
Topi
s in Applied Mathemati
s & Mathemati
al Physi
s
© 2008, Editura A
ademiei RomâneOn the Numeri
al Simulation of a Class of Rea
tiveBoltzmann Type Equationby Dorin Marines
u 1
Contents1. Introdu
tion . . . . . . . . . . . . . . . . . . . . . 2022. The Kineti
 Model and the Approximation Pro-
edure . . . . . . . . . . . . . . . . . . . . . . . . 2043. The Existen
e of the Solution . . . . . . . . . . 2124. Time Dis
retization . . . . . . . . . . . . . . . . 2185. The Probabilisti
 Frame . . . . . . . . . . . . . . 2216. The Main Result . . . . . . . . . . . . . . . . . . 2297. Con
luding Remarks . . . . . . . . . . . . . . . . 2358. Appendix . . . . . . . . . . . . . . . . . . . . . . 238

1�Gheorghe Miho
�Caius Ia
ob� Institute of Mathemati
al Statisti
s and Ap-plied Mathemati
s, Bu
harest, Romania, e-mail: marines
u.dorin�gmail.
omThe paper was supported by CEEX Grant CEX05-D11-06/03.10.2005 andCEEX05-D11-25/03.10.2005



202 Dorin Marines
u1. Introdu
tionIt is known that the 
lassi
al Boltzmann equation des
ribes the evolution ofthe simple gas. The Boltzmann equation represents the 
onne
ting bridgebetween the mi
ros
opi
 and ma
ros
opi
 des
ription of the simple �uid evo-lution. The kineti
s of the simple gas is essentially governed by elasti
 binary
ollisions between stru
tureless parti
les belonging to a unique spe
ies, themultiple 
ollisions being very improbable Ref. [1℄. However, this equationis not able to des
ribe the evolution of the real gas with 
hemi
al rea
tionsand/or ionization pro
esses. Then inelasti
 
ollisions must be 
onsidered bythe kineti
 models. Boltzmann himself was aware of the importan
e of theinelasti
 
ollisions in the real �uid evolution Ref. [9℄.The 
lassi
al Boltzmann equation is almost unanimously 
onsidered as ap-propriate for the kineti
s of the rare�ed simple gas. A kineti
 theory forthe rea
tive (real) gas is a more di�
ult task Ref. [30, 21℄. As 
ompared tothe 
lassi
al Boltzmann equation for the simple gas, kineti
 rea
tive mod-els exhibit new mathemati
al di�
ulties due the 
ontribution of the parti
leinternal states to the gas evolution (in parti
ular the presen
e or rea
tionthresholds) and the existen
e of 
ollision 
hannels with multiple rea
tionparti
ipants Ref. [8, 25, 24, 29℄. In the 
ase of the rea
ting gas mixturesthe mass balan
e does not hold for a given spe
ies. Then, the mass 
on-servation for a spe
ie must be repla
ed by the total mass balan
e. In therea
tive models is present a transfer between the kineti
 energy and the in-ternal mole
ular energy. Consequently, the kineti
 energy balan
e must berepla
ed by the total energy balan
e (i.e. kineti
 energy + internal mole
ularenergy). Then, the transport properties of the rea
ting gas mixtures di�erfrom the properties of the simple gas.Various models have been introdu
ed to des
ribe the kineti
s of the real (re-a
tive) gas. An important role is played by the Boltzmann-like semi-quantumequations. A known example is the Wang-Chang-Uhlenbe
k-de Boer systemof kineti
 equations [32℄ for the real gas with binary 
ollisions. This modelrefers to a gas of parti
les with 
lassi
al translational motion, but with quan-tum internal stru
ture. Essentially, the di�eren
e from the Boltzmann modelRef. [11℄ for the simple gas is to asso
iate to ea
h internal state a distributionfun
tion, and to relate ea
h transition from one quantum internal state (ofsome 
hemi
al spe
ies) to another with a 
ross-se
tion matrix.A more general model introdu
ed by Ludwig and Heil [25℄ extends Wang-Chang-Uhlenbe
k-de Boer model. This model des
ribes rea
tions in a di-atomi
 gas without emission or absorption of radiation. It in
ludes pro
esses
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ombinations by triple 
ollisions, as well as three post-
ollisional prod-u
ts like disso
iation and ionization indu
ed by 
ollisions Ref. [8, 25, 24℄.In some Wang-Chang-Uhlenbe
k-de Boer or Ludwig and Heil model the num-ber of equations depends on the number of distribution fun
tions, i.e. on thenumber of di�erent quantum internal states owned by the gas parti
les dur-ing the gas evolution. It is known that, there exists only at most a 
ountableset of internal states. However, only a �nite number of internal states willsigni�
antly 
ontribute to the gas kineti
s. Consequently, the Wang-Chang-Uhlenbe
k-de Boer and Ludwig and Heil models are des
ribed by a �nitenumber of equations.For analyti
al purposes, in Ref. [16, 17, 18℄, the Wang-Chang-Uhlenbe
k-deBoer and Ludwig and Heil equations 
orresponding to the model with �nitenumber of internal states have been trans
ribed in abstra
t form, revealingthe mathemati
al stru
ture of the equations. In Ref. [17℄ was proved theexisten
e and uniqueness of the solutions for the Cau
hy problem. It wasshown that the solutions verify the 
onservation of the total mass, momentumand energy respe
tively. Moreover, it was proved the existen
e of equilibriumsolutions. H-theorem and a generalized law of the mass a
tion have beenrigorously proved under extended balan
e 
onditions.The interest for rea
tive kineti
s is not only intrinsi
, but also of pra
ti
alnature, in plasma physi
s, nu
lear physi
s, physi
al 
hemistry of the highatmosphere, 
ombustion theory, modeling of missiles �ight.A

