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244 Gabriela MarinoshiThe general boundary value problem. Assume that the �ow do-main Ω is an open bounded subset of R
N (N = 1, 2, 3), and the time runswithin the �nite time interval (0, T ). The boundary of Ω is denoted by Γ andit is onsidered pieewise smooth. The vetor of spae variables is denotedby x = (x1, x2, x3) ∈ Ω and the time by t ∈ (0, T ).We onsider the Rihards' equation desribing the water in�ltration intoan isotropi, nonhomogeneous, unsaturated porous medium with a variableporosity, with initial data and various boundary onditions (see [7℄)

∂(m(x)Sw(h))

∂t
−∇ · (k(h)∇h) +

∂k(h)

∂x3
= f in Q = Ω × (0, T ), (1.1)

h(x, 0) = h0(x) in Ω, (1.2)boundary onditions for h on Σ = Γ × (0, T ). (1.3)The unknown in Rihards' equation is the apillary pressure h(x, t) (or pres-sure head, or water pressure in the unsaturated soil), Sw is the water satura-tion in pores, m is the medium porosity and θ = m(x)Sw is the volumetriwater ontent or soil moisture. In this work the dependene of m on xmodels the nonhomogeneity of the medium. The funtion k is the hydrauliondutivity, f(x, t) is a soure (or sink) in the �ow domain and h0 is theinitial pressure distribution in the domain, f and h0 being given. In general
m ∈ (0, 1) but a limit ase withm tending to 0 may have a physial relevane.The properties of the dependene of Sw and k on h will be spei�ed.In partiular, we shall exemplify the theory for the ase of the medium havinga part of the boundary, Γα semipermeable, allowing a water �ux aross itand the other part Γu at whih the pressure will be given. Here, Γu and
Γα are disjoint and Γ = Γu ∪ Γα. In in�ltration problems, we an oftenmeet the situation in whih water ponds on the soil surfae (let it be Γu).This happens when the rainfall rate is greater than the soil ondutivity atsaturation and the soil begins to saturate from the surfae, or when the soilsurfae is in ontat with an open water body, for example the bottom of alake. In onsequene the boundary onditions we shall onsider are

h(x, t) = hu(x, t) ≥ 0 on Σu = Γu × (0, T ), (1.4)
q · ν = fα on Σα = Γα × (0, T ), (1.5)where q is the water �ux de�ned by
q(x, t) = k(h)i3 − k(h)∇h, (1.6)
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ν is the outer normal vetor at the boundary and i3 is the unit vetor of the
Ox3 axis, downwards direted.We an reverse the boundary onditions by onsidering that Γα is the soilsurfae and Γu is the underground boundary. Thus we an interpret thatthe �ux through the soil surfae, is provided by a water supply as a rain orirrigation and that the lower part of the porous medium is in ontat withthe phreati aquifer.Desription of the hydrauli model. The behaviour of an unsat-urated soil, i.e., partially �lled with water, is ompletely known from thehydrauli point of view if two funtions are given: one is the retention urve

Sw = C̃∗(h), (1.7)linking the water saturation Sw, to the pressure head h, and the other is thehydrauli ondutivity
k = k(h), (1.8)both depending nonlinearly on h. For an isotropi soil the latter is a salarfuntion.Sine we study the nonhystereti ase, the retention urve and the hydrauliondutivity are assumed single-valued funtions of the pressure.In soil sienes, the unsaturated pressure is onsidered negative (h < 0) andthe saturation is haraterized by h = 0. Also, it is onsidered that theproess of in�ltration-drainage (opposite to in�ltration) takes plae betweentwo limits of h. The lowest limit is denoted hr and at this pressure head thesoil is onsidered dry even if some water still resides in the pores and thehydrauli ondutivity is still positive. The orresponding water saturationis denoted Sr and the volumetri water ontent θr is alled residual moisture(see [7℄). The upper limit is h = 0 where saturation is reahed and watersaturation beomes equal to 1. However, we shall denote this value by Ss.At saturation, moisture attains its saturation value θs equal to the mediumporosity at this point (if the porosity is not onstant). The parts of themedium where h > 0 are ompletely saturated. We de�ne the derivative ofthe water saturation with respet to the pressure

C̃(h) =
dSw

dh
(h). (1.9)For the saturated �ow, when h ≥ 0, the previously funtions take onstantvalues.



246 Gabriela MarinoshiGenerally, the hydrauli models raise a di�ult mathematial problem. Whenthe pressure head in the unsaturated soil omes lose to the saturation value,
C̃ vanishes and Rihards' equation degenerates. Correspondingly, the di�u-sion oe�ient expressed as a funtion of moisture exhibits a blow-up de-velopment around saturation. In soil sienes the model whih re�ets thisbehaviour is the strongly nonlinear Green-Ampt limit model, see [10℄. Thesituation in whih C̃(0) > 0 orresponds to a less nonlinear hydrauli be-haviour, the typial model for this lass being the Burgers' model, see [10℄,too. Depending on the partiularities of the hydrauli funtions whih aredetermined by the soil pore struture, the models of water in�ltration rangebetween these two limit models (see [44℄).Previous theoretial results. In the most mathematial literature de-voted to this subjet the blow-up of the di�usivity in the di�usive form ofRihards' equation was avoided, by onsidering a �nite-valued di�usivity, orstudying the problem only in the pressure form (see [2℄, [4℄, [12℄, [19℄, [20℄,[25℄, [26℄, [27℄, [37℄, [38℄). More reently, in the paper [9℄ a model of thesaturated-unsaturated �ow lying on a speial de�nition of the boundary on-ditions that hanges during the phenomenon evolution, has been developedalso for a �nite value of the di�usivity at saturation (whih was implied bythe assumption that C̃(0) > 0). Following the tehnique presented in [20℄ themodel was redued to systems in lass of Stefan-like problems of high-order,see [19℄.However, apart from spei� in�ltration problems, previous existene anduniqueness studies for solutions to the ellipti-paraboli equation

∂(b(u))

∂t
+ ∇ · (a(∇u, b(u))) + f(b(u)) = 0 in Ω × (0, T )have been presented in the literature espeially using a tehnique inspiredby the method of entropy solutions introdued by S.N. Krushkov in [28℄.Originally, this method was devoted to prove L1-ontration for entropy so-lutions for salar onservation laws, i.e., generalized solutions in the sense ofdistributions satisfying admissibility onditions similar to those of entropygrowth in gas dynamis (see also [8℄). J. Carillo applied Krushkov's methodto seond order equations (see [13℄, [14℄, [15℄, [16℄). F. Otto (see [35℄, [36℄)proved a L1-ontration priniple and uniqueness of solutions for this type ofequation by applying Krushkov's tehnique only to the time variable. H.W.Alt and S. Lukhaus showed in [1℄ that the natural solution spae for this



Nonhomogeneous Porous Media 247equation is given by all funtions u of �nite energy in the sense that
sup

t∈(0,T )

∫

Ω
Ψ(b(u(t)))dx+

∫

Q
|∇u|r dxdt <∞,

where Ψ is the Legendre transform of the primitive of b.We also mention the results of J.L. Vázquez regarding the fast di�usionequations (see [18℄, [40℄, [41℄, [42℄, [17℄ and the book [43℄).Conerning the degenerate evolution equations, extensive studies have beenperformed for linear operators, relying on the properties of the resolvent ofan appropriate multivalued linear operator aounting for the multipliationby the funtion m (see [21℄, [23℄ and the monograph [22℄). We mention alsothe paper [24℄ related to a similar topi in whih a degenerate model withhomogeneous Dirihlet boundary onditions and no transport was studied.The analysis of the well-posedness of the di�usive form of Rihards' equationin the unsaturated ase (θ < θs) with the porositym onstant, was developedin the papers [6℄, [29℄, [30℄, [31℄ within a funtional approah. The existeneresults whih were dedued showed that solutions reahing saturation an beobtained but only on zero-measure subsets of Q. Somehow, this was expetedbeause the unsaturated model re�ets a behaviour of a partiular soil onlyand not the general feature of the proess whih inludes the possible soilsaturation.In the paper [32℄ a rigorous mathematial model able to desribe the sat-uration ourrene (with the blow-up of the di�usivity) was introdued fora homogeneous porous medium (with m onstant) in the di�usive form anddeveloped then in [33℄.In the �rst part of this hapter we introdue the di�usive models of water�ow in saturated-unsaturated media haraterized by a spae variation ofthe porosity. Then we analyze a model with mixed boundary onditions in-volving a �ux on a part of the boundary and a nonhomogeneous Dirihletondition orresponding to a singular situation on another part of the do-main boundary. The model will be degenerate beause we shall assume thatporosity an vanish on a subset of Ω.



