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Preface

The increased interest in obtaining more effective mathematical tools for
both fundamental and applied sciences has led in the past years to a strong
interplay between various scientific domains, in particular between applied
mathematics and mathematical physics.

The present monograph contains a collection of review papers on the state
of the art and new results obtained in the research activity on several top-
ics of applied mathematics and mathematical physics. The topics are of
equal interest for several research groups involved in the scientific activities
of Romania. The main reason is the common mathematical concepts, analyt-
ical and numerical techniques, which have imposed themselves as particulary
useful in handling various problems related to the above topics.

The proposed surveys are written by experts who attained full scientific
recognition by significant contributions to mathematics, applied mathematics
and mathematical physics.

At the same time, this book is the result of their joint effort in common re-
search activities along several fruitful years, involving in this respect, “Ghe-
orghe Mihoc—Caius lacob” Institute of Mathematical Statistics and Applied
Mathematics, “Simion Stoilow” Institute of Mathematics of the Romanian
Academy, “Horia Hulubei” National Institute of Physics, and Institute of
Space Sciences, all from Bucharest.

The paper “Quasi-free quantum statistical models for tunnelling junction” by
N. Angelescu and M. Bundaru deals with the description of the stationary
states occurring when a nanoscopic quantic system is connected to thermal
reservoirs having different temperatures and activities.

“An introduction to monotonicity methods for nonlinear kinetic equations”
by Cecil Griinfeld is a survey upon the recent progress on the application
of monotonicity methods (with respect to the order) to investigate the exis-
tence of solutions of various Boltzmann-like nonlinear kinetic equations. To
motivate the topic, we first provide several examples of Boltzmann models
for complex systems, with similar monotonicity properties, which present
interest in applications. These are Smoluchowski’s coagulation equation,
Povzner-like models with dissipative collisions and reactive collisions, respec-
tively, a Boltzmann model for several chemical species (with reactions), and
a von Neumann-Boltzmann quantum model. The common properties of the



above models can be abstracted into a very general setting. One obtains a
class of nonlinear evolution equations, formulated into an abstract Lebesgue
space, for which one can state general criteria for the existence, uniqueness
and positivity of global (in time) solutions. The proofs extend techniques
that were initially developed in the more particular context of the space-
homogeneous version of the classical Boltzmann equation. Finally we show
how the abstract results can be applied to our examples of Boltzmann-like
models.

The paper “Estimating the number of negative eigenvalues of a relativistic
Hamiltonian with regular magnetic field” by Viorel Iftimie, Marius Mantoiu
and Radu Purice is concerned with the proof of the analog of the Cwickel-
Lieb-Rosenblum estimation for the number of negative eigenvalues of a rela-
tivistic Hamiltonian with magnetic field B € ;;’l(Rd) and an electric poten-
tial V € L}Oc(Rd). A direct consequence is a Lieb-Thirring inequality for the

sum of powers of the absolute values of the negative eigenvalues.

The lecture “Approximate inertial manifolds for nonlinear parabolic problems
and approximate solutions based upon these” by Anca Veronica lon presents
the notion of approximate inertial manifold of a semi-dynamical system gen-
erated by a nonlinear evolution PDE (more precisely, a semilinear parabolic
equation), as it appeared in the literature of the last twenty years. The
localization of the attractors in the space of phases was a first interesting
application field of the a.i.m.s. Besides, a.i.m.s found very interesting appli-
cations in the construction of some approximate solutions (and consequently
in the numerical integration) of the nonlinear evolution problems. These
are contained in the so-called nonlinear Galerkin and postprocessed Galerkin
methods.

The chapter “Diffusion processes. Physical models and numerical approxima-
tion” by Stelian lon deals with the numerical approximation of a class of non-
linear diffusion processes that includes the unsaturated water flow through
porous media and the fast diffusion. The approximation method consists
in the discretization of space derivative operators using the finite volume
scheme and keeping the continuum time differentiation. Consequently, the
solution of the partial differential equations is approximated by the solution
of a system of ordinary differential equations. A scheme to approximate the
diffusion and convective term such that one can obtain a quasi-monotone
ODE system is defined. Further, it is proved that there exists a discrete
comparison principle, the solutions of the discrete model are bounded and
the upper and lower bounds are independent of the mesh size of triangula-
tion. To perform the time numerical integration a class of implicit backward



differentiation formulae with adaptive time step is used. Since the implicit
schemes require a nonlinear solver a method that mixes Broyden method
and an inexact Newton method is constructed. The performances of the new
method are illustrated by some numerical results concerning the fast diffusion
equation and water infiltration through a layered soil.

The paper “On a convergent numerical method for nonlinear Boltzmann-
type models” by Dorin Marinescu deals with the extensions of approximation
techniques of Nambu, Babovsky and Illner for the solutions of the classical
Boltzmann equation to a nonlinear generalized Boltzmann-type system of
equations solving nontrivial transport flows in dilute gas mixtures. First,
one proves the global existence and uniqueness of solutions. Then a weak
time-discretized version of equations for positive measures is provided. To ob-
tain an algorithm, with small numerical effort (of order N log V) stochastic
methods are introduced. Finally a numerical approximation scheme, con-
verging almost surely, in some sense, to the solutions of exact equations is
provided.

The first part of the paper “Mathematical models of diffusion in nonhomoge-
neous porous media” by Gabriela Marinoschi introduces diffusive models of
water flow in saturated-unsaturated media, characterized by a space variation
of the porosity. Then the analysis focuses on a model with mixed boundary
conditions involving a flux on a part of the boundary and a nonhomogeneous
Dirichlet condition corresponding to a singular situation (i.e., the blowing up
diffusion coefficient) on the other part of the domain boundary. From the
mathematical point of view, the problem resides in the study of a degenerate
nonlinear variational inequality which can be reduced to a multivalued inclu-
sion by an appropriate change of the unknown function. Finally, existence,
uniqueness and other properties of the solution are established.

The editors

Bucharest, July 2008
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1. Introduction
1.1. General frame

During the last decade considerable progress has been achieved in the statisti-
cal description of non-equilibrium thermodynamic processes. While previous
work concentrated and provided a reasonable understanding of situations
near thermal equilibrium, such as stability of equilibrium states (approach
to equilibrium) or linear response, a consistent mathematical framework ini-
tiated by Ruelle [16], is now available for accounting for the installation, at
large time, of a non-equilibrium stationary state (NESS) even when the ini-
tial state of the system is far from equilibrium (see [3] for a recent review).
The typical physical situation which fits in this framework is that of several
reservoirs, R;; i = 1,...,7, coupled to a finite quantum system, S (sample).
One has to give account for the flow of energy and particles through the
sample in the large time asymptotic regime.

The isolated sample S is a usual quantum system with Hilbert space Hg,
algebra of observables Ag equal to the algebra of all bounded operators on
Hg, and unitary dynamics generated by the Hamiltonian Hg. The Heisen-
berg picture of the evolution is the automorphism group on Ag defined as
oy(A) = exp (itHg)Aexp (—itHg). We suppose that the sample is at time
t = 0 in an arbitrary invariant state wg, i.e. the expectation of an observable

A € Ag is given by a density matrix: w2(A) = tr(psA) and [pg, Hg] = 0.

The description of the reservoirs R; is somewhat more elaborated. A reser-
voir is an infinite quantum system, which, before the coupling to the sample
is switched on, is in a certain equilibrium state. Its description in the initial
state fits therefore in the well-established algebraic formalism of equilibrium
quantum statistical mechanics [4]. One starts with reservoirs finitely ex-
tended in some regions A; of space: the pure states are the unit vectors in a
Hilbert space H; a,, the algebra of observables A; A, consists of all bounded
operators on H; 5, and the (Heisenberg) dynamics on A; 5, is generated by
a self-adjoint Hamiltonian H; a,, of y (A) = exp (itH; a,) A exp (=it H; a,); at
given inverse temperature [;, the finite reservoir ¢ has one equilibrium state
w; g;.A; (A) = tr(Ap; g, a;) given by the Gibbs ansatz for the density matrix
pigiA; = (1/Zin,(5i)) exp (—BiH; a,), where the statistical sum Z; o, (5;) is
a normalizing factor. The infinite reservoir is conceived as an idealization
behaving like very large reservoirs, i.e., as a limit of the above structure:
The algebra of observables A; is the smallest C*-algebra containing A; a,

for all finite regions A;, the (strongly continuous) dynamics ol(-) on it is
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the strong limit (provided it exists) of the automorphism groups af, (-),
and the equilibrium state is a limit point w; g, of w;g, A, as A; increases
to the infinite region L; occupied by the reservoir R;. The infinite reser-
voirs in this sense can be represented as genuine quantum systems using
the so-called Gelfand-Neumark-Segal (GNS) construction. The latter con-
sists essentially in the following: a state w on a C*-algebra A defines a
sesquilinear form on it by (A, B) = w(A*B); after division by the ideal Z of
all I € A such that w(I*I) = 0, A/Z becomes a pre-Hilbert space, whose
completion H,, is the representation space. The representation 7, (X) of an
element X € A is the bounded operator which sends the vector A into the
vector X A; thereby, 1 =: Q,, is a cyclic vector for this representation, and
w(A4) = (Q, T (A)S,). If, moreover, the state w is invariant under the auto-
morphism group oy (i.e. woay = w), then 7, (o (X)) = Uy (—t)m,(X) Uy (),
where U, (t) = exp (—itH,) is a unitary group on H,. The generator H,
of this group, named thermal Hamiltonian, has €, as an eigenvector with
eigenvalue 0.

To simplify the notation, we no longer mention the reference states w? = wj g
of the reservoirs, and simply denote {H;, m;(+),Q;, H;} the GNS descrip-
tion for the reservoir R; corresponding to the equilibrium state w?, ie.,
respectively, the Hilbert space, the representation of the observable alge-
bra A;, the cyclic vector and the thermal Hamiltonian generating the uni-
tary implementation of the dynamical automorphism group: m;(al(A)) =
exp (itH;)Aexp (—itH;). Likewise, we denote {Hg,ms(:), s, Hg} the GNS
representation of the sample associated to the state wg invariant for the group
o

The composite system S+ > R; is in turn an infinite quantum system, which
is to be constructed as above from a certain reference state. The algebra of
observables is taken as a C*-tensor product of the algebras A; of the reservoirs
and Ag of the sample:

A=As® (®;A4;), (1.1)

and the reference state is taken as the product of the initial equilibrium
states w? of the reservoirs and the ak-invariant state w2(:) = (Qg,-Qg) of
the sample:

W =l ® (@), (1:2)

On the algebra A one has the uncoupled dynamics described by the auto-
morphism group o = af ® ((®;al), which leaves invariant the state w’:
w(a(A4)) =w’(4), A€ A

At time t = 0, a coupling between reservoirs and the sample is switched on,
meaning that the dynamics of the system at positive times is given by another
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automorphism group of A, 7¢. The evolved reference state will therefore

change in time, and be, at time ¢ > 0, the state for which the expectation of
an observable equals the w%-expectation of the observable evolved at time ¢
according to the new dynarmics:

wi(A) = WO(r1(A)) = V(a7 - TH(A)), (1.3)

where the second equality comes from the al-invariance of w". Suppose
a stationary (7'-invariant) state is approached at large time. This can be
expressed as the existence of the limit of w!(A4) when ¢ — +o0 for all 4 € A.
The latter is ensured by the existence of the limits

lim o' 7H(A) = Q4 (A), (1.4)

t—+o00

i.e. by the existence of the Moller endomorphisms of the two groups. In
this way, the existence of (and the convergence to) a stationary state can
be presented as a scattering problem for two automorphism groups on a
C*-algebra. As a rule, 7 is constructed as a local perturbation of o via a
strongly convergent Dyson series; more precisely, if }E}% H(al(A)—A) = 6(A)
for A in a dense subalgebra D C A, one supposes that there exists V € A,
such that dy (4) := lim 1(r1(A) — A) = 6o(A) +i[V, A] for A € D.
As a consequence of the choice (1.2), the composite system can be realized
in the tensor product of Hilbert spaces H = Hgs ® ((®;H;), which carries the
product representation of A, so that m(A) is the C*-tensor product of oper-
ator algebras mg(Ag) ® ((®;m;(A;)). Thereby, the independent (uncoupled)
dynamics of the reservoirs and of the sample is implemented in H by the
unitary group Up(t) = exp (—itHy) = exp (—itHg) ® ((®; exp (—itH;)). The
cyclic vector Q = Qg ® ((®;£;) is an eigenvector of Hy with eigenvalue 0.
Also, the locally perturbed dynamics is implemented by the unitary group
U(t) = exp (—itH), where

H = Hy+ (V). (1.5)

In this way, the problem can be reformulated as a perturbation problem for
selfadjoint operators on a Hilbert space in a setting depending on the chosen
reference state.

Of course, the construction of the perturbed dynamics and the proof that
the Moller endomorphisms exist are to be done for the models under con-
sideration of reservoirs, samples and couplings between them. It happens
that the program outlined before can accommodate a few reservoir models of
physical interest, such as spin models or free particle models obeying Fermi
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statistics, and samples with finite-dimensional Hg. One of the most restric-
tive assumptions is the existence of the infinite-volume dynamical group of
automorphisms o! and its assumed strong continuity. A way out to a more
permissible framework for the reservoirs, R;, is to construct as above the
reference states w? as limit points of finite-volume Gibbs states and further
work within the GNS representation associated to it. In particular, a weakly
continuous infinite-volume dynamics may appear as a limit of the local dy-
namics afxi(-) viewed as automorphisms of the weak closures of the operator
algebras m;(A;) representing A;, i.e. of the von Neumann algebras m;(A4;)".
This allows to define a representation-dependent dynamics and self-adjoint
thermal Hamiltonian. Hence, the steps leading to a scattering problem in a
Hilbert space are to be performed. In particular, this is the case of free-boson

reservoirs, see Sec. 4. below.

1.2. Quasi-free models

In the paper we shall consider instances of concrete realizations, within a
class of very simple models, of the paradigm outlined above. Essentially, we
suppose that:

1. The reservoirs are free quantum identical particle systems, obeying
Fermi-Dirac or Bose-Einstein statistics.

2. The perturbed (coupled) dynamics is quasi-free.

In more detail, point 1 means the following: Before taking the thermody-
namic limit, i.e. when the reservoir is confined to a finite region A, the
appropriate Fock space, which bears the Fock representation of the canoni-
cal (anti)commutation relations, can be used, whereby the number of parti-
cles Ny = dI'(1) and Hamiltonian Hy = dI'(h}). According to the grand-
canonical prescription, Hy is to be replaced by Hy — N in the Gibbs ansatz
for the equilibrium density matrix, where the multiplier u is adjusted to en-
sure given particle density in the reservoir. In the thermodynamic limit, the
C*-algebra of observables should "contain" the local operators, i.e. functions
of af(f) with f having support in some finite region. It is therefore natural
to take it as the canonical (anti)commutation relations algebra, CAR(D),
respectively CCR(D), over a certain subspace of the space of reservoir’s one-
particle states, D ¢ HW, containing at least the functions with compact
support. The equilibrium states of the reservoir, i.e. the limit states of the
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finite-volume Gibbs states, are well-known (see e.g. [4]), and turn out to be
quasi-free states (i.e. states in which there are no correlations of order higher
than 2) over these C*-algebras. D may be extended such that the limit states
be defined on the corresponding C*-algebra. In the Fermi case D = HO.
In the Bose case, however, due to the phenomenon of Bose-Einstein conden-
sation, D # HW: in the paper, in order to avoid the domain problems, we
suppose also that the Bosons live on the lattice Z9, leaving the general case
for another publication.

The point 2 means that the evolution automorphism of the C*-algebra is
given by a unitary evolution e 7" in H() which leaves D invariant: 7¢(af(f)) =
aﬁ(eithf). As a consequence, not only the initial (reference) state w’, but also
all w!, t > 0 and the stationary state are quasi-free. Thereby, the problem
is reduced to a scattering problem for the one-particle Hamiltonians, which
can be explicitly solved.

In this respect, the quasi-free models are trivial, in particular they allow
no interaction between particles and thus restrict consideration to simple
tunneling junctions, but they turn out to be a good laboratory for conjectures
concerning various phenomena and providing instances of interesting physical
behavior. In particular, the coupled dynamics no longer conserves the energy
and number of particles in the reservoirs, implying that, in the stationary
state, there exist persistent currents of energy and particles, depending on
the parameters fixing the initial equilibria of the reservoirs, and also on the
geometry of the sample and its coupling to them. In this way various formulae
of transport theory can be obtained beyond the linear response regime.

1.3. Summary

There is an extensive literature on quasi-free quantum systems. This work
started as an attempt to systematize their application to the problems of
return to equilibrium and of approach to NESS in a more abstract, com-
prehensive frame, as outlined in the previous subsection. In the meantime,
we became aware of two recent papers with the same purpose in the Fermi
case [2[, |[12], so we limited to the more modest aim of giving a (hopefully
more friendly) presentation of their general result, of indicating its extension
to the Bose case and of providing a few examples of calculation for certain
interesting physical quantities.

Section 2 is concerned with the spectral and scattering problems for the one-
particle Hamiltonians, as the same analysis applies to both Fermi and Bose
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statistics. In order to have as far as possible explicit expressions, we consider,
as an application, in subsections 2.3. and 2.4. the case of two reservoirs, in
which the particles live on two d-dimensional lattices, and those in the sample
on a chain of N > 0 sites; thereby, the coupling is a simple tunneling involving
one site of each reservoir.

Section 3 is devoted to the Fermi statistics case, which is simpler in many
respects, in particular the C*-framework is sufficient, as the infinite-volume
dynamics is a strongly continuous group of automorphisms of C’AR(H(l)) .
A comprehensive study of this case has been performed in |2], the results of
which are briefly presented. We make explicit their result for the particular
setting in Section 2.3. and point out a few peculiarities of the NESS, such as
the resonant character of the transport and the plateau effect for the carrier
density.

Section 4 is concerned with Bose reservoirs. This brings in several new phe-
nomena and complications. First, at high density and low temperature,
Bose condensation may appear, implying the spontaneous gauge-symmetry
breaking, i.e. existence of several extremal equilibrium states labeled by a
phase. Moreover, the infinite volume dynamics cannot be a strongly continu-
ous group of the CCR algebra; fortunately, as quasi-free states are regular, it
is continuous in the GNS representation corresponding to equilibrium states.
The interesting question here is the dependence of the NESS on the particular
mixtures of phases constituting the initial equilibria of the reservoirs. This
may be viewed as a caricature of the Josephson tunneling of Cooper pairs
between two superconductors. The approach to equilibrium in the presence
of a condensate has been analyzed by Merkli [8]. The problem of approach
to a NESS, left open there, was considered by us in [1], the result of which
is presented in the present, slightly more general, setting.

2. Scattering for the one-particle Hamiltonians

This section is devoted to the spectral analysis of the one-particle Hamil-
tonian h = hY 4+ v, where h° is the one-particle Hamiltonian of the decou-
pled system, i.e. the direct sum of the one-particle Hamiltonians h; (i =
1,...,7), hg of the isolated reservoirs and sample and v describes the tunnel-
ing between them. We make the following assumptions:

Assumption 2.1 The one-particle Hilbert space is an orthogonal sum

HO =HY ony; HY = o, H1Y,



QUANTUM STATISTICAL MODELS 19

with dimHg) =N <oo. Let J: Hg) — HW and I : Hg) — HW be the
natural injections:

Jf=0af If=f®0,

Assumption 2.2 In the matriz representation associated to this decomposi-
tion, the unperturbed Hamiltonian hg is block-diagonal:

R = hg @ hY.; RO, = @l h;,

ac?

and the perturbation v has the following structure: There exist maps T; :
Hgl) — H(Sl), such that
v=IrJ"+ Jr*Il*,

where

T Hg) — H(Sl), T(Biz1fi) = ZTifi-
i=1

Assumption 2.3 h;, ¢ = 1,...,r, have absolutely continuous spectra equal
T

to the bounded intervals I; C R. Thereby, we suppose that |J Int(I;) is an
i=1

interval (emin, €max). We denote R;(z) = (h; —2)7%, (2 € C\ ;) and R, =

(hae —2) "t = ®!_1Ri(z). Let p;,m; denote the right, respectively left, support

of 1; (i.e. the orthogonal projections onto the subspaces Ti(Hgl)) C 'Hg),

respectively Ti*(Hg)) C Hgl)). For all x € I;, the limits

lim m; R;(x + ie 1
Ao il (T IOl e

exist as operators in the corresponding subspaces and are continuous functions
of x; thereby, for all interior points x of I;, |

>0 (i=1,..,7).

w38+ 10,

2.1. Resolvent and spectrum of the perturbed Hamiltonian

The spectral decomposition of h = h® + v is based on finding a convenient
representation of the resolvent operator R(z) = (h — 2)~!. We shall use a
variant of the Feshbach method, taking advantage of the fact that v has finite
range, what allows summing the perturbation series in closed form.

We have to solve for fg, f;, i =1,...,r, the system of equations

(hi : Z)fz + Tz-*fs =g; (Z =1, 7“)
Yo7ifi +(hs —2)fs =gs, (2.1)

i=1
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where g = g5 @ (®7_,9;) € HW is arbitrary.
If 2z € C\ [emin, max], the first line in equation (2.1) provide f; in terms of

Is:
fi=Ri(2)(9i — 7] fs), (2.2)

and the second line becomes
(het(2) — 2) fs = Q(2)g, (2.3)

where heg(2) : Hg) — qul) and Q(z) : HV — qul) are defined by:

T

hei(2) = hs— > TiRi(2)7] = hs— TRY (2)T*,

1=1 (24)
Q(z) = I"—71R(2)J*.

Whenever heg(z) — 2 is invertible, we denote Reg(z) = (her(2) — 2)71, s0
that Eq. (2.3) has the unique solution

fs = Rer(2)Q(2)g, (2.5)

With fg given by Eq. (2.5) and f; given in terms of it by Eq. (2.2),
f = fs® (®_,fi) = Q(2)*fs provides the solution to the system (2.1).
Therefore, remarking that U]_,I; C o(h) (by the invariance of the essential
spectrum under compact perturbations), the following characterization has
been proved:

LEMMA 2.1 The resolvent set of h is
p(h) ={z € C\ [emin, €max); ker (heg(2) — 2) = {0}}.
For all z € p(h),

R(z) = JRy.(2)J" + Q(2)" Rest (2)Q(2). (2.6)

The Kato-Rosenblum scattering theory [15] ensures the existence and com-

pleteness of the wave operators W Hg) — H® for the unitary groups

H ith 0 . . ..
e ith e~ithac je. the existence of the strong limits:

Wy :=(s) lim elth Jeithie (2.7)

t—too

Hence,
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LEMMA 2.2 h has absolutely continuous spectrum cac(h) = [€min, €max] and
no singular continuous spectrum. The absolutely continuous part hae of h,
i.e. h restricted Hé?(h) = Wi(Hg)), is unitarily equivalent to h. via the
intertwining relations hac Wy = Wihl,

Finally, we determine the point spectrum of h, op(h).

Let z € op(h), and f = fg @ (P]_,fi) # 0 be an eigenvector of h with
eigenvalue z. Then f is a solution of Eq. (2.1) for g = 0.

If, thereby, 7/ fg = 0 for all i = 1, ..., 7, then (h; — 2) f; = 0, Vi, hence f; =0,
because h; have no point spectrum. If so, the second line in (2.1) shows that
z € op(hg) and that fg € ker 7;* is a corresponding eigenvector. Conversely,
if fg € N;ker 7 is an eigenvector of hg, then fg @ 0 is an eigenvector of h
with the same eigenvalue.

Suppose next that 7 fg # 0 for at least one i. If z & [emin, €max), Eq. (2.2),
which expresses f; in terms of fg, and Eq. (2.3) show that fg # 0 is an
eigenvector of heg(z) with eigenvalue z. Conversely, if ker (heg(z) — 2) 2
fs # 0, then z € op(h) and Q(2)* fs is an eigenvector of h with eigenvalue z
(in particular, we have that Sz = 0). Let us consider the family of self-adjoint
operators {heg(x); 2 =z € (—00, €min) } and let A\j(z) < ... < An(z) be the
eigenvalues of heg(z) and ¢ (z )( s (T ) ) the Correspondlng eigenvectors.
As remarked before, x € o, (h) if, and only if, = A\ (z) for some k =1,...,N.
As heg(z) is a decreasing operator-valued function of z in the considered
interval, all its eigenvalues A\i(z) are decreasing functions, hence, the equation
x = Ai(z) has a simple solution z = e, if, and only if, lm Ay(2) < emin.
€T

€min
Then, every eigenvector of heg(e, ) with eigenvalue e, can be completed to
an eigenvector of h with this eigenvalue. Likewise, on (emax, 00) the equation
x = Ag(z) has a solution e,j if, and only if, \l}m Ak(x) > emax, implying
x

emax
ey € op(h).

Next, let fg@® f be an eigenvector of h corresponding to x in (€pin, €max) and
such that 7 fg # 0 for some i = 1,...,r. Let z = x + iy, with Sz =y > 0.
We have, by the first line of equations (2.1), fi = Ri(x+iy)(hy —x —iy) fr =
— Ry (z +iy) 7} fs — iyRi(x +1iy) fr, which, plugged into the second equation,
implies, in partlcular, that

(fs, (he(z +1iy) —x)fs) =1y Z(kas,Rk(erly)fk)
Z(||f1c||2 iy(fr, Ri(z +iy) fr.))-

Equating the imaginary parts of this equality, letting y \, 0 and using
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|Ri(z + iy)|| = 1/y, we arrive at
S(fs: e Ri(z +10)7; fs) = 0, VE,

which contradicts assumption 2.3.

In summary:

LEMMA 2.3 The point spectrum of h in R\ {emin, €max} consists, besides
T

the possible eigenvalues of hg possessing eigenvectors fs € () ker 7, of the
=1

solutions e, € (—00,€min) and elj € (emax,00) of the equations \i(x) = x.

The latter exist if, and only if, Ag(émin — 0) < €min and Ag(emax +0) > €max,

respectively.

The values enin Or emax may be eigenvalues of h, either if they are eigenvalues

r
of hg with eigenvector fg € () ker 7/, or if \;(z) = = and the corresponding
i=1

eigenvector ¢(z)®) fulfills lim | R;(2")m30(x")®)|| < oo, Vi. The latter con-

dition, being dependent on the structure of h? and 7;, is to be checked for
each concrete model.

2.2. Wave operators and scattering matrix

In this subsection we derive the expressions of the wave operators and S-
matrix using the formalism of stationary scattering theory [15], [17|. Namely,
with the spectral representation of the unitary groups e " = fe_itxdE(:E),
e ithi — [e7"®dE;(z), we can express the wave operators in terms of the
resolvent R(z) of h. We have

Wi =(s) l{%e JoT e exp (ith) J exp (—ith°)dt
= (9)lime [dE(') [ JAE () [g dte= o) (2.8)
= (s) 1{1})(16) [ R(z —ie) JAEY, (z).
where we denoted EY. () = @7_, F;(x). Similar calculations are valid for W_.

Using Eq. (2.6) for R(z), taking into account that FieRY,(x + ie)dEL. (x) =
dE? (z) and Assumption 2.2, the following representation is obtained:

Wi = J = (3) lim / Qlx +i€)* Rg (2 F i€)rd E°. (). (2.9)
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Also,

Wi=J—(s) 1/1{10 dES (2")7* Reg (2 £ i) Q(2’ £ i€’). (2.10)

Egs. (2.9), (2.10) give for the S-matrix:

S=WiW_=1 —J*[Q(z —i0)"Reg(z +i0)rd EY.(z)

— [dE2 (2")7* Regr (2" 4 10)Q (2 +10).J (2.11)
+;i%{l%degc(x’)T*Reﬁ(x’ +i)Q (2’ +i€’)
< [ Qe — i6)* Ru(x + 10)rd BL,(x)}.

We calculate the last term using the resolvent equation, which implies

Q2" +i)Q(z —ie)* =1 + 7RO (z' + i) RO, (z + ie)T*
=1+ (@ —z+i(d — ) 17[RY(2' +i€') — RO, (x +ie)]7*
= (2 — 2 +i( =€) (heg(x + i€) — x — i€) — (heg (2’ +i€) — 2’ —i€’)].

Each term of the latter expression, when plugged into Eq. (2.11), is sand-
wiched between Res, what, after making the obvious simplification, allows
one of the integrals to be performed (e.g. [dES (2)(2/ —x+i(¢' —¢)) 7% =
RO (x—i(d —€))7* = J*Q(x—i(e—¢€))*). Therefore, after taking the iterated
limit, the last term of Eq. (2.11) equals

/ J*Q(z +10)* Regt( + i0)rd B2, () + / AEY (/)7 Reg (' +i0)Q(a’ +10).
As Q(2)J = —TRY.(2), one obtains finally
S =1+ 21/ I(RY (x4 10))7* Regr (z + 10)Td B, (). (2.12)

REMARK 2.1 It is sometimes useful to represent the Hilbert space Ha.(h°) as
a direct integral over energy of Hilbert "eigenspaces” K., i.e. there exists a

unitary U : Hac(h°) — f[® Kydy =: K, such that UES(A)U* = x4 (")

eminyemax]

(the operator of multiplication with the indicator of the measurable set A). It
is clear that, for ¥(-) € f[fmm,emax1 K,dy, (UR(2)U*)(y) = (y — 2) "0 (y).
Also, TU*Y = |, }Ty(i/)(y))dy, where 7, : Ky — Hg). Eq. (2.12)

[emimemax
shows that, in this representation, the S-matriz is diagonal, i.e. USU* =
fﬁa Sydx, where Sy : ICp — Ky equals

eminyemax]

Sy = 14277} Regr (x +10) 7, =: 1 + T, (2.13)
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T, 15 called the on-shell T-matriz.

Calculating, for f e 'ch), separately the component I"Wif € H(l)
JWif e 'Hac of Eq. (2.9), one obtains

r'wyf = — [ Reg(z Fi0)7, (U f)(z)dz
UIWefl@) = U))+ 249
+ [ — :c¢10 T¥ Regt (2 F10) 7, (U f)(2")da’
Also, the action of W1 on f € HD is given by
UWLf) ()= (UJf)(z)-
— [ 25 7i Rer(z £10) 7 (U J* f) (2/)da’ — (2.15)

—7) Regr(xz £10)I* f.

2.3. An example: two half-infinite lattice reservoirs coupled
by a wire

In this subsection we describe, as an illustration of the more general setting
of the model, a particular geometry and dynamics: the system consisting of
two particle reservoirs, Ry, Ro, connected by a one-dimensional wire, .S.

The reservoirs, R;, 1 = 1,2, are taken as infinitely extended lattice quantum
gases. The particles in the reservoirs live, respectively, on the two (left,
respectively, right) half-infinite lattices,

Li=17¢= {r = (,rd); ' e 24 (~1)irt =1,2, } . (2.16)

The Hilbert space of one-particle states in R; is therefore

’Hz(l) = l2(Lz) = f (fr)T’EL,7 ”f”2 Z ‘fr‘2 <00 . (2-17)

rel;

The kinetic energy operator of one particle in R; is 1/2 times the lattice
Laplace operator with free boundary conditions, i.e.

(hif)r = dfr — % oo (2.18)

q€L;,|q—r|=1

A complete set of generalized eigenvectors of h; are (k) € lo(L;), k € T¢,
where the index sets T¢ = {k = (K, k%); k' € [0,2m)4" L k? € (0,7)} are
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identical (the subscript ¢ has the only role to make the difference between
the two reservoirs, e.g. by ']I“li U Tg we mean the disjoint union of two copies
this set), and

(k) = 2(2m) Y2 exp (ik'r") sin (K9]r7)). (2.19)

(k) corresponds to the generalized eigenvalue

d
wi(k) =2 Z sin? (k%/2). (2.20)
a=1

Again, though the two dispersion laws (2.20) are identical, we keep the label
1 to mark the reservoir they correspond to. Therefore the spectra of h; are
absolutely continuous and coincide with the intervals 7, I C R (both equal

to [0,2d]). In fact, we define the unitary operators w; : Hgl) — Ly(T%) by

wif = ('), f); (2.21)
then, u;h;u} is the operator of multiplication with the function w;(k) on
Lo (T%).

The sample S, providing our model of a nanowire, is a free quantum gas in
which particles live on the finite set of sites {1,2,...,N}. The states with

one particle are vectors f = (f1,..., fn) € 'Hg) =1,({1,2,...,N}) =C" and
their evolution is controlled by the Hamiltonian

(hsf)i= (1+eg)fi—1/2(fic1+ fix1), i=1,... N (fo= fny1=0), (2.22)

where the parameter e, plays the role of an adjustable gate potential. The
eigenvalues of hg are g, = ey + 2sin? (¢,,/2);m = 1,..., N, where ¢,, =
mn /(N + 1), with eigenvectors 1(™):

2
N +1

P = sin (gmi). (2.23)

The one-particle Hilbert space for the entire system, S + Ry + Rs is
HO =HP oHP oH) = 1y(L), where L= {1,2,.., N}UL; ULy. (2.24)

The evolution of the one-particle states for the uncoupled system is given by
the one-particle Hamiltonian

R = hg ® hy @ hy (2.25)
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At t = 0, tunneling junctions are turned on between the reservoirs and the
ends of the wire through the pairs of sites (a; = (0/,—1),{1}) and (a2 =
(0/,1),{N}), N > 0. On H® this is given by the one-particle operator v
defined by the matrix

Ups = (2.26)

t, if either {r,s} = {a1,1} or {aa, N}
0, otherwise,

Thus, the evolution of the one-particle states in the coupled system is gen-
erated by the Hamiltonian:
h=h"+v. (2.27)

ProprOSITION 2.1 The model defined above fulfills the assumptions 2.1 2.3.
Thereby, h has no eigenvalue embedded in (0,2d).

Proof. Assumptions 2.1 and 2.2 are obvious, with 7 = 2 and 7, 70 having all
matrix elements equal to 0, but for (71)1,4, = (T2)N,a, = t. We have that

(1 R1(2)7)ij = t20;165,19(2), (2.28)

where

g(z) = 4(2m)~? [14sin? (k) (w1 (k) — 2)~'dk

= 4(2n)7¢ 2fd(y —2) Ny J sin? (kd)duy(k), (2.29)
0 T4(y)

where dy, (k) = |Vw(k)| " 'doy, (k) is the Gelfand-Leray measure on the level
set TY(y) = {k € T4 w(k) = y} (where doy(k) is the area measure on this
surface). Using the Sokhotski formula (z —i0)~! = P(%) + ird(z) (where P
denotes the principal part), we have

lg gz + iy) = 4(27) / sin? (k%) dpa(k) > 0, Va € (0,2d).  (2.30)
)
Ti(e)

Finally, the eigenfunctions (2.23) of hg fulfill ¢1m) = \/Ni_i_lsin (gm) #

0,¥Ym =1,..., N, implying that there are no eigenvalues embedded in (0, 2d).
(]

For this model one may define the unitary U of Remark 2.1 as the compo-

sition the unitary uy @ up : Hac(H®) — @12:1[12(']1‘?) (where u; are defined
5]

in Eq. (2.21)), with the unitary v; @ vg : ®2_, Lo(T¢) — 02d Kydz, with

Ky = @2 Lao(T¢ (), d; »(k)), where (v; f;)(x) is the restriction of f; to the
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"energy shell" ']I'd( ) and dp; . is the Gelfand-Leray measure on the latter.
Then, 7f = f dz7 (U f(x)), where 7, : Kz — Hg) is given by:

(qub)m = mltf’]rd ( ) ( )d:ul Zv(k)+ (2 31)
+0m, Nt de U2 (K)ay 62 (k)dpz,. (), '

and (UT*f)(x) = 7 f, where 7 : Hg) — Iy is given by

(3 /) (k) =t (k)ay f1 ® t9° (K)o [ - (2.32)

We remind that 9% (k),, = 2(21)~%? sin (k%), see Eq. (2.19).

Upon insertion of Egs. (2.31), (2.32), the equations of the previous remark
are made explicit. For instance, the T-matrix T, : K, — K, appearing in
Eq. (2.13) is an integral operator with matrix kernel:

T (k, k) j = sin (k%) Regr (2 +10)s,. 5, sin (K'), (2.33)

4i
(27‘r)d_1

where s1 =1, s9 = N.

2.4. An example of direct tunneling between reservoirs

The case when the reservoirs are directly coupled through a tunneling junc-
tion without any intermediate sample is special. Indeed, e.g. for two reser-
voirs, HD = H,(h0) = HY @ 1Y,

In view of the application to Bose gases, where the surface effects may be
drastic, we consider now the translation invariant case of lattice reservoirs,
i.e. we suppose that particles live on L; = Z% i = 1,2. The one-particle
Hilbert spaces 'Hgl) and reservoir Hamiltonians h; are defined by Eqs.(2.17),
(2.18), respectively. Then, the generalized eigenfunctions of h; are plane
waves

YH(k), = (2m)" Y2 exp (ikr), k € T = [0, 27)¢, (2.34)

with generalized eigenvalues w(k), Eq. (2.20), and the unitaries u; are simply
the Fourier transform.

The tunneling is between the origins of L;, i.e. we take a; = 0 € Z%. Let

Ty =m Dy : HW — C2 denote the restriction to the pair aq, as of coupled
sites:

mo(f1 @ f2) = (f1)o ® (f2)o,
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(10 . . 9 (01
00—<0 1 > be the unit matrix in C* and o1 = ( 10

Pauli matrix (interchange of 1 and 2). The interaction can be represented as

> be the first

v = tmho17o (2.35)

One can simplify significantly the expressions of R(z), Q4+, S by using the
Fourier representation (2.21) on both spaces: u = u; @ ugy : @12:1H§1)
®?2_ Ly(T¢). The resolvent equation (h — z)f = g reduces in moH™M to the
equation (o9 + tmoR°(2)m01) (7o f) = moR°(2)g, which amounts to inverting
a 2 x 2 matrix. Thereby,

—

moB2(2)75 = §(2)ov, (2.36)
with §(z) given by "
§(z) = (2m) 4 Y — .
i) = (2n)! [ (2.37)

It should be remarked that Jg(z +10) > 0 for all z € (0,2d) (and is, as a
matter of fact, 7 times the density of states of the lattice Laplaceian (2.18))
and, for d > 3, goes to 0 at the spectrum ends x = 0, 2d.

We obtain finally:
LEMMA 2.4 In the direct-coupling model described above
1. The resolvent of h = h® + v has the representation:
R(z) = Ro(2) — tRo(2)m (01 + t§(2)00) tmoRo(2),
(2.38)
(z € C\ [0,2d], t2G(2)% # 1).
2. 0ac(h) =1[0,2d].
3. If il}% g(x) > 1/t, the equation t2§(2)? = 1 has two real solutions ey < 0
and 2d — eg, which are simple eigenvalues of h; otherwise, op(h) = 0.
Using this representation in Eq. (2.8) (in this case, J = 1), one finds that

the wave operators have the form WL =1 — K., where uKu* are integral
operators in Lo(T%) @ Lo(T?) with 2 x 2-matrix kernels

t(2m)~@
w(k) —w(k") £i0

The S-matrix acquires the form S = 1+ T with u7Tu* having the generalized
kernel

Ki(k,K) = (01 + tg(w(k') Fi0)ag) . (2.39)

i5(w(k) — w(k)
(27)d—1

t(k, k) (o1 + tg(w(k') +i0)og) L. (2.40)
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3. Quasi-free Fermion models

3.1. The algebra of observables, the C*-dynamics and the
reference state

We consider the physical situation described in the Introduction, with r
reservoirs of free Fermi gases at equilibrium, coupled via a tunneling junction
with a sample consisting of free Fermi particles with a finite-dimensional one-
particle state space. The dynamics is supposed quasi-free, specified by the
one-particle Hamiltonian h = h° 4 v, fulfilling the assumptions of Sec. 2.
This subsection is devoted to a precise definition of the quantum system
under consideration. We use the notation of subsections 2.1., 2.2..

We start with defining the C*-dynamical system:

Let .7:(7'((1)) be the antisymmetric Fock space over the one-particle space
of Assumption 2.1, and denote a*(f)/a(f) the usual creation/annihilation
operators of one particle in the state f € H1); a*(f) is linear and a(f)
is antilinear with respect with f € H®W. The following anticommutation
relations hold: for f,g € HW

Y

{a(f);al9)} ={a"(f),a"(9)} = 0, {a(f),a*(9)} = (f,9)-  (3.1)

It follows that [|a(f)|| = [[a*(f)|| = ||f|l- The norm-closed operator algebra
generated by them, denoted CAR(H™M) (called the the algebra of canonical
anticommutation relations), is taken as the algebra of local observables of the
system. As an instance, we shall consider elements in C AR(H(!)) which are
the second quantization of one-particle operators: for a trace-class operator
a acting in H() with canonical form a = > sk(frs )9k (where si are the
singular values of a), dI'(a) = . spa*(gr)a(fr) € CAR(HW).

The one-particle Hamiltonians k" and h define two (strongly continuous)
groups of automorphisms of C’AR('H(l)) (corresponding to the uncoupled
and coupled dynamics, respectively) by

ol (@*(f)) = d* (€™ f), (@ (f)) = d*(eM ). (3.2)
Also, let ¢? denote the gauge automorphism group of CAR(H), i.e.
¢ (a*(f)) = a* (e ). (3.3)

Corresponding to the decomposition HM) = qul) o (EB;leEl)), one can de-
fine gauge automorphisms ¢; (i = 1,...,7), ¢g of the kinematical algebras
CAR(HZO)) (t=1,..,71), CAR(HES})) of the reservoirs and of the sample.
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The states of the system are positive linear functionals w : CAR(HM) — C

of norm ||w|| = w(1) = 1. A state w is gauge invariant (i.e. wo ¢’ = w) if,
n m

and only if, w([] a*(g:) [] a(fi)) =0, ¥n # m. For any state w, the formula
i=1 i=1

w(a*(g)a(f)) = (9, pu f) (3.4)

defines a self-adjoint operator 0 < p,, < 1 on H(), called its density operator.

Given p self-adjoint with 0 < p < 1, there exists a unique quasi-free, gauge-
invariant state w, with density operator p. The higher order expectations
are expressed in this state w, by

wp(a™(gm)...a*(g1)a(f1)...a(fn)) = Omn det {(fi, pg;)}- (3.5)

If the initial state w® of our system is quasi-free and o!-invariant, what hap-
pens if its density operator p commutes with A%, its evolution w? under the
perturbed dynamics 7! is likewise a quasi-free state with density operator:

—ith0 eith]* po e—itho oith. (3.6)

9

t_
p=le
indeed, using the a’-invariance of w°,

w'(a*(g)a(f)) = (r*(a*(9)a(f))) = w’(a " o T(a*(g)a(f))) =

— wO(a*(e—ithoeithg)a(e—ithoeithf)) _ (e—ithoeithg,poe—ithoeithf)‘

The initial state is taken as a product state w® = wg® (®!_,w;), where w; are
the equilibrium states of two lattice free Fermi gases with one-particle state
spaces 'Hgl)
the isolated sample.

and one-particle Hamiltonians h; and wg is an invariant state of

It is well-known [4] that, at given values of the temperature S~! > 0 and
chemical potential 1 € R, a free Fermi gas has a unique equilibrium state: it
is the gauge-invariant quasi-free state with density operator fg ,(h), where
h is the one-particle Hamiltonian, and fs , is the Fermi-Dirac function:

1

71 1 eBlz—p) (3.7)

fou(@)

This defines in particular the initial states of the reservoirs w;.

3.2. Convergence to the NESS and currents

We present here the main results of [2| within the framework defined by
Assumptions 2.1-2.3. As with our assumptions no regularization is necessary,
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the proof can be made considerably more transparent, so we shall sketch the
argument for reader’s convenience.

As all states involved are quasi-free and gauge-invariant, it is sufficient, in
view of Eq. (3.5), to establish the convergence of the state on elements of
the form a(g)a*(f). This means to calculate the limit density operator as a
weak limit of the density operators p’.

As shown in Sec. 2, H() = H,.(h) @ Hp(h), with H,(h) finite-dimensional.
Let Pjc, P, denote the corresponding orthogonal projections. We calculate
the density operator:

T
pi =), lim (/1) [ gl 38)

For f € Hac(h), we have, in view of Eq. (3.6)

Y

: te O/
tl}Toop F=W-pWZf

because , liJlZl e_ithoeithf = WZ* f exists. On the other hand, if f € Hy(h),
— T 00

it is a finite combination of eigenvectors, so, we can suppose that f is an
eigenvector of h with eigenvalue e,

(W)t liJlZl Pyee™th p0cith £ — (w) 1121 Pyeith=e) (P°f)=0

t—

by the Riemann-Lebesgue lemma, while, for any eigenvector g of h with
eigenvalue €/,

T—+o0 T—+o0

T T
lim (1/T)/ (9,p'f)dt = lim (1/T)/ "= (g, 0 f)dt = Ge.or (g, 0" f).

0 0
In summary,
PROPOSITION 3.1 The following limit exists for A € CAR(HW)

T
lim (1/T) / WHA)AE = w, (A) (3.9)
T——+o0 0
and is the quasi-free gauge invariant state of density operator
pr =W_p"W+ > PP, (3.10)
ecop(h)

where P, 1s the projection onto the eigenspace of h corresponding to the eigen-
value e. Thereby, the restriction of wy to CAR(Hac(h)) is the quasi-free state
of density W_p W*, and we have

lim w'(A) =w,(A), A€ CAR(Hac(h)). (3.11)

t——+o00



32 N. ANGELESCU et al.

Clearly, the state w, is 7'-invariant, in particular, for any trace-class operator
a on HW, Lwi(r'(dl(a))) = 0, implying that tr(p4[h,a]) = 0. However,
if @ is not a trace-class operator (but py[h,a] is trace-class), it may happen
that tr(p[h,a]) # 0. This is the case for the extensive conserved charges of
the isolated reservoirs, and it expresses the existence of the steady currents
in the NESS w constructed above.

Each of the reservoirs R; has two conserved quantities, the energy and the
particle number, which correspond formally to dI'(hoP;) and dI'(F;), where P,
is the projection of HD onto Hgl). This is expressed by the invariance of their
equilibrium states w; under the dynamical and gauge automorphism groups,
al and ¢f, of the isolated reservoirs. The energy and particle currents from
the reservoirs R; is calculated as the w,i-expectation of the corresponding
fluxes I; on = dU(—ilh, h°P}]) = dT(—i[v, hi°P;]) and I; part = dU(—i[h, P}]) =
dl'(—i[v, P;]), respectively. Remark that, because v is a finite range operator,
the commutators are trace-class in H(®), so the proposition 3.1 applies. As
P.h = hP, = eP,., the sum over the point spectrum in Eq. (3.10) does not
contribute to any of the two currents J = w4 (). Hence,

ProproSITION 3.2 The energy and particle currents from the reservoirs R;
are calculated according to the formulas

Jien = —tr(pTiv,hoB]) = —tr(W_p"WZiv, hoP;)),
(3.12)
T = (ot ) = (W Wiy, PY).

We shall next bring formulas (3.12) to a form, known as Landauer-Biittiker
formulas, which make clear that the currents depend in fact only on the on-
shell T-matrix T,,. We start with a statement |2] relative to a larger class of
conserved reservoir observables.

PROPOSITION 3.3 Let a be a bounded self-adjoint operator in Hé?(ho) com-
muting with h°, so that, in the representation of Remark 2.1, UaU* =
f@ a(x)dx, with a(z) bounded self-adjoint operators in KCy. We denote a =
JaJ* its counterpart in H. Let

J(a) == wi(dL(=i[h, a])) = —tryg,, ) (W_p"W*i[h, a]) (3.13)

be the "current” associated to a. Then,

J(a) = — / e {p0(@)[a(@) Ty + Ta(z) + T;a(a:)Tx]};i—: (3.14)
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Proof. The equality in Eq. (3.13), meaning that the sum over the point
spectrum of A in Eq. (3.10) vanishes, is shown in the same way as for Eq.
(3.12).

As, by Assumption 2.2, v = J7*I* + I7J*, the commutator in the r.h.s. of
(3.13) equals [h,a] = [v,a] = ITaJ* — JaT*I*, which has finite-range. Using
the permutation invariance of the trace,

tryg,. (n) (W p"W[v,a]) = tryc(Up W v, a] W_U¥).

We show that the operator under trace is an integral operator on K, i.e. of
the form K¢ (z) = [dyk(z,y)¥(y), where k(z,y) : K, — K, are continuous,
trace-class-operator valued functions. Therefore, the trace can be calculated
as [ datri, k(z,x).

To this aim, we factorize the two terms of the commutator as
UWH*v,a)W_U* = (UW*ITU*)(UaU*)(UJ*W_U*)
—(UW*JU*(UaU*)(UT*I*W_U™).

Remembering the representation of 7,7* in Remark 2.1 and the expressions
(2.14), (2.15) of W_, WZ* | the generalized kernels of the operators in brackets
are

(UW*JU)(z,y) =6z —y)+ (y —z+ iO)_lT;RCH(x —i0)7y;

(UTW_U*)(x,y) = 6(z — y) + (x — y — i0) "' 75 Regr (y + 10)7;
(UW*ITU*)(2,y) = —7; Regt(x — 10)7;
(Ut I'W_U")(x,y) = —7, Regt (y +10)7,,.

The kernel k(x,y) is obtained as the composition of the kernels of the factors.
The continuity with respect with x,y is a consequence of Assumption 2.2.
The diagonal k(z,z) equals

—7} Regt(x — 10)1a(x) + a(z)7) Rege (2 — 10) 7, —

— [da'7} Regr (z — 10)7La(x) 72 Regi (x + 10) 75 ¥
x[(z' — 2z —i0)"' — (2/ — x +i0)7]

= = [Tra(x) + a(z)Ty + Tra(x)Ty),

2mi

where we used the Sokhotski formula (z —i0)™' = P (1) + ind(x) and the
definition (2.13) of the T-matrix. Insertion of this calculation in Eq. (3.13)
gives Eq. (3.14). O
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We take now into account the decomposition 'H ( 0) = D, H . For an
energy € [emin, €max), we have Ky = @, K, ;; thereby, if = & I;, IC zi = {0}.
Accordingly, the operators under tri, in Eq. (3.14) have matrix representa-
tions. The density p°(x) is the diagonal matrix with p°(z);; = fs, ., (z) - 1.
Also, (Ty)i; = 2mi(7])zRer(x + 10)(7j)5, which vanishes for z ¢ I; N I;.
What concerns a(x), as we are interested in observables associated with
the isolated reservoirs, we suppose that its matrix has block-diagonal form:
a(z);j = d; ja;(z). In this case,

tric, {°(@)[a(@) T + Ta(z) + Tra(2)Tp]} =
T s
Zl Soi (@)trie, {ai(@)(Te)i + (T7)iaai(x) + Z( )i (2)(Te)ji}-
1= :
(3.15)
This can be further simplified using the unitarity of the S-matrix:
(Ty)ii T*”+Z )i (T): =0
and the permutation invariance of the trace, whence
r
> S (@)trie, {ai (@) (Te )i + (T7)iiai(x) }
i=1
T T
== Zlfﬁi,m (z)tric, ; {ai(z) Z (T2)i 4 (T7)ji
1= :
T
= - Zlfﬁj,uj( )tricm{Z( 2 )i (@)(T)ji-
]:

Hence,

COROLLARY 3.1 For a self-adjoint operator a in H&?(ho) such that a(x); ; =
i jai(x), Ve,

0= 32 [l 0) = f W, Ao T T 310

1,j=1
Thereby, (T)i; # 0 only for x € I; N I;.

In particular, defining the transmission probability between reservoirs R; and

Rj as t; j(z) = trie, A(Te)ij (17 )54}

= 52 U ) = f,0, (@i (2)
(3.17)
Jipart = ;1 f[fﬁi,ﬂi (z) — fﬁj,uj (x)]t”(a;)
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3.3. Consequences for the model of Sec. 2.3

We specialize here to the case of two reservoirs (r = 2) of free lattice Fermi
gases described in Sec. 2.3. and draw a few conclusions about its behavior
as a function of the dimension of the lattices d; and of the wire length V.

e The currents, Eq. (3.17), are a sum of two currents, each obtained
when one of the two reservoirs is put in turn in the Fock state (cor-
responding to the density matrix fioo —oo(h;) = 0. One may consider
therefore only the particle current

Tt Bo) = [ Brulaltia(o). (3.18)
e The transmission probability
fa@) = [ dua®) [ dm BT ol
T4 (x) T4 (x)

has a resonant structure. In view of Eq. (2.33), one has to study the
energy dependence of the matrix element Reg(x +10); 5. By analytic
perturbation theory, as hg has simple eigenvalues ¢,,, the eigenvalues
Am(z), m = 1,.... N of heg(x + 10) are simple for sufficiently small
tunneling constant t. Let ©)(™)(z) be the corresponding eigenvectors;
then 1(™) (z) is the dual basis (i.e. (™ (x), ™) (x)) = 6. Hence,

N
Reg(z +i0)1,5 ~ Y (Am(2) — )" 0™ (@)ool (x).
m=1

To lowest order in ¢, A\p(z) ~ e — Niﬂtzg(x + i0) sin? g,,,, where
we used Eq. (2.28) and the explicit form (2.23) of the eigenvectors
w(m) at ¢ = 0, which puts into evidence "resonances" at =z = &, —
NLHtQ%g(:B +10) sin? gy, of "width" Niﬂtzgg(:ﬁ +10) sin? gyy,.

e The density profile
_ * _ 0 * 0 *
n(r) = wy(a*(6;)a(o,)) = Z(PeéT,p P.5y )+ (W6, p°WX6,) (3.19)

1s a sum over reservoirs of density profiles corresponding to the other
reservoir put in its Fock state (due to the block structure of p =

ZZEB pi). We calculate the second term of (3.19) with py = 0. We need
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therefore PLW*§,., where P; is the projection onto Hgl).