urate numeri
al modeling of nonlinear pro
esses in dilute, �ows is 
riti
alfor solving transport problems both in fundamental and applied s
ien
e. Inthis respe
t Babovsky and Illner [4, 5℄ have proposed an e�
ient numeri
als
heme 
onsistent with the 
lassi
al Boltzmann equation. Using Nambu'sideas [26℄, by time dis
retization and lo
al spa
e-homogenization, Babovskyand Illner have obtained a 
onvenient approximate form of the equation.At this point, the nonlinear 
hara
ter of the 
ollision operators involve apower-like growth of the numeri
al 
omplexity. To provide an algorithm,with small numeri
al e�ort, they have introdu
ed an additonal sto
hasti
approximation. Finally, they have proved the 
onvergen
e almost sure, insome sense, of the approximation s
heme. The te
hniques developed byNambu [26℄, Babovsky and Illner of [4, 5℄ were also applied Ref. [6℄ to Pullin'sequation [27℄ with Larsen-Borgnakke [10℄ s
attering 
ross se
tion for the one-
omponent diatomi
 gas with 
lassi
al internal degrees of freedom.For the abstra
t model Ref. [16, 17, 18℄ des
ribing the real rea
ting gas, inRef. [19℄ was introdu
ed a rigorous and e�
ient approximation s
heme. Thismethod represents a nontrivial extension of the te
hniques of Ref. [4, 5℄ for
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usolving spa
e-homogeneous Boltzmann-like models of rea
ting gas mixturesRef. [32, 8, 25, 24, 16, 17℄.The methods of this 
hapter have been tested Ref. [14, 13℄ on the Krook-Wu[22℄ two-
omponent Boltzmann equation as well as on the rea
tive Boltzmannmodels with three and four 
omponents Ref. [12, 20℄.This review presents the theoreti
al approximation method for the solutionsof the Boltzmann model introdu
ed in Ref. [17℄ following the line of Ref. [19℄and adding some improvements sket
hed in Ref. [12℄.The present 
hapter is organized as follows.In the next se
tion one �rst re
alls the main features of the Boltzmann-likeequations introdu
ed in Ref. [17℄. Then, one formulates the approximationproblem. In Se
tion 3 one investigates the initial value problem for the spa
e-homogeneous kineti
 equations of Se
tion 2, formulated in a suitable spa
eof fun
tions. In Se
tion 4 one obtains a 
onvergent, time-dis
retized versionof the aforementioned Boltzmann-like equations. Se
tion 5 is devoted to thegeneralizations of 
ertain probabilisti
 sele
tion results of Ref. [4, 5℄. This ispossible due to some 
lari�
ations with respe
t to the nature of the 
onver-gen
e introdu
ed by Babovsky and Illner. More pre
isely, the probabilisti
part of the 
onvergen
e proof of Ref. [4, 5℄ is based on the 
entral limit theo-rem for row-wise i.i.d. random variables and the Borel-Cantelli Lemma. Ourargument follows from a simple version of the strong law of large numbersfor arrays of (not ne
essarily identi
ally distributed) row-wise independent,random variables. (Whi
h results from the Chebyshev inequality and theBorel-Cantelli Lemma.) In Se
tion 6, the results of Se
tion 5 are applied tothe dis
retized s
heme obtained in Se
tion 4. Consequently, one obtains thenumeri
al algorithm for the original Cau
hy problem. This represents ourmain result, namely the 
onvergen
e of the numeri
al s
heme. Finally, wedis
uss the limitations and possible generalizations of the model.2. The Kineti
 Model and the Approximation Pro-
edureHere, we brie�y re
all the features of the model presented in Ref. [17, 18℄(see also Ref. [16℄).The leading idea behind the model is that, unequal internal states of a gasparti
le with internal stru
ture 
an be 
onsidered as des
ribing stru
ture-lessparti
les belonging to distin
t 
hemi
al spe
ies. Then, a real gas mixture
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tive Boltzmann Type Equation 205of parti
les with internal stru
ture 
an be thought as a mixture of several
hemi
al spe
ies of mass points with unique internal states.Spe
i�
ally, the model refers to a gas 
onsisting of N distin
t spe
ies of pointmasses, with one-state internal energy, evolving without external for
es. Thefollowing assumptions are general: (i) gas parti
les have free 
lassi
al motionin spa
e, between (in)elasti
, instant, lo
al 
ollisions, without emission orabsorption of photons; (ii) 
ollision (rea
tions) may 
hange momenta, as wellas the 
hemi
al nature (in parti
ular mass and internal energy) of the gasparti
les; any 
ollision o

