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1. Physical context and mathematical hypotheses

From the hydraulic point of view, the problems we shall study are related to a
Darcian flow of an incompressible fluid in an isotropic, nonhomogeneous non-
deformable porous medium with a variable porosity and with no hysteresis
development.
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The general boundary value problem. Assume that the flow do-
main Q is an open bounded subset of RN (N = 1,2,3), and the time runs
within the finite time interval (0,7"). The boundary of €2 is denoted by I' and
it is considered piecewise smooth. The vector of space variables is denoted
by & = (21,2, 23) € Q and the time by t € (0,7).

We consider the Richards’ equation describing the water infiltration into
an isotropic, nonhomogeneous, unsaturated porous medium with a variable
porosity, with initial data and various boundary conditions (see [7])

O0m(@)Sw(h)) _ V- (k(h)Vh) + Ok(h) =fin@=0Qx(0,7), (1.1)
ot 8x3

h(z,0) = ho(x) in Q, (1.2)

boundary conditions for h on X =T x (0,7T). (1.3)

The unknown in Richards’ equation is the capillary pressure h(x,t) (or pres-
sure head, or water pressure in the unsaturated soil), Sy, is the water satura-
tion in pores, m is the medium porosity and 6 = m(z)S,, is the volumetric
water content or soil moisture. In this work the dependence of m on x
models the nonhomogeneity of the medium. The function k is the hydraulic
conductivity, f(z,t) is a source (or sink) in the flow domain and hg is the
initial pressure distribution in the domain, f and hg being given. In general
m € (0,1) but a limit case with m tending to 0 may have a physical relevance.
The properties of the dependence of S, and k on h will be specified.

In particular, we shall exemplify the theory for the case of the medium having
a part of the boundary, I',, semipermeable, allowing a water flux across it
and the other part I', at which the pressure will be given. Here, I', and
I, are disjoint and I' = I, UT,,. In infiltration problems, we can often
meet the situation in which water ponds on the soil surface (let it be I';,).
This happens when the rainfall rate is greater than the soil conductivity at
saturation and the soil begins to saturate from the surface, or when the soil
surface is in contact with an open water body, for example the bottom of a
lake. In consequence the boundary conditions we shall consider are

h(z,t) = hy(z,t) > 0on X, =T, x (0,T), (1.4)

q-v=foond, =Ty x(0,T), (1.5)

where ¢ is the water flux defined by

q(z,t) = k(h)is — k(h)Vh, (1.6)
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v is the outer normal vector at the boundary and 43 is the unit vector of the
Oxs axis, downwards directed.

We can reverse the boundary conditions by considering that I', is the soil
surface and I';, is the underground boundary. Thus we can interpret that
the flux through the soil surface, is provided by a water supply as a rain or
irrigation and that the lower part of the porous medium is in contact with
the phreatic aquifer.

Description of the hydraulic model. The behaviour of an unsat-
urated soil, i.e., partially filled with water, is completely known from the
hydraulic point of view if two functions are given: one is the retention curve

S, = C*(h), (1.7)

linking the water saturation S,,, to the pressure head h, and the other is the
hydraulic conductivity

k= k(h), (1.8)

both depending nonlinearly on h. For an isotropic soil the latter is a scalar
function.

Since we study the nonhysteretic case, the retention curve and the hydraulic
conductivity are assumed single-valued functions of the pressure.

In soil sciences, the unsaturated pressure is considered negative (h < 0) and
the saturation is characterized by h = 0. Also, it is considered that the
process of infiltration-drainage (opposite to infiltration) takes place between
two limits of h. The lowest limit is denoted h, and at this pressure head the
soil is considered dry even if some water still resides in the pores and the
hydraulic conductivity is still positive. The corresponding water saturation
is denoted S, and the volumetric water content 6, is called residual moisture
(see |7]). The upper limit is A = 0 where saturation is reached and water
saturation becomes equal to 1. However, we shall denote this value by S;.
At saturation, moisture attains its saturation value 65 equal to the medium
porosity at this point (if the porosity is not constant). The parts of the
medium where h > 0 are completely saturated. We define the derivative of
the water saturation with respect to the pressure

~ . dS,

C(h) = =2 (h). (1.9)

For the saturated flow, when A > 0, the previously functions take constant
values.
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Generally, the hydraulic models raise a difficult mathematical problem. When
the pressure head in the unsaturated soil comes close to the saturation value,
C vanishes and Richards’ equation degenerates. Correspondingly, the diffu-
sion coefficient expressed as a function of moisture exhibits a blow-up de-
velopment around saturation. In soil sciences the model which reflects this
behaviour is the strongly nonlinear Green-Ampt limit model, see [10]. The
situation in which 6’(0) > 0 corresponds to a less nonlinear hydraulic be-
haviour, the typical model for this class being the Burgers’ model, see [10],
too. Depending on the particularities of the hydraulic functions which are
determined by the soil pore structure, the models of water infiltration range
between these two limit models (see [44]).

Previous theoretical results. In the most mathematical literature de-
voted to this subject the blow-up of the diffusivity in the diffusive form of
Richards’ equation was avoided, by considering a finite-valued diffusivity, or
studying the problem only in the pressure form (see [2], [4], [12], [19], [20],
[25], |26], [27], [37], [38]). More recently, in the paper [9] a model of the
saturated-unsaturated flow lying on a special definition of the boundary con-
ditions that changes during the phenomenon evolution, has been developed
also for a finite value of the diffusivity at saturation (which was implied by
the assumption that C(0) > 0). Following the technique presented in [20] the
model was reduced to systems in class of Stefan-like problems of high-order,
see [19].

However, apart from specific infiltration problems, previous existence and
uniqueness studies for solutions to the elliptic-parabolic equation

9(b(w))
ot

+ V- (a(Vu,b(u))) + f(b(uw)) =01in Q x (0,7

have been presented in the literature especially using a technique inspired
by the method of entropy solutions introduced by S.N. Krushkov in [28|.
Originally, this method was devoted to prove L'-contraction for entropy so-
lutions for scalar conservation laws, i.e., generalized solutions in the sense of
distributions satisfying admissibility conditions similar to those of entropy
growth in gas dynamics (see also [8]). J. Carillo applied Krushkov’s method
to second order equations (see [13], [14], [15], [16]). F. Otto (see [35], [36])
proved a L'-contraction principle and uniqueness of solutions for this type of
equation by applying Krushkov’s technique only to the time variable. H.-W.
Alt and S. Luckhaus showed in [1] that the natural solution space for this
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equation is given by all functions u of finite energy in the sense that

sup /\I'(b(u(t)))d:13+/ |Vu|" dzdt < oo,
te(0,7) JQ Q

where W is the Legendre transform of the primitive of b.