Eq. (2.15), we have

In view of

(UPWZ5,)(2) = =t (k)ay Resi(x — 10)1,1,
ifre{l,...N},
(UPIWZ6,)(x) = ¢ (k) + 29! (k)ay Re(x — 10)1,1 R (2 +10)
if r € Ly, and
(UP,W?*6,) () = t29" (k) oy Rest (z — i0)1,n Ro (2 4 i0) g

if r € Lo.

In particular, the density profile inside Ry (the initially void reservoir),
is given by

£ / Ak £5, 0 (1 (B)) |1 () Rt (w1 (K) — 10)1 2| Ba (w1 (K) +10)ay o[

It is to be remarked that, if do = 1 (which is the model of infinite leads
used in [6]), the density of transmitted particles has a nonzero limit
as r — oo; this seems improper for a reservoir, which is expected to
keep unchanged its "conserved charges" even after coupling it to other
reservoirs. For dy > 1, the density decays like |r|~! irrespective of dy
[14].

4. Quasi-free Boson models
4.1. The algebra of observables and the reference state

The kinematical C*-algebra of the model is the canonical commutation rela-
tion algebra CC'R(D) over a suitable subspace D € H(1| which is left invari-
ant by the one-particle evolution groups: exp (ith®)D = D, exp (ith)D = D.

CCR(D) is generated by the Weyl operators {W(f); f € D}, satisfying
W(HWIg) = e~ FIW(f + ). (4.1)

The defining equation (4.1) implies that W(0) = 1 and W(f) are unitaries
W(f)*W(f) = 1). According to a theorem by Slawny, such a C*-algebra
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is unique up to an isomorphism; in particular, it can be shown (using the
well-known Fock representation) that [|[W(f) — 1|| > v/2 for f # 0, implying
that the application f — W(f) cannot be norm-continuous [13].

To any state w on CCR(D) a function E : D — C is associated by

E(f) =wWV(f)), (4.2)

named its generating functional. E satisfies: (i) normalization: E(0) = 1,
(ii) unitarity: E(f) = E(—f), and (iii) positivity:

> uwE(fi - fie 2SUnfidz >0, Yn,Vz € C, fi € D(i=1,...,n).

1,7=1

Conversely, any E with these properties defines a unique state by Eq. (4.2).
Therefore, in describing the initial and evolved states of our model, it will be
sufficient to specify the corresponding generating functionals.

A state w is quasi-free if, and only if, E has the particular form

B(f) = exp (WIR(, ) — 1QUF. ). (4.3

where [ € D' is a linear form and Q(-,-) > 1 a quadratic form on D x D.
Quasi-free states w are regular, i.e. in the associated GNS representation 7,
for any f € D, the unitary group R 3 t — m,(W(tf)) is weakly continuous.
Hence, Vf € D, there exist self-adjoint operators ¢(f) "field operators",
such that w,(W(tf)) = exp (itp(f)). The fields ¢(f) are real-linear functions
of f. In terms of the fields ¢(f) one can define creation and annihilation
operators by a*(f) = 27Y2(o(f) — ip(if)), a(f) = 272((f) + ip(if))-

Then, denoting €, the cyclic vector of 7, one has the following

PROPOSITION 4.1 In a quasi-free state with generating functional (4.3), €,
is in the domain of all powers of a*(f), f € D, and the following relations
hold:

(Qu,a™(f) ) = (Q, a(f)) = ({1, f),
(4.4)

(€, a*(g9)a(f)2w) — (R, a™(9)20) (R, a(f)Q) = Q(f, 9);

all other truncated expectations vanish.

The time evolutions af, 7¢, for the uncoupled, respectively, coupled reservoirs
and sample are the groups of Bogoliubov automorphisms on CCR(D) defined
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by their action on W(f):

o (W(f)) = W(e"tf),
(4.5)
THOV(S)) = W(et f).

In view of the canonical commutation relations (4.1), Eq. (4.5) is sufficient to
uniquely define the action of 78 on all elements of CCR(D). By the remark
above, the two automorphism groups are not strongly continuous. However,
in a quasi-free representation they are implemented by weakly continuous
unitary groups. Moreover, the evolution of a quasi-free initial state under
a dynamics of the form (4.5) is likewise quasi-free. This means that the
evolved state at time ¢t > 0 of Boson systems, which, at ¢ = 0, were in a
quasi-free state, is uniquely determined by the evolved one-point and two-
point functions, i.e. by (I, f) = (I,e f) and Q;(f,g9) = Qe f,el’g). In
this respect, their study parallels the study of Fermi systems in the previ-
ous section and the counterpart of proposition 3.1 holds true. There appear,
however, subtleties related to the choice of the initial (reference) state; in par-
ticular, unlike in the Fermi case, the domain D (i.e. the kinematical algebra
CCR(D)) depends on the reference state. In order to keep the exposition at
a reasonable level of complexity, we shall explain them only for the model in
Sec. 2.4., i.e. direct tunneling between reservoirs on Z¢ with no intermediate
sample. The consideration of the general frame (given by assumptions 2.1

2.3, supplemented with special requirements about the existence of a density
of energy levels in the infinite volume limit) is left for another publication.

The equilibrium states of a free Bose gas are quasi-free; they have been stud-
ied in detail in the literature |[4]. The peculiarity of the free Bose gas is that,
under certain conditions, it shows a phase transition at low temperature
and high density. It happens that, in the multi-phase region, the canoni-
cal and grand-canonical are inequivalent. As we are interested in particle
flows between reservoirs, it is natural to use the canonical description for the
reservoirs.

We remind below the expressions of the generating functionals for the canon-
ical equilibrium states for our model of reservoir, obtained by an easy adap-
tation of the derivation by Cannon [4], [11] for the continuum Bose gas.

We start by describing one reservoir R, consisting of a free lattice Bose gas
living on Z%.
Let 3, p be fixed positive numbers and define:

1
per(B) = (27)~ / % < oo, (4.6)

¢
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where w(k) is the dispersion law Eq. (2.20). As w(k) ~ 1|k|? around its
minimum at k = 0, one has that pe () is finite for d > 3 and is infinite for
d=1,2.

For p < pe:(B), the fugacity z is defined to be the unique solution z(3, p) of
the equation

_ —-d [  d
p= (27T) /eﬁw(k) . Zd ka
Td

while, for p > pe;(83), put z(3, p) = 1. The momentum distribution for k # 0
at the given [, p is proportional to

(k) = eﬁw(’;(éjf()ﬂ,p)’ (4.7

while the condensate density is given by
po = max{0, p — per(B)}. (4.8)

Then, the generating functional of the canonical equilibrium state at 3, p is
given by the formula

i
1

Eaalf) =0 { 5(0h.n5u0) f 220 | WHO)D. - (49

where wu is the Fourier transform and Jy is the Bessel function.

For p < per(0), the canonical state defined by Eq. (4.9) is extremal, however,
if per(B) < 00 and p > per (), it has a nontrivial decomposition into extremal
states indexed by a phase e'?:

2
Eso(f) = (2m)! /0 EY (f)d6, (4.10)
where
2 uwf,ng,u i .
5, 1) = exp { I - Lm0t D) S o). @)

Thereby, the test function space D should be chosen such that the function-
als (4.11) are well defined for f € D, e.g. taking D = I'(Z%) would suffice.
Indeed, with this choice uf is continuous on T?, ensuring both the integra-
bility of ng,|uf|? and the existence of (uf)(0). We shall impose, however
a stronger condition ensuring that uf is Holder-continuous, and take D as
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the space I1(Z%; |x|¢) for some € > 0, consisting of functions f : Z¢ — C for
which [|fllp := 3 [a||fz] < oo

z€Z4

Using the matrix notation associated with the direct sum H) = 'Hgl) EBHS),
we take f = f1 @ fo € D1 @ Dy (where D; are copies of D) and the initial
state w” as a product of canonical equilibrium states of R; at temperatures
B and densities p; (i = 1,2), respectively:

wo(w(f)) = EO(f) = Ep,p (fl)Eﬁzuﬂz (f2), (4.12)

where Eg, ,, (f;) are arbitrary mixtures (with probability measures dj1,2(61,2))
of the extremal state generating functionals (4.11). Denoting pg; the con-
densate densities in R; and

. n 0 ~ —i —i
fip = < ﬁ(l)vpl > , Po(61,62) = (\/2po1e™ ™ \/2poae7 ), (4.13)

NBs,p2

we have

Eo(f) = / dn (01)dpa (02) EE (), (4.14)

where

E81792(f) = exp {_Hsz _ (uf, o uf) _ i

4 2 (2m)d/2

m(ﬁowl,@)(uf)(o»}.

(4.15)
In particular, the canonical states (4.9) are obtained for dy;(#) = (2r)~'dé.

4.2. The approach to, and properties of, the NESS

We are interested in the time evolution of an initial state w” as defined by
Eq. (4.14) (which is o!-invariant) under the coupled dynamics 7%, Eq. (4.5).
We have

WEOWV(f)) = L W(exp (ith) f) = w®(W(exp (—ith®) exp (ith) f).  (4.16)

Using the analysis done in Sec. 2.4., we obtain the following convergence
result, which defines the stationary state.

PROPOSITION 4.2 Under the condition above, the following limit exists and
defines a quasi-free invariant state wgat: Vf € D,

T

lim / W W)t = Egai(f). (4.17)

T—oo T
0
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Corresponding to the decomposition (4.14) of the initial state,

Egat (f) = /dﬂl(el)dﬂ2(02)Esetlz;t02(f)a (4.18)

where

B (F) = BQW (W2 Pac F) B (B f). (4.19)

Thereby, the limit in mean is necessary only for the contribution of the
point spectrum, i.e. for f = P..f, the limit tlim WTOW(f)) exists and equals
— 00

fd,u1 91 d/LQ(@Q) 91,02(W* acf)

Proof. We isolate, in the quadratic and linear forms appearing at the expo-
nent in Eel’ez( ‘htf) the terms which do not depend on P,.f, i.e. T,(t) :=

— 3P fIP = 5(ue™ Py f,fig ue Py f) — i(2) 73/ *R(po(61, 02) (ue™ By f)( ))-
The t- dependence of Tp,(t) comes from exponentials of the form e¢0?, ei(2d—co)t

and el2(d=€0)t  where ey, 2d — e are the two eigenvalues of h. Therefore,

T
er(® is an almost-periodic function, what ensures that Thm %feTP(t)dt =

E?;)’ez(pr) exists. Remark that (P, f), decays exponentially as r — oo,

therefore, if f € D, Paef € D as well. Hence, de(x)(uPacf)(k)dux(k) is

Holder continuous of x, therefore, by the Privalov theorem [7],

(UuWZPac [)(k) = (uPacf)(k)—
P YR (4.20)
- (er)d (0'1 + tf](w(k‘ 10 0'0 f']rd wu(k/acfw((k 110

is likewise Holder continuous of w(k) and, as such, belongs to the domain of
Eg”%. By an analysis like that in the proof of Proposition 3.1, the remaining

terms have (usual) limits as ¢ — oo, which proves the assertion. U

In view of the explicit forms (4.15) of the functionals Egl’ez, Proposition 4.2
provides a detailed description of the stationary state and allows the calcu-
lation of various quantities of physical interest.

We report below the analytic results for the energy and particle currents.
We point out that, like in the Fermi case, the point spectrum of h gives no
contribution to the currents and the contribution of the absolutely continu-
ous spectrum may be expressed in terms of the S-matrix alone (Landauer-
Biittiker-like formula). We shall not repeat here the proof of the latter,
but perform the direct calculation based on Eq. (4.19). Thereby, if d > 3,
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we suppose, for simplicity, that we are in the weak coupling regime, where
op(h) = 0.

In calculating the currents between pure phases of the reservoirs, we take ad-
vantage that the initial state, being a product of extremal equilibrium states,
can be approximated by finite-volume states (possibly with weak symmetry-
breaking perturbations), what allows to substantiate expressions (of the cur-
rents from a reservoir in an extremal state) similar to those in the Fermi case
[1]. As a preparation, we calculate, using Eq. (4.20), W* f for a few local
functions f appearing in these expressions:

e For (63)r = do.r < L

0 > and 58 defined analogously for the second reservoir,

(P W2G5) ) = s {0y = 19(0(8) — 0) (o0 + #a(lh) — 0)) )}

where P; projects onto the reservoir j and we used the definition (2.37) of g;

1
e For (h(l))r = (d5x,0 - %5|m|,1) ( 0 >=

(UPijh(l))(k) = W {w(k)dj1—
~t[(o1 + tg(w(k) —i0)) ;1 [L +w(k)g(w(k) —i0)]} .
PROPOSITION 4.3 In the direct tunneling model of Section 2.4, the currents

. . . 61,0 i .y
flowing from Ry in the stationary state wg,” arising from extremal initial
states are given by:

1. The particle current:

Thart(01,02) = 263w (0l (W* (8))ao (W (63))
2% ) —i0)
= @ne JECRAE) T 23(w(k) — 10))22

2t \/po1poz .
@1 gy %

+

2. The energy current:
Jh(01,05) = 2tSwyb % (af(WE (hd))ao (W (63)))

2 w(k)Sg(w(k) —1i0
= o 9 ) T

Several remarks are in order:
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If both reservoirs are condensed, i.e. pg1, and pg2 are both different from
zero, the particle current shows a peculiar dependence on the phase difference.
This is not true for the energy current, where the second term, coming from
the expectations of the creation/annihilation operators does not contribute
(as expected, as the k = 0 states carry no energy). Also, if pg1p02 # 0 and
f1 = B2, then ni(k) = na(k), in which case the integral terms in the currents,
representing the contribution of the excited states, vanish, therefore particles
are exchanged only between the k = 0 states, and there is no energy flow.

In order to obtain the currents in the canonical state, we have still to integrate
the expressions of the currents over the phases 6; of the two condensates.
This has the effect that the particle currents between the k£ = 0 states are
averaged out, and only the first term in the expression of the particle current
survives. In particular, there is no current if the temperatures are equal and
either p1 = p2 < per(B), or both densities are overcritical (irrespective of
their values).

As a matter of fact, Proposition 4.3 implies that the presence of the con-
densates in the reservoirs has little influence on the currents, as long as one
considers non-symmetry-breaking states. We conjecture that this holds true
for more general junctions.
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1. Introduction

Many nonlinear kinetic equations for complex systems appear as generaliza-
tion of the classical Boltzmann equation (see, e.g. [4]). The last years have
been marked by an increased interest in the mathematical properties of such
models. This can be explained by various applications not only in physics,
astrophysics and chemistry (e.g. studies of simple and complex/reacting flu-
ids, granular media, coagulation-fragmentation, formation of planetary rings,
galaxy collision) but also in modeling evolution processes in immunology,
traffic flow, communication networks, etc.

In many situations, the above equations are phenomenological or microscopic
models that describe the evolution of various populations (macroscopic sys-
tems) of many well individualized, objects (e.g. rarefied gas particles, cells
networks signals etc.) interacting among themselves. The interactions are
(localized) microscopic processes: a) any interaction has a very short du-
ration, with respect to the time-scale of the macroscopic evolution; b) the
number of partners of any interaction is very small, with respect to the total
number of the components of the population. Depending on the model, an in-
teraction may change the state, nature and/or the number of the participants
in interaction. This may result in modifications of the values of the physical
quantities characterizing the states of the interacting objects. However, such
modifications must be consistent with certain balance laws (e.g. conservation
/dissipation laws ) imposed by the peculiarities of the microscopic processes.

The problem of the existence and uniqueness of solutions of the above models
is not only of an academic interest. Indeed, good criteria for the existence of
general solutions and a detailed study of the properties of the solutions can
be particularly useful in obtaining effective convergent numerical schemes for
the models.

The above models present some mathematical properties, similar to those of
the classical Boltzmann equation, in particular similar monotonicity proper-
ties (with respect to the order). This made possible to extend nontrivially
monotonicity methods, initially introduced for the classical Boltzmann equa-
tion, [2] (see also [28]) to study these models [18], [27], [9], [7]. Recently
the ideas of |2] and [28]) have been reconsidered nontrivially within a more
general, abstract framework, [11], [12], [13]. The present work is a survey
of the recent progress in the domain, and includes five sections and an Ap-
pendix. This Introduction is the first Section. The next Section, is a brief
presentation, at formal level, of some relevant examples of Boltzmann models
for complex systems. In Section 3, we introduce a class of abstract evolution
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problems, as a generalization of the examples considered in Section 2. Then
we develop the general existence theory based on monotonicity arguments.
Section 4 is devoted to applications. Finally, Section 5 contains conclusions
and open problems.

2. Boltzmann-like kinetic models

In this section we present several nonlinear models with nonlinear singulari-
ties, that exhibit similar isotonicity properties. In very general terms, these
equations are essentially described by nonlinear evolution equations of the
form

S oarranf, >0 2.)

formulated in the positive cone of some suitable ordered function space X,
usually an ordered Banach space. The unknown f = f(t) characterizes the
state of the macroscopic system at time t. The two terms of the r.h.s. of
Eq.(2.1), Af (possibly A =0) and Q(t, f) describe the free motion and the
contribution of the interaction processes, respectively. From a mathematical
point of view, A is the generator of a evolution linear group in X, while
Q(t,-) is a nonlinear integral operator.

In many situations, we can write Q(¢,-) = Q1 (¢,) — Q™ (¢,-), where Q™ (t,")
and Q~(t,-) are positive and isotone with respect to the order of X. More-

over, QT (t,-) and Q (¢, -) satisfy certain relations -macroscopic balance laws-
determined by the microscopic balance properties.

In this work we are interested in solving the initial value problem (i.v.p.) for
Eq.(2.1), which can take various formulations, depending on the model.

2.1. Smoluchowski’s coagulation equation

Smoluchowski’s coagulation equation, [21, 25] (see also, e.g., [1], for a recent
review), describes the irreversible evolution of particles that may coalesce
into larger clusters. The continuous version of the Smoluchowski’s equation
reads

SF=QUn=Qr) - @ () 2.2)
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for the unknown f(t,y) > 0, the density of clusters of size y € Ry := [0, 00)
at time ¢ > 0. Here

+ 1 v
Q- (9)y) =35 /0 QY = Ve Y2)9(Y — Ys) 9 (Y5 ) Ay, (2.3)
Q@) = 9tw) | " 4,909y, (2.4)

with the (coagulation) kernel ¢ : Ry x Ry +— R, a symmetric, measurable
function.

We assume that there exist the constants ¢gg,¢1 > 0 and 0 < o < 3, such
that

a(y, ) < g0+ a1 (¥ y? +v%yY)  (y,y. > 0), (2.5)

where
a+ 0 <1, (2.6)

Condition (2.5) includes the case when either ¢g = 0 or ¢ = 0. Without
loss of generality, we can assume that ¢; > 0 (indeed the situation when ¢
is bounded by a constant can be considered as a particularization of (2.5) to
the case where ¢; > 0 and a = = 0).

The following property of the Smoluchowski’s model is essential for our anal-
ysis. Formally, if g,¢ : R4 — R are measurable, then

/OOO ¥(y) [QF (9)(y) — Qs (9)(w)] dy =

= %/000 /000 Dy, y=)a(y, y=)9() g (v )dydys, (2.7)

(provided that the integrals exist), where

V(Y yx) = Py +ys) — Y(y) — P(y«). (2.8)

Property (2.7) follows from the change of variables (y,y«) — (¥ — yx, yx) in
the first term of the L.h.s. of (2.7), and then applying Fubini’s theorem.

In particular, if ¢¥(y) =y in (2.7), then

/0  Qulg)w)ydy = 0. (2.9)

This gives formally the mass conservation for Eq. (2.2).
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Similar considerations as before can be made for the discrete version of the
Smoluchowski equation

j—1 00
¢ = %ZQj_hk(c(t)) =N Qike), (0) = >0 (G=1,2,..),
k=1 k=1

(2.10)
where Q; x(c) := q(k, j)cicj, is defined by the same symmetric coagulation
kernel introduced before, subject to (2.5), (2.6), and the component ¢;(t) > 0
of ¢(t) := (¢;(t)) is interpreted as the concentration of clusters of size j at
time ¢ > 0.

2.2. Povzner-like model with dissipative collisions

The model describes a rarefied mono-component fluid of particles of unit
mass, evolving in the free space with dissipative (conservative) binary colli-
sions, i.e., collisions resulting in the loss (conservation) of the kinetic energy
of the encounters.

According to the model, [7], the post-collision velocities v/, w’ are related to
the pre-collision velocities v and w by

v=v-(1-8m){v-—wnn w =w+(l-p8mn)(v—w,n)n, (2.11)

where (-,-) is the Euclidean product in R? and n € Q - the unit sphere in R3,
Here, 5: Q — [0,1/2) is a given measurable function. The total momentum
is conserved in collisions, v/ +w’ = v + w, but the kinetic energy is lost

V2w = v 4w = 28m)(1 - Bm) |[(v —w,n)?,  (2.12)

excepting the case 8 = 0, when the collisions become elastic.

For each fixed n € Q, the transformation R x R3 3 (v, w) — (v/,w') €
R? x R3 is invertible. The inversion formulae are

G=v— (Lﬂ(m) v —w,n)n, W% =w+ <1_7ﬂ(n)> (v — w,n)n.

1 —26(n) 1 —26(n)
(2.13)
Formally the above model reads
0
gif = v VRS Qi) —Qu(f) (2.14)

where f = f(t,x,v) is the one-particle distribution function, depending on
time ¢ > 0, position x €R3, and velocity v €R? of the so-called test particle,
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Q;{ and @), are the so-called nonlinear gain and loss operators, respectively,
and describe the influence of the collisions on the evolution of f. They are
formally given by

Q;( )(x,v) =
/ /QXR3 1 i ;’5_ ))>1‘:VP(T’ n)g(x,v)g(x +rn,w)dndw (2.15)

Q,(9)(x,v) = g(X,v)/0 dT/Qx]I@ |(n,v —w)|” P(r,n)g(x + rn, w)dndw,

(2.16)
respectively, where P : Ry X Q +— R, is a given measurable function with
P(r,n) = P(r,—n) assumed to satisfy

P(r,n) < cor? (r>0, n€), (2.17)

for some constants cg > 0, 0 < v < 1, and R > 0, specific to the collision
processes.

The basic property of the model is the formal identity

/]R3 Y(v) [QZIF(Q) -Qy (9)] dv =

~ WY
= / (v, w, v, w')MP(r, n)g(x,v)g(x +rn, w)dndvdw,
OxR3xR3

2
(2.18)
where 9 : R? — R and ¢ : R? x R? — R are measurable functions such that
(2.18) is well defined, and

(v, w, v, W) = (V) + (W) = p(v) — p(w), (2.19)

with v/ and w’ given by (2.11). We deduce easily (2.18), performing the
change of variable (v, w) — (0,) in the first term of the Lh.s (2.18).

If =0, then (2.14) yields a version of the so-called generalized Boltzmann
equation with binary elastic (conservative) collisions, analyzed in |3].

2.3. Povzner-like model with chemical reactions

We recall here a Povzner-like model with chemical reactions introduced in [8]
for a reacting gas mixture of N species A; and mass m;, 1 < i < N, without
interaction with photon fields. We assume binary reactions

Ai+Aj—>Ak+Al, 1<, 4, k, Il <N, (2.20)
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where case i = j = k = [ corresponds to non-reactive (elastic) processes.
According to the model of [8], for each species i, the gas particles have one
internal energy state, say E; > 0,1 < < N. It is assumed that the reactions
are consistent with the conservation of mass, momentum and total energy,
i.e., mj +mj = my +my, and m;v + m;w = myv’' + myw’, as well as

mp ’V/‘2 my ‘W/’2
+Ej=—1—+E+

v m P
milvP g mylwl my w'[?
2 2

E 2.21
2 2 + £y, ( )

where (v, w) are the pre-reaction velocities of the particles (4, 7) and (v/, w’)

are the post-reaction velocities of the particles (k,1)

The conservation relations give

/ /2 2

mpmy [V —w'|7 mym; |v —w]
2(my +ml) 2(mi +mj)

+Ei+Ej—E,—Ep = ty;;(v,w) (2.22)
and obviously, (2.20) occurs, provided that

thiij(v,w) > 0. (2.23)
It can be easily seen that (v/,w’) can be represented in terms of the pre-

reaction velocities (v, w) and of the unit vector n = (v
as

— W)V =W

, ‘ 91/2 (y \1/2
v = TV W 7 () thr,ij (v, W) = v i(v, W)
m; +mj my " (m; + m;)1/?
(2.24)
and
. , 91/2 1/2
w = TV W 3 i) tisig (V, w)'?0 = Wi (v, w,m)
m; + my my" (m; +m;j)1/?
(2.25)

It is convenient to extend the definitions of vy ;;(v, w,n) and wy ;;(v, w,n)

by setting N
m;v ij

Vil (Vs W, 1) = Wiy (v, W, n) = e (2.26)
whenever ty; ;;(v,w) < 0. By virtue of the above formulae one has
ViLij(V, W) = v (W, v,n) = wig (v, w, —n) (2.27)

and
Wiiii(V, W,n) = Wi (W, v,n) = vy (v, w, —n). (2.28)
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Each species 1 <+¢ < N is described by the one-particle distribution function
fi = fi(t,x,v) depending on time ¢ > 0, position x and velocity v.

Assuming molecular chaos and (instant) point localized reactions, the kinetic
model is derived following the original argument for the classical Boltzmann
equation. The obtained model reads, (8],

9
ot
where f = (f1,..., fn) and, formally,

Qi (9)(x,v) =

fi=—v - Vxfi+Q(f) = Q7 (f), 1<i<N, (2.29)

=D

N
Jokl

/ pkl,ij (y7 VvV, W, n)gk (t7 X, Vkl,ij)gl (tu X+ Y, Wkl,z])dyden7
— 1 JRIXR3xS?
(2.30)

Qi (9)(x,v) =

- >

N
/ ki (¥, V,W,n)g;(t,x,v)g;(t,x +y,w)dydwdn. (2.31)
=1 R3xR3x0

Here, g == (g1,...gx) with g; : R3 x R® — R,, Q := {n € R® : |n| =
1, gk (s VeLig) = k(s VeLii (Vs W), (s Wiig) = qi(c - Wi i5(v, w,m)).
Moreover, pgiij, kiij - R3xR3xR3x Q) — [0,00), are given measurable maps
with the property that if (v, w) & Dj;jx = {(v,w) € R3 xR : t;; (v, w) >
0}, then

pkl,ij(Y7 vV, w,n) = rkl,ij(yv v,w,n) =0. (2.32)

One assumes that the following properties are satisfied a.e.:
pkl,ij(Y7 vV, W, n) = Tkl,ij (y7 V,wW, n) =0 (y > R)7 (233)

pkl,ij(Y7 Vv, W, n) = pkl,ij(_Y7 Vv, W, n)7

rk:l,ij(Y7V7W7n) = Tkl,ij(_yavuw7n)7 (234)
pkl,ij(Y7 VvV, W, l’l) = pkl,ji(Y7 W, V, l’l) = plk,ij(Y7 VvV, W, —Il), (235)
Tk, (Y, V, W, ) = 71 55(y, W, v, n) = 1y, (y, v, W, —n). (2.36)

Moreover,

/ O(v, W)Dk1,i5 (¥, V, W, 0) (Vi ij, Wiy i5)dvdwdn =
R3xR3xQ
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= / ©(Vijkl, Wijkt)Tij,k1 (Y, V, W, n) (v, w)dvdwdn (2.37)
R3xR3x)

for all (1, ¢) : R3xR3 — R, provided that whichever side of (2.37) is defined.

The kernels prg i, Thiij R3 x R3 x 2 — [0,00) carry the information of the
reaction processes. For a gas composed by one species of particles with elastic
collisions, the above system of equations reduces to the so-called generalized
Boltzmann equation.

Our main hypothesis is as follows:

Assumption 2.1 There exist constants cq > 0 and 0 < g <1 such that

q
/ k15 (y, v, w,n)dn < ¢4 [1 + |V|2 + |w|2 . (2.38)
Q

Observe that since 7y ;; and py;; are related by (2.37), then the above
hypothesis is also an implicit condition on py ;.

Under Assumption (2.38), one can show that, at least, formally,

N
x X, v) — Q). X,V)|h; (X, v)dvdx =
5 [, 0700 Qg vl viiva

N

1

=1 E /D[pkl,ij()’7vaw7n)gk (X, Vitij) g1 (X + Y, Wiiij)
7:7j7k7l:1

—7,i5 (¥, vV, W, n)g; (x,V)gj (x + y, w)]
X[hi(x,v) + hj(x +y, W) — hi(X, Viij) — hi(x +y, Wi i) dxdydvdwdn
(2.39)
for all g—(g1,...gn) and h—(hq,...hn), with g;, h; > 0, for which the integrals
are defined. Here, D := R? x R3 x R? x R? x Q. The last property follows
by applying (2.27), (2.28), (2.32) (2.37), as well as the invariance properties
of the sums in (2.39), with respect to the change of variables (x,y,n) —

(x',y’,n') :== (x +y,—y,—n), and a suitable interchanges of summation
indices.

At least, at formal level, property (2.39) implies the bulk conservation for
mass, momentum, and total energy,

N N
> / U (x, v) fi(t, %, v)dxdv = Y / U9 (x,v) £:(0, x, v)dxdv
i—1 Y R3xR3 =7 JR3xR?

(2.40)
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(0 < j <4), where f;(t) are the components of the solution f of Eq. (2.29),
and

\I/Z(O)(x, V) = my, \1'2(4)(x,v) =m; |v|2 /2+ E;, \I'Z(.j)(x, V) 1= mv;
(2.41)
(7 =1,2,3), with v; are the components of v.

2.4. A model with inelastic collisions and chemical reactions

In this example, we consider an abstract system of a Boltzmann-like phe-
nomenological equations, [9, 10, 14], for a multi-component reacting gas
of particles with internal states and discrete values of the internal energy.
Thinking a real gas mixture of particles with internal structure as a mixture
of several chemical species of mass points with unique internal state, one can
assume that any gas particle of the model has only one internal state. Specif-
ically, the model refers to a gas consisting of N chemical species. A particle
of species n = 1,2, ..., N is characterized by mass m,, > 0 and internal energy
FE,. Without loss of generality, one can assume that F, >0, 1 <n < N.
It is assumed that the chemical reactions are induced by inelastic (possibly)
multi-body, instant collisions. A reaction is identified with a couple («, 3) €
M x M, where M := {y = (7n)1<n<n | 7n € {0,1,..., K}} is a multi-index
set. Here a = (aq,...,ay) € M and 8 = (,...,0n) € M designate the
pre-collision and post-collision channels, respectively, with 0 < ay,, 6, < K
participants of species n; 1 < n < N. Any couple of the form (v,v) € MxM
is identified with a multi-body elastic collision with ~,, collision partners of
species n; 1 < n < N. The number of particles in some channel v € M is
lv] == Zfil ~i;. The family of chemical species participating in channel = is
denoted by N'(y) :=={i:v; >0,1<i< N}.

Let M., V,(w) and W, (w) denote the total mass, velocity of the mass center
and total energy, respectively, for the particles in channel v, i.e.,

N
My =Y yimi, (2.42)
i=1
1 Vi
V»Y(W) = ﬁ Z Zmiwi7j, (2.43)
VieN(y) j=1

Vi
Wo(w) = > > 2 'miw; + Ey), (2.44)

iEN(7) j=1
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where W = ((Wgi)ie{1,....ax} ke’ (y) TePresents the ensemble of velocities of
the particles in channel «. Then, the kinetic energy of the particles (with
velocities w) in channel ~, relative to the frame of the mass center, reads

Wirq(w) = Wy (w) — My Vo) V Z’)’z i (2.45)

Obviously, W, ,(w) > 0.
A gas reaction (a, 3) may take place only if it is consistent with the conser-

vation of mass, momentum and energy, i.e.,

M, = Mgz, Vy(w)=Vg(u), Wy(w)=Ws(u). (2.46)

We will assume here that elastic collisions are always present. Therefore, the
set Cpr := {(a, B) € M x M : M, = Mg} is nonempty.

The Boltzmann-like system of equations for the above model is

0 _
ofi = QF (N = Q7 (f). (247)

Here the unknown f; : R; x R3 — R, is the one particle distribution func-
tions f; = fi(t,v) (t-time, v-velocity) of the particles of species 1 < i < N.
In Eq. (2.47), QF (f) and Q; (f), with f := (f1,..., fn), are the so-called
loss and gain (nonlinear) operators for the particles of species i, respectively.
Formally,

Z & / [pﬁ,a(w,n)(gﬁ OU5,a)(W,n)] dw;dn,

a,BeM 3l 3% 02 Wi, =V

(2.48)

Z @ / [Tﬁ7a(W,n)9a(W)]Wm L,dwidn,  (2.49)
OC,BEM

R3|a\—3XQB

where

Vi
IT TToitwis), veMm, (2.50)

iEN(v) j=1

(1, is the unit sphere in R3=3 with v € M, and dw; is the Euclidean ele-
ment of area on {w eR3lel | Wi, = v}. Here, the functions ug ,, € C(R?"a‘ X
QQ;R?"B‘), and the measurable functions rg .. pga : R3lol Qg — R are
given.
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The following conditions are assumed (]9, 11, 14]):
(B1) r8,0 = PBo = O unless: |a] > 2, [8] > 2, (o, ) € Cpr, and w € D;a =

{Wl € R3\a| : W,«,a(W/) + g:(oéz - ﬁZ)EZ 2 0}.
i=1

(B2) For each i € N(«) fixed, pgo(w,n), rgo(w,n), and ug,(w) are in-
variant with respect to the interchange of the components w;1,...,w; o, of
w.

(Bs) If (o, 8) € Cpp, W € DEQ, then
(Vﬁ °© uﬁﬂ)(wv n) = Va(W), (Wﬁ o uﬁﬂ)(wv n) = Wa(w)v (2-51)

for all n € Qg, and

/ Pg,a(W,n)p(w,n)(1 oug,)(w,n)dwdn =
R3lalx Qg

_ / Fous(W,m)( 0 U g) (W, ) (w, m)dwdn,  (2.52)
R3I8I x Qg

for all » : R3lel — R and ¢ : R3Al — R, for which the integrals are well
defined.

We suppose that the reactions are reversible, i.e., if 75 o # 0 for some («, 3),
then also ro g # 0.

From (3.9), it follows that pg o and 73 , are related one to another. Indeed, a
more explicit relationship between pg, and rg, can be derived, as it results
from a general example constructed in |9, 14]. Note also here that if one
assumes a mono-component gas of particles with binary elastic collisions
(ie, N=1, K =2, and pgo = rgo = 0 unless a« = § = (1,1)), then Eq.
(2.47) reduces to the space homogeneous classical Boltzmann equation

0 _
Sr=Qrn-@ ), (2.53)
where
Q (N)(v) = / o(v, w,n) f(v') f(w')dwn, (2.54)
R3xQ
QO (H)(v) = / o(v, w,n) f(v) f(w)dwdn. (2.55)

R3xQ
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The notations are f = f(¢,v) the one-particle distribution function, v/ =
v—(v—w,n)n, w =w+ (v—w,n)n, and n € Q — the unit sphere in
R3. Here, the Boltzmann collision law ¢ is a positive measurable function
(depending, in our case, on v and w through the variable v — w).

The last condition of the model concerns the behavior of 75, (see [9]):

Assumption 2.2 There are some constants 0 < g <1 and ¢4 > 0 such that

vga(W) = /Q rgo(W,n)dn < ¢y (1 4+ Weo(w))? (we R ae), (2.56)
B

for all o, B € M.

Obviously, v q(w) = 0, unless (a, 3) € Cas.
A consequence of (By), (B2) and (2.56) is the key equality

N
> [ meiem - @wlav=0 0<jy, (@)
=1

for all g = (g1, ..., gn) with (1+|v|})*2g; € LY (R3;dv), i = 1,2, ..., N. Here,

\I/(O)(v) = my, \IJE4)(V) = %mi v|* + E;, \I'Z(])(v) =mv; (1 <i<N),
(2.58)

where v; is the j-component, j = 1,2,3, of v. Equality (2.57) implies, at lest

formally, the bulk conservation of mass, momentum and total energy.

2.5. A nonlinear von Neumann-Boltzmann equation

Besides classical models, we can also consider "quantum" kinetic models with
monotonicity properties similar to classical ones.

Let X = 7(H) be the space of trace class selfadjoint operators in some
separable Hilbert space H. On X, we consider the order FF < G iff (f, Ff) <
(f,Gf),¥Yf € D(F)ND(G). Let |F|| := Tr(|F|) be the norm on X.

For some orthogonal base {eg,e1,...} C H, define the selfadjoint operator

H=>" e )e;, (2.59)

1>0
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where {pin}n C R. Let {U'}icr denote the continuous group of positive
isometries on X, given by U!(F) := exp(—iHt)F exp(iHt), i = /—1. Con-
sider a second sequence, 0 < Mg < A1 < Ao < o A1 < Ay ... S 00, as

n — o0o. Let {Vt}po be the Cy semigroup on X, defined by

(€5, VI(F)ej) o= (VH(F))iy = exp[—(1+ Xidi )] Fy 5 (2.60)
where F;; := (e;, Fej), and let the infinitesimal generator of {Vt}t>0 be
denoted by (—A). Then -

(M) (F) := (1 + Xidij) Fij, (2.61)
hence A > I. Clearly, U! leaves D(A) N X invariant and U'A = AU! on
D(A) N X4

Now we can consider the following example of nonlinear von Neumann-
Boltzmann equation X (see also [12]):

i—lz +i[H, F] = QT (F) — Q™ (F) (2.62)

with Q* : D(A) C X — X given by

2
Q™ (F) = FooTe(AF)(D_ Py, (2.63)
i=0
and
QY (F):=Q(F)+ L(F), (2.64)
where P; := (e;,-)e; and
2
L(F) := FooTe(AF) (Y i P). (2.65)
i=0

Here, ¢ = E()\l — )\0)_1 ()\2 — )\0)_1, €1 = —E()\l — )\0)_1 ()\2 — )\1)_1, g9 =
M2 — X)) T2 =) tand 0 < e < (Mg — A1) (Mo — A2). Thus QF are
positive operators, and a simple computation gives

TrQ1(F) = TrQ™ (F) (2.66)
for 0 < F € D(A), and
Te(AQ™)(F) = Tr(AQ™)(F) (2.67)

for 0 < F € D(A?), so that both TrF(¢) and Tr(AF)(t) remain constant with
time.



60 CEcIL PoMPILIU GRUNFELD
3. General theory

3.1. A monotonicity result for the classical Boltzmann equa-
tion

Before proceeding to a more general analysis, we start with a relevant exam-
ple - the Arkeryd’s monotonicity result for the Boltzmann equation ([2]).

Specifically, in [2], the main interest is to solve the Cauchy problem for the
space homogeneous Boltzmann equation (2.47) in the positive cone L}F of

L' = LY(R3,dv), namely

CF=QU=Q N -Q (), FO)=foz0(>0) (31

with Q¥ defined by (2.54) and (2.55), respectively.
The basic hypothesis is that the collision kernel ¢ satisfies

q(v,w,m) < Cy(1+ [v[* + [wl') (0<A<2), (3.2)

for some constant Cy > 0. The initial data fj is supposed to satisfy (at least)
the condition of finite mass and energy, i.e. || fo|, < oo, where

2\ L
loll o= [ (4 v lg(v)] dv. (3.3)
Unfortunately, under condition (3.2), the operators QT are too singular to
allow for applying general methods to the above problem. The idea of [2]

is to approximate QT by collision-like operators Q. with bounded (hence
simpler) kernels g, (v, w) := min{q(v,w),m}, m =1,2,... .

Thus one starts by solving the simple model

P = QN = QhN - Qul), FO=fo(t20. (39

Note that, since (3.4) is a Boltzmann-type equation, then for "many" g € L',
[ #Qnigav=o (35

where po(v) = 1, ¢;i(v) = vi , i = 1,2,3, o4(v) = |[v]>. An immediate
consequence is that for any solution f = f(¢,v) of (3.4),

1£@®llo = llfollg (¢ > 0). (3.6)
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Moreover, if also || f(t)|l, < oo, then

£ @)z = 1l foll, - (3.7)

Writing the solution of (3.4) as f,,, one could hope that if m — oo, then
fm converges somehow to a solution of the original problem (3.1). Another
key point in the analysis is to use the above equalities as a priori estimates
in order to replace (3.4) with other (somehow equivalent) equations, more
suitable for monotone iteration with respect to the natural order of L.

Thus, one can first prove the following result (|2]).

PROPOSITION 3.1 There exists a unique non-negative solution f,(t,v) € L
of (3.4) for every 0 < fo € L.

Proof. By (3.6), the positive solutions (in L!) of (3.4) are exactly the positive
solutions of the equation

SFCUlyf = Qu(H)+ CIFWl f. FO) =fo (20, (39

which satisfy equality (3.6). Here C' > 0 is some constant. Let v(t) :=
exp(—C [|folly ). Since the operators Q% are locally Lipschitz in L, (3.8)
has a unique local solution f,,,(t), which is also a unique local solution to the
mild equation

f(t) = o) fo+ /0 v(t = 8)[Qm(f)(s) + Cllf(s)llg £(s)]ds. (3.9)

Define the sequence {f;,}, by

f=0, fo=0vt)fo+ /0 v(t = 8)[Q@m(fm)(s) + Cll fm(s)llo frm(s)]ds.
(3.10)

If C' is sufficiently large, then the operator X 3 g — Qn(g) + Clgllp9 € X
is positive. Then the sequence {f7(¢)}, is positive and increasing in L!. A
simple induction, making use of (3.5), gives [|f}1(t)ll; < |l follp- Then by
the monotone completeness of L' (Levi’s theorem) {f2(t)}, is convergent,
its limit ¢ (t) satisfies (3.9), and ||gm (¢)|ly < |/ follo- But by virtue of the
uniqueness of the aforementioned local solution f,,(¢) (of both (3.8) and
(3.9)), clearly g (t) = fim(t) > 0 for ¢ small enough. Moreover, g (¢) extends

fm(t), as the unique solution of (3.8), for all ¢ > 0. It remains to show that
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this solution satisfies (3.6). To this end, one integrates (3.8), with f,, as
solution, and rearrange conveniently the resulting expression as

fon+ /0 Qo) (8) + C [ follg Finls)]ds =

= ot /0 Q) (5) + C 1 fn(S) g Fim()]dls. (3.11)

As f(t), QE(fm)(t) > 0, invoking the additivity of the L' norm, and the
property || fm(t)|log < || follp, one finally obtains

t
0 < [l follo = l[fm(®)llg < C HfoHo/O (I follg = [[fm(s)llo)ds. (3.12)
Thus by Gronwall’s inequality,

[ fm(@®llg = l[follg, (£=0) (3.13)

so the proof is concluded. O

An induction involving (3.10), and making use of (3.5) also shows (|2]) that
if f,, is as in Prop. 3.1, and (14 |v|?)fo € L', then (1 + |v|*)fm € L', and

[ fm (@)l = [[folla (= 0). (3.14)

Another important property is the following estimation, uniform with respect
to m (see [2]): for any t. > 0,

[fm @l < Kl foll,  (0<t<t), =4, (3.15)

for some number 0 < K = K(t4, | folly,Cq,1). The proof (see the slightly
more general Prop. 1.3 of [2]) is inductive, and applies (3.10) and the basic
inequality

L0+ M Qufuay <

< gcqﬂl[ufm(t)”pr,\—e [ fm @)l + 1 fm@lli_g 1 fm )l xs0 (3.16)

valid for some 3 > 0 and for any 0 < 6 < 2. Inequality (3.16) follows (see,
e.g., [2]) from an elementary inequality due to Povzner, [23], and will be also
called Povzner inequality?.

One can prove that f,, converges to a solution of (3.1), under a stronger
condition on fy than in Prop. 3.1. Indeed, one has ([2])

2Povzner-like inequalities can be also proved for the models presented in the
previous sections.
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ProrosiTiON 3.2 If || fol|, < oo for some | > 4, then there exists a unique
solution f > 0 of problem (3.1) such that (1 + |v|')f(t) € L'. Moreover,
If@®)lls = llfolls (t > 0), and for any t, > 0, there is some number K =
K(tar ol 1) such that | £(0)), < K o, (0 <1t < 1)

Proof. Consider the equation,
d
/T =Qm(f), £(0)=fo(t=0), (3.17)

where h(v) == C(1+ [v[*) [ fo(v)]l, and Q%,(f) := Qm + hf.
If f,, is as in Prop. 3.1, but fy is as in Prop. 3.2, then f,, is also the unique
positive solution of Eq. (3.17), which satisfies (3.14). Further, consider

S FEhT = Q). F(0) = fo (+20), (3.18)
where Q% (f) = Qi(f) = Q~(f) + h.

Let V(t) := exp(—th). One can introduce recurrences similar to (3.10),

~, . ~ . t . ~ .
fit =0, fattt =V () fo +/ V(t—s)Qn(fr")(s)ds (n=1); i=a,b.
0
(3.19)
Under condition (3.2), if C' > 0 is sufficiently large, the operators Q! are

positive and isotone so that the sequences {J/”;,;m(t)} are positive and in-
n

creasing (i = a,b). Moreover, if 0 < (1+ |v|?)g € L', then Q% (g) > QP (g)
and Q% (g) > Q?(g) for all m, 0 < j < m. Using the above properties, one
finds by induction that

0< 5" < () < Frot) < ful); 0<j<m. (3.20)

Hence, the increasing sequences {J/”;,;m(t)} are convergent. Note that if
n

—~nb
we set f2(t) := limy oo fm (), then 0 < f2(t) < f5(t) < fm(t); 0 <
j <m. Then {f,lq’l(t)}n is increasing and Hffn(t)Hz < || folly, hence {fﬁl(t)}n
converges to some limit f(t), as m — oo, and

LF @2 < [ folly- (3.21)

Moreover,

%erhf:Q(f)Jrhf (3.22)
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and, by (3.15)

IF@Ol; < Kllfoll; (0<t<te), 1 >4 (3.23)

Thus f is a solution of (3.1) if there is equality in (3.21). This can be proved
by estimating s, := fm — f5(t). Indeed, as f,, is the solution of (3.17),
(3.18), one can write

%Sm + hsm = Qi (fm) = Qo (f1n)- (3.24)

A short computation, which takes advantage that s,, is non-negative, and
applies (3.23), gives (under hypothesis (3.2))

(@)l < €K [folly sup lsun(s)l; +o(1) (3.25)

as m — oo (with C' > 0 sufficiently large, and K, t, as in (3.23)).

Then for ¢ sufficiently small, |[s,,(t)||, — 0 as m — oo, hence [|f(t)|l, =
limm oo || £ ()|, = limm—oo [ fm ()2 = [ foll,-
To prove the uniqueness part of the proposition, observe that if g > 0 satisfies

Eq. (3.1), and if || g(t)||, < oo, then [|g(t)]|, = || foll,- But g also satisfies the
mild form of (3.22). Then g > f, by the construction of f. O

Variants of Arkeryd’s monotonicity argument were successfully applied to
other models close to the classical Boltzmann equation, [18], [27], [9], [7].
Thus, developing the above line of reasoning within a more general framework
has become a tempting task. But this is not trivial, and requires new ideas (as
will be seen in this section). Indeed, for instance, too key issues of Arkeryd’s
analysis seem rather specific to the model considered in [2|: a) choice of a
priori estimates; b) construction of suitable regular operator approximations
of the Boltzmann collision operators.

3.2. An abstract model

We begin with some terminology and facts related to Banach lattices (|17,
24]).

The frame of our analysis is a separable AL-space X with norm ||-||, order
<, and positive cone X . We recall that an (AL) space, is a Banach lattice
whose norm satisfies

lg+nhll=lgll+lnll (g9, € X). (3.26)
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As X is an AL-space, if h : R — X is Bochner integrable, then property

(3.26) gives
H/Sh(s)ds Z/SHh(S)Hds (3.27)

for any measurable set S of R, the integral being in the sense of Lebesgue.

Examples of AL-spaces are L'-real and the real subspace of self-adjoint trace-

class operators (with trace norm)?.

Related to the order of X, we shall also use the standard notations (g >
h)e(h < g), as well as (9 < h)<(h > g)<(g < h and g # h). AL-spaces
are monotone complete, in the sense that any increasing (i.e., directed <)
norm-bounded family converges. The norm of an AL-space is order contin-
uwous, i.e., any directed > filters that converges to 0 is also norm convergent
to0. Amap ' : D(T') C X — X, with D(T') N X4 # 0, is called positive
(strictly positive) if 0 < T'g for 0 < g € D(I') (if 0 < I'g for 0 < g € D(I)).
Further, I' : D(T') C X — X is called isotone (strictly isotone) if T'g < T'h,
whenever g < h (if T'g < Th, whenever g < h), g,h € D(I'). Obviously,
ifI': DI') € X — X is isotone, 0 € D(I") and 0 < I'(0), then I' is posi-
tive. We say that a subset M C X is p-saturated (positively saturated) if
MNX, #0, and from 0 < g < h € M, it follows that g € M. An operator
I': D) C X — X will be called o-closed (closed with respect to the or-
der) if for any increasing sequence {g,} C D(I') such that {g,} is increasing
and convergent (in symbols, ) to some g, and {T'g,} is Cauchy, one has
g € D(I') and lim,,_,o, I'g,, = T'g. Clearly, any closed mapping is o-closed.

We recall (see, e.g., [16]) that if I' : D(I') € X — X is a closed linear
operator, then

F/Sh(s)ds = /th(s)ds. (3.28)

for any function A Bochner integrable on some measurable set S € R, with
values in D(T'), and such that 'k is Bochner integrable.

We recall that a positive Cy semigroup on X is a Cj semigroup of posi-
tive linear operators on X. If {St}tzo is a positive Cy semigroup on X,
then its infinitesimal generator G is densely defined and closed (as the in-
finitesimal generator of a Cy semigroup). Moreover, G¥ is densely defined
and closed, £ = 2,3,... . Additional useful properties are collected in the

following lemma.

Let I denote the identity on X. Set DX(G) := N, D(GF) N X.

3 Actually, according to Kakutani’s theorem, [24], every AL-space is isometrically
isomorphic (as an ordered vector space) to a space of type L!.
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LemmA 3.1 ([11])
a) The sets D(G*)N X4, k=1,2,..., and D°(G) are dense in X.
b) Suppose that there is some number v > 0 such that

(G+~4D)g<0 (ge€DG)NXy,). (3.29)

Then D(GF) N Xy, k=1,2,..., and DX(G) are p-saturated. Moreover, for
any h € X4,
0 < S'h <exp(—t)h (t>0), (3.30)

and there is an increasing sequence {hy,} C D°, such that h,, /" h asn — co.

Motivated by the examples of the previous section, it is of interest to consider
the following abstract i.v.p., [11],

df _

= et = QT f)-Q(t.f), f(0)=foeXy (t>0), (3.31)
formulated in X; (the particular autonomous case is not excluded).
In Eq. (3.31), Q" and Q~ are mappings defined from Ry x D to X, for some
D C X such that DN X is dense in X.

The following properties are assumed for Q*:
a) For a.e. t > 0, the operators QT (¢,-) : D — X are positive and isotone.

b) The mappings Ry > t — Q*(t,g(t)) € X, are measurable for any
Lebesgue measurable function g : Ry +— X that satisfies g(t) € DN Xy
a.e. on R,.

¢) For a.e. t > 0, the operators Q¥ (t,-) are o-closed and their common
domain D is p-saturated.

We are interested in the existence and uniqueness of positive (i.e., in X )
strong solutions of Eq. (3.31) under additional hypotheses which abstract
further properties of the Boltzmann model.

We recall that a function f: Ry +— X is a strong solution of Eq. (3.31), if it
is absolutely continuous on R, differentiable a.e. on R, satisfies Eq. (3.31)
a.e. on Ry, and verifies the initial condition. Equivalently, f is a strong
solution of problem (3.31) if it is solution of the integral equation

) = fo+ /0 Q(s, f(s))ds (t>0), (3.32)

where the integral is in the sense of Bochner.
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We also consider the following problem related to Eq. (3.31)

S oarrQ), 10)=foe X, (t>0), (3.3

with @ as in Eq. (3.31). Here A is the infinitesimal generator of a Cy group
of positive linear isometries on X, which commutes with A.

We are interested in the existence and uniqueness of mild solutions of Eq.
(3.31) in X, i.e, solutions of the integral equation

ﬂﬂzwh+AU*@@J®ﬁ8@zm (3.34)

in X4, where {U’f}te]R is the Cy group of positive linear isometries on X,
generated by A (the integral is in the sense of Bochner).

As the above model is still too general for developing an existence theory of
solutions, additional hypotheses are needed. The examples of the previous
section suggest to assume some sort of dissipation (conservation) property,
[11]. This claims the existence of a positive, densely defined, closed linear
operator A : D(A) C X +— X such that, for any positive solution f(t) €
D(A?) of Eq. (3.31), the quantity ||Af(t)| is dissipated (conserved), i.e., is
decreasing (constant) in ¢, and HA2f(t)H is locally bounded in ¢. The "law
of decrease" of ||Af(t)|| can be used as a "natural" a priori estimate*. In
particular,

[Af@OI < [[Afll (& =0). (3.35)

To be precise, we introduce the following "dissipation" property (|11]). Let
M be a subset of DN X dense in X.