urs with 
onservation of total mass, momentumand (kineti
+internal) energy, a

ording to the laws of 
lassi
al me
hani
s.(iii) in ea
h 
ollision (rea
tion) 
hannel, the number of identi
al partners
annot ex
eed some number, say M ≥ 2 and any 
ollision (rea
tion) 
hannel
ontains, at least, two parti
les.Denote by M the folowing multi-index set
M := {γ = (γk)k=1,...,N |γk ∈ {0, 1, . . . ,M}} . (2.1)A gas 
ollision (rea
tion) pro
ess is spe
i�ed by a 
ouple (α,β) ∈ M×M.Here, the multi-index α = (α1, . . . , αN ) represents the pre-
ollision (in) 
han-nel, with αn ∈ {0, 1, . . . ,M} identi
al parti
ipants of the n− th spe
ies. Themulti-index β = (β1, . . . , βN ) represents the post-
ollision (out) 
hannel, with

βn ∈ {0, 1, . . . ,M} identi
al parti
ipants of the n − th spe
ies.The pair of multi-indexes (α,β) 
orresponds to a rea
tion of the followingtype
α1X1+, . . . ,+αNXN → β1X1+, . . . ,+βNXN , (2.2)between the spe
ies X1,. . . ,XN , with stoi
hiometri
 
oe�
ients α1, . . . , αN ,

β1, .., βN . Note that if α = β, the 
ollision is elasti
 and if α 6= β, the 
ollisionis inelasti
.For ea
h 
hannel γ ∈ M the family N (γ) := {k | γk > 0 for k = 1, . . . ,N}represents the spe
ies existing in that 
hannel. Obviously, if k /∈ N (γ) thespe
ies k is not present inside the 
hannel γ. If k ∈ N (γ), then there are
γk identi
al parti
les of the spe
ies k in the 
hannel γ. We denote the totalnumber of parti
les in the 
hannel γ by

|γ| :=

N∑

k=1

γk. (2.3)Their velo
ities are denoted by wk,1, . . . ,wk,γk
∈ R3. Also set w :