We also mention the results of J.L. Vazquez regarding the fast diffusion
equations (see [18], [40], [41], [42], [17] and the book [43]).

Concerning the degenerate evolution equations, extensive studies have been
performed for linear operators, relying on the properties of the resolvent of
an appropriate multivalued linear operator accounting for the multiplication
by the function m (see [21], [23] and the monograph [22]). We mention also
the paper |24] related to a similar topic in which a degenerate model with
homogeneous Dirichlet boundary conditions and no transport was studied.

The analysis of the well-posedness of the diffusive form of Richards’ equation
in the unsaturated case (6 < 6,) with the porosity m constant, was developed
in the papers [6], [29], [30], [31] within a functional approach. The existence
results which were deduced showed that solutions reaching saturation can be
obtained but only on zero-measure subsets of (). Somehow, this was expected
because the unsaturated model reflects a behaviour of a particular soil only
and not the general feature of the process which includes the possible soil
saturation.

In the paper [32| a rigorous mathematical model able to describe the sat-
uration occurrence (with the blow-up of the diffusivity) was introduced for
a homogeneous porous medium (with m constant) in the diffusive form and
developed then in |33].

In the first part of this chapter we introduce the diffusive models of water
flow in saturated-unsaturated media characterized by a space variation of
the porosity. Then we analyze a model with mixed boundary conditions in-
volving a flux on a part of the boundary and a nonhomogeneous Dirichlet
condition corresponding to a singular situation on another part of the do-
main boundary. The model will be degenerate because we shall assume that
porosity can vanish on a subset of 2.
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2. Diffusion models in nonhomogeneous porous me-
dia

We intend first to reveal how the particular character of the hydraulic models
is determined by the behaviour of the functions C* and k around 0.

Mathematical hypotheses. For the unsaturated flow, where h < 0, we
assume the following:

(mq) C* : [hy,0) — [S;, Ss) is single-valued, positive, differentiable on [h,,0),
monotonically increasing ;

(mg) k : [h,0) — [K,, Ky) is single-valued, positive, differentiable on [h,;,0),
monotonically increasing and satisfies the property ¥ (h,) = 0;

(m3) C : [hr,0) — (Co, C,] is single-valued, non-negative, differentiable on
[hr,0) monotonically decreasing and satisfies C’(h,) = 0;

In the saturated flow we have
(myg) C*(h) = S, k(h) = K, and C(h) = 0 for h > 0.

We denote B
S, = (C*)(0) > 0, (2.1)
Co = (C*)'(0) = C(0) > 0, (2.2)
Ky =k(0) >0, (2.3)
K| = }lli}ré/c’(h), K{ € [0, 00). (2.4)

Therefore, the unsaturated flow is characterized either by h < 0 or S, €
[Sr, Ss) while the saturated one is indicated by h > 0 or S, = S;.

The positive values S,., Sy and their corresponding conductivities K, K
are soil characteristics and they are known for each type of soil apart. The
properties k’(h,) = 0 and C’(h,) = 0 were put into evidence by experiments
(see [10]).

We notice that the functions C* and k are continuous on [h;,00), and A, is
the maximum point for C. Also C' is continuous on [h,,00), except possibly
at the point 0.

We stress the fact that these properties are verified by the empirical hydraulic
models set up in the last decades (see e.g., [44]).

We emphasize that the main role is played by the increase rate of the func-
tions C* and k around 0, the significant contribution being given by the
behaviour of the retention curve C*.
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2.1. Strongly nonlinear saturated-unsaturated diffusive model

Let us assume (mp) — (my4) and

Co=0

which is the main characteristic of this case. Tt follows then that C is con-
tinuous on [h;, 00) and we can write C* : [h,,00) — [S;, Ss], as

~ h ~

Strongly nonlinear hydraulic conductivity. This situation corre-
sponds to K, € Ry = (0, 00).

We define a primitive of K by

Koy = 4 K i KOG R <0, (26)
K* 4 Ksh, h >0,

where K* : [h,,00) — [K}, 00) and

K* = K*(0) > 0. (2.7)

The function K* is differentiable, monotonically increasing on [h,., o0) and
with these notations Richards’ equation (1.1) becomes

d(m(x)Sy) Ok(h)

o At =

finQ. (2.8)

By the initial condition (1.2) we obtain

Sw(2,0) = Swo, Swo = C*(ho).
We can also consider the initial condition
m(z)Sy(2,0) = Oy(x) in Q, where 6y = m(z)C*(ho) (2.9)
and corresponding replacements should be made in the boundary conditions
(1.4)—(1.5).
Since it is more convenient to work with the variable 5, we introduce from

(2.5) the inverse of C*, (C*)™1 : [S,, Ss] — [hy, +00), by

(C*)7H(Sw), Sw € [Sr, Ss),

[07 +OO)7 Sw = 587 (210)

@5 = {
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which is multivalued at S,, = 65 and continuous and monotonically increasing
on [Sy, Ss). Then, we replace it all over in (1.1)-(1.5).

Thus, instead of the conductivity written in function of pressure, we obtain
the conductivity expressed in terms of water saturation

K :[S,, 8] — [K,, K], K(S4) = (koC*) "% (Sy), Sw € [Sr,Ss], (2.11)

function that preserves some of the properties of k, i.e., it is positive, differen-
tiable (except at Ss) and monotonically increasing, since for any Sy, € [S,., Ss)
we have that

_ _ _ 10\ —1
R(5) = (@) S0 - ()50 = HEC) 50y

We notice also that
K'(S,) =0 (2.13)

and B
lim K'(S,) = +oo. (2.14)

However, for Sy, € [Sr,S;] with S; < Sg the derivative of K is bounded, so
that K follows to be Lipschitz on intervals strictly included in [S,, Ss)

K(Sw) - IA{-(SW)‘ < Ml |Sw - S_w| ) VSUHE € [ST’7SI]7 Sl < S87 (215)

where _
M; = max Ii((g*)_l(sw)) < 00. (2.16)
SwelSr,81] C((C*)~1(Sy))

Plugging (2.10) in (2.6) we get the function

_ { (K*0 (C*)™1)(Sw), Sw €[Sr, Ss), (2.17)

* S —
5 ( w) [K:,—I-OO), Sw = Ss
that is multivalued at S,, = S5 but is continuous from the left at this point

Suljlglss B*(Sw) = K. (2.18)

For S, € [S;,Ss) the function (C*)! is monotonically increasing, so that
we can calculate 3%(S,) by changing the variable in the integral (2.6) and
denoting ¢ = (C*)71(¢). In this way we get

Sw
ﬁ*(sw) = K: + ﬁ(ﬁ)dﬁ, for S, € [SraSS)a

Sy
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where —
~ E((C*)™ (Sw
B(Sw) = u(Cp 1( )), for Sy €[Sy, Ss). (2.19)
C((C*)~1(Sw))
In this way we have rigorously recovered the definition of the water diffusivity
function.