248 Gabriela Marinoshi2. Di�usion models in nonhomogeneous porous me-diaWe intend �rst to reveal how the partiular harater of the hydrauli modelsis determined by the behaviour of the funtions C̃∗ and k around 0.Mathematial hypotheses. For the unsaturated �ow, where h < 0, weassume the following:
(m1) C̃

∗ : [hr, 0) → [Sr, Ss) is single-valued, positive, di�erentiable on [hr, 0),monotonially inreasing ;
(m2) k : [hr, 0) → [Kr,Ks) is single-valued, positive, di�erentiable on [hr, 0),monotonially inreasing and satis�es the property k′(hr) = 0;
(m3) C̃ : [hr, 0) → (C̃0, C̃r] is single-valued, non-negative, di�erentiable on
[hr, 0) monotonially dereasing and satis�es C̃ ′(hr) = 0;In the saturated �ow we have
(m4) C̃

∗(h) = Ss, k(h) = Ks and C̃(h) = 0 for h ≥ 0.We denote
Ss = (C̃∗)(0) > 0, (2.1)

C̃0 = (C̃∗)′(0) = C̃(0) ≥ 0, (2.2)
Ks = k(0) > 0, (2.3)

K ′
0 = lim

hր0
k′(h), K ′

0 ∈ [0,∞). (2.4)Therefore, the unsaturated �ow is haraterized either by h < 0 or Sw ∈
[Sr, Ss) while the saturated one is indiated by h ≥ 0 or Sw = Ss.The positive values Sr, Ss and their orresponding ondutivities Kr, Ksare soil harateristis and they are known for eah type of soil apart. Theproperties k′(hr) = 0 and C̃ ′(hr) = 0 were put into evidene by experiments(see [10℄).We notie that the funtions C̃∗ and k are ontinuous on [hr,∞), and hr isthe maximum point for C̃. Also C̃ is ontinuous on [hr,∞), exept possiblyat the point 0.We stress the fat that these properties are veri�ed by the empirial hydraulimodels set up in the last deades (see e.g., [44℄).We emphasize that the main role is played by the inrease rate of the fun-tions C̃∗ and k around 0, the signi�ant ontribution being given by thebehaviour of the retention urve C̃∗.



Nonhomogeneous Porous Media 2492.1. Strongly nonlinear saturated-unsaturated di�usive modelLet us assume (m1) − (m4) and
C̃0 = 0whih is the main harateristi of this ase. It follows then that C̃ is on-tinuous on [hr,∞) and we an write C̃∗ : [hr,∞) → [Sr, Ss], as

C̃∗(h) =

{
Sr +

∫ h
hr
C̃(ζ)dζ, h < 0,

Ss, h ≥ 0.
(2.5)Strongly nonlinear hydrauli ondutivity. This situation orre-sponds to K ′

0 ∈ R+ = (0,∞).We de�ne a primitive of K by
K∗(h) =

{
K∗

r +
∫ h
hr
k(ζ)dζ, h < 0,

K∗
s +Ksh, h ≥ 0,

(2.6)where K∗ : [hr,∞) → [K∗
r ,∞) and

K∗
s = K∗(0) > 0. (2.7)The funtion K∗ is di�erentiable, monotonially inreasing on [hr,∞) andwith these notations Rihards' equation (1.1) beomes

∂(m(x)Sw)

∂t
− ∆K∗(h) +

∂k(h)

∂x3
= f in Q. (2.8)By the initial ondition (1.2) we obtain

Sw(x, 0) = Sw0, Sw0 = C̃∗(h0).We an also onsider the initial ondition
m(x)Sw(x, 0) = θ0(x) in Ω, where θ0 = m(x)C̃∗(h0) (2.9)and orresponding replaements should be made in the boundary onditions(1.4)�(1.5).Sine it is more onvenient to work with the variable Sw, we introdue from(2.5) the inverse of C̃∗, (C̃∗)−1 : [Sr, Ss] → [hr,+∞), by

(C̃∗)−1(Sw) =

{
(C̃∗)−1(Sw), Sw ∈ [Sr, Ss),
[0,+∞), Sw = Ss,

(2.10)



250 Gabriela Marinoshiwhih is multivalued at Sw = θs and ontinuous and monotonially inreasingon [Sr, Ss). Then, we replae it all over in (1.1)�(1.5).Thus, instead of the ondutivity written in funtion of pressure, we obtainthe ondutivity expressed in terms of water saturation
K̃ : [Sr, Ss] → [Kr,Ks], K̃(Sw) = (k ◦ C̃∗)−1(Sw), Sw ∈ [Sr, Ss], (2.11)funtion that preserves some of the properties of k, i.e., it is positive, di�eren-tiable (exept at Ss) and monotonially inreasing, sine for any Sw ∈ [Sr, Ss)we have that
K̃ ′(Sw) = k′((C̃∗)−1(Sw)) · ((C̃∗)−1)′(Sw) =

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
> 0. (2.12)We notie also that

K̃ ′(Sr) = 0 (2.13)and
lim

SwրSs

K̃ ′(Sw) = +∞. (2.14)However, for Sw ∈ [Sr, Sl] with Sl < Ss the derivative of K̃ is bounded, sothat K̃ follows to be Lipshitz on intervals stritly inluded in [Sr, Ss)
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤Ml

∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Sl], Sl < Ss, (2.15)where
Ml = max

Sw∈[Sr ,Sl]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
<∞. (2.16)Plugging (2.10) in (2.6) we get the funtion

β̃∗(Sw) =

{
(K∗ ◦ (C̃∗)−1)(Sw), Sw ∈ [Sr, Ss),
[K∗

s ,+∞), Sw = Ss
(2.17)that is multivalued at Sw = Ss but is ontinuous from the left at this point

lim
SwրSs

β̃∗(Sw) = K∗
s . (2.18)For Sw ∈ [Sr, Ss) the funtion (C̃∗)−1 is monotonially inreasing, so thatwe an alulate β̃∗(Sw) by hanging the variable in the integral (2.6) anddenoting ζ = (C̃∗)−1(ξ). In this way we get

β̃∗(Sw) = K∗
r +

∫ Sw

Sr

β(ξ)dξ, for Sw ∈ [Sr, Ss),
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β̃(Sw) =

k((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
, for Sw ∈ [Sr, Ss). (2.19)In this way we have rigorously reovered the de�nition of the water di�usivityfuntion.We notie that β̃ has two important properties

β̃(Sw) ≥ ρ̃ = β̃(Sr) =
Kr

C̃r

> 0, ∀Sw ∈ [Sr, Ss) (2.20)and
lim

SwրSs
β̃(Sw) = +∞. (2.21)Moreover, by the hypotheses made upon the funtions C̃ and k it followsthat β̃ is monotonially inreasing, i.e.,

β̃′ =
k′C̃ − kC̃ ′

C̃3
≥ 0, on [Sr, Ss), (2.22)

β̃′(Sr) = 0. (2.23)Hene, β̃∗ is twie di�erentiable and stritly monotonially inreasing on
[Sr, Ss) and as a matter of fat we an write

β̃∗(Sw) =

{
K∗

r +
∫ Sw

Sr
β̃(ξ)dξ for Sw ∈ [Sr, Ss),

[K∗
s ,+∞) for Sw = Ss.