= ((wk,i)i=1,...,γk
)k∈N (γ), understanding that w ∈ R3|γ|. We denote by
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u
mk > 0 and Ek ∈ R, the mass and the internal energy, respe
tively of amass-point of the spe
ies k = 1, . . . ,N .Let

Vγ(w) := (

N∑

k=1

γkmk)
−1

∑

k∈N (γ)

γk∑

i=1

mkwk,i, (2.4)and
Wγ(w) :=

∑

k∈N (γ)

γk∑

i=1

(2−1mkw
2
k,i + Ek). (2.5)be the 
lassi
al mass 
enter velo
ity and the total energy, respe
tively, forthe parti
les in the 
hannel γ. A

ording to the 
onservation assumptions,in the des
ription of the gas kineti
s, for ea
h 
ouple (α,β) ∈ M × M we
onsider only the 
ollisions satisfying the relations

N∑

k=1

mk(αk − βk) = 0, (2.6)
Vα(w) = Vβ(u), Wα(w) = Wβ(u), (2.7)In (2.7) w = ((wk,i)i=1,...,γk

)k∈N (α) and u = ((uk,i)i=1,...,βk
)k∈N (β) are thevelo
ities of the parti
les in the 
hannels α and β, respe
tively.Note that rea
tions with at most one parti
le in some 
ollision 
hannel areex
luded by (2.6) and (2.7), be
ause in the absen
e of radiative pro
esses, the
onservation laws (2.6) and (2.7) 
annot be simultaneously ful�lled. There-fore, |γ| ≥ 2. This inequality explains the restri
tion M ≥ 2 in the de�ni-tion (2.1) of M. Remark that, the 
onservation of the total energy statedin (2.7) implies the existen
e of rea
tion thresholds and shows what happenswith the internal energies of the parti
les parti
ipating in rea
tions. Forinstan
e in the 
ase of endothermi
 
ollisions (α,β), i.e.

∑

k∈N (α)

αkEk <
∑

k∈N (β)

βkEk, (2.8)the kineti
 energy of the resulting produ
ts is lost as binding energy. In su
ha 
ase the 
ollision 
an be forbidden if the kineti
 energy in the 
hannel αis bellow the rea
tion threshold. Note that, the model a

epts also rea
tionthresholds for exothermi
 
ollisions (α,β)

∑

k∈N (α)

αkEk >
∑

k∈N (β)

βkEk. (2.9)
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tive Boltzmann Type Equation 207Following the standard Boltzmann pro
edure (based on the mole
ular 
haosassumption) we introdu
e the system of kineti
 equations
∂tfk + v · ∇xfk = Pk(f) − Sk(f), for k = 1, . . . ,N, (2.10)as an abstra
t trans
ription of the Wang-Chang-Uhlenbe
k-de Boer andLudwig and Heil equations. Here fk : R+ × R3 × R3 → R+ are the un-knowns for k = 1, . . . , N , (with R+ := [0,∞)) and f := (f1, . . . , fN ). Ea
h

fk = fk(t,v,x) (t-time, v -velo
ity, x -position) is the one-parti
le distri-bution fun
tion for spe
ies k = 1, . . . ,N of parti
les. In (2.10) the gainoperators Pk and the loss operators Sk(f) des
ribe the 
ollision pro
esses.For g = (g1, . . . , gN ) (with g1, . . . , gN : R3 → R) de�ne,
gγ(w) :=

∏

k∈N (γ)

γk∏

i=1

gk(wk,i), γ ∈ M. (2.11)Formally the gain and the loss operators are de�ned by
Pk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|

σβ,α,k(u,w,v)gβ(u)dudw, (2.12)and
Sk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|
σα,β,k(w,u,v)gα(w)dudw. (2.13)Here, for ea
h (α,β) ∈ M×M and k = 1, . . . ,N ,

