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244 Gabriela Marinos
hiThe general boundary value problem. Assume that the �ow do-main Ω is an open bounded subset of R
N (N = 1, 2, 3), and the time runswithin the �nite time interval (0, T ). The boundary of Ω is denoted by Γ andit is 
onsidered pie
ewise smooth. The ve
tor of spa
e variables is denotedby x = (x1, x2, x3) ∈ Ω and the time by t ∈ (0, T ).We 
onsider the Ri
hards' equation des
ribing the water in�ltration intoan isotropi
, nonhomogeneous, unsaturated porous medium with a variableporosity, with initial data and various boundary 
onditions (see [7℄)

∂(m(x)Sw(h))

∂t
−∇ · (k(h)∇h) +

∂k(h)

∂x3
= f in Q = Ω × (0, T ), (1.1)

h(x, 0) = h0(x) in Ω, (1.2)boundary 
onditions for h on Σ = Γ × (0, T ). (1.3)The unknown in Ri
hards' equation is the 
apillary pressure h(x, t) (or pres-sure head, or water pressure in the unsaturated soil), Sw is the water satura-tion in pores, m is the medium porosity and θ = m(x)Sw is the volumetri
water 
ontent or soil moisture. In this work the dependen
e of m on xmodels the nonhomogeneity of the medium. The fun
tion k is the hydrauli

ondu
tivity, f(x, t) is a sour
e (or sink) in the �ow domain and h0 is theinitial pressure distribution in the domain, f and h0 being given. In general
m ∈ (0, 1) but a limit 
ase withm tending to 0 may have a physi
al relevan
e.The properties of the dependen
e of Sw and k on h will be spe
i�ed.In parti
ular, we shall exemplify the theory for the 
ase of the medium havinga part of the boundary, Γα semipermeable, allowing a water �ux a
ross itand the other part Γu at whi
h the pressure will be given. Here, Γu and
Γα are disjoint and Γ = Γu ∪ Γα. In in�ltration problems, we 
an oftenmeet the situation in whi
h water ponds on the soil surfa
e (let it be Γu).This happens when the rainfall rate is greater than the soil 
ondu
tivity atsaturation and the soil begins to saturate from the surfa
e, or when the soilsurfa
e is in 
onta
t with an open water body, for example the bottom of alake. In 
onsequen
e the boundary 
onditions we shall 
onsider are

h(x, t) = hu(x, t) ≥ 0 on Σu = Γu × (0, T ), (1.4)
q · ν = fα on Σα = Γα × (0, T ), (1.5)where q is the water �ux de�ned by
q(x, t) = k(h)i3 − k(h)∇h, (1.6)
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ν is the outer normal ve
tor at the boundary and i3 is the unit ve
tor of the
Ox3 axis, downwards dire
ted.We 
an reverse the boundary 
onditions by 
onsidering that Γα is the soilsurfa
e and Γu is the underground boundary. Thus we 
an interpret thatthe �ux through the soil surfa
e, is provided by a water supply as a rain orirrigation and that the lower part of the porous medium is in 
onta
t withthe phreati
 aquifer.Des
ription of the hydrauli
 model. The behaviour of an unsat-urated soil, i.e., partially �lled with water, is 
ompletely known from thehydrauli
 point of view if two fun
tions are given: one is the retention 
urve

Sw = C̃∗(h), (1.7)linking the water saturation Sw, to the pressure head h, and the other is thehydrauli
 
ondu
tivity
k = k(h), (1.8)both depending nonlinearly on h. For an isotropi
 soil the latter is a s
alarfun
tion.Sin
e we study the nonhystereti
 
ase, the retention 
urve and the hydrauli

ondu
tivity are assumed single-valued fun
tions of the pressure.In soil s
ien
es, the unsaturated pressure is 
onsidered negative (h < 0) andthe saturation is 
hara
terized by h = 0. Also, it is 
onsidered that thepro
ess of in�ltration-drainage (opposite to in�ltration) takes pla
e betweentwo limits of h. The lowest limit is denoted hr and at this pressure head thesoil is 
onsidered dry even if some water still resides in the pores and thehydrauli
 
ondu
tivity is still positive. The 
orresponding water saturationis denoted Sr and the volumetri
 water 
ontent θr is 
alled residual moisture(see [7℄). The upper limit is h = 0 where saturation is rea
hed and watersaturation be
omes equal to 1. However, we shall denote this value by Ss.At saturation, moisture attains its saturation value θs equal to the mediumporosity at this point (if the porosity is not 
onstant). The parts of themedium where h > 0 are 
ompletely saturated. We de�ne the derivative ofthe water saturation with respe
t to the pressure

C̃(h) =
dSw

dh
(h). (1.9)For the saturated �ow, when h ≥ 0, the previously fun
tions take 
onstantvalues.
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hiGenerally, the hydrauli
 models raise a di�
ult mathemati
al problem. Whenthe pressure head in the unsaturated soil 
omes 
lose to the saturation value,
C̃ vanishes and Ri
hards' equation degenerates. Correspondingly, the di�u-sion 
oe�
ient expressed as a fun
tion of moisture exhibits a blow-up de-velopment around saturation. In soil s
ien
es the model whi
h re�e
ts thisbehaviour is the strongly nonlinear Green-Ampt limit model, see [10℄. Thesituation in whi
h C̃(0) > 0 
orresponds to a less nonlinear hydrauli
 be-haviour, the typi
al model for this 
lass being the Burgers' model, see [10℄,too. Depending on the parti
ularities of the hydrauli
 fun
tions whi
h aredetermined by the soil pore stru
ture, the models of water in�ltration rangebetween these two limit models (see [44℄).Previous theoreti
al results. In the most mathemati
al literature de-voted to this subje
t the blow-up of the di�usivity in the di�usive form ofRi
hards' equation was avoided, by 
onsidering a �nite-valued di�usivity, orstudying the problem only in the pressure form (see [2℄, [4℄, [12℄, [19℄, [20℄,[25℄, [26℄, [27℄, [37℄, [38℄). More re
ently, in the paper [9℄ a model of thesaturated-unsaturated �ow lying on a spe
ial de�nition of the boundary 
on-ditions that 
hanges during the phenomenon evolution, has been developedalso for a �nite value of the di�usivity at saturation (whi
h was implied bythe assumption that C̃(0) > 0). Following the te
hnique presented in [20℄ themodel was redu
ed to systems in 
lass of Stefan-like problems of high-order,see [19℄.However, apart from spe
i�
 in�ltration problems, previous existen
e anduniqueness studies for solutions to the ellipti
-paraboli
 equation

∂(b(u))

∂t
+ ∇ · (a(∇u, b(u))) + f(b(u)) = 0 in Ω × (0, T )have been presented in the literature espe
ially using a te
hnique inspiredby the method of entropy solutions introdu
ed by S.N. Krushkov in [28℄.Originally, this method was devoted to prove L1-
ontra
tion for entropy so-lutions for s
alar 
onservation laws, i.e., generalized solutions in the sense ofdistributions satisfying admissibility 
onditions similar to those of entropygrowth in gas dynami
s (see also [8℄). J. Carillo applied Krushkov's methodto se
ond order equations (see [13℄, [14℄, [15℄, [16℄). F. Otto (see [35℄, [36℄)proved a L1-
ontra
tion prin
iple and uniqueness of solutions for this type ofequation by applying Krushkov's te
hnique only to the time variable. H.W.Alt and S. Lu
khaus showed in [1℄ that the natural solution spa
e for this
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tions u of �nite energy in the sense that
sup

t∈(0,T )