DerINITION 3.1 ([11]) A closed positive linear operator T' : D(I') C X
X is called of type D on M (with respect to Eq. (3.31)) if M CD(T),
QT (t, M) Cc D(T') a.e. on Ry, and for any g € M,

0<AlgT,Q) =|IQ (g — |TQRT(tg)| E>0 ae). (3.36)

If I' is of type D on M, then the following property can be easily established
by making use of (3.27) and (3.28).

LEMMA 3.2 ([11]) Let go, g(t), h(t) € M, t > 0 a.e., with QF(-,h(-)),
LQ™(,h(-) € Ljy(Ry; X4), and

gw§%+é@@mw®<uw» (3.37)

4This can take various forms in applications, depending on the form of A and
@, e.g., conservation energy, in the case of the model of [2].
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Then
t
ITg(t)] + /0 As,h(s):T,Q)ds < [ITgoll (2 0).  (3.38)

Moreover, (3.38) holds with equality sign for any t > 0, provided that there
is equality in (3.37) for all t > 0.

On the other hand, in determining the behavior of HA2f(t)H, a major role ap-
pears to be played by the Povzner inequality (3.16). This has to be somehow
included in the model.

Now we are in position to complete the setting of Eq. (3.31) with additional
hypotheses, making more precise the above considerations.

Specifically, we assume that there is a linear operator A : D(A) C X — X,
with D(A) € D and QT (t, D(AF)NX ;) Cc D(A* 1), t > 0ae., k=2,3, such
that:

(Ag) The operator (—A) is the infinitesimal generator of a Cjy semigroup of
positive linear operators on X, and there is a number \y > 0 such that

(A=Xol)g >0 (g€ D) NXy). (3.39)

(A1) Forae. t >0,
Alt,g) = At,g;A,Q) >0 (g€ D(A*)NX,), (3.40)
and the map D(A?) N Xy > g+— A(t,g) € R, is isotone.
(A2) There exists a non-decreasing convex function a : Ry +— R, such that
a(lAglDAg = Q7 (t,9) 20, (g€ D(A)NXy, t>ae), (341)

and for a.e. t > 0, the map D(A)N Xy 3 g — a(||Ag||)Ag — Q (t, 9)
€ X is isotone.

(A3) There exists a non-decreasing function p : Ry — R4, and there is an
operator Ay : D(A;) C X — X of type D on D(A?) N X, such that

~A(tg: A% Q) < plllAgl) A% (9 € DA N Xy, t> 0 ace).
(3.42)

Some remarks are in order.

First, observe that if g € D(A?) N X, then by (3.39), (3.40) and (3.41) we
have the simple inequalities

gl < Aot [Agll < Ag % ||A%g]| (3.43)
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and
1Q*(t g)|| < AT JAQT (1 9)|| < A [|AQ™ (£, 9)|| <
< a(||Ag||))\a1 HAng < a()\gl HA2gH))\61 HAQQH (t>0 a.e), (3.44)

with the following obvious consequences.

REMARK 3.1 Q*(¢,0) =0 and A(t,0) =0 a.e. on Ry.

Let AO:=1.

REMARK 3.2 If g : Ry — X, is measurable, with g(t) € D(A?), t >
0, a.e., and ‘AQQH € L (Ry), then g, AFlg and A*Q* (-, g(+)) are in
Llloc(R+;X+)’ k= 0, 1.

Lemma 3.1a) and (Ag) imply that D(A*) N Xy, k = 1,2,..., and DY =
D(A) are p-saturated and dense in X. Obviously, (3.39) shows that A is
positive. Thus, by (3.40), the operator A is of type D on D(A?) N X . This
has the following important consequence.
I (1) € D(AY), £ > 0, e, and if Q*(, f()), AQ*(, /() € LMRy; Xy),
then by (3.38), applied with equality sign,

[Af@)]] +/0 A(s, f(s))ds = [|Afoll (£ =0). (3.45)

Thus ||[Af(t)]] is decreasing in time and satisfies (3.35). In particular, if
A(t,g) =0 for all g € D(A®2)N X1, t >0 a.e., then |[Af(t)|| is conserved for
all ¢ > 0.

Observe that inequality (3.42) is of the form
AT, Q) < pr(lAgl) ITgll (9 € My, t =0 ae), (3.46)

where I' : D(I') C X +— X is some positive linear operator, and My C D(T')N
D(A?) N X, is such that Q*(t, M;) C D('), t > 0 a.e., while pr : R, +— R,
is some non-decreasing function.

Formula (3.45) generalizes a priori estimates introduced in e.g., [2, 7, 8, 9, 27].

Formula (3.46) can be regarded as an abstract correspondent to the Povzner
inequality, [2, 23].

We finally remark that the above setting does not exclude the case A} = A
when, obviously, some of the above conditions become redundant.
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3.3. General results on the existence of solutions

We are now in position to state some results ([11], [13]) on the existence
of solutions to our abstract model. The proofs will be sketches in the next
subsection (for more details, the reader is referred to [11] and [13]). First we
consider problem (3.31).

THEOREM 3.1 Let either of the following two sets of conditions be fulfilled:

a) QT (t,D¥) C DX, t >0 a.e., A*QT (-, D¥) C L (Ry; X4), k=1,2,....
In problem (3.31), fo € D(A%) N X,.

b) The operators Q* do not depend explicitly on t. In problem (3.31), fo €
D(A3) N X .

Then there exists a unique positive strong solution of the i.v.p. (3.31) such

that f(t) € D(A?) for any t >0, and |[A%f(-)| is locally bounded on R.
Moreover, f,Af € C(Ry; Xy). Furthermore, f satisfies Eq. (3.45) and

[A2F(@®)]] < exp(p(|ALfolDt) [|A%fol| (¢ > 0). (3.47)

Note here that Theorem 3.1a) is also applicable to the autonomous case, but,
clearly, its conditions are different from those of Theorem 3.1b).

Theorem 3.1 has an immediate noticeable consequence, as follows:

Consider Eq. (4.22) and let {Ut}te]R be the Cy group of positive linear
isometries on X, generated by A.

If f is a solution of (3.34), then setting F(t) := U~ f(t) in (3.34), we get

Flt) = fo+ /O Quis, F(s)ds (£ >0), (3.48)

hence, by differentiation,

d _
&F =Qu(t, F) = Q;(tF)_QU(tvF)v FO)=fo (t=0 ae.), (3.49)
where Qu(t,-) := U™'Q(t,U") and Q[i](t, D= UtQ* (L, U).

Suppose that U'D(A) = D(A) and U'A = AU' on D(A) for every ¢t > 0.
Also, let U'D(A1) = D(A1) and U'A; = A U? on D(A;) for all ¢ > 0.

Now Q[j; and Qu are well defined as maps from Ry x D(A) to X, the last

equation is of the form (3.31), and we can state the following consequence
(|11]) of Theorem 3.1a):
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COROLLARY 3.1 Let QT(t,D¥) C DP, t > 0 ae., and A*QT (U g) €
L}OC(R+;X+) forall g € D, k = 1,2,... . Suppose that fy € D(A%) N X,
in (4.22). Then problem (4.22) has a unique positive mild solution f such
that f(t) € D(A?) for any t > 0 and ||A?f(-)|| is locally bounded on R
Moreover, f,Af € C(Ry; X1). Furthermore, f satisfies (3.45) and (3.47).

The following result, [13], extends the existence of strong solutions of Eq.
(3.31) to the case of initial datum fo € D(A) N X (instead of D(A%) N X,
as assumed in Theorem 3.1).

THEOREM 3.2 Under the assumptions of Theorem 3.1a) on A and QF, let
fo € DIAN) N X, in Eq. (3.31). Then there exists a strong solution, f €
C([0,00); X)), of the i.v.p. (3.31). Moreover, for any t > 0, f(t) € D(A),
IAFO)] < Ao, and

170 = 1oll + /0 1Q* (s, ()| — [|Q (5, £(5))]] ds. (3.50)

Note here that if f is as in Theorem 3.2, we know only that f € D(A)NX,.
Then A(t, f) and A%2f may not be not well-defined. Therefore, we cannot
obtain inequalities of the form (3.45) (except the case when A = 0 on D(A?)N
X4,) or like (3.47), at the level of abstraction of the theorem.

Also remark that Theorem 3.2 leaves open the question on the uniqueness of
the solution in the general case (under the conditions of the theorem).

However, uniqueness can be proved under additional conditions, [13].

PROPOSITION 3.3 If A(t,g) =0 for all g € D(A®>) N X4, t — a.e., then

IAf@I = [[Afoll - (& =0), (3.51)

and there is a unique solution of the i.v.p. (3.31) as in Theorem 3.2, which
satisfies (3.51).

A similar result like Corollary 3.1 can be formulated for Theorem 3.2.

The following proposition yields additional useful estimates, [11], for the so-
lutions of Eq. (3.31). For simplicity, we remain in the conditions of Theorem
3.1a). However, similar results are valid when Theorem 3.1b) holds, as can
be seen by inspecting the proof of the proposition.

Assume that I' : D(T') C X — X is a closed, positive linear operator. Let f
be a solution of problem (3.31), provided by Theorem 3.1a).
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PROPOSITION 3.4 a) Suppose that I" is of type D on DS°. Then f(t) € D(I'),
t>0, and
TN < ITfll (¢=0). (3.52)

b) Suppose that ' and pr are as in (3.46), with My 2O D. Then f(t) €
D), t >0, and

ITf @O < exp(pr([Asfoll)E) [ITfoll (2= 0). (3.53)

In applications, the choice of A and Ay may be not unique. In some cases,
the role of Ay and I' may be played by suitable powers of A, while, in other
examples, A = A; =T.

A correspondent to Prop. 3.4, applicable to Corollary 3.1, can be readily
obtained. The modifications in the reformulation of the proposition are ob-
vious and include additional hypotheses for the commutation of U with T,
etc.

3.4. Proofs

Sketch of the proof of Theorem 3.1

In the following, we give an insight into the rather lengthy argument of The-
orem 3.1 (see |11] for a detailed proof), and explain the role of assumptions
(Ao)-(As).

We start by observing that if fo = 0 in (3.31), then, by Remark 3.1, clearly
f(t) = 0 is a solution to Eq. (3.31). It is the unique strong solution in
D(A?) N X, as it follows from (3.45). Moreover, if 0 # fo € D(A?) N X,
but a(||Afo]) = 0, then QT (¢, fy) = 0, for a.e. t > 0, by (3.44), hence
f(t) = fo is a solution to (3.31). It is the unique solution in D(A%) N X,
because any other solution f*(¢) € D(A%) N X, must be a.e. constant.
Indeed, applying (3.45), and invoking the positivity and monotonicity of a,
we obtain 0 < a(||Af*(t)]|) < a(||Afo]]) = 0. This leads (again by (3.44)) to
Q*(t, f(t) =0 ae.

Therefore, one can assume below that fy # 0 and a(||Afo]]) # 0.

We first refer to the existence part of the theorem. Inspired from [2], one
can consider the problem

SFrallARDAf =BG, £ ), fO)=foe Xy (20, (359
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Here a is as in (Ay), and B is formally defined by

B(t,g,h) :=Q(t, g(t))+a (HAg(t)H +/0 A(s,h(s))ds) Ag(t) (t>0 a.e.)

(3.55)
for all g(t) € D(A) N X, and h(t) € D(A?) N X, with AQT(-, k(")) €
Lipe(Ry; X1).

By (3.45), any strong positive solution of Eq. (3.31) is also a solution to

(3.54). Conversely, any positive strong solution of problem (3.54) is a solution
of Eq. (3.31), provided that it satisfies (3.45).

Recall now that, by (Ag) and Lemma 3.1b), the operator L = —a(||Afo||)A
is the infinitesimal generator of a Cj positive semigroup {Vt}t>0, and

0 < V'h <exp(—a(||[Afol)Aot)h < h (h e Xy). (3.56)

Thus any solution of Eq. (3.54) is also a solution of the mild problem

fit)=Vtf, +/Ot VIS B(s, f, f)ds, (3.57)

the integral being in the sense of Bochner.

Eq. (3.57) is useful for monotone iteration. Indeed, {Vt}t>0 is positive, and

one can prove® the following properties ([11]).

LemMA 3.3 Let g;, hy, ¢ = 1,2, satisfy the conditions of Remark 3.2. Sup-
pose that gi1(t) < g2(t) and hi(t) < ha(t) a.e. on Ry. Then B(-,g;,hj) €
LI (Ry;X,), 4,5 =1,2. In addition, for a.e. t >0,

loc

0< B(taglyhl) < B(tvg27h2)' (358)

Thus, formally, by (3.57) one could consider the following iteration, hopefully,
increasing;:

A) =0, fat) =V fo, (3.59)
t
Falt) = Vo +/ VESB(s, furs foo)ds (n=34.).  (3.60)
0
Note that if {f,,(t)}, is sufficiently regular, by differentiation, (3.60) gives

%fn(t) — Bt fars o) — a(lASolDASa(t) (>0 ae, n>3),

(3.61)

5See the Appendix.
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and integrating (3.61) one has

fa(t) = fo+ /0 Q(5, fu_1(s))ds +

+ [0 (I8fas+ [ A faa(ear) Apa(o)is

- /0 a(IAfoll)Afu(s)ds. (3.62)

However, in general, B(+, g, h) does not exist for all g, h € X. Hence we need
give a meaning to (3.60), at least for fy in a sufficiently large set. Here comes
the role of D (of D(A%) N X4). Indeed, if fo € D (fo € D(A®) N X)),
then one can show that f,(t) € DX (fo € D(A*) N Xy), and is sufficiently
regular. This is clarified in the lemma bellow, which summarizes the main
results® of [11] on the properties of {f,,(¢)},,.

LEMMA 3.4 a) In addition, to the conditions of Theorem 3.1a), let fo € D°.
Then fo(t), QF(t, fu(t)) € DL a.e. on Ry. Moreover, A*FQ*(-, fn(-)) €
Ll (Ry;Xy), k=0,1,...., n=12,....

b) Assume the conditions of Theorem 3.1b). Then f,(t) € D(A%) N X, and
QE(fu(t)) € D(A?) N X4, t > 0. Moreover, A*Q*(f,) € L} (Ry;X4),
k=012, ,n=1,2,...

¢) In both cases a) and b), A¥f, € C(R4;X1), k= 0,1,2, and f, is a.e.
differentiable on Ry and satisfies (3.61) (and (3.62)). Moreover, for any
t >0, the sequence {fn(t)},,

d) If fn(t) is as in a) or b), and n > 2, then

1S increasing.

fult) < fot /0 Q(s, far(s))ds (3.63)

and

IAfu(®)] + /O A(s, faci(5))ds < AT . (3.64)

e) If fu(t) is as in a) or b), and I' is an operator of type D on D, (on
D(A?) N X4 ) then for any t > 0,

TN < [Tholl - (n=1,2,...). (3.65)

6See the Appendix for a proof.
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In particular,

[AFu ()] < exp(p(|ALfolE) |A%fol (620, n=1,2,..),  (3.66)

with p as in (3.42).

f) Suppose that f,(t) is as in a) (as in b)). Let I' : D(T') C X — X be
some closed, positive linear operator, satisfying (3.46), with My 2 D (with
Mi DDA N X, ). Then for anyt >0,

ITfa(®)]l < exp(or([[ArfolDE) [Tholl - (n=1,2,...), (3.67)
with pr as in (3.46).

By the above lemma, {f,(t)}, is increasing, and the key inequality (3.64)
shows that {f,(t)}, is norm bounded”. Thus {f,(t)}, is convergent, be-
cause X is monotone complete. One expects the limit to satisfy (3.54) (and
(3.57), too). The proof hinges on the application of Lebesgue’s dominated
convergence theorem to (3.62) (as the operators Q¥ are o-closed, and A is
closed). To this end, the limit of {f, ()}, must be in D(A?), which follows
from (3.66). Now, to prove that the limit of {f,(¢)}, is a strong solution to
(3.31), it remains to show that the above limit satisfies (3.45). This is done
by applying Gronwall’s Lemma to an inequality to be obtained from (3.62)
(by using (3.66) and the convexity of a). But the above procedure provides
the existence part of the Theorem 3.1a) only for fy € DS°, hence one more
step is needed. Since DY is dense in X (cf. Lemma 3.1), any initial datum
as in the assumptions of Theorem 3.1a), can be approximated by elements
of DS°. This leads to a monotone scheme approximating (3.60) and one can
apply successively Lebesgue’s convergence theorem. In details, one proceeds
as follows.

Step A. If in addition to the conditions of Theorem 3.1 a), one assumes
fo € D then Lemma 3.4 applies. As AF is closed, clearly, by (3.39) and
the monotone completeness of X, it follows that there is some f(t) € D(A¥)
such that AFf,(t) /~ AFf(t) asn — oo, t > 0, k = 0,1,2. Consequently,
f(t) satisfies (3.47). Moreover, Remark 3.2 implies that A¥f, k = 0,1,2,
Q*(, f()), and AQE (-, f(-)) arein L}, (R4; X). Then, applying Lebesgue’s

dominated convergence theorem in (3.62) and (3.64), we get

f(t) = fo +/O Q(s, f(s))ds +

"Inequality (3.64) motivates the construction (3.60) as a second-order recurrence.
Indeed, except for the case A = 0, an inequality of the form (3.64) could not be
proved if (3.60) was redefined with B(s, fn—1, fn—1) instead of B(s, fn—1, fn—2)-
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Af(s)ds (t>0)
(3.68)

+ [ e (s [ awsenar) - ainsn)

(i.e., f is a strong solution of Eq.(3.54)) and, also,

0 < 9(t) := [|Afoll = [[Af(®)]] —/0 Als, f(s))ds (= 0). (3.69)

Obviously, (3.68) implies f,Af € C(Ry; X, ).
Note now the usefulness of (3.68): to prove that f is a strong solution of

(3.31), it is sufficient to show that 1) = 0 (which means exactly (3.45)).

To this end, first observe that since, by (As), a is non-decreasing and locally
Lipschitz, then inequality (3.69) implies that there is a number 0 < ¢ =
c(IAfoll), depending only on ||Afol|, such that

0 < a(JAfoll) - a (||Af<t>|| +f A(T,f(T))dT> <ept).  (370)

Further rewriting Eq. (3.68) conveniently, and applying A to the resulting
equation, one can invoke (3.26) and (3.27) to obtain

o) = [ [atasad o (s + [ a0 soar) | Jazsts) s
(3.71)

Y

As f(t) satisfies (3.47), introducing (3.70) in (3.71), we find

0<y(t) < c/o P(s) HAzf(s)H ds < cT/O P(s)ds (0<t<T), (3.72)

for each T' > 0. Here, cr > 0 is a number depending only on T and fj.

Now the Gronwall inequality implies ¢¥(¢) = 0, 0 < ¢t < T, for any T > 0.
This concludes the existence part of the proof of the Theorem 3.1a), in the
case fo € D).

Step B. We use the result of the previous step to prove the existence part
of Theorem 3.1 a), in the case fo € D(A?)N X, as follows. First note
that by Lemma 3.1b), there is an increasing sequence { fo;} C DI such that
foi /" fo,as i — oo. Then, by Step A, there is a sequence of strong solutions
{F;}, of Eq. (3.31) with F;(0) = fo, satisfying the properties of the theorem.
In particular,

|A?Fi(t)|| < exp [p(| A1 foulD] [|A® fosl| (£ > 0). (3.73)
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In addition,

Fi(t) = foi+ /0 Q(s, Fi(s))ds, (3.74)
AFy(t) = Ao + /0 AQ(s, Fi(s))ds, (3.75)

and .
IAED)] + /0 A(s, Fy(s))ds = [Afos]|- (3.76)

Moreover, by Step A, each F; is the limit of an increasing sequence {f, ;(t)},,
defined by (3.60) with f,,;(0) = fo,;. But the positivity of V! and Lemma
3.3 imply that if f07i < f(),j, then fmi(t) < fmj(t) for all n and ¢ > 0. Then
the sequence {F;} is increasing,.

Furthermore, since [|Afoqll < [[Avfoll, ||A%foi]| < ||[A%fol], and since p is
non-decreasing, it follows from inequality (3.73) that

|AE0)]| < exp(o(lla1 folD)|A%fol] (> 0). (3.77)

Now a convergence argument, as in the beginning of Step A, implies that
there is an element f € L}OC(R+;X+), with the properties stated in Re-
mark 3.2, such that F;(t) / f(t) as i — oo, a.e. It remains to apply, say,
Lebesgue’s convergence theorem in (3.74)—(3.76) to conclude the existence
part of Theorem 3.1a).

Existence in case b). In this case, Lemma 3.4 applies, corresponding to the
fulfillment of the conditions of Theorem 3.1b). Then, the proof is as in Step
A of case a).

Finally, we prove the uniqueness part of Theorem 3.1.

Let f be the solution of Eq. (3.31) provided by the existence part of this
proof, and recall that it satisfies Eq. (3.45). If F' is another positive solution
of Eq. (3.31) with regularity properties as in Theorem 3.1, then F' satisfies
Eq. (3.45), too, hence

IAFOI+ [ 80 59)as = ARl = [AF )] + [ Ats, P
By Lebesgue’s convergence theorem applied to (3.60), clearly, f also solves

Eq. (3.57). On the other hand, F'is a solution to (3.57). But f < F, because
of the form of (3.60), so that

|Af(t ||+/A s))ds < ||AF(t ||+/A8F( ))ds

on some subset of R with nonzero Lebesgue measure. O
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Proof of Theorem 3.2

As in the proof of Theorem 3.1, to exclude trivial situations, we suppose the
| foll # 0 or a(]| fol|) # 0. By Lemma 3.1, there is a sequence {fn o}, C D
such that f,o /" fo as n — oo. Then by Theorem 3.1a) the i.v.p. (3.31)
with initial condition f, ¢ has a unique positive solutions F, € D(A%)N X,
such that (3.31) provided by Theorem 3.1 with initial datum f, ¢ forms an
increasing sequence such that F,,AF, € C(Ry; X ),

Fu(t) = fuo + /0 Q" (s, Fo(s))ds — /O QO (s, Fu(s)ds (t>0). (3.79)

and
AR+ [ Al Fueds = ALl @20 (379)

But A(s, Fy,(s) > 0 so that
IAEL @) < [[Afnoll < [IAfoll (¢ >0). (3.80)

Note now that Fy,, fno, QF(t, F,(t)) are positive. Then (3.26) and (3.27)
imply

I1Fu(t)]| = ||fn,0||+/0 HQ+(8,Fn(S))Hds—/O Q™ (s, Fu(s))||ds  (t >0),
(3.81)

To prove the theorem, we need show that {F,(t)}, and {Q* (¢, F,,(t))},, are
convergent, and, then we need to interchange the limits conveniently in (3.78)

and (3.81).

To this end, first observe that since {fy 0}y is positive and increasing, and
each F), is the limit of a sequence of the form (3.60), we obtain by a sim-
ple induction (which uses the positivity and isotonicity of B in (3.60)) that
{F.(t)}n is increasing. Thus, by (Ap), the positive sequence {AF,(t)}, is
also increasing. Then (Ag) and (3.80) give ||F,(t)|] < X ' |AE. (1) <
Mo A fnoll € Xo7t||Afoll. Hence, for each t > 0, both {F,(t)}, and
{AF,(t)}, are convergent, because X is monotone complete. Moreover, as A
is closed, the limit f(t) of {F,,(t)}, satisfies f(t) € D(A) N X4, and we have
AF,(t) / Af(t) as n — oo. Then, also {Q*(t, F,,(t))}, are increasing, and
Q* (t, Fa(t)) < QE(t, £()) ae. Tn particular, [Q*(t, Fu(t))]| < Q% (¢, £(2)]
a.e. Consequently, Q¥ (¢, F,(t)) /" Q*(t, f(t)) as n — oo, t -a.e., because X
is monotone complete and Q*(t,-) are o-closed t-a.e.

Now, applying (Az) and (3.80) we get
JQ & F@)] = lim QL F®)] <allAfl) ARl (382)
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a.e., hence Q= (-, f) € L} (Ry; X ).

loc
Thus we can take the limit n — oo in (3.78) and (3.81), and we can apply,
say, Lebesgue’s theorem to the second term of (3.78) and (3.81), respectively.
We obtain

£ = fo+ Jim [ QF e FeDas= [ QG spas 68)

and, by (3.26),

O = 1ol + tim [ Qs Aueds— [l £ as. 389

Since ||f(t)|| < oo for t > 0, and Q™ (-, f) € L}, .(Ry; Xy ), by (3.84), for each
>0,

n—oo

im t *(s s s < 00. .
fim [ Q7 (s, F(s)) s < (3.85)

Hence, applying, e.g., the monotone convergence theorem, it follows that
Q™ (-, f) is Bochner integrable and we can finally pass to the limit under the
integral sign in (3.83), (3.84), (3.80), and in (3.79), to conclude the proof of
theorem. O

Proof of Proposition 3.3

Equality (3.51) follows observing that A(s, F,(s)) =0 in (3.79), and taking
the oo limit. As in the uniqueness part of the proof of Theorem 3.1, the
solution f of (3.31) provided by Theorem 3.2 also solves the mild problem
(3.57) (but here, A(t,f) = 0 in the expression (3.55) of B, by virtue of
(3.51)). Now the uniqueness follows by an argument similar to the one used
in the uniqueness part of the proof of Theorem 3.1, taking now advantage of
the property A(s, F,,(s)) =0 (hence of (3.51)). O

Proof of Proposition 3.4

a) Let fo, {foi},{fni(t)},, and {Fi(t)}, be as in Step B of the proof of
Theorem 3.1a). Then for each ¢, the sequence {I'f, ;(t)} 1is positive and
increasing. Moreover, it is norm-bounded because

n

ITfni@N < TSl (¢ =0), (3.86)

as a consequence of (3.65) and of the property I'fo; < T fo.
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As X is monotone complete, it follows that {I'f, ()}, is convergent for all
1.

Recall that I is closed, and f, ;(t) / Fi(t) as n — oo, for all i. Consequently,
Fi(t) € D(I') and T'f,,;(t) / T'Fi(t) as n — oo, i = 1,2,.... In addition,
ITE|| < |ITfoll, t > 0,4 = 1,2,.... Then, reasoning as before, we conclude
that f(t) € D(I"), 'Fi(t) /" T'f(t) as i — oo, and that ||[['f]| satisfies (3.52).

b) The proof of (3.53) follows as in a), with the only remark that instead of
(3.86), we make use of the inequalities

ITfri(®I < exp(pr(|Asfo.il)t) IV foill < exp(pr(lAfoll)E) T foll (t(Z 0)),
3.87

which are immediate by (3.67), because pr is non-decreasing. O

Y

4. Applications
4.1. Smoluchowski’s coagulation equation

For k > 0, let L} := L}(Ry;dy) be the space of real measurable functions
g : Ry — R such that

loly = [ 1+ 9 ol ay < . (1)

Denote Lj . = {g € L; : g > 0}. Consider problem (2.2) in the space
X = LY(Ry;dy) (equipped with the usual norm ||-|| = ||| 1, and with the
natural order <).

Consider Ll,lg as a subset of X. Let ¢ = 0,1 and define the positive linear
operators Ac; : D(Ac;i) C X — X by D(Ac;) = L, (Aeig)(y) == Xi(¥)9(y),
with \;(y) :== (1 4+ )", y > 0 a.e., where y9 = § and 71 = a + 5.

Note that (2.3) and (2.4) define Q" and @ as positive and isotone nonlinear
operators in X, respectively, with the common domain D, := Lé.

Then the i.v.p. for (2.2) can be formulated in X as

SF=QUN=QIN - Qi) FO)=fo t>0.  (42)

In this case, one can apply Theorem 3.1a). The only point is to check that A.;
(i = 0,1) and QF verify inequalities of the form (3.40) and (3.42). Indeed, if
g€ L%B 4, then starting from (2.7), we find
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1 _ _ ‘
=3 /}R2 [T+ + A +y)" = (L +y+ 30"y, y)9(¥) g (y)dydys,
+
(4.3)
because 0 < v; < 1, and

Ay + 0 +y) f LT
(I+y+y) w20 (14a)

=1 (0<~y<1, 3y >0). (44)

Tnequality (4.3) shows that g - Aq(g) = [ AwoQ ()]~ [ Aeo@F (9)]] defines
a positive isotone map A, : D(A.) — R with domain D(A,) = Léﬁ 4

Starting again from (2.7), we find that if g € Léﬁ 4, then

HAE,OQZL(Q)H - HAich_(Q)H =

- l/ [y 9207 = (9% — (14507 0,399 )dydy.
R2

2
+
(4.5)
If 0 < B <1/2, applying again (4.4) in (4.5), we get

1A20Q7 (9)]] — [[AZ0Qc (9)]| <0, (4.6)

which is of the form (3.42) with p = 0.
If 1/2 < § < 1, then to estimate (4.5), we apply the following form ([11]) of

Povzner’s algebraic inequality, which can be easily proved?®:

(+y+y)P = (1492 - 1 +90)% <20+’ +3.)" (5. >0). (4.7)

Thus, applying (4.7) in (4.5), we find that there is a number ¢ > 0 such that

[A20QF (9)]] = [1A20Q (9| < cllAcagll [|AZog]l- (4.8)

Clearly, inequality (4.8) is of the form (3.42) with p(x) = cx.

Let a.(z) := apx, for some constant ag > 0. If ag is sufficiently large, then the
map L#Jr > g — ao||Aco9] Acog — Q2 (9) € X has the properties required
in (Ag)

It appears that QF, Acp, A1 and a. verify the conditions of Theorem 3.1a)
for Q*, A, A; and a, respectively, provided that ag is sufficiently large.
Consequently, one can apply Theorem 3.1a) to the i.v.p. (4.2). We obtain

8Indeed, (4.7) is equivalent to ((z) = 22° + 1+ 2% — (1 +2)? > 0 for all z > 0.
However, as ((z7!) = 272%¢(z), to prove that ((x) > 0 for > 0, we need only
show that {(«) > 0 on (0, 1], which is immediate, because 1/2 < 3 < 1.
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THEOREM 4.1 Let fy € L%ﬁ—k in problem (4.2). Then Eq. (4.2) has a unique
strong solution f such that f(t) € Léﬁ-#’ t >0, and Hf(t)HL%ﬁ is locally

bounded on R. In addition f,(1+y)°f € C(Ry; L' (Ry,dy)),

t
£y + [ AdfsDds = 1Al (= 0) (1.9
and there is a constant ¢ > 0 such that
£ Oy, < esplellfoll o Dllfolly, 201 (410)

Note here that if 0 < 28 < 1, then Theorem 4.1 allows for the existence
of solutions with infinite initial mass (see also |22|) i.e., fo € L§ﬁ7+, but
fo ¢ L}. The theorem does not imply directly the mass conservation, except
for the case ¢1 > 0, 8 = 1 and o = 0. However, if fy € L§ﬁ7+ N L%, then
the solution f(¢) has finite mass: indeed, if ' : L} € L' — L! is defined by
(T'9)(y) = yg(y) a.e. on Ry, then clearly, I' is of type D on ﬁz":lLllg@_F, hence
Prop. 3.4a) applies, so that f € L%Q’Jr N LY, and [T < [T foll-

Theorem 4.1 remains valid in the case of the discrete Smoluchowski equation
(2.10), with obvious change in formulation®.

4.2. Povzner-like model with dissipative collisions

Let X = LY(R? x R3;dxdv) = L', equipped with the norm ||| := ||-|| ;1 and
the natural order <. Denote by L} := L}(R? x R3;dxdv), k € R, the space
of measurable functions on g : R? x R3 — R satisfying

lolly = [ (1 W) g vl dxdv < oo, (411)
+
As before, Ll:!é,+ denotes the positive cone in L,lg. It can be seen that (2.15) and
(2.16) define Q; as positive and isotone operators on the common domain
D .= L,ly. This follows easily if we perform the change of variable (0, R] x Q2 3
(r,n) =y :=rn € {z €R3 : |z| < R} in (2.15) and (2.16), and then take
into account (2.17).

Now, formulated in X, the i.v.p. (2.14) reads

Sr=Af+QiN-Qih, FO=h=0, (@1

Note that L}, defined before, must be now replaced by I1(R) = {c = (¢;) : ¢; €
R, j=1,2,.. [lell, :== 3272, j" lej| < o0}, 7> 0.
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where f = f(t,x,v) is the one-particle distribution function, A is the in-
finitesimal generator of the Cy group (U'f)(x,v) := f(x — tv,V), a.e.

Let the positive linear operator Ag : L — X be defined by (Agg)(x,Vv) =
AMv)g(x,v) ae. on R? x R3, with A(v) := (1+]|v|?). Define aq(z) := cox for
some constant cg > 0. If ¢g is sufficiently large, then a4, Ay and Q; verify
the conditions of Corollary 3.1 for a, A = Ay and Q¥ respectively.

Indeed, the operators Qf are p-saturated. Moreover, they are o-closed, by
the monotone convergence theorem. It is immediate that the domain con-
ditions imposed in Corollary 3.1 are satisfied. Further, applying (2.12) in
(2.18), we obtain an inequality of the form (3.40), i.e., if g € Lﬁll,—l-’ then

0 < Ad(g) = [|[AaQ7 (9)]| — [ 0aQ7 (9)]| =

R
:/ dr/ m(r,n,v,w,x)g(x,v)g(x + rn, w)dndvdwdx,
0 OxR3xR3XR3

(4.13)
where 7(r,n, v, w,x) := 8(n)(1-3(n)) | (n,v — w)|**7 P(,n). Remark here
that the map L}L—F 3> g +— Ag4(g) € R is positive and isotone. Moreover, for
co sufficiently large, the map L%’_i_ > g+ co||Aggll Aag — Q, (9) € X is also
positive and isotone. Further, to obtain an inequality of the form (3.42), note
that (2.12) gives A(v))2 + A(W)2 < 2+ V2 + | w/[)2 < 2+ [v]* + [w]?)?
= A(v)? + A(W)2 + 2A\(V)A\(w), which can be applied in ( 2.18) to conclude
easily that there are two constants c1, ¢ > 0 such that

[AZQ% (9)|| - [|A%Q7 ()] <

R
< / dr/ PAWV)A(W) 2 g(x, v)g(x 4+ rn, w)dndvdwdx <
0 OXR3XR3xR3

< c|[Aagll ||AZg]

, (4.14)

for all g € Lé7+. Finally, it is obvious that the group U’ (generated by
A) commutes with the semigroup V! generated by Ag, and AFQ*(Ug) €
L (Ry; Xy) forallge e Ll k=1,2,.....

loc

Therefore, by Corollary 3.1, we have the following result (|11]):

THEOREM 4.2 Let fy € Li,+ in problem (4.12). Then Eq. (4.12) has a
unique positive mild solution f such that f(t) € L411,+7 t >0, and ||f(7§)||L}1 is

locally bounded on Ry In addition, f, (1+ |v|*)f € C(Ry; LY),

£y + [ Aalr)ds = allzy (¢ 0) (415)
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and there is a constant ¢ > 0 such that
1F Ol < explellfolly ) 1ol (¢ 0). (4.16)

The argument of Theorem 4.2 can be repeated with obvious modifications
to provide a similar result for the space-homogeneous version of Eq. (2.14),
which coincides with the force-free, three dimensional space-homogeneous
Boltzmann model for granular flows, |5, 6].

4.3. Povzner-like model with chemical reactions

Let X := L'(R3 x R3; dxdv)" be equipped with the order < induced by the
order of the components (i.e., the natural order of L'). The norm on X is
defined as

N N
ol =3 / 19i(%, V)] dxdv = 3 lgill 1 (4.17)
i=1p3lps i=1

Denote by Ll,lg = L/%C(IR‘(3 xR3;dxdv), k € R, the space of measurable functions
g : R3 x R? — R satisfying

k
lolly = [ @ W) lotx v dxay (418)

R3 xR3

and let L,lC o be the positive cone in L,1€.
It is natural to formulate the i.v.p. (2.29) in the space X.

Under the conditions of the model, (2.30) and (2.31) define Q] and Q;,
1 <i < N, as operators from the common domain (L)Y C X to L'(R?;dv).
Defining the operators Qfg C(LHN € X — X by QE = (Qf, ..... ,Qﬁ), we
can write the i.v.p. for Eq. (2.29) in X as

CrvA=QuLN) - Q5D 0<IO)=foeX (t>0), (419

where A is the infinitesimal generator of the Cy group of isometries {U'}ier
on X, given by (Ulf)(x,v) := f((x — tv,V).

Define the positive closed linear operator Ag : (L)Y +— X by (Apg)i(v) =
Ai(v)g(v) ae. on R® x R3 | where A\j(v) := m; +m; [v[* /2+ E;, 1 <i < N.
One can state the following result (|12]):
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THEOREM 4.3 Suppose that in problem (4.19), fo: € L411,+ , 1 <i<N.
Then E'q (4.19) has a unique mild solution f(t) = (f1,..., fn) such that
fitt)y € Ly, t >0, and | fi(t )l is locally bounded on. Ry, 1 <i<N. In

addition, fi, (1+ |[v[*)fi € C(Ry;LY), 1<i < N,

[ABf ()|l = [[ABfoll (¢t =0), (4.20)

and there is a constant pg > 0 such that
1AL £ ()| < exploo |ABfoll ) [|ABfol| (¢ > 0). (4.21)

The above result follows by applying Theorem 3.1 in the case A = Ay = Ap.
Indeed, the domain conditions of Theorem 3.1, as well as properties (Ag),
(A1) can be immediately checked (with A = 0, owing to (2.38). Next, let
ap > 0 be some constant, and define a(x) := apz. Owing to (2.38), for ag
sufficiently large, the map L} , 3 g — ao |[Apgl| Apg — Q(9) € X satisfies
(Ag). Finally, note that, as a consequence of (2.39) (and of (2.37)), there
exists a number pg > 0 such that

Z/Rg + )2 [QF (9) — Q7 (9)] dxdv <

< pol|@+ v [+ v (4.22)

for, say, all g € (L, )V
Then inequality (3.13) gives exactly (As) with p(x) := poz.

4.4. Boltzmann model with inelastic collisions and reactions

Let X := (L'(R3;dv))" be equipped with the order < induced by the order
of the components (i.e., the natural order of L'). The norm on X is defined

as
N

N
nwzz/mmw=2mm- (4.23)
=1

i=1ps
Denote by L,lg = L}C(R?’;dv), k € R, the space of measurable functions
g : R3 x R? — R satisfying

k
lgll 2 ::/R (1+[v[*)2 |g(v)| dv < oo (4.24)
+
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and let Ll:!é,+ be the positive cone in L,lc.

It is natural to formulate the i.v.p. for Eq. (2.47) in the space X. Under
the above conditions, (2.48) and (2.49) define Q;" and Q;, 1 < i < N,
respectively, as operators from the common domain D = (L) C X to
L'(R3;dv). Defining Qﬁ :DC X~ X by QE = (Qli, ..... ,Q]j\:,), we can
write the i.v.p. for Eq. (2.47) in X

SF=QBUN - Qa(D, SOV =fo=(ons o fow) € Xro (425)

We shall prove the existence of solutions to problem (4.25), by applying
Theorem 3.1a) (in the case A = Ay). To this end, let the positive closed
linear operator Ap : (L)Y + X be defined on components by (Apg)i(v) =
Ai(v)g(v) ae. on R3 x R3, where \i(v) :==m; +m; |[v|* /2+ E;, 1 <i<N.
Denote 1,(W) := 3 icpy) 2oier Ai(Wig); v € M. Then clearly, I,(w) =
M, + W, (w), hence

0 < Wy (w) < ly(w). (4.26)

In addition, defining A7(w) := [Ty H;”:l Xi(Wij), v € M, we have
1) < bl BPX ), (1.27)

where F := min{m; + E; : 1 < i < N}. It is useful to remark that, since
W, (w) > E|y| >0, and 0 < ¢ <1, then by (2.56), (4.26) and (4.27),

Vaa(Ww) < CA(w) (we R ae), (4.28)

for all , 3 € M. Here C = C(E,K) > 0 is a number depending on E and
K (recall that K is the maximum number of partners in a reaction channel).

To apply Theorem 3.1a) to (4.25), first remark that Qg and Ap verify the
domain conditions imposed to Q* and A by the theorem. Moreover, Ap has
the properties required for A in (Ag). Further, observe that formula (2.57)
provides a correspondent to (3.40), specifically,

Ap(9) = ||[AQp(9)| — |ABQE(@)|| =0 (g€ (L] )M). (4.29)

To obtain a correspondent to (3.42), let s, (W) 1= > ;cpn(y) POHEPYI| wi )2
Next, using the definition of QE and property (Bs), and applying the obvious
inequality s, (W) < lo(w)?, we find that if g € (Lé7+)N, then

HA2BQE(9)H = Z / Sa(w)pﬁ,a(wv n)(gﬁ © uﬁ7a)(wv n)dwdn <

O‘?BEMRS\CA XQB
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< > la(W)*pg.a(w,n)(¢° 0 ugq) (W, n)dwdn. (4.30)

BEMpsial

We apply property (3.9) in the last integral. Then interchanging « and (3,
we get

[3Q5@I < 3 [ (sousa(wm)rga(wn)ge (wdwdn.

a,Be MRS‘Q‘XQﬁ

(4.31)

Since lg(w) = Mg + Wg(w), property (Bz) implies that (Ig o ugq)(w,n) =

lo(w) for all (a, ) € Cyr, W € Dg’a. This and (Bj;) enable us to deduce
from (4.31) that

[A3QE@)] < > la(W)*rga(w,n)g"(w)dwdn.  (4.32)

a,,BGMRS‘a‘ XQB

Now, using the definitions of l,(w) and @5, and then, taking advantage of
(2.56) and (4.26), we obtain from (4.32)

[ABQE(9)| <

< > 5a(W)rp.a(W,n)g%(w)dwdn + p5(|Aggl) | ABg|| =

OC,BEMRS‘Q‘ XQ

= |1A%Q5(9)|| + pB(I(ABg) || A%y

where pp is a positive non—decreasmg (polynomial) function.

(4.33)

Therefore, the last inequality is the required correspondent to (3.42) (in the
case A = Aq).

Further, let ag > 0 be some constant and define a(z) := ag ENK P,z > 0.

Therefore, a(||Apgl|) = ao Z K |Apg|/P. But each term ||Agg||? in the r.h.s
of the last equality can be expressed by (4.23), and the resulting expression
can be expanded by the multinomial formula. Then, after some elementary
algebra we get the following useful expression

altngl)=a 3 e [ Nwiglwiw,  (430)

YEM, IVIZl R3II

where ¢y; > 0 are strictly positive, constant coefficients, v € M, |y| > 1,
1<i<N.
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We show that if ag is large enough, then (L%A_)N > g — a(||Asfl)ABg —
Q5 (g9) € X is positive and isotone. To this end, first note that one can write

Q; (9)(v) = Ri(9)(V) gi(v), (g€ (L )N, veR ae,1<i<N),
(4.35)

where

Qg
Rwi= 3 a [ (e T [Jotwe) aw;
a,B0eEM  pajal-3 seN(a) Jj=1
(8,0)#(i,01) Wi, =V
(4.36)
with vg, as in (2.56). Hence,

a([[ABgl)(Ag)i(v)=Q5 (9)(v) = [a([[ABgl)Xi(v) — Ri(9) (V)] gi(v). (4.37)

It is convenient to set

Bow=c Y a [ pew I [[ewn|
0 BEM ol s seN(a) j=1
(5:3)# (i) Wi o, =V
(4.38)
with C' as in (4.28). Summing on S in (4.38), using the explicit form of

Y

A%(w), and invoking property (B7), we are easily led to

RH9)() =CNv) D0 gy [ Nw)g"(w)dw, (4.39)
TEM,IYIZL iyl
where ¢, ; > 0 are constant coefficients, vy € M, |y| > 1,1 <i < N.
We introduce (4.34) and (4.38) in (4.37). Consequently, for v € R? a.e.,
a([ABgl)(ABg)i(v) = Q7 (9)(v) = [R{(9)(v) = Ri(9)(V)]gi(v) + Ti(g)(v),
(4.40)

where

Ti(g)(v) == A(V)gi(v) Y (aes — Cgn) / X' (w)g" (w)dw. (4.41)

YEM, |v|=1 R3]

Now we compare (4.36) and (4.38), by taking advantage of (4.28). It fol-
lows that the map (L )Y 3 g — [RA(g) — Ri(g)]lgi € L* is positive and
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isotone, 1 < i < N. Moreover, because of the form of T;(g), if ag > 0
is sufficiently large, then the mapping (L%HF)N > g +— Ti(g)(v) € L' is
positive and isotone for all 4. In this case, by virtue of (4.40), the map
(L%HF)N > g — a(||ABgl|)ABg — Q5(g9) € X is also positive and isotone.

In conclusion, the conditions of Theorem 3.1a) are fulfilled (in the case A =

Aq), so that we are in position to state the following result ([11]):

THEOREM 4.4 Suppose that in problem (4.25), fo; € L}l7+, 1 <7< N.
Then Eq. (4.25) has a unique strong solution f(t) = (f1,..., fn) such that
filt)y e Lj y, t >0, and HfZ(t)HL}1 is locally bounded on Ry, 1 <i < N. In

addition, fi, (14 |v|)f; € C(Ry;LY), 1 <i < N,

[ABf@)N = [ABfoll  (t =0), (4.42)
and there is a non-decreasing function pp : Ry — R4 such that
[ABF O] < exp(ps(lfolDt) [[AB Sl (t=0). (4.43)

Theorem 4.4 does not state the conservation of mass, momentum and en-
ergy, but the conservation (in arbitrary units) of the quantity mass+(total)
energy. However, the properties of f(t), cf. Theorem 4.4, allow for checking
immediately the separate conservation for each of the above quantities.

Theorem 4.4 reduces to the main monotonicity result of |2] when Eq. (4.25)
is particularized to the case of the classical Boltzmann equation. Moreover,
in that case, using suitable additional Povzner-like estimations, we can re-
obtain the general moment estimations of [2], as application of Prop. 3.4b).

Finally, remark that similar analyses as for Theorems 4.2 and 4.4 can be
developed for the main model considered, e.g., in |27].

4.5. Nonlinear von Neumann-Boltzmann equation

As A is unbounded (by construction), the existence of solutions to problem
(2.62) seems not immediate from general considerations.

However, one can show that the conditions of Theorem 3.1 are fulfilled with
a(x) = .

First recall that Tr[A*(QT — Q7)](F) = 0, for all 0 < F € D(AF)n X,
k = 0,1. Then observe that, since A > I, it follows easily that Tr[A?(Q" —
QIF) <eTr(AF)TrF < eTr(AF)Tr(A%F) for all 0 < F € D(A3) N X .

So we can now formulate our existence result (|12]):
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THEOREM 4.5 Suppose that in problem (2.62), 0 < Fy € D(A%). Then
Eq. (2.62) has a unique mild solution 0 < F(t) € D(A?), and TrF(t) is
locally bounded. Moreover, F,AF € C(R4; X), TrF(t) = TrEy, Tr(AF)(t) =
Tr(AFy) and Tr(A?F)(t) < exp(teTr(AFy))Tr(A2Fy) (¢ > 0).

5. Concluding remarks

The results of the previous section of applications can be easily completed
taking advantage of Theorem 3.2. As an example, the previous Theorem 4.1
can be completed as follows

PROPOSITION 5.1 Let fy € Lé7+ in problem (4.2). Then Eq. (4.2) has a

strong solution f(t) € Lﬁ+, t > 0.

As mentioned before, the uniqueness is no longer ensured in the latter case.
Theorem 3.2 extends the main existence result of [11]. The other general
existence results formulated in [11] can be similarly completed, with obvious
modifications. This allows to reconsider the applications of [11], accordingly,
in an obvious manner.

Prop. 3.3 provides uniqueness of the solutions in the special case when A
vanishes on a rather large set. This can be applied, for instance, to the
space-homogeneous Boltzmann equation with hard potentials, to obtain a
similar existence result as in, e.g., [20]. However, in a more general case,
the uniqueness problem, under the conditions of Theorem 3.2, remains open.
Here we can however remark that the regularity conditions required in the
theorem might be necessary to ensure the uniqueness of the strong solutions.
Indeed, examples of non-unique (but) less regular solutions of the Boltzmann
equation have been recently discovered, [26], [19].

In this chapter, we presented various examples of existence results for gen-
eralized Boltzmann models obtained by monotonicity methods. The above
methods are potentially applicable to investigate other evolution problems.

On the other hand, the results presented in this review describe only par-
tially the properties of the models considered. They must be completed by
a thorough study of other properties of the models, e.g. the existence of sta-
tionary or/and equilibrium solutions, Lyapunov functionals, H-theorems (see
e.g. |7]), asymptotic properties, construction of effective numerical methods.



AN INTRODUCTION TO MONOTONICITY METHODS 91

6. Appendix

1) Sketch of the Proof of Lemma 3.3

Property B(-, gi,h;j) € Li,.(Ry; X4), 4,7 = 1,2, follows from (A;), (As) and
Remark 3.2.

To prove (3.58), let

yi(t) ::/0 A(s,hi(s))ds (1 =1,2). (6.1)

Clearly, 0 < yi(t) < ya2(t), because of the isotonicity of A(t,-) (cf. (41)).
Further, define F(z,y) := a(z +y) — a(z), with a as in (A2). The properties
of a (cf.(Ag)) imply

F(a*,y) — Flz.y) = /0 "l e —d@tro]de=0  (62)

for all 0 <z < z* and y > 0. Then one can show easily (invoking (Asz), the
isotonicity of QT (¢,-) and the obvious inequality Ag;(t) < Ags(t)) that

0 < B(t,g1,h) = B(t,91,0) + F ([[Agi(®) |, y1(2)) Aga(t) <

< B(t,92,0) + F ([Agi (D), y1.(2)) Aga(t) (6.3)

and

0 < F (A5 9:() < F (|Ag2@I,1(2)) < F (|Ag2 (@], 92(2)) - (6.4)

Inequalities (6.3) and (6.4) can be now easily combined to obtain (3.58). O

2) Sketch of the Proof of Lemma 3.4

a) Since DT is p-saturated and AFQ®(t,-) are positive and isotone, the key
point is to show that for each 7" > 0 and n = 1,2, ..., there is g, € D
such that

0< fut) <gnr (0<t<T ace.). (6.5)

Then (3.41) gives Q™ (t,gn,7) € D a.e. on Ry, hence AQ= (-, gnr) €
L} (Ry; Xy) for all k= 0,1,2,.... The same properties hold for Q" (¢, gn.7)
and AkQJr(-,gn,T), respectively (by virtue of the assumptions of Theorem

3.1a) and by (3.44)).
Inequality (6.5) can be proved by induction.

Indeed, note that (6.5) is trivially verified for n = 1 by g1 7 := 0, and for
n = 2 by gar := fo. Further, at the induction step, assuming that (6.5) is
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fulfilled for n = 1,2,..¢ — 1 (with ¢ > 3) applying, in essence, the properties
of A, a, and (3.28), one first obtains

t t
Ak/ B(s, gn—1,1: gn—2,7)ds = / A*B(s,gn-17,gn—27)ds (0 <t <T),
0 0

(6.6)
for all k =1,2,... and n = 1,2,...,¢ — 1. Then observe that f,_1(t) < gq—1.7
and fy,_2(t) < gq—27 satisfy the conditions of Lemma 3.3 for g; < g2 and
h1 < hg, respectively. Thus, applying conveniently (3.56) and (3.58) in
(3.60), and invoking (6.6), we get

T
0<,(0) <o+ [ Bls.girgan)ds = g0 € DT (0<t<T)
0
(6.7)
b) As before, it is sufficient to show by induction that property (6.5) is verified
by gnr € D(A®) N X
First note that if g; 7 = 0 and ga7 = fo, then (6.5) is trivially verified for
n =1, 2, respectively.

The induction step is simpler than in a), because now one can make use of
the fact that V? is Cy. Then, fot V*hds € D(A) for all h € X, t > 0, which,
in our case, implies (for any 0 <t <T)

t t
/ Vt_sB(Ta 9q—1,1 Gg—2,7)ds = / V°B(T, gq-1,1,9q-2,7)ds € D(A3)OX+-
0 0

(6.8)
Since, in our case, B(t, gq—1,1,9q-2,1) < B(T,99-11,9q—2,1), We conclude
the induction step, using property (6.8) with the key inequality

t
0 é fq(t) S fO +/ Vt_sB(T7 gq—l,T’gq—ZT)ds (0 S t § T)7 (69)
0

which follows, in essence, by Lemma 3.3, and by applying (3.56) and (3.58)
in (3.60).

c) The statement follows from simple regularity considerations and some
direct computation.

d) Obviously, 0 = fi(t) < fa(t) < f3(t) a.e.. Then a straightforward induc-
tion, applying (3.58), shows that {f,(¢)} is a.e. increasing.

For the rest of the proof, note that (3.63) implies (3.64). Inequality (3.63) can
be proved by induction. Indeed, since 0 = f; < fo(t) < fo, and A(t,0) =0
a.e. (cf. Remark 3.1), formula (3.63) is trivially verified for n = 2. Let ¢ > 3
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and suppose inequality (3.63) to be valid for n = 2,3,....¢ — 1. If n = ¢ in
(3.62), then the positivity of @ and 0 < Afy—1(t) < Afy(t) give

fa(8) < fo+ /0 Q(s, fy1(s))ds +

" /0 t [a <Hqu_1(s)H n /0 A, fq—z(T))dT> - a(HAfoH)} Afy(s)ds.