σα,β,k(w,u,v) := Kα,β(w,u)·

δ(wk,αk
− v) · δ(Vβ(u) − Vα(w)) · δ(Wβ(u) − Wα(w)),

(2.14)where Kα,β : R3|α|×R3|β| → R+ are given fun
tions related to the probabilityof the rea
tion (α,β) ∈ M × M. The following general properties areassumed:1o Kα,β ≡ 0 if |α| < 0, or |β| < 0.2o Kα,β ≡ 0 when the probability of the 
ollision (α,β) is zero.3o Kα,β ≡ 0 if for some (α,β) ∈ M×M, the 
ondition (2.6) does not hold.4o Kα,β(w,u) is invariant at the permutation of the 
omponents wn,1, . . . ,
wn,αn of w for ea
h �xed u ∈ R3|α|, w ∈ R3|β| and n ∈ N (α); a similar
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ustatement holds for the 
omponents of u. (This 
ondition expresses the�indistinguishability� of identi
al 
ollision partners.)5o For all a ∈ R3 (α,β) ∈ M×M,
Kα,β(T (a)w, T (a)u) ≡ Kα,β(w,u), (2.15)where T (a)w is de�ned on 
omponents by (T (a)w)k,i = wk,i+a for k ∈ N (α)and i = 1, . . . , αk.6o There exist some given 
onstants C1, . . . , CN > 0, su
h that
CβKα,β(w,u) ≡ CαKβ,α(u,w). (2.16)are veri�ed for all (w,u) ∈ R3|α| × R3|β| and (α,β) ∈ M×M, where

Cγ := Cγ1
1 · . . . · CγN

N , (2.17)for all γ ∈ M.Note that assumption 1o ex
ludes the �spontaneous disso
iation� as well asthe �total fussion�. The 
ondition 3o refers to the mi
ros
opi
 
onservationof the mass. The form of σα,β,k in (2.14) takes into a

ount the mi
ros
opi

onservation laws of the total energy and momentum. The expli
it use of onlyone variable, wk,αk
in δ(wk,αk

− v), is possible due to �indistinguishability�of identi
al 
ollision partners (
ondition 4o). Assumption 5o expresses theabsen
e of the external �elds. The generalization of the 
lassi
al 
ollisionreversibility is given by the 
ondition 6o.As announ
ed before, we refer only to the spa
e-homogeneous version of(2.10), i.e.
∂tfk = Pk(f) − Sk(f), k = 1, . . . ,N. (2.18)Several properties (also valid in the spa
e-inhomogeneous 
ase [17, 18℄) 
an beformally established as for the Ludwig and Heil equations [25℄, and rigorouslyproved by giving a meaning to (2.18) and �nding 
lasses of solutions with
onvenient regularity properties. Thus, formally,

N∑

k=1

∫

R3

Φi
k(v) [Pk(f)(v) − Sk(f)(v)] dv = 0, i = 0, . . . , 4, (2.19)provided that all integrals involved are 
onvergent, where Φ0

n(v) := mn,
Φi

n(v) = mnvi, for the 
omponent vi, i = 1, 2, 3, of v, and Φ4
n(v) :=

mnv
2/2 + En. By (2.19) the solutions of (2.18) are formally 
ompatible
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onservation of the mass (i = 0), bulk momentum (i = 1, 2, 3) andenergy (i = 4), respe
tively.One 
an de�ne the H-fun
tion
H(f)(t) =

N∑

k=1

∫

R3

[log Ckfk(t,v) − 1] fk(t,v)dv, (2.20)for those solutions f(t,v) of (2.18), with positive 
omponents, provided thatthe integrals exist. In (2.20) the 
onstants Ck are the same to the 
onstantsfrom the assumption 6o. Formally, by a few algebrai
 manipulations, oneobtains
d

dt
H(f)(t) =

N∑

k=1

∫

R3

[Pk(f)(t,v) − Sk(f)(t,v)] log Ckfk(t,v)dv =

=
∑

α,β∈M

∫

R3|β|×R3|α|

Kβ,α(u,w)fβ(t,u)F

[
Cαfα(t,w)

Cβfβ(t,u)

