is true when K̃ = 0, i.e., whenwe deal with a horizontal in�ltration, also alled sorption.Remark 3.2 By the proof of the solution existene we also asertain aonsequene that an be inferred at an intuitive level, i.e., the boundaryvalue problem is separated into two problems orresponding to the domains
Qm and Q0, onneted by the �ux ontinuity.Indeed, if we test the �rst two equations in (3.88) at φ ∈ L2(0, T ;V ) andintegrate the sum over (0, T ) we obtain

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

) dxdt−
−
∫ T

0

∫

∂Ωm

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+φdσdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt−

−
∫ T

0

∫

∂Ω0

(
K̃0(x)i3 −∇ζ

)
· ν−φdσdt =

=

∫ T

0

∫

Ω
〈f(t) + fΓα(t), φ(t)〉V ′,V dxdt,for any φ ∈ L2(0, T ;V ), where ν+ is the outer normal to ∂Ωm, ν

− is theouter normal to ∂Ω0 and ζ ∈ β∗(w) a.e. on Qm. Taking into aount (3.84)
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(
K̃m(w + Ss)i3 −∇ζ

)
· ν+ =

(
K̃0(x)i3 −∇ζ

)
· ν+ on ∂Ω0 × (0, T ). (3.93)The previous integrals on ∂Ωm and ∂Ω0 are onsidered in the sense of dis-tributions, e.g., as the value of (K̃(x,w + Ss)i3 −∇ζ

)
· ν at φ. By the traetheorem we see that, generally, the �ux (K̃(x,w + Ss)i3 −∇ζ

)
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