∫

Ω
Ψ(b(u(t)))dx+

∫

Q
|∇u|r dxdt <∞,

where Ψ is the Legendre transform of the primitive of b.We also mention the results of J.L. Vázquez regarding the fast di�usionequations (see [18℄, [40℄, [41℄, [42℄, [17℄ and the book [43℄).Con
erning the degenerate evolution equations, extensive studies have beenperformed for linear operators, relying on the properties of the resolvent ofan appropriate multivalued linear operator a

ounting for the multipli
ationby the fun
tion m (see [21℄, [23℄ and the monograph [22℄). We mention alsothe paper [24℄ related to a similar topi
 in whi
h a degenerate model withhomogeneous Diri
hlet boundary 
onditions and no transport was studied.The analysis of the well-posedness of the di�usive form of Ri
hards' equationin the unsaturated 
ase (θ < θs) with the porositym 
onstant, was developedin the papers [6℄, [29℄, [30℄, [31℄ within a fun
tional approa
h. The existen
eresults whi
h were dedu
ed showed that solutions rea
hing saturation 
an beobtained but only on zero-measure subsets of Q. Somehow, this was expe
tedbe
ause the unsaturated model re�e
ts a behaviour of a parti
ular soil onlyand not the general feature of the pro
ess whi
h in
ludes the possible soilsaturation.In the paper [32℄ a rigorous mathemati
al model able to des
ribe the sat-uration o

urren
e (with the blow-up of the di�usivity) was introdu
ed fora homogeneous porous medium (with m 
onstant) in the di�usive form anddeveloped then in [33℄.In the �rst part of this 
hapter we introdu
e the di�usive models of water�ow in saturated-unsaturated media 
hara
terized by a spa
e variation ofthe porosity. Then we analyze a model with mixed boundary 
onditions in-volving a �ux on a part of the boundary and a nonhomogeneous Diri
hlet
ondition 
orresponding to a singular situation on another part of the do-main boundary. The model will be degenerate be
ause we shall assume thatporosity 
an vanish on a subset of Ω.
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hi2. Di�usion models in nonhomogeneous porous me-diaWe intend �rst to reveal how the parti
ular 
hara
ter of the hydrauli
 modelsis determined by the behaviour of the fun
tions C̃∗ and k around 0.Mathemati
al hypotheses. For the unsaturated �ow, where h < 0, weassume the following:
(m1) C̃

∗ : [hr, 0) → [Sr, Ss) is single-valued, positive, di�erentiable on [hr, 0),monotoni
ally in
reasing ;
(m2) k : [hr, 0) → [Kr,Ks) is single-valued, positive, di�erentiable on [hr, 0),monotoni
ally in
reasing and satis�es the property k′(hr) = 0;
(m3) C̃ : [hr, 0) → (C̃0, C̃r] is single-valued, non-negative, di�erentiable on
[hr, 0) monotoni
ally de
reasing and satis�es C̃ ′(hr) = 0;In the saturated �ow we have
(m4) C̃

∗(h) = Ss, k(h) = Ks and C̃(h) = 0 for h ≥ 0.We denote
Ss = (C̃∗)(0) > 0, (2.1)

C̃0 = (C̃∗)′(0) = C̃(0) ≥ 0, (2.2)
Ks = k(0) > 0, (2.3)

K ′
0 = lim

hր0
k′(h), K ′

0 ∈ [0,∞). (2.4)Therefore, the unsaturated �ow is 
hara
terized either by h < 0 or Sw ∈
[Sr, Ss) while the saturated one is indi
ated by h ≥ 0 or Sw = Ss.The positive values Sr, Ss and their 
orresponding 
ondu
tivities Kr, Ksare soil 
hara
teristi
s and they are known for ea
h type of soil apart. Theproperties k′(hr) = 0 and C̃ ′(hr) = 0 were put into eviden
e by experiments(see [10℄).We noti
e that the fun
tions C̃∗ and k are 
ontinuous on [hr,∞), and hr isthe maximum point for C̃. Also C̃ is 
ontinuous on [hr,∞), ex
ept possiblyat the point 0.We stress the fa
t that these properties are veri�ed by the empiri
al hydrauli
models set up in the last de
ades (see e.g., [44℄).We emphasize that the main role is played by the in
rease rate of the fun
-tions C̃∗ and k around 0, the signi�
ant 
ontribution being given by thebehaviour of the retention 
urve C̃∗.



Nonhomogeneous Porous Media 2492.1. Strongly nonlinear saturated-unsaturated di�usive modelLet us assume (m1) − (m4) and
C̃0 = 0whi
h is the main 
hara
teristi
 of this 
ase. It follows then that C̃ is 
on-tinuous on [hr,∞) and we 
an write C̃∗ : [hr,∞) → [Sr, Ss], as

C̃∗(h) =

{
Sr +

∫ h
hr
C̃(ζ)dζ, h < 0,

Ss, h ≥ 0.
(2.5)Strongly nonlinear hydrauli
 
ondu
tivity. This situation 
orre-sponds to K ′

0 ∈ R+ = (0,∞).We de�ne a primitive of K by
K∗(h) =

{
K∗

r +
∫ h
hr
k(ζ)dζ, h < 0,

K∗
s +Ksh, h ≥ 0,

(2.6)where K∗ : [hr,∞) → [K∗
r ,∞) and

K∗
s = K∗(0) > 0. (2.7)The fun
tion K∗ is di�erentiable, monotoni
ally in
reasing on [hr,∞) andwith these notations Ri
hards' equation (1.1) be
omes

∂(m(x)Sw)

∂t
− ∆K∗(h) +

∂k(h)

∂x3
= f in Q. (2.8)By the initial 
ondition (1.2) we obtain

Sw(x, 0) = Sw0, Sw0 = C̃∗(h0).We 
an also 
onsider the initial 
ondition
m(x)Sw(x, 0) = θ0(x) in Ω, where θ0 = m(x)C̃∗(h0) (2.9)and 
orresponding repla
ements should be made in the boundary 
onditions(1.4)�(1.5).Sin
e it is more 
onvenient to work with the variable Sw, we introdu
e from(2.5) the inverse of C̃∗, (C̃∗)−1 : [Sr, Ss] → [hr,+∞), by

(C̃∗)−1(Sw) =

{
(C̃∗)−1(Sw), Sw ∈ [Sr, Ss),
[0,+∞), Sw = Ss,

(2.10)
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hiwhi
h is multivalued at Sw = θs and 
ontinuous and monotoni
ally in
reasingon [Sr, Ss). Then, we repla
e it all over in (1.1)�(1.5).Thus, instead of the 
ondu
tivity written in fun
tion of pressure, we obtainthe 
ondu
tivity expressed in terms of water saturation
K̃ : [Sr, Ss] → [Kr,Ks], K̃(Sw) = (k ◦ C̃∗)−1(Sw), Sw ∈ [Sr, Ss], (2.11)fun
tion that preserves some of the properties of k, i.e., it is positive, di�eren-tiable (ex
ept at Ss) and monotoni
ally in
reasing, sin
e for any Sw ∈ [Sr, Ss)we have that
K̃ ′(Sw) = k′((C̃∗)−1(Sw)) · ((C̃∗)−1)′(Sw) =

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
> 0. (2.12)We noti
e also that

K̃ ′(Sr) = 0 (2.13)and
lim

SwրSs

K̃ ′(Sw) = +∞. (2.14)However, for Sw ∈ [Sr, Sl] with Sl < Ss the derivative of K̃ is bounded, sothat K̃ follows to be Lips
hitz on intervals stri
tly in
luded in [Sr, Ss)
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤Ml

∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Sl], Sl < Ss, (2.15)where
Ml = max

Sw∈[Sr ,Sl]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
<∞. (2.16)Plugging (2.10) in (2.6) we get the fun
tion

β̃∗(Sw) =

{
(K∗ ◦ (C̃∗)−1)(Sw), Sw ∈ [Sr, Ss),
[K∗

s ,+∞), Sw = Ss
(2.17)that is multivalued at Sw = Ss but is 
ontinuous from the left at this point

lim
SwրSs

β̃∗(Sw) = K∗
s . (2.18)For Sw ∈ [Sr, Ss) the fun
tion (C̃∗)−1 is monotoni
ally in
reasing, so thatwe 
an 
al
ulate β̃∗(Sw) by 
hanging the variable in the integral (2.6) anddenoting ζ = (C̃∗)−1(ξ). In this way we get

β̃∗(Sw) = K∗
r +

∫ Sw

Sr

β(ξ)dξ, for Sw ∈ [Sr, Ss),
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β̃(Sw) =

k((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
, for Sw ∈ [Sr, Ss). (2.19)In this way we have rigorously re
overed the de�nition of the water di�usivityfun
tion.We noti
e that β̃ has two important properties

β̃(Sw) ≥ ρ̃ = β̃(Sr) =
Kr

C̃r

> 0, ∀Sw ∈ [Sr, Ss) (2.20)and
lim

SwրSs
β̃(Sw) = +∞. (2.21)Moreover, by the hypotheses made upon the fun
tions C̃ and k it followsthat β̃ is monotoni
ally in
reasing, i.e.,

β̃′ =
k′C̃ − kC̃ ′

C̃3
≥ 0, on [Sr, Ss), (2.22)

β̃′(Sr) = 0. (2.23)Hen
e, β̃∗ is twi
e di�erentiable and stri
tly monotoni
ally in
reasing on
[Sr, Ss) and as a matter of fa
t we 
an write

β̃∗(Sw) =

{
K∗

r +
∫ Sw

Sr
β̃(ξ)dξ for Sw ∈ [Sr, Ss),

[K∗
s ,+∞) for Sw = Ss.