We notice that B has two important properties

B(Su) > 7= A(S,) = % > 0, VS, € [Sr,S4) (2.20)
and B
Slim B(Su) = +oo. (2.21)

Moreover, by the hypotheses made upon the functions C and k it follows
that (8 is monotonically increasing, i.e.,

_ B NaTi
g = kCTkC >0, on [S,,S,), (2.22)
3(S,) =0. (2.23)

Hence, E* is twice differentiable and strictly monotonically increasing on
[Sr, Ss) and as a matter of fact we can write

~ * Sw 73

Moreover, by (2.20) and (2.24) we deduce that the function §* satisfies the
inequality

(B*(Sw) = B*(Su))(Sw = Sw) = p(Sw = Fu)*,¥Su, S €[Sy, 5] (2:25)
In conclusion we can set

Model 1. Let us assume (mp) — (myg), Co = 0 and K} € R. Then, the
diffusive model of the strongly nonlinear saturated-unsaturated infiltration
with a strongly nonlinear hydraulic conductivity is given by

O(m(x)Sw) = 0K (Sw) _ .
" AB*(Sy) + e fin @, (2.26)
m(x)Sy(z,0) = Og(x) in €, (2.27)

boundary conditions in S,, on X, (2.28)
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Where~§* is the multivalued function defined by (2.24),~B is given by (2.19)

and K is the single-valued function (2.11). Moreover, 3* is strongly mono-
tone, (3 satisfies (2.20) (2.23) and K has the properties (2.13) (2.16).

The boundary conditions (1.4) (1.5) become

Su(z,t) = Sy on Sy, (2.29)

(k(sw)z'g - vﬁ*(sw)) v = fu on X, (2.30)

The qualifier of strongly nonlinear is implied by the property of the function
B which evolves highly nonlinear around the saturation point, Ss. This is
justified by the fact that the typical representative for this behaviour (cor-
related with that of its primitive B* which is finite at this point) is of the
form

B(Sw) = .

W for0<p<1.

We notice that this form of the diffusivity function reveals the character of
fast diffusion of this process (see the review of diffusion-type processes in
[3])-

However, E* is multivalued and the sign equal (=) in (2.26) is not properly
used. The appropriate symbol should be 3 . Also, we shall specify later the
exact meaning of the solutions to (2.26)-(2.30). The fact that equation (2.26)
is multivalued must not be surprising if one takes into account that it models
a free boundary problem. This means that, at each time ¢, the domain 2 can
be decomposed into two regions: the saturated one, {z; Sy (x,t) = Ss} and
the unsaturated one {z; S, (z,t) < Ss}, separated by a free boundary. The
extension of a nonlinear function arising in such a problem to a multivalued
one is common in the theory of nonlinear differential equations with discon-
tinuous coefficients as well as in that modelling free boundary processes.

Thus, equation (2.26) represents an extension of Richards’ equation (written
for the unsaturated infiltration) to the simultaneous saturated-unsaturated
flow.

Weakly nonlinear hydraulic conductivity. A strongly nonlinear
model, but with a weaker nonlinear behaviour of the conductivity may be
obtained under conditions that lead to limg, g, IN('(SU,) < oo. To reach such
a situation we have to impose just from the beginning a stronger condition
for k, namely that there exists M > 0, such that

k' (h)y < MC(h), Yh € [h,, 0], (2.31)
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which implies that
E'(h
K{) =0, lim N( ) = M. (2.32)
h,/0 C(h)
In this way K turns out to be Lipschitz on [Sr, Ss] with the constant M. We
observe that the functions 8 and K remain monotonically increasing. This
situation is put into evidence e.g., in the van Genuchten model (see [39]) for
the model parameter m close to 1. This case can be resumed in

Model 2. Let us assume (m;) — (my), Co = 0 and (2.31)—(2.32). Then, the
diffusive model of strongly nonlinear saturated-unsaturated infiltration with a
weakly nonlinear hydraulic conductivity is given by (2.26)—(2.28), where the
functions 5 and E* have the properties specified in Model 1 except for K
which is given by (2.11), with

lim K'(Sy) =M < cc.
Sw /'Ss

2.2. Weakly nonlinear saturated-unsaturated diffusive model

For some hydraulic models the diffusivity is finite at Sy, = Ss. We intend
to reveal which properties of the functions C* and k can provide such a
value. Let us suppose that the retention curve increases from the left to its

maximum value with a nonzero rate at the left of zero,
6’0 > 0,
but very close to 0. In this case C* is not differentiable at & = 0 and the

function

dSy

G : [, 00) — [0,C0], C(h) = 4 ~qp > <0 (2.33)
0, h>0
is no longer continuous at h = 0, having the jump ‘CN'O‘ = }L% %.

The functions K and B* and~5 will be defined in the same way as before,
but in this case the value of g at S, = S, exists and it is

lim B(S,) = == < oo. 2.34
gl B(Sw) & 00 (2.34)

However, the function B*(Sw) will be extended in a multivalued way, by

3*(S,) = K* at S.
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Weakly nonlinear hydraulic conductivity. Assume that the deriva-
tive of k at h = 0, has a finite value, K, < co. Hence, K is Lipschitz with
the constant

F(C) ™ (Sw)

K/
M = max <=9

" SwE[Sr,Ss] 5((5*)_1(5111)) Co

(2.35)

so that we can settle

Model 3. Let us assume (my) — (my4), Co > 0 and K}, < co. Then, the diffu-
sive model of weakly saturated-unsaturated infiltration with a weakly nonlinear
hydraulic conductivity is given by (2.26)-(2.28), where 3* is the multivalued
function defined by (2.24), 3 is given by (2.19) and K is the single-valued
function (2.11) with K'(S,,) finite on [S,, Ss]. Moreover, 3* is strongly mono-
tone, (2.25), G satisfies (2.20), (2.22)-(2.23) with

sil%s B(Sw) < 400 (2.36)

and K is Lipschitz on |S,, Ss], i.e., there exists M > 0 such that

R(Sy) — K(S0)| < M Sy~ By Y80, 5 €[5, 54). (2.37)

It is obvious that this situation which is illustrated by nonsingular diffusivities
including also power functions

3(Sw) = SP, with p > 1,

is related to a slow diffusion and to the well-known porous media equation

(see [3]).