(2.24)Moreover, by (2.20) and (2.24) we dedue that the funtion β̃∗ satis�es theinequality
(β̃∗(Sw) − β̃∗(Sw))(Sw − Sw) ≥ ρ(Sw − Sw)2,∀Sw, Sw ∈ [Sr, Ss]. (2.25)In onlusion we an setModel 1. Let us assume (m1) − (m4), C̃0 = 0 and K ′

0 ∈ R+. Then, thedi�usive model of the strongly nonlinear saturated-unsaturated in�ltrationwith a strongly nonlinear hydrauli ondutivity is given by
∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(Sw)

∂x3
= f in Q, (2.26)

m(x)Sw(x, 0) = θ0(x) in Ω, (2.27)boundary onditions in Sw on Σ, (2.28)



252 Gabriela Marinoshiwhere β̃∗ is the multivalued funtion de�ned by (2.24), β̃ is given by (2.19)and K̃ is the single-valued funtion (2.11). Moreover, β̃∗ is strongly mono-tone, β̃ satis�es (2.20)�(2.23) and K̃ has the properties (2.13)�(2.16).The boundary onditions (1.4)�(1.5) beome
Sw(x, t) = Ss on Σu, (2.29)

(
K̃(Sw)i3 −∇β̃∗(Sw)

)
· ν = fα on Σα. (2.30)The quali�er of strongly nonlinear is implied by the property of the funtion

β whih evolves highly nonlinear around the saturation point, Ss. This isjusti�ed by the fat that the typial representative for this behaviour (or-related with that of its primitive β̃∗ whih is �nite at this point) is of theform
β̃(Sw) =

1

(Ss − Sw)1−p
for 0 < p < 1.We notie that this form of the di�usivity funtion reveals the harater offast di�usion of this proess (see the review of di�usion-type proesses in[3℄).However, β̃∗ is multivalued and the sign equal (=) in (2.26) is not properlyused. The appropriate symbol should be ∋ . Also, we shall speify later theexat meaning of the solutions to (2.26)-(2.30). The fat that equation (2.26)is multivalued must not be surprising if one takes into aount that it modelsa free boundary problem. This means that, at eah time t, the domain Ω anbe deomposed into two regions: the saturated one, {x; Sw(x, t) = Ss} andthe unsaturated one {x; Sw(x, t) < Ss}, separated by a free boundary. Theextension of a nonlinear funtion arising in suh a problem to a multivaluedone is ommon in the theory of nonlinear di�erential equations with dison-tinuous oe�ients as well as in that modelling free boundary proesses.Thus, equation (2.26) represents an extension of Rihards' equation (writtenfor the unsaturated in�ltration) to the simultaneous saturated-unsaturated�ow.Weakly nonlinear hydrauli ondutivity. A strongly nonlinearmodel, but with a weaker nonlinear behaviour of the ondutivity may beobtained under onditions that lead to limSwրSs

K̃ ′(Sw) <∞. To reah suha situation we have to impose just from the beginning a stronger onditionfor k, namely that there exists M > 0, suh that
k′(h) ≤MC̃(h), ∀h ∈ [hr, 0], (2.31)
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K ′

0 = 0, lim
hր0

k′(h)

C̃(h)
= M. (2.32)In this way K̃ turns out to be Lipshitz on [Sr, Ss] with the onstant M. Weobserve that the funtions β̃ and K̃ remain monotonially inreasing. Thissituation is put into evidene e.g., in the van Genuhten model (see [39℄) forthe model parameter m lose to 1. This ase an be resumed inModel 2. Let us assume (m1) − (m4), C̃0 = 0 and (2.31)�(2.32). Then, thedi�usive model of strongly nonlinear saturated-unsaturated in�ltration with aweakly nonlinear hydrauli ondutivity is given by (2.26)�(2.28), where thefuntions β̃ and β̃∗ have the properties spei�ed in Model 1 exept for K̃whih is given by (2.11), with

lim
SwրSs

K̃ ′(Sw) = M <∞.2.2. Weakly nonlinear saturated-unsaturated di�usive modelFor some hydrauli models the di�usivity is �nite at Sw = Ss. We intendto reveal whih properties of the funtions C̃∗ and k an provide suh avalue. Let us suppose that the retention urve inreases from the left to itsmaximum value with a nonzero rate at the left of zero,
C̃0 > 0,but very lose to 0. In this ase C̃∗ is not di�erentiable at h = 0 and thefuntion

C̃ : [hr,∞) → [0, C̃r], C̃(h) =

{
dSw

dh
(h), h < 0

0, h ≥ 0
(2.33)is no longer ontinuous at h = 0, having the jump ∣∣∣C̃0

∣∣∣ = lim
hր0

dSw

dh .The funtions K̃ and β̃∗ and β̃ will be de�ned in the same way as before,but in this ase the value of β̃ at Sw = Ss exists and it is
lim

SwրSs

β̃(Sw) =
Ks

C̃0

<∞. (2.34)However, the funtion β̃∗(Sw) will be extended in a multivalued way, by
β̃∗(Sw) = K∗

s at Ss.



254 Gabriela MarinoshiWeakly nonlinear hydrauli ondutivity. Assume that the deriva-tive of k at h = 0, has a �nite value, K ′
0 < ∞. Hene, K̃ is Lipshitz withthe onstant

M = max
Sw∈[Sr,Ss]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
≤ K ′

0

C̃0

, (2.35)so that we an settleModel 3. Let us assume (m1) − (m4), C̃0 > 0 and K ′
0 <∞. Then, the di�u-sive model of weakly saturated-unsaturated in�ltration with a weakly nonlinearhydrauli ondutivity is given by (2.26)-(2.28), where β̃∗ is the multivaluedfuntion de�ned by (2.24), β̃ is given by (2.19) and K̃ is the single-valuedfuntion (2.11) with K̃ ′(Sw) �nite on [Sr, Ss]. Moreover, β̃∗ is strongly mono-tone, (2.25), β̃ satis�es (2.20), (2.22)-(2.23) with

lim
SwրSs

β̃(Sw) < +∞ (2.36)and K is Lipshitz on [Sr, Ss], i.e., there exists M > 0 suh that
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤M
∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Ss]. (2.37)It is obvious that this situation whih is illustrated by nonsingular di�usivitiesinluding also power funtions
β̃(Sw) = Sp

w, with p > 1,is related to a slow di�usion and to the well-known porous media equation(see [3℄).We write the model in the dimensionless form, introduing for example
Sdim

w =
Sw − Sr

Ss − Sr
, K̃dim(Sdim

w ) =
K̃(Sw) −Kr

Ks −Kr
, β̃dim(Sw) =

β̃(Sw)

βd
,where βd is a harateristi value for the di�usivity. Without entering intodetails we speify that the dimensionless model has the same form as (2.26)�(2.28). The dimensionless Sdim

wr = 0 and Kr = 0 and for onveniene, weshall extend β̃ and K̃ at the left of Sdim
wr by the onstant values ρ̃ and 0 (forall these details see [34℄). For simpliity, further we shall no longer indiatedimensionless by the supersript dim.