(6.10)
According to the induction hypothesis, (3.63) holds true for n = ¢—1. Hence
(3.64) is also valid for n = g — 1, as concluded before. Then a(||Afy—1(s)|| +
Jo A(T, fa—2(7))d7)) < a(|Afol]), because a is non-decreasing. As Afq(s) is
positive, clearly the integral term containing Af,(s), in the r.h.s. of (6.10) is
negative. Then (3.63) becomes true for n = q.

e) Note that QT (t, f,(t)) € D(I'), for a.e. t > 0. Also, TQ* (-, f.(-) €
L} (Ry; Xy). Indeed, let T > 0 and g, 1 > fa(t) be as in a). If T'is of type
D on D%° (on D(A%) N X4 ), then (3.36) and (3.41) give |TQE (¢, fu(t))]| <
ITQ*(t, g )| < ITQ™(t gl < alllgnrll) ITAG 7| for ae. 0< ¢ < T.
On the other hand, if ' satisfies (3.46), then (3.41) implies

[TQ* (¢, fu(®))]] < [TQ™(t, fa®)]| + pr(IArgna ) [Tgnrll <
< a(llgn,r ) ITAgnzll + pr([Argnrl)) [Tgnzll (0<t<T a.e.).

But (3.63) is of the form (3.37), and the above considerations show that
Lemma 3.2 applies (with I" instead of A). Hence,

t
ITfa(0)] + /O As far(s):T.Q)ds < [Tfol (20, n>2). (6.11)

Now the proof can be immediately concluded: if n = 1, then formula (3.65)
is trivially satisfied; if n > 2, then (3.65) is directly implied by (6.11).

To obtain (3.66) observe that A? satisfies the conditions for I in e).
f) First apply inequality (3.46) in (6.11). It follows that

t
IT ()] < [T ol +/0 pr([ALfoa(s)DIIT fa-1(s)llds  (t=0, n>2).

(6.12)
But A; satisfies the conditions of e) in the present lemma, hence ||A1 f,,(¢)]] <
IA1foll, t > 0, n = 1,2,... . Introducing the last inequality in (4.16), we

obtain

t
IT (D)l < ”Pf0”+/0I‘(HA1fOH)/O ITfn-a(s)l[ds (=0, n=2). (6.13)
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Finally, since (3.67) is obviously satisfied for n = 1,2, a straightforward
(Gronwall type) induction in (6.13) concludes the proof. O
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1. Introduction

For the Schrodinger operator —A + V on L?(R%) (d > 3), one has the well-
known CLR (Cwikel-Lieb-Rosenblum) estimation for N(V'), the number of
negative eigenvalues:

N(V) < c(d) /Rdd:z: V()] (1.1)

V' is the multiplication operator with the function V € Llloc(Rd) and V_ =

(|[V|=V)/2 € LY2(R%); the constant ¢(d) > 0 only depends on the dimension
d >3 (see [47], Th. XIL12).

There exist at least four different proofs of this inequality. Rosenblum [35]
uses "piece-wise polynomial approximation in Sobolev spaces". Lieb [25]
relies on the Feynman-Kac formula. Cwickel [4] uses ideas from interpolation
theory. Finally, Li and Yau [31| make a heat kernel analysis.

The inequality (1.1) has been extended in [1| and [48] to the case of operators
with magnetic fields (—iV — A)? + V, where the components of the vector
potential A = (Ay,...,A,) belong to L2 (R?). The basic ingredient of the
proof is the Feynman-Kac-Ito formula. Melgaard and Rosenblum [41] gener-
alizes this result (by a different method) to a class of differential operators of
second order with variable coefficients. The idea for treating the relativistic
Hamiltonian (without a magnetic field), by replacing Brownian motion with
a Lévy process, appears in [5] and we follow it in our work giving all the
technical details. Some similar results but for a different Hamiltonian and
with different techniques have been obtained recently in [8].

Our aim in this paper is to obtain an estimation of the type (1.1) for an
operator that is a good candidate for a relativistic Hamiltonian with mag-
netic field (for scalar particles); it is gauge covariant and obtained through
a quantization procedure from the classical candidate. We shall make use
of a "magnetic pseudodifferential calculus" that has been introduced and
developed in some previous papers [34], |35], |27], [28], [36], [38], |24].

Let us denote by ngl(]Rd) the family of functions f € C*°(R%) for which all
the derivatives 9® f, o € N have polynomial growth.

Let B be a magnetic field (a 2-form) with components Bj;, € ggl(Rd). It

is known that it can be expressed as the differential B = dA of a vector
potential (a 1-form) A = (Ay,...,Aq) with A; € ngl(Rd), j=1,...,d; an
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example is the transversal gauge:
noopl
Aj(z) = — Z/ ds Bji(sx)sxy.
k=1"0
We denote by

1
M (z,y) = / ds A((1 —s)z + sy) = A, z,y€RY (1.2)
0 [2,y]
the circulation of A along the segment [z,y], =,y € R% If a is a symbol

on RY, one defines by an oscillatory integral the linear continuous operator
Op(a) : S(RY) — S*(RY) by

[Op(a)] () := (2m) 7 / dy dg 0t e A (x i y,£> u(y),
Rd JRA 2
(1.3)
The correspondence a +— DpA(a) is meant to be a quantization and could
be regarded as a functional calculus DpA(a) = a(Q,II*) for the family of
non-commuting operators (Q1, ..., Qg; H‘f‘, . ,Hg‘), where (@ is the position

operator, IT* := D — A(Q) is the magnetic momentum, with D := —iV.

If a belongs to the Schwartz space S(R??), then Op“(a) acts continuously in
the spaces S(RY) and S*(R?), respectively. It enjoys the important physical
property of being gauge covariant: if ¢ € ggl(]Rd) is a real function, A
and A" := A 4 dyp define the same magnetic field and one prove easily that
Op?'(a) = e¥Op?(a)e™®. The property is not shared by the quantization
a — Opy(a) == Op(aowrvy), where Op is the usual Weyl quantization and
va:RT— RY va(z,€) := (2,6 — A(a)) is an implementation of "the minimal
coupling".

We mention that in the references quoted above, a symbolic calculus is
developed for the magnetic pseudodifferential operators (1.3). In particu-
lar, a symbol composition (a,b) — afPb is defined and studied, verifying
Op(a)Op?(b) = Op?(at®h). It depends only on the magnetic field B, no
choice of a gauge being needed. The formalism has a C*-algebraic interpre-
tation in terms of twisted crossed products, cf. [35], [37], [39] and it has been
used in [40] for the spectral theory of quantum Hamiltonians with anisotropic
potentials and magnetic fields.

We shall denote by H 4 the unbounded operator in L2(R?) defined on C§°(R9)
by Hau := OpA(h)u, with h(z,&) = h(€) :== (£) =1 = (1 + |¢]*)Y/2 — 1. One
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can express it as
(Haw () = n) " [ [ dydede (- y) ). (1)
Rd JR4
H 4 is a symmetric operator and, as seen below, essentially self-adjoint on
C&°(R%). Also denoting its closure by Ha, we will have Hy > 0.

Ichinose and Tamura [19], [20], using the quantization a — (Op)a(a), study
another relativistic Hamiltonian with magnetic field defined by

dy de el==9)€p, <g iy (”" ;y>> u(y), (1.5)

(H'yu) () = (2m) /

Rd JRR4

for which they prove many interesting properties. Unfortunately, H; is not
gauge covariant (cf. [24]). Many of the properties of H’; also hold for Hy4
(by replacing A (%“y) with T'4(z,%) in the statements and proofs) and this
will be used in the sequel.

Aside the magnetic field B = dA, we shall also consider an electric potential
Ve L%OC(Rd), real function expressed as V =V, — V_, VL > 0, such that
V_ € L4F(RY) N LY2HR(RY) for some k > 0. We are interested in the opera-
tor H(A,V) := Hy+V; it will be shown that it is well-defined in form sense
as a self-adjoint operator in LQ(Rd), with essential spectrum included into
the positive real axis. Taking advantage of gauge covariance, we denote by
N(B, V) the number of strictly negative eigenvalues of H(A, V') (multiplicity

counted); it only depends on the potential V' and the magnetic field B.

The main result of the article is

THEOREM 1.1 Let B = dA be a magnetic field with By, € ggl(Rd), Aj e

ggl(Rd) and let V=V, -V_ € Llloc(Rd) be a real function with V3 > 0 and

V_ € LYRYNLY2(RY). Then there exists a constant Cy, only depending on
the dimension d > 3, such that

N(B,V) < C’d< . dz V_(x)? + . da v_(x)dﬂ). (1.6)

A standard consequence is the next Lieb-Thirring-type estimation:

d
COROLLARY 1.1 We assume that the components of B belong to C’ggl(R )

and that V. = Vi — V_ € LL _(RY) is a real function with Vo > 0 and
Vo € LYFRY) N LY2HERY), k > 0. We denote by \; < Xy < ... the
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strictly negative eigenvalues of H(A, V') (with multiplicity). For any d > 2
there exists a constant Cq(k) such that

zj: A F < Ca(k) (/Rd da V_(x)3+F + g da v_(zp)d/%’f) . (1.7)

Sections 2, 3, 4 will contain essentially known facts (usually presented with-
out proofs), needed for checking Theorem 1.1. So, in Section 2 we introduce
the Feller semigroup (]|20], [17], [26]) associated to the operator Hy := (D)—1.
In the third section we define properly the operator H(A, V) and study its
basic properties. In Section 4 we recall some probabilistic results, as the
Markov process associated to the semigroup defined by Hy ([25], [6], [26])
and the Feynman-Kac-It6 formula adapted to a Lévy process ([20]).

In Section 5 we prove Theorem 1.1 for B = 0, using some of Lieb’s ideas
for the non-relativistic case (see [48]) in the setting proposed in [5]. The
last section contains the proof of Theorem 1.1 with magnetic field as well as
Corollary 1.1. The main ingredient is the Feynman-Kac-1t6 formula.

2. The Feller semigroup

We consider the following symbol (interpreted as a classical relativistic Hamil-
tonian for m = 1,¢c = 1) h : R — R, defined by h(¢) := (£) — 1 =
V14 €] — 1. Let us observe (as in [17]) that it defines a conditional nega-
tive definite function (see |47]) and thus has a Lévy-Khincin decomposition
(see Appendix 2 to Section XIII of [47]). Computing (Vh)(€) and (Ah)(§)
and using the general Lévy-Khincin decomposition (see for example [47]), one
obtains that there exists a Lévy measure n(dy), i.e. a non-negative, o-finite
measure on R, for which min{1, |y|?} is integrable on R?, such that

We) = = [ {7 1= O T} @)

where Iy, <1y 1s the characteristic function of the open unit ball in R%. One
has the following explicit formula (see [17]):
n(dy) = 2(2m) "Iy T DK ) s (ly]) dy, (2:2)

with K, the modified Bessel function of third type and order v. We recall
the following asymtotic behaviour of these functions:

0 < K,(r) < Cmax(r~, 7Y™, ¥r>0, Yw>0  (2.3)
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We shall denote by H*(R?) the usual Sobolev spaces of order s € R on R? and
by Hy the pseudodifferential operator h(D) = Op(h) considered either as a
continuous operator on S(R?) and on S*(R?) or as a self-adjoint operator in
L?(R%) with domain H!(R%). The semigroup generated by Hy is explicitly
given by the convolution with the following function (for ¢t > 0 and z € R%):

t—/(2P+2)(EP+D))  _

pi(w) = (2m)4

__t (
V|x|? + 2 /]Rd dee

= 27 [D/2 D2yl (12 4 )" HDAR G (VIR +2) (2.4)
(see [20], |2]). We have

o) > 0 and /Rdda:g)t(x) = 1. (2.5)

From (2.3) one easily can deduce the following estimation

3C >0 such that ,(0) < Ct=41+t%?), vi>o0. (2.6)

Let us set
Coo(RY) = {fe C(RY) | Illim f(z) :0} (2.7)
and endow it with the Banach norm ||f|locc := sup,ega |f(z)]. Using the

above properties of the function ét we can extend e 0 to a well-defined
bounded operator P(t) acting in Cu(RY).

REMARK 2.1 One can easily verify that {P(t) }+>0 is a Feller semigroup, i.e.:

1. P(t) is a contraction: |P(t)f]loo < |fllee, ¥f € Coo(R?);

N

. AP(t)}i>0 is a semigroup: P(t + s) = P(t)P(s);

w

. P(t) preserves positivity: P(t)f >0 for any f > 0 in Coo(RY);

S

. We have limp o [|[P(t)f — flloo =0, Vf € Coo(R?).

3. The perturbed Hamiltonian
Suppose given a magnetic field of class C;’gl(Rd) and let us choose a potential

vector A, such that B = dA, with components also of class C%, (R%) (this
is always possible, as said before). We shall denote by H4 the operator
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OpA(h), considered either as a continuous operator on S(R%) and on S*(R?)
(by duality) or as an unbounded operator on L?*(R%) with domain C3°(RY).

Using the Fourier transform one easily proves that for u € Cg°(R9):
(Houl(e) = = [ nldy) e +3) = ) = I 0) (- 00 (@)] . (3.1)
Recalling the definition of Op“(h), we remark that
[Haul(@) = [9pA(h)u] (0) = |Op(h) (@71 u)| @) = (32)

= [Ho <ei(x_')'FA(x")u)} (z).

Combining the above two equations one gets easily

(Had(w) = = [ n(@n) [T @ty —ule)= (3

—I{11<13 () (y - (0 —1A(2))u) (2)] .

Repeating the arguments in [17] with T'4(x,z + y) replacing A((x + y)/2)
one proves the following results similar to those in [17].

PROPOSITION 3.1 Considered as unbounded operator in L?(RY), H, is es-
sential self-adjoint on C(C)’O(Rd). Its closure, also denoted by H 4, 1s a positive
operator.

PROPOSITION 3.2 For any u € L?(R?) such that Hau € L} _(R%)
R [(signu)(Hau)] > Holul.

Using the method in [49] we can prove the following result.

PROPOSITION 3.3 For any u € L*(RY) we have:
1. for any A > 0 and for any r >0
[(Ha+X)""u| < (Ho+A)"|ul; (3.4)

2. foranyt>0
!e_tHAu‘ < e tHopy), (3.5)
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We associate to H 4 its sesquilinear form

D(ha) = D(HY?),

ba(u,v) = (HY u, H*v), ¥(u,0) € D(ha)?. (3.6)

Consider now a function V' € LL_(R?), V > 0 and associate to it the
sesquilinear form

D(av) := {u € L*R?) | VVue L*(RT)},

qv(u,v) == | dzV(x)u(@)o(z), Y(u,v)€ D(av)* (3.7)
R4
Both these sesquilinear forms are symmetric, closed and positive. We shall
abbreviate h4(u) = ha(u,u) and qy (u) = qv(u, u).

PROPOSITION 3.4 Let V : R* — R be a measurable function that can be
decomposed as V =V, — V_ with Vo > 0 and Vi € LL_(R?). Moreover let
us suppose that the sesquilinear form qy._ is small with respect to bo (i.e. it is
ho-relatively bounded with bound strictly less then 1). Then the sesquilinear
form ba+qv, —qv_, that is well defined on D(ha)(\D(qv, ), is symmetric,
closed and bounded from below, defining thus an inferior semibounded self-

adjoint operator H(A; V)= H := Hy +V (sum in sense of forms).

Proof. The sesquilinear form h4+qy, (defined on the intersection of the form
domains) is clearly positive, symmetric and closed. We shall prove now that
the sesquilinear form qy._ is ha + qy, -bounded with bound strictly less then
1, so that the conclusion of the proposition follows by standard arguments.

Let us denote by H, := H4 + V. the unique positive self-adjoint operator
associated to the sesquilinear form b4 + qy, by the representation theorem
2.6 in §VI.2 of [29]. As V; € Li_(R?), we have C°(R?) C D(ha) N D(qv,)

loc
and thus we can use the form version of the Kato-Trotter formula from [30]:

o—tHe — ¢ _1lim <e—(t/n)HA e—(t/n)V+)n’ vt > 0. (3.8)

n—oo

Let us recall the formula (r > 0 and A > 0)

(Hy+MN)™" = F(r)_l/o dt ¢~ te A et (3.9)
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Combining the above two equalities we obtain

(Hy +0)77f] < F(r)_l/wdt e et f| = (3.10)
0

= I‘(r)_l/ dt ¢t 1
0

< (Ho+AN)7"[fl;
by using the second point of Proposition 3.3.

Taking u = (Ho+ \)~'/2g with g € L?>(R%) arbitrary and A > 0 large enough
and using the hypothesis on V_ we deduce that there exists a € [0,1), b >0
and o’ € [0,1) such that

s — lim (e_(t/")HA e—(t/n)V+)" f‘ <

n—~o0

qv(u) < al| Hy*u|>+b]|u|)? = al|Hy'* (Ho+A) 29| +b|| (Ho+A)"/?g|? <

< (a+0/Mgl* < d'l|g. (3.11)

For any v € D(ha) N\ D(qv. ) let f := (Hy + \)/?v and g := |f|. Using now
(3.10) with r = 1/2, (3.11) and the explicit form of gy we conclude that

av-@) = av. ((He +072F) <av ((Ho+N)"V2g) < (3.12)

Mall2 — ./ 1/22_1 2
<dlgl? = o ||(Hy + 0720 = a [balo) + ar () + Allo]?]

O

DEFINITION 3.1 For a potential function V' satisfying the hypothesis of Propo-
sition 3.4, we call the operator H = H(A; V') introduced in the same propo-
sition the relativistic Hamiltonian with potential V' and magnetic vector po-
tential A.

The spectral properties of H only depend on the magnetic field B, different
choices of a gauge giving unitarly equivalent Hamiltonians, due to the gauge
covariance of our quantization procedure.

PRrROPOSITION 3.5 Let B be a magnetic field with C;gl(Rd) components and
A a wvector potential for B also having C;’gl(Rd) components. Assume that
V :R? — R is a measurable function that can be decomposed asV =V, —V_
with Vo >0, Vi € LL _(RY) and V_ € LP(R?) with p > d. Then

loc

1. qv_ s a ho-bounded sesquilinear form with relative bound 0;
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2. the Hamiltonian H defined in Definition 3.1 is bounded from below and
we have Oess(H) = 0ess(Ha + V4) C [0,00).

Proof. 1. Using Observation 3 in §2.8.1 from [37], we conclude that for d > 1,
the Sobolev space H'/?(R%) (that is the domain of the sesquilinear form )
is continuously embedded in L"(R%) for 2 < r < 2d/(d — 1) < oo. Also using
Holder inequality, we deduce that for r = 2p/(p — 1) € [2,2d/(d — 1)], for
p>d

1/2
V22l < Vo llpllell? < ellVollplull o g (3.13)

)7
Vu € HY2(R%) = D(hg). Thus V2 e B(HY/2(R%); L?(R%)); now let us prove
that it is even compact. Let us observe that for d < p < oo, Cgo(Rd) is dense
in LP(R9). Thus, for d < p < oo let {W }eso C C°(RY) be an approximating
family for V2 in L?(RY), i.e. HV_1/2 — Well2p < €. Moreover, for any
sequence {u;} C HY/?(RY) contained in the unit ball (i.e. |[ujlly12 < 1) we
may suppose that it converges to u € 'Hl/Q(Rd) for the weak topology on
HY/2(R?) and thus |l < 1. Tt follows that Weu; converges to Weu in
L*(R%) and due to (3.13) we have:

1/2 1/2 .
(V22 =Wy (u—u)|| < CVIVE2 =W oo fu—ujllygr 2 < 262, ¥ > 1.
We conclude that V_1/2uj converges in LQ(Rd) to V_1/2u and using the duality
we also get that V_ is a compact operator from H/2(R%) to H~/2(R%). Using
exercise 39 in ch. XIIT of [47] we deduce that q_ has zero relative bound with
respect to hg.

2. The conclusion of point 1 implies that the operator V_l/z(Ho + 1)_1/2 €
B[L?(RY)] is compact. Using the first point of Proposition 3.3 with A =
—1 and r = 1/2, and Pitt Theorem in [45], we conclude that the operator
V_l/Q(HA—i—V++1)_1/2 € B[L?*(R?)] is also compact. Thus V_ : D(ha+qy, ) —
D(ha + qv, ) is compact and the conclusion (2) follows from exercise 39 in
ch. XTIT of [47). O

4. The Feynman-Kac-It6 formula

In this section we gather some probabilistic notions and results needed in
the proof of Theorem 1.1. The main idea is that we obtain a Feynman-Kac-
It6 formula (following [20]) for the semigroup defined by H(A, V) and this
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allows us to reduce the problem to the case B = 0. For this last one we
repeat then the proof in [5| giving all the necessary details for the case of
singular potentials V'; here an essential point is an explicit formula for the
integral kernel of the operator e #(0:V)

Let (©,F,P) be a probability space, i.e. § is a o-algebra of subsets of 2 and P
is a non-negative o-aditive function on § with P(Q2) = 1. For any integrable
random variable X : 2 — R we denote its expectation value by

in terms of a Lévy process.

E(X) = /Q X (w)P(dw). (4.1)

For any sub-o-algebra & C § we denote its associated conditional expectation
by E(X | &); this is the unique ®-measurable random variable Y : @ — R
satisfying

/Y(w)P(dw) = / X (w)P(dw), VB € &. (4.2)
B B

Let us recall the following properties of the conditional expectation (see for
example [26]):

E(E(X |®)) = E(X), (4.3)

E(XZ|®) = ZE(X | ®), (4.4)

for any &-measurable random variable Z : 2 — R, such that ZX is inte-
grable.

We also recall the Jensen inequality (|48], [26]): for any convex function
¢ : R — R, and for any lower bounded random variable X : € — R the
following inequality is valid

p(E(X)) < E(p(X)). (4.5)

Following [6], we can associate to our Feller semigroup {P(t)}+>0, defined
in Section 2, a Markov process {(€2,§, Ps), {X¢ }>0, {0+ }+>0}; that we briefly
recall here:

e ) is the set of "cadlag" functions on [0,00), i.e. functions w : [0,00) —
R (paths) that are continuous to the right and have a limit to the left
in any point of [0, c0).
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e § is the smallest o-algebra for which the coordinate functions {X;}+>0,
with X;(w) := w(t), are measurable.

e P, is a probability on 2 such that for any n € N*, for any ordered set
{0 <t; <...<t,} and any family {By,..., By} of Borel subsets in
R?, we have

P. {th c Bl, - ,th S Bn} = (46)

/ dxy %tl (v — xl)/ dzo %trtl (X1 —22) ... / dz, &n,t%l (Tp—1 — xp).
B1 B n

One can deduce that, if E, denotes the expectation value with respect
to P, then for any f € Coo(R?) and for any ¢ > 0 one has

Eo(f o Xi) = [P()f](2). (4.7)

We also remark that P, is the image of the probability Po = P under
the map S, : Q — Q defined by [S,w] (¢) := x + w(t).

e For any ¢ > 0, the map 6 : Q — Q is defined by [6;w] (s) := w(s + t).
If we denote by §; the sub-g-algebra of § generated by the processes

{Xs}o<s<t, then for any ¢t > 0 and any bounded random variable
Y:Q—-R

E: (Yo0;|3:)(w) = Ex,)(Y), Pz—a.e. on. (4.8)

We use the fact that (see [25], [20]) the probability P, is concentrated on the
set of paths X such that Xg = 2 and by the Lévy-Ito Theorem:

i+ -
Xi=z+ / / y Nx (dsdy). (4.9)
0 Jrd

Here Nx (dsdy) := Nx(dsdy) — Nx(dsdy), Nx(dsdy) := E,(Nx(dsdy)) =
dsn(dy) with n(dy) the Lévy measure appearing in (2.1) and Nx a ’counting
measure’ on [0,00) x R? that for 0 < ¢t < #' and B a Borel subset of R is
defined as Nx((t,t'] x B) =

=4 {se ]| X;# X,—, X;X,— € B}. (4.10)

Following the procedure developped in |20] by Ichinose and Tamura one ob-
tains a Feynman-Kac-It6 formula for Hamiltonians of the type H = H4+ V.
In fact we have
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ProproSITION 4.1 Under the same conditions as in Definition 3.1, for any
function u € L?(R%) we have

(e7Hu) (v) = E; ((u o Xt)e_S(t’X)> , t>0,2€R? (4.11)

St X) = i/ot+ [ Fx(asay </01dr (A(X,. +ry)),y> 4

+i/0t . Nx(dsdy)<</01dTA(Xs+7‘y)—A(Xs)> : y> +

+ s V(X,). (4.12)
0

In the sequel we shall take A = 0 and V € C§°(R?). As it is proved in [6],
the operator e *(Ho+V) has an integral kernel that can be described in the
following way. Let us denote by §;— the sub-o-algebra of § generated by the
random variables {X}o<s<s. For any pair (z,y) € [RY? and any t > 0 we
define a measure ,uf)’f; on the Borel space (€2,§;—) by the equality

N67Z:JC(M) = Ex XM %t—s(Xs - y)] y (4.13)

)

for any M € s and 0 < s < t, where xjs is the characteristic function of
M. This measure is concentrated on the family of ‘paths’ {w € Q | Xo(w) =

z, X;—(w) =y} and we have ,ug’zc(Q) = pu(z — ).

PROPOSITION 4.2 Let F': Q — R be a non-negative §—-measurable random
variable and let f : R — R be a positive borelian function. Then the following
equality holds for any t > 0 and any = € RY:

/ dy{ / ua’f;(dw)F(w)e-f5d8V<Xs>} () = (4.14)
R4 Q
= B (Fe bV 5(xy)).

Proof. This is a direct consequence of relations (2.29) and (2.33) from [6]. O

Let us now take A = 0 in Proposition 4.1 and F' = 1 in Proposition 4.2
in order to deduce that the operator e ?Ho+V) ig an integral operator with
integral kernel given by the function

pr(w,y) = /QNB’Z(dw) el VI 50, (2,y) eRIxRL (4.15)
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Proposition 3.3 from [6] implies that the function [0, 00) xRIxR? 3 (t, 2, y)
pi(x,y) € R is non-negative, continuous and verifies py(x,y) = p¢(y,z). We
shall also need the following result.

PROPOSITION 4.3 For any t > 0, any x € R? and any function g : @ — R
that is integrable with respect to the measure ,ug’fc we have the equality:

/ W (dw) g(w) = / 10 (dw) gl + w). (4.16)
Q Q

Proof. 1t is evidently sufficient to prove that for any s € [0,¢) and any M €
we have

t, t0 -
uen (M) = (o Sz (M)
where the map S, : Q — Q is defined by (S;(w)(t) := x + w(t). We noticed
previously the identity P, = Pg o S;!; thus for any function F' : Q — R
integrable with respect to P, we have E,(F') = Eo(F o S;). We remark that
Xs(w+z) =w(s) + = = Xs(w) + x, and using the definition of the measure
tx . .
Ko 0 (4.13), we obtain

i (M) = B [ fra (X = 2)] = Bo [(aar 0 50) i (X0)] = (417)

= Eo | (a1 91-+(X0) | = iy (S5 (0D)) = w0 5] (2.

5. Proof of the bound for N (0; V)

In this Section we will consider A = 0 and we shall work only with a potential
V =V, — V_ satisfying the properties:

o V4 >0,
i V+ S Llloc(Rd))

o V_ e LYRY) N L2 (RY).

We shall use the notations H := Hy+V, Hy := Hy+Vy, H_ := Hy+(-V_)
for the operators associated to the sesquilinear forms h = hg + qy, b =
bo+av,, b— =bo —aqv_.
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Due to the results of Proposition 3.5 we have 0ess(H) = 0ess(Hy) C 0(H4) C
[0,00) and oess(H_) = dess(Hp) = o(Hp) = [0, 00).

For any potential function W verifying the same conditions as V above, we
denote by N (W) the number of strictly negative eigenvalues (counted with

their multiplicity) of the operator Hy + W. The following result reduces our
study to the case V, = 0.

LeEMMA 5.1 The following inequality is true:
N({V) < N(=V_).
In particular we have that N(V') = oo implies that N(—V_) = oc.

Proof. We apply the Min-Max principle (see Theorem XIII.2 in [47]) noticing
that D(h_) = D(ho) D D(h) and h_ < b and we deduce that the operator
H_ has at least N (V) strictly negative eigenvalues. O

Thus we shall suppose from now on that V. = 0.

5.1. Reduction to smooth, compactly supported potentials

In this subsection we shall prove that we can suppose V_ € C'(C)’O(Rd). This
will be done by approximation, using a result of the type of Theorem 4.1
from [50].

LEMMA 5.2 Let V and V, (n > 1) functions as in Proposition 3.4. In
addition, Vi = V4 = 0 for all n > 1 and lim,—o Vy, - = V_ in LL (R?)

and V, _ are uniformly Ho-bounded with relative bound < 1. We set H,, :=
Hy+V,. Then H, — H when n — oo in strong resolvent sense.

Proof. We denote by b,, the quadratic form associated to H,, i.e. bh, =
ha — qn,—, where g, _ is associated to V,, — by (3.7). We have D(h,) =
D(ha) C D(gn,—), and according to Proposition 3.4 there exist a € (0,1)
and 8 > 0 such that

Gn—(v) < aha(v) + B || v, VYve D(ha), Vn > 1. (5.1)

It follows that b, are uniformly lower bounded and the norms defined on
D(h4) by b4 and b, are equivalent, uniformly with respect to n > 1. More-
over, C§°(R%) is a core for Hy, thus for ha, h and b, also.
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Let f € L>(R?) and w, := (H, +i)"'f € D(H,) C D(ha), n > 1. We have
clearly

[ un 1< I [bn(un)| = [(Hptn, un)| <[| f I, Yn>1. (5.2)

From (5.1), the subsequent comments and (5.2) it follows that the sequence
(tn)n>1 1s bounded in D(h4), while the sequence <an/_2un) is bounded in

n>1
L*(R%). Let u € L2(R?) be a limit point of the sequence (uy,),>1 with respect
to the weak topology on L2(Rd). By restricting maybe to a subsequence, we

may assume that there exist 1,7 € L?(RY) such that Hi‘ﬂun — 1) and
n—oo

V1/2un — 7 in the weak topology of L2(R). For g € D (Hi‘m) we have

(1%0.8) = i (50t (030) = )

thus u € D(HY?) and HY*u = 4. Then u € D(q_) and for any g € Cg°(R¢)

(n,9) = nh_)ngo (an7/_2un,g) = lim (un,an,/_zg) = (u, V_l/zg) = (V_l/zu,g) ,

n—~o0

implying V_l/zu =1.

It follows that for every g € C$°(R?) we have

= ()29, 1 Pun) = (Vo 2,V 2un) = i(g, wn) = b(g,u) ~ i(g, ).

Consequently, v € D(H) and (H +1i)u = f. Thus the sequence (uy)p>1 has
the single limit point u = (H +1i)~'f for the weak topology of L?(R%). Tt
follows that (H, £1)™'f — (H £1i)~' f weakly in L?(R%) for n — oo.

By the resolvent identity we get

a—1 2 i N—1 —1 o —1 2
A0 1P= 5 ((F (o = D)70) = (f (Ha 1)) = (H+) 7,
therefore (H, +1i)~'f — (H +1i)~'f in L2(R9). O
A direct consequence of Lemma 5.2 and Theorem VIII.20 from [47] is

COROLLARY 5.1 Under the hypothesis of Lemma 5.2, for any function f
bounded and continuous on R and any u € L*(RY), we have f(H,)u —
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Approximating V_ is done by the standard procedures: cutoffs and regular-
ization. The first of the lemmas below is obvious.

LemMMA 5.3 Let V_ € LﬂOC(Rd) with V_ > 0 and assume that its associated
sesquilinear form is bho-bounded with relative bound strictly less then 1. Let
8 € C5°([0,00)) satisfy the following: 0 < 6 <1, 0 is a decreasing function,

0(t) =1 fort €[0,1] and 6(t) =0 for t € [2,00).

If we denote by 0"(x) = O(|z|/n) and V' = 6"V_, then V' — V_ in
LL (R, 0 <V < VL and the sesquilinear forms associated to V™ are
ho-bounded with relative bound strictly less then 1, uniformly in n € N*.

Moreover, if we denote by h™ the sesquilinear form associated to the operator

Hy 4+ (=V™), we have b™ > 5D > p and 40V (u) — b(u) for any
n—oo

u€D(ha).

If, in addition, V_ € LP(R?), p > 1, then V" € Liomp(RY), [|[V*|» <
IV_|lze for any n > 1, and V™ — V_ in LP(RY).

LEMMA 5.4 (a) Let Vo € LL (RY), V_ > 0 and ho-bounded with relative
bound < 1. Let 0 € C*(R?), 6 > 0 and [5,0 = 1. We set 0,,(z) := n%(nx),
r€RY neN and V,, _ :=V_ %0, € C. In particular, V,, — € C(R?) if

1 d
Then V,,— — V_ in LL _(R?) for n — oo and the functions V,, _ are non-

negative and uniformly hg-bounded, with relative bound < 1. Moreover,
bn(u) — bh(u) for any uw € D(ha), where b, is the quadratic form associ-

ated to Hy, := Hy + (=Vh)-

(b) If, in addition, V_ € LP(R?) with p > 1, then V,,_ € LP(R%) N C>®(RY),
| Voo e <|| V= llze, ¥n > 1 and V,, - — V_ in LP(R?).

Proof. (a) We have for any = € R¢

Vi) = [ duou)Voe=9) = [ ayb@V-@e—ntp. 63)

By the Dominated Convergence Theorem, for any compact K C R¢
[ @) = vo@) < [ ayot) [ dslVoe—nty) = V@) —0,
K R4 K

hence V,, _ converges to V_ in L (R?) when n — oo.

If V_ is relatively small with respect to hg, we use the fact that Hé/z is a
convolution operator (hence it commutes with translations) and using the
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comments after inequality (5.1), we deduce that for any u € C§°(R?) there
exists @ € (0,1) and § > 0 such that

/ de Vo _|uf? = / dy 6. (y) / d=V_(2)|u(z + ) <
R4 R4 R4

< [ atuw) [o I 1 ule +) 1B 461wl +3) 2] =
= o | Hy*u | 4+ | u >

(b) From (5.3) it follows that

Vi lir< | u0ul) | V- =) 1] V- oo

Also, using the Dominated Convergence Theorem, we infer that

Vo = Vol [ dwb(0) [ V-0 = Vo= n7') 1= 0.
O

Thus Lemmas 5.3 and 5.4 imply, for a potential function V_ satisfying the
hypothesis of the Lemma, the existence of a sequence (Vi —)n>1 C C§°(RY)
such that Vi, — >0, || Voo lzo<|| V_ ||ze, ¥n > 1, Vo, — — V_ in LP(R%)
(for p = d and p = d/2) when n — oo and the functions V;, _ are uniformly
ho-bounded with relative bound < 1.

LEMMA 5.5 Assume that there exists a constant C > 0, such that the in-
equality

N(=V,_)<C (/Rd da |V (2)]* + /Rd dz |V, ,_(g;)yd/2> (5.4)

holds for any n > 1. Then one also has

N(-V)<C (/R dz |V_(2)|* + /R dz \v_(g;)ydﬂ) . (55)

Proof. We set H,, _ = Hy + (=Vh—); (En—(N)xer will be the spectral
family of H,, — and (E_(X))aer the spectral family of H_. For A < 0, we
denote by Ny(W) the number of eigenvalues of Hy + W which are strictly
smaller than A (for any potential function W satisfying the hypothesis at the
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begining of this section). It suffices to show that for any A < 0 not belonging
to the spectrum of H_, one has the inequality

NA(—V) < C (/R dz |V (2)|* + /R dz |V_(x)|d/2> . (5.6

Since V,, — converges to V_ in L{ _(R?), cf. Lemma 5.2, H, _ will converge
to H_ in strong resolvent sense. By [29], Ch. VIII, Th. 1.15, this implies the
strong convergence of E,, _(A) to E_()) for any A ¢ o(H_). By Lemmas 1.23
and 1.24 from [29], Ch. VII, for A < 0 such that A ¢ o(H_), one also has
| En,—(A) — E_(\) ||— 0. Let us suppose that there exists some A < 0 not
belonging to o(H_) and such that for it the inequality (5.6) is not verified.
Thus for the given A < 0 we have Vn > 1:

N(~V,_) < C’( de |V_(z)|¢ + /Rd dx|V_(:1:)|d/2> < Ny(=V_).

Rd

But for n large enough, one has Ny(—V_) = Ny(—V,, ) and thus

<C </ dz |V, (z)|* + /dgpﬂ/_ |d/2>§
<o( [ avwr+ [ @)

that is a contradiction with our initial hypothesis. ]

Ny(=V2) = Nx(=Vy-) < N(=Vp ) <

5.2. Proof of the Theorem 1.1 without magnetic field

We shall assume from now on that Vy = 0 and 0 < V_ € C§°(R%). We check

a Birman-Schwinger principle. For a > 0 we set K, := V1/2(H0 —|—a)_1V_1/2;
it is a positive compact operator on L2(]Rd).

LEMMA 5.6

N_o(—=V_) <4 {u > 1] p eigenvalue of K,}. (5.7)

Proof. We introduce the sequence of functions p, : [0,00) — (—00,0], n > 1,
where pi,(A) is the n’th eigenvalue of Hy — AV_ if this operator has at least
n strictly negative eigenvalues and p,(A) = 0 if not. Cf. [47], §XIIL.3, p,, is
continuous and decreasing (even strictly decreasing on intervals on which it
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is strictly negative). Obviously, we have N_,(—V_) <# {n > 1| u,(1) <
—a}. Now fix some n such that u,(l) < —« and recall that p,(0) = 0.
The function p, is continuous and injective on the interval [e,, 1], where
€n = sup{A > 0 | un(N\) = 0}, therefore it exists a unique A € (0,1) such
that p,(A) = —a. Thus

N_o(=Vo)=#{A€(0,1) | In>1 s.t. pp(N) = —a} =
=#{\e€(0,1) | Jp € D(Hp) \ {0} s.t. (Hy — A\V_)p = —ap} <
<#{Ae(0,1)] T € LR\ {0} s.t. Kotp = A1},

where for the last inequality we set ¢ := V_1/2cp, noticing that the equality
(Ho + a)p = AV_¢p implies 1) # 0. O

LEMMA 5.7 Let F : [0,00) — [0,00) be a strictly increasing continuous
function with F(0) = 0. Then F(K,) is a positive compact operator and the
next inequality holds:

N (Vo) < F(1)™! > F(u).
F (1) €0lF(Ka)lF (u)>F (1)

Proof. The first part is obvious. Using (5.7) and F’s monotony, we get

Noo(=Vo) <t{u > 1| peo(Ka)} =4 {F(p) [ n>1,F(u) € o[F(Ka)]} =

- ¥

p>1,F(p)€olF(Ka)

o

Wermt Y F@)

(1) p>1,F(p)€o[F(Ka)

!

O

So, we shall be interested in finding functions F' having the properties in the
statement above, such that F(K,) € B (the ideal of trace-class operators
in L?(R%)) and such that Tr [F(K,)] is conveniently estimated.

Using an idea from [48], we are going to consider functions of the form

F(t) = t/ dse %g(ts), t >0,
0

where g : [0,00) — [0,00) is continuous, bounded and g Z0. Plainly, F :
[0,00) — [0,00) is continuous, F'(0) = 0, satisfies F'(t) < Ct for some C > 0
and the identity

F(t) = /000 dre_rflg(r)
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implies that F is strictly increasing. We shall use the notations F' = ®(g),
g(t) :=tg(t).

In particular, gy(t) = e™, X\ > 0 leads to F)\(¢) = t(1+ At)~!. In the sequel,
relations valid for this particular case will be extended to the following case,
that we shall be interested in:

Joo @ [0,00) = [0,00), goo(t) =01 0 <t <1, goo(t)=1—-1/tif t > 1,
(5.8)
by using an approximation that we now introduce. The first lemma is obvi-
ous.

LEMMA 5.8 Let goo be given by (5.8). For n > 1 we define g, : [0,00) —
[0,1], gn(t) = g(t) for 0 <t < mn, go(t) = 2L —1 forn <t < 2n—1,
gn(t) =0 for t > 2n — 1. Then g, € Cp((0,00)), 0 < gp < gnt1 < goo, V1

and gn, — goo when n — oo uniformly on any compact subset of [0, 00).

LEMMA 5.9 Let f be a nonnegative continuous function on [0,00) such that
limy—oo f(t) = 0. There exists a sequence (f¥)g>1 of real functions on [0,00)
with the properties

(a) Every f* is a finite linear combination of functions of the form gx, A > 0.
(b) fE> A1 > f>0 0n[0,00), Vk > 1,

(c) f¥ — f uniformly on [0,00) when k — oo.

Proof. We define the function h : [0,1] — [0,00), h(s) := f(—Ins) for s €
(0,1], A(0) := 0. It follows that h € C([0,1]). We can chose now two

sequences of positive numbers {e;}r>1 and {J; }r>1 verifying the properties:

klim (ex+0r) =0 and 0 — € > €11+ Opr1 > 0,Vk > 1 (for example we may
—0o0

take 6y = (k+2)7! and e, = (k +2)73). Using the Weierstrass Theorem we

may find for any k£ > 1 a real polynomial P}, such that sup |h(s)—P,(s)| < €
s€[0,1]
and let us denote by P := P]g + 0. We get:

sup |h(s) — Py(s)| < ex + 0, — 0O,
s€[0,1] k—o0

h < h+ 01— €hr1 < Plyq + 01 = Pog1 < h+ 1 + €41 <
§h+5k—€k§P];+5k:Pk

on [0,1]. Thus f¥(t) := Py(e™") defined on [0, 00) for k& > 1 have the required
properties. ]
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PROPOSITION 5.1 Let Foo := ®(goo). The operator Foo(Ky) is self-adjoint,
positive and compact on L*(R?). It admits an integral kernel of the form

[Foo(Ka)] (‘Ta y) = (5'9)

v ) [Taee [t ([ asv-).

which is continuous, symmetric, with [Fs(Ky)] (z,2) > 0.

Proof. The first part is clear. To establish (3.27), we treat first the operator
By := F\(K4), A > 0. We have

By = K,(1+ MK, = By =K, — AB\K,. (5.10)
The second resolvent identity gives
(Ho+ o)™ — (Hy + AV_ 4+ )P = AN(Hy + A\V_ 4+ ) 'V_(Hy + ).

Multiplying by V_l/2 to the left and to the right and taking into account
(5.10) and the definition of K, one gets

By = VY2 (Hy + AWV 4 a) V2 = /2 [ / Tt e—ate—“Ho“V)] vz,
0

By Proposition 4.2 and its consequences, for any u € C'O(Rd), u > 0, we have

[Fx(Ka)u] (z) = (5.11)

v [t [ a | [ aipano ([ asv-o0) | VG,

Since ® maps monotonous convergent sequences into monotonous convergent
sequences, by applying Lemmas 5.8 and 5.9 and the Monotonous Convergence
Theorem (B. Levi), we get (5.11) for A = oo, for the couple (goo, Fro)-

We introduce the notation
t
Gi(t;z,y) ::/ ,ué’f;(dw) g (/ ds V_(XS)> , (5.12)
Q 0

fort >0, z,y € R% 0 < X\ < co. By the consequences of Proposition 4.2,
for any 0 < A\ < oo the function G is continuous on (0,00) x R? x R? and
symmetric in x,y. To obtain the same properties for A = oo, we approximate
Joo by using once again Lemmas 5.8 and 5.9. So it exists a sequence (fy,)pn>1 of
real continuous functions on [0, 00), each one being a finite linear combination
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of functions of the form gy, such that f, converges to g, uniformly on any
compact subset of [0,00). On the other hand, if M > 0 is an upper bound
for V_, we have

t
0 g/ dsV_(X,) < Mt,
0

and NBZ(Q) = o,(x—y). It follows that G is, uniformly on compact subsets
of [0,00) X R? x R?, the limit of a sequence of continuous functions, which
are symmetric in z,y. Thus G4 has the same properties. Moreover, since
0 < goo <1 and goo(t) = 0 for 0 < ¢t < 1, we have G (t;z,y) = 0 for
t <1/M. Using (2.4) and (2.3), there is a constant C' > 0 such that

0< Guoolt;z,y) <C, Vt>0, Va,y € RY (5.13)

From (5.11) for A = oo, we infer that Fio(K,) has an integral kernel of the
form

[Foo(Ka)] (2,y) = V22 (2)V2 (y) /0 T dte G (b2, y), (5.14)

so (3.27) is verified. The continuity of Fio(K,) follows from the Dominated
Convergence Theorem and from (5.13). The symmetry is obvious, and the
last property of the statement follows from Fo.(Ky) > 0. O

REMARK 5.1 By a lemma from [47], §X1.4, Fsx(K,) € By if the function
RY S 2+ [Foo (Ko )] (x,2) is integrable and one has

Tr [Foo(Ky)] = y dz [Foo (Ky)] (z, 2). (5.15)

Setting Doo(t;7) := V_(2)G(t;,2), t > 0,2 € R, we have

(o (K)] (2, 7) = /0 T dte=ot Do (1), (5.16)

To check the integrability of this function, one introduces

Uy : (0,00) x RT = Ry,

bt = 0 [ i g [ as2060).

0

where oo (t) := tgoo(t). The role of this function is stressed by
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LEMMA 5.10 For d > 3 consider the following constant depending only on
d:

Cy:=0C </ ds 5™ goo(s) \// dss_d/zgoo(s)> = C/ ds s~ g (s)
1 1 1

where C' is the constant verifying (2.6). One has

/ dte™ [ da Uy (tz) < C4 < dz V4(z) + dz Vd/2( )> :
0 R4 R4

(5.17)

Rd

Proof. The function g, is convex and % is a probability on (0,%); thus by
the Jensen inequality we obtain

§w</odsV ) /—gootV ).

Let us also remark that for the constant Cy to be finite we have to ask that
d > 3 for the factor s=%2 to be integrable at infinity, because the convexity
condition on g, rather implies that g, cannot vanish at infinity.

Then -
/ dte_at/ dz ¥ (t;x) <
0 Rd

§/ dtt_ze_at/ dz [/ ,uogcdw / ds goo (tV_( ))]
0 R

Using now Proposition 4.3, the last expression is equal to:

[Tarree [ a [ [ i [ asge @] -
:/Ooodtt—%“’t U 1160(dw) / ds/Rddzngoo (tV_( ))]
:/Oodtt_le_at [/ 16 dw]/ dz goo (tV-(2)) =
/ dtt~te oty /dxgoo (tV_(z)) <

<C Rddx [/0 dtt= (1 + 92 (tV_(:E))} <

<T, </Rddxvf(x)+/Rddxvd/2( )>,

where we have used the fact that s < 1 implies goo(s) = 0. O
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The next result gives the connection between Dy, and WU,

/da:Doo(t,a;) :/ dz oo (t, x).
R4 Rd

Proof. First let us verify the following identity for any ¢ > 0:

PRrorosITION 5.2

/deA(t,x) :/ dz W) (t,x), for A€ (0,00) (5.18)
R4 R4

where D)y and ¥y are defined in terms of gy in the same way that D, and
U, are defined in terms of go. Let us point out that both Dy and W) are
positive measurable functions on (0,00) x R? but only the integral on the
left hand side of (5.18) is evidently finite by what we have proven so far. For
simplifying the writing we shall take A = 1. For any r € [0,¢] we denote by

S, = e_T(HO-FVf)V_e—(t—r)(Ho-i-Vf)'

Following the remarks after Proposition 4.2 above, for r € (0,¢), both expo-
nentials appearing in the above right hand side are integral operators with
non-negative continuous integral kernels; thus S, will also be an integral op-
erator with non-negative continuous kernel that we shall denote by K, and
we can compute it explicitely as follows. For a non-negative u € C'O(Rd),
using Proposition 4.1 with A = 0 gives

(Sru)(a) = E, {e= 0 V-V (X, )Ex, [en BTV |
and using the Markov property (4.8) we obtain

o] < [ ] -

= £, o VOO |,

As the function e~ Jo V-(Xp)dpy/_ (X,) : Q@ — R is evidently §,-measurable,
we get (using the property (4.4) of conditional expectations)

(Sru) (@) = Ex {Ex (Vo) I V-0 7u(xy) | §,) }

We use now the property (4.3) and Proposition 4.2 taking F' := V_(X,) in
order to get

(Sr)(@) = Ep {Vo (K)o o V- 057y (x| =
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= [ { [ @ f-ome g,

In conclusion for any (z,7) € R? x R? we have

Ko(z,y) = / HY (dw)V (X, Yo~ Jo V- (Xo)do (5.19)
Q

,T

Using Proposition 4.3 we obtain

/Rd dz Ky (z,z) < /Rd dz [/QMB’Z(dw)V_(w(r))] _

/Rd 4 UQ “gz(dw)v‘(““(”)} = :(0) /Rd dzV_(z) < o0, Vt>0.

Thus, for any r € [0,t] the operator S, is trace class. Moreover, due to the
properties of the trace we have TrS, = TrSy, Vr € [0,t]. We have:

t t t
TrSy = 1/ dr (TrSp) = 1/ dr (TrS,) = 1/ dr [/ dx K,«(ZE,ZL‘):| =
t Jo t Jo t Jo Rd

:%/Rddx [/ngf;(dw)gl </Otdsv_<Xs)>] =/Rd daWy(t, z)

In particular, for any ¢ > 0, Wy(¢;-) is integrable on RY.
On the other hand

TrSo = | Ko(z,z)dz :/ dz V_(x)/ 115" (dw)e™ Jo dpV=-(X,)
R R Q
= dz V_(2)G(t;z,x) = dx Dy (t; ).
R4 Rd

One uses the approximation properties contained in Lemmas 5.8 and 5.9 as
well as the Monotone Convergence Theorem. O

Proof. of Theorem 1.1 for B =0

We can assume Vy = 0 and V_ € C°(R?%). Lemma 5.7 implies that for any

a > 0 one has
N_o(=V_) < Foo (1) M [Foo (KW)] -

Using (5.15), (5.16), we obtain

Tr [Foo(Ka)] = /OOO dte /Rd dz Deo(t; ) =
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o
= / dt e_o‘t/ dz oo (t; x). (5.20)
0 Rd
Inequality (6.1) for B = 0 follows from (5.20) and Lemma 5.10. In addition
Cq = F(1)7'Cq. O

6. Proof of the bounds in the magnetic case

Proof. of Theorem 1.1 for B # 0.

Analogously to Section 5, we can assume Vy = 0 and V_ € C§°(R?). For
a > 0 one sets K, (A) := V_l/Q(HA +a)_1V_1/2. By inequality (3.4) forr =1
and also using Pitt’s Theorem [45], K, (A) is a positive compact operator, and
the same can be said about Fi, [K4(A)]. We show that Fi, [K4(A)] € By and
we estimate the trace-norm. Repeating the arguments from the beginning of
the proof of Proposition 5.1,

Fy [Ko(A)] = VM2 /0 dte e (HATNV)1/2, (6.1)

By using Proposition 4.1, we get for any u € Co(R?), u > 0

[Fx [Ka(A)] ] (x) = (6.2)

— V2 /O T dtetp, [u()g)v_m(Xt)e—iSAWﬂgA < /0 s V_(XS)>] .

Approximating go, by means of Lemmas 5.8 and 5.9 and using the Monotone
Convergence Theorem, we see that (6.2) also holds for the pair (goo, Fixo). The
next inequality follows:

|Foo [Ko(A)] u| < Foo(Ko)|ul, Yue L*(RY). (6.3)
By Lemma 15.11 from [48|, we have Fiy, [K,(A)] € B; and
Tr (Foo [Ka(A)]) < Tr (Fx [Ka)) - (6.4)

Denoting by N_,(B,—V_) the number of eigenvalues of Hy — V_ strictly
less than —q, analogously to Lemmas 5.6 and 5.7, we deduce that

N_o(B,~V_) < Fao(1) ™M Tr (Fi [Ka) - (6.5)

Inequality (6.1) follows from (6.5) by using the estimations at the end of
Section 5. The constant Cy is the same as for the case B = 0. ]
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Proof. of Corollary 1.1. The idea of the proof is standard (cf. [48] for
instance), but one has to use parts of the arguments from the proof of The-
orem 1.1 in the case B = 0.

1. We show that it is enough to treat the case V; = 0.

We denote by N (resp. N_) the number of strictly negative eigenvalues of
Hp+V (resp. Ha+ (—=V_)). We have N,N_ € [0,00] and the min-max
principle shows that N < N_. In addition, if H4 + V has strictly negative

eigenvalues A\ < Ao < ..., then Hq+(—V_) has strictly negative eigenvalues
A <Ay < ... and )\j_ < Xj, j > 1. Therefore, one has 2]21 ]Aj\k <
> st AT

2. We show that treating compactly supported V_ is enough (remark that
this property implies that V_ € LP(R?) for any p € [1,d + k]).

We take into account the approximation sequence defined in Lemma 5.3. The
sequence of forms (h™),>1 satisfies the hypothesis of Theorem 3.11, Ch. VIII
from [29]. If we denote by A; < Ao < ... the strictly negative eigenvalues

of Ha +V and by )\gn) < )\én) < ... the strictly negative eigenvalues of
H® = Hy + V(™ once again by Theorem 3.15, Ch. VIII from [29], we
have )\gn) > Aj, Vj,n € N* and )\gn) converges to A;. So it will be sufficient
to prove (6.1) for the operators H™.