]

dudw ≤ 0,(2.21)where F (x) := 1
2(1 − x) log x ≤ 0 for x ≥ 0.The equilibrium solutions of (2.18) are Maxwellian (Gaussian) fun
tions withdetermining 
onstants (
on
entration, bulk velo
ity and temperature) relatedto the internal energies En and the 
onstants Cn of (2.16), by the law of themass a
tion (for more details see e.g. Ref. [25, 17℄).We distinguish the following parti
ular 
ases:1. If M = 3 in (2.10-2.13), and the 
onditions of (2.16) are veri�ed, then(2.10) essentially redu
es to the Ludwig and Heil system of equationswith dis
rete internal energies.2. If M = 2 and the 
onditions of (2.16) are ful�lled with C1 = C2 = 1,then we obtain the Wang-Chang-Uhlenbe
k-de Boer system of equa-tions.3. If M = 2, N = 1, the 
ondition (2.16) are ful�lled and the transitionfun
tions depend only on the relative velo
ities of the en
ounters inea
h 
ollision 
hannel, then one gets the 
lassi
al Boltzmann equation.In order to introdu
e the numeri
al s
heme asso
iated to the equations (2.18),in the next se
tion we solve a Cau
hy problem for (2.18) formulated in aprodu
t of L1 spa
es. Besides the uniqueness and global existen
e of the
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usolution, we also need the positivity of the solution and the ma
ros
opi
mass 
onservation. Note that, other 
onservation properties, as well as theexisten
e of a H-theorem play no role in this numeri
al s
heme. In parti
ular,property (2.16) is not needed. However, we will state without proof a generalresult 
on
erning the 
onservation relations and a H-theorem (only for thesake of 
ompleteness).Roughly speaking, we would like to approximate the measures dµt
k(v) :=

fk(t,v)dv indu
ed by the solutions fk(t,v) of (2.18), k = 1, . . . ,N , by 
on-venient homogeneous sums of point measures, de�ned as follows.Let µ be a �nite positive measure on Rm. For an > 0, where n ∈ N∗ :=
{1, 2, . . .}, let

σn =
an

n

n∑

i=1

δxi,n
, n ∈ N∗. (2.22)Here δxi,n

is the Dira
 measure on Rm 
on
entrated at point xi,n for i =
1, . . . , n. The sequen
e of measures (σn)n∈N∗ is 
alled a homogeneous sum ofpoint measures (HSPM) approximating the measure µ, if it 
onverges weaklyto µ (in the weak sens of the measures) i.e. σn ⇀ µ as n → ∞.We 
all a sequen
e (σn)n∈N∗ of the form

σn =

n∑

i=1

ai,n

n
δxi,n

, n ∈ N∗, (2.23)(where ai,n > 0 for i ∈ {1, . . . , n} and n ∈ N∗) a weighted sum of pointmeasures (WSPM) approximating the measure µ, if it 
onverges weakly to
µ, i.e. σn ⇀ µ as n → ∞. Obviously, if ai,n = aj,n for i, j ∈ {1, . . . , n} and
n ∈ N∗, the WSPM approximation be
omes a HSPM approximation.The HSPM approximation is 
onvenient for numeri
al solving of equationswhere the solutions are �nite (probability) measures on Rm, and where onealso wishes to approximate moments of some (random) variables with respe
tto solutions. In this 
ase, the 
ontrol of the approximation 
an be made bymeans of the Koksma-Hlavka inequality Ref. [23℄, in terms of dis
repan
y.We re
all that, by de�nition Ref. [5, 15, 23℄, the dis
repan
y between thenonnegative measures µ and ν on Rm is given by the following formula,