Nonhomogeneous Porous Media 2553. Analysis of the porosity-degenerate modelIn this part we shall approah Model 2 given by (2.26)�(2.27), (2.29)�(2.30)orresponding to the strongly nonlinear saturated-unsaturated ase with aweakly nonlinear hydrauli ondutivity. We shall study a limit ase letting
m to vanish on a subset Ω0 stritly inluded in Ω, see Fig. 1. This hara-terizes the existene of possible solid intrusions in the soil and we shall allthis model porosity-degenerate.In fat we intend to treat a little more general mathematial problem, inwhih we shall onsider that the funtion ondutivity depends both on thespae variables and the solution. Therefore the model reads

∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(x, Sw)

∂x3
∋ f in Q, (3.1)

m(x)Sw(x, 0) = Sw0(x) in Ω, (3.2)
Sw(x, t) = Ss on Σu, (3.3)

(
K̃(x, Sw)i3 −∇β̃∗(Sw)

)
· ν ∋ fα on Σα. (3.4)

Fig. 1: The domain Ω.At the points where m vanishes the equation degenerates. The funtion mis supposed to be essentially bounded, m ∈ L∞(Ω) with 0 ≤ m(x) ≤ 1 a.e.
x ∈ Ω. However, we shall see that this assumption is not su�ient to get the



256 Gabriela Marinoshisolution existene and a stronger hypothesis upon m is required. We speifyone again the hypotheses made for the problem parameters, i.e.,
β̃(r) ≥ ρ̃ for r < Ss, β̃(r) = ρ̃ for r ≤ 0, lim

rրSs

β̃(r) = +∞, (3.5)
β̃∗(r) =

{ ∫ r
0 β̃(ξ)dξ, r < Ss

[K̃∗
s ,+∞), r = Ss,

(3.6)
lim

r→−∞
β̃∗(r) = −∞, lim

rրSs

β̃∗(r) = K̃∗
s > 0, (3.7)

(β̃∗(r) − β̃∗(r))(r − r) ≥ ρ̃(r − r)2,∀r, r ∈ (−∞, Ss]. (3.8)In what onerns K̃ we assume that it has the form
K̃(x, r) =

{
K̃0(x) on {x; m(x) = 0}
K̃m(r) otherwise, (3.9)

K̃(x, r) = 0 for r ≤ 0 and K̃(x, r) = K̃s for r ≥ Ss, (3.10)where K̃s = K̃(x, Ss) > 0.Moreover, we assume that K̃0 ∈ H1(Ω0) and K̃ is Lipshitz with respet to
r, uniformly with respet to x, i.e., there exists M > 0, suh that(iK) ∣∣∣K̃(x, r) − K̃(x, r)

∣∣∣ ≤M |r − r| , ∀r, r ∈ R, ∀x ∈ Ω.Finally we shall impose that
m ∈ C1(Ω), 0 ≤ m(x) ≤ 1. (3.11)Funtional framework. We perform a funtion replaement by denot-ing

w = Sw − Ss, (3.12)so that we are led to the system
∂(m(x)w)

∂t
− ∆β̃∗(w + Ss) +

∂K̃(x,w + Ss)

∂x3
∋ f in Q, (3.13)

m(x)w(x, 0) = v0(x) in Ω, (3.14)
w(x, t) = 0 on Σu, (3.15)

(
K̃(x,w + Ss)i3 −∇β̃∗(w + Ss)

)
· ν ∋ fα on Σα, (3.16)



Nonhomogeneous Porous Media 257whih we are going to study. Here v0(x) = Sw0 −m(x)Ss. We shall indiatethe value of w at saturation by ws (atually, by (3.12) it is equal to zero, butwe shall keep the notation ws in order to put into evidene the behaviour ofthe solution at this point).We onsider the spaes L2(Ω) with the standard norm denoted ‖·‖ ,

V = {w ∈ H1(Ω); w = 0 on Γu}, (3.17)with the norm
‖ψ‖V =

(∫

Ω
|∇ψ|2 dx

)1/2

, (3.18)and its dual V ′ on whih we introdue the salar produt by
(w,w)V ′ = 〈w,ψ〉V ′,V ,where ψ is the solution to the boundary value problem

−∆ψ = w, ψ = 0 on Γu, ∇ψ · ν = 0 on Γα. (3.19)Let fα ∈ L2(0, T ;L2(Γα)). We de�ne the funtional fΓα ∈ L2(0, T ;V ′) by
fΓα(t)(ψ) = −

∫

Γα

fα(t)ψdσ for any ψ ∈ V (3.20)and notie that
‖fΓα(t)‖V ′ ≤ ctr ‖fα(t)‖L2(Γα)where ctr is the onstant provided by the trae theorem.For the further mathematial developments it is more onvenient to workwith the multivalued funtion
β∗(r) = β̃∗(r + Ss) − K̃∗

s . (3.21)Definition 3.1 Let
m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)), (3.22)
v0 ∈ L2(Ω),

v0

m
∈ L2(Ω), v0

m
≤ ws, a.e. x ∈ Ω.We all w a solution to (3.13)-(3.16) if

w ∈ L2(0, T ;V ), (3.23)
ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q,

mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′),



258 Gabriela Marinoshisatis�es the equation
〈

d(m(x)w)

dt
(t), ψ

〉

V ′,V

+

∫

Ω

(
∇ζ(t) · ∇ψ − K̃(x,w(t) + Ss)

∂ψ

∂x3

)
dx =

= 〈f(t), ψ〉V ′,V + 〈fΓα(t), ψ〉V ′,V , a.e. t ∈ (0, T ), ∀ψ ∈ V, (3.24)the initial ondition m(x)w(0) = v0 and the property
w ≤ ws, a.e. (x, t) ∈ Q. (3.25)Eq. (3.24) an be written also in the equivalent form

∫ T

0

〈
d(m(x)w)

dt
(t), φ(t)

〉

V ′,V

dt (3.26)
+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).Replaing Sw from (3.12) we get that Sw satis�es

Sw ∈ L2(0, T ;H1(Ω)),

ζ̃ ∈ L2(0, T ;H1(Ω)), ζ̃ ∈ β̃∗(Sw(x, t)) a.e. on Q,
mSw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′).We set
D(A) = {θ ∈ L2(Ω); ∃η ∈ V, η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω}and we introdue the multivalued operator A : D(A) ⊂ V ′ → V ′ by

〈Aθ,ψ〉V ′,V =

∫

Ω

(
∇η · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx,for any ψ ∈ V, where η ∈ β∗(θ) a.e. x ∈ Ω. Thus, we an write the problemd(m(x)w)

dt
+Aw ∋ f + fΓα , a.e. t ∈ (0, T ) (3.27)

m(x)w(0) = v0.We onsider now the multipliation operator
M : D(A) → L2(Ω), Mw = mw, (3.28)



Nonhomogeneous Porous Media 259whose inverse is multivalued and denoting
v(x, t) = m(x)w(x, t), (3.29)we an rewrite (3.27) in terms of v as

dv

dt
+AMv ∋ f + fΓα , a.e. t ∈ (0, T ) (3.30)

v(0) = v0,where AMv = AM−1v = A
(

v
m

) for any v ∈ D(AM ), where
D(AM ) =

{
v ∈ L2(Ω);

v

m
∈ L2(Ω),∃η ∈ V, η ∈ β∗

( v
m

) a.e. x ∈ Ω
}
.We see that v ∈ D(AM ) implies v

m ∈ D(A). Conversely, if w = v
m ∈ D(A),then v = mw ∈ D(AM ).We still de�ne j̃ : R → (−∞,+∞] by

j̃(r) =

{ ∫ r
0 β̃

∗(ξ)dξ, r ≤ Ss

+∞, r > Ss,where the left limit of β̃∗ at Ss is spei�ed in (3.7). This funtion is proper,onvex, lower semiontinuous and
∂j̃(r) =





β̃∗(r), r < Ss,

[K̃∗
s ,+∞), r = Ss,

∅, r > Ss.