We write the model in the dimensionless form, introducing for example

B(Sw)
Ba

Su =50 e g
Klm 1m —
o Ry

( ) ’ ﬁd

Sdim —
Y Ks _Kr

(Sw) =

where (3; is a characteristic value for the diffusivity. Without entering into
details we specify that the dimensionless model has the same form as (2.26)

(2.28). The dimensionless Sdim — (0 and K, = 0 and for convenience, we
shall extend § and K at the left of SI™ by the constant values p and 0 (for
all these details see [34]). For simplicity, further we shall no longer indicate

dimensionless by the superscript 4™,
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3. Analysis of the porosity-degenerate model

In this part we shall approach Model 2 given by (2.26) (2.27), (2.29) (2.30)
corresponding to the strongly nonlinear saturated-unsaturated case with a
weakly nonlinear hydraulic conductivity. We shall study a limit case letting
m to vanish on a subset Qg strictly included in €2, see Fig. 1. This charac-
terizes the existence of possible solid intrusions in the soil and we shall call
this model porosity-degenerate.

In fact we intend to treat a little more general mathematical problem, in
which we shall consider that the function conductivity depends both on the
space variables and the solution. Therefore the model reads

I(m(x)Sw) = 0K (z,8) _ ,.
T—Aﬁ (Sw)—I-TBfm Q, (3.1)
m(z)Sy(x,0) = Syo(x) in £, (3.2)
Sw(z,t) =S5 on Xy, (3.3)
(f((x, S Vi — vﬁ*(sw)) U3 faon . (3.4)
FM

Fig. 1: The domain Q.

At the points where m vanishes the equation degenerates. The function m
is supposed to be essentially bounded, m € L>*(2) with 0 < m(z) <1 a.e.
x € 2. However, we shall see that this assumption is not sufficient to get the
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solution existence and a stronger hypothesis upon m is required. We specify
once again the hypotheses made for the problem parameters, i.e.,

B(r) > pforr < Sy, B(r) = pforr <0, 1}121 3(r) = +oo, (3.5)
G = | Jo B <5,

gy = { [}%’;,—Foo), r =S, (3.6)

Jim_B0) = oo, T F) = K: >0, (37)

(B*(r) = B*(@)(r =7) = plr = 7)2,¥r,T € (~00, 5] (38)

In what concerns K we assume that it has the form

K(z,r) = Ko(@) on {z; .m(x) =0} (3.9)
K,,(r) otherwise,
K(z,r) =0 for r <0 and K(z,r) = K, for r > S, (3.10)
where K, = K(z,5;) > 0.

Moreover, we assume that IN(O € H'(Q) and K is Lipschitz with respect to
r, uniformly with respect to x, i.e., there exists M > 0, such that

(ig) |K(z,7) — K(z,7)| < M|r —7|, Vr, 7 € R, Vz € Q.

Finally we shall impose that

me CYQ), 0 <m(x) <1. (3.11)

Functional framework. We perform a function replacement by denot-
ing

w =S, — S, (3.12)

so that we are led to the system

T—AB (w+58)+T9f1n Q, (3.13)
m(x)w(z,0) = vo(z) in £, (3.14)
w(z,t) =0 on X, (3.15)

(f{(a:,w +S,)is — VB (w + ss)) U3 fo o Sa, (3.16)
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which we are going to study. Here vo(x) = Sywo — m(z)Ss. We shall indicate
the value of w at saturation by wy (actually, by (3.12) it is equal to zero, but
we shall keep the notation wg in order to put into evidence the behaviour of
the solution at this point).

We consider the spaces L?(Q) with the standard norm denoted |||,

V={weHYQ); w=0onT,}, (3.17)

1/2
il = </Q\vw\2dx> , (3.18)

and its dual V'’ on which we introduce the scalar product by

with the norm

(w,w)vl = (w, ¢>V’,V s
where 1 is the solution to the boundary value problem

—AY=w, p=00onTy, Viy-v=0o0nT,. (3.19)

Let fo € L?(0,T; L*(T,)). We define the functional fr, € L?(0,T;V’) by

fr ()W) = — /F Fo(t)bdo for any v € V (3.20)

and notice that
1fra Oy < cor [ fa@ll 20,
where ¢y, is the constant provided by the trace theorem.

For the further mathematical developments it is more convenient to work
with the multivalued function

B7(r) = B(r +55) — K. (3.21)
DEFINITION 3.1 Let
m € CYQ), feL*(0,T;V'), fo€ L*(0,T;L*(Ty)),  (3.22)
vg € L*Q), %0 ¢ L*(Q), % < ws, a.e. x € L.
m m
We call w a solution to (3.13)-(3.16) if

w € L*0,T;V), (3.23)
¢ € L*0,T;V), ¢ € B*(w(z,t)) ae onQ,
mw € C([0,T];L*(Q)) nWhH2(0,T; V"),
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satisfies the equation

<W(tw>wv +/Q (VC(t) SV — K (z,w(t) + Ss)a—z/’) dz =

8%3
= <f(t)71/}>V’,V + (fFa (t)7w>V’7V7 a.e te (07T)7 V¢ € ‘/7 (324)
the initial condition m(x)w(0) = vy and the property

w < ws, a.e (z,t) € Q. (3.25)

Eq. (3.24) can be written also in the equivalent form

/OT <W(a, ¢(t)> i (3.26)

VIV

_ 9o
+/Q <VC V¢ — K(z,w+ Ss)a—> dzdt

T3
T
= [ U0 000}y, Vo € L2O.TV)
Replacing S, from (3.12) we get that S,, satisfies

S, € L*0,T;HY(Q)),
¢ € L*0,T;H'(Q), ¢ € 5 (Su(x,t) ae. on Q,
mS, € C([0,T); L*(Q)) nwh2(0,T;V").