3. We assume from now on that V = —V_, V_ € L4*(R?) (k > 0) and that
supp(V_) is compact. Let Sy > 0 and for 5 € (0, Fo] let

A <A< <A, <0

be the eigenvalues of H = Hy + (—V_) strictly smaller than —( and let
M <A< <Ay < 0
be the distinct eigenvalues with m; the multiplicity of X;, 1 < j < M(6).

We have N_, := N_,(B,—V_). Using the definition of the Stieltjes integral
and integration by parts, we get

N_g M(B) M(B) 8

k N |k N |k k
SN = DT mNE =Y Al (ijﬂ —ij) Z/A IA[FdNy =
j=1 j=1 j=1 !

-p
= |BI*N_5+ k/ IAFINY dA. (6.6)

A1
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We denote by I the last integral and use (6.5) and (5.20) and the arguments
in the proof of Lemma 5.10 to estimate I:

j /ﬁ N da = [Fa (1)) /ﬁ

1
I F (K )da =

o) -1
= [Fye(1)] /Rd dx/o dt‘I’oo(t,ZL")/ﬁ daaf e <

00 —A1
< [Fao (D] /Rd da;/o dtt_lét(O)goo(tV_(a;))/ﬁ daaf~lemot <

00 —A1
<C [Foo(l)]_l/ dx/ dt <t_d_1+ t_d/z_l) Goo (tV_ (a:))/ doaf~tet,
Rd 0 B

The « integral may be bounded by
[e.e] oo
/ daafle ot = t_k/ dssFle™® < OtF.
0 0

Recalling that goo(t) = 0 for t < 1 and goo(t) =t — 1 for t > 1, we get that
Goo(tV_(x)) = 0 for V_(z) = 0 and for V_(x) >0

/OOO dtt=*F (t‘d‘l + t‘d/z‘l) oo (tV_ () =

V()] /1 skl q)ds 4 [V (2)] Y2 /1 a2k (g 1),

the integrals being convergent for d > 2.

Using these estimations in (6.6) we conclude that

N_g
X (ot -1 < of [ b+ [ Vo,
thus
N—30)
; <\/\j!k - \ﬂ!k) < C{/Rd Vo (2)]* de + /Rd V()42 dx},

with the constant C' not depending on 3 or By. Taking the limit 3\, 0 ends
the proof. O
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1. Introduction

In the study of dissipative semi-dynamical systems generated by semilinear
parabolic equations, the theory of qualitative behavior of the system at large
times plays an important role. By parabolic semilinear equations we mean
partial differential equations that can be written as abstract equations in a
Hilbert space, of the form:

du

" +vAu+ R(u) = f, (1.1)

where u is a function of time with values in a Hilbert space H (whose defi-
nition comprises the boundary value conditions imposed to equation (1.1)).
We attach to the above equation an initial condition

u(0) = uo, (1.2)

with ug in H. We assume that A is a linear operator, defined on a dense
subspace D(A) of H, self-adjoint, positive definite, with compact inverse,
while R is a nonlinear operator defined on D(R) C D(A). We do not insist
here on the hypotheses on R, but we assume that it is such that the Cauchy
problem (1)-(2) has an unique solution on [0, T, for every ug € H and every
T > 0. Hence a semi-dynamical system is generated by the above problem,
by setting S(t)ug = u(t,ug), where u(t,ug) is the solution of (1.1)—(1.2).

For this presentation we assume that f is in H. We also assume that the
semi-dynamical system generated by (1.1) is dissipative in the sense that
there is a bounded absorbing set for it. An absorbing set is a set B having
the property that, for every bounded set M C H, there is a value of t,
depending on M, let us denote it by 57, with the property that, S(¢)M C B
for t > tpr. For the particular problems we consider here, there also are
absorbing balls in some subspace V of H, with D(A) C V C H.

In the theory of qualitative behavior at large times of solutions of equations
of the form (1.1), the notion of global attractor plays an important role.
A global attractor 3] is a compact set of the phase space H, invariant to
the semigroup S(t)¢>0, that attracts the bounded sets of the phase space,
when time tends to infinity. This means that the global attractor bears in
its structure the properties of the behavior of the semi-dynamical system at
large times. For many problems of interest the existence of an attractor was

proved [37].

The study of the geometrical and topological properties of the global attrac-
tors flourished since the last two decades of the XX century and the major
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hope was that a connection between the structure of the attractor and very
complex phenomena like turbulence in the flow of the fluids will be found.

In this context, another interesting notion appeared, that of inertial mani-
fold (i.m.) [11]. It is a finite dimensional, invariant and at least Lipschitz
manifold having the property that it exponentially attracts all the trajecto-
ries of the problem. More than that, an i.m. has the property of asymptotic
completeness meaning that for every ug in H there is a vg on the i.m. such
that the distance between the trajectories passing through the two points
decreases exponentially with time.

The invariance of the i.m. implies the fact that we can construct a restriction
of the problem to this manifold. The restricted problem is named inertial
form [11], [37] and, since the i.m. is finite dimensional, is equivalent with
a system of ODEs. The above defined asymptotic completeness of the i.m.
implies that the asymptotic behavior at large times of the dynamical system
is described by the asymptotic behavior of the inertial form. Hence the large
times study of the initial semi-dynamical system (infinite dimensional since
its phase space is H) can be reduced to that of a finite-dimensional one.

Another important consequence of the properties of the i.m.s is that, when a
global attractor exists, it is contained in the i.m. These considerations explain
the large interest shown by the scientific community in inertial manifolds.
From among the great number of papers devoted to the inertial manifolds
we remind: [11] (with the extended version [12]), [8], [9], [5], [36]. The
important monograph [37] had a second edition in 1997.

From a theoretical point of view, the i.m.s looked very promising, but major
obstacles appeared in trying to use their properties in the study of concrete
problems. One is due to the fact that existence of i.m.s is in most papers
proved by a fixed point theorem, and is not constructive. There is a con-
structive proof in |2] but it uses some integral manifolds whose construction
is equivalent with solving the equation. Another problem is a restrictive
hypothesis among the hypothesis of the existence theorems- the hypothesis
of a spectral gap that imposes the existence of two successive eigenvalues
of A situated at a “large enough” distance [1], [12], [37]. This hypothesis is
not fulfilled by many problems, (e.g. is not fulfilled for the two-dimensional
Navier-Stokes equations).

In this situation the approximate inertial manifolds were defined as approxi-
mations of i.m.s or as substitutes of these, when the i.m.s could not be proved
to exist. An approximate inertial manifold (a.i.m.) is a finite dimensional, at
least Lipschitz manifold in the space H, with the property that all the trajec-
tories of the dynamical system enter a narrow neighborhood of the manifold
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at a certain moment and never leave the neighborhood after. Even if it has
not the invariance property, an a.i.m. is important because, if the problem
has a global attractor, it is contained in the narrow neighborhood mentioned
above.

The localization of the attractors in the space of phases was a first interesting
application field of the a.i.m.s. Besides this, a.i.m.s found very interesting
applications in the construction of some approximate solutions (the numerical
integration) of the nonlinear evolution problems. Examples of papers devoted
to a.i.m.s are: [10], [13], [23], [26], [27], |28], [33], [35], [37], [38], |39]

In Section 2 we present some methods, that use a.i.m.s, for the construction
of approximate solutions for problems of the type (1.1) (1.2), the so-called
non-linear Galerkin method and post-processed Galerkin method.

We include a method conceived by us, that we named repeatedly adjusted and
post-processed Galerkin method, that is connected to the preceding methods
but brings some simplifications to these. In Section 3 we present the way
these method work for the two-dimensional Navier-Stokes equations with pe-
riodic boundary conditions, and in Section 4, for a two-dimensional reaction-
diffusion equation, with Von Neumann boundary conditions.

In order to settle the notations and the functional framework of our presenta-
tion, we shortly remind below the Galerkin spectral method for the abstract
equation (1.1).

1.1. The Galerkin method

In the hypotheses we assumed on the operator A of equation (1.1), it follows
that A has positive eigenvalues that form a tending to infinity sequence:

D<M <. <A<, A, — .

n—oo

The eigenfunctions of A form a total (orthonormal) system for H. We con-
sider the set, denoted I';,, of the first distinct m eigenvalues (in increasing
order) and the eigenfunctions corresponding to these. We denote by P the
orthogonal projection operator on the subspace spanned by these eigenfunc-
tions and we set @Q = I — P (where [ is the identity application on H). The
solution u of (1.1) (1.2) is projected by the two projectors and we set

p = Pu,
q = Qu.
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It follows that the functions p and ¢ are solutions of

¥ b vAp+ PR +a) = PF, (13
b vAg+ QRO+ )= QF, (1.4
p(O) = PUO,
q(0) = Quo. (1.6)

Usually, the component ¢ of the solution is proved to be, at large times, “little”
in the norm of H compared to the p component. That is, an inequality of
the form

lq ()] < Coo*, (1.7)

where )
5=t 1.8
>\m+1 ( )

and a is some positive number, is true. For the Navier-Stokes equations it is
proved in [38] that a inequality of the type (1.7) holds, with a = 1 and Cj
depending on m. We proved in [19] that the inequality can be improved in the
sense that it is true with a Cjy that does not depend on m. For the reaction-
diffusion equation, |¢(t)| is of the order of § for large enough times [4].

If in the equation (1.4) ¢ is neglected in the presence of p, we find the equation

dp

T vAv+ PR(p) = Pf. (1.9)

This is the Galerkin approximation of the equation (1.1). The solution of the
problem (1.9) with the initial condition (1.5), that we denote by pg(.), is the
Galerkin approximation of the solution of (1.1)-(1.2). For several problems
it is proved in the literature that inequalities of the type

u(t) = pa(t)] < C6%,

where u(t) is the solution of the problem (1.1)-(1.2), § > 0 is defined by (1.8),
and o > 0.

As example, for a reaction-diffusion equation with Neumann boundary values
and for the two-dimensional Navier-Stokes equations, & = 1 (in the hypoth-
esis f € H). The problem (1.9), (1.5) is equivalent to a system of ordinary
differential equations for the coordinates of p(t) along the eigenfunctions that
span PH. The definition of ¢ shows that the greater will be m, (hence the

dimension of PH), the smaller will be the error.
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In the construction of the Galerkin equation, the ¢ component of the solution
(that is proved to be small for large times) is approximated with 0. The
nonlinear Galerkin (and/or post-processed) methods of approximation are
based upon the idea of approximating ¢(t) by using a a.i.m instead of the
manifold qg.

2. Modified Galerkin methods

The nonlinear Galerkin (and/or post-processed) methods of approximation
are based upon the idea of approximating ¢(¢) by using an a.i.m instead of
taking q ~ 0.

2.1. Families of a.i.m.s used in the modified Galerkin meth-
ods

There are several types of a.i.m.s defined in the literature. Among them,
those defined in [10], [38], [39] (for the Navier-Stokes equations NSE) gen-
erated new numerical integration methods, based on the Galerkin method.
They form a family {M,;};>o and are the graphs of some functions
®; : PH — QH. The definitions of these a.i.m.s for the NSE are presented in
Section 3 while those for the RDE are given in Section 4. A.i.m.s of the type
of those cited above may be (and were) defined for many particular problems
of the form (1.1)—(1.2). The main property of these a.i.m.s, on which their
use in the construction of the numerical methods is based, is the following:
the distance (in the norm of H) between ¢(%) and the image of p(t) on the
a.im. M, is of the order of 8% that is

la(t) — @ (p(t))] < C5*™, (2.1)

where a(n) is increasing with n.

For example, for the two-dimensional NSE it is proved [38], [39] that a(n) =
= (n+3)/2. Since, for NSE, about the H norm of ¢(t) only the fact of being
of the order of § is known, it is clear that any of the above a.i.m.s provides
a better approximation of ¢(¢) than the so-called plane manifold ¢ = 0, for
the mentioned problem.
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2.2. The nonlinear Galerkin methods

The nonlinear Galerkin method (NL Galerkin method) was first defined in
[29]. The method relies on the idea that ®o(p(t)) is a better approximation
of ¢(t) than 0, and considers, instead of the Galerkin equation (3.25), the
equation

dp

dt
with initial condition (1.5). By denoting with py(.) the solution of this prob-
lem, the approximate solution of (1.1)—(1.2) is taken as

+vAp+ PR(p + ®o(p)) = Pf, (2.2)

vo(t) = po(t) + Po(Po(t)).

As it is natural, since ®,, (p(t)) approximates ¢(t) better and better with the
increase of n, the next idea, appeared in |6], was to consider the equation

% +vAp+ PR(p+ ®,(p)) = P, (2.3)

with the initial condition (1.5). Let p,(.) the solution of this problem. The
approximate solution is then defined as

'Un(t) = ﬁn(t) + (I)n(ﬁn(t))

For the problems considered in the context of nonlinear Galerkin problems,
it is proved that the error is of the order of 6°), where b(n) is increasing
with n.

E.g., for the Navier-Stokes equations it is proved in [7] that b(n) = (n+3)/2,

while for the reaction-diffusion equation it is asserted in [32] that b(n) = n+2
provided f € H.

2.3. Post-processed Galerkin methods

In [14] the following modified Galerkin method is proposed, that also uses
a.im.s. Let again pg(.) be the solution of (1.9), (1.5). Then the value of

®y(pi(t)) is computed at the right end side of the time interval [0, 7], that
isin T. The approximate solution in 7' is defined as

w(T) = pa(T) + Po(pc(T)).
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This method is named the post-processed Galerkin method (PP Galerkin
method) because the solution of the Galerkin problem is corrected only in the
final phase, after finishing the numerical integration of the Galerkin prob-
lem, by using the first a.i.m. of the family described in 2.1 (hence post-
processed). The error of this approximate solution is less than that of the
Galerkin method. Thus, for the two-dimensional Navier-Stokes equations, it
is shown in [14] to be of the order of °/%. Another estimate is proved in [15],
i.e. the error is proved to be of the order of L?§%?  where L = 1 + In(2m?).
This latter estimate of the error is not necessary better than the former
because of the coefficient L?.

The next idea appeared in the literature [32] was to postprocess the NL
Galerkin method of the preceding section. More precisely, the equation (2.3)
is considered, it is integrated on all the time interval [0, T], then ®,,11(p,,(T)),
is computed, and the approximate solution in 7" is defined as

Wn, (T) = ﬁn(T) + (I)n—i-l(ﬁn(T))'

This method is called the nonlinear post-processed Galerkin method (NL
PP Galerkin method). In [32]| the use of the method is exemplified on the
reaction-diffusion equation and it is proved that, if f € H, then the error is
of the order of Inm 63,

2.4. A new modified Galerkin method

In [38], in the context of the study of the NSE, a family of functions,
{¢;}j>0, ¢j : R — QH, having the property

|q;(t) — q(t)] < k; L1 H/2534)2 (2.4)

for large enough times is constructed. Here the coefficients k; depend on the

data of the problem (v, |f], A1), and L =1+ ln)";—l“. Actually, the function
qo is of the form

qo = @0(]9),
while, for j > 1, g; are recursively defined by relations of the type

q; :FJ(Qfapu QO77Q_7—1) (25)

The functions u; = p + ¢q;, j > 0 define the so-called induced trajectories,
{u;(t);t > 0}, associated to the trajectory {u(t);t > 0} of the dynamical
system. Relation (2.4) shows that the functions u;, j > 0, are approximations
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of the exact solution, of increasing with j accuracy. The definition of the
a.i.m.s M; used in the nonlinear Galerkin methods for the NSE are based
upon the definitions of the functions g;.

In |20], for the two-dimensional NSE with periodic boundary conditions, we
defined a new type of modified Galerkin method, that uses some approxima-
tions of the induced trajectories and not the a.i.m.s. We describe here the
method in the general context of equation (1.1). The purpose of the method
is that of working with a very low-dimensional projection space PH, and the
idea from which we started is that, however small is the dimension of PH, if
we have a very good approximation for ¢, let us denote it by ¢, then a very
good approximation for p will be obtained by solving the equation

dp

n +vAp+g(p+4q) = Pf.

In consequence, a good approximation of v may be obtained. The method
is structured on several levels. One of the ideas we followed in developing
this method is that of having to integrate only differential equations of the
same level of difficulty as the Galerkin equation. This was possible by using
approximations of induced trajectories instead of a.i.m.s.

Level 0. This level has two stages. The first is the classical Galerkin method,
i.e. we solve the problem (1.9), (1.5) and we consider its solution, pg(.).
The second stage consists in defining the function of time, with values in
QH:

qo(t) = Po(pa(t)), (2.6)
the function ®y being the one that defines the first a.i.m. of the family cited
in 2.1.

Then we define the approximate solution at this first level as

uy = pe + qo-
Since the function go(t) will be used at the second level of our method, in the
numerical implementation of this method, the function gy should be com-
puted in each point of the time mesh, unlike in the post-processing defined
in |14], where it is computed only at the final point of the integration in-

terval [0, 7). Besides this, Level 0 of our method is essentially the Galerkin
post-processed method.

Level 1. We consider the problem

dp

4 vAp+ PR(p+ o) = PF. (2.7)

p(O) = PUO
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and we denote by pg its solution. This is an "adjusted" Galerkin problem.

This equation is essentially different from the corresponding one of the NL
Galerkin method (see equation (2.3)) since qg is known from Level 1.

Then we define
qi1(t) = F1(Qf, po(t), qo(t)).

The approximate solution is
u1 =po+qi-

Level 5 > 1.

We assume that qo, q1, g2, ...,¢j—1 were constructed. The problem

d -
& HvAp+ PR(p+ ;1) = PJ. (2.8)
p(0) = Puy,

is considered and its solution is denoted by p;_i. Then we denote
qj = Fj (Qf, pj-1, 4o, q1,--,qj-1)
and the approximate solution is
uj = pj—1+qj-

At first sight, the idea of performing several time integrations seems a bad
idea, since every such integration involves a large amount of computations.
However, a careful analysis shows that the amount of computations involved
in the NL Galerkin method (based upon the a.im. M,) is greater than
that involved in solving the problems from Level 1 to the eq. (2.8) of Level
j, inclusive. Such an analysis is performed for the Navier-Stokes equations
in 3.8. Hence our method, that we call the repeatedly adjusted and post-
processed Galerkin method (R-APP Galerkin method) is an alternative to
the NL Galerkin method. The final post-processing, by adding ¢; to pj_1 is
equivalent to the post-processing of NL. Galerkin method and does not imply
a large amount of calculi since it will be performed only in some selected
moments of time (eventually only at the last moment, 7"). In what concerns
the error, for the problems discussed below we can prove that the error of
R-APP Galerkin method is of the same order of magnitude as that for NL
PP Galerkin method, for the two particular problems in Sections 3 and 4.
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3. Modified Galerkin methods for the Navier-Stokes
equation

We present here the modified Galerkin methods for the Navier-Stokes equa-
tions: the NL, NL PP Galerkin methods already defined in the literature and
our R-APP Galerkin method.

3.1. The setting of the problem

We consider the problem of the two-dimensional flow of a incompressible
Newtonian fluid, modeled by the Navier-Stokes equations. We impose pe-
riodic boundary conditions and choose the periodicity cell to be a square,
Q= (0,1) x (0,1). Thus the problem is
0
a—ltl—uAu—i-(u-V)u—i-Vp:f, (3.1)
diva = 0, (3.2)

where u (t,x) € R? is the velocity of the fluid, t > 0, x €9, p (t,x) € R is the
pressure of the fluid, v is the kinematic viscosity, and f is the volume force.
We add the initial condition

u (0,-) = uo(:)- (3:3)

We assume that f is independent of time and is an element of [L2,, (Q)] ? As
is usual in the study of the Navier-Stokes equations with periodic boundary

conditions, we assume that [40], [34]

= 1
f:l—z/ﬂf(x)dx:o, (3.4)

and that the pressure is a periodic function on 2. For simplicity we will
assume also that the average u of the velocity over the periodicity cell is
ZEr0.

The velocity u is thus looked for in the space H = {V; v E [Lz (Q)]2,

per
divv =0,V = 0} with the scalar product (u,v) = [, (u1v1 + upvs) dx,
(where u = (u1,u2), v = (v1,v2)) and the induced norm is denoted by
||. Let us also consider the space V = {u € [H]} (Q)]2 ,divu=0,u= 0} ,

per

with the scalar product ((u,v)) = Z?,j:l (g;‘;, g;’;) , and the induced norm,
denoted by ||-]| .
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The variational formulation of the Navier-Stokes equations [40] leads, for the
periodic boundary conditions, to the Cauchy problem

i—ltl—uAqu(u-V)u:f inV/ (3.5)
u(0) =ug, ug € H. (3.6)
The notations
B(u,v) = (u-V)v, (3.7)
B(u) = B(u,u),

will be used below.

We remind here the classical existence and uniqueness results for the Navier-
Stokes equations in R?, with periodic boundary conditions.

We denote A = —A. The definition domain of the linear operator A is
D(A) =VNH2,.(Q).

per

THEOREM 3.1 [40]. a) If uy € H, £ € H, then the problem (3.5), (3.6)
has an unique solution u € C°([0,T); H) N L2 (0,T;V).b) If, in addition,
uy €V, then u € CY([0,T);V)NL2(0,T; D(A)). The solution is, in this

latter case, analytic in time on the positive real axis.

The semi-dynamical system {S (¢)},-, generated by problem (3.5) is dissi-
pative [37]. More precisely, there is a pg > 0 such that for every R > 0,
there is a to(R) > 0 with the property that for every ug € H with |ug| < R,
we have |S (t) ug| < pg for t > to(R). In addition, there are absorbing balls
in Vand D (A) for {S(t)},5o, |34] i.e. there are p; > 0, po > 0 and, for
every R > 0, there are t1(R), t2(R) with t3(R) > t1(R) > to(R) such that
|lug] < R implies ||S (¢)ug|| < p1 for t > t1(R) and |AS (t)ug| < pg for
t> tg(R).

3.2. The decomposition of the space, the projected equations

The eigenvalues of A are \j, j, = 41L22 (j3+73), (1, j2) € N2\ {(0,0)}, and
the corresponding eigenfunctions are

st = ﬁ(h,?ﬁh) sin 9, J1TLE J2T2 7
J1,J2 l |J| l

5 (i o o
et V202, Fh) cos <27T31351 sz2>7

Witge = T m I
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1
where |j| = (47 + j3)2 [38]. These eigenfunctions form a total system for H.

For a fixed m € N we consider the set I',, of eigenvalues A;, j, having
0 < j1,J2 < m. We define

472
A= Ao =No,1 = R
4 2
A = )‘m+1,0 = )\O,m—i-l = liz (m + 1)2,
A 1
0=0(m)=3 =

A is the least eigenvalue not belonging to I',,. The eigenfunctions corre-
sponding to the eigenvalues of I, span a finite-dimensional subspace of H.
We denote by P the orthogonal projection operator on this subspace and by
Q the orthogonal projection operator on the complementary subspace. We
write for the solution u of (3.5), (3.6), u = p + q, where p = Pu, q = Qu.

By projecting equation (3.5) on the above constructed spaces, we obtain

dp

T —vAp + PB(p + q) = Pf, (3.9)
d
d—‘tl — vAq+ QB(p + q) = Qf. (3.10)

In [10] is proved that for every R > 0, there is a moment t3 (R) > to(R) such
that for every |ug| < R,
()] < KoL2d,  [la(t)] < KiL252, (3.11)
o ()] < KL, |Aq(0)] < KoL, t>15(R),
where, for our choice of the set of eigenvalues T',,, L = 1 + In(2m?). In [19]

we proved that estimates of the same order are true for the various norms of
q (t) above, but with coefficients of the powers of § not depending on m.

3.3. Induced trajectories for the Navier-Stokes problem

In [38] the notion of induced trajectory is defined and a family of induced
trajectories is constructed for this problem. The asymptotic expansions that
rely behind this construction are not made explicit there.
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A family of functions, {q;; j € N}, that satisfy the equations

-vAqo + QB (p) = Qf,

(3.12)
(3.13)
—vAqz + QB(p) + QB (p,q1) + QB (a1, p) + QB(qo, o) + q = Qf,
(3.14)
—vAq; +q;_+ QB (p) + QB (p,q;-1) + (3.15)

+QB(q;-1,p) + QB (qj_2,q9j-2) = Qf, j >2,

is defined.

If p(t) is, as above, the P projection of the solution u(t) of the NSE, the
sets {u;(t) =p(t) +q;(t);t > 0} are called induced trajectories associated
to the trajectory {u(t) = p (t) + q(t);t > 0}. The inequalities

laj| < w002, oyl < ki 8PLY2, o] < RiOLM2,
are proved in [38], as well as the following

qt) — q; ()] < 7. [(+0)/253+5)/2 3.16
j J

3.4. A family of approximate inertial manifolds for the Navier-
Stokes equations

The family of induced trajectories above, more precisely the functions q;, j >
0, form the starting point for the construction of a family of approximate in-
ertial manifolds defined in the literature, the first one in [10] and the following
in [38] and [39]. The first a.i.m. of this family is the graph M, of the function
®y : PH —QH, that satisfies the relation

—vA%y (X) + QB(X) = Qf,
where X € PH. Thus @ (X) is explicitly given by

g (X) = (—vA) ™ (Qf — QB(X)). (3.17)
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The connection between this definition and the definition (3.12) of qo is
obvious: the set of points {p(t) + qo(t); t > 0} lies on My. The next a.i.m.
defined in [38] is M, the graph of the function ®; : PH —QH, given by the
solution of the problem

—vA®; (X) + QB(X) + QB(X, 2 (X)) + QB(® (X), X) = Qf,
that is

21(X) = — (vA) ' [Qf - QB(X) — QB(X,® (X)) — QB(® (X),X)].
(3.18)
The relation with the definition (3.13) of the corresponding function q; is
clear.

For j > 2, inspired by the definition (3.15) of q;, the a.i.m. M; is defined
as the graph of ®; : PH —QH, with ®; (X) the solution of

~VA®; (X) + QB(X) + QB(X,; 1 (X)) + QB(®;_1 (X), X)+
+QB(®;_2 (X)) +D®, o (X)I[;_2 (X) = Qf,
where D®,_5 (X) I';_2 (X) is the Fréchet differential of ®;_5 (X), applied to

Fj_g (X) =vAX - PB (X + ‘I’j_g (X)) + Pf. (319)

Hence

®;(X)=—(vA)"'[Qf - QB (X) - QB (X, ®;_; (X)) - (3.20)
-QB (®;-1(X),X) -QB(®;-2 (X)) —D®; 2 (X)I';_2(X)].

The inequalities (3.16) allow us to estimate the distance between the trajec-
tories of the problem and the a.i.m.s. This is immediate for the first two
a.i.m.s, since for j = 0,1, we have u;(t) € M;, and thus

distyy (u(t), M;) < dist (u(t),u;(t)) = [q(t) — q;(t)] .
For the a.i.m.s M; with j > 1, some extra work is necessary, since

D®; 5 (p(t))Tj_2 (p(t)) is only an approximation of [q;—2(p (¢))]". How-
ever, in [38]| and [39] it is proved that

disty; (u (t) , M;) < &; LIFD/2563+)/2,
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3.5. Nonlinear Galerkin method for the Navier Stokes equa-
tions

The nonlinear Galerkin method was first presented in [29]. It is defined for a
class of equations that contains the Navier-Stokes equations as a particular
case, i.e. an equation of the type (1.1) with

R(u) = B(u) + Cu,

where B(u) = B(u,u), B(.,.) is a bilinear operator having essentially the
properties of B and C is a linear operator. Tt is assumed that A + C is
positive in H and C is bounded from V = D(AY?) to H.

We write the method for the Navier-Stokes problem we considered here (that
is we take A = —vA, B = B, C = 0). It consists in approximating in the
P projection of the equation, the function q with help of the first a.i.m. of
the family described above. That is, instead of the Galerkin equation, the
equation

dp

3~ VAP +P[B(p) + B(p, ®9(p)) + B(®o(p), p)] = Pf, (3.21)

with the initial condition

p(O) = Puo,

is considered, where ®¢ is given by (3.17) (the notations are adapted to
ours). We see from the term PB(p + ®,(p)) the term PB(®,(p), Py(p))
is missing. This is because it is of lower order than the preceding terms.

As for the equation of ®¢, this is taken in [29] as

@ (p) = (—~vA) "' Qo [f — B(p)], (3.22)

where Qg is the projection operator defined as Qg = QP,,,, where Py,
is the projector on the space spanned by the eigenfunctions corresponding to
the eigenvalues in I'y,, (of Aj j, having 0 < ji,j2 < 2m). This is because
the space QH is infinite dimensional and a truncation must be made (at
least for f, since for periodic boundary conditions, if X € PH then B(X) is
anyway in Po,, H).

Let us denote, together with the authors of [29], the solution of (3.21) by

u,,. It is proved in the paper we refer at, that, if uy € H then u,, T

uin L?(0,T;V), u,, — wuin LP(0,T;H), strongly (for any T > 0, p >
m—o0

1) and u,, — uin L® (RT;H) weak-star.
m—o0
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If up € V then u,, — win L?(0,T;D(A)), v, — uin LP(0,T;V),
m— 00 m—00
strongly (for any 7> 0, p > 1) and u,, — wuin L* (RT;V) weak-star.
m—0o0

As an alternative nonlinear Galerkin method, that starting from the equation
(similar to (2.2))

d

d—‘t’ — vAp + PB(p + ®,(p)) = Pf, (3.23)
with ®( defined by (3.22) is also given in [29]. Convergence results similar
to those asserted above are proved.

In [7] an estimate of the error of the method is given
[u(t)= [wn(t) + @o(un(t))]| < C()5*>.

In |6] the NL Galerkin method is improved by using more accurate a.i.m.s.
The equation that provides the approximate solution is (we write it here also
for the N-S equations)

X AP+ PB(p + &, (p))] = PF. (3.24)
where @ is the the function whose graph is the corresponding a.i.m. (similar
to that defined in (3.20), but slightly different). Let us denote by u,,
the solution of (3.24) and by vy, ; = Wn; + ®;(y,, ;). It is proved in [6]
that if up € V, both wu,,; and v, ; converge to u (when m — o0) in
L?(0,T; D(A)) and in LP (0,T;V), strongly (for all p > 1 and all T > 0),
and in L*° (RT;V) weak-star. It is also proved that, for a fix j, z,,; =
®,;(uy,) converges (when m — o) to 0 in L (RT;V) and L? (0,7 D(A))
strongly for any 7" > 0. In |7] some estimates for the error are obtained. More
precisely, for the NSE, it is shown that (with our numbering of the a.i.m.s)

u(t) = Vi, ()] < KGLGT250+9/2,
3.6. Post-processed Galerkin method for the Navier-Stokes
equations

The ideas on which the post-processed Galerkin method relies are exposed in
2.3. In [14] a general equation is considered and the Navier-Stokes equation
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is treated as a particular case. The solution pg of the Galerkin equation,

d
d—lt’ — vAp + PB(p) = Pf, (3.25)

p(0) = Puy,

is post-processed. This means, at a certain moment 7' (the end of the time
interval on which the integration of (3.25) was performed) the image of pg
on the first a.i.m. My, that is ®¢ (pg(T)), is computed and is added to
pc (T). It is proved that, if f € H, then

u(T) — (pc (T) + o (pe(T)))| < C&/%. (3.26)

In a subsequent paper, [15], the same authors prove another estimate for the
Navier-Stokes problem. More exactly, they prove that, for f €H,

[ (T) = (P (T) + o (p(T)))| < CL*6*/2. (3.27)

Estimate (3.27) is not necessarily better than (3.26), since the coefficient L?
appears (as before, L = 1+ In(2m?)). In [32] the method is improved. That
paper considers a reaction-diffusion equation, but the algorithm works for
the Navier-Stokes equations as well. Instead of the Galerkin equations, the
NL Galerkin equations (3.24) are considered. The solution u,, ;(t) of these
equations is post-processed, i.e. the sum

W i (T) + @1 (W (1))

is considered and proposed as an approximate solution. The estimate of the
error is made in [32] for the reaction-diffusion equation, hence is not relevant
for the Navier-Stokes equation.

3.7. The repeatedly adjusted and post-processed Galerkin
method for the Navier-Stokes equation

We adapt the general method presented in 2.4 to the Navier-Stokes equations.

Level 0. We define the first step of this level as the classical Galerkin
method. Let us consider the Cauchy problem

d
d—lt’ — vAp + PB (p) = Pf, (3.28)
p(O) = Puo.
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We denote by p¢ (t) its solution and define
Qo(t) = ®o (pa (1)) -

In the implementation of the method, the equation (3.28) must be numeri-
cally integrated. We remark that the values of qo(¢) must be computed in
every point of the time mesh used in the course of the numerical integration,
since they will be used at the next level of the method.

We define the function
o (t) = pc (1) + qo(t)- (3.29)

This preliminary level differs from the PP Galerkin method only in the post-
processing part, in the fact that we compute qg(t) at any moment of time
and not only at the end of the time interval on which (3.28) is integrated.

Level 1. Now we consider the problem

d _
P _ JAp + PB (p+do) = Pf, (3.30)

dt
p(0) = Puy,

with qo(t) computed at the preceding step. Since qq(t) is already known, this
equation is not more difficult to integrate than the simple Galerkin equation
attached to the Navier-Stokes equation. It is an adjusted Galerkin equation
since the nonlinear term is adjusted by adding to p(t) the term qo(¢) that
approximates q(t) better than 0 does. We denote by pg () the solution of
problem (3.30). The computation of the error showed that pg is a better
approximation of p than pg (see the comments in 3.8).

Then we define

a(t) = —(wA)HQf — QB (po(t)) — QB (Po(t), qo(t)) —
—QB (qo(t), po(?))]

The approximate solution will be defined at this level as
uy () = po (t) + ai(t). (3.31)

This function is an approximation of uy that defines the second induced
trajectories.
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Level j (j > 2). We assume that we constructed the functions q;_»2, q;—1(t).
We consider the adjusted Galerkin problem

d _
P Ap+PB(p+q;_,) = Pf, (3.32)

dt
p(0) = Puy,

and denote by p;j_1 (t) its solution. Then we set

q; () = (—vA)™H|Qf - QB(B,_, (1)) - QB(B,_, (1), q;-1 (t)— (3.33)
—QB(q;-1 (1), ;1 (1) — QB(dj—2 (1), qj—2 (1)) — o (t)] -
We define the approximate solution at this level as
u;(t) = pj-1 () + q; (1)
We remark that u; (¢) is an approximation of u; (¢) (that defines a induced

trajectory of the family constructed in [38]).

We must say that, at the last level, as in the NL PP Galerkin method, we
may correct p;—; by adding q; only at some moments of interest (the final
postprocessing step).

We also must remark that, when the method is numerically implemented,
the projector Q must be replaced by a finite dimensional projector as, e.g.
Q2 defined in Section 3.5.

3.8. The error of the R-APP Galerkin method

It is not the purpose of this work to present the explicit calculus of the error
of the methods presented. We proved in |20] that

Ip(t) — pj;(t)| < C6°/4H/2
and ‘
la(t) —q;(t)]| < 08321972,

where C depends on the data of the problem: €, f, v, A1, and on ¢ but not
on m.

With other methods, other estimates may be obtained. If we start from
estimates of [15] of |p(t) — pa (t)|, where pg (t) is, as before, the classical
Galerkin approximation of the solution, that is

Ip(t) — pa (t)| < C'L26%/2,
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an improvement of the estimate of the error of the successive solutions by a
factor of §1/4 seems to be obtained. However, the appearance of the factor
L? (L =1+ In(2m?)) diminishes this success. A very careful analysis of the
constants C, C” should be performed in order to see what approach is better.

Anyway, the R-APP Galerkin provides approximates solutions as accurate
as those provided by the NL PP Galerkin method.

3.9. R-APP Galerkin method compared to the high-order
accuracy NLPP Galerkin method

The R-APP Galerkin method is intended to bring some simplifications to the
NL Galerkin methods that use high accuracy approximate inertial manifolds.
Hence this method makes sense only if more of its levels are passed through.

The simplifications come from the following facts:

a) the use of some already known functions (the q;s) for the adjustment of
the Galerkin equation, makes the equations for the approximations of p to
have essentially the same structure as the Galerkin equation; this imply sim-
plifications of the algorithms for the numerical integration of these equations,
compared to the corresponding equations of the NL Galerkin equations;

b) the use of the "approximate induced trajectories" instead of the ap-
proximate inertial manifolds makes some computations easier, because, in
the function q; the term 69_2 appears instead of the corresponding term
D®; 5 (X)I'j_2(X) of the a.im. ®;; the term qj_, can be approximated
by the numerical derivative (since we know its values in the points of the
time mesh);

¢) when we proceed to Level j of the method, all we need are the values of
qj—2 and qj_1, while all values of py, ¥ < j — 1 and qi, k < j — 2 may be
erased from the memory of the computer; this must be compared to the NL
Galerkin method that uses M, where in the course of a single numerical
integration one must handle the values of all functions ®p, k£ < j, and all
these must be stored in the memory of the computer.

In order to compare the R-APP Galerkin method with the NL PP Galerkin
method, we must look at the levels j with j > 2.

Let us analyze in parallel the first stage of Level 3 (that delivers us the
function ps) of our method and the corresponding NL Galerkin method (that
uses the a.im. My). It is easier to follow our reasoning on this particular
case than than on the general one.
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In order to make the following as clear as possible, we describe the compu-
tations necessary for the simple Euler integration method. Of course, more
elaborated algorithms must be used, but the difficulties added by these should
be evaluated for each specific algorithm individually.

In order to proceed, we consider a time-mesh 0 =5 < t] <ty < ... < tp <
.. <ty =T on the time integration interval [0, 7.

Let us make the notations
I'c (p) =Pf+vAp — PB (p)
T, (p) = Pf + vAp — PB (p+3;).-
R-APP Galerkin method, at the third level, requires the following com-

putations for the determination of pa(t):

at Level 0 — computation of pg(tx), k = 1, ..., N, by numerical integration of
eq. (3.28) (this is equivalent with the computation of I'q (pa(tk-1))); then
computation of qo(tg);

at Level 1 — computation of po(tx), K = 1,..., N, by numerical integration
of eq. (3.30) (this is equivalent with the computatlon of To (B(tp—1))); then
computation of q;(t);

at Level 2 — computation of pi(tx), & = 1,..., N, by numerical integra-
tion of eq. (3.32) with j = 2, (this is equivalent with the computation of
Iy (p1(tg—1))), then computation of qo(tx);

at Level 3 — computation of pa(t), by numerical integration of eq. (3.32)
with j = 3 (this is equivalent with the computation of I's (p2(tx—1)))-

NL Galerkin method that uses My, presented in [29], consists in the
integration of the system of ODEs

P _ ) Ap + P [B(p + ®,(p))] = PE, (3:34)

dt
P (O) = Puo,
where the function ®5 is given by

—vA®(p) + Qo B (P + ®1(p)) +ai = Qanf, (3.35)
—vAqj + Qom [B((P§, P+ 21(p)) +B (p + ®1(P). Py)] =0,
po — vAp + P [B(p + @,(p))]
—vA®(p) + Q2 B(p + ®o(p)) = Qanf,
—vA®y(p) + Q2,,B(p) = Qa2 f.
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We reproduced here the definition of My from [29]|, but we adapted the
notations from [29] to our notations and we started counting a.i.m.s with 0,
as in [38], while in [29] this count begins with 1.

In the course of the numerical integration, with p(¢x_1), kK = 1, ..., N, already
determined, in order to find p(tx), we have to compute:

®o(p (tk—1)), ®1(p (tk—1)), I'1 (p (tk—1)) (for the calculation of pd (tx), with
Ty given by (3.19), j = 3), af (tx—1), ®2(p (fx—1)), and finally s (p (tx—1))-
This will yield p(ty).

Now we can compare the two methods from the point of view of the compu-
tations involved. We have the following:

— computation of qo(t;) is equivalent to that of ®¢(p (¢;));
computation of qi(¢;) is equivalent to that of ®1(p (;));
— computation of I'y (P (tj)) is equivalent to that of I'y (p (¢;));

— computation of qa(t;) is equivalent to that of ®2(p (t;)), assuming that
ai (t;) is already computed;

finally we observe that the computation of pg(t;) and po(t;) (from R-APP
Galerkin method) together, involve less computations than that of q}(¢;)
(from the NL Galerkin method).

This is because in computing pg(t;) we have to compute a number of 4m? +
2m projections of the term I' (pg(t;—1)) and in computing po(t;) we have to
compute 4m? + 2m projections of the term Ig (p(t;_1)), while in computing
qi (t;) we have to compute 12m? + 6m projections.

At the following level, induced trajectories, respectively a.i.m.s, of higher
order are used. The definition of these involves approximations of the deriva-
tives similar to the above. Hence, the difference in the amounts of compu-
tations between the two methods increases with the order of the method.
It follows that the R-APP Galerkin method involves a smaller amount of
computations than the NL Galerkin method.

The computational effort involved in the final post-processing part is eased in
the R-APP Galerkin method by the fact that, by using approximations of the
induced trajectories we can approximate directly (by numerical derivative)
the function q’, while in the NL PP Galerkin method it is approximated
by the differential D®;_5 (X)T'j_2 (X). In conclusion, the R-APP Galerkin
method brings simplifications to the NL PP Galerkin method relying on
higher accuracy a.i.m.s.



APPROXIMATE INERTIAL MANIFOLDS 155

4. Modified Galerkin methods for a reaction-diffusion
problem

We consider a reaction-diffusion (RD) equation of the form

ou

2~ D (Au-u) + glu) = . (41
where u is a real-valued function, u = u(t,x), x € Q = (0, 1) x (0, 1), I >0,
D is the diffusion coefficient and the function ¢ is a polynomial function of
odd degree. In order to simplify the following considerations we take here a
polynomial function of degree 3,

g(u) = by + byu + bou® 4+ bsu®, b; € R, by > 0.

We take fe€L? (). To the equation (4.1) we associate an initial condition

u(0) = ug (4.2)
and the boundary condition

Ou =0. (4.3)

Mg

The phase space is here H =L2(Q2). We consider also the space V = H! (Q)
with the usual norm.

The operator A = —A + [ is a positive-definite, self-adjoint, with compact
inverse operator with definition domain D(A) = H? (). The following exis-
tence result may be obtained by the Galerkin-Faedo method [37], [34]

THEOREM 4.1 Ifug € H, then there exists a unique solution u € C (RT; H),
u € L?(0,T; V)N L*(0,T; L?" () where p > 1, T > 0. If, more than that,
ug €V, then u € C([0,T); V)N L20,T; H?(R)).

The semi-dynamical system {S(t)},~,, generated by (4.1) is proved to be
dissipative in H and V [37], [34]. Hence there is a pg > 0 (respectively a
p1 > 0), such that for every R > 0, there is a moment to(R) (respectively
t1(R) > to(R)) with the property that for every uge H with |ug| < R, we
have |S(t)ug| < po, for t > to(R) (respectively ||S(t)ug|| < p1, for t > t1(R)).
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4.1. The splitting of the space

The eigenvalues of A are

? .2 2
Ak [1“+ Kk ]+ 1

’ = l_2

and the corresponding eigenfunctions are

Wik = cos cos
I l l .

where aj =1 for j =0 and a; =2 for j # 0.

As for the Navier-Stokes equations, we consider the set I'y, of eigenvalues
Aj1ge With 0 < g1, jo < m. We make the notations

A= Xng1,0 = Ao,
1
0=—.
A
We also consider the space spanned by the eigenfunctions corresponding to

these eigenvalues and we denote by P the projector on this space. We set
Q = I — P, where I is the identity on ‘H, p = Pu, ¢ = Qu.

We project the equation (4.1) by using these projectors, to obtain

% — D (Ap—p) + Pg(p + q) = Pf,
% —D(Aq—q)+Qgp+q) =Qf.

It can be proved (e.g. [4]) that
lq| < Co

for t great enough, where the coefficient C' depends on the data of the prob-
lem.

4.2. Induced trajectories for the reaction-diffusion problem

In constructing a family of induced trajectories for the reaction-diffusion
problem, we try an asymptotic analysis of the RD equations. We develop
the function ¢ in series of powers of §

qg=29 (k‘o + 0k + 52k2 + (53]€3 + ) . (4.4)
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We have
1 1
gp+q)=gp)+9(Pa+ 59"(1})(12 + Eg”’(p)q?’ =
= g(p) + ¢' ()3 (ko + k1 + 0%k + 6%k + ...) +
1
59" (0) [8 (ko + k1 + 0%k + ks + )]+
1

+ ég'”(p) [(5 (ko + 0k1 + 6%ky + ks + )]3 ,

_.I_

hence, by ordering the terms after the powers of 9,

9(p+q) = g(p) + 69’ (p)ko+ (4.5)

1
+37[g oks + 30003 +

1 1
#8850 ()20l + 13" (] +

1 1
+0* | g (p)ks + 59”(19) (k3 + 2koks) + ég"/(p)?)kgkl] + ...

Then, by substituting (4.4) in the equation for ¢, we obtain
OkYy + 0%k + 8%k 4+ 6 KL + ...
— D [0Ako + 0°Aky + 6° Aky + 0* Akg + 8" Aky + .| +
+ D [dko + 6%y + 0%ko + 6%ks + 0%k + ...] +

+Qulp) + 00 )k +5°Q o )k + 303 +

1 1
+63Q [g’(p)kz + 59”(1))2%:0%:1 + Eg’”(p)kg} +

1 1
+5Q [g’(p)ks +59"(0) (K} + 2koks) + gg”'(p)%%kl] .. =Qf.

In ordering the terms in (4.5) we simply performed an algebraic calculus, and
treated the right-hand side as a polynomial in §, but when we look for the
terms of the same order of magnitude, a careful analysis should be performed.
Since k;(t) € QH, we have

1
|Ak;| > Akj| = 5 |51 (4.6)

and it follows that the term &/TlwAk; is of the order of j. We also must
evaluate carefully the terms containing products or powers of k;js. E.g., for

the term 1¢”(p)k3 we have the estimates
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1
k%@%g

-(/ (g”<p>)2k§dx)1/2 < ([ @ww)'a) " (f kédw)1/4-

Sobolev embedding theorem gives

[ull o) < C s 8) llull,
with 1/p=1/2 —5s/2, s < 1, and, since
Jully < Clully,

we obtain

1/4 3 3
([ #2) " =lhollse < €28 21 lmolE < 0282 k.
Q

1/4
In a similar way we see that (fQ (g" ()" da;) is a function of py and p;.

This together with inequality ||koll; > (%)1/2 |ko| show that all we can say

about the term 262" (p)kZ is that it is of order § and we have to consider
it together with the terms of the same order. Similar reasonings will be
considered implicit for the other terms containing products or powers of k;s.
Thus we obtain the relations:

—0DAky + Qg(p) = Qf
kly — 82D Aky 4 6Dko + 6Qg' (p)ko + %62Qg”(p)k3 =0,
82k} — 8°DAky + 62 Dky + 82Qg' (p)ks+
+55°Qq" (p)2hoks + £5°Qq" (K =0,
8Ky — 6 DAks + 62 Dky + 8°Qg/ (p)ka+

1 1
501Qq" (1) (k + 2koks) + -6 Qg" ()3kk1 =0,

Now we define the functions

qj = Oko + 0%k1 + 6%ko + 6ks + ... + 07T ;.
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By summing the equations for k;, we obtain equations for g;:

—DAqgo + Qg(p) = Qf, (4.7)
4o — DAq1 + Dgo + Qg (p) + Qg' (p)go + %Qg”(p)qg =Qf,
¢, — DAga + D1 + Qg (p) + Qg' (p) a1+
500" () + 5Q0" (0)2a0 (a1 — a0) + =Q4" ()} = Q.
¢ — DAgz + Dga + Qg (p) + Q' (p) ga+

%Qg”(p)ﬁ + %Qg’”(p)iiqg (1 — q) = Qf,

We see that the nonlinearity of the polynomial makes the equations neither
“beautiful”, nor with a clear structure. However, we consider the functions

uj(t) = p(t) + ¢; (1),

and define the induced trajectories of the problem as the sets {u;(t); ¢t > 0} .
These will be used to define the R-APP method for the reaction-diffusion
equations.

4.3. Approximate inertial manifolds for the reaction-diffusion
equation

In the NL Galerkin method and in the NL PP Galerkin method described in
literature |32], the following a.i.m.s are defined for the RD equation: for any
Jj =0, M; is the graph of the function ®; : PH —QH, described below

DA®(p) + Qg(p) = Qf, (4.8)
i1+ DA®;(p) + Qg (p+ ®;1(p)) = Qf, j=1. (4.9)

Here qjl-_1 = D®;_(p)I'j_1(p), with D®;_;(p) the Fréchet differential of
®;_; computed in p and applied to I';_1(p) = Pf — DAp— Pg(p+ ®;_1(p)).

If we would want to construct a family of a.im.s Mj starting from the
induced trajectories we defined above (as is done in [38] for the Navier-
Stokes equation), the first a.i.m. of the family, Mvo, would be identical with
My since the function &)0 defining it would be identical to ®¢ of (4.8), as the
equation for gy(t) shows.
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The second a.i.m., le, would be quite different from M; above. That is, it
would be the graph of the function ®; defined by the equation

DQ®o(p)To(p) — DAD1 (p) +DPo(p) + Qg (p) + (4.10)
+Qg' (P)Po(p)+ 3Q9"()Po(p)? = QF, '

with To(p) = Pf + D (Ap—p) — Pg(p + ®o(p)). We see that the difference
between this equation and that for ®;, that we write explicitly below

D®y(p)Lo(p) — DA®(p) + DP1(p) + Qg (p + Po(p)) = Qf, (4.11)

consists essentially in the presence of the term %g’”(p)CI)o(p)?’ in this lat-
ter equation. If the polynomial g would be of higher degree, the difference
between the two families of a.i.m.s, that defined starting from the induced
trajectories and the one defined by the relations (4.8) and (4.9) would in-
crease. However, for the sake of the elegance of the definitions, (4.11) may
be taken as the equation for ®;(p) even if it does not spring from an accurate
asymptotic analysis. The presence of the higher order terms does not affect
the order of magnitude of the distance between the exact solution of the R-D
equation and the first a.i.m. [21].

4.4. “Induced trajectories” inspired by a.i.m.s

For the sake of the simplicity of the definitions and having in mind some
simplifications of the computations in the R-APP Galerkin method below,
we can choose an alternate definition for the induced trajectories of the R-D
problem, inspired from the definitions of the a.i.m. of [32]. That is, we define
the functions ¢; through the relations

DAG + Qg(p) = Qf, (4.12)
G5 1+DAG+Qg(p+q-1)=Qf, j>1,

where p(t) = Pu(t). The functions
U =p+q;

define the new “induced trajectories” {u;(t); ¢t > 0}.
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4.5. The NL Galerkin method for the RDE

The NL Galerkin method for RDE consists in integrating the differential
equation:

O DA g(p+ Bo(p) = PF, (4.13)

with the initial condition
p(0) = Puy. (4.14)

If we denote by ¥, its solution, the approximate solution is taken as
ym(t) + (I)O(ym (t))

In |32] it is asserted that, for large enough ¢,

[u(t) = (ym(t) + Po(ym(t)| < CO°.

Improved NL Galerkin methods make use of the higher accuracy a.i.m.s,
M, j > 1. That is an equation of the type

% + DAu+g(p+ ®4(p)) = Pf, (4.15)

with the initial condition (4.14) is solved, let y,, ; be its solution. The ap-
proximate solution of the RDE is taken as:

Ym,j () + P (Ym,j (1))

In [32] it is proved that the H norm of the error of this approximate solution
is of the order of C'(t)6/%2.

4.6. The PP NL Galerkin method for the RDE

Also in |32] the NL Galerkin method is post-processed, i.e. to the solution
Ym,j of the NL Galerkin problem, considered in 7', the quantity ®;1(ym (1))
is added and

Ymj(T) + @js1(Ym,;(T))

is taken as the approximate solution in 7T'. It is proved in [32] that

[(t) = Wiy () + 1 (s (D)) < Clam 6745,
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4.7. The R-APP Galerkin method for the RDE

We describe the R-APP Galerkin method for the reaction-diffusion equation.
In |21] we presented a variant of our method that has as initial level a NL
Galerkin method (this was meant to skip a numerical integration - that of
the Galerkin problem). Let us denote generically

q; = FJ(Qfapa q0, 41, "')qj—1)7

either the functions given by the set of relations (4.7) or the functions g;
given by (4.12). We see that in this latter case, F}, j > 1 actually depends

Only on Qfa b, Qj—lv q_;‘—l'
Level 0. We consider the NL Galerkin problem

b p (Ap—p) + Py(p) = Pf, (4.16)

dt
p(0) = Pug

and denote it’s solution by pg.

Then we compute, at every moment of time
qo (t) = Fo(Qf, pc ().

When the numerical implementation of the method is actually done, this is
equivalent to the computation of ¢; at the nodes of the time mesh, and ¢ (¢;)
is approximated by (go(ti) — qo(ti—1))/(t;i — ti—1). The approximate solution
is

up = pG + qo-
Level 1. We consider the equation

d -
d—]t) — D (Ap—p) + Pg(p+ qo) = Pf,

and denote its solution by pg. Then we compute
q1(t) = F1(Qf,po (), o ())-
The approximate solution at this level is defined as

ﬂj = ﬁj_l + Z]v]
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Level j > 1. We assume qo, q1, ..., j—1 Wwere successively constructed. We
consider the equation

d N
d—f — D (Ap—p) + Pg(p +qj—1) = Pf,

and denote its solution by pj_1. Then we compute
qj (t) = F5(Qf,pj-1(t),q0 (t) ,q1(t), -, Gj—-1(2), )-
The approximate solution at this level is defined as
Uj = Dj—1 + qj-

Remarks: 1. While the equations for p; are equivalent to a finite, constant
number, of (differential) equations, the equations for g; are equivalent to a
system of equations having (if @ f admits non-null projections on an infinite
number of eigenfunctions) a infinite number of equations.