(3.31)(The proof is similar to that done for a slightly di�erent funtion in [34℄,Set. 5.3.)3.1. Approximating problemSine the operator AM is multivalued, in order to prove the existene for(3.27) we introdue an approximating problem replaing m by
mε(x) = m(x) + ε, for ε > 0and β̃∗ by the single-valued ontinuous funtion

β̃∗ε (r) =

{
β̃∗(r), r < Ss − ε

β̃∗(Ss − ε) +
eK∗

s−
eβ∗(Ss−ε)

ε [r − (Ss − ε)] , r ≥ Ss − ε.
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β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s (3.32)and the single valued operator
Aε : D(Aε) ⊂ V ′ → V ′,

〈Aεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε (θ) · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx, ∀ψ ∈ V,with

D(Aε) = {θ ∈ L2(Ω);β∗ε (θ) ∈ V }.We an write the approximating Cauhy problem (orresponding to (3.27))d(mεwε)

dt
+Aεwε = f + fΓα , a.e. t ∈ (0, T ), (3.33)
mεwε(0) = v0ε,where

v0ε = mε
v0

m
. (3.34)Definition 3.2 Let ε > 0 and

m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0

m
∈ L2(Ω),

v0

m
≤ ws.A solution to (3.33) is a funtion wε that satis�es

wε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′),

β∗ε (wε) ∈ L2(0, T ;V ),

∫ T

0

〈
d(mεwε)

dt
(t), φ(t)

〉

V ′,V

dt

+

∫

Q

{
∇β∗ε (wε) · ∇φ− K̃ (x,wε + Ss)

∂φ

∂x3

}
dxdt (3.35)

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),and the initial ondition mεwε(0) = v0ε.



Nonhomogeneous Porous Media 261Then denoting
vε(x, t) = mε(x)wε(x, t), (3.36)we an write problem (3.33) in the equivalent form (orresponding to (3.30))

dvε

dt
+Bεvε = f, a.e. t ∈ (0, T ), (3.37)
vε(0) = v0ε.The operator Bε : D(Bε) ⊂ V ′ → V ′ is single-valued, has the domain

D(Bε) =

{
θ ∈ L2(Ω); β∗ε

(
θ

mε

)
∈ V

}and is given by
〈Bεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε

(
θ

mε

)
· ∇ψ − K̃

(
x,

θ

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.Then (3.37) an be still written

∫ T

0

〈
dvε

dt
(t), φ(t)

〉

V ′,V

dt+ (3.38)
+

∫

Q

{
∇β∗ε

(
vε

mε

)
· ∇φ− K̃

(
x,

vε

mε
+ Ss

)
∂φ

∂x3

}
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),whih is in fat (3.35).For a later use we de�ne j̃ε : R → R,

j̃ε(r) =

∫ r

0
β̃∗ε (ξ)dξ,and notie that

∂j̃ε(r) = β̃∗ε (r), ∀r ∈ R. (3.39)First we shall prove that (3.37) has, for eah ε > 0, a unique solution, vε inappropriate funtional spaes.



262 Gabriela Marinoshi3.2. Existene for the approximating problemProposition 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1,

f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0

m
∈ L2(Ω),

v0

m
≤ ws a.e. on Ω.Then, the Cauhy problem (3.37) has, for eah ε > 0, a unique solution

vε ∈ C([0, T ];L2(0, T )) ∩W 1,2(0, T ;V ′) ∩ L2(0, T ;V ) (3.40)
β∗ε

(
vε

mε

)
∈ L2(0, T ;V ), (3.41)

j̃ε

(
vε

mε

)
∈ L∞(0, T ;L1(Ω)), (3.42)that satis�es the estimates

∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ +

+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.43)
≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,

∥∥∥∥
√
mε

(
vε

mε
(t)

)∥∥∥∥ ≤ c0, ∀t ∈ [0, T ], (3.44)
‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ], (3.45)where β0, c0 and c1 do not depend on ε.Moreover, if vε and vε are two solutions orresponding to the pairs of data f,

fΓα , v0 and f, fΓα , v0, we have the estimate
‖vε(t) − vε(t)‖2

V ′ +

∫ t

0
‖vε(τ) − vε(τ)‖2 dτ ≤ (3.46)

≤ α0(ε)
(
‖v0 − v0‖2

V ′ +

+

∫ T

0

∥∥f(t) − f(t)
∥∥2

V ′ dt+

∫ T

0

∥∥fα(t) − fα(t)
∥∥2

L2(Γα)
dt

)
.



Nonhomogeneous Porous Media 263Proof. The proof is based on the quasi m-aretivity of the operator Bεwhih is proved below. To show the quasi monotony we ompute
(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ = λ

∥∥θ − θ
∥∥2

V ′ +

+

∫

Ω
∇

(
β∗ε

(
θ

mε

)
− β∗ε

(
θ

mε

))
· ∇ψdx−

−
∫

Ω

(
K̃(x,

θ

mε
+ Ss) − K̃(x,

θ

mε
+ Ss)

)
∂ψ

∂x3
dx,where −∆ψ = θ − θ, ∇ψ · ν = 0 on Γα and ψ = 0 on Γu. Hene

(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ ≥

≥ λ
∥∥θ − θ

∥∥2

V ′ + ρ̃

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

−M

∥∥∥∥
θ − θ

mε

∥∥∥∥
∥∥θ − θ

∥∥
V ′ ≥

≥
(
λ− M2

2ρ̃ε

)∥∥θ − θ
∥∥2

V ′ +
ρ̃

2

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

> 0for λ > M2

2eρε . Here we used the fat that ε ≤ mε(x) ≤ 1 + ε.Next we have to prove that
R(I +Bε) = V ′,i.e., to show that the equation
vε +Bεvε = g (3.47)has a solution vε ∈ D(Bε) for any g ∈ V ′. Reall that ε is �xed.If we denote β∗ε (

vε

mε

)
= ζ ∈ V, due to the fat that β∗ε is ontinuous andmonotonially inreasing on R and R(β∗ε ) = (−∞,∞) it follows that itsinverse

Gε(ζ) = mε(β
∗
ε )−1(ζ) (3.48)is ontinuous from V to L2(Ω) beause

∥∥Gε(ζ) −Gε(ζ)
∥∥ = (3.49)

=
∥∥mε

(
(β∗ε )−1(ζ) − (β∗ε )−1(ζ)

)∥∥ ≤

≤ 1 + ε

ρ̃

∥∥ζ − ζ
∥∥ ≤ (1 + ε)cΩ

ρ̃

∥∥ζ − ζ
∥∥

V
, ∀ζ, ζ ∈ V.Here we used (3.8) and Poinaré's inequality (with the onstant cΩ). So,(3.47) an be rewritten as

Gε(ζ) +Bε
0ζ = g (3.50)
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0 : V → V

′ de�ned by
〈Bε

0ζ, ψ〉V ′,V =

∫

Ω

(
∇ζ · ∇ψ − K̃

(
x,
Gε(ζ)