We set
D(A) ={0 € L*(Q); IncV, n(x) € *0(z)) ae xcQ}

and we introduce the multivalued operator A : D(A) C V! — V' by

(A0, )y = / <V17 -Vip — IN((x,G + 58)3_1/1> dz,
’ Q Ox3
for any ¢ € V, where n € 5*(0) a.e. x € Q. Thus, we can write the problem
d
W +Aw > f+ fr,, ae te€(0,T) (3.27)
m(x)w(0) = vp.

We consider now the multiplication operator

M : D(A) — L*(Q), Mw = mw, (3.28)
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whose inverse is multivalued and denoting
v(z,t) = m(z)w(z,t), (3.29)

we can rewrite (3.27) in terms of v as

% +Ayv 2 f+ fr,, ae t€(0,T) (3.30)
v(0) = o,
where Apv = AM ™o = A (L) for any v € D(Ayy), where
_ 2(). Y 2 « (U
D(AM)_{UGL () € LX), In eV, ne (m) ae. :EGQ}.

We see that v € D(Ay) implies - € D(A). Conversely, if w = = € D(A),
then v = mw € D(Apy).

We still define j : R — (—o00, +00] by

3(74) _ { for ﬁ*(f)dga r < S

400, r > S,

where the left limit of B* at Ss is specified in (3.7). This function is proper,
convex, lower semicontinuous and

_ B(r), r < Ss,
9j(r) = [Kf +o0), r =S, (3.31)
g, r>5Ss.

(The proof is similar to that done for a slightly different function in [34],
Sect. 5.3.)

3.1. Approximating problem

Since the operator Ajs is multivalued, in order to prove the existence for
(3.27) we introduce an approximating problem replacing m by

me(x) =m(x) +¢€, fore >0

and B* by the single-valued continuous function

B*(T)_ B*(r)v T<Ss~_ 5~
o B*(Ss—a)—i-wv—(&—s)],TZSS—E.
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Then we define
Bi(r) =B (r+8s) — K (3.32)

and the single valued operator
A.:D(A) cV =V,

(A0, )y, = /Q <v5;(9) Vi — K(z,0 + Ss)g—w> dz, Vo €'V,

3
with
D(A:) = {0 € L*(Q); 52 (6) € V'}.

We can write the approximating Cauchy problem (corresponding to (3.27))

d(mew;)

I +Aw. = f+ fr,, ae te€(0,7T), (3.33)
mawa(o) = Voe,
where
UOE = m€@‘ (334)
m

DEFINITION 3.2 Let e > 0 and

m € CYQ), feL*0,T;V"), fo € L*(0,T;L*(T,)),
w € LAQ), L er2q), L <uw,.
m m

A solution to (3.33) is a function w. that satisfies

we € C([0,T]; L*()) N L*(0,T;V) nWh2(0,T; V'),
G (we) € L*0,T;V),

/ ' <%<t>,¢<t>>wdt

* T a¢
—I—/Q {Vﬁa (we) Vo — K (z,w: + Ss) a—x?’} dzdt  (3.35)

T
= [ U@+ fra®:.00) e, Vo € 120.TV)

and the initial condition mew,(0) = vge.
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Then denoting
ve(z,t) = me(v)we(z, 1), (3.36)

we can write problem (3.33) in the equivalent form (corresponding to (3.30))

d
% + B, = f, ae te(0,T), (3.37)

v:(0) = wpe.
The operator B, : D(B;) C V' — V' is single-valued, has the domain

p(.) = {oe e 52 () e v

me
and is given by

0 _/ 9 9
(B, 0y = /Q (w: (m—> VY — K (:p o Ss> 8—:Z,> dz, Y € V.

Then (3.37) can be still written

T/ du,
— d :
[ (Goen) (3.39)
+/ {Vﬁ;‘ (”—) Vo - K <;L~ e +ss> 8—¢}d$dt -
0 Me Me 0xs
T
= [ U0 fra®:.00) vy, o € 120.TV)

which is in fact (3.35).

For a later use we define }E R—R,
i = [ B

and notice that

dje(r) = B:(r), Vr € R. (3.39)

First we shall prove that (3.37) has, for each ¢ > 0, a unique solution, v, in
appropriate functional spaces.
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3.2. Existence for the approximating problem

PROPOSITION 3.1 Let

m e CYQ), 0<m <1,

f € L*0,T;V"), fo€ L*0,T;L*(T,)),

vg € L*Q), LUys L%(Q), il < ws a.e. on Q.
m m

Then, the Cauchy problem (3.37) has, for each € > 0, a unique solution

ve € C([0,T]; L*(0,T)) n WhH2(0,T; V') N L?(0,T; V) (3.40)
B E) e L}0,T;V), (3.41)
me
~ Ve 0o al
i () e =1L @) (3.42)
that satisfies the estimates
t 2
/Qma(a:)}E <7:;—€€(x,t) + SS> dz +/0 %(7) y dr +
t [ e 2
+ | Geo)] o .
T T
s&(éuﬂw%w+énm@ﬁm@w+g,
v (220) | <o ve e o2, (3.44)
[ve@®)]| < e, VE€[0,T7, (3.45)

where By, c¢o and ¢; do not depend on €.

Moreover, if v. and Uz are two solutions corresponding to the pairs of data f,
fr., vo and f, fr., o, we have the estimate

|mw—me+/w%m—mmst (3.46)
0
< ao(e) (Jlvo — w3 +

T T
+/0 Hf(t)—?(t)!i,dwr/o Hfa(t)—ﬁ(t)“iz(pa)dt)
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Proof. The proof is based on the quasi m-accretivity of the operator B,
which is proved below. To show the quasi monotony we compute

(M + B:)6 — (M + B.)8,0 —9),,

e
_A<E($,mi€+ss)—ﬁ($,mi€+s)> aai

where —AYp =60 -6, Viy-v=0o0n T, and ¢ = 0 on T',,. Hence
(M + B.)0 — ()\I—i-B )0 0 — 0

>0

v

(A—E) Jo-3l;

for A > 2 . Here we used the fact that ¢ < m.(z) <1+e.