(2.24)Moreover, by (2.20) and (2.24) we dedu
e that the fun
tion β̃∗ satis�es theinequality
(β̃∗(Sw) − β̃∗(Sw))(Sw − Sw) ≥ ρ(Sw − Sw)2,∀Sw, Sw ∈ [Sr, Ss]. (2.25)In 
on
lusion we 
an setModel 1. Let us assume (m1) − (m4), C̃0 = 0 and K ′

0 ∈ R+. Then, thedi�usive model of the strongly nonlinear saturated-unsaturated in�ltrationwith a strongly nonlinear hydrauli
 
ondu
tivity is given by
∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(Sw)

∂x3
= f in Q, (2.26)

m(x)Sw(x, 0) = θ0(x) in Ω, (2.27)boundary 
onditions in Sw on Σ, (2.28)
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hiwhere β̃∗ is the multivalued fun
tion de�ned by (2.24), β̃ is given by (2.19)and K̃ is the single-valued fun
tion (2.11). Moreover, β̃∗ is strongly mono-tone, β̃ satis�es (2.20)�(2.23) and K̃ has the properties (2.13)�(2.16).The boundary 
onditions (1.4)�(1.5) be
ome
Sw(x, t) = Ss on Σu, (2.29)

(
K̃(Sw)i3 −∇β̃∗(Sw)

)
· ν = fα on Σα. (2.30)The quali�er of strongly nonlinear is implied by the property of the fun
tion

β whi
h evolves highly nonlinear around the saturation point, Ss. This isjusti�ed by the fa
t that the typi
al representative for this behaviour (
or-related with that of its primitive β̃∗ whi
h is �nite at this point) is of theform
β̃(Sw) =

1

(Ss − Sw)1−p
for 0 < p < 1.We noti
e that this form of the di�usivity fun
tion reveals the 
hara
ter offast di�usion of this pro
ess (see the review of di�usion-type pro
esses in[3℄).However, β̃∗ is multivalued and the sign equal (=) in (2.26) is not properlyused. The appropriate symbol should be ∋ . Also, we shall spe
ify later theexa
t meaning of the solutions to (2.26)-(2.30). The fa
t that equation (2.26)is multivalued must not be surprising if one takes into a

ount that it modelsa free boundary problem. This means that, at ea
h time t, the domain Ω 
anbe de
omposed into two regions: the saturated one, {x; Sw(x, t) = Ss} andthe unsaturated one {x; Sw(x, t) < Ss}, separated by a free boundary. Theextension of a nonlinear fun
tion arising in su
h a problem to a multivaluedone is 
ommon in the theory of nonlinear di�erential equations with dis
on-tinuous 
oe�
ients as well as in that modelling free boundary pro
esses.Thus, equation (2.26) represents an extension of Ri
hards' equation (writtenfor the unsaturated in�ltration) to the simultaneous saturated-unsaturated�ow.Weakly nonlinear hydrauli
 
ondu
tivity. A strongly nonlinearmodel, but with a weaker nonlinear behaviour of the 
ondu
tivity may beobtained under 
onditions that lead to limSwրSs

K̃ ′(Sw) <∞. To rea
h su
ha situation we have to impose just from the beginning a stronger 
onditionfor k, namely that there exists M > 0, su
h that
k′(h) ≤MC̃(h), ∀h ∈ [hr, 0], (2.31)
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h implies that
K ′

0 = 0, lim
hր0

k′(h)

C̃(h)
= M. (2.32)In this way K̃ turns out to be Lips
hitz on [Sr, Ss] with the 
onstant M. Weobserve that the fun
tions β̃ and K̃ remain monotoni
ally in
reasing. Thissituation is put into eviden
e e.g., in the van Genu
hten model (see [39℄) forthe model parameter m 
lose to 1. This 
ase 
an be resumed inModel 2. Let us assume (m1) − (m4), C̃0 = 0 and (2.31)�(2.32). Then, thedi�usive model of strongly nonlinear saturated-unsaturated in�ltration with aweakly nonlinear hydrauli
 
ondu
tivity is given by (2.26)�(2.28), where thefun
tions β̃ and β̃∗ have the properties spe
i�ed in Model 1 ex
ept for K̃whi
h is given by (2.11), with

lim
SwրSs

K̃ ′(Sw) = M <∞.2.2. Weakly nonlinear saturated-unsaturated di�usive modelFor some hydrauli
 models the di�usivity is �nite at Sw = Ss. We intendto reveal whi
h properties of the fun
tions C̃∗ and k 
an provide su
h avalue. Let us suppose that the retention 
urve in
reases from the left to itsmaximum value with a nonzero rate at the left of zero,
C̃0 > 0,but very 
lose to 0. In this 
ase C̃∗ is not di�erentiable at h = 0 and thefun
tion

C̃ : [hr,∞) → [0, C̃r], C̃(h) =

{
dSw

dh
(h), h < 0

0, h ≥ 0
(2.33)is no longer 
ontinuous at h = 0, having the jump ∣∣∣C̃0

∣∣∣ = lim
hր0

dSw

dh .The fun
tions K̃ and β̃∗ and β̃ will be de�ned in the same way as before,but in this 
ase the value of β̃ at Sw = Ss exists and it is
lim

SwրSs

β̃(Sw) =
Ks

C̃0

<∞. (2.34)However, the fun
tion β̃∗(Sw) will be extended in a multivalued way, by
β̃∗(Sw) = K∗

s at Ss.
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hiWeakly nonlinear hydrauli
 
ondu
tivity. Assume that the deriva-tive of k at h = 0, has a �nite value, K ′
0 < ∞. Hen
e, K̃ is Lips
hitz withthe 
onstant

M = max
Sw∈[Sr,Ss]

k′((C̃∗)−1(Sw))

C̃((C̃∗)−1(Sw))
≤ K ′

0

C̃0

, (2.35)so that we 
an settleModel 3. Let us assume (m1) − (m4), C̃0 > 0 and K ′
0 <∞. Then, the di�u-sive model of weakly saturated-unsaturated in�ltration with a weakly nonlinearhydrauli
 
ondu
tivity is given by (2.26)-(2.28), where β̃∗ is the multivaluedfun
tion de�ned by (2.24), β̃ is given by (2.19) and K̃ is the single-valuedfun
tion (2.11) with K̃ ′(Sw) �nite on [Sr, Ss]. Moreover, β̃∗ is strongly mono-tone, (2.25), β̃ satis�es (2.20), (2.22)-(2.23) with

lim
SwրSs

β̃(Sw) < +∞ (2.36)and K is Lips
hitz on [Sr, Ss], i.e., there exists M > 0 su
h that
∣∣∣K̃(Sw) − K̃(Sw)

∣∣∣ ≤M
∣∣Sw − Sw

∣∣ , ∀Sw, Sw ∈ [Sr, Ss]. (2.37)It is obvious that this situation whi
h is illustrated by nonsingular di�usivitiesin
luding also power fun
tions
β̃(Sw) = Sp

w, with p > 1,is related to a slow di�usion and to the well-known porous media equation(see [3℄).We write the model in the dimensionless form, introdu
ing for example
Sdim

w =
Sw − Sr

Ss − Sr
, K̃dim(Sdim

w ) =
K̃(Sw) −Kr

Ks −Kr
, β̃dim(Sw) =

β̃(Sw)

βd
,where βd is a 
hara
teristi
 value for the di�usivity. Without entering intodetails we spe
ify that the dimensionless model has the same form as (2.26)�(2.28). The dimensionless Sdim

wr = 0 and Kr = 0 and for 
onvenien
e, weshall extend β̃ and K̃ at the left of Sdim
wr by the 
onstant values ρ̃ and 0 (forall these details see [34℄). For simpli
ity, further we shall no longer indi
atedimensionless by the supers
ript dim.