D(µ, ν) := sup
a∈Rm

|µ(Λ(a)) − ν(Λ(a))| , (2.24)where Λ(a) := {x ∈ Rm |xl ≤ al, l = 1, . . . ,m}.
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all, Ref. [5℄, that a sequen
e of measures µn is said to 
onvergeto µ with respe
t to dis
repan
y if, D(µn, µ) → 0 as n → ∞.It is known, Ref. [5℄, that if µ is a measure absolutely 
ontinuous with respe
tto the Lebesgue measure on Rm, then the 
onvergen
e of µn to µ with respe
tto dis
repan
y is equivalent to the weak 
onvergen
e in the sense of measures.Starting with HSPM approximation for ea
h µ0
k indu
ed by the initial data in(2.18), with k = 1, . . . , N , our purpose is to provide a 
onvergent algorithmgenerating HSPM approximations for the measures µt

k, where k = 1, . . . ,N ,at any t > 0.In this respe
t, one 
hooses some �xed timestep ∆t < T . Let
T∆ :=

[[
T

∆t

]]

, (2.25)where [[x]] denotes the integer part of x ∈ R. One asso
iates a time-dis
retized version of equations to (2.18). Starting with an initial data, f0
k =

f0
k (v), k = 1, . . . , N , one obtains a family of fun
tions f j

k(v), j = 1, . . . , T∆verifying the dis
retized form of (2.18). The dis
retized version of (2.18)
an be formulated in the weak form for the measures dµ̄j
k(v) := f j

k(v)dv,where k = 1, . . . , N . We shall prove that if, ea
h µ̄0
k is 
lose, to µ0

k, insome sense, then (for ∆t su�
iently small), µ̄j
k is 
lose to µt

k on the inter-val ((j − 1)∆t, j∆t], with an error of order ∆t, for all j = 1, . . . , T∆ and
k = 1, . . . , N .The s
heme is initialized for k = 1, . . . ,N by approximating for the measures
µ̄0

k by a HSPM approximation of the form:
µ0

k,n :=
ak,n

n

n∑

i=1

δvk,n
⇀µ̄0

k, as n → ∞. (2.26)The above approximation provides for all j = 1, . . . , T∆ and k = 1, . . . ,Napproximations by dis
rete measures µj
k,n ⇀ µ̄j

k as n → ∞.Be
ause of the nonlinearity of the initial problem, ea
h step of the iterationprodu
es a power-like growing number of terms in the sums of point measuresexpressing µj
k,n. In 
omputations, the numeri
al e�ort would also be power-like in
reasing, so that the algorithm 
ould not be e�e
tive at this level.To approximate µ̄j

k by sums of Dira
 measures with a non-in
reasing numberof terms, for te
hni
al reasons, it is ne
essary to have a HSPM approximation.However, in general, µj
k,n appears as a WSPM of the form (2.23). For thisreason we introdu
e a homogenization pro
edure of approximation to obtainmeasures of the form (2.22). At this level, one 
an redu
e the numeri
al
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 te
hniques of sele
tion. Then, the 
onvergen
eof the numeri
al s
heme is proved in probabilisti
 terms.3. The Existen
e of the SolutionDe�ne the spa
e X := L1(R3) × . . . × L1(R3)
︸ ︷︷ ︸

N times � real, equipped with the norm
‖g‖

X
:=

N∑

k=1

mk ‖gk‖L1 , (3.1)where g = (g1, . . . , gN ) and gk ∈ L1(R3), k = 1, . . . ,N . We re
all that
mk > 0 denotes the mass of a parti
le of spe
ies k for ea
h k = 1, . . . ,N .Note that if g ≥ 0 (i.e. gk ≥ 0 a.e. for all k = 1, . . . ,N) then the norm ‖g‖

Xis equal to the mass of the gas in the state des
ribed by the distributionfun
tions given by the 
omponents of g.For approximation purposes, we suppose that the fun
tions of the family
{Kα,β}α,β∈M are 
ontinuous. We formulate the Cau
hy problem for (2.18)in the spa
e X.Before, we must give a meaning to the 
ollision operators Pk and Sk asoperators a
ting in the spa
e X. This 
an be performed, using regularizationas in Ref. [16, 17℄ to de�ne σα,β,k as distributions for all α,β ∈ M×M and
k = 1, . . . , N .For m ∈ N∗ denote by Cb(R

m) the spa
e of the bounded fun
tions of C(Rm; R),endowed with the usual sup norm. Let Cc(R
m) be the subset of the fun
tionsof Cb(R

m) with 
ompa
t support.Let J ∈ Cc(R) be positive and even fun
tion, su
h that supp(J) = [−1, 1]and ‖J‖
L1 = 1. For ε > 0 denote by δε(t) =: ε−1J(ε−1 · t) and δ3