Hence a truncation must be done. In [6] the truncation is made by using a
projector, denoted P, that is the analogous of P but with 2m instead of m.
If @Qf would have nonzero projections only on a finite number of eigenfunc-
tions, then ¢; would also be finite dimensional. In this situation, we could
also compute the dimension of g;, by using the consequences of the trigono-
metrical relation 2cosacos S = cos (o + ) + cos (o — 3), on the products
of eigenfunctions. Then, in order to not affect the estimate of the error pre-
dicted by our method, we could take a truncation of Qf, let us denote it by
Q; f such that |A_1 (Qf — ij)| is less that the error of the level j.

2. Both families of {qj}j>0 defined above present advantages and disadvan-
tages one relative to the other. The first family, defined in (4.7), has the
advantage of demanding a smaller amount of computations since in (4.7)
fewer terms than in (4.12) are taken into account at a certain level. Tt
presents the disadvantage of recalling all g; with ¢ < j, at a certain level j.
The second family of approximations of ¢, given by (4.12), recalls at a certain
level j, only the values of g;_1. This is important from the point of view of
organizing the memory of the computer in the numerical implementation of
the method. However, this second family takes into account more terms in
the polynomial g. This increases a lot the computations when g has a high
degree.
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4.8. Estimates of the error

By using the method of [32], we can prove that both families of induced
trajectories defined above lead to the same orders of error, for every level of
the R-APP method, as the corresponding NL. PP Galerkin method. That is,
we can prove [22] that at the level j + 1 of our method

Ip—p;l < Cj(Inm) &+
and
g = G| < K672,
and thus
lu— 1| < [Cj(Inm) + K] 67+,

4.9. Comments on the method

The comparison of the computational cost of the R-APP Galerkin method
to that of the NL Galerkin method is similar to that we performed for the
Navier-Stokes equations. The conclusions are the same: the R-APP Galerkin
method is more economic than the NL PP Galerkin method. The difference
in the computational cost between the two methods increases with their level.
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1. Introduction

We report some mathematical results on the numerical approximation of a
class of nonlinear diffusion problems. We are concerned with the convection-
diffusion-reaction equation (CDRE)

Ob(u)

5 4V (s(W)Vu + £(u)) = g(t, 2, ), (1.1)
and generalized porous medium equation (GPME),
ou
- _ = 1.2

where div and V are taken with respect to x € R™; A = divV is the Laplace
operator and u(t,z) is the scalar unknown function.

There are some reasons to work with two different equations. The both
equations quantify diffusion phenomena but in different manner. The dif-
fusion flux is modeled by k(u)Vu in the CDRE and by grad¢(u) in the
GPME. In some cases the two forms can be interchanged but in other cases
is not possible. For example, if k(-) is an integrable function one can put
d(u) = [“k(s)ds. Although in almost any physicaly interesting cases this
transformation can be done the calculation of the function ¢, especially when
one deals with numerical approximation, can be a hard problem. In such a
case is recomandable to use the CDRE form. On the other hand if ¢(-) is
a differentiable function one has k(u) = ¢'(u). If ¢(-) is onlya continuous
function it is not posible to evaluate the diffusion coefficient.

The outline of the paper follows.

In Section 2 we delineate some mechanical problems and we will make com-
ments on the constitutive functions.

In Section 3 we present the essential facts relative to solvability of the Cauchy
problem. We revise the concepts of weak solution and weak entropy solution
and we will present a comparison criterion.

Section 4 is devoted to the numerical approximation.

The numerical solution of the Cauchy problem is obtained in two steps. In
the first step a system of ordinary differential equation is set up and in the
second step this ODE system is numericaly integrated.

The mathematical properties of the ODE model are strongly determined by
the numerical diffusion flux and the numerical convective flux. We will define
a numerical approximation of the diffusion flux and a numerical approxima-
tion of the convective flux that lead to a quasimonotone ODE system. Using
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this property we will show that there exists a comparison principle and we
will provide the bounds for the solutions of the discrete model that are inde-
pendent of the mesh size of triangulation.

In Section 5 we give two numerical algorithms to solve GPME equation
and Richards’ equation respectively. To integrate the ODE system which
approximate the GPME equation we will use implicit Euler method and we
we will setup an iterative algorithm to solve the system of nonlinear algebraic
equation that results.

To solve Richards’ equation we use an adaptive time marching scheme and
an inexact Newton type method to solve nonlinear equation.

2. Physical Models

The mathematical models (1.1) and (1.2) cover a wide range of physical
phenomena such that: heat transfer, infiltration of water through porous
media, transport of contaminant in porous media, the flow of the gas through
porous media, plasma radiation, to remaind a few.

The simplest example of the model problem (1.1) is the linear caloric equa-
tion: 5

a—z; = div(kVu), (2.1)
where u models the temperature and x > 0 represents the thermal con-
ductivity. Here it is supposed that the caloric flux obeys the Fourier law
q = —x«VT and that the thermal conductivity is independent of tempera-
ture. The condition k > 0 reflects the fact that heat propagates from high

to lower temperature.

If the temperature of the body is high enough one must consider the radi-
ation effects and the temperature dependence of thermal conductivity. For
example, if the power radiated by a body to environment follows the Stefan-
Boltzmann law of the forth powers, for both the body and the medium, the
heat equation becomes [§]

ou ) 4 4

i div(k(u)Vu) — kp(u” — u). (2.2)
The unsaturated water flow through porous media is described by the well
known Richards’ equations |7]

00(h)

5~ W (K(n)Vh+esK (h) =0, (2.3)
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where 6 represents the relative volumetric water content, h represents the
pressure head, K is the hydraulic conductivity and es is the upward vertical
versor. The function #(h) is a continuous positive function and it is strictly
increasing function on the interval (—oo, 0] and a constant function on h > 0.
Also the hydraulic conductivity is a continuous positive function strictly in-
creasing on (—oo, 0] and a constant function on the set h > 0. The hydraulic
conductivity becomes zero as h approaches —oo.

The transport of contaminant in porous media is governed by an equation of
the form [9], [10]

9 (C + ACP)

5 +v-VC =div(DVC) + g(x,C), (2.4)

where C' represents the mass concentration of the contaminant, v denotes
the velocity of the fluid flow, supposed to be constant. The term ACP, A > 0
takes into account the adsorption reaction by means of Freundlich isotherm.
The absorption reaction is described by the term g(z, C') that usually is given
by

g=—aC? (2.5)

with a > 0, ¢ > 0 (the order of the reaction).
An extremely used form of the GPME is given by the

ou
— = m . 2.
o Au™ 4+ du (2.6)

For m > 1 (slow diffusion) the equation models the flow of the gas through
porous medium for m < 1 (fast diffusion) the model is encountered in plasma
physics, kinetic theory and solid state.

The Stefan problem can be written as a GPME equation with

max{0, (u — 1)}, ifu >0,
u, ifu < 0.

o) = {

3. Mathematical Settings

In this section we review some results concerning the solution of the nonlinear
diffusion equations.

The constitutive functions are supposed to satisfy:
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b:R—R, is a continuous and nondecreasing function,
ALl B R—R,, is a continuous and nondecreasing function,
f:R—R" is a local Lipschitz vector function,
g: Ry x QxR —R, isa Caratheodory function.
A2 ¢ € C([0,00)) UC(0,00)), ¢(0) =0, nodecreasing function,
r € C([0,00)), r(0) =0.

We consider the Cauchy problem for both equations. The domain €2 on which
the problem is considered satisfies:

A3 H Q € R", is an open, bounded and connected set.

The initial conditions and boundary data are written as
(3.1)

u(0,x) = up(x), x €.
U = up, t>0,x € 00

We assume that
ug € LOO(Q),
up € L2((0,T) : WE2(Q)) N L>=((0,T) x Q).

Cauchy problem for CDRE. The Cauchy problem is defined by the
equation (1.1) in a domain €2 in R"™, the initial condition and boundary data
(3.1).

Due to the nonlinear parabolic term b(u) and nonlinear diffusion coefficient
k(u) the problem (1.1) can be a degenerate problem and consequently there
exists no classical solutions.

The notion of weak solution for the problem of the type (1.1) was introduced
by Alt and Luckhaus in [1]. By imposing some proper conditions on the
constitutive functions, boundary data and initial conditions, the authors were
able to prove the existence of the weak solution in the case of the parabolic-
elliptic degeneration, b(u) is a constant function on some interval of positive
measure and the diffusion coefficient is a strict positive function.

DEFINITION 3.1 (Weak Solution (H. W. Alt and S. Luckhaus)) A measurable
function u is a weak solution of the Cauchy problem (1.1) and (3.1) if it
satisfies:

1) u—up € L2((0,T) : W, *()),
Ob(u)

2) b(u) € L*>((0,T) : L(Q)) and o

e L*((0,7) : W1(Q)) with initial
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values b(up), that is,

/T<8%(f >dt+/T/ —buo»g dzdt = 0 (3.2)
0 0 Q

for every v € L2((0,T) : Wy (Q)) n Wh((0,T) : LY(2)), v(T,-) =0
3) k(u)Vu,g(,u(-,-) € L*(0,T) x Q), f(u) € (L*(0,T) x Q)" and u

satisfies the differential equation, that is,

T T .
ab(U)v u vdzdtr = z,u)vdz
0/< 7>dt+0// W)V + f(u)) - Vodadt O/Q/gt Joddt

(3.3)
for every test function v € L*(0,T : W01’2(Q)).

In the paper |7] Carrillo extrapolates the concept of entropy solution intro-
duced by Kruzhkov in theory of hyperbolic PDE [14]. He showed that there
exists a unique weak entropy solution of the Cauchy problem with homo-
geneous boundary data, up = 0, even in the case of parabolic-hyperbolic
degeneration. Such kind of degeneration appears when the diffusion coeffi-
cient is a null function on some interval with the positive measure.

The weak entropy solution is a weak solution that in addition satisfies an
integral entropy inequality.

Let us introduce the function

DEFINITION 3.2 (Weak entropy solution. Homogeneous case (Carrillo)) An
weak entropy solution of the Cauchy problem (1.1) and (3.1) with up = 0, is
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a weak solution which in addition satisfies the entropy inequality

T
[ ] #ote- (K@ + fw) - 1) - Vo~
0 Q
— (b(u) — b(s)) % - gv) dzdt — /(b(uo) —b(s))Tw(0)dz <0,

Q

T
[ ] Hals - (VK@ + 1) - f-5)) - Vo-
0 Q

— (b(u) — b(—s)) % ~ gv)dudt — /(b(uo) — b(—s))"w(0)da > 0,
Q

(3.4)
for any (s,v) € R x (L*((0,T) : Wh2(Q)) nWHL((0,¢) : L>(R))) such that
s> 0,v>0 and v(T) = 0.

In the entropy conditions the following notations:

) 1, ifs>0 + | s ifs>0
HO(S)_{O,ifsgo _{o,ifsgo

were used. If kK > 0 then the two definitions of the weak solution coincide
and any weak solution is an entropy solution |7].

To deal with nonhomogeneous Dirichlet conditions for degenerate problem
one supplementary difficulty is to give a sense to boundary conditions. In the
paper [18] C. Mascia, A. Porreta and A. Terracina proved the existence of the
weak entropy solution of the Cauchy problem with nonhomogeneous Dirichlet
data. Their definition is as follows. Denote by Q7 the direct product Qp =
(0,7) x Q. Also we use the notations:

E(u,v) = V[K(u) — K(v)| +sgn(u —v)(f(u) — f(v)),
B(u,v,w) = E(u,v) + E(u,w) — E(v,w).

The domain € is such that there exists a C? covering of 9Q, A = {U;}iz1.m,
of open sets such that 9Q C UU; and, in some local coordinates x = (z', z,,),
there exists a C? function z,, = a;(z’) such that U; N9 = {z, = a;(z")},
UnNnQ= {xn < Oti(.%'/}.

A sequence {95} of C2(Q2) N CYQ) functions is named a boundary layer
sequence if

5lim+ ¥s = 1, pointwise in 2, 0 < J5 <1, 95 =0 on IN.
-0
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DEFINITION 3.3 (Weak Entropy Solution. Nonhomogeneous case (Mascia et
al.)) A function u € L>((0,T)x Q) is an entropy solution of Cauchy problem
(1.1) and (3.1) if

1) (regularity)
K(u) € L*((0,T) : Wh3(Q))

and for any U € A, and any positive ¢ € C3°(U) we have

< = Ju - UD’”L/%S(U,UD)”L/J) € DM(Q)2;,

where DM(Q)2 is the set of divergence-measure vector fields in Q.

2) (entropy condition in interior of Q)
ov
/ {|b(u) —b(s)] i E(u, s)Vo +gv} dzdt > 0
Qr

for any v € Wol’z(QT) and v >0 and s € R.

3) (initial condition)

t—0t

lim /\u(t,x) —up(x)|dz =0
Q

4) (boundary conditions) in sense of trace in L?((0,T) : W12(Q)) we have
K(u) = K(up), t>0, x€ 09,

and for any boundary layer sequence Vs, and for any U € A, and any positive

€ C§5°(U) we have

lilgl ionf / B(u,s,up)VIs&pdadt > 0, Vs € R,
Qr

for any & € L*((0,T) : WH2(Q)),& > 0.

Cauchy problem for GPME. The Cauchy problem consists in the
equation (1.2) and the data (3.1).

The existence of the weak solution was proved by many authors see for ex-
ample, 4], |25].
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DEFINITION 3.4 (M. Borelli and M. Ughi) A nonnegative function u defined
on the Q x [0,T] is said to be a weak solution of the Cauchy problem (1.2)
and (3.1) if

1) we C([0,T]; LY(2) N L>([0,T] x Q),

2) for any test function n € C10([0,T] x Q)NC>1((0,T] x Q) such that n > 0
on (0,T] x Q) and n =0 on (0,T] x OQ u satisfies the integral identity:

/U(t,w)n(tyx)dx = /uo(az)n(o,x)dx —/t/¢(uD)§_Z+

Q Q 0 90 (35)

+ O/Q/ [udin + p(u)An + r(u)n| dtdzx

forany 0 <t <T.

The presence of the reaction term and nonlinearity in the equation (1.2)
generate interesting phenomena namely, extinction time or blow up of the
solution and the finite speed of propagation of disturbance [25].

Such problems have been studied by several authors: Borelli-Ughi [4], Ferreira-
Vasquez [13], Leoni [16], Levin-Sacks [17], Peletier and Z. Junninig [23]. In
the case r(u) = 0 and ¢(s) = s™,0 < m < 1l,up = 0 there exists an ex-
tinction time T, such that the problem (1.2 has a unique classical solution,
positive on © x [0,T¢] and null for ¢t > T, see [17].

For generalized fast diffusion with strong absorption and € = R? there also
exists an extinction time and the support of the solution is bounded for any
time ¢ > 0, [4].

In the power case, ¢(s) = s",7(s) = Ap®, A > 0, the numerical methods to
compute the solution of the similar problem (1.2) have been proposed by
M.-N. Le Roux, |21] the case m > 1, M.-N. Le Roux and P.-E. Mainge, [22].

Pointwise comparison principle. For both Cauchy problems CDRE
and GPME there exists several comparison criteria [1|, [10], [25]. We will
give here a result that allows one to compare two solutions with respect to
their boundary and initial conditions.

For any two real functions f(z) and g(x) we write f < g if f(z) < g(z),Vz €
Q. In addition to assumptions A1l the constitutive functions in CDRE prob-
lem satisfy
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(1)"1 R— R-i-? K,(U) > m,
1
AL (2) |k(u1) = K(u2)| < Cluy —ug", m > =, Yuy,uz € R,
(3) [F(u1) = flu2)| < Cluy —ual??, 2 > 3 Vui,ug € R,
(4) g(u1) — g(uz) < C(b(uy) — b(uz)), for ug > us.

THEOREM 3.1 (Comparison Theorem) Let (up,up), (Up,up) be such that
up < Up,uy < ug. Let u and @) be two bounded weak solutions of the Cauchy
problem (1.1), (3.1) associated to (up,uo) and (Up, up) respectively. Assume,
i addition, that

b(u),,b(@), € L*((0,T) x Q).

Then
u<u

on (0,T) x €.

Proof. We follow the main ideas from [1|. As in [1] for any § > 0 let
Us(a) = min(1l,max(0,a/d)). The function w = ¥s(u — u) belongs to
L*(0,T : W012(Q)) and its gradient is given by

1 . -
Vw:{ S(VU—VU), f0<u—u<d

0, otherwise

Set w as test function in (3.3). Then

t
// u)y — b(u wd$dt+5// u)Vu — k(u)Vu) V(u — u)dzdt +
0

0 Qs

I

¢ t
// ) - V(u—u)dzdt :// )) wdzdt,
0 0 Q

Qs

S| =

+

12
R (3.6)
where Qs := {z]|0 < h — h < §}. The integral I} can be rewritten as

L = ///i NIV (u — @)||*dadt + /t/ (w))Vu - V(u — u)dzdt.
0

0 Qs Qs
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Using Young inequality, ab < C(e)p~taP + eq~'b9, and A1’-(1) we obtain

> (n—g)j/r\v<u—a>r\2dxdt

)2 Va2 dedt

0 Qs 0 Qs

and
/ C(

Bz -5 [ [ 196 - < //Hf (@ Pdede,

0 Qs 0 Qs

Then

L+1L>(n—ce¢ //||V u — )||*dadt — 527// (J|Va| > + 1)dazdt.
0 Qs 0 Qs

From A1’(4) the production can be estimate as

t

// ) wdxdt < //1{u a>0y max{0, g(u) — g(u}dzdt <

0

<cC Oj Q/ max{0, b(w) — b(d) bdzdt.

Taking € < 1 we obtain

t t

// u)e — b(i)y) wdwdt + //HVU—u)Hda;dt<

0 0 Qs
t

< coo / / (Va2 + 1)dzdt + / / max{0, b(u) — b(@) }ddt.
0 Qs 0 Q
(3.7)
For § — 0 the first term on the right converge to 0 and the first term on left
becomes

t

(%1_1%// u)y — b(w)) wdzdt = //1{u a>0) (b(u)y — b(u);) dzdt =

0
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t

= //&t max{b(u) — b(u),0}dzdt = /max{b(u) —b(u),0}(t, z)dx.
0 Q Q

One obtains
¢

/ max{0, b(u) — b(@) }dwdt < / / max{0, b(w) — b(d) }dzdt,
Q Q

0

and using Gronwall’s inequality we get
b(u) < b(u),

and using this inequality in (3.7) we have V(u—u) = 0 on the set {0 < u—u}.
So, we have u — u—const. which implies u —u < 0 since on boundary u < u.
As a corollary of the comparison principle one can obtain an upper bound
for the solution of Cauchy problems in the both case CDRE and GPME

equations.

COROLLARY 3.1 Assume that A1 and A1’ are fullfiled and g(t,z,u) = g(u),
g(0) = 0. Let u be the solution of the problem (1.1), (3.1) on some interval
[0,T]. Then

1) if up >0 and ug > 0 so is u > 0,

2) Let a = |[upl|pe(o,r)x00), B = max{|[ug||oc, a}. If a > 0 we assume that
g(w) > 0. Let w(t) be the solution of the differential equation

Opb(w) = g(w)
w(0) = .
on the same interval t € [0,T]. Then the solution u satisfies

u < w on [0,7T].

Proof. 1). One compares the solution u with the trivial solution v = 0.

2). Define the function v(t,z) = w(t),Vz € Q. The function v(t, ) verifies
the equation (1.1), at the time t = 0 v(0,z) = B > wug and on boundary
v(t, )| yepq = w(t) > B > up that implies u < v.

COROLLARY 3.2 In the GPME the diffusion function and production func-
tion are given by ¢(u) = u™, r(u) = —Au® respectively A > 0,m > 0,s > 0.
The initial conditions satisfy A4, ug > 0 and up = 0. Let = ||ug||oo-

1) If s > 1 then the solution u of the problem 1.2, 3.1 satisfies

ulloo < B (1= A(L— 8)3° 1) 75 |
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2) If s < 1 then there exists a time T*, extinction time, given by

- 1 ﬁl—s

T =
Al —s

such that the solution exists on the interval [0,T*] and it satisfies

L\t
lulle <5 (1= 72 )

Proof. In the generalized porous medium equation
Ou = Au™ — \u®

we make the substitution ©™ = v and we obtain
OpP = Av — A",

V=0 = Ug', V]zean = 0,
where p = 1/m,r = s/m. By using the corollary 1 one obtain that the

function v is bounded from above by the solution of differential equation

-1,/ _ r
pwP~w = —=Aw",

w(0) =B,

which has the solution

m

w=F"(1—\1-s)5 1)1,

4. Quasimonotone ODE Approximation
4.1. Discrete Approximation

By the method of lines (MOL), one can associate an ordinary differential
system of equations (ODE) to a parabolic partial differential equation. The
MOL consists in the discretization of the space variable using one of the
standard methods as finite element, finite differences or finite-volume method
(FVM). The FVM fits very well to conservative equations and there exists a
large literature devoted to the method, we recall here the papers that deal
with Dirichlet problem, [6] for hyperbolic PDE, [11], [12], [19] for nonlinear
parabolic PDE.
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Fig. 1: Triangulation of polygonal domain in R2.

The FVM deals with a decomposition of the domain 2 into small polygonal
domains w; and a net of the inner knots x;. The assembly {w;,x;} defines
a triangulation of the domain and it is an admissible mesh if it satisfies the
following conditions, [12].

DEFINITION 4.1 (Admissible mesh) The triangulation T = {(w;, x;)},c; 15
called an admissible mesh if it satisfies:

w; s open poligonal set C Q, x; € W;
(1) Urerai = 0
A5 || (2)Vi#jel andw, Nw; # ®,either Hp—1(w; Nw;) =0 or
oij == w; Nw; is a common (n — 1)-face of w; and w;
(3) fOT all 0ij, [xi,xj] L Oij

Here H,,— is the (n — 1)-dimensional Hausdorff measure. For each volume
w; that has a common (n — 1)-face with the boundary 9 one defines an
external volume w;, € CS2 by the reflection of the w; with respect to the face
i, = w;NOQ. Denotes by 7? the collection of all external volumes {(w;, , 74, )}
and by I” the set of their indices. Let 7¢ = T U7? and I¥ = TU I’. We
say that the volumes w;, w; € T7° are neighbours if they share a common
n — 1 face and we denote by n; ; the unit normal vector to the face o;; that
point to wj.



DIFFUSION PROCESSES 183

Discrete form of CDRE. The space discretized equations are derived
from the integral form of (1.1) for each control volume w;

856(:) dz — / (k(u)Vu+ f(u)) -nda = /g(t,az,u)daz, Viel. (4.1

wj Ow; Wi

By a proper approximation of the volume integrals and surface integrals one
obtains discrete form of CDRE.

We define the numerical diffusion coefficient x : R x R — Ry by

F(u,v) = max(k(u), k(v)). (4.2)
It is easy to show that numerical diffusion coefficient satisfies
R(u,v) = k(v,u), symmetry,
A6 || (R(u1,v) — K(ug,v))(us —uz) >0, monotonicity,
k(u,u) = k(u), consistency.

Corresponding to each face o;; we admit that there exists a numerical flux
function f: R x R — R with the following properties:

fg,vj (u7 U) = J;
A7 (fij(ur,v) = fij(u2,v))(u1 —uz) <0, monotonicity,

(fij(u,v1) = fij(u,v2))(v1 — v2) >0,

fi,j(U, u) = f(u) - n;j, consistency.

_fj,i(v, U), conservation,

A numerical convective flux which satisfies A7 is systematicaly used in the
approximation of hyperbolic equation see, for example |6]. The integrals in
(4.1) will be approximated as follows:

Ob(u) 0b(u;)
ot ot ’

dz ~ m(w;)
//{(u)Vu-nda% Z m(f’ij)%(ui’uj)ujd_..w’
dw; IENE !
/f(u)-nda% Z ﬁ,j(uiauj)a

Ows FEN (D)

otz de [ ot = gt ).

wj Wi

N (i) denotes all neighbours in 7¢ of w;, m(w;) represents the volume of
polyhedron w; and m(o;;) represents the n — 1-dimensional measure of the
face o;; and d; j = |z; — z;]|.
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The initial data and boundary conditions are approximated by:

Ug; = ﬁw/uo(w)dx, (4.3)

1
L , 4.4
ui, e /uDda (4.4)

Uib

respectively.

As aresult one can define a Cauchy problem for a system of ordinary differen-
tila equations whose solution gives an approximation of the Cauchy problem

(1.1), (3.1).

db(g;iz) _ Z m(O'z]) [E(uz,u])% + fi,j(ui,u]'):| + gi(t,ui)
JEN(4)
ui’t:() = Uoi,
(4.5)
for t > 0 and for any i € I.

Let us introduce the numerical diffusion-convection flux functions

Filwiup) = 3 m(0yy) [E(ui,uj)“j_“i+};j(ui,uj)} (4.6)

jen ™) i

then the ODE approximation reads as

dt

= Fi(u;up) + gi(t, u;). (4.7)

The boundary conditions are taken into account by the volume elements next
to boundary 9. For such element the contribution of the boundary values
to the F; is given by
m(o;,) [~ Uiy — U+
le:) /{(uib,’LLj)Zbsz +fi,ib(ui’uib) : (4-8)
Infiltration model. Here is an example of a numerical convective flux that
satisfies A7 with f(u) = e3K(u) that appears in the Richards’ equation
(2.3).
- 1 1
fij(u,v) = 5 (e3-mij + les - nij|) K(v) + 5 (e - nij — les - miyl) K(u).
(4.9)
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Discrete form of GPME. For each control volume w; we write

Ou 4 / 90() 4, — /r(u)dx, Viel (4.10)

ot on

Wi Ow; wj

To approximate (4.10) we use the same schemes as in previous paragraph.
The new integral that contains the diffusion function ¢ will be approximated

by
0 ) — Blu;
B JEN () Y

The ODE approximation of (4.10) is given by

O . A .
Yoy 1;11((0,‘])) é(uﬂ)d“qﬁ(u» + (). (4.12)
jeN () T &
The boundary conditions are taken into account by the volume elements next

to boundary 0f2. For such an element the boundary values enters into the
play by a term of the form

(o) B{ujp) — dus)

m(wz) dfj

(4.13)

For shortness we introduce the notation
m(o;; u;) — o(u;
gz‘ _ Z ( zy) qb( J) qb( z)‘

m(w;) dij

JEN(3)

4.2. ODE Model

As in the continuum case we want to prove that the solutions of ODE (4.5)
and (4.10) obey a comparison criterion.

For that, we firstly prove that F and G satisfy Kamke conditions.
LEMMA 4.1 Assume A2, A6 and A7. Then
Fi(u) =0, Gi(u®) =0 (4.14)
for any constant state u; = u,Vi € I°.
F and G satisfy Kamke conditions, that is
Fi(v®) > Fi(w®), G;(v°) > Gi(w®), Vi€ I, (4.15)

for any two vectors that satisfy vy > wy, Vk € 1¢, and v; = w;.
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Proof. To prove (4.14) we have

Fi(u®) = Z m(aij)f(u) ‘n;; = 0.

JEN() m(ws)

We only prouve the counterpart relativ to F. To prove the Kamke conditions
we have
Filv) - Fi(w) =
m(o;j) [~ vj—u o~ ~ w;—u >
2 o) [m(u, o)L o Fogluy0) = R, w) = = Fij(u,wy)
JEN (i) ! K "

and from (4.2) and the monotonicity property of A7 the affirmation results.

As F and G are both quasimonotone and nondecreasing with respect to
boundary data vectorial functions the next two results are equaly true for
discrete ODE (4.12).

Assumptions on source term

There exists the real numbers o < a < 8 < 3 such that
(1) b€ C'((a, B)) and &' > 0 on (o, B).

A1" | There exists two Lipschitz functions g,g : Ry x R — R such that
(2) g(t,u) < g(t,2,u) <G(t,u), Yu € (a,B),

(3) g(t,@) <0, g(t,8 > 0.

THEOREM 4.1 (Boundedness of discrete solutions) Consider the Cauchy
problem (4.5). Assume A1, A1”, A4, A6, A7. We suppose also that initial
conditions and boundary data satisfy

a<uy(zr) <BaereQa<up(t,r) <p, ae (t,z) e (0,T) x Q. (4.16)

Let u(t) be the solution of the problem

Ob(u
8(1: ) = Q(t7u)
(4.17)
|u|t:0 = Q,
u(t) be the solution of the problem
ob(u .
8(t ) g(t.u)
(4.18)

‘U‘tzo =p
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and Ty, = inf(sup{t|u(t) > a,u(t) < B},T) Then the solution u(t) of the
Cauchy problem is bounded by w and @ on the interval [0, Tsyp) i.€.,

u(t) < wi(t) <a(t)Vi € 1,V € [0, Toup) (4.19)

Proof. The essential tool in the proof is the Nickel’s theorem that provide the
monotony of the solution of the quasimonotone ODE. The Kamke conditions
ensure us that we deal with quasimonotone system.

Observe that the conditions A1”-3 guaranties that
a<u(t) <o, f<T(t) < B (4.20)
Define

Fi(u) = Fi(u;u), Fi(u) = Fi(u; ).
From (4.4), (4.8), (4.15), (4.20) and the conditions A1’-2 one obtains

Y

Fi(u) +g(t,u) < Fi(u;up) + gi(t,u) < Fi(u) +g(t,u).

Since u; P (t) = u(t),Vi € I is a solution of the problem
T Fi(u) +g(t, u;) (4.21)
u’i’t:() = 57

ul™ (t) = u(t),Vi € I is a solution of the problem

2

dt = F;(u) + Q(t7 ;) (4.22)
Uili_g = o,

and a < ug; < 8 one can apply the Nickel’s theorem and one obtains
u () < wilt) < ug™ (1),

which is (4.19).

THEOREM 4.2 (Comparison theorem. Discrete case) Assume we are as in
the boundedness theorem. Let u(t) and u(t), t € (0,T), be the solutions of
the problem (4.5) associated to (up,ug) and (up,ug) respectively. Suppose
that

uDgﬁD<0, u0§ﬁ0<0.

Then
u<u

on (0,7).

Proof. The same as in the boundedness theorem.
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5. Numerical Algorithms and Numerical Results

In this section we give two numerical algorithms to solve GPME equation
and Richards’ equations respectively.

5.1. Fast Diffusion with Strong Absorption

We will present here an algorithm to solve numerically (4.12) in the case of
the fast diffusion with strong absorption. In addition to assumptions A2 the
constitutive functions ¢ and r satisfy

A2 ¢ is increasing function and lim,_,o ¢(x)/x = oo,

r(s) <0, for s >0,

The ODE can be rewritten as

ui
ot

= Aijp(ug) +r(uq). (5.1)

We use the classical full implicit Euler time integration scheme to integrate
the system. It follows

u"t =0 4+ At (Ap(u™T) + r(uth)) (5.2)

where At represents the time step. Depending on the initial data ug and
the type of nonlinearity of the functions ¢ and r to solve the arising system
can be a very hard problem, in the vicinity of the zero the derivative of the
function ¢ in the case of fast diffusion become infinite. We propose here
an algorithm suggested by the Gauss-Sidel iterative method. The method
uses the very special structure of the matrix A generated by finite volume
method. One writes the matrix A as

A=A+T,

where I' is a diagonal matrix containing the diagonal entries of the matrix
A. We point the following properties of the two matrices

Aij 2 0, Ty; <0, Zgij < —T. (5.3)
J

We rewrite also the functions ¢ and r as

o(z) = o(z) -z, r(x) = —r(x) - x. (5.4)
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The equation (5.2) can be written now as
(1 + At( Té(u) + 7(u "+1))) W = ot + AtAg(™Y).  (5.5)

The next theorem gives the main properties of the solution of implicit Euler
method.

THEOREM 5.1 In addition of the conditions A2 and A2 we assume that
¢ is a nonincreasing function and v > 0. If the initial data and boundary
conditions are positive and upper bounded functions, i.e.

0<up<p, 0<up <p,

then for any time step At there exists a solution of the equation (5.2) that
satisfies
0<u" <p, Vn. (5.6)

Proof. Let us assume that for a time level n there exists a solution u” that
satisfies (5.6). We will use the Browder fixed point theorem to demonstrate
the existence of u™*! with the same properties. Define the RV-values function
U by N

ut + ALY, Ay (yy)

1+ At <—Pz’i$(yi) + F(yz')) |

We claim that the function ¥ is a continuous function on the set [0, o]V and
take values in the same set. So, it has a fixed point.

Vi(y) =

Since ¢ and 7 are continuous functions on (0, 00) and let us assume that their
limits in 0 are finite we can prolong by continuity the function ¥ in 0. It is
obviously that ¥; > 0. For the upper bound we have

ull + AtY Ayd(y;)
U (y) —p < I —p=
W-ps< 1 — Atly0(yi) g

ul' — p + At (Zj Asjo(y;) + pl“imNS(yi))
1 — Aty (yi) '

For any y € [0, p]"¥ we have

Z Aijo(y;) + pLad(yi) < b(p Z Aij + pliid(yi) <

< —o(p)Tii + pLid(yi) = —pLii(d(p) — d(yi)) < 0.
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NXn|----

Fig. 2: The regularization of the flux function.

To obtain the first inequality one uses: assumptions A2’ (¢ is a nondecreasing

function), boundary data is bounded from above by p and A;; > 0, the second
inequality results from the structure of the matrix A and the last inequality
from the constitutive assumption on the ¢.

So, we have
0<Wi(y) <p

and for it results the existences of a fixed point, say u. Since for any ¢ one
has

L+ At (—Tad(y) +7(9:)) < oo, on [0, ),
it follows that the fix point u is a solution of the of the nonlinear equation
(5.6).

Let us analyse the case in which the functions 5 and 7 have infinite limits in
0. One regularises the function ¢ by

PPN B if%(a:)>n
P {d@7ﬁﬂﬂén o0

and from it one has

|, if p(x) > xn
Pn(w) = { o), if 6lx) < an. (58)

Obviously
60(@) < 6(2), lim 6,(z) = 9(a)
In a similar manner we define Ty

With the functions ¢, and r, we are in the previous case and then results
that there exists a solution u, € [0, p]" of the equation

uy = u" + At (Ady (uy) + ry(uy)) - (5.9)
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As the sequence u, is bounded we can extract a subsequence wu,, that con-
verges to a point u € [0, p]N. The problem is to demonstrate that the limit
point u is a solution of the original equation, i.e.

u=u" 4+ At (Ao(u) + r(u)).

Let us denote by Fj)(u) and F' r.h.s., of the preceding equations, respectively.
We have

lu=Fu)lloe = [lu = ug, + (Fy, (ug,) = Fy, (w)) + (Fy, (v) = F(u)]|, <

o oo —
+|1Fy, (u) = F(u)

We will show that, for any € > 0,
lu = F(u)| <e.

Observe that the first term and the last term can be made arbitrary small,

9
[l =g, [l + 1 () = Fu)ll o < 5

for any n > n®. The middle term can be evaluate as ||-||

1 F () = Fo (u)ll oo < At([|A(¢n,, (ug,) — g, (w)]] 5 +
+ HTnn(unn) - rnn(u)Hoo) <
< At([|All [[én, (un,) — &n, (w)

+ |7, (ug,) — rnn(u)Hoo)'

_.I_

| o0

For each component ¢ we look at

P, (Ugi) — Dn, (wi)]

and note that if u; is not equal with zero then for a great enough number n
one has

(O (i) = D (ui)| = [d(un,i) — Pui)],

if u; equals zero then
|¢77n (unnl) - gbnn (ul)| = ¢77n (unnl) é gb(“‘”/'rﬂ)

Using the continuity of the function ¢ we can find a number nf such that

£
[P () — P ()] o < VA~
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for any n > n§. Using the same arguments we can prove that
€
i < _
for any n > n§. Hence, there exists a n® such that
€
HF 7L(u7]n) - an(u)Hoo S 5
for any n > ne.
This end the proof of the theorem.

In our implementation we calculate the solution of the Euler scheme by the
following iterative solver

<I N (_pgn(unﬂ,k) n ;n(unﬂ,k))) RSN

- (5.10)
u" + AtAG, (uthE),

Numerical Simulation. For the numerical simulation we chose a very
simple domain 2 = [0,1] x [0,1]. The fast diffusion with absorption is mod-
eled by ¢(s) = s™,r(s) = —A- sP.

Table 1: Extinction phenomenon, extinction time T° = 0.18. ¢(s) = s%7, r(s) =
—21. x s95%, up =0

..
..
......

Initial Profile Comparison of the numerical solution
(solid line) with a theoretical estima-
tion (points drawing).

5.2. Water Infiltration through Stratified Soil. Richard’s
Equation

We consider stratified soil. Hereafter the stratified soil means a block-wise
homogeneous soil with horizontal parallel homogeneous strata, see figure (3).
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Fig. 3: Stratified porous soil. Each layer is mod-
elled by different constitutive function.

In the case of stratified soil the different mechanical properties of the soils
require different constitutive functions which in turn lead to a partial differen-
tial equation with discontinuous coefficient. On an interface of two different
strata one must impose some compatible conditions to have a well defined
problem. Physical considerations require the continuity of the pressure head
and normal components of the velocity. So, we have

h|— = h|+)
v-nly. (5.11)

v-n|_

Taking into account the compatibility relations (5.11) appear that it is more
convenient to work with the § — h form of Richards’ equation, i.e.,

B d(h+ z)
8t/‘/9d$ = K(@)Tds,

ov (5.12)

o = 0(h)

We assume that the flow domain is the 2D rectangle Q = [0, a] x [0, b] which
is stratified in Nj strata [0,a] X [Z;—1, Z;] with Zy =0, Zn, = .

Let 0 = 210 < @yq10 < -+ < ng12 =4, 0= 210 < 21410 < -++ <
Zp41/2 = b be two partitions of the intervals [0,a] and [0,b] respectively.
We define the control volumes w; ; = [azi_l/%xiﬂ/z] X [zj_l/z,zj+1/2] , 1=
Ti—1/2 + Tiy1/2
- 5
Zj i =1,N,j = 1,M. We assume that the partition

2
{wi ;} is a conform partition with respect to stratification of the domain €,

1,N, j =1, M and the net inner knots r; ; = (24, 2j), &; =
 Yj—12 T Yjt1)2
- a9
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Fig. 4: 2D mesh.

i.e for any j the line z = Z; does not intersect the interior of any control
volume w ;.

On each volume w;; one approximates the pressure by a constant value
h;j and water content by a constant value 6; ;. On the common boundary
Oiy1/2,j = wij Uwityj of two neighbors we approximate the flux by

8h—|—z hz ,'—hi,'

Oi+1/2,5

where the numerical hydraulic conductivity K /o ; is an approximation of
the hydraulic conductivity K (0),

Ki+1/2,j == k(9i7j,0i+1’j). (514)

We assume that the function I~((, -) is a symmetric and continuous function
with respect to its arguments. As result, we obtain a differential algebraic
system of equation (DAE), 6 — h form of Richards’ equation,

d6; hiv1j — hi;
(A
P Zhig 4) C
2Y A

hij — i1,
e A
hii—hii 1
+K; 112 %
J

0;; = 0(hij).

+1]),
Azjp

(5.15)

To integrate the DAE (5.15) we use an implicit multi-step method, [5].
Let {tn—k,tn—k+1,---,tn} be a sequence of moments of time and denotes by
0™ = 0(t,,) € RYM NM = N x M. Supposing that one knows the values
{on=F gn=h+1 6"}, the values 67! and h"+! at the next moment of time
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tny1 are calculated as follows. Define a predictor polynomial w®(t) and a
corrector polynomial w®(t). The predictor polynomial interpolates the val-
ues {§77F, gn—k+L 9"} at moments of time {t,,_i, tn_g+1s ..., tn}, Lagrange
interpolation,

k
WO (t) = g5 ()" . (5.16)
j=0

For each j = 0, k the polynomial g;(t) is given by

et
0= 11 ——
i=0,5 I Tt

The corrector polynomial w®(t) interpolates the unknowns 6"*! and the
values of w(t) at the moments of time t,,1 and {t,41 — jAt,;j = 1,k},
respectively. The unknowns #"*! and h"*! are determined by imposing to
the corrector polynomial w®(t) and to A"*! to satisfies the DAE. Then a
system of nonlinear equation results. By denoting

- (pn+1l pn+1ly .
Fig (07 h )E +1 +1 +1
n n n n
—hij —hi

! . R .
1, > _17
Kz‘+1/2,j(9n+1) z+Aj$' , _Ki—1/2,j(9n+1) ,] Am.l J+
hn+lll+_ n+1 ’ h h
1 ij+ ij 1 i, — -1
K jy1/2(0m) <—Azj+1 + 1) — K jo12(0") <Tz] + 1)
(5.17)
one obtains
Y gt Pn) _ ¢ (gntl pntl
m’lv] <Atn 07?] - wiuj > - E’] (on 7hn ) ’ (518)

n+l __ n+1
ei,j - e(hi,j )7

where wfj’»” are known quantities as functions of the preceding values of 6.

The nonlinear system (5.18) is solved iteratively using an inexact Newton
step followed by a Broyden step until a desired accuracy is obtained. Let R
be given by

a
AP

R(O,h) =m ( 6 — va”> —F(6,h). (5.19)

The matrix J (6, h) of the iterative process in INS is an approximation of
the full Jacobian of the function R, the product of it with a vector w read
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ﬂ&Mw:mg;ﬂMw—%wwL (5.20)
where
F (0,w) = 0, F (0, w) (5.21)
and 0
o0 =i

The nonlinear solver is:

Inexact Newton step

Tk pntliygNS — R (grilk pntlk) (g1

B _ pntik | gNS (s2)

LRt _ H(En—i-l,k—i—l), (s2)

Broyden step (5.22)
j(0”+1’k, hn—i—l,k)(sfs - R (yn+1,kjﬁn+1,k) 7 (83)

6]2“ = ES NS (;75?5, thi?S BS\’ (s4)

(0,°,0,°) — (0,7, 0%°)
R (s5)
gnLRHL _ gtk (s5)

The linear equations in the steps sl and s3 are solved by Conjugate Gradient
Method for linear system with symmetric and positive definite matrix. We
present some numerical tests obtained using the above algorithm. As empir-
ical models for water content #(h) and hydraulic conductivity K(#) we use
the van Genuchten model,

2
1 - _ Ql/m\™
K(S) ={ ?S <1 (1-54m) ) ! gi?< L (5.24)
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where S represents the relative water content

_6—6,

S—Hs_er.

The soil in the test is a layered soil with two alternate strata.

197

vh=0

Am

vh=0

* vn=0

Physical configuration. The parameters for the loam soil in the van Genuthen model
n=2a=33m1t =05 K, =0338mh} 6. = 0.012, , = 0.368
and for the Glendale soil are: n = 1.3954, o = 1.04m™ %, [ = 0.5, K, = 0.545 x
10~2mh~1!, 0, = 0.106, 6, = 0.4686. The initial datum is h° = —1.0m in the whole
domain. The boundary conditions are of the mixt type.

are:

% %

s | 80|

70 - 70 -

60 | 60 -

50 - 50 -

4F 0 TR 40

30 - 30 -

20 - L — 20 -

B e SRR W YV N el 0L A o [ 1S

0w w0 = e 70 o ‘o 1w 2 w0 a0 0 o
hl = —0.75 m, h,2 = —0.0 m, hg = hl = —0.75 m, h,2 = —0.3 m, hg =
—0.75m. —0.75m.

The number of the iterations versus time step. Numbers of iteration in nonlinear
solver (line-point) and the total numbers of iteration time step in CGM method
The time simulation was 48h.
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t = 24h

t = 48h

The comparative profiles of the pressure head for two different Dirich-
let datum on the top boundary at different moments of time. h; =
—O75rn, h,2 = —O.Hl, h,g = —075m(left) h,l = —0.75H1, hQ
—0.3m, hg = —0.75m.(right).

3
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1. Introduction

It is known that the classical Boltzmann equation describes the evolution of
the simple gas. The Boltzmann equation represents the connecting bridge
between the microscopic and macroscopic description of the simple fluid evo-
lution. The kinetics of the simple gas is essentially governed by elastic binary
collisions between structureless particles belonging to a unique species, the
multiple collisions being very improbable Ref. [1]. However, this equation
is not able to describe the evolution of the real gas with chemical reactions
and/or ionization processes. Then inelastic collisions must be considered by
the kinetic models. Boltzmann himself was aware of the importance of the
inelastic collisions in the real fluid evolution Ref. [9].

The classical Boltzmann equation is almost unanimously considered as ap-
propriate for the kinetics of the rarefied simple gas. A kinetic theory for
the reactive (real) gas is a more difficult task Ref. [30, 21]|. As compared to
the classical Boltzmann equation for the simple gas, kinetic reactive mod-
els exhibit new mathematical difficulties due the contribution of the particle
internal states to the gas evolution (in particular the presence or reaction
thresholds) and the existence of collision channels with multiple reaction
participants Ref. [8, 25, 24, 29|. In the case of the reacting gas mixtures
the mass balance does not hold for a given species. Then, the mass con-
servation for a specie must be replaced by the total mass balance. In the
reactive models is present a transfer between the kinetic energy and the in-
ternal molecular energy. Consequently, the kinetic energy balance must be
replaced by the total energy balance (i.e. kinetic energy -+ internal molecular
energy). Then, the transport properties of the reacting gas mixtures differ
from the properties of the simple gas.

Various models have been introduced to describe the kinetics of the real (re-
active) gas. An important role is played by the Boltzmann-like semi-quantum
equations. A known example is the Wang-Chang-Uhlenbeck-de Boer system
of kinetic equations [32] for the real gas with binary collisions. This model
refers to a gas of particles with classical translational motion, but with quan-
tum internal structure. Essentially, the difference from the Boltzmann model
Ref. [11] for the simple gas is to associate to each internal state a distribution
function, and to relate each transition from one quantum internal state (of
some chemical species) to another with a cross-section matrix.

A more general model introduced by Ludwig and Heil [25] extends Wang-
Chang-Uhlenbeck-de Boer model. This model describes reactions in a di-
atomic gas without emission or absorption of radiation. It includes processes
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of recombinations by triple collisions, as well as three post-collisional prod-
ucts like dissociation and ionization induced by collisions Ref. [8, 25, 24|.

In some Wang-Chang-Uhlenbeck-de Boer or Ludwig and Heil model the num-
ber of equations depends on the number of distribution functions, i.e. on the
number of different quantum internal states owned by the gas particles dur-
ing the gas evolution. It is known that, there exists only at most a countable
set of internal states. However, only a finite number of internal states will
significantly contribute to the gas kinetics. Consequently, the Wang-Chang-
Uhlenbeck-de Boer and Ludwig and Heil models are described by a finite
number of equations.

For analytical purposes, in Ref. [16, 17, 18], the Wang-Chang-Uhlenbeck-de
Boer and Ludwig and Heil equations corresponding to the model with finite
number of internal states have been transcribed in abstract form, revealing
the mathematical structure of the equations. In Ref. [17] was proved the
existence and uniqueness of the solutions for the Cauchy problem. It was
shown that the solutions verify the conservation of the total mass, momentum
and energy respectively. Moreover, it was proved the existence of equilibrium
solutions. H-theorem and a generalized law of the mass action have been
rigorously proved under extended balance conditions.

The interest for reactive kinetics is not only intrinsic, but also of practical
nature, in plasma physics, nuclear physics, physical chemistry of the high
atmosphere, combustion theory, modeling of missiles flight.

Accurate numerical modeling of nonlinear processes in dilute, flows is critical
for solving transport problems both in fundamental and applied science. In
this respect Babovsky and Illner [4, 5] have proposed an efficient numerical
scheme consistent with the classical Boltzmann equation. Using Nambu’s
ideas [26], by time discretization and local space-homogenization, Babovsky
and Illner have obtained a convenient approximate form of the equation.
At this point, the nonlinear character of the collision operators involve a
power-like growth of the numerical complexity. To provide an algorithm,
with small numerical effort, they have introduced an additonal stochastic
approximation. Finally, they have proved the convergence almost sure, in
some sense, of the approximation scheme. The techniques developed by
Nambu [26], Babovsky and Illner of [4, 5| were also applied Ref. [6] to Pullin’s
equation |27| with Larsen-Borgnakke [10] scattering cross section for the one-
component diatomic gas with classical internal degrees of freedom.

For the abstract model Ref. [16, 17, 18] describing the real reacting gas, in
Ref. [19] was introduced a rigorous and efficient approximation scheme. This
method represents a nontrivial extension of the techniques of Ref. [4, 5] for



204 DORIN MARINESCU

solving space-homogeneous Boltzmann-like models of reacting gas mixtures
Ref. [32, 8, 25, 24, 16, 17].

The methods of this chapter have been tested Ref. [14, 13| on the Krook-Wu
|22| two-component Boltzmann equation as well as on the reactive Boltzmann
models with three and four components Ref. [12, 20].

This review presents the theoretical approximation method for the solutions
of the Boltzmann model introduced in Ref. [17] following the line of Ref. [19]
and adding some improvements sketched in Ref. [12].

The present chapter is organized as follows.

In the next section one first recalls the main features of the Boltzmann-like
equations introduced in Ref. [17]. Then, one formulates the approximation
problem. In Section 3 one investigates the initial value problem for the space-
homogeneous kinetic equations of Section 2, formulated in a suitable space
of functions. In Section 4 one obtains a convergent, time-discretized version
of the aforementioned Boltzmann-like equations. Section 5 is devoted to the
generalizations of certain probabilistic selection results of Ref. [4, 5]. This is
possible due to some clarifications with respect to the nature of the conver-
gence introduced by Babovsky and Illner. More precisely, the probabilistic
part of the convergence proof of Ref. [4, 5] is based on the central limit theo-
rem for row-wise i.i.d. random variables and the Borel-Cantelli Lemma. Our
argument follows from a simple version of the strong law of large numbers
for arrays of (not necessarily identically distributed) row-wise independent,
random variables. (Which results from the Chebyshev inequality and the
Borel-Cantelli Lemma.) In Section 6, the results of Section 5 are applied to
the discretized scheme obtained in Section 4. Consequently, one obtains the
numerical algorithm for the original Cauchy problem. This represents our
main result, namely the convergence of the numerical scheme. Finally, we
discuss the limitations and possible generalizations of the model.

2. The Kinetic Model and the Approximation Pro-
cedure

Here, we briefly recall the features of the model presented in Ref. [17, 18]
(see also Ref. [16]).

The leading idea behind the model is that, unequal internal states of a gas
particle with internal structure can be considered as describing structure-less
particles belonging to distinct chemical species. Then, a real gas mixture
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of particles with internal structure can be thought as a mixture of several
chemical species of mass points with unique internal states.

Specifically, the model refers to a gas consisting of N distinct species of point
masses, with one-state internal energy, evolving without external forces. The
following assumptions are general: (i) gas particles have free classical motion
in space, between (in)elastic, instant, local collisions, without emission or
absorption of photons; (ii) collision (reactions) may change momenta, as well
as the chemical nature (in particular mass and internal energy) of the gas
particles; any collision occurs with conservation of total mass, momentum
and (kinetic+internal) energy, according to the laws of classical mechanics.
(iii) in each collision (reaction) channel, the number of identical partners
cannot exceed some number, say M > 2 and any collision (reaction) channel
contains, at least, two particles.

Denote by M the folowing multi-index set

M= {"Y = (')’k)k:l,...,Nhk S {0, 1,... ,M}} (2.1)

A gas collision (reaction) process is specified by a couple (a,3) € M x M.
Here, the multi-index & = (ay, . . ., an) represents the pre-collision (in) chan-
nel, with «,, € {0,1,..., M} identical participants of the n — th species. The
multi-index 8 = (1, . .., Bn) represents the post-collision (out) channel, with
Bn € {0,1,..., M} identical participants of the n — th species.

The pair of multi-indexes (e, 3) corresponds to a reaction of the following

type
a Xi+, ..., tanXy — 1 Xa+, ..., +8n XN, (2.2)

between the species X1,...,Xn, with stoichiometric coefficients aq, ..., oy,
081, .., Bn. Note that if a = 3, the collision is elastic and if a # 3, the collision
is inelastic.

For each channel v € M the family N (y) :={k |y >0fork=1,...,N}
represents the species existing in that channel. Obviously, if & ¢ N () the
species k is not present inside the channel 4. If k € N(v), then there are
v, identical particles of the species k in the channel vv. We denote the total
number of particles in the channel ~ by

N
=D e (2.3)
k=1

Their velocities are denoted by wy1,...,wWg,, € R3.  Also set w:
= ((Wk,i)i=1,...y JkeN'(v), understanding that w € R37. We denote by
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my > 0 and E; € R, the mass and the internal energy, respectively of a
mass-point of the species k =1,...,N.

Let
Z’Ykmk > kawku (2.4)
keN (v) i=1
and
.S 22 Umgwd; + E). (2.5)
keEN (v

be the classical mass center velocity and the total energy, respectively, for
the particles in the channel . According to the conservation assumptions,
in the description of the gas kinetics, for each couple (a,8) € M x M we
consider only the collisions satisfying the relations

N
> mr(ak — Br) =0, (2.6)
k=1

Va(w) = Vﬁ(u)7 Wa(w) = W,@(u)7 (27)

n (2.7) w = ((Wgi)i=1,.. )keN(e and u = ((Wg;)i=1,...6,)ken(s) are the
velocities of the particles in the channels v and 3, respectively.