Nonhomogeneous Porous Media 2553. Analysis of the porosity-degenerate modelIn this part we shall approa
h Model 2 given by (2.26)�(2.27), (2.29)�(2.30)
orresponding to the strongly nonlinear saturated-unsaturated 
ase with aweakly nonlinear hydrauli
 
ondu
tivity. We shall study a limit 
ase letting
m to vanish on a subset Ω0 stri
tly in
luded in Ω, see Fig. 1. This 
hara
-terizes the existen
e of possible solid intrusions in the soil and we shall 
allthis model porosity-degenerate.In fa
t we intend to treat a little more general mathemati
al problem, inwhi
h we shall 
onsider that the fun
tion 
ondu
tivity depends both on thespa
e variables and the solution. Therefore the model reads

∂(m(x)Sw)

∂t
− ∆β̃∗(Sw) +

∂K̃(x, Sw)

∂x3
∋ f in Q, (3.1)

m(x)Sw(x, 0) = Sw0(x) in Ω, (3.2)
Sw(x, t) = Ss on Σu, (3.3)

(
K̃(x, Sw)i3 −∇β̃∗(Sw)

)
· ν ∋ fα on Σα. (3.4)

Fig. 1: The domain Ω.At the points where m vanishes the equation degenerates. The fun
tion mis supposed to be essentially bounded, m ∈ L∞(Ω) with 0 ≤ m(x) ≤ 1 a.e.
x ∈ Ω. However, we shall see that this assumption is not su�
ient to get the
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hisolution existen
e and a stronger hypothesis upon m is required. We spe
ifyon
e again the hypotheses made for the problem parameters, i.e.,
β̃(r) ≥ ρ̃ for r < Ss, β̃(r) = ρ̃ for r ≤ 0, lim

rրSs

β̃(r) = +∞, (3.5)
β̃∗(r) =

{ ∫ r
0 β̃(ξ)dξ, r < Ss

[K̃∗
s ,+∞), r = Ss,

(3.6)
lim

r→−∞
β̃∗(r) = −∞, lim

rրSs

β̃∗(r) = K̃∗
s > 0, (3.7)

(β̃∗(r) − β̃∗(r))(r − r) ≥ ρ̃(r − r)2,∀r, r ∈ (−∞, Ss]. (3.8)In what 
on
erns K̃ we assume that it has the form
K̃(x, r) =

{
K̃0(x) on {x; m(x) = 0}
K̃m(r) otherwise, (3.9)

K̃(x, r) = 0 for r ≤ 0 and K̃(x, r) = K̃s for r ≥ Ss, (3.10)where K̃s = K̃(x, Ss) > 0.Moreover, we assume that K̃0 ∈ H1(Ω0) and K̃ is Lips
hitz with respe
t to
r, uniformly with respe
t to x, i.e., there exists M > 0, su
h that(iK) ∣∣∣K̃(x, r) − K̃(x, r)

∣∣∣ ≤M |r − r| , ∀r, r ∈ R, ∀x ∈ Ω.Finally we shall impose that
m ∈ C1(Ω), 0 ≤ m(x) ≤ 1. (3.11)Fun
tional framework. We perform a fun
tion repla
ement by denot-ing

w = Sw − Ss, (3.12)so that we are led to the system
∂(m(x)w)

∂t
− ∆β̃∗(w + Ss) +

∂K̃(x,w + Ss)

∂x3
∋ f in Q, (3.13)

m(x)w(x, 0) = v0(x) in Ω, (3.14)
w(x, t) = 0 on Σu, (3.15)

(
K̃(x,w + Ss)i3 −∇β̃∗(w + Ss)

)
· ν ∋ fα on Σα, (3.16)
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h we are going to study. Here v0(x) = Sw0 −m(x)Ss. We shall indi
atethe value of w at saturation by ws (a
tually, by (3.12) it is equal to zero, butwe shall keep the notation ws in order to put into eviden
e the behaviour ofthe solution at this point).We 
onsider the spa
es L2(Ω) with the standard norm denoted ‖·‖ ,

V = {w ∈ H1(Ω); w = 0 on Γu}, (3.17)with the norm
‖ψ‖V =

(∫

Ω
|∇ψ|2 dx

)1/2

, (3.18)and its dual V ′ on whi
h we introdu
e the s
alar produ
t by
(w,w)V ′ = 〈w,ψ〉V ′,V ,where ψ is the solution to the boundary value problem

−∆ψ = w, ψ = 0 on Γu, ∇ψ · ν = 0 on Γα. (3.19)Let fα ∈ L2(0, T ;L2(Γα)). We de�ne the fun
tional fΓα ∈ L2(0, T ;V ′) by
fΓα(t)(ψ) = −

∫

Γα

fα(t)ψdσ for any ψ ∈ V (3.20)and noti
e that
‖fΓα(t)‖V ′ ≤ ctr ‖fα(t)‖L2(Γα)where ctr is the 
onstant provided by the tra
e theorem.For the further mathemati
al developments it is more 
onvenient to workwith the multivalued fun
tion
β∗(r) = β̃∗(r + Ss) − K̃∗

s . (3.21)Definition 3.1 Let
m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)), (3.22)
v0 ∈ L2(Ω),

v0

m
∈ L2(Ω), v0

m
≤ ws, a.e. x ∈ Ω.We 
all w a solution to (3.13)-(3.16) if

w ∈ L2(0, T ;V ), (3.23)
ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q,

mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′),
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hisatis�es the equation
〈

d(m(x)w)

dt
(t), ψ

〉

V ′,V

+

∫

Ω

(
∇ζ(t) · ∇ψ − K̃(x,w(t) + Ss)

∂ψ

∂x3

)
dx =

= 〈f(t), ψ〉V ′,V + 〈fΓα(t), ψ〉V ′,V , a.e. t ∈ (0, T ), ∀ψ ∈ V, (3.24)the initial 
ondition m(x)w(0) = v0 and the property
w ≤ ws, a.e. (x, t) ∈ Q. (3.25)Eq. (3.24) 
an be written also in the equivalent form

∫ T

0

〈
d(m(x)w)

dt
(t), φ(t)

〉

V ′,V

dt (3.26)
+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).Repla
ing Sw from (3.12) we get that Sw satis�es

Sw ∈ L2(0, T ;H1(Ω)),

ζ̃ ∈ L2(0, T ;H1(Ω)), ζ̃ ∈ β̃∗(Sw(x, t)) a.e. on Q,
mSw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′).We set
D(A) = {θ ∈ L2(Ω); ∃η ∈ V, η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω}and we introdu
e the multivalued operator A : D(A) ⊂ V ′ → V ′ by

〈Aθ,ψ〉V ′,V =

∫

Ω

(
∇η · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx,for any ψ ∈ V, where η ∈ β∗(θ) a.e. x ∈ Ω. Thus, we 
an write the problemd(m(x)w)

dt
+Aw ∋ f + fΓα , a.e. t ∈ (0, T ) (3.27)

m(x)w(0) = v0.We 
onsider now the multipli
ation operator
M : D(A) → L2(Ω), Mw = mw, (3.28)
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v(x, t) = m(x)w(x, t), (3.29)we 
an rewrite (3.27) in terms of v as

dv

dt
+AMv ∋ f + fΓα , a.e. t ∈ (0, T ) (3.30)

v(0) = v0,where AMv = AM−1v = A
(

v
m

) for any v ∈ D(AM ), where
D(AM ) =

{
v ∈ L2(Ω);

v

m
∈ L2(Ω),∃η ∈ V, η ∈ β∗

( v
m

) a.e. x ∈ Ω
}
.We see that v ∈ D(AM ) implies v

m ∈ D(A). Conversely, if w = v
m ∈ D(A),then v = mw ∈ D(AM ).We still de�ne j̃ : R → (−∞,+∞] by

j̃(r) =

{ ∫ r
0 β̃

∗(ξ)dξ, r ≤ Ss

+∞, r > Ss,where the left limit of β̃∗ at Ss is spe
i�ed in (3.7). This fun
tion is proper,
onvex, lower semi
ontinuous and
∂j̃(r) =





β̃∗(r), r < Ss,

[K̃∗
s ,+∞), r = Ss,

∅, r > Ss.