V/ H

Next we have to prove that
R(I+B.)=V',
i.e., to show that the equation
Ve + Beve = g (3.47)
has a solution v, € D(B;) for any g € V'. Recall that ¢ is fixed.
If we denote (3% (:1—55) = ¢ € V, due to the fact that [} is continuous and

monotonically increasing on R and R(8) = (—o0,00) it follows that its
inverse
G-(¢) =m<(8)71(0) (3.48)
is continuous from V' to L2( ) because
|G=(¢) = G=(0)]| = (3.49)
= Hme(ﬁe) YO — (8 ) ( Ol =
< -t < B e —g), vegew

Here we used (3.8) and Poincaré’s 1nequahty (with the constant cq). So,
(3.47) can be rewritten as

G:(Q)+Bi( =g (3.50)
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with By : V — V' defined by

(BEC, By y = /Q (vc VoK <a: G;l(o + ss> 0y ) de. Y € V.

c oA
(3.51)
The operator G. 4+ Bf is monotone, continuous and coercive for A > %,
hence it is surjective. Therefore (3.50) has a solution ¢ € V, implying that

(3.47) has a solution v, € D(Bg).

a) Now we assume that f € WL1(0,T;V"), f, € WH(0,T;L?*(Q)) and
%0 ¢ V which is equivalent to vo. € D(B;).

Therefore, the existence of a unique solution to (3.37)
ve € WH(0,T; V') N L>®(0,T; D(B.))

follows from the general theorems for evolution equations with m-accretive
operators, hence (3} < > € L*>(0,T;V). Since the inverse of 3* is Lipschitz
we deduce that = € L>°(0,T5V).

It follows that (3.33) has a solution

in the same spaces.

To prove estimate (3.43) we test (3.37) at (8 (v.) and integrate over (0,1).
Taking into account (3.36) and (3.32) we have
o (20)

[ (G0 (o)), o)) 2

dr
1%

< JIECl Geo)l,
/ e oz ()| ar+ [l oz (2)| ar
< 3 [z (ow)| oo

where we have used the boundedness of K and

3 f ~ ’ '
Co = 3 {KmeeaS(Q) + /0 Hf(T)H%/' dr + C?T/o |’f0¢(7—)H%2(Fa) dT} ‘
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Next, we take into account that
[ (e (o)), o
m
- [0 (oes) ) o
Me vV
/ma ~’ < L )+S>dx—/m€ jg(—o( )+Ss)da:

—/K;‘ve(:n,t)dx+/K;‘v0€dx
Q Q

and obtain that

Y ve(x,t) 1 2
fros (8 v
2 M v
/mE (x) + Ss d:v—i—/K*v6 )dz + C, (3.52)
where
1 %2
C §Ks meas(2) 2 H H + Ch.
Since
Je(r) = £, vr e R,
we have
~ t
me(T)7e (Ua(x’ ) + Ss> dz >
Q me

> g/gma(x) <%x;t)+ss>2dng/ﬂma{% <%i’t)>2—5§}dx.

On the other hand we recall that ”RO < ws = 0 and notice that

~ [ 048 Ss _
7. (—E + ss) _ / Frar< [ B =
m 0

)

Se—b Se—6 _
= %1;% ; BZ(r) r—hm/ r)dr < K*8,.
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Thus we obtain by (3.52) that
2
dr < (3.53)

o C2 e e

< 2K Ssmeas (€ /K*m€ <— )> dx+C’1—|—pS2/m6 )da <

< Cz—i—B/ me(z) <M> dx —i—il?:zmeas(Q).
8 Ja Mme P

We have used several times that m. <14 ¢ < 2. We can conclude that
H\/ﬁasl—i(t)u < ¢, Vt €0, ). (3.54)
Next, from the relation
ve(t) = v/ 2 (1) /i (3.55)

we get that

o = [ (V22 mewe <2 v

me

and therefore

loe(O)|| < 1, VE€[0,T] (3.56)
where ¢g, c1, Cy, C1, Cy are independent of €. Replacing this in (3.52) we
deduce

2,t) 2
/m8 < + S > da:+/ B < (T)> dr <(3.57)
me v
2 T 2
< [ 1oRas [ 1Ol a). (3.58)

Then we multiply (3.37) scalarly in V’ by 9% (¢), integrate over (0,¢) and
proceeding as before we get

" t
/m6 ]€< x )—I—Ss>dx—|-
0

T
< O </0 Hf(t)”%/fdt—l—/o Hfa(t)”;(mdtH)

dv,
a7

Vl
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Adding this relation with (3.58) we obtain

/ma < (a:t)—i—S)dx—i—
[ ()| s
< [ 1o [ 150, a),

\%
with Gy independent of €.

2

dr+  (3.60)
V/

dv,
ar

To show the estimate (3.46) we write two equations (3.37) corresponding to
different pairs of data, subtract them, multiply the difference scalarly in V'
by v. — Uz and integrate over (0,t). We get

3l =701+ 2 [ [ L) ) are <

— 2 — 2
~Tl+ 3 [ foetr) ~ TR +

IA
|
<

S

2 —
\% ||’U5(7') - UE(T)HV’ dr +

il

(7)]

+ [ | f(r) -
0

teiy | 17a(0) = Tl aqr Iloe(r) =Ty dr

and moreover

U —_—
lve(t) — et ||V,+p// ()~ %) e <
< ||U0—%||%//+< +2> / Joe(r) — T 2 dr +

T
+/0 Hf(T)—f(Tﬂ v d7—+c%r/0 [ fa(7) _E(T)H;(ra)d“

We obtain the estimate (3.46), via Gronwall lemma with o depending on e.
b) Now, we assume that f € L?(0,T;V’) and L € L?*(Q2), L < w,.

Due to some obvious densities we can take { f,, }o>1 C WHL(0,T5 V"), {f2}n>1 C
WLH0,T; L?(Ty)) and {v§}n>1 C D(B.) =V, such that

fn — f strongly in L*(0,T;V"), (3.61)
f& = fastrongly in L*(0,T; L*(T))
vl —  wg strongly in L?(9).
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Then, for each € > 0, the problem

dv?
dt

+ Bl = fat+ i, ae tc(0,T), (3.62)
v2(0) = v

has a unique solution v? according to a), satisfying the estimate (3.60) with
the right-hand side independent of n, namely,

(o Hlldor |1
/Qma(:v)ja (E(t)—i-SS) da:—i—/o I (1) y dr+ (3.63)
n 2
+/Ot B (%(ﬂ) vdTg

T T
< 4 (/O o)+ | Hfé?(t)lliz(ra)dtH)-

We stress that ¢ is fixed and the second term in the previous relation is uni-
formly bounded due to (3.61). By this estimate we deduce that {B; <”—g>}
n

me

is in a bounded subset of L?(0,7;V) and {dgf} is in a bounded subset of

L?(0,T; V"), so we can select a subsequence such that

Bz <U—€> — (. weakly in L*(0,T;V) as n — oo,

me

and dun q
(fte — % weakly in L?(0,T; V') as n — oo.