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.(3.51)The operator Gε + Bε

0 is monotone, ontinuous and oerive for λ > M2

2eρε ,hene it is surjetive. Therefore (3.50) has a solution ζ ∈ V, implying that(3.47) has a solution vε ∈ D(Bε).a) Now we assume that f ∈ W 1,1(0, T ;V ′), fα ∈ W 1,1(0, T ;L2(Ω)) and
v0

m ∈ V whih is equivalent to v0ε ∈ D(Bε).Therefore, the existene of a unique solution to (3.37)
vε ∈W 1,∞(0, T ;V ′) ∩ L∞(0, T ;D(Bε))follows from the general theorems for evolution equations with m-aretiveoperators, hene β∗ε (

vε

mε

)
∈ L∞(0, T ;V ). Sine the inverse of β∗ε is Lipshitzwe dedue that vε

mε
∈ L∞(0, T ;V ).It follows that (3.33) has a solution

wε =
vε

mεin the same spaes.To prove estimate (3.43) we test (3.37) at β∗ε (vε) and integrate over (0, t).Taking into aount (3.36) and (3.32) we have
∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ +

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ
≤

∫ t

0

∥∥∥∥K̃
(
·, vε

mε
(τ)

)∥∥∥∥
∥∥∥∥β

∗
ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ

+

∫ t

0
‖f(τ)‖V ′

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ +

∫ t

0
‖fΓα(τ)‖V ′

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ

≤ 1

2

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)(τ)

)∥∥∥∥
2

V

dτ + C0,where we have used the boundedness of K̃ and
C0 =

3

2

{
K̃2

sTmeas(Ω) +

∫ T

0
‖f(τ)‖2

V ′ dτ + c2tr

∫ T

0
‖fα(τ)‖2

L2(Γα) dτ

}
.
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∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ

=

∫ t

0

〈
dvε

dτ
(τ), β̃∗ε

(
vε

mε
(τ) + Ss

)
− K̃∗

s

〉

V ′,V

dτ

=

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx−

∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx

−
∫

Ω
K̃∗

s vε(x, t)dx+

∫

Ω
K̃∗

s v0εdxand obtain that
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

1

2

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤
∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx+

∫

Ω
K̃∗

s vε(t)dx+ C1, (3.52)where
C1 =

1

2
K̃∗2

s meas(Ω) +
1

2

∥∥∥v0
m

∥∥∥
2
+ C0.Sine

j̃ε(r) ≥
ρ̃

2
r2, ∀r ∈ R,we have

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx ≥

≥ ρ̃

2

∫

Ω
mε(x)

(
vε(x, t)

mε
+ Ss

)2

dx ≥ ρ̃

2

∫

Ω
mε

{
1

2

(
vε(x, t)

mε

)2

− S2
s

}
dx.On the other hand we reall that v0

m ≤ ws = 0 and notie that
j̃ε

(
v0ε

mε
+ Ss

)
=

∫ v0

m
+Ss

0
β̃∗ε (r)dr ≤

∫ Ss

0
β̃∗ε (r)dr =

= lim
δր0

∫ Ss−δ

0
β̃∗ε (r)dr = lim

δր0

∫ Ss−δ

0
β̃∗(r)dr ≤ K̃∗

sSs.



266 Gabriela MarinoshiThus we obtain by (3.52) that
ρ̃

4

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.53)
≤ 2K̃∗

sSsmeas(Ω) +

∫

Ω
K̃∗

smε

(
vε

mε
(t)

)
dx+C1 +

ρ̃

2
S2

s

∫

Ω
mε(x)dx ≤

≤ C2 +
ρ̃

8

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+
4

ρ̃
K̃∗2

s meas(Ω).We have used several times that mε ≤ 1 + ε ≤ 2. We an onlude that
∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥ ≤ c0, ∀t ∈ [0, T ]. (3.54)Next, from the relation
vε(t) =

√
mε

vε

mε
(t)

√
mε (3.55)we get that

‖vε(t)‖2 =

∫

Ω

(√
mε(x)

vε(t)

mε

)2

mε(x)dx ≤ 2

∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥
2and therefore

‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ] (3.56)where c0, c1, C0, C1, C2 are independent of ε. Replaing this in (3.52) wededue
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤(3.57)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
. (3.58)Then we multiply (3.37) salarly in V ′ by dvε

dt (t), integrate over (0, t) andproeeding as before we get
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ ≤ (3.59)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
.



Nonhomogeneous Porous Media 267Adding this relation with (3.58) we obtain
∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ + (3.60)
+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,with β0 independent of ε.To show the estimate (3.46) we write two equations (3.37) orresponding todi�erent pairs of data, subtrat them, multiply the di�erene salarly in V ′by vε − vε and integrate over (0, t). We get

1

2
‖vε(t) − vε(t)‖2

V ′ +
ρ̃

2

∫ t

0

∫

Ω

1

mε
(vε(τ) − vε(τ))

2dτdx ≤

≤ 1

2
‖v0 − v0‖2

V ′ +
M2

2ρ̃ε

∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ t

0

∥∥f(τ) − f(τ)
∥∥2

V ′ ‖vε(τ) − vε(τ)‖V ′ dτ +

+c2tr

∫ t

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
‖vε(τ) − vε(τ)‖V ′ dτand moreover

‖vε(t) − vε(t)‖2
V ′ + ρ̃

∫ t

0

∫

Ω

(vε(τ) − vε(τ))
2

mε
dτdx ≤

≤ ‖v0 − v0‖2
V ′ +

(
M2

ρ̃ε
+ 2

)∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ T

0

∥∥f(τ) − f(τ)
∥∥2

V ′ dτ + c2tr

∫ T

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
dτ.We obtain the estimate (3.46), via Gronwall lemma with α0 depending on ε.b) Now, we assume that f ∈ L2(0, T ;V ′) and v0

m ∈ L2(Ω), v0

m ≤ ws.Due to some obvious densities we an take {fn}n≥1 ⊂W 1,1(0, T ;V ′), {fn
α}n≥1 ⊂

W 1,1(0, T ;L2(Γα)) and {vn
0 }n≥1 ⊂ D(Bε) = V, suh that

fn → f strongly in L2(0, T ;V ′), (3.61)
fn

α → fα strongly in L2(0, T ;L2(Γα))

vn
0 → v0 strongly in L2(Ω).



268 Gabriela MarinoshiThen, for eah ε > 0, the problem
dvn

ε

dt
+Bεv

n
ε = fn + fn

Γα
, a.e. t ∈ (0, T ), (3.62)

vn
ε (0) = vn

0εhas a unique solution vn
ε aording to a), satisfying the estimate (3.60) withthe right-hand side independent of n, namely,

∫

Ω
mε(x)jε

(
vn
ε

mε
(t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvn

ε

dτ
(τ)

∥∥∥∥
2

V ′

dτ + (3.63)
+

∫ t

0

∥∥∥∥β
∗
ε

(
vn
ε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖fn(t)‖2

V ′ dt+

∫ T

0
‖fn

α (t)‖2
L2(Γα) dt+ 1

)
.We stress that ε is �xed and the seond term in the previous relation is uni-formly bounded due to (3.61). By this estimate we dedue that {
β∗ε

(
vn

ε

mε

)}
nis in a bounded subset of L2(0, T ;V ) and {

dvn
ε

dt

}
n
is in a bounded subset of

L2(0, T ;V ′), so we an selet a subsequene suh that
β∗ε

(
vn
ε

mε

)
→ ζε weakly in L2(0, T ;V ) as n→ ∞,and

dvn
ε

dt
→ dvε

dt
weakly in L2(0, T ;V ′) as n→ ∞.We get immediately that

vn
ε

mε
→ wε weakly in L2(0, T ;V ) as n→ ∞.But mε ∈ C1(Ω) and so the sequene {vε}n =

{
mε

vn
ε

mε

}
n
is bounded in

L2(0, T ;V ), whene
vn
ε → vε weakly in L2(0, T ;V ) as n→ ∞.Sine V is ompat in L2(Ω) it follows by Lions-Aubin's theorem that

vn
ε → vε strongly in L2(0, T ;L2(Ω)) as n→ ∞. (3.64)By (3.37) we have that {Bεv

n
ε }n is bounded in L2(0, T ;V ′) so that

Bεv
n
ε → χ weakly in L2(0, T ;V ′) as n→ ∞. (3.65)