(3.31)(The proof is similar to that done for a slightly di�erent fun
tion in [34℄,Se
t. 5.3.)3.1. Approximating problemSin
e the operator AM is multivalued, in order to prove the existen
e for(3.27) we introdu
e an approximating problem repla
ing m by
mε(x) = m(x) + ε, for ε > 0and β̃∗ by the single-valued 
ontinuous fun
tion

β̃∗ε (r) =

{
β̃∗(r), r < Ss − ε

β̃∗(Ss − ε) +
eK∗

s−
eβ∗(Ss−ε)

ε [r − (Ss − ε)] , r ≥ Ss − ε.
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hiThen we de�ne
β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s (3.32)and the single valued operator
Aε : D(Aε) ⊂ V ′ → V ′,

〈Aεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε (θ) · ∇ψ − K̃(x, θ + Ss)

∂ψ

∂x3

)
dx, ∀ψ ∈ V,with

D(Aε) = {θ ∈ L2(Ω);β∗ε (θ) ∈ V }.We 
an write the approximating Cau
hy problem (
orresponding to (3.27))d(mεwε)

dt
+Aεwε = f + fΓα , a.e. t ∈ (0, T ), (3.33)
mεwε(0) = v0ε,where

v0ε = mε
v0

m
. (3.34)Definition 3.2 Let ε > 0 and

m ∈ C1(Ω), f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0

m
∈ L2(Ω),

v0

m
≤ ws.A solution to (3.33) is a fun
tion wε that satis�es

wε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′),

β∗ε (wε) ∈ L2(0, T ;V ),

∫ T

0

〈
d(mεwε)

dt
(t), φ(t)

〉

V ′,V

dt

+

∫

Q

{
∇β∗ε (wε) · ∇φ− K̃ (x,wε + Ss)

∂φ

∂x3

}
dxdt (3.35)

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),and the initial 
ondition mεwε(0) = v0ε.
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vε(x, t) = mε(x)wε(x, t), (3.36)we 
an write problem (3.33) in the equivalent form (
orresponding to (3.30))

dvε

dt
+Bεvε = f, a.e. t ∈ (0, T ), (3.37)
vε(0) = v0ε.The operator Bε : D(Bε) ⊂ V ′ → V ′ is single-valued, has the domain

D(Bε) =

{
θ ∈ L2(Ω); β∗ε

(
θ

mε

)
∈ V

}and is given by
〈Bεθ, ψ〉V ′,V =

∫

Ω

(
∇β∗ε

(
θ

mε

)
· ∇ψ − K̃

(
x,

θ

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.Then (3.37) 
an be still written

∫ T

0

〈
dvε

dt
(t), φ(t)

〉

V ′,V

dt+ (3.38)
+

∫

Q

{
∇β∗ε

(
vε

mε

)
· ∇φ− K̃

(
x,

vε

mε
+ Ss

)
∂φ

∂x3

}
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ),whi
h is in fa
t (3.35).For a later use we de�ne j̃ε : R → R,

j̃ε(r) =

∫ r

0
β̃∗ε (ξ)dξ,and noti
e that

∂j̃ε(r) = β̃∗ε (r), ∀r ∈ R. (3.39)First we shall prove that (3.37) has, for ea
h ε > 0, a unique solution, vε inappropriate fun
tional spa
es.
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hi3.2. Existen
e for the approximating problemProposition 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1,

f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0

m
∈ L2(Ω),

v0

m
≤ ws a.e. on Ω.Then, the Cau
hy problem (3.37) has, for ea
h ε > 0, a unique solution

vε ∈ C([0, T ];L2(0, T )) ∩W 1,2(0, T ;V ′) ∩ L2(0, T ;V ) (3.40)
β∗ε

(
vε

mε

)
∈ L2(0, T ;V ), (3.41)

j̃ε

(
vε

mε

)
∈ L∞(0, T ;L1(Ω)), (3.42)that satis�es the estimates

∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ +

+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.43)
≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,

∥∥∥∥
√
mε

(
vε

mε
(t)

)∥∥∥∥ ≤ c0, ∀t ∈ [0, T ], (3.44)
‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ], (3.45)where β0, c0 and c1 do not depend on ε.Moreover, if vε and vε are two solutions 
orresponding to the pairs of data f,

fΓα , v0 and f, fΓα , v0, we have the estimate
‖vε(t) − vε(t)‖2

V ′ +

∫ t

0
‖vε(τ) − vε(τ)‖2 dτ ≤ (3.46)

≤ α0(ε)
(
‖v0 − v0‖2

V ′ +

+

∫ T

0

∥∥f(t) − f(t)
∥∥2

V ′ dt+

∫ T

0

∥∥fα(t) − fα(t)
∥∥2

L2(Γα)
dt

)
.
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retivity of the operator Bεwhi
h is proved below. To show the quasi monotony we 
ompute
(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ = λ

∥∥θ − θ
∥∥2

V ′ +

+

∫

Ω
∇

(
β∗ε

(
θ

mε

)
− β∗ε

(
θ

mε

))
· ∇ψdx−

−
∫

Ω

(
K̃(x,

θ

mε
+ Ss) − K̃(x,

θ

mε
+ Ss)

)
∂ψ

∂x3
dx,where −∆ψ = θ − θ, ∇ψ · ν = 0 on Γα and ψ = 0 on Γu. Hen
e

(
(λI +Bε)θ − (λI +Bε)θ, θ − θ

)
V ′ ≥

≥ λ
∥∥θ − θ

∥∥2

V ′ + ρ̃

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

−M

∥∥∥∥
θ − θ

mε

∥∥∥∥
∥∥θ − θ

∥∥
V ′ ≥

≥
(
λ− M2

2ρ̃ε

)∥∥θ − θ
∥∥2

V ′ +
ρ̃

2

∥∥∥∥
θ − θ√
mε

∥∥∥∥
2

> 0for λ > M2

2eρε . Here we used the fa
t that ε ≤ mε(x) ≤ 1 + ε.Next we have to prove that
R(I +Bε) = V ′,i.e., to show that the equation
vε +Bεvε = g (3.47)has a solution vε ∈ D(Bε) for any g ∈ V ′. Re
all that ε is �xed.If we denote β∗ε (

vε

mε

)
= ζ ∈ V, due to the fa
t that β∗ε is 
ontinuous andmonotoni
ally in
reasing on R and R(β∗ε ) = (−∞,∞) it follows that itsinverse

Gε(ζ) = mε(β
∗
ε )−1(ζ) (3.48)is 
ontinuous from V to L2(Ω) be
ause

∥∥Gε(ζ) −Gε(ζ)
∥∥ = (3.49)

=
∥∥mε

(
(β∗ε )−1(ζ) − (β∗ε )−1(ζ)

)∥∥ ≤

≤ 1 + ε

ρ̃

∥∥ζ − ζ
∥∥ ≤ (1 + ε)cΩ

ρ̃

∥∥ζ − ζ
∥∥

V
, ∀ζ, ζ ∈ V.Here we used (3.8) and Poin
aré's inequality (with the 
onstant cΩ). So,(3.47) 
an be rewritten as

Gε(ζ) +Bε
0ζ = g (3.50)
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hiwith Bε
0 : V → V