We get immediately that

n

—= — w, weakly in L?(0,T;V) as n — oo.
me

But m. € C'(Q) and so the sequence {v.}, = {megl—g} is bounded in
cln
L?(0,T;V), whence

v — v, weakly in L2(0,T;V) as n — oc.
Since V is compact in L?(Q) it follows by Lions-Aubin’s theorem that
v — v, strongly in L2(0,T; L*(Q)) as n — oo. (3.64)
By (3.37) we have that {B.v"}, is bounded in L?(0,T;V’) so that

B — x weakly in L*(0,T; V') as n — oo. (3.65)
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But B, is quasi m-accretive so its realization on L2(0,7;V’) is quasi m-
accretive too, hence it is demiclosed and by (3.64) and (3.65) we get that
X = Bve a.e. on Q.

Now we can pass to the limit in (3.62) as n — oo and get (3.37), proving thus
that this problem has the solution v. € C([0,T], L?(2)) N WH2(0,T;V") N
L2(0,T;V).

Finally, passing to the limit in (3.63), as n — oo, and using the lower semi-
continuity property we get (3.43) as claimed. Estimates (3.44) (3.45) have
been proved in (3.54)—(3.55).

The uniqueness of the approximating solution follows by (3.46). "

3.3. Existence for the original problem
As we specified before the domains
Qp ={z € Q; m(z) >0} and Qo = int{x € Q; m(z) =0}

have the common C'-boundary, 0€, see again Fig. 1. Here, the notation
“int” represents the interior of the subset.

THEOREM 3.1 Let

m € CYQ), 0<m <1, feL*0,T;V'), fa € L*(0,T;L*(T,)),

v € L*Q), %O c L*(Q), %O < ws a.e. on Q.

Then, the Cauchy problem (3.27) has a solution

we L*0,T;V), (3.66)
such that
¢ e L*0,T;V), ¢ e p*(w(z,t) ae. on Q, (3.67)
mw € C([0,T); L*(Q)) n W20, T; V), (3.68)
w < wy ae. (z,t) € Q. (3.69)

Proof. By the hypotheses it follows that the approximating problem (3.37)
(and consequently (3.33)) has, for each &, a unique solution according to
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Proposition 3.1, including the estimates (3.43) (3.45). These do not depend
on € and imply that we can select a subsequence such that

B <£> — ¢ weakly in L0, T;V), (3.70)
G <— + S ) — ¢ 4+ K weakly in L*(0,T; H*()), (3.71)
dv, . 9 ,
T M weakly in L*(0,T; V"), (3.72)
w. = % — w weakly in L%(0,T; V). (3.73)
€

We also get that the trace of [} (;’1—2) on Y, is well defined and since
3 (ﬁ) € L2(0,T; V) it follows that ¢ = 0 on £y. Now

Ve = mgk (3.74)
Me

and since m. — m uniformly on  and m € C(Q) it follows that

ve — v weakly in L2(0,T; L*(Q)). (3.75)
y (3.73) and (3.75) we get
v =muw (3.76)
and obviously
v=0, a.e. on Qo= Qo x (0,7). (3.77)

Using (3.73), (3.74) and (3.75) we still obtain that

\/m_{_:& — v/mw weak-star in L>°(0, T} LQ(Q))a

€
=.m \/ — v weak-star in L°°(0,T; L*(Q2)).
Again by (3.74) and m € C1(Q) we deduce that
l[vell L2(0,7;) < constant independent of e. (3.78)

By Lions-Aubin compactness theorem we conclude then that {v.}. is com-
pact in L2(0,T; L%*(Q)), i.e.,

v. — v strongly in L2(0,T;L*(Q)) as € — 0, (3.79)
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and p = %. Also, by Ascoli-Arzela theorem we can prove that v.(t) — v(t)
strongly in V' (using (3.72) and (3.78)). Using (3.76) we can deduce by
letting € — 0 in the second equation in (3.37) that

mw(0) = vy. (3.80)

We set now
Qs = {z € Q; m(x) > 6} for arbitrary 6 > 0,
Qs = Qs X (O,T), Qm = Qm X (O,T),
and notice that {5 and €2, are open because m € C''(Q). We have

1 1 1 1
— = < — < =on s
me: m+e m J

and by (3.79)

1
We = —V: — — strongly in L*(0, T; L*(Qs)), V6 > 0.
me m

Recall that 8*(r) = 5*(r + Ss) — K.

Let us fix (z,t) € Q5. Using the same argument like in the proof of Theorem
3.1, in Sect. 5.3 in [34], we obtain that

Bt (we 4+ Sg) — ¢ € B (w + S,) weakly in L*(0,T; H' (5)).
By (3.32) and (3.71) we get that

B (we + Ss) — B*(w~+ Sy) — K¥ weakly in L2(0,T; H' (s)).
Since ¢ is arbitrary we obtain

C(x,t) € B (w(z,t) + S) — K ae. (2,t) € Qm = U Qs. (3.81)

>0

Proving that the subset

Q;ﬁb ={(z,t) € Qm; w(x,t) > ws}

has a zero measure, we deduce similarly to the proof of Corollary 3.3 in Sect.
5.3 in [34], that w < w; a.e. (x,t) € Q.
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Finally, since {f((a:,wa + SS)} is bounded in L?(Q), we have

£
K(z,w. + Ss) — « weakly in L(0,T; L*(Q)), (3.82)
and we assert that
k(z,t) = K(z,w(z,t), ae. (z,t)€Q.

Indeed, {IN(m(w€ —1—58)} is weakly convergent to k, on @, too. On the

€

other hand, it is strongly convergent to IN(m(w—l—Ss) on each Qg, because IN(m
is Lipschitz. By the uniqueness of the limit the restriction of the weak limit
to Qs should coincide with K,,(w + Ss). This implies that

k= K(z,w+Ss), ae. on Q. (3.83)

On the subset Qg the function K does not depend on w, so the limit is equal
to Ko(z).

Now we can pass to limit as € — 0 in (3.38) and obtain

/0T<%(t)’¢(t)>v,’vdt+/cz<vé Vo — (xw—i—S);Z)dxdt:

T
= [ 00+ fra®. 060} dt, vo € 220,77,

(3.84)
where ( is given by (3.70).