Note that reactions with at most one particle in some collision channel are
excluded by (2.6) and (2.7), because in the absence of radiative processes, the
conservation laws (2.6) and (2.7) cannot be simultaneously fulfilled. There-
fore, || > 2. This inequality explains the restriction M > 2 in the defini-
tion (2.1) of M. Remark that, the conservation of the total energy stated
in (2.7) implies the existence of reaction thresholds and shows what happens
with the internal energies of the particles participating in reactions. For
instance in the case of endothermic collisions (a, 3), i.e.

Y arEp< Y BiEy, (2.8)

kEN (o) keN(B)

the kinetic energy of the resulting products is lost as binding energy. In such
a case the collision can be forbidden if the kinetic energy in the channel o
is bellow the reaction threshold. Note that, the model accepts also reaction
thresholds for exothermic collisions (a, 3)

Z ap By > Z Br Bk (2.9)

keEN (o) keN(B)
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Following the standard Boltzmann procedure (based on the molecular chaos
assumption) we introduce the system of kinetic equations

Oufi +V - Vafe = Po(f) — Sp(f), for k=1,...,N, (2.10)

as an abstract transcription of the Wang-Chang-Uhlenbeck-de Boer and
Ludwig and Heil equations. Here f; : Ry x R?® x R® — R, are the un-
knowns for k = 1,..., N, (with Ry := [0,00)) and f := (f1,..., fn). Each
fx = fr(t,v,x) (t-time, v -velocity, x -position) is the one-particle distri-
bution function for species k = 1,..., N of particles. In (2.10) the gain
operators Py and the loss operators Si(f) describe the collision processes.

For g = (g1,...,9n) (With g1,..., gy : R® — R) define,

Tk
gy(w) = [[ I oxwri) veM. (2.11)
keEN () i=1

Formally the gain and the loss operators are defined by

P(g)(v) = Y o / 08.ar(1, w,v)gg(u)dudw,  (2.12)
a.BEM R3IB| x R3lx|

and

Sk(g)(v) = Z ak/ Oo,B.k(W,1,V)8q (W)dudw. (2.13)
a,BeM R3I8I xRSl ex|

Here, for each (a,3) e M x M and k=1,..., N,

OaBk(W,u,v) = Kq g(w,u)-
(2.14)
6(Wk,ap, — V) - 0(Va(u) = Va(w)) - 6(Wg(u) — Wa(w)),

where Ko g : R3lelx R3IBI — R, are given functions related to the probability
of the reaction (a,3) € M x M. The following general properties are
assumed:

1° Kag=0if |a| <0, or |3] <0.
2° Ko 8 = 0 when the probability of the collision (e, 3) is zero.
3 Ko p = 0 if for some (o, ) € M x M, the condition (2.6) does not hold.

4° Kq g(w,u) is invariant at the permutation of the components wy, 1,...,
Wia, Of W for each fixed u € R3l®l w € R38 and n € N(a); a similar
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statement holds for the components of u. (This condition expresses the
“indistinguishability” of identical collision partners.)

5° For all a € R? (o, 3) € M x M,
Ka,ﬁ(T(a)Wv T(a)u) = Kaf}(wv u)7 (215)

where T'(a)w is defined on components by (T'(a)w)x; = wi;+afor k € N ()
andi=1,...,ap.

6° There exist some given constants Cq,...,Cyn > 0, such that
CPKap(w,u) = C“Kg o(u, w). (2.16)
are verified for all (w,u) € R3® x R38l and (o, 8) € M x M, where
cv.=07 .. O, (2.17)
for all v € M.

Note that assumption 1° excludes the “spontaneous dissociation” as well as
the “total fussion”. The condition 3° refers to the microscopic conservation
of the mass. The form of 0o g in (2.14) takes into account the microscopic
conservation laws of the total energy and momentum. The explicit use of only
one variable, Wy, o, in §(wy o, — V), is possible due to “indistinguishability”
of identical collision partners (condition 4°). Assumption 5° expresses the
absence of the external fields. The generalization of the classical collision
reversibility is given by the condition 6°.

As announced before, we refer only to the space-homogeneous version of
(2.10), i.e.
Ocfre = Pr(f) — Si(f), k=1,...,N. (2.18)

Several properties (also valid in the space-inhomogeneous case [17, 18]) can be
formally established as for the Ludwig and Heil equations |25], and rigorously
proved by giving a meaning to (2.18) and finding classes of solutions with
convenient regularity properties. Thus, formally,

N
Z/ BL(v) [Pe(E)(v) — Sk(E)(V)]dv =0, i=0,....4,  (2.19)
k—1/R?

provided that all integrals involved are convergent, where ®°(v) := m,,
®i (v) = myv;, for the component v;, i = 1,2,3, of v, and ®*(v) :=
mpv?/2 + E,. By (2.19) the solutions of (2.18) are formally compatible
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with the conservation of the mass (i = 0), bulk momentum (7 = 1,2, 3) and
energy (i = 4), respectively.

One can define the H-function
N
=3 [ IogCuptey) ~ 1 fitviav. (220
k=1

for those solutions f(¢,v) of (2.18), with positive components, provided that
the integrals exist. In (2.20) the constants C} are the same to the constants
from the assumption 6°. Formally, by a few algebraic manipulations, one
obtains

d N
GO0 =3 [ A0 - S0 log Cuftiviay =

E Oy (t, w)
a,BeM /waw Kp.alu, wis(t,wF [C:@fﬁ( u) } dudw < 0,
(2.21)

where F(z) := 3(1 — z)logz < 0 for z > 0.
The equilibrium solutions of (2.18) are Maxwellian (Gaussian) functions with
determining constants (concentration, bulk velocity and temperature) related

to the internal energies E,, and the constants C,, of (2.16), by the law of the
mass action (for more details see e.g. Ref. |25, 17]).

We distinguish the following particular cases:

1. If M =3 in (2.10-2.13), and the conditions of (2.16) are verified, then
(2.10) essentially reduces to the Ludwig and Heil system of equations
with discrete internal energies.

2. If M = 2 and the conditions of (2.16) are fulfilled with C; = Cy = 1,
then we obtain the Wang-Chang-Uhlenbeck-de Boer system of equa-
tions.

3. If M =2, N =1, the condition (2.16) are fulfilled and the transition
functions depend only on the relative velocities of the encounters in
each collision channel, then one gets the classical Boltzmann equation.

In order to introduce the numerical scheme associated to the equations (2.18),
in the next section we solve a Cauchy problem for (2.18) formulated in a
product of L' spaces. Besides the uniqueness and global existence of the
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solution, we also need the positivity of the solution and the macroscopic
mass conservation. Note that, other conservation properties, as well as the
existence of a H-theorem play no role in this numerical scheme. In particular,
property (2.16) is not needed. However, we will state without proof a general
result concerning the conservation relations and a H-theorem (only for the
sake of completeness).

Roughly speaking, we would like to approximate the measures d,u']fc(v) =
fx(t,v)dv induced by the solutions fi(t,v) of (2.18), k =1,..., N, by con-
venient homogeneous sums of point measures, defined as follows.

Let p be a finite positive measure on R™. For a, > 0, where n € N* :=

{1,2,...}, let

n
a
op = ?” Zé”“’”’ n € N*. (2.22)
1=1
Here d;,, is the Dirac measure on R™ concentrated at point x;, for i =
1,...,n. The sequence of measures (o, )nen- is called a homogeneous sum of
point measures (HSPM) approximating the measure p, if it converges weakly

to p (in the weak sens of the measures) i.e. g, = p as n — oo.

We call a sequence (o, )nen+ of the form

n
o= a;—’”axm, n € N¥, (2.23)
=1

(where a;, > 0 for i € {1,...,n} and n € N*) a weighted sum of point
measures (WSPM) approximating the measure u, if it converges weakly to
W, ie. o, = pas n — oo. Obviously, if a;, = a;j, for 4,5 € {1,...,n} and
n € N*, the WSPM approximation becomes a HSPM approximation.

The HSPM approximation is convenient for numerical solving of equations
where the solutions are finite (probability) measures on R™, and where one
also wishes to approximate moments of some (random) variables with respect
to solutions. In this case, the control of the approximation can be made by
means of the Koksma-Hlavka inequality Ref. [23], in terms of discrepancy.

We recall that, by definition Ref. |5, 15, 23], the discrepancy between the
nonnegative measures g and v on R™ is given by the following formula,

D(p,v) == sup |u(A(a)) —v(A(a))[, (2.24)

acR™

where A(a) :={xeR"|z;<a, l=1,...,m}.
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We also recall, Ref. [5], that a sequence of measures p, is said to converge
to p with respect to discrepancy if, D(uy, u) — 0 as n — oo.

It is known, Ref. [5], that if p is a measure absolutely continuous with respect
to the Lebesgue measure on R™, then the convergence of u, to u with respect
to discrepancy is equivalent to the weak convergence in the sense of measures.

Starting with HSPM approximation for each ,ug induced by the initial data in
(2.18), with k£ =1,..., N, our purpose is to provide a convergent algorithm
generating HSPM approximations for the measures u}, where k =1,..., N
at any t > 0.

Y

In this respect, one chooses some fixed timestep At < T'. Let

- (]

where [[z]] denotes the integer part of z € R. One associates a time-
discretized version of equations to (2.18). Starting with an initial data, f) =
f2(v), k=1,...,N, one obtains a family of functions fg(v), j=1,...,Ta
verifying the discretized form of (2.18). The discretized version of (2.18)
can be formulated in the weak form for the measures dj (v) = fi(v)dv
where £ = 1,...,N. We shall prove that if each ﬂg is close, to ,ug
some sense, then (for At sufficiently small), f k is close to pl on the inter-
val ((j - 1)At jAt], with an error of order At, for all j = 1,...,Ta and
k=1,...,N.

The scheme is initialized for £k = 1,..., N by approximating for the measures
2 by a HSPM approximation of the form:

= hn Zév,méﬂg, as n — 00. (2.26)

The above approximation prov1des forall j =1,...,7Txr and k = 1,..., N
approximations by discrete measures ,ufc n ﬂi as n — 00.

Because of the nonlinearity of the initial problem, each step of the iteration
produces a power-like growing number of terms in the sums of point measures
expressing uim. In computations, the numerical effort would also be power-
like increasing, so that the algorithm could not be effective at this level.

To approximate ,ai by sums of Dirac measures with a non-increasing number
of terms, for technical reasons, it is necessary to have a HSPM approximation.
However, in general, uim appears as a WSPM of the form (2.23). For this
reason we introduce a homogenization procedure of approximation to obtain
measures of the form (2.22). At this level, one can reduce the numerical
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effort by using probabilistic techniques of selection. Then, the convergence
of the numerical scheme is proved in probabilistic terms.

3. The Existence of the Solution

Define the space X := LY(R?) x ... x LY(R?) — real, equipped with the norm

N‘;irmes
N
lgllx == > m llgellis » (3.1)
k=1
where g = (g1,...,9n) and g € LY(R3), k = 1,...,N. We recall that
my, > 0 denotes the mass of a particle of species k for each k=1,..., N.

Note that if g > 0 (i.e. g > 0 a.e. forall k =1,...,N) then the norm ||g||x
is equal to the mass of the gas in the state described by the distribution
functions given by the components of g.

For approximation purposes, we suppose that the functions of the family
{Ka,8} o pep are continuous. We formulate the Cauchy problem for (2.18)
in the space X.

Before, we must give a meaning to the collision operators Py and Sy as
operators acting in the space X. This can be performed, using regularization
as in Ref. [16, 17| to define o4 g as distributions for all o, 8 € M x M and
k=1,...,N.

For m € N* denote by C,(R™) the space of the bounded functions of C'(R"™; R),
endowed with the usual sup norm. Let C.(R") be the subset of the functions
of C,(R™) with compact support.

Let J € C.(R) be positive and even function, such that supp(J) = [—1,1]
and ||J|;» = 1. For ¢ > 0 denote by 6.(t) =: e 1J(e7! - t) and §3(y) :=
Se(y1) - 0e(y2) - 0c(y3) , where y = (y1,y2,y3) € R3. Define

Tap(W W) == Ko g(w, u)d2 (Va(u) — Va(w))d, (Wa(w)) — Wa(w)), (3.2)

Pren(8)(v) := Z oy [/Rw i 30'223‘(11,W)gg(u)dudﬁlk
a,BeM XRele =

Wk, ay, =V

(3.3)
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and
Sken(8)(v) = > [/w ol 302%(w,u)ga(w)dud€vk ,
o,BeM R xXRled= Wi,ap, =V
(3.4)
with g and gg as in (2.11), for all g € C.(R?)N 1= C.(R?) x ... x C.(R?);
N times

veR3 kel,...,N. In (3.3) and (3.4), the terms with oy = 0, vanish,
by definition, and dwj is the Euclidean element of area on the manifold
{w € R3|a||wk7ak = V}.
Let €2, be the unit sphere in R3Y=3, where 4 € M. The operators P, and
Sy can be defined by means of the following result.
LEMMA 3.1 For each g € CN(R3), there exist the limits
Py(g)(v) := lim lim Py, (g)(v), S1(g)(v) = lim lim S, (g)(v).
n—0e—0 n—0e—0
(3.5)

There are the families of functions {rg,a}, gesms {PB.atapert C C(R3le x
Qp;Ry) and {ugat, gy C C(R3l x Qg R3IBY) such that

Pi(g)(v)= Z Qg [/R PB.a(W,n)gs(ug o(w, n))dv"vkdn] ,

a,BeM S‘QFSXQ'B
(3.6)
Sk(g)(v) = Z Ak [/ rﬁ,a(wvn)ga(w)dﬁ/kdn] ) (37)
a,BeM Rl =3x Qg Wh,ap, =V

for all g € CN(R3), and the following properties are verified:

i) there are some constants c,d > 0 such that |ug o(w,n)| > c|w| for all
|lw| >d and a, B € M.

i) if Wa(w) — 271 (N anmn)Va(w)? = SN B,E, < 0 for some w €
R3l | then

rg.a(W,n) = pgo(w,n) =0, forallne Qgand a,B € M. (3.8)
i) for each o € C(R3®) and f € C.(R3P) and Vo, B € M
Lo o) D) - E(wg o, ) dwdn =
R?"O“Xﬂg
(3.9)
= / p(ug,g(u,n)) - reg(u,n) - f(u)dudn.
R3I1BIxQq
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The results of the above Lemma were obtained in Ref. [17]. However, for the
sake of completeness, the proof is outlined in Appendix?.

Property (3.8) follows by the presence of reaction thresholds (in the frame
of the conservation relations (2.6) and (2.7)). Moreover, (3.6) and (3.7) are
well defined, because of property i) in Lemma 3.1.

From (3.7), we can write

Y

Sk(8)(v) = Ri(g)(v)gr(v), (3.10)
where
Ri(g)(v) =
(3.11)
= Z g / T,B,oc(wa n)g’y;k(w&i)dwkdn
apem LRI Whay =V
In (3.11), for v € N(v) we assumed the convention
8k (W) := 8(W) /91 (Wi,a) (3.12)
where the r.h.s. makes sense and g-~.;(w) := 0 otherwise.
Our results are based on the following
Assumption
There is a constant K > 0, such that
/ rg.a(w,n)dn < K, (3.13)
2
for allw € R3¢ and o, B8 € M.
From (3.13), it is immediate that the maps
XD C.(RHN 5 g — Si(g) € L(R?),
(3.14)
XD C(R*)N > g — Ri(g) € Cyp(R?)
are continuous for each k = 1,..., N. Moreover, using property (3.9) (with

¢ =1, f = gg) combined with Fubini’s theorem, it also follows that the map
X 2 C.(RYN 5 g — Py(g) € L'(R?) (3.15)

*Note that the functions rq,g and ps g appear in explicit form in the proof of
Lemma 3.1 (see the Appendix).



REACTIVE BOLTZMANN TYPE EQUATION 215

is continuous for each Kk =1,... N.

Since C.(R?)" is dense in X, the maps given by (3.14-3.15) have continuous
extensions to X. These extensions will be also denoted S, Ry and Py,
respectively.

Note that (3.10) can be extended to all g € X, in the sense that a.e.,

Sk(g)(v) = Ri(g)(v)gk(v), (3.16)

forall k=1,...,N.
Define P,S : X — X by

P(g) = (Pi(g),.--, Pn(g)),

(3.17)
S(g) = (51(8);- -, Sn(8)),
for all g € X.
We consider the Cauchy problem for equation (2.18) in X.
def(£) = P(E(H) — S(E(®),  £(0) = . (3.18)

THEOREM 3.1 Let fy > 0. For each T > 0, equation (3.18) has a unique
solution £(t) in X on [0,T]. Moreover, for allt € [0,T] one has f(t) > 0 and

N N
;mk /RS fr(t,v)dv = ;mk /RS for(v)dv. (3.19)

Proof. One applies the Banach fixed point theorem to (3.18) written in
convenient form.

Consider the cone Cf := {f € C(0,T;X)|f(t) > 0, for all t € [0,T]} with the
norm

[£]l == sup [[£(?)]lx- (3.20)
te[0,T

Observe that for all k = 1,..., N, if f € C then Ry(f), Py(f) > 0 (since
TB.e» PBa > 0, for all a, 3 € M). Moreover, if f € CF, then Ry(f) €
C(0,T;Cy(R3)). Consequently the Riemann integral f; Ry(f(7))dr is well
defined in Cy(R3) for all s,¢ € [0,T] and k € {1,...,N}.

Let f € Cf. We define the map [0,7] 5t — I(f)(t) € X by the components
of I(f)(t), as:
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L ()(t) = exp [— /0 t Rk(f(T))dT] Fot
(3.21)

v [ -/ t Ru(8(r)dr] - Pu(E(s)ds,

where t € [0,T]. Here, the integration with respect to ds is in the sense of
Riemann in L'(R3).
Obviously Ij(f)(t) > 0 for all t € [0,T], k=1,...,N.

The problem (3.18) can be rewritten in C7, as it follows.

f =1(f) (3.22)
Let R > [/fo|lx. Define
B(R):={f € Cf||If| <R, f£(0)=1f}. (3.23)

Using (3.11), (3.6) and (3.13), one can find some positive numbers k; (R) and
ka2(R), such that

IO < [[follxx + T - k1(R), (3.24)

and
I1(f) = I(h)[| < T~ k2(R) - [|f — h, (3.25)

for all f,h € B(R). Obviously, from (3.24) and (3.25), for 7" small enough, the
map I becomes a strict contraction on B(R). Consequently I: B(R) — B(R)
and has a unique fixed point. This proves that (3.18) has a unique positive
solution on [0, T].

The positivity of fi, implies that

N
1) = ka/ Fo(tv)dv,0 <t < T, (3.26)
k=1 R?

By (3.18) and using (2.6), (3.11), (3.6) and (3.9) (applied to ¢ = 1) one
obtains

N
di £ 5 = ka/ [Po(f) — Sp(£)] dv = 0, (3.27)
k=1 R3
which proves (3.19). Moreover,

I£]] = sup [[£(#)]lx = lIfollx - (3.28)
0<t<T
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By continuation, and uniqueness, the local solution f(¢) can be made time-
global. This ends the proof. O

For the sake of completeness we state the following result.

Let ®! be as in (2.19) for i = 1,...,4. With the remark that the mass
conservation (3.19) has been already proved, the solution of (3.18) has the
following properties.

PrOPOSITION 3.1 Let £(t) be the solution of (3.18) given by Theorem 3.1.

a) If
for, @ +V?) for € L'(R?) (3.29)

for each k=1,...,N, then
(14 v?) fr(t) € LY(R?) (3.30)

and

N ' N |
nEZ:l /]R3 @n(v)fn(t,V)dV = ;/Rg q)n(V)f()’n(V)dv = 07 (331)

foreachk=1,..., N andi=1,...,4 and all t > 0.

b) In addition to the conditions (3.29), suppose that there are some constants
Cy,...,Cn > 0 such that conditions (2.16) hold. If

foxlog for, € L'(R?) (3.32)

for each k=1,... N, then

fe(t)log fr(t) € LY(R3; dv) (3.33)
and
N
HE)®) =S / 108 Cin (£, v) — 1] fult, v)dv (3.34)
n=1 R3
18 non-increasing as a function of t, for each k =1,...,N and all t > 0.

The proof of this proposition is beyond the present purposes. Though, we
mention that the proof uses Lemma 3.1 and the ideas introduced by of Ark-
eryd |2, 3| to prove results of the same nature in the case of the classical
space-homogeneous Boltzmann equation.
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4. Time Discretization

Let At € (0,7") be a fixed timestep. We consider the following discretized
version of (3.18).

£l =f-1 4 At [P(E771) - S(F771)]
(4.1)
fO=£ >0, ae., j=1,...,Ta,

where f/ = (ff,,ffv) and f,g = f,g(v)

The discretized scheme (4.1) may destroy the positivity of the functions f7
for j > 1. However, one can prove that for At small enough, f7 is positive
and close, in some sense, to the solution f provided by Theorem 3.1.

ProrosiTIiON 4.1
a) If At is sufficiently small, then £7 >0 for all j = 1,...,Ta. Moreover,

[£7]] = Iifoll . (4.2)

forallj=1,...,Ta.

b) There ezists some number C = C(|/fo|lx) > 0, depending only on |/fo|x,
such that '
|£(t) — ||, < C- At (4.3)

forallj=1,...,Tan and t € ((j — 1)At, jAt].

Proof. a) First we write (4.1) more conveniently.

Let
U={y=(r,..w) |k €{0,1,... . NM}, |y >2}. (4.4)
For any & = (&1,...,én) € RN for k =1,..., N and o € M, denote

1
— JI & far>1andg #0,

&k
€aji=q "N (4.5)
0 ifap=0or & =0.
For k=1,...,N and a« € M, using the multinomial formula, we get

NM

NM
S+ AP =D 0 (G NP =) oy, (46)

p=2 p=2 acld
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where
-1
= (la| = 1)! (H ozk> . (4.7)
If
G +...+év=1, (4.8)
then, by (4.6) we get
1
MN —1= (M—l—l)N—N—l Z O‘kcaga,k—i_ Z O‘kcaéa,k
(4.9)
For each k. =1,..., N, put
&k = bk Tk, (4.10)
where
N -1
M = My (Z Mp s f07n(V)dV> (4.11)
n=1
and
Je= [ fl(v)dv. (4.12)
R3

It follows that (4.8) is satisfied, due to (4.19). Consequently, by (4.9),

Z ayg - rek. Lok + Z A Lok, (4.13)
a,BeM acl\M

where the notation I is given by (4.5) for I = (J1,...,Jn). In (4.13),

- —1
peok o RN T
' MN —1 '
and
uft -t T el
peuk . €M R R KN (4.15)

(MN—1)[(M+1)N — N —1]

Multiplying on components (k = 1,...,N), the first term of the right side of
(4.1) by (4.13) and using (3.11), equation (4.1) becomes

F= Qe ™) + Lp(F ") + At P(£7), (4.16)
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for k=1,...,N. Here

Qi(f7)(v) ==

_ a ak_ r w,n)dn w
-3 k[/Rgag (r At/ﬂﬁﬁa( )d >f( )d (>]wak:v=

a,BeM
(4.17)
aclU\M R Wo , k=V

If K is the constant introduced in (3.13), we can choose At such that At-K <
inf ok,

ok

Then, the positivity of £/, for all j = 1,...,Ta, follows by induction, using
Assumption (3.13). As f7 > 0 for all j = 1,...,Ta, then the mass conserva-
tion is always fulfilled. Indeed, by induction and using the same argument
as in (3.27) we have

N ‘ N
j —
kZ:lmk /R3 fi(v)dv = ;mk /RS fro(v)dv (4.19)

forall j=1,...,Ta.

b) Combining (3.18) and (4.1), for all j =1,...,TA we can write

I8G-a0) =], < [£G —1)-Af) - £, +

At -
+/(J I LGRS TP
N
]1
e s - s s

Denote by O; := Hf JjAt) — I HX Using the explicit forms of P and S, taking
account of the conservation relations (3.19) and (4.19), we find that there is
some number ¢y > 0, depending on ||fy|x such that O; < O;_1(1+ ¢oAt) for
all j =2,...,Ta and O < ¢gAt. Then

O; < O1(1 4 coAt)™™ < ¢p - At, (4.21)

with ¢; > 0 depending only on ||fy||x. Suppose that ¢ € ((j — 1)At, jA¢].
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The explicit forms of P and S together with (3.18) and (3.19) lead to
1£(t) — £((7 — DAY <

jat (4.22)
< [ P+ ISR s < o A

(G=DAt
where ¢y depends only on || follx. Now estimation (4.3) is an immediate
consequence of (4.21) and (4.22). O

For numerical purposes, one has to write the equation (4.1) in the weak form
for measures. In this respect, we associate the the following measures to the
solutions f(t) and f/ appearing in Proposition 4.1. For k =1,..., N define

duk(v) := fr(t,v)dv, (4.23)

where ¢t > 0, and ‘ '
A (v) = fi(v)dv, (4.24)

forj=1,...,TA.

Proposition 4.1 has the following consequence expressed in terms of the dis-
crepancy defined by (2.24).

COROLLARY 4.1 If the conditions of Proposition 4.1 are fulfilled, then

DA ) — 0 At — 0. 425
jmax  max (g5 i) — 0 as At — (4.25)

5. The Probabilistic Frame

The central result of this section extends, in some sense, the probabilistic
methods of selection used by Babovsky and Illner [4, 5| (see e.g. Lemma 2
of Ref. [4]).

We start with a simple generalization (to row-wise independent random vari-
ables) of the strong law of large numbers for independent random variables
with bounded fourth momentum (see, e.g., Theorem IV.§3-1 in Ref. [28],
p.363).

Let (€, 3, P) be a probability space. For some real random variable X, by
(X)) we denote its mean with respect to P.

Let N* 5 n — ¢, € N*. We call the family ((Xn:)ie(i,.. q.})nen+ of real
valued random variables on £ an array of row-wise independent random
variables, if for each fixed n € N* the random variables (Xy;)ic(1,... .} are
independent.
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PROPOSITION 5.1 Let ((Xni)ie(1,....qu}nen+ be an array of row-wise inde-

pendent random variables with zero mean. Denote A, := sup (X1.).
i€{lgn}
If
[e.e]
A
> <o, (5.1)
q
n=1 "

then, with probability one,

1 qn
— ZXW — 0, as n — oo. (5.2)
In i

Proof. According to a version of the Borel-Cantelli Lemma, it is sufficient to
show that for each € > 0,

Z P ( > g> < 0. (5.3)
To this end, by Chebyshev’s inequality, we obtain

(ZXM >e- qn> E < > (5.4)

Expanding the fourth power, we invoke the independence of X,, ; and use the
fact that (X, ;) = 0. Then a simple computation shows that for all € > 0,

> 3 = A
0<y P el <5 ) S <o (5.5)

This concludes the proof. O

qn

> %,

4n =

qn

ZXM
=1

Consider N* 3 n — m,, € N* a sequence, such that m,, — 0o as n — .

For each n € N* let Z,, := {1,2,...,m,} be an index set and let Z} :=
Lo X ... x T, for a fixed p € N*,
—_——

p times

Consider some given set X C R™ and a given sequence (F}, )pen+ of functions
g g q €

F, : X x ITh — R. Define S, :X—>]Rby

ZF x,j) if p>2,

" JE€Tn
Sp(z) = (5.6)

Zan] J it p=1,
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where ((an,)iez, )nen+ is a family of nonnegative numbers, such that

mn
sup E QA 5 < 00,
neN* =1

(5.7)

Mn
Zaml > 0, for all n € N*,
1=1

Suppose that there is some function F' : X — R such that, for each x € X,

F(z) = lim Sp(x). (5.8)

n—oo

In general, for a given n, the sum S,, contains m}, terms. Roughly speaking,
our problem is to conveniently diminish the numbers of terms in S,, by
random selection of the terms in (5.6) and "renormalize” the resulting sum
such that the convergence to F'(z) be kept, in some sense. In this respect,
we define some special families of random variables.

Let (Q,3,P) be a probability space, where Q := [0,1)* (in the countable
sense) is endowed with the usual product Borel o—algebra 3 and P the usual
product probability induced on € by the uniform distribution of [0, 1).

For each n € N* and j € Z,,, define the weights

o
Prj = (5.9)

E Qn,1
=1

where ((an1)iez, )nen+ is the family with properties (5.7). For each n € N*,
let
0 if =0,

Gn,s ‘= (5.10)

s
an,j if seZ,.
j=1

For each n € N* and [ € Z,, we consider the random variables ¢, ;,¢,;: 2 —
I, given by
cni(w) = [[wr - ma]] + 1, (5.11)

and
6%[((")) =s ifw € [Qn,s—17Qn,s)7 (512)
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where w; is the ™" component of w = (wy,ws,...) € Q. In (5.12) we make
the convention that [z,x) := ¢ (the void set) for any z € R. Obviously, for
each j € Z,

P (cpi(w) =j) = min (5.13)
and
P (Cni(w) =j) = pn,j- (5.14)

Consequently, ((¢n1)iez, )nen+ and ((én1)iez, )nen+, are arrays of row-wise
independent random variables.

Remark that the random variables ¢, ; are particular forms of ¢, ;, with
pn; =m, L in (5.9).

Let p > 2. For n € N* and [ € Z,,, define the random variables J,,; : Q@ — I},
by

Jn,l(w) = (Za Cn,(l—l)p—l—l(w)v Cn,(1—-1)p+2 ((.U), s acn,lp—l(w))v (515)

where w = (w1,wa,...) € Q.

Observe that ip + j = ¢'p + 5/ if and only if ¢ = ¢ and 7 = j/, for all
i, € N* and j,j5 € {1,2,...,p}. Then, using the row-wise independence of
((en,1)iez, Jnen=, we conclude the row-wise independence of ((J,,1)iez, Jnen=-

Suppose that one of the following conditions is fulfilled:

1. X is at most countable.

2. X is the whole R™, the function F' is continuous and each F,(-,j) is
increasing with respect to the order of R for each fixed n € N* and
j € Z%. Define for each n € N* and = € X by

an(x) = max |F,(z,j)|. (5.16)
ez

PROPOSITION 5.2 1. Let p > 2. If

0 4
3y a”(‘? < (5.17)
n=1 My

for all x € X, then for each x € X, with probability one,

lim — S By (2,) 0 Jns = F(a), 5.18
Jim =) Fa(@,) 0 Jng = Flx) (5.18)
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2. Let p=1. Consider N* 5 n — k, € N* a sequence such that, k, — oo as
n — oo. If k, < m, for alln € N* and

2 ap(z)?
> 2 <00, (5.19)

n=1

for all x € X, then for all x € X, with probability one,

m k
n 1 n
lim > an,; k—ZFn(x,-) 0 &pi = F(x). (5.20)
j—1 ™ i=1

n—~o0

Proof. Remark that it is sufficient to consider the case in which all functions
F,, are positive.

Case X countable
1. Let x € X be fixed. For each n € N* and i € 7,,, define

Ynﬂ; = Fn(x, ) 9] Jnﬂ;. (521)

The row-wise independence of ((J,,i)iez, )nen= implies that ((Y5,:)iez, )nen=
is an array of row-wise independent random variables. Let j = (j1,...,Jp) €
7¥. Using (5.13) and the definition (5.15) of J,, ;, we get

1—p . . .
mMn if =71,
P({Jni(w) =J}) = (5.22)
0 if i,
for all n € N* and j € Z,,. Consequently,

Mn

Vnid = —— 3 Ful, s ), (5.23)

J2se-Jp=1

so that

1 & 1 ,
— Z<Yn,z> =7 Z Fn($a.]) = Sn(x) (5'24)
Mn 5 Mn sczv
i€In
Put X,,; == Y,; — (Y,,;). Then, the family ((X, ;)icz,)nen+ satisfies the
conditions of Proposition 5.1, with A4,, < (2a,(x))*. Therefore, for each fixed
x, by (5.24) and (5.6) one obtains (5.18). For each z € X, let £, be the
subset of 2 where the limit (5.18) holds. Define Qx := [, cx . Since X is
countable, we have P({2x) = 1, so that the argument is complete.
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2. Let x € X be fixed. For each n € N* and 7 € Z,, define

Mn
Y= (Z anJ) Fo(x,-) 0. (5.25)
=1

The row-wise independence of ((€y,)icz, Jnen+ ensures that ((Y5,:)iez, )nen=
is an array row-wise independent family of random variables. From (5.14),
we get

(Yoi) = aniFo(a,1), (5.26)
=1

for all ¢ € Z,, and n € N*. Consequently,

k
1 n
= > (Vi) = Sulx). (5.27)
™ i=1
Define X, ; := Y}, ; — (Y5,,;). From here the argument works similarly as in 1.

Case X =R™

1. Observe that the argument with X countable is valid on the countable set
Q™ of the vectors of R™ with rational components. Further, remark that for
any z € R™\ Q™ and £ > 0, by the continuity of F' and the monotonicity of
F,,, we can find two elements z—, 27 € Q™, with x~ < 2 < 27 such that

<F@) - Fu(,) 0 dni(w) < (5.28)

. + —
for all w € 2. Now we approximate x by two sequences {ajp }pEN’ {:Ep }pGN C
Q™, with z, <z < :17;. Then, to conclude the proof in the case X = R™,

we refer to the result in the case X countable.
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2. Replacing only (5.28) with

——ZF Joéni(w)—e <
> - _ZF OCnZ( ) < (5.29)

< F(x™ __ZF Ocnz(w)+€7

one repeats step by step the arguments of the part 1 to conclude the proof
of the part 2. O

The index set 7, being defined as before, let ((in.j);ez? Jnen+ be a bounded
family of positive measures on R™, i.e. there exists some constant a > 0, such
that |, 5| < afor all j € 7}, and n € N* (we recall the notation |u| := u(R™)
for some finite measure p on R™).

Let (€2, 8, P) be the probability space be as in Proposition 5.2 and the arrays
of row-wise random variables ((J,,.;)iez, Jnen+ and ((€n,i)iez, Jnen+ defined by
(5.15) and (5.12) respectively.

THEOREM 5.1 1. Let p > 2. Suppose that there is a positive measure p on
R™  absolutely continuous with respect to the Lebesque measure on R™, such
that

" Z Honj = [, as m — 0. (5.30)
" jer?

Define pni(w) = pinjli_y () forallw €, alli €I, and n € N*. If
— 1
Y 5 <o, (5.31)
— mn
then for P—almost all w,

oip(w) = — ZM”Z — pas n — oo. (5.32)

2. Let p = 1. Suppose that there is a positive measure  on R™, absolutely
continuous with respect to the Lebesque measure on R™, such that

mn

Zan,l fn = [, as m— 00. (5.33)
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Define pin;(w) = finl,_. () Jor allw € Q, all i € I, and n € N*. Let
N*>n—k, e N* be a seqﬁence such that k, < my,, for all n € N* and

1
; 2 <o (5.34)
Then, for P—almost all w,
1o
oo pn(w) = ™ E;um(w) — [ as n — oo. (5.35)
=

Proof. Define for each x € R™

Fo(a.j) = / At 5(0), (5.36)
y<z

and

F(x) := du(y). (5.37)
y<z
Then it is sufficient to observe that F' and F,(z,]j) satisfy the conditions of
Proposition 5.2, (with a,(z) = a) and the family {y € R |y <2}, gm is
determining, Ref. [28], for the weak convergence of the measures j,, ;. O

REMARK 5.1 It can be easily seen that Babovsky Lemma (see Lemma 2 of
Ref. [4]) is a particular case of Theorem 5.1.1 with m, = n?, for all n € N*
and with (i, 5 given by a product of two point measures.

REMARK 5.2 As we have mentioned in Section 1, our purpose is to approx-
imate the solutions of (2.18) by sums of Dirac measures of the form (2.22).

Due to the nonlinear character of the collision operators P and S, at each
timestep, the numerical complezity increases dramatically (power-like). Al-

though, we are able to reduce the computational effort using repeatedly the
Theorem 5.1.1.

However, except the case of (2.18) modelling the one component gas with
purely elastic collisions, a certain step of the numerical scheme destroys the
homogeneity of the sums of Dirac measures, i.e. instead of HSPM approx-
imations one obtains WSPM approxzimations. This difficulty will be sur-
mounted by using Theorem 5.1.2, which converts the WSPM approximations
mto HSPM approzimations.

Theorem 5.1 will be the basic point of the probabilistic part of our numerical
scheme for the solutions of (2.18) in the next section.
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6. The Main Result

For our numerical scheme, we need a weak form of (4.16), where the functions
fk are replaced by the measures fi], given by (4.24). Denote

(o= [ ehvav. (6.1
for ¢ € Cy(R?) and h € L' (R3). From (4.16) using (6.1) we get

(0. £]) = (. QUET) + (0 LeE) + At (9. BT (62)

for all o € Cy(R?), all j =1,...,Ta and k = 1,..., N. Denoting by

V(Qp) ::/ﬂ dn, (6.3)
s
n (6.2),
(0, Qi (7)) ge:/w o /RSQXQE(SOO%,OL)(W)X
(6.4)
o,k )
X <VI‘(795) — At - 18,0(W, n)> f) (w)dwdn,
and
(L)) = 3 A [ (poia)wikwiw. (65

acl\M

In the formulas (6.4) and (6.5), the projection application i,  : R3N — R3
is defined by iy (W) = wy, ,, fory € M and k =1,..., N. Using (3.6) and
(3.9) we get

(0, Pi(£7)) =

(6.6)
Z /R3 I (Pozkﬁ(uﬁa(w n))rga(w n)f (w)dwdn,
o,BeM X3iB

for all p € Cy(R?), all j =0,1,...,Tan and k=1,...,N.

Now, we are able to formulate (6.2) as an equation for measures. For some
y€Mand j=0,1,...,Ta, define the measure fi, on R317 by

Al (w) = X @duk (Whi). (6.7)

keNy i=1
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From (6.2-6.6), using spherical coordinates
0,m)P7%x [0,27) 5 (6, ) — n(0, ) € O, (6.8)

to integrate on each unit sphere g, it follows that there are some sets
A CU, BC M, the functions g gx € C(R3 x [0,71')3‘@_5 x [0,27) ;R4)
and Hy g1 € C(R3® < [0, 7)3B1=5 5[0, 27) ; R3) such that we can write (6.2)
in the compressed form

_j . 21w
formaner= 3 [ antions
(6.9)

2
X /[0 )3‘3‘75 de/() (SO © Ha,,@,k)(wa 97 ¢)QQ,ﬁ,k(W7 97 ¢)d¢7

for p € Cp(R®) and k € 1,...,N.

First, we consider rg o verifying the properties of Lemma 3.1 and we con-
struct the algorithm starting from (6.9). Then, we show how the numerical
scheme can be improved, if one introduces additional conditions on rg 4.

Now, we write (6.9) in a more convenient form. Note that, we can find some
L € N* and

L. a family {a(l)},_; _;, CU of multi-indexes,
2. a family {q(1)};=1,..r C N¥,

3. a family {m},_; , of measures absolute continuous with respect to

the Lebesgue measure on R?()

Y

4. a family {Ry }re1,  Nu=1,.,r C C(RIOHIDR ) of functions,

5. a family {hp k=1, Ni=1,.1 C C(R3le®l+a); R3) of functions,

such that (6.9) can be written

L
i = z)(po z)d(7 H ©m)(z). (6.
Lot =32 [ Reeeoh @@ on)e. 610

Let (2,3, P) be as in Theorem 5.1.
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a) For each | = 1,..., L, we approximate 7; by a convenient HSPM of the
form (2.22), containing n-terms, m , — m as n — oo (this can be done, e.g.
by means of low discrepancy, well distributed sequences Ref. [6, 27]).

b) The initialization of the scheme is done by giving n-terms HSPM approx-
imations l/]gn of the initial data ﬂg, where k=1,..., N.

¢) The n-terms HSPM approximations V,i . of ,a}w with k=1,..., N, result-
ing from the scheme, can be obtained as follows:

Step 1 (first selection). For each [ = 1,...,L and k = 1,..., N we replace
i by 19 in (6.7) (for v = a(l), 5 = 0). Then for each | = 1,...,L, we
obtain a sequence of finite measures Vg(l)’n — ,a?x(l) as n — oo, implying
Vg(l)n ® mpp — ﬂ?x(l) ® 7w as n — oo. Obviously, each I/g(l)n ® M, s a
sum of the form (5.30), containing nleWI+1 terms. We apply the selection
algorithm cf. Theorem 5.1.1 (with m,, = n and p = |a(l)| +1) to construct n
- -terms HSPM approximations for all Vg(l)  ©T . Thus, by Theorem 5.1.1,
for each [ = 1,..., L, there exists some set €; C €, with P(€;) = 1, such

that from ug(l) ., @ T, One can extract a n-terms HSPM approximation (of
the form (5.32)) o9y n(w!) — ﬂoa(l) ® m as n — oo, for almost all w! € Q.
Step 2 (second selection). In the right side of (6.10), written for j = 1,
replace each ﬂ?x(l) ® m by the corresponding o1 ;,. Then the right side of
(6.10) defines the measures My, on R3 for k=1,...,N and n € N*,

L n
1
Mpn = — Y D @Ry (21i0(w))0h, o)) (6.11)
=1 i=1

concentrated at the points hkyl(zmm(wl)), where zl,i,n(wl) € R3leDl+al) 4pq
a; > 0 are some constants (for [ =1,...,Land i =1,...,n). By Step 1, it
follows that

My — fi}, as n — 00, (6.12)

for all w! € O, w2 €Qy,..., wl e Qp and for k =1,...,N. Now, it can
be easily seen that (6.11) can be written as WSPM, containing, at most L-n
terms.

As we mentioned before, we want to obtain HSPM approximations at the end
of each step of time. We fix, for the moment, some w' € Q,...,w’ € Qr, so
that (6.12) holds. We apply the selection algorithm formulated Theorem 5.1.2
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for each fixed k =1,..., N, as follows. For [ =1,...,L-n defining

(6.13)

put
1
Any = EU«)\(l)Rk,A(l) (Z2@ 000 (WD), (6.14)

We choose my, = L-n and k, = n. Then, for each k =1,..., N, there exists
some Q4 C Q, with P(Qr4%) = 1, such that from Mj,,, we obtain a n-

~terms HSPM approximation (of the form (5.35)) og . (W™ * 0!, ... Jwl) —
fr as n — oo, for all wl™ € Qi Set vl (wl,...,wlth)
oo kn(wrF wh o wl). Therefore for each fii. in (6.10), we obtain a cor-

responding n-terms HSPM approximation 17]1” — ,a,lc as n — oo, for all
WweQ,.. ., wtrtecqQ; pandforall k=1,...,N.

e) The procedure can be repeated, with the entering data ﬂ;n, to obtain
HSPM approximations 72 (w?,... ,WALANERY of g2 for k=1,...,N.

f) Repeating this procedure over and over, after j timesteps, we provide
the n-terms HSPM approximations 7} n(wl, o wIEHU=DNERY [, for all
wl e O, w? € Oy,... wktU-DN+k ¢ Qiri(—1)N4k all 7 =1,..., T and
all k=1,..., N, where Q; C Q with P(;) =1, for l=1,...,Ta(L+ N).
Now, observe that we can find a family {Q;};cy- of measurable maps @ :
Q — Q, with P(Q;'(A)) = 1, for all A C Q with P(A) = 1. For instance,

we can consider U,V : ) — Q. given by

Uw) =U(wi,wa, ..., wan—1,Wan, - - ) = (W1,Ws, .+ - Won—1,Wan+1, - - ),
(6.15)

V(w) =V(w,ws,...,wan—1,w2n, . ..) = (W2, W, . .+ ,Wan, W2n42, - - ),
(6.16)
respectively, for all w = (w1, ws, ..., wan—1,wn,...) € Q. Then it is sufficient

toput Qu =U and Q; :=Uo V™1 [ =23,... Let

Ta(L+N)

Oac= () Q@) (6.17)
=1

Since P(Q; () = 1 for all I = 1,...,Ta(L + N), clearly P(Qpa) = 1.
Defining v} (w) = 7}, (Q1(w), -, Qjri(j—1yn+k(w)) for all w € Q, j =
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1,...,Tan, k = 1,...,N, it follows that I/Zn(w) — ,ai as n — oo, for all
wEQAt,jZI,...,TA,kZl,...,N.

In particular, if D(-,-) is the discrepancy introduced in Section 2., then

I D< J ,—j> —0, 6.18
o k:IrllaXN j:Ilr}?f{TA Vk’”(w) Fi ( )

for almost all w € Q.
All these and Corollary 4.1 lead to our main result.

Let f(t) be the solution of equation (3.18), provided by Theorem 3.1 and
let pt be given by dul(v) := fi(t,v)dv, for all ¢ > 0 and k = 1,..., N.
Consider some family {Atp}peN of discretization timesteps as in Section 4..
For each At, and for the initial data ﬁg, consider thg solutions ﬂi’p of (6.10),
with j = 1,...,TaA and k = 1,...,N. For each ﬂfmp, denote by V{wm the
corresponding n-terms HSPM approximation obtained by the above scheme.

Similar to (2.25), we introduce the following notation Ta, = [[T//At,]], for
all pe N.

THEOREM 6.1 For each sequence of timesteps At, — 0 as p — oo, there is
a sequence of positive integers n(p) — oo as p — 00, such that

. J J-Atp _
f e s D (@) d ") =0 619
for almost all w € Q.
Proof. Let
dpalee) = x| max D (1, @) F,) (620

Consider some positive sequence ¢, | 0 as p — oo. Using (6.18), for each p,
we obtain that
lim P(dp, > ¢p) =0. (6.21)

n—~o0

Then, for each p, we can choose n = n(p), such that

1
P(dp,n(p) > ¢gp) < ]? (6.22)
Consequently,
> Pldynp) > &) < 0. (6.23)

p=1
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Then, for almost all w € €,
lim dp,n(p)(w) =0. (6.24)

n—oo
Now, by Corollary 4.1, we conclude the proof of the Theorem. O
This theorem represents a space homogeneous reactive correspondent to the
main result in the Babovsky-Illner simulation scheme for the classical Boltz-
mann equation (Theorem 7.1 of Ref. |5]).

Note that the numerical effort of the method is at most, O(nlogn) (the
dominant contribution being introduced by the random selections of Theo-
rem 5.1.2, i.e. (second selection) Step 2). However, under additional condi-
tions on rg o, the sum (6.10) the numerical effort can be improved.

We consider the following simple case. Denote Dog := {w' e R0 <
Wea(w') = 271N amn ) Va(w')? = 0N BnEn} (we recall that W (w)
is the energy defined in Section 2). By Lemma 3.1, rgo(w,n) > 0 on
Dag % Qg. Suppose that in (6.2 -6.6), we have rg o(w,n) > 0 on Dyg X Qg
for all o, B € M. Taking into account the form of the element dn on {13 in
spherical coordinates (when (6.9) is obtained from (6.2 -6.6)) it follows easily
that in (6.9), each function go g r(W,0,¢) can be constructed such that the
set {0|¢a,8k(W,0,¢) =0} is finite and does not depend on the choice of
(W, ¢) € Dag x [0,27). Consequently, for each 8 € B, there is a measurable
set ©g C [0,7)3181=5 such that Ja gk (W,0,0) >0, for all w € Dog, 0 € Og,
¢ €1[0,27), a € A. Denote

¢
L(6w.0)i= [ dapriw 0o, scl02m).  (625)
0
Then, for all w € Dqg, 0 € Og, fixed, (6.25) defines an invertible map
[0,27m) 2 ¢ — Ix(d;w,0) € [0, [ (2m; w,6)), (6.26)

[
with the inverse Ik_l. In each integral of (6.9), with respect to d¢, we perform
the change of variable ¢ = Ik_l(y; w,0). Define

ﬁa757k(w, 0,y) = Ha7[37k(w,9,lk_1(y; w,0)). (6.27)
We can choose some measurable sets
Cap C RN x [0,m)3P175 xR, for a € A, 8 € B,
such that, (6.9) takes the following form

[Leant) = S [ (oo faga)w,6.0)dny  (widbdy. (629
R3 acA,BeB Cap
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For applications it is important to observe that the conclusion remains the
same if weaker conditions are imposed on 7g o, €. g. if one supposes that for
each a, 3 € M, 13 o(W,n) > 0 on Dag X Qg except a countable set, etc.
Obviously, (6.28) has the form (6.10), but has the important property that
if ﬂi_l, for k=1,..., N are HSPM, after Step 1 (first selection) the output
measures are also a HSPM.

In order to obtain ﬂi, for k =1,..., N as HSPM with the same number of
terms as ﬂi_l, we can apply the following immediate corollary of Theorem
5.1.2, which introduces a numerical complexity of only O(n).
COROLLARY 6.1 Suppose that there is a positive measure p on R™, absolutely
continuous with respect to the Lebesque measure on R™, such that
R

— > g — [, aS T — 0. (6.29)

Mn
Define pini(w) = pinl_;, (o, for allw € Q, alli € I, and n € N*. Let
N*>n—k, € N* be a seqﬁence such that k, < my,, for all n € N* and

1
> = < 0. (6.30)
n=1 "
Then, for P—almost all w,
1 &
o3 p(w) = ™ ZEz;um(w) — [ as n — oo. (6.31)

Further we can proceed as in the scheme constructed before, but without
applying Theorem 5.1.2. Instead we apply Corollary 6.1. The scheme reduces
to iterations alternating with selections, and the conclusion of Theorem 6.1
remains valid. The numerical effort becomes O(n).

Finally remark that if (2.18) reduces the classical Boltzmann equation, for
the one-component simple gas, then the sum in the r.h.s of (6.28) can be
compressed to a unique term as in Ref. [4]. In general, this is not possible in
the case of gas mixtures.

7. Concluding Remarks

From the above analysis, it follows that besides a convenient existence theory,
only the conservation of the total mass is needed to introduce the numer-
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ical scheme described here. The other properties (e.g. detailed balance,
H-Theorem) of the Wang-Chang-Uhlenbeck-de Boer and Ludwig and Heil
system of equations play no role in this algorithm. Note that, the numerical
scheme can also be used and when the detailed balance does not hold, e.g.,
for models where we ignore some recombination processes (as in the situation
when we consider the collisional dissociation, but neglect the recombination
by triple collisions Ref. [24]).

We discuss possible generalizations as well as some limitations of the results.

19 In the case of non-reacting gas mixtures one can obtain similar numerical
schemes for the space-dependent equation (2.10), in the frame of the theory
of existence of solutions of Ref. [17]. This can be done by adapting directly
the spatial cell homogenization method of Ref. [5].

20 In the case of reacting gas mixtures, one can also obtain similar numerical
schemes for the space-dependent equation (2.10). To this end, the adaptation
of the spatial cell homogenization method of Ref. [5] is not as straightforward
as it appears. This is due to the collisions that produce new particles in a
given spacial cell. For this purpose, we need “to establish” the space position
in the cell for each “new born” particle and at the same time, to keep the
control on convergence.

30 Assumption (3.13) replaces in the reactive model the boundedness condi-
tion on the collision law used in Ref. [4, 5]. This condition is essential for
the control of the positivity of the solutions in the time-discretized equation
(4.1). Indeed, Assumption (3.13) is restrictive from an analytical point of
view. Nevertheless, for practical purposes, it is satisfactory for those mod-
els where the high energy-tail of the gas consists of very few molecules (see

Ref. |7]).

The existence of unique positive solutions to (2.10) and (2.18) can be proved
for more general transition functions Ko g (see Ref. [18]). The simulation
scheme can be also extended in this respect, but the (possible) singulari-
ties of Ko g must not destroy the continuity of the functions ro g and pa g
(necessary for the convergence in the weak sense of the measures).

49 One can improve the approximation algorithm as follows. Instead of
assigning to each species the same number of terms in HSPM, one can fix a
given number of terms n for all the species. Then, when we apply the selection
algorithm given by Theorem 5.1.2 (or Corollary 6.1), we can allocate to each
species a number of terms “proportional” to its mass, such that the total
number of terms for all the species to be (approximative) n. The same is also
valid for the approximation of the initial data. By example if we designate
by nj the number of terms corresponding to the species k = 1,..., N, then
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we define

mi | fe(v)dv
A

N
0
;ml /}R3 i (V)dV_

59 In this numerical scheme there are three essential sources of approximation
Eerrors.

(7.1)

ng =

1. The errors from the approximation of the initial data.

2. The errors produced by the time discretization.

3. The errors introduced by stochastic selections.

The contribution of the stochastic errors over the time discretized scheme can
be illustrated as it follows. Giving, for the chemical species k =1,..., N, an

initial data, say V]870 of the form (2.22) the algorithm follows the computa-
tional chain

0,0 1,1 2,2 Ta—1,Ta—1 Ta,Ta
i R 7R S Ve R 7 — v (7.2)

corresponding to the diagonal of the scheme

0,0 0,1 0,2 0,TA—1 0,7
vy — — —_— ... — vy — vy,
Q
1,1 1,2 1,Ta—1 1,Ta
Vk Ea— Vk _— ... — Vk — Vk
u
2,2 2,Ta—1 2,Ta
Vk _— ... — Vk — 1%
0
Th—1,TAr—1 Th—1,T,
VkA LA VkA LA
u
TA,Ta
Vi

(7.3)
Here, the horizontal chains represent the exact iterations of the time dis-
cretized equations, such that foreach j =0,...,Ta—1land p=7+1,...,TA

the measure I/]]C"p is given as (p — j) - th iteration for the input data V,Z’j. In

addition, V]z’j is provided by random selection form V]z_l’j, forj=1,...,TA.