′ de�ned by
〈Bε

0ζ, ψ〉V ′,V =

∫

Ω

(
∇ζ · ∇ψ − K̃

(
x,
Gε(ζ)

mε
+ Ss

)
∂ψ

∂x3

)
dx, ∀ψ ∈ V.(3.51)The operator Gε + Bε

0 is monotone, 
ontinuous and 
oer
ive for λ > M2

2eρε ,hen
e it is surje
tive. Therefore (3.50) has a solution ζ ∈ V, implying that(3.47) has a solution vε ∈ D(Bε).a) Now we assume that f ∈ W 1,1(0, T ;V ′), fα ∈ W 1,1(0, T ;L2(Ω)) and
v0

m ∈ V whi
h is equivalent to v0ε ∈ D(Bε).Therefore, the existen
e of a unique solution to (3.37)
vε ∈W 1,∞(0, T ;V ′) ∩ L∞(0, T ;D(Bε))follows from the general theorems for evolution equations with m-a

retiveoperators, hen
e β∗ε (

vε

mε

)
∈ L∞(0, T ;V ). Sin
e the inverse of β∗ε is Lips
hitzwe dedu
e that vε

mε
∈ L∞(0, T ;V ).It follows that (3.33) has a solution

wε =
vε

mεin the same spa
es.To prove estimate (3.43) we test (3.37) at β∗ε (vε) and integrate over (0, t).Taking into a

ount (3.36) and (3.32) we have
∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ +

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ
≤

∫ t

0

∥∥∥∥K̃
(
·, vε

mε
(τ)

)∥∥∥∥
∥∥∥∥β

∗
ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ

+

∫ t

0
‖f(τ)‖V ′

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ +

∫ t

0
‖fΓα(τ)‖V ′

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
V

dτ

≤ 1

2

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)(τ)

)∥∥∥∥
2

V

dτ + C0,where we have used the boundedness of K̃ and
C0 =

3

2

{
K̃2

sTmeas(Ω) +

∫ T

0
‖f(τ)‖2

V ′ dτ + c2tr

∫ T

0
‖fα(τ)‖2

L2(Γα) dτ

}
.
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ount that
∫ t

0

〈
dvε

dτ
(τ), β∗ε

(
vε

mε
(τ)

)〉

V ′,V

dτ

=

∫ t

0

〈
dvε

dτ
(τ), β̃∗ε

(
vε

mε
(τ) + Ss

)
− K̃∗

s

〉

V ′,V

dτ

=

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx−

∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx

−
∫

Ω
K̃∗

s vε(x, t)dx+

∫

Ω
K̃∗

s v0εdxand obtain that
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

1

2

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤
∫

Ω
mε(x)j̃ε

(v0
m

(x) + Ss

)
dx+

∫

Ω
K̃∗

s vε(t)dx+ C1, (3.52)where
C1 =

1

2
K̃∗2

s meas(Ω) +
1

2

∥∥∥v0
m

∥∥∥
2
+ C0.Sin
e

j̃ε(r) ≥
ρ̃

2
r2, ∀r ∈ R,we have

∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx ≥

≥ ρ̃

2

∫

Ω
mε(x)

(
vε(x, t)

mε
+ Ss

)2

dx ≥ ρ̃

2

∫

Ω
mε

{
1

2

(
vε(x, t)

mε

)2

− S2
s

}
dx.On the other hand we re
all that v0

m ≤ ws = 0 and noti
e that
j̃ε

(
v0ε

mε
+ Ss

)
=

∫ v0

m
+Ss

0
β̃∗ε (r)dr ≤

∫ Ss

0
β̃∗ε (r)dr =

= lim
δր0

∫ Ss−δ

0
β̃∗ε (r)dr = lim

δր0

∫ Ss−δ

0
β̃∗(r)dr ≤ K̃∗

sSs.
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hiThus we obtain by (3.52) that
ρ̃

4

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤ (3.53)
≤ 2K̃∗

sSsmeas(Ω) +

∫

Ω
K̃∗

smε

(
vε

mε
(t)

)
dx+C1 +

ρ̃

2
S2

s

∫

Ω
mε(x)dx ≤

≤ C2 +
ρ̃

8

∫

Ω
mε(x)

(
vε(x, t)

mε

)2

dx+
4

ρ̃
K̃∗2

s meas(Ω).We have used several times that mε ≤ 1 + ε ≤ 2. We 
an 
on
lude that
∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥ ≤ c0, ∀t ∈ [0, T ]. (3.54)Next, from the relation
vε(t) =

√
mε

vε

mε
(t)

√
mε (3.55)we get that

‖vε(t)‖2 =

∫

Ω

(√
mε(x)

vε(t)

mε

)2

mε(x)dx ≤ 2

∥∥∥∥
√
mε

vε

mε
(t)

∥∥∥∥
2and therefore

‖vε(t)‖ ≤ c1, ∀t ∈ [0, T ] (3.56)where c0, c1, C0, C1, C2 are independent of ε. Repla
ing this in (3.52) wededu
e
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤(3.57)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
. (3.58)Then we multiply (3.37) s
alarly in V ′ by dvε

dt (t), integrate over (0, t) andpro
eeding as before we get
∫

Ω
mε(x)j̃ε

(
vε(x, t)

mε
+ Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ ≤ (3.59)
≤ C2

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
.
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∫

Ω
mε(x)j̃ε

(
vε

mε
(x, t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvε

dτ
(τ)

∥∥∥∥
2

V ′

dτ + (3.60)
+

∫ t

0

∥∥∥∥β
∗
ε

(
vε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖f(t)‖2

V ′ dt+

∫ T

0
‖fα(t)‖2

L2(Γα) dt+ 1

)
,with β0 independent of ε.To show the estimate (3.46) we write two equations (3.37) 
orresponding todi�erent pairs of data, subtra
t them, multiply the di�eren
e s
alarly in V ′by vε − vε and integrate over (0, t). We get

1

2
‖vε(t) − vε(t)‖2

V ′ +
ρ̃

2

∫ t

0

∫

Ω

1

mε
(vε(τ) − vε(τ))

2dτdx ≤

≤ 1

2
‖v0 − v0‖2

V ′ +
M2

2ρ̃ε

∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ t

0

∥∥f(τ) − f(τ)
∥∥2

V ′ ‖vε(τ) − vε(τ)‖V ′ dτ +

+c2tr

∫ t

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
‖vε(τ) − vε(τ)‖V ′ dτand moreover

‖vε(t) − vε(t)‖2
V ′ + ρ̃

∫ t

0

∫

Ω

(vε(τ) − vε(τ))
2

mε
dτdx ≤

≤ ‖v0 − v0‖2
V ′ +

(
M2

ρ̃ε
+ 2

)∫ t

0
‖vε(τ) − vε(τ)‖2

V ′ dτ +

+

∫ T

0

∥∥f(τ) − f(τ)
∥∥2

V ′ dτ + c2tr

∫ T

0

∥∥fα(τ) − fα(τ)
∥∥2

L2(Γα)
dτ.We obtain the estimate (3.46), via Gronwall lemma with α0 depending on ε.b) Now, we assume that f ∈ L2(0, T ;V ′) and v0

m ∈ L2(Ω), v0

m ≤ ws.Due to some obvious densities we 
an take {fn}n≥1 ⊂W 1,1(0, T ;V ′), {fn
α}n≥1 ⊂

W 1,1(0, T ;L2(Γα)) and {vn
0 }n≥1 ⊂ D(Bε) = V, su
h that

fn → f strongly in L2(0, T ;V ′), (3.61)
fn

α → fα strongly in L2(0, T ;L2(Γα))

vn
0 → v0 strongly in L2(Ω).
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hiThen, for ea
h ε > 0, the problem
dvn

ε

dt
+Bεv

n
ε = fn + fn

Γα
, a.e. t ∈ (0, T ), (3.62)

vn
ε (0) = vn

0εhas a unique solution vn
ε a

ording to a), satisfying the estimate (3.60) withthe right-hand side independent of n, namely,

∫

Ω
mε(x)jε

(
vn
ε

mε
(t) + Ss

)
dx+

∫ t

0

∥∥∥∥
dvn

ε

dτ
(τ)

∥∥∥∥
2

V ′

dτ + (3.63)
+

∫ t

0

∥∥∥∥β
∗
ε

(
vn
ε

mε
(τ)