Nonhomogeneous Porous Media 269But Bε is quasi m-aretive so its realization on L2(0, T ;V ′) is quasi m-aretive too, hene it is demilosed and by (3.64) and (3.65) we get that
χ = Bvε a.e. on Q.Now we an pass to the limit in (3.62) as n→ ∞ and get (3.37), proving thusthat this problem has the solution vε ∈ C([0, T ], L2(Ω)) ∩W 1,2(0, T ;V ′) ∩
L2(0, T ;V ).Finally, passing to the limit in (3.63), as n → ∞, and using the lower semi-ontinuity property we get (3.43) as laimed. Estimates (3.44)�(3.45) havebeen proved in (3.54)�(3.55).The uniqueness of the approximating solution follows by (3.46).3.3. Existene for the original problemAs we spei�ed before the domains

Ωm = {x ∈ Ω; m(x) > 0} and Ω0 = int{x ∈ Ω; m(x) = 0}have the ommon C1-boundary, ∂Ω0, see again Fig. 1. Here, the notation�int� represents the interior of the subset.Theorem 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1, f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0

m
∈ L2(Ω),

v0

m
≤ ws a.e. on Ω.Then, the Cauhy problem (3.27) has a solution

w ∈ L2(0, T ;V ), (3.66)suh that
ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q, (3.67)
mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′), (3.68)

w ≤ ws a.e. (x, t) ∈ Q. (3.69)Proof. By the hypotheses it follows that the approximating problem (3.37)(and onsequently (3.33)) has, for eah ε, a unique solution aording to



270 Gabriela MarinoshiProposition 3.1, inluding the estimates (3.43)�(3.45). These do not dependon ε and imply that we an selet a subsequene suh that
β∗ε

(
vε

mε

)
→ ζ weakly in L2(0, T ;V ), (3.70)

β̃∗ε

(
vε

mε
+ Ss

)
→ ζ + K̃∗

s weakly in L2(0, T ;H1(Ω)), (3.71)
dvε

dt
→ µ weakly in L2(0, T ;V ′), (3.72)

wε =
vε

mε
→ w weakly in L2(0, T ;V ). (3.73)We also get that the trae of β∗ε (

vε

mε

) on Σu is well de�ned and sine
β∗ε

(
vε

mε

)
∈ L2(0, T ;V ) it follows that ζ = 0 on Σu. Now

vε = mε
vε

mε
(3.74)and sine mε → m uniformly on Ω and m ∈ C(Ω) it follows that

vε → v weakly in L2(0, T ;L2(Ω)). (3.75)By (3.73) and (3.75) we get
v = mw (3.76)and obviously

v = 0, a.e. on Q0 = Ω0 × (0, T ). (3.77)Using (3.73), (3.74) and (3.75) we still obtain that
√
mε

vε

mε
→

√
mw weak-star in L∞(0, T ;L2(Ω)),

vε =
√
mε

vε

mε

√
mε → v weak-star in L∞(0, T ;L2(Ω)).Again by (3.74) and m ∈ C1(Ω) we dedue that

‖vε‖L2(0,T ;V ) ≤ onstant independent of ε. (3.78)By Lions-Aubin ompatness theorem we onlude then that {vε}ε is om-pat in L2(0, T ;L2(Ω)), i.e.,
vε → v strongly in L2(0, T ;L2(Ω)) as ε→ 0, (3.79)



Nonhomogeneous Porous Media 271and µ = dv
dt . Also, by Asoli-Arzelà theorem we an prove that vε(t) → v(t)strongly in V ′ (using (3.72) and (3.78)). Using (3.76) we an dedue byletting ε→ 0 in the seond equation in (3.37) that

mw(0) = v0. (3.80)We set now
Ωδ = {x ∈ Ω; m(x) > δ} for arbitrary δ > 0,

Qδ = Ωδ × (0, T ), Qm = Ωm × (0, T ),and notie that Ωδ and Ωm are open beause m ∈ C1(Ω). We have
1

mε
=

1

m+ ε
<

1

m
<

1

δ
on Ωδand by (3.79)

wε =
1

mε
vε →

v

m
= w strongly in L2(0, T ;L2(Ωδ)), ∀δ > 0.Reall that β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s .Let us �x (x, t) ∈ Qδ. Using the same argument like in the proof of Theorem3.1, in Set. 5.3 in [34℄, we obtain that
β̃∗ε (wε + Ss) → ζ̃ ∈ β̃∗(w + Ss) weakly in L2(0, T ;H1(Ωδ)).By (3.32) and (3.71) we get that
β∗ε (wε + Ss) → β̃∗(w + Ss) − K̃∗

s weakly in L2(0, T ;H1(Ωδ)).Sine δ is arbitrary we obtain
ζ(x, t) ∈ β̃∗(w(x, t) + Ss) − K̃∗

s a.e. (x, t) ∈ Qm =
⋃

δ>0

Qδ. (3.81)Proving that the subset
Q+

m = {(x, t) ∈ Qm; w(x, t) > ws}has a zero measure, we dedue similarly to the proof of Corollary 3.3 in Set.5.3 in [34℄, that w ≤ ws a.e. (x, t) ∈ Qm.
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K̃(x,wε + Ss)

}
ε
is bounded in L2(Q), we have

K̃(x,wε + Ss) → κ weakly in L2(0, T ;L2(Ω)), (3.82)and we assert that
κ(x, t) = K̃(x,w(x, t)), a.e. (x, t) ∈ Q.Indeed, {

K̃m(wε + Ss)
}

ε
is weakly onvergent to κ, on Qm, too. On theother hand, it is strongly onvergent to K̃m(w+Ss) on eah Qδ, beause K̃mis Lipshitz. By the uniqueness of the limit the restrition of the weak limitto Qδ should oinide with K̃m(w + Ss). This implies that

κ = K̃(x,w + Ss), a.e. on Qm. (3.83)On the subset Q0 the funtion K̃ does not depend on w, so the limit is equalto K̃0(x).Now we an pass to limit as ε→ 0 in (3.38) and obtain
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ), (3.84)where ζ is given by (3.70).In (3.84) taking φ ∈ L2(0, T ;H1

0 (Ωm)) we still dedue that w is the solutionto (3.27) on Qm too,
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Qm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

)
dxdt =

=
∫ T
0 〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;H1

0 (Ωm)), (3.85)where ζ(x, t) ∈ β∗(w(x, t)) a.e. on Qm.Taking now φ ∈ L2(0, T ;H1
0 (Ω0)), we obtain the weak form of the equationon this subset

∫

Q0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt = 0, ∀φ ∈ L2(0, T ;H1

0 (Ω0)), (3.86)where ζ is given by (3.70).