ε(y) :=
δε(y1) · δε(y2) · δε(y3) , where y = (y1, y2, y3) ∈ R3. De�ne

σε,η
α,β(u,w) := Kα,β(w,u)δ3

ε (Vβ(u) − Vα(w))δη(Wβ(u)) − Wα(w)), (3.2)
Pkεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
β,α(u,w)gβ(u)dudw̃k

]

wk,αk
=v(3.3)
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Skεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
α,β(w,u)gα(w)dudw̃k

]

wk,αk
=v

,(3.4)with gα and gβ as in (2.11), for all g ∈ Cc(R
3)N := Cc(R

3) × . . . × Cc(R
3)

︸ ︷︷ ︸

N times ;
v ∈ R3, k ∈ 1, . . . , N . In (3.3) and (3.4), the terms with αk = 0, vanish,by de�nition, and dw̃k is the Eu
lidean element of area on the manifold
{
w ∈ R3|α||wk,αk

= v
}.Let Ωγ be the unit sphere in R3|γ|−3, where γ ∈ M. The operators Pk and

Sk 
an be de�ned by means of the following result.Lemma 3.1 For ea
h g ∈ CN
c (R3), there exist the limits

Ṗk(g)(v) := lim
η→0

lim
ε→0

Pkεη(g)(v), Ṡk(g)(v) := lim
η→0

lim
ε→0

Skεη(g)(v).(3.5)There are the families of fun
tions {rβ,α}α,β∈M, {pβ,α}α,β∈M ⊂ C(R3|α| ×
Ωβ; R+) and {uβ,α}α,β∈M ⊂ C(R3|α| × Ωβ; R3|β|) su
h that

Ṗk(g)(v)=
∑

α,β∈M

αk

[
∫

R3|α|−3×Ωβ

pβ,α(w,n)gβ(uβ,α(w,n))dw̃kdn

]

wk,αk
=v

,(3.6)
Ṡk(g)(v) =

∑

α,β∈M

αk

[
∫

R3|α|−3×Ωβ

rβ,α(w,n)gα(w)dw̃kdn

]

wk,αk
=v

, (3.7)for all g ∈ CN
c (R3), and the following properties are veri�ed:i) there are some 
onstants c, d > 0 su
h that |uβ,α(w,n)| ≥ c |w| for all

|w| ≥ d and α,β ∈ M.ii) if Wα(w) − 2−1(
∑N

n=1 αnmn)Vα(w)2 −∑N
n=1 βnEn ≤ 0 for some w ∈

R3|α|, then
rβ,α(w,n) = pβ,α(w,n) = 0, for all n ∈ Ωβ and α,β ∈ M. (3.8)iii) for ea
h ϕ ∈ C(R3|α|) and f ∈ Cc(R

3|β|) and ∀α,β ∈ M
∫

R3|α|×Ωβ

ϕ(w) · pβ,α(w,n) · f(uβ,α(w,n))dwdn =

=

∫

R3|β|×Ωα

ϕ(uα,β(u,n)) · rα,β(u,n) · f(u)dudn.

(3.9)
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uThe results of the above Lemma were obtained in Ref. [17℄. However, for thesake of 
ompleteness, the proof is outlined in Appendix2.Property (3.8) follows by the presen
e of rea
tion thresholds (in the frameof the 
onservation relations (2.6) and (2.7)). Moreover, (3.6) and (3.7) arewell de�ned, be
ause of property i) in Lemma 3.1.From (3.7), we 
an write
Ṡk(g)(v) = Ṙk(g)(v)gk(v), (3.10)where

Ṙk(g)(v) :=

:=
∑

α,β∈M

αk

[
∫

R3|α|−3×Ωβ

rβ,α(w,n)gγ;k(ws,i)dw̃kdn

]

wk,αk
=v

.
(3.11)In (3.11), for γ ∈ N (γ) we assumed the 
onvention

gγ;k(w