)∥∥∥∥
2

V

dτ ≤

≤ β0

(∫ T

0
‖fn(t)‖2

V ′ dt+

∫ T

0
‖fn

α (t)‖2
L2(Γα) dt+ 1

)
.We stress that ε is �xed and the se
ond term in the previous relation is uni-formly bounded due to (3.61). By this estimate we dedu
e that {
β∗ε

(
vn

ε

mε

)}
nis in a bounded subset of L2(0, T ;V ) and {

dvn
ε

dt

}
n
is in a bounded subset of

L2(0, T ;V ′), so we 
an sele
t a subsequen
e su
h that
β∗ε

(
vn
ε

mε

)
→ ζε weakly in L2(0, T ;V ) as n→ ∞,and

dvn
ε

dt
→ dvε

dt
weakly in L2(0, T ;V ′) as n→ ∞.We get immediately that

vn
ε

mε
→ wε weakly in L2(0, T ;V ) as n→ ∞.But mε ∈ C1(Ω) and so the sequen
e {vε}n =

{
mε

vn
ε

mε

}
n
is bounded in

L2(0, T ;V ), when
e
vn
ε → vε weakly in L2(0, T ;V ) as n→ ∞.Sin
e V is 
ompa
t in L2(Ω) it follows by Lions-Aubin's theorem that

vn
ε → vε strongly in L2(0, T ;L2(Ω)) as n→ ∞. (3.64)By (3.37) we have that {Bεv

n
ε }n is bounded in L2(0, T ;V ′) so that

Bεv
n
ε → χ weakly in L2(0, T ;V ′) as n→ ∞. (3.65)
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retive so its realization on L2(0, T ;V ′) is quasi m-a

retive too, hen
e it is demi
losed and by (3.64) and (3.65) we get that
χ = Bvε a.e. on Q.Now we 
an pass to the limit in (3.62) as n→ ∞ and get (3.37), proving thusthat this problem has the solution vε ∈ C([0, T ], L2(Ω)) ∩W 1,2(0, T ;V ′) ∩
L2(0, T ;V ).Finally, passing to the limit in (3.63), as n → ∞, and using the lower semi-
ontinuity property we get (3.43) as 
laimed. Estimates (3.44)�(3.45) havebeen proved in (3.54)�(3.55).The uniqueness of the approximating solution follows by (3.46).3.3. Existen
e for the original problemAs we spe
i�ed before the domains

Ωm = {x ∈ Ω; m(x) > 0} and Ω0 = int{x ∈ Ω; m(x) = 0}have the 
ommon C1-boundary, ∂Ω0, see again Fig. 1. Here, the notation�int� represents the interior of the subset.Theorem 3.1 Let
m ∈ C1(Ω), 0 ≤ m ≤ 1, f ∈ L2(0, T ;V ′), fα ∈ L2(0, T ;L2(Γα)),

v0 ∈ L2(Ω),
v0

m
∈ L2(Ω),

v0

m
≤ ws a.e. on Ω.Then, the Cau
hy problem (3.27) has a solution

w ∈ L2(0, T ;V ), (3.66)su
h that
ζ ∈ L2(0, T ;V ), ζ ∈ β∗(w(x, t)) a.e. on Q, (3.67)
mw ∈ C([0, T ];L2(Ω)) ∩W 1,2(0, T ;V ′), (3.68)

w ≤ ws a.e. (x, t) ∈ Q. (3.69)Proof. By the hypotheses it follows that the approximating problem (3.37)(and 
onsequently (3.33)) has, for ea
h ε, a unique solution a

ording to
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hiProposition 3.1, in
luding the estimates (3.43)�(3.45). These do not dependon ε and imply that we 
an sele
t a subsequen
e su
h that
β∗ε

(
vε

mε

)
→ ζ weakly in L2(0, T ;V ), (3.70)

β̃∗ε

(
vε

mε
+ Ss

)
→ ζ + K̃∗

s weakly in L2(0, T ;H1(Ω)), (3.71)
dvε

dt
→ µ weakly in L2(0, T ;V ′), (3.72)

wε =
vε

mε
→ w weakly in L2(0, T ;V ). (3.73)We also get that the tra
e of β∗ε (

vε

mε

) on Σu is well de�ned and sin
e
β∗ε

(
vε

mε

)
∈ L2(0, T ;V ) it follows that ζ = 0 on Σu. Now

vε = mε
vε

mε
(3.74)and sin
e mε → m uniformly on Ω and m ∈ C(Ω) it follows that

vε → v weakly in L2(0, T ;L2(Ω)). (3.75)By (3.73) and (3.75) we get
v = mw (3.76)and obviously

v = 0, a.e. on Q0 = Ω0 × (0, T ). (3.77)Using (3.73), (3.74) and (3.75) we still obtain that
√
mε

vε

mε
→

√
mw weak-star in L∞(0, T ;L2(Ω)),

vε =
√
mε

vε

mε

√
mε → v weak-star in L∞(0, T ;L2(Ω)).Again by (3.74) and m ∈ C1(Ω) we dedu
e that

‖vε‖L2(0,T ;V ) ≤ 
onstant independent of ε. (3.78)By Lions-Aubin 
ompa
tness theorem we 
on
lude then that {vε}ε is 
om-pa
t in L2(0, T ;L2(Ω)), i.e.,
vε → v strongly in L2(0, T ;L2(Ω)) as ε→ 0, (3.79)
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dt . Also, by As
oli-Arzelà theorem we 
an prove that vε(t) → v(t)strongly in V ′ (using (3.72) and (3.78)). Using (3.76) we 
an dedu
e byletting ε→ 0 in the se
ond equation in (3.37) that

mw(0) = v0. (3.80)We set now
Ωδ = {x ∈ Ω; m(x) > δ} for arbitrary δ > 0,

Qδ = Ωδ × (0, T ), Qm = Ωm × (0, T ),and noti
e that Ωδ and Ωm are open be
ause m ∈ C1(Ω). We have
1

mε
=

1

m+ ε
<

1

m
<

1

δ
on Ωδand by (3.79)

wε =
1

mε
vε →

v

m
= w strongly in L2(0, T ;L2(Ωδ)), ∀δ > 0.Re
all that β∗ε (r) = β̃∗ε (r + Ss) − K̃∗

s .Let us �x (x, t) ∈ Qδ. Using the same argument like in the proof of Theorem3.1, in Se
t. 5.3 in [34℄, we obtain that
β̃∗ε (wε + Ss) → ζ̃ ∈ β̃∗(w + Ss) weakly in L2(0, T ;H1(Ωδ)).By (3.32) and (3.71) we get that
β∗ε (wε + Ss) → β̃∗(w + Ss) − K̃∗

s weakly in L2(0, T ;H1(Ωδ)).Sin
e δ is arbitrary we obtain
ζ(x, t) ∈ β̃∗(w(x, t) + Ss) − K̃∗

s a.e. (x, t) ∈ Qm =
⋃

δ>0

Qδ. (3.81)Proving that the subset
Q+

m = {(x, t) ∈ Qm; w(x, t) > ws}has a zero measure, we dedu
e similarly to the proof of Corollary 3.3 in Se
t.5.3 in [34℄, that w ≤ ws a.e. (x, t) ∈ Qm.
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hiFinally, sin
e {
K̃(x,wε + Ss)

}
ε
is bounded in L2(Q), we have

K̃(x,wε + Ss) → κ weakly in L2(0, T ;L2(Ω)), (3.82)and we assert that
κ(x, t) = K̃(x,w(x, t)), a.e. (x, t) ∈ Q.Indeed, {

K̃m(wε + Ss)
}

ε
is weakly 
onvergent to κ, on Qm, too. On theother hand, it is strongly 
onvergent to K̃m(w+Ss) on ea
h Qδ, be
ause K̃mis Lips
hitz. By the uniqueness of the limit the restri
tion of the weak limitto Qδ should 
oin
ide with K̃m(w + Ss). This implies that

κ = K̃(x,w + Ss), a.e. on Qm. (3.83)On the subset Q0 the fun
tion K̃ does not depend on w, so the limit is equalto K̃0(x).Now we 
an pass to limit as ε→ 0 in (3.38) and obtain
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ), (3.84)where ζ is given by (3.70).In (3.84) taking φ ∈ L2(0, T ;H1