Nonhomogeneous Porous Media 273On the other hand, (3.84) orresponds to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃(x,w + Ss)

∂x3
= f in Q, (3.87)

ζ = 0 on Σu,

(K̃(x,w + Ss)i3 −∇ζ) · ν = fα on Σα,and (3.85)�(3.86) to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃m(w + Ss)

∂x3
= f in Qm, (3.88)

−∆ζ +
∂K̃0(x)

∂x3
= f in Q0,

ζ = 0 on Σu,

(K̃m(w + Ss)i3 −∇ζ) · ν = fα on Σα.We reall that the ommon boundary of the domains Ωm and Ω0 is regulardue to the fat that m ∈ C1(Ω). Sine ζ ∈ L2(0, T ;V ), we dedue that thetrae of ζ(t) ∈ β∗(w(t)) belongs to V a.e. t, so it is ontinuous aross theboundary ∂Ω0 (more exatly along lines L that ross the boundary), a.e.
t ∈ (0, T ). Thus if we take x0 ∈ ∂Ω0 and denote

ζ+(t) = lim
x→x0, x∈L∩Ωm

ζ(t),then we have
ζ+(t) = lim

x→x0, x∈L∩Ω0

ζ(t) a.e. t ∈ (0, T ).We take into aount that ζ+ ∈ β∗(w(t)) a.e. on Qm, hene ζ turns out tobe the solution to the ellipti problem
−∆ζ(t) = f(t) + fΓα(t) in Ω0 (3.89)

ζ(t) = ζ+(t) ∈ β∗(w(t)) on ∂Ω0, a.e. t ∈ (0, T )for a.e. t �xed in (0, T ), and w is the solution to (3.85) (equivalently to(3.24)) in Qm.Then, we de�ne the funtion
w∗(x, t) =

{
w(x, t), if (x, t) ∈ Qm

(β∗)−1(ζ(x, t)), if (x, t) ∈ Q0 = Ω0 × (0, T ),
(3.90)where ζ is the solution to (3.89) and show that it is the solution to (3.27) inthe sense of De�nition 3.1. Indeed, ζ(x, t) ∈ β∗(w∗(x, t)) and ζ ∈ L2(0, T ;V ),



274 Gabriela Marinoshiso it follows that w∗ ∈ D(A), implying that w∗ ≤ ws a.e. on Q. Then, mw∗belongs to the spaes spei�ed in (3.23) (we take into aount that mw∗ = 0on Q0). Finally, we have to hek that w∗ satis�es the equation (3.26) andthis follows by a straightforward omputation using (3.84)�(3.86). Indeed, ifwe replae w∗ in (3.26) we obtain
∫ T

0

〈
d(mw∗)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃(x,w∗)

∂φ

∂x3

) dxdt =

=

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα , φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).We took into aount the expressions assigned to w∗ and K̃(x,w + Ss) oneah subset, (3.81) and (3.84). 2Corollary 3.1 Under the assumptions of Theorem 3.1 the solution to(3.27) is unique if in addition

ρ̃ > cΩM. (3.91)Proof. Let us denote by w∗
1 and w∗

2 two solutions to (3.27) orresponding tothe same data. We multiply the di�erene of equations (3.27) written for w∗
1and w∗

2 by (w∗
1 −w∗

2) salarly in V ′, integrate on (0, T ) and use the Lipshitzproperty of K̃. We get
‖m(w∗

1(τ) −w∗
2(τ))‖2

V ′ + ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖2 dτ ≤ (3.92)

≤ M2

ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖ ‖w∗

1(τ) − w∗
2(τ)‖V ′ dτ ≤

≤ M2

ρ̃
c2Ω

∫ T

0
‖w∗

1(τ) −w∗
2(τ)‖2 dτ



Nonhomogeneous Porous Media 275where cΩ is the onstant in Poinaré's inequality. Here we took into aountthat for w ∈ L2(Ω) we have ‖w‖V ′ ≤ cΩ ‖w‖ .It follows by (3.91) that mw∗
1 = mw∗

2 a.e. on Q and w∗
1 = w∗

2 a.e. on Qmwhere m(x) > 0. Now we subtrat the equations (3.88) orresponding to w∗
1and w∗

2 and get
−∆(ζ1 − ζ2) = 0 in Q,

ζ1 − ζ2 = 0 on Σu,

−∇(ζ1 − ζ2) · ν = 0 on Σα,where ζ1 ∈ β∗(w∗
1), ζ2 ∈ β∗(w∗

2) a.e. on Q. Hene ζ1 = ζ2 and sine (β∗)−1is single valued then w∗
1 = w∗

2 a.e. on Q. 2Remark 3.1 We observe that in the degenerate ase the uniqueness of thesolution an be obtained only if the transport is dominated in a sense (see(3.91)) by the di�usivity. In partiular, this is true when K̃ = 0, i.e., whenwe deal with a horizontal in�ltration, also alled sorption.Remark 3.2 By the proof of the solution existene we also asertain aonsequene that an be inferred at an intuitive level, i.e., the boundaryvalue problem is separated into two problems orresponding to the domains
Qm and Q0, onneted by the �ux ontinuity.Indeed, if we test the �rst two equations in (3.88) at φ ∈ L2(0, T ;V ) andintegrate the sum over (0, T ) we obtain

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

) dxdt−
−

∫ T

0

∫

∂Ωm

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+φdσdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt−

−
∫ T

0

∫

∂Ω0

(
K̃0(x)i3 −∇ζ

)
· ν−φdσdt =

=

∫ T

0

∫

Ω
〈f(t) + fΓα(t), φ(t)〉V ′,V dxdt,for any φ ∈ L2(0, T ;V ), where ν+ is the outer normal to ∂Ωm, ν

− is theouter normal to ∂Ω0 and ζ ∈ β∗(w) a.e. on Qm. Taking into aount (3.84)



276 Gabriela Marinoshiwe obtain the �ux ontinuity on the ommon boundary ∂Ω0 × (0, T )

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+ =

(
K̃0(x)i3 −∇ζ

)
· ν+ on ∂Ω0 × (0, T ). (3.93)The previous integrals on ∂Ωm and ∂Ω0 are onsidered in the sense of dis-tributions, e.g., as the value of (

K̃(x,w + Ss)i3 −∇ζ
)
· ν at φ. By the traetheorem we see that, generally, the �ux (

K̃(x,w + Ss)i3 −∇ζ
)
· ν is wellde�ned as an element of the spae L2(0, T ;H−1/2(∂Ω0)).Referenes[1℄ H.W. Alt, S. Lukhaus, Quasi-linear ellipti-paraboli di�erential equa-tions. Math. Z., 183 (1983), 311�341.[2℄ H.W. Alt, S. Lukhaus, A. Visintin, On nonstationary �ow throughporous media. Ann. Mat. Pura Appl., 136 (1984), 303�316.[3℄ D.G. Aronson, The porous medium equation. In: A. Fasano, M. Prim-ierio (Eds.), Some Problems in Nonlinear Di�usion, Leture Notes inMathematis, 1224, Springer, Berlin 1986.[4℄ C. Baiohi, Su un problema di frontiera libera onesso a questioni diidraulia. Ann. Mat. Pura Appl., 92 (1972), 107�127.[5℄ V. Barbu, Nonlinear Semigroups and Di�erential Equations in BanahSpaes. Noordho� International Publishing, Leyden 1976.[6℄ V. Barbu, G. Marinoshi, Existene for a time dependent rainfall in-�ltration model with a blowing up di�usivity. Nonlinear Analysis RealWorld Appliations, 5 (2004), 2, 231�245.[7℄ J. Bear, Hydraulis of Grounwater. MGraw-Hill, In., New York 1979.[8℄ P. Benilan, S.N. Krushkov, Quasilinear �rst-order equations with on-tinuous nonlinearities. Russian Aad. Si. Dokl. Math., 50 (1995), 3,391�396.[9℄ I. Borsi, A. Farina, A. Fasano, On the in�ltration of rain water throughthe soil with runo� of the exess water. Nonlinear Analysis Real WorldAppliations, 5 (2004), 763�800.
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