In (3.84) taking ¢ € L?(0,T; H}(2)) we still deduce that w is the solution
to (3.27) on @, too,

f
—fo t) + fra(b),

where ((z,t) € 8" (w(z,t)) a.e. on Q.
Taking now ¢ € L2(0,T; Hi(Qp)), we obtain the weak form of the equation
on this subset

Qm

> dt+ <v< Vo — (w+5)§j>d dt =
o( )V, dt, Vo € L2(0,T; HE (Qn)),

(3.85)

/ (vg Vo — f?o(x)gi> dxdt =0, Vo € L*(0,T; H} (Q)),  (3.86)
Qo T3

where ( is given by (3.70).
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On the other hand, (3.84) corresponds to the problem

Cacy K@ wES) o, (3.87)

axg
¢ = 0on Xy,
(K(z,w + Ss)is — V() -v = faon g,

d(mw)
ot

and (3.85)—(3.86) to the problem

I(mw) OK p(w + Sy) L
% A¢+ B P fin Qm, (3.88)
acy B g,
3
¢ = 0on X,
(K (w+ Ss)is —VC) v = foon S

We recall that the common boundary of the domains €, and Qg is regular
due to the fact that m € C(Q). Since ¢ € L?(0,7T;V), we deduce that the
trace of ((t) € B*(w(t)) belongs to V a.e. t, so it is continuous across the
boundary 9€y (more exactly along lines £ that cross the boundary), a.e.
t € (0, 7). Thus if we take xy € 9y and denote

¢f()=_ lim  ((t),

r—x0, TELN

then we have

CHt) = lim  ((t) ae. t €(0,7).

z—x(g, cELNYg

We take into account that ¢t € 8*(w(t)) a.e. on @, hence ¢ turns out to
be the solution to the elliptic problem

—AQ(t) = f(t)+ fr.(t) in Qo (3.89)

C(t) = ¢T(t) € p*(w(t)) on g, ae. t € (0,T)

for a.e. t fixed in (0,7), and w is the solution to (3.85) (equivalently to
(3.24)) in Q-
Then, we define the function

* _ w(m,t), if (l‘,t) € Qm
we) = { (B¢, 1)), if (z,8) € Qo = Qo x (0,7), (3.90)

where ( is the solution to (3.89) and show that it is the solution to (3.27) in
the sense of Definition 3.1. Indeed, ((z,t) € B*(w*(x,t)) and ¢ € L?(0,T;V),
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so it follows that w* € D(A), implying that w* < ws a.e. on Q. Then, mw*
belongs to the spaces specified in (3.23) (we take into account that mw* =0
on Qo). Finally, we have to check that w* satisfies the equation (3.26) and
this follows by a straightforward computation using (3.84)—(3.86). Indeed, if
we replace w* in (3.26) we obtain

AT<“Zf“uxww>wydv+

T » a¢
—i—/o /Qm <VC'V¢—K(HJ,’LU+SS)8—> dzdt +

T3

% * 8¢ _
/QO <VC-V¢—K($,U} )6—3:3> dzdt =
(

T
0
_ /OT <d Z;w) (t),¢(t)>w th +
, 0

+/ (vc V- K(zw+ ss>—) dadt =
Q

8:173

_l’_

T
- A F(t) + fror d(B)) vy dt, Yo € L20.T; V),

We took into account the expressions assigned to w* and IN((:E,w + Ss) on
each subset, (3.81) and (3.84). O

COROLLARY 3.1 Under the assumptions of Theorem 3.1 the solution to
(3.27) is unique if in addition

p > coM. (3.91)

Proof. Let us denote by w] and w3 two solutions to (3.27) corresponding to
the same data. We multiply the difference of equations (3.27) written for wj
and w3 by (w] —w3) scalarly in V| integrate on (0,7") and use the Lipschitz
property of K. We get

T
IIWL(wT(T)—w’zk(f))llzvvaE/0 lwi(r) = wi(r)|I*d7 < (3.92)

M2T

< 774 i (7) — wi()|] 1wk (7) — wi(r) |y dr <
M? o .

< = [ leie) -ueltar
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where cq is the constant in Poincaré’s inequality. Here we took into account
that for w € L?(Q) we have |lw||,, < cq |Jw]| .

It follows by (3.91) that mw] = mw}j a.e. on @ and wj = wj a.e. on Qp,
where m(z) > 0. Now we subtract the equations (3.88) corresponding to wj
and w3 and get

-A(G1—¢) = 0inQ,
Cl - CQ = Oon Euu
—V(¢G1 —¢) v = 0on X,

where (1 € B*(w}), (2 € B*(w}) a.e. on Q. Hence ¢ = (3 and since (5*)7!
is single valued then w] = w3 a.e. on Q. O
Remark 3.1 We observe that in the degenerate case the uniqueness of the
solution can be obtained only if the transport is dominated in a sense (see
(3.91)) by the diffusivity. In particular, this is true when K =0, i.e., when
we deal with a horizontal infiltration, also called sorption.

Remark 3.2 By the proof of the solution existence we also ascertain a
consequence that can be inferred at an intuitive level, i.e., the boundary
value problem is separated into two problems corresponding to the domains
Q. and Qq, connected by the flux continuity.

Indeed, if we test the first two equations in (3.88) at ¢ € L?(0,T;V) and
integrate the sum over (0,7") we obtain

o
-
o
l

<vg Vo — Kop(w + S, )532) dadt —

m

/ (w+ Sy )i — vg) v+ ododt +
0

/Q <v< Vo — Ko(z) ¢>d at —
/ f{o(az)z'g - vg) v dodt =

0Qo

// t) + fra(t), 1))y y dadt,

for any ¢ € L2(0,7T;V), where v is the outer normal to 9Q,,, v~ is the
outer normal to 9y and ¢ € §*(w) a.e. on Q,,. Taking into account (3.84)
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we obtain the flux continuity on the common boundary 99 x (0,7

(f{m(w +S,)is — vg) = (f(o(x)z'g - vg) vt on A0 x (0,T). (3.93)

The previous integrals on 02, and 0§y are considered in the sense of dis-
tributions, e.g., as the value of (IN((:E, w ~+ Ss)ig — VC) -v at ¢. By the trace

theorem we see that, generally, the flux (Iz'(a;,w + S5)isz — VC) - v is well
defined as an element of the space L?(0,T; H~/2(99)).
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