0 (Ωm)) we still dedu
e that w is the solutionto (3.27) on Qm too,
∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

∫

Qm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

)
dxdt =

=
∫ T
0 〈f(t) + fΓα(t), φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;H1

0 (Ωm)), (3.85)where ζ(x, t) ∈ β∗(w(x, t)) a.e. on Qm.Taking now φ ∈ L2(0, T ;H1
0 (Ω0)), we obtain the weak form of the equationon this subset

∫

Q0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt = 0, ∀φ ∈ L2(0, T ;H1

0 (Ω0)), (3.86)where ζ is given by (3.70).
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orresponds to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃(x,w + Ss)

∂x3
= f in Q, (3.87)

ζ = 0 on Σu,

(K̃(x,w + Ss)i3 −∇ζ) · ν = fα on Σα,and (3.85)�(3.86) to the problem
∂(mw)

∂t
− ∆ζ +

∂K̃m(w + Ss)

∂x3
= f in Qm, (3.88)

−∆ζ +
∂K̃0(x)

∂x3
= f in Q0,

ζ = 0 on Σu,

(K̃m(w + Ss)i3 −∇ζ) · ν = fα on Σα.We re
all that the 
ommon boundary of the domains Ωm and Ω0 is regulardue to the fa
t that m ∈ C1(Ω). Sin
e ζ ∈ L2(0, T ;V ), we dedu
e that thetra
e of ζ(t) ∈ β∗(w(t)) belongs to V a.e. t, so it is 
ontinuous a
ross theboundary ∂Ω0 (more exa
tly along lines L that 
ross the boundary), a.e.
t ∈ (0, T ). Thus if we take x0 ∈ ∂Ω0 and denote

ζ+(t) = lim
x→x0, x∈L∩Ωm

ζ(t),then we have
ζ+(t) = lim

x→x0, x∈L∩Ω0

ζ(t) a.e. t ∈ (0, T ).We take into a

ount that ζ+ ∈ β∗(w(t)) a.e. on Qm, hen
e ζ turns out tobe the solution to the ellipti
 problem
−∆ζ(t) = f(t) + fΓα(t) in Ω0 (3.89)

ζ(t) = ζ+(t) ∈ β∗(w(t)) on ∂Ω0, a.e. t ∈ (0, T )for a.e. t �xed in (0, T ), and w is the solution to (3.85) (equivalently to(3.24)) in Qm.Then, we de�ne the fun
tion
w∗(x, t) =

{
w(x, t), if (x, t) ∈ Qm

(β∗)−1(ζ(x, t)), if (x, t) ∈ Q0 = Ω0 × (0, T ),
(3.90)where ζ is the solution to (3.89) and show that it is the solution to (3.27) inthe sense of De�nition 3.1. Indeed, ζ(x, t) ∈ β∗(w∗(x, t)) and ζ ∈ L2(0, T ;V ),
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hiso it follows that w∗ ∈ D(A), implying that w∗ ≤ ws a.e. on Q. Then, mw∗belongs to the spa
es spe
i�ed in (3.23) (we take into a

ount that mw∗ = 0on Q0). Finally, we have to 
he
k that w∗ satis�es the equation (3.26) andthis follows by a straightforward 
omputation using (3.84)�(3.86). Indeed, ifwe repla
e w∗ in (3.26) we obtain
∫ T

0

〈
d(mw∗)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃(x,w∗)

∂φ

∂x3

) dxdt =

=

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫

Q

(
∇ζ · ∇φ− K̃(x,w + Ss)

∂φ

∂x3

)
dxdt =

=

∫ T

0
〈f(t) + fΓα , φ(t)〉V ′,V dt, ∀φ ∈ L2(0, T ;V ).We took into a

ount the expressions assigned to w∗ and K̃(x,w + Ss) onea
h subset, (3.81) and (3.84). 2Corollary 3.1 Under the assumptions of Theorem 3.1 the solution to(3.27) is unique if in addition

ρ̃ > cΩM. (3.91)Proof. Let us denote by w∗
1 and w∗

2 two solutions to (3.27) 
orresponding tothe same data. We multiply the di�eren
e of equations (3.27) written for w∗
1and w∗

2 by (w∗
1 −w∗

2) s
alarly in V ′, integrate on (0, T ) and use the Lips
hitzproperty of K̃. We get
‖m(w∗

1(τ) −w∗
2(τ))‖2

V ′ + ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖2 dτ ≤ (3.92)

≤ M2

ρ̃

∫ T

0
‖w∗

1(τ) − w∗
2(τ)‖ ‖w∗

1(τ) − w∗
2(τ)‖V ′ dτ ≤

≤ M2

ρ̃
c2Ω

∫ T

0
‖w∗

1(τ) −w∗
2(τ)‖2 dτ
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onstant in Poin
aré's inequality. Here we took into a

ountthat for w ∈ L2(Ω) we have ‖w‖V ′ ≤ cΩ ‖w‖ .It follows by (3.91) that mw∗
1 = mw∗

2 a.e. on Q and w∗
1 = w∗

2 a.e. on Qmwhere m(x) > 0. Now we subtra
t the equations (3.88) 
orresponding to w∗
1and w∗

2 and get
−∆(ζ1 − ζ2) = 0 in Q,

ζ1 − ζ2 = 0 on Σu,

−∇(ζ1 − ζ2) · ν = 0 on Σα,where ζ1 ∈ β∗(w∗
1), ζ2 ∈ β∗(w∗

2) a.e. on Q. Hen
e ζ1 = ζ2 and sin
e (β∗)−1is single valued then w∗
1 = w∗

2 a.e. on Q. 2Remark 3.1 We observe that in the degenerate 
ase the uniqueness of thesolution 
an be obtained only if the transport is dominated in a sense (see(3.91)) by the di�usivity. In parti
ular, this is true when K̃ = 0, i.e., whenwe deal with a horizontal in�ltration, also 
alled sorption.Remark 3.2 By the proof of the solution existen
e we also as
ertain a
onsequen
e that 
an be inferred at an intuitive level, i.e., the boundaryvalue problem is separated into two problems 
orresponding to the domains
Qm and Q0, 
onne
ted by the �ux 
ontinuity.Indeed, if we test the �rst two equations in (3.88) at φ ∈ L2(0, T ;V ) andintegrate the sum over (0, T ) we obtain

∫ T

0

〈
d(mw)

dt
(t), φ(t)

〉

V ′,V

dt+

+

∫ T

0

∫

Ωm

(
∇ζ · ∇φ− K̃m(w + Ss)

∂φ

∂x3

) dxdt−
−

∫ T

0

∫

∂Ωm

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+φdσdt+

+

∫ T

0

∫

Ω0

(
∇ζ · ∇φ− K̃0(x)

∂φ

∂x3

)
dxdt−

−
∫ T

0

∫

∂Ω0

(
K̃0(x)i3 −∇ζ

)
· ν−φdσdt =

=

∫ T

0

∫

Ω
〈f(t) + fΓα(t), φ(t)〉V ′,V dxdt,for any φ ∈ L2(0, T ;V ), where ν+ is the outer normal to ∂Ωm, ν

− is theouter normal to ∂Ω0 and ζ ∈ β∗(w) a.e. on Qm. Taking into a

ount (3.84)
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hiwe obtain the �ux 
ontinuity on the 
ommon boundary ∂Ω0 × (0, T )

(
K̃m(w + Ss)i3 −∇ζ

)
· ν+ =

(
K̃0(x)i3 −∇ζ

)
· ν+ on ∂Ω0 × (0, T ). (3.93)The previous integrals on ∂Ωm and ∂Ω0 are 
onsidered in the sense of dis-tributions, e.g., as the value of (

K̃(x,w + Ss)i3 −∇ζ
)
· ν at φ. By the tra
etheorem we see that, generally, the �ux (

K̃(x,w + Ss)i3 −∇ζ
)
· ν is wellde�ned as an element of the spa
e L2(0, T ;H−1/2(∂Ω0)).Referen
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