The above computational chain shows that one can expect that the errors due
to the random selections increase when the timestep At decreases. Indeed,
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such a behavior was observed in numerical applications Ref. [13, 12]. Some
theoretical estimations on the errors Ref. [12] prove that the probabilistic
errors € behave like

1
T At n
Consequently, when we decrease the timestep (to improve the errors for the

time discretization, Proposition 4.1.b) we shall increase the number of terms
for the initial approximation, in order to keep the stochastic errors in accept-

€ (7.4)

able limits.

8. Appendix

Proof of Lemma 3.1.

Let n € N* and let aq,...,a, > 0, be some constants. Consider the positive
quadratic form defined on R3" by

n
T:=T(vi,...,Vp) :Zaivg, (8.1)
i=1
where v; € R3, for all i = 1,...,n. One introduces the Jacobi-type transfor-
mation
R3S (vi,...,vp) — (V,€) € R3 x R 73, (8.2)
where
n n
V=0 "a)™) awv, (8.3)
i=1 i=1

and E = (517 s )61—1)7 with

1 1 j=1
& = + — Vitl — = ) (8.4)

a-+1 K K
‘ Zl aj > aj
]:

fori=1,...,n—1.

By (8.2), the form T takes the form

T=T(V.¢) = (Z ai> Ve (8.5)
=1
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Define
1 (N N
Waa(w) == Wa(w) - 5 (2_:1 anmn> Va(w)? — Z_:I BnEn, (8.6)
and
(W5 a(w)]'/? if Wg,a(w) 20,
tg.a(w) = (8.7)
0, otherwise.
Now, consider the form on R3I8,
N
Ts(u) := Wa(u) = Y BuE, (8.8)
n=1

and a corresponding Jacobi-type transformation as in (8.2),

R385 u— (V,€) e R? x R3IBI=3, (8.9)

with & := (£1,...,§|g—1), where §; € R3, for alli =1,...,|3| — 1. Denote by
Ag the Jacobian determinant of the transformation. Let £ be represented in
spherical coordinates on R3181=3 ¢ = rn, with (r,n) € [0, 00) x Qg. Consider
the inverse map

R xRy x Qg 3 (V,r,n) — u(V,r,n) € R4 (8.10)
of the transformation u — (V,r,n) and set
Uga(W,n) = u(V,r,n)|v_v, (w)r=tg o (w)- (8.11)
Obviously, for all a, 8 € M such that (2.6) is satisfied, we have
Ve(uga(w,n)) =Va(w)  Wa(uga(w,n)) = Wa(w). (8.12)
Define
Pea(W,n) =271 Ag  tga(W) PO Kg o (uga(w, n), w),

(8.13)
T,Ba(w’ Il) = 2_1A[3 : tﬂ,a(w)g‘ﬂl_SKa,,B(W, u,@a(wv n))

From (8.12), one obtains property i) of the Lemma 3.1. Property ii) follows
from the definitions introduced in (8.7) and (8.13).
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The limits (3.6) and (3.7), can be obtained from (3.3) and (3.4). We start
the computation with the integral upon du, by choosing (V,r,n) as new
integration variables such that u = u(V,r,n). Since f5 € C.(R3®!) and
fg ¢ CC(R?’W'), using the properties of Kq g, 53, 0y and ug o, we obtain
(3.6) and (3.7) by repeated application of Lebesgue’s dominated convergence
theorem.

Using a similar argument as in the proof (3.6), for all f € CC(R?)\ﬁl) and
@ € Cyp(R3), we get
6777

lim li dwd
o020 Jsial cgols) P(W)75 (0 W) (w)dwdu

(8.14)
- / o(W)pp.a(w, 1) f (ug.a(w,n))dwdn,
R3lel xQg

giving the left side of (3.9). To obtain the right side of (3.9), we repeat
the procedure, but first we perform the integral upon dw in the left side
of (8.14) (using the change of variables induced by the Jacobi-type trans-
formation R3 5 w — (V,€) € R? x R3®=3 associated to the form
Ta(w) = Wa(w) — ZnNzl apE,, and then taking the representation of
¢ € R3le1=3 in spherical coordinates). O
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The general boundary value problem. Assume that the flow do-
main Q is an open bounded subset of RY (N = 1,2,3), and the time runs
within the finite time interval (0,7"). The boundary of €2 is denoted by I' and
it is considered piecewise smooth. The vector of space variables is denoted
by & = (21,2, 23) € Q and the time by t € (0,7).

We consider the Richards’ equation describing the water infiltration into
an isotropic, nonhomogeneous, unsaturated porous medium with a variable
porosity, with initial data and various boundary conditions (see [7])

O0m(@)Sw(h)) _ V- (k(h)Vh) + Ok(h) =fin@=0Qx(0,7), (1.1)
ot 8x3

h(z,0) = ho(x) in Q, (1.2)

boundary conditions for hon X =T x (0,7T). (1.3)

The unknown in Richards’ equation is the capillary pressure h(x,t) (or pres-
sure head, or water pressure in the unsaturated soil), Sy, is the water satura-
tion in pores, m is the medium porosity and 6 = m(z)S,, is the volumetric
water content or soil moisture. In this work the dependence of m on x
models the nonhomogeneity of the medium. The function k is the hydraulic
conductivity, f(z,t) is a source (or sink) in the flow domain and hg is the
initial pressure distribution in the domain, f and hg being given. In general
m € (0,1) but a limit case with m tending to 0 may have a physical relevance.
The properties of the dependence of S, and k on h will be specified.

In particular, we shall exemplify the theory for the case of the medium having
a part of the boundary, I',, semipermeable, allowing a water flux across it
and the other part I', at which the pressure will be given. Here, I', and
I, are disjoint and I' = I, UT,,. In infiltration problems, we can often
meet the situation in which water ponds on the soil surface (let it be I';,).
This happens when the rainfall rate is greater than the soil conductivity at
saturation and the soil begins to saturate from the surface, or when the soil
surface is in contact with an open water body, for example the bottom of a
lake. In consequence the boundary conditions we shall consider are

h(z,t) = hy(z,t) > 0on X, =T, x (0,T), (1.4)

q-v=foond, =Ty x(0,T), (1.5)

where ¢ is the water flux defined by

q(z,t) = k(h)is — k(h)Vh, (1.6)
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v is the outer normal vector at the boundary and 43 is the unit vector of the
Oxs axis, downwards directed.

We can reverse the boundary conditions by considering that I', is the soil
surface and I';, is the underground boundary. Thus we can interpret that
the flux through the soil surface, is provided by a water supply as a rain or
irrigation and that the lower part of the porous medium is in contact with
the phreatic aquifer.

Description of the hydraulic model. The behaviour of an unsat-
urated soil, i.e., partially filled with water, is completely known from the
hydraulic point of view if two functions are given: one is the retention curve

S, = C*(h), (1.7)

linking the water saturation S,,, to the pressure head h, and the other is the
hydraulic conductivity

k= k(h), (1.8)

both depending nonlinearly on h. For an isotropic soil the latter is a scalar
function.

Since we study the nonhysteretic case, the retention curve and the hydraulic
conductivity are assumed single-valued functions of the pressure.

In soil sciences, the unsaturated pressure is considered negative (h < 0) and
the saturation is characterized by h = 0. Also, it is considered that the
process of infiltration-drainage (opposite to infiltration) takes place between
two limits of h. The lowest limit is denoted h, and at this pressure head the
soil is considered dry even if some water still resides in the pores and the
hydraulic conductivity is still positive. The corresponding water saturation
is denoted S, and the volumetric water content 6, is called residual moisture
(see |7]). The upper limit is A = 0 where saturation is reached and water
saturation becomes equal to 1. However, we shall denote this value by S;.
At saturation, moisture attains its saturation value 65 equal to the medium
porosity at this point (if the porosity is not constant). The parts of the
medium where h > 0 are completely saturated. We define the derivative of
the water saturation with respect to the pressure

~ . dS,

C(h) = =2 (h). (1.9)

For the saturated flow, when A > 0, the previously functions take constant
values.
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Generally, the hydraulic models raise a difficult mathematical problem. When
the pressure head in the unsaturated soil comes close to the saturation value,
C vanishes and Richards’ equation degenerates. Correspondingly, the diffu-
sion coefficient expressed as a function of moisture exhibits a blow-up de-
velopment around saturation. In soil sciences the model which reflects this
behaviour is the strongly nonlinear Green-Ampt limit model, see [10]. The
situation in which 6’(0) > 0 corresponds to a less nonlinear hydraulic be-
haviour, the typical model for this class being the Burgers’ model, see [10],
too. Depending on the particularities of the hydraulic functions which are
determined by the soil pore structure, the models of water infiltration range
between these two limit models (see [44]).

Previous theoretical results. In the most mathematical literature de-
voted to this subject the blow-up of the diffusivity in the diffusive form of
Richards’ equation was avoided, by considering a finite-valued diffusivity, or
studying the problem only in the pressure form (see [2], [4], [12], [19], [20],
[25], |26], [27], [37], [38]). More recently, in the paper [9] a model of the
saturated-unsaturated flow lying on a special definition of the boundary con-
ditions that changes during the phenomenon evolution, has been developed
also for a finite value of the diffusivity at saturation (which was implied by
the assumption that C(0) > 0). Following the technique presented in [20] the
model was reduced to systems in class of Stefan-like problems of high-order,
see [19].

However, apart from specific infiltration problems, previous existence and
uniqueness studies for solutions to the elliptic-parabolic equation

9(b(w))
ot

+ V- (a(Vu,b(u))) + f(b(uw)) =01in Q x (0,7

have been presented in the literature especially using a technique inspired
by the method of entropy solutions introduced by S.N. Krushkov in [28|.
Originally, this method was devoted to prove L'-contraction for entropy so-
lutions for scalar conservation laws, i.e., generalized solutions in the sense of
distributions satisfying admissibility conditions similar to those of entropy
growth in gas dynamics (see also [8]). J. Carillo applied Krushkov’s method
to second order equations (see [13], [14], [15], [16]). F. Otto (see [35], [36])
proved a L'-contraction principle and uniqueness of solutions for this type of
equation by applying Krushkov’s technique only to the time variable. H.-W.
Alt and S. Luckhaus showed in [1] that the natural solution space for this
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equation is given by all functions u of finite energy in the sense that

sup /\I'(b(u(t)))d:13+/ |Vu|" dzdt < oo,
te(0,7) JQ Q

where W is the Legendre transform of the primitive of b.

We also mention the results of J.L. Vazquez regarding the fast diffusion
equations (see [18], [40], [41], [42], [17] and the book [43]).

Concerning the degenerate evolution equations, extensive studies have been
performed for linear operators, relying on the properties of the resolvent of
an appropriate multivalued linear operator accounting for the multiplication
by the function m (see [21], [23] and the monograph [22]). We mention also
the paper |24] related to a similar topic in which a degenerate model with
homogeneous Dirichlet boundary conditions and no transport was studied.

The analysis of the well-posedness of the diffusive form of Richards’ equation
in the unsaturated case (6 < 6,) with the porosity m constant, was developed
in the papers [6], [29], [30], [31] within a functional approach. The existence
results which were deduced showed that solutions reaching saturation can be
obtained but only on zero-measure subsets of (). Somehow, this was expected
because the unsaturated model reflects a behaviour of a particular soil only
and not the general feature of the process which includes the possible soil
saturation.

In the paper [32| a rigorous mathematical model able to describe the sat-
uration occurrence (with the blow-up of the diffusivity) was introduced for
a homogeneous porous medium (with m constant) in the diffusive form and
developed then in |33].

In the first part of this chapter we introduce the diffusive models of water
flow in saturated-unsaturated media characterized by a space variation of
the porosity. Then we analyze a model with mixed boundary conditions in-
volving a flux on a part of the boundary and a nonhomogeneous Dirichlet
condition corresponding to a singular situation on another part of the do-
main boundary. The model will be degenerate because we shall assume that
porosity can vanish on a subset of 2.
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2. Diffusion models in nonhomogeneous porous me-
dia

We intend first to reveal how the particular character of the hydraulic models
is determined by the behaviour of the functions C* and k around 0.

Mathematical hypotheses. For the unsaturated flow, where h < 0, we
assume the following:

(mq) C* : [hy,0) — [S;, Ss) is single-valued, positive, differentiable on [h,,0),
monotonically increasing ;

(mg) k : [h,0) — [K,, Ky) is single-valued, positive, differentiable on [h,;,0),
monotonically increasing and satisfies the property ¥ (h,) = 0;

(m3) C : [hr,0) — (Co, C,] is single-valued, non-negative, differentiable on
[hr,0) monotonically decreasing and satisfies C’(h,) = 0;

In the saturated flow we have
(myg) C*(h) = S, k(h) = K, and C(h) = 0 for h > 0.

We denote B
S, = (C*)(0) > 0, (2.1)
Co = (C*)'(0) = C(0) > 0, (2.2)
Ky =k(0) >0, (2.3)
K| = }lli}ré/c’(h), K{ € [0, 00). (2.4)

Therefore, the unsaturated flow is characterized either by h < 0 or S, €
[Sr, Ss) while the saturated one is indicated by h > 0 or S, = S;.

The positive values S,., Sy and their corresponding conductivities K, K
are soil characteristics and they are known for each type of soil apart. The
properties k’(h,) = 0 and C’(h,) = 0 were put into evidence by experiments
(see [10]).

We notice that the functions C* and k are continuous on [h;,00), and A, is
the maximum point for C. Also C' is continuous on [h,,00), except possibly
at the point 0.

We stress the fact that these properties are verified by the empirical hydraulic
models set up in the last decades (see e.g., [44]).

We emphasize that the main role is played by the increase rate of the func-
tions C* and k around 0, the significant contribution being given by the
behaviour of the retention curve C*.
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2.1. Strongly nonlinear saturated-unsaturated diffusive model

Let us assume (mp) — (my4) and

Co=0

which is the main characteristic of this case. Tt follows then that C is con-
tinuous on [h;, 00) and we can write C* : [h,,00) — [S;, Ss], as

~ h ~

Strongly nonlinear hydraulic conductivity. This situation corre-
sponds to K, € Ry = (0, 00).

We define a primitive of K by

Koy = 4 K i KOG R <0, (26)
K* 4 Ksh, h >0,

where K* : [h,,00) — [K}, 00) and

K* = K*(0) > 0. (2.7)

The function K* is differentiable, monotonically increasing on [h,., o0) and
with these notations Richards’ equation (1.1) becomes

d(m(x)Sy) Ok(h)

o At =

finQ. (2.8)

By the initial condition (1.2) we obtain

Sw(2,0) = Swo, Swo = C*(ho).
We can also consider the initial condition
m(z)Sy(2,0) = Oy(x) in Q, where 6y = m(z)C*(ho) (2.9)
and corresponding replacements should be made in the boundary conditions
(1.4)—(1.5).
Since it is more convenient to work with the variable 5, we introduce from

(2.5) the inverse of C*, (C*)™1 : [S,, Ss] — [hy, +00), by

(C*)7H(Sw), Sw € [Sr, Ss),

[07 +OO)7 Sw = 587 (210)

@5 = {
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which is multivalued at S,, = 65 and continuous and monotonically increasing
on [Sy, Ss). Then, we replace it all over in (1.1)-(1.5).

Thus, instead of the conductivity written in function of pressure, we obtain
the conductivity expressed in terms of water saturation

K :[S,, 8] — [K,, K], K(S4) = (koC*) "% (Sy), Sw € [Sr,Ss], (2.11)

function that preserves some of the properties of k, i.e., it is positive, differen-
tiable (except at Ss) and monotonically increasing, since for any Sy, € [S,., Ss)
we have that

_ _ _ 10\ —1
R(5) = (@) S0 - ()50 = HEC) 50y

We notice also that
K'(S,) =0 (2.13)

and B
lim K'(S,) = +oo. (2.14)

However, for Sy, € [Sr,S;] with S; < Sg the derivative of K is bounded, so
that K follows to be Lipschitz on intervals strictly included in [S,, Ss)

K(Sw) - IA{-(SW)‘ < Ml |Sw - S_w| ) VSUHE € [ST’7SI]7 Sl < S87 (215)

where _
M; = max Ii((g*)_l(sw)) < 00. (2.16)
SwelSr,81] C((C*)~1(Sy))

Plugging (2.10) in (2.6) we get the function

_ { (K*0 (C*)™1)(Sw), Sw €[Sr, Ss), (2.17)

* S —
5 ( w) [K:,—I-OO), Sw = Ss
that is multivalued at S,, = S5 but is continuous from the left at this point

Suljlglss B*(Sw) = K. (2.18)

For S, € [S;,Ss) the function (C*)! is monotonically increasing, so that
we can calculate 3%(S,) by changing the variable in the integral (2.6) and
denoting ¢ = (C*)71(¢). In this way we get

Sw
ﬁ*(sw) = K: + ﬁ(ﬁ)dﬁ, for S, € [SraSS)a

Sy
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where —
~ E((C*)™ (Sw
B(Sw) = u(Cp 1( )), for Sy €[Sy, Ss). (2.19)
C((C*)~1(Sw))
In this way we have rigorously recovered the definition of the water diffusivity
function.

We notice that B has two important properties

B(Su) > 7= A(S,) = % > 0, VS, € [Sr,S4) (2.20)
and B
Slim B(Su) = +oo. (2.21)

Moreover, by the hypotheses made upon the functions C and k it follows
that (8 is monotonically increasing, i.e.,

_ B NaTi
g = kCTkC >0, on [S,,S,), (2.22)
3(S,) =0. (2.23)

Hence, E* is twice differentiable and strictly monotonically increasing on
[Sr, Ss) and as a matter of fact we can write

~ * Sw 73

Moreover, by (2.20) and (2.24) we deduce that the function §* satisfies the
inequality

(B*(Sw) = B*(Su))(Sw = Sw) = p(Sw = Fu)*,¥Su, S €[Sy, 5] (2:25)
In conclusion we can set

Model 1. Let us assume (mp) — (myg), Co = 0 and K} € R. Then, the
diffusive model of the strongly nonlinear saturated-unsaturated infiltration
with a strongly nonlinear hydraulic conductivity is given by

O(m(x)Sw) = 0K (Sw) _ .
" AB*(Sy) + e fin @, (2.26)
m(x)Sy(z,0) = Og(x) in €, (2.27)

boundary conditions in S,, on X, (2.28)
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Where~§* is the multivalued function defined by (2.24),~B is given by (2.19)

and K is the single-valued function (2.11). Moreover, 3* is strongly mono-
tone, (3 satisfies (2.20) (2.23) and K has the properties (2.13) (2.16).

The boundary conditions (1.4) (1.5) become

Su(z,t) = Sy on Sy, (2.29)

(k(sw)z'g - vﬁ*(sw)) v = fu on X, (2.30)

The qualifier of strongly nonlinear is implied by the property of the function
B which evolves highly nonlinear around the saturation point, Ss. This is
justified by the fact that the typical representative for this behaviour (cor-
related with that of its primitive B* which is finite at this point) is of the
form

B(Sw) = .

W for0<p<1.

We notice that this form of the diffusivity function reveals the character of
fast diffusion of this process (see the review of diffusion-type processes in
[3])-

However, E* is multivalued and the sign equal (=) in (2.26) is not properly
used. The appropriate symbol should be 3 . Also, we shall specify later the
exact meaning of the solutions to (2.26)-(2.30). The fact that equation (2.26)
is multivalued must not be surprising if one takes into account that it models
a free boundary problem. This means that, at each time ¢, the domain 2 can
be decomposed into two regions: the saturated one, {z; Sy (x,t) = Ss} and
the unsaturated one {z; S, (z,t) < Ss}, separated by a free boundary. The
extension of a nonlinear function arising in such a problem to a multivalued
one is common in the theory of nonlinear differential equations with discon-
tinuous coefficients as well as in that modelling free boundary processes.

Thus, equation (2.26) represents an extension of Richards’ equation (written
for the unsaturated infiltration) to the simultaneous saturated-unsaturated
flow.

Weakly nonlinear hydraulic conductivity. A strongly nonlinear
model, but with a weaker nonlinear behaviour of the conductivity may be
obtained under conditions that lead to limg, g, IN('(SU,) < oo. To reach such
a situation we have to impose just from the beginning a stronger condition
for k, namely that there exists M > 0, such that

k' (h)y < MC(h), Yh € [h,, 0], (2.31)
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which implies that
E'(h
K{) =0, lim N( ) = M. (2.32)
h,/0 C(h)
In this way K turns out to be Lipschitz on [Sr, Ss] with the constant M. We
observe that the functions 8 and K remain monotonically increasing. This
situation is put into evidence e.g., in the van Genuchten model (see [39]) for
the model parameter m close to 1. This case can be resumed in

Model 2. Let us assume (m;) — (my), Co = 0 and (2.31)—(2.32). Then, the
diffusive model of strongly nonlinear saturated-unsaturated infiltration with a
weakly nonlinear hydraulic conductivity is given by (2.26)—(2.28), where the
functions 5 and E* have the properties specified in Model 1 except for K
which is given by (2.11), with

lim K'(Sy) =M < cc.
Sw /'Ss

2.2. Weakly nonlinear saturated-unsaturated diffusive model

For some hydraulic models the diffusivity is finite at Sy, = Ss. We intend
to reveal which properties of the functions C* and k can provide such a
value. Let us suppose that the retention curve increases from the left to its

maximum value with a nonzero rate at the left of zero,
6’0 > 0,
but very close to 0. In this case C* is not differentiable at & = 0 and the

function

dSy

G : [, 00) — [0,C0], C(h) = 4 ~qp > <0 (2.33)
0, h>0
is no longer continuous at h = 0, having the jump ‘CN'O‘ = }L% %.

The functions K and B* and~5 will be defined in the same way as before,
but in this case the value of g at S, = S, exists and it is

lim B(S,) = == < oo. 2.34
gl B(Sw) & 00 (2.34)

However, the function B*(Sw) will be extended in a multivalued way, by

3*(S,) = K* at S.
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Weakly nonlinear hydraulic conductivity. Assume that the deriva-
tive of k at h = 0, has a finite value, K, < co. Hence, K is Lipschitz with
the constant

F(C) ™ (Sw)

K/
M = max <=9

" SwE[Sr,Ss] 5((5*)_1(5111)) Co

(2.35)

so that we can settle

Model 3. Let us assume (my) — (my4), Co > 0 and K}, < co. Then, the diffu-
sive model of weakly saturated-unsaturated infiltration with a weakly nonlinear
hydraulic conductivity is given by (2.26)-(2.28), where 3* is the multivalued
function defined by (2.24), 3 is given by (2.19) and K is the single-valued
function (2.11) with K'(S,,) finite on [S,, Ss]. Moreover, 3* is strongly mono-
tone, (2.25), G satisfies (2.20), (2.22)-(2.23) with

sil%s B(Sw) < 400 (2.36)

and K is Lipschitz on |S,, Ss], i.e., there exists M > 0 such that

R(Sy) — K(S0)| < M Sy~ By Y80, 5 €[5, 54). (2.37)

It is obvious that this situation which is illustrated by nonsingular diffusivities
including also power functions

3(Sw) = SP, with p > 1,

is related to a slow diffusion and to the well-known porous media equation

(see [3]).

We write the model in the dimensionless form, introducing for example

B(Sw)
Ba

Su =50 e g
Klm 1m —
o Ry

( ) ’ ﬁd

Sdim —
Y Ks _Kr

(Sw) =

where (3; is a characteristic value for the diffusivity. Without entering into
details we specify that the dimensionless model has the same form as (2.26)

(2.28). The dimensionless Sdim — (0 and K, = 0 and for convenience, we
shall extend § and K at the left of SI™ by the constant values p and 0 (for
all these details see [34]). For simplicity, further we shall no longer indicate

dimensionless by the superscript 4™,
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3. Analysis of the porosity-degenerate model

In this part we shall approach Model 2 given by (2.26) (2.27), (2.29) (2.30)
corresponding to the strongly nonlinear saturated-unsaturated case with a
weakly nonlinear hydraulic conductivity. We shall study a limit case letting
m to vanish on a subset Qg strictly included in €2, see Fig. 1. This charac-
terizes the existence of possible solid intrusions in the soil and we shall call
this model porosity-degenerate.

In fact we intend to treat a little more general mathematical problem, in
which we shall consider that the function conductivity depends both on the
space variables and the solution. Therefore the model reads

I(m(x)Sw) = 0K (z,8) _ ,.
T—Aﬁ (Sw)—I-TBfm Q, (3.1)
m(z)Sy(x,0) = Syo(x) in £, (3.2)
Sw(z,t) =S5 on Xy, (3.3)
(f((x, S Vi — vﬁ*(sw)) U3 faon . (3.4)
FM

Fig. 1: The domain Q.

At the points where m vanishes the equation degenerates. The function m
is supposed to be essentially bounded, m € L>*(2) with 0 < m(z) <1 a.e.
x € 2. However, we shall see that this assumption is not sufficient to get the
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solution existence and a stronger hypothesis upon m is required. We specify
once again the hypotheses made for the problem parameters, i.e.,

B(r) > pforr < Sy, B(r) = pforr <0, 1}121 3(r) = +oo, (3.5)
G = | Jo B <5,

gy = { [}%’;,—Foo), r =S, (3.6)

Jim_B0) = oo, T F) = K: >0, (37)

(B*(r) = B*(@)(r =7) = plr = 7)2,¥r,T € (~00, 5] (38)

In what concerns K we assume that it has the form

K(z,r) = Ko(@) on {z; .m(x) =0} (3.9)
K,,(r) otherwise,
K(z,r) =0 for r <0 and K(z,r) = K, for r > S, (3.10)
where K, = K(z,5;) > 0.

Moreover, we assume that IN(O € H'(Q) and K is Lipschitz with respect to
r, uniformly with respect to x, i.e., there exists M > 0, such that

(ig) |K(z,7) — K(z,7)| < M|r —7|, Vr, 7 € R, Vz € Q.

Finally we shall impose that

me CYQ), 0 <m(x) <1. (3.11)

Functional framework. We perform a function replacement by denot-
ing

w =S, — S, (3.12)

so that we are led to the system

T—AB (w+58)+T9f1n Q, (3.13)
m(x)w(z,0) = vo(z) in £, (3.14)
w(z,t) =0 on X, (3.15)

(f{(a:,w +S,)is — VB (w + ss)) U3 fo o Sa, (3.16)
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which we are going to study. Here vo(x) = Sywo — m(z)Ss. We shall indicate
the value of w at saturation by wy (actually, by (3.12) it is equal to zero, but
we shall keep the notation wg in order to put into evidence the behaviour of
the solution at this point).

We consider the spaces L?(Q) with the standard norm denoted |||,

V={weHYQ); w=0onT,}, (3.17)

1/2
il = </Q\vw\2dx> , (3.18)

and its dual V'’ on which we introduce the scalar product by

with the norm

(w,w)vl = (w, ¢>V’,V s
where 1 is the solution to the boundary value problem

—AY=w, p=00onTy, Viy-v=0o0nT,. (3.19)

Let fo € L?(0,T; L*(T,)). We define the functional fr, € L?(0,T;V’) by

fr ()W) = — /F Fo(t)bdo for any v € V (3.20)

and notice that
1fra Oy < cor [ fa@ll 20,
where ¢y, is the constant provided by the trace theorem.

For the further mathematical developments it is more convenient to work
with the multivalued function

B7(r) = B(r +55) — K. (3.21)
DEFINITION 3.1 Let
m € CYQ), feL*(0,T;V'), fo€ L*(0,T;L*(Ty)),  (3.22)
vg € L*Q), %0 ¢ L*(Q), % < ws, a.e. x € L.
m m
We call w a solution to (3.13)-(3.16) if

w € L*0,T;V), (3.23)
¢ € L*0,T;V), ¢ € B*(w(z,t)) ae onQ,
mw € C([0,T];L*(Q)) nWhH2(0,T; V"),
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satisfies the equation

<W(tw>wv +/Q (VC(t) SV — K (z,w(t) + Ss)a—z/’) dz =

8%3
= <f(t)71/}>V’,V + (fFa (t)7w>V’7V7 a.e te (07T)7 V¢ € ‘/7 (324)
the initial condition m(x)w(0) = vy and the property

w < ws, a.e (z,t) € Q. (3.25)

Eq. (3.24) can be written also in the equivalent form

/OT <W(a, ¢(t)> i (3.26)

VIV

_ 9o
+/Q <VC V¢ — K(z,w+ Ss)a—> dzdt

T3
T
= [ U0 000}y, Vo € L2O.TV)
Replacing S, from (3.12) we get that S,, satisfies

S, € L*0,T;HY(Q)),
¢ € L*0,T;H'(Q), ¢ € 5 (Su(x,t) ae. on Q,
mS, € C([0,T); L*(Q)) nwh2(0,T;V").

We set
D(A) ={0 € L*(Q); IncV, n(x) € *0(z)) ae xcQ}

and we introduce the multivalued operator A : D(A) C V! — V' by

(A0, )y = / <V17 -Vip — IN((x,G + 58)3_1/1> dz,
’ Q Ox3
for any ¢ € V, where n € 5*(0) a.e. x € Q. Thus, we can write the problem
d
W +Aw > f+ fr,, ae te€(0,T) (3.27)
m(x)w(0) = vp.

We consider now the multiplication operator

M : D(A) — L*(Q), Mw = mw, (3.28)
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whose inverse is multivalued and denoting
v(z,t) = m(z)w(z,t), (3.29)

we can rewrite (3.27) in terms of v as

% +Ayv 2 f+ fr,, ae t€(0,T) (3.30)
v(0) = o,
where Apv = AM ™o = A (L) for any v € D(Ayy), where
_ 2(). Y 2 « (U
D(AM)_{UGL () € LX), In eV, ne (m) ae. :EGQ}.

We see that v € D(Ay) implies - € D(A). Conversely, if w = = € D(A),
then v = mw € D(Apy).

We still define j : R — (—o00, +00] by

3(74) _ { for ﬁ*(f)dga r < S

400, r > S,

where the left limit of B* at Ss is specified in (3.7). This function is proper,
convex, lower semicontinuous and

_ B(r), r < Ss,
9j(r) = [Kf +o0), r =S, (3.31)
g, r>5Ss.

(The proof is similar to that done for a slightly different function in [34],
Sect. 5.3.)

3.1. Approximating problem

Since the operator Ajs is multivalued, in order to prove the existence for
(3.27) we introduce an approximating problem replacing m by

me(x) =m(x) +¢€, fore >0

and B* by the single-valued continuous function

B*(T)_ B*(r)v T<Ss~_ 5~
o B*(Ss—a)—i-wv—(&—s)],TZSS—E.



260 GABRIELA MARINOSCHI

Then we define
Bi(r) =B (r+8s) — K (3.32)

and the single valued operator
A.:D(A) cV =V,

(A0, )y, = /Q <v5;(9) Vi — K(z,0 + Ss)g—w> dz, Vo €'V,

3
with
D(A:) = {0 € L*(Q); 52 (6) € V'}.

We can write the approximating Cauchy problem (corresponding to (3.27))

d(mew;)

I +Aw. = f+ fr,, ae te€(0,7T), (3.33)
mawa(o) = Voe,
where
UOE = m€@‘ (334)
m

DEFINITION 3.2 Let e > 0 and

m € CYQ), feL*0,T;V"), fo € L*(0,T;L*(T,)),
w € LAQ), L er2q), L <uw,.
m m

A solution to (3.33) is a function w. that satisfies

we € C([0,T]; L*()) N L*(0,T;V) nWh2(0,T; V'),
G (we) € L*0,T;V),

/ ' <%<t>,¢<t>>wdt

* T a¢
—I—/Q {Vﬁa (we) Vo — K (z,w: + Ss) a—x?’} dzdt  (3.35)

T
= [ U@+ fra®:.00) e, Vo € 120.TV)

and the initial condition mew,(0) = vge.
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Then denoting
ve(z,t) = me(v)we(z, 1), (3.36)

we can write problem (3.33) in the equivalent form (corresponding to (3.30))

d
% + B, = f, ae te(0,T), (3.37)

v:(0) = wpe.
The operator B, : D(B;) C V' — V' is single-valued, has the domain

p(.) = {oe e 52 () e v

me
and is given by

0 _/ 9 9
(B, 0y = /Q (w: (m—> VY — K (:p o Ss> 8—:Z,> dz, Y € V.

Then (3.37) can be still written

T/ du,
— d :
[ (Goen) (3.39)
+/ {Vﬁ;‘ (”—) Vo - K <;L~ e +ss> 8—¢}d$dt -
0 Me Me 0xs
T
= [ U0 fra®:.00) vy, o € 120.TV)

which is in fact (3.35).

For a later use we define }E R—R,
i = [ B

and notice that

dje(r) = B:(r), Vr € R. (3.39)

First we shall prove that (3.37) has, for each ¢ > 0, a unique solution, v, in
appropriate functional spaces.
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3.2. Existence for the approximating problem

PROPOSITION 3.1 Let

m e CYQ), 0<m <1,

f € L*0,T;V"), fo€ L*0,T;L*(T,)),

vg € L*Q), LUys L%(Q), il < ws a.e. on Q.
m m

Then, the Cauchy problem (3.37) has, for each € > 0, a unique solution

ve € C([0,T]; L*(0,T)) n WhH2(0,T; V') N L?(0,T; V) (3.40)
B E) e L}0,T;V), (3.41)
me
~ Ve 0o al
i () e =1L @) (3.42)
that satisfies the estimates
t 2
/Qma(a:)}E <7:;—€€(x,t) + SS> dz +/0 %(7) y dr +
t [ e 2
+ | Geo)] o .
T T
s&(éuﬂw%w+énm@ﬁm@w+g,
v (220) | <o ve e o2, (3.44)
[ve@®)]| < e, VE€[0,T7, (3.45)

where By, c¢o and ¢; do not depend on €.

Moreover, if v. and Uz are two solutions corresponding to the pairs of data f,
fr., vo and f, fr., o, we have the estimate

|mw—me+/w%m—mmst (3.46)
0
< ao(e) (Jlvo — w3 +

T T
+/0 Hf(t)—?(t)!i,dwr/o Hfa(t)—ﬁ(t)“iz(pa)dt)
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Proof. The proof is based on the quasi m-accretivity of the operator B,
which is proved below. To show the quasi monotony we compute

(M + B:)6 — (M + B.)8,0 —9),,

e
_A<E($,mi€+ss)—ﬁ($,mi€+s)> aai

where —AYp =60 -6, Viy-v=0o0n T, and ¢ = 0 on T',,. Hence
(M + B.)0 — ()\I—i-B )0 0 — 0

>0

v

(A—E) Jo-3l;

for A > 2 . Here we used the fact that ¢ < m.(z) <1+e.

V/ H

Next we have to prove that
R(I+B.)=V',
i.e., to show that the equation
Ve + Beve = g (3.47)
has a solution v, € D(B;) for any g € V'. Recall that ¢ is fixed.
If we denote (3% (:1—55) = ¢ € V, due to the fact that [} is continuous and

monotonically increasing on R and R(8) = (—o0,00) it follows that its
inverse
G-(¢) =m<(8)71(0) (3.48)
is continuous from V' to L2( ) because
|G=(¢) = G=(0)]| = (3.49)
= Hme(ﬁe) YO — (8 ) ( Ol =
< -t < B e —g), vegew

Here we used (3.8) and Poincaré’s 1nequahty (with the constant cq). So,
(3.47) can be rewritten as

G:(Q)+Bi( =g (3.50)
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with By : V — V' defined by

(BEC, By y = /Q (vc VoK <a: G;l(o + ss> 0y ) de. Y € V.

c oA
(3.51)
The operator G. 4+ Bf is monotone, continuous and coercive for A > %,
hence it is surjective. Therefore (3.50) has a solution ¢ € V, implying that

(3.47) has a solution v, € D(Bg).

a) Now we assume that f € WL1(0,T;V"), f, € WH(0,T;L?*(Q)) and
%0 ¢ V which is equivalent to vo. € D(B;).

Therefore, the existence of a unique solution to (3.37)
ve € WH(0,T; V') N L>®(0,T; D(B.))

follows from the general theorems for evolution equations with m-accretive
operators, hence (3} < > € L*>(0,T;V). Since the inverse of 3* is Lipschitz
we deduce that = € L>°(0,T5V).

It follows that (3.33) has a solution

in the same spaces.

To prove estimate (3.43) we test (3.37) at (8 (v.) and integrate over (0,1).
Taking into account (3.36) and (3.32) we have
o (20)

[ (G0 (o)), o)) 2

dr
1%

< JIECl Geo)l,
/ e oz ()| ar+ [l oz (2)| ar
< 3 [z (ow)| oo

where we have used the boundedness of K and

3 f ~ ’ '
Co = 3 {KmeeaS(Q) + /0 Hf(T)H%/' dr + C?T/o |’f0¢(7—)H%2(Fa) dT} ‘
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Next, we take into account that
[ (e (o)), o
m
- [0 (oes) ) o
Me vV
/ma ~’ < L )+S>dx—/m€ jg(—o( )+Ss)da:

—/K;‘ve(:n,t)dx+/K;‘v0€dx
Q Q

and obtain that

Y ve(x,t) 1 2
fros (8 v
2 M v
/mE (x) + Ss d:v—i—/K*v6 )dz + C, (3.52)
where
1 %2
C §Ks meas(2) 2 H H + Ch.
Since
Je(r) = £, vr e R,
we have
~ t
me(T)7e (Ua(x’ ) + Ss> dz >
Q me

> g/gma(x) <%x;t)+ss>2dng/ﬂma{% <%i’t)>2—5§}dx.

On the other hand we recall that ”RO < ws = 0 and notice that

~ [ 048 Ss _
7. (—E + ss) _ / Frar< [ B =
m 0

)

Se—b Se—6 _
= %1;% ; BZ(r) r—hm/ r)dr < K*8,.
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Thus we obtain by (3.52) that
2
dr < (3.53)

o C2 e e

< 2K Ssmeas (€ /K*m€ <— )> dx+C’1—|—pS2/m6 )da <

< Cz—i—B/ me(z) <M> dx —i—il?:zmeas(Q).
8 Ja Mme P

We have used several times that m. <14 ¢ < 2. We can conclude that
H\/ﬁasl—i(t)u < ¢, Vt €0, ). (3.54)
Next, from the relation
ve(t) = v/ 2 (1) /i (3.55)

we get that

o = [ (V22 mewe <2 v

me

and therefore

loe(O)|| < 1, VE€[0,T] (3.56)
where ¢g, c1, Cy, C1, Cy are independent of €. Replacing this in (3.52) we
deduce

2,t) 2
/m8 < + S > da:+/ B < (T)> dr <(3.57)
me v
2 T 2
< [ 1oRas [ 1Ol a). (3.58)

Then we multiply (3.37) scalarly in V’ by 9% (¢), integrate over (0,¢) and
proceeding as before we get

" t
/m6 ]€< x )—I—Ss>dx—|-
0

T
< O </0 Hf(t)”%/fdt—l—/o Hfa(t)”;(mdtH)

dv,
a7

Vl
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Adding this relation with (3.58) we obtain

/ma < (a:t)—i—S)dx—i—
[ ()| s
< [ 1o [ 150, a),

\%
with Gy independent of €.

2

dr+  (3.60)
V/

dv,
ar

To show the estimate (3.46) we write two equations (3.37) corresponding to
different pairs of data, subtract them, multiply the difference scalarly in V'
by v. — Uz and integrate over (0,t). We get

3l =701+ 2 [ [ L) ) are <

— 2 — 2
~Tl+ 3 [ foetr) ~ TR +

IA
|
<

S

2 —
\% ||’U5(7') - UE(T)HV’ dr +

il

(7)]

+ [ | f(r) -
0

teiy | 17a(0) = Tl aqr Iloe(r) =Ty dr

and moreover

U —_—
lve(t) — et ||V,+p// ()~ %) e <
< ||U0—%||%//+< +2> / Joe(r) — T 2 dr +

T
+/0 Hf(T)—f(Tﬂ v d7—+c%r/0 [ fa(7) _E(T)H;(ra)d“

We obtain the estimate (3.46), via Gronwall lemma with o depending on e.
b) Now, we assume that f € L?(0,T;V’) and L € L?*(Q2), L < w,.

Due to some obvious densities we can take { f,, }o>1 C WHL(0,T5 V"), {f2}n>1 C
WLH0,T; L?(Ty)) and {v§}n>1 C D(B.) =V, such that

fn — f strongly in L*(0,T;V"), (3.61)
f& = fastrongly in L*(0,T; L*(T))
vl —  wg strongly in L?(9).
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Then, for each € > 0, the problem

dv?
dt

+ Bl = fat+ i, ae tc(0,T), (3.62)
v2(0) = v

has a unique solution v? according to a), satisfying the estimate (3.60) with
the right-hand side independent of n, namely,

(o Hlldor |1
/Qma(:v)ja (E(t)—i-SS) da:—i—/o I (1) y dr+ (3.63)
n 2
+/Ot B (%(ﬂ) vdTg

T T
< 4 (/O o)+ | Hfé?(t)lliz(ra)dtH)-

We stress that ¢ is fixed and the second term in the previous relation is uni-
formly bounded due to (3.61). By this estimate we deduce that {B; <”—g>}
n

me

is in a bounded subset of L?(0,7;V) and {dgf} is in a bounded subset of

L?(0,T; V"), so we can select a subsequence such that

Bz <U—€> — (. weakly in L*(0,T;V) as n — oo,

me

and dun q
(fte — % weakly in L?(0,T; V') as n — oo.

We get immediately that

n

—= — w, weakly in L?(0,T;V) as n — oo.
me

But m. € C'(Q) and so the sequence {v.}, = {megl—g} is bounded in
cln
L?(0,T;V), whence

v — v, weakly in L2(0,T;V) as n — oc.
Since V is compact in L?(Q) it follows by Lions-Aubin’s theorem that
v — v, strongly in L2(0,T; L*(Q)) as n — oo. (3.64)
By (3.37) we have that {B.v"}, is bounded in L?(0,T;V’) so that

B — x weakly in L*(0,T; V') as n — oo. (3.65)
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But B, is quasi m-accretive so its realization on L2(0,7;V’) is quasi m-
accretive too, hence it is demiclosed and by (3.64) and (3.65) we get that
X = Bve a.e. on Q.

Now we can pass to the limit in (3.62) as n — oo and get (3.37), proving thus
that this problem has the solution v. € C([0,T], L?(2)) N WH2(0,T;V") N
L2(0,T;V).

Finally, passing to the limit in (3.63), as n — oo, and using the lower semi-
continuity property we get (3.43) as claimed. Estimates (3.44) (3.45) have
been proved in (3.54)—(3.55).

The uniqueness of the approximating solution follows by (3.46). "

3.3. Existence for the original problem
As we specified before the domains
Qp ={z € Q; m(z) >0} and Qo = int{x € Q; m(z) =0}

have the common C'-boundary, 0€, see again Fig. 1. Here, the notation
“int” represents the interior of the subset.

THEOREM 3.1 Let

m € CYQ), 0<m <1, feL*0,T;V'), fa € L*(0,T;L*(T,)),

v € L*Q), %O c L*(Q), %O < ws a.e. on Q.

Then, the Cauchy problem (3.27) has a solution

we L*0,T;V), (3.66)
such that
¢ e L*0,T;V), ¢ e p*(w(z,t) ae. on Q, (3.67)
mw € C([0,T); L*(Q)) n W20, T; V), (3.68)
w < wy ae. (z,t) € Q. (3.69)

Proof. By the hypotheses it follows that the approximating problem (3.37)
(and consequently (3.33)) has, for each &, a unique solution according to
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Proposition 3.1, including the estimates (3.43) (3.45). These do not depend
on € and imply that we can select a subsequence such that

B <£> — ¢ weakly in L0, T;V), (3.70)
G <— + S ) — ¢ 4+ K weakly in L*(0,T; H*()), (3.71)
dv, . 9 ,
T M weakly in L*(0,T; V"), (3.72)
w. = % — w weakly in L%(0,T; V). (3.73)
€

We also get that the trace of [} (;’1—2) on Y, is well defined and since
3 (ﬁ) € L2(0,T; V) it follows that ¢ = 0 on £y. Now

Ve = mgk (3.74)
Me

and since m. — m uniformly on  and m € C(Q) it follows that

ve — v weakly in L2(0,T; L*(Q)). (3.75)
y (3.73) and (3.75) we get
v =muw (3.76)
and obviously
v=0, a.e. on Qo= Qo x (0,7). (3.77)

Using (3.73), (3.74) and (3.75) we still obtain that

\/m_{_:& — v/mw weak-star in L>°(0, T} LQ(Q))a

€
=.m \/ — v weak-star in L°°(0,T; L*(Q2)).
Again by (3.74) and m € C1(Q) we deduce that
l[vell L2(0,7;) < constant independent of e. (3.78)

By Lions-Aubin compactness theorem we conclude then that {v.}. is com-
pact in L2(0,T; L%*(Q)), i.e.,

v. — v strongly in L2(0,T;L*(Q)) as € — 0, (3.79)
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and p = %. Also, by Ascoli-Arzela theorem we can prove that v.(t) — v(t)
strongly in V' (using (3.72) and (3.78)). Using (3.76) we can deduce by
letting € — 0 in the second equation in (3.37) that

mw(0) = vy. (3.80)

We set now
Qs = {z € Q; m(x) > 6} for arbitrary 6 > 0,
Qs = Qs X (O,T), Qm = Qm X (O,T),
and notice that {5 and €2, are open because m € C''(Q). We have

1 1 1 1
— = < — < =on s
me: m+e m J

and by (3.79)

1
We = —V: — — strongly in L*(0, T; L*(Qs)), V6 > 0.
me m

Recall that 8*(r) = 5*(r + Ss) — K.

Let us fix (z,t) € Q5. Using the same argument like in the proof of Theorem
3.1, in Sect. 5.3 in [34], we obtain that

Bt (we 4+ Sg) — ¢ € B (w + S,) weakly in L*(0,T; H' (5)).
By (3.32) and (3.71) we get that

B (we + Ss) — B*(w~+ Sy) — K¥ weakly in L2(0,T; H' (s)).
Since ¢ is arbitrary we obtain

C(x,t) € B (w(z,t) + S) — K ae. (2,t) € Qm = U Qs. (3.81)

>0

Proving that the subset

Q;ﬁb ={(z,t) € Qm; w(x,t) > ws}

has a zero measure, we deduce similarly to the proof of Corollary 3.3 in Sect.
5.3 in [34], that w < w; a.e. (x,t) € Q.
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Finally, since {f((a:,wa + SS)} is bounded in L?(Q), we have

£
K(z,w. + Ss) — « weakly in L(0,T; L*(Q)), (3.82)
and we assert that
k(z,t) = K(z,w(z,t), ae. (z,t)€Q.

Indeed, {IN(m(w€ —1—58)} is weakly convergent to k, on @, too. On the

€

other hand, it is strongly convergent to IN(m(w—l—Ss) on each Qg, because IN(m
is Lipschitz. By the uniqueness of the limit the restriction of the weak limit
to Qs should coincide with K,,(w + Ss). This implies that

k= K(z,w+Ss), ae. on Q. (3.83)

On the subset Qg the function K does not depend on w, so the limit is equal
to Ko(z).

Now we can pass to limit as € — 0 in (3.38) and obtain

/0T<%(t)’¢(t)>v,’vdt+/cz<vé Vo — (xw—i—S);Z)dxdt:

T
= [ 00+ fra®. 060} dt, vo € 220,77,

(3.84)
where ( is given by (3.70).

In (3.84) taking ¢ € L?(0,T; H}(2)) we still deduce that w is the solution
to (3.27) on @, too,

f
—fo t) + fra(b),

where ((z,t) € 8" (w(z,t)) a.e. on Q.
Taking now ¢ € L2(0,T; Hi(Qp)), we obtain the weak form of the equation
on this subset

Qm

> dt+ <v< Vo — (w+5)§j>d dt =
o( )V, dt, Vo € L2(0,T; HE (Qn)),

(3.85)

/ (vg Vo — f?o(x)gi> dxdt =0, Vo € L*(0,T; H} (Q)),  (3.86)
Qo T3

where ( is given by (3.70).
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On the other hand, (3.84) corresponds to the problem

Cacy K@ wES) o, (3.87)

axg
¢ = 0on Xy,
(K(z,w + Ss)is — V() -v = faon g,

d(mw)
ot

and (3.85)—(3.86) to the problem

I(mw) OK p(w + Sy) L
% A¢+ B P fin Qm, (3.88)
acy B g,
3
¢ = 0on X,
(K (w+ Ss)is —VC) v = foon S

We recall that the common boundary of the domains €, and Qg is regular
due to the fact that m € C(Q). Since ¢ € L?(0,7T;V), we deduce that the
trace of ((t) € B*(w(t)) belongs to V a.e. t, so it is continuous across the
boundary 9€y (more exactly along lines £ that cross the boundary), a.e.
t € (0, 7). Thus if we take xy € 9y and denote

¢f()=_ lim  ((t),

r—x0, TELN

then we have

CHt) = lim  ((t) ae. t €(0,7).

z—x(g, cELNYg

We take into account that ¢t € 8*(w(t)) a.e. on @, hence ¢ turns out to
be the solution to the elliptic problem

—AQ(t) = f(t)+ fr.(t) in Qo (3.89)

C(t) = ¢T(t) € p*(w(t)) on g, ae. t € (0,T)

for a.e. t fixed in (0,7), and w is the solution to (3.85) (equivalently to
(3.24)) in Q-
Then, we define the function

* _ w(m,t), if (l‘,t) € Qm
we) = { (B¢, 1)), if (z,8) € Qo = Qo x (0,7), (3.90)

where ( is the solution to (3.89) and show that it is the solution to (3.27) in
the sense of Definition 3.1. Indeed, ((z,t) € B*(w*(x,t)) and ¢ € L?(0,T;V),
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so it follows that w* € D(A), implying that w* < ws a.e. on Q. Then, mw*
belongs to the spaces specified in (3.23) (we take into account that mw* =0
on Qo). Finally, we have to check that w* satisfies the equation (3.26) and
this follows by a straightforward computation using (3.84)—(3.86). Indeed, if
we replace w* in (3.26) we obtain

AT<“Zf“uxww>wydv+

T » a¢
—i—/o /Qm <VC'V¢—K(HJ,’LU+SS)8—> dzdt +

T3

% * 8¢ _
/QO <VC-V¢—K($,U} )6—3:3> dzdt =
(

T
0
_ /OT <d Z;w) (t),¢(t)>w th +
, 0

+/ (vc V- K(zw+ ss>—) dadt =
Q

8:173

_l’_

T
- A F(t) + fror d(B)) vy dt, Yo € L20.T; V),

We took into account the expressions assigned to w* and IN((:E,w + Ss) on
each subset, (3.81) and (3.84). O

COROLLARY 3.1 Under the assumptions of Theorem 3.1 the solution to
(3.27) is unique if in addition

p > coM. (3.91)

Proof. Let us denote by w] and w3 two solutions to (3.27) corresponding to
the same data. We multiply the difference of equations (3.27) written for wj
and w3 by (w] —w3) scalarly in V| integrate on (0,7") and use the Lipschitz
property of K. We get

T
IIWL(wT(T)—w’zk(f))llzvvaE/0 lwi(r) = wi(r)|I*d7 < (3.92)

M2T

< 774 i (7) — wi()|] 1wk (7) — wi(r) |y dr <
M? o .

< = [ leie) -ueltar
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where cq is the constant in Poincaré’s inequality. Here we took into account
that for w € L?(Q) we have |lw||,, < cq |Jw]| .

It follows by (3.91) that mw] = mw}j a.e. on @ and wj = wj a.e. on Qp,
where m(z) > 0. Now we subtract the equations (3.88) corresponding to wj
and w3 and get

-A(G1—¢) = 0inQ,
Cl - CQ = Oon Euu
—V(¢G1 —¢) v = 0on X,

where (1 € B*(w}), (2 € B*(w}) a.e. on Q. Hence ¢ = (3 and since (5*)7!
is single valued then w] = w3 a.e. on Q. O
Remark 3.1 We observe that in the degenerate case the uniqueness of the
solution can be obtained only if the transport is dominated in a sense (see
(3.91)) by the diffusivity. In particular, this is true when K =0, i.e., when
we deal with a horizontal infiltration, also called sorption.

Remark 3.2 By the proof of the solution existence we also ascertain a
consequence that can be inferred at an intuitive level, i.e., the boundary
value problem is separated into two problems corresponding to the domains
Q. and Qq, connected by the flux continuity.

Indeed, if we test the first two equations in (3.88) at ¢ € L?(0,T;V) and
integrate the sum over (0,7") we obtain

o
-
o
l

<vg Vo — Kop(w + S, )532) dadt —

m

/ (w+ Sy )i — vg) v+ ododt +
0

/Q <v< Vo — Ko(z) ¢>d at —
/ f{o(az)z'g - vg) v dodt =

0Qo

// t) + fra(t), 1))y y dadt,

for any ¢ € L2(0,7T;V), where v is the outer normal to 9Q,,, v~ is the
outer normal to 9y and ¢ € §*(w) a.e. on Q,,. Taking into account (3.84)
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we obtain the flux continuity on the common boundary 99 x (0,7

(f{m(w +S,)is — vg) = (f(o(x)z'g - vg) vt on A0 x (0,T). (3.93)

The previous integrals on 02, and 0§y are considered in the sense of dis-
tributions, e.g., as the value of (IN((:E, w ~+ Ss)ig — VC) -v at ¢. By the trace

theorem we see that, generally, the flux (Iz'(a;,w + S5)isz — VC) - v is well
defined as an element of the space L?(0,T; H~/2(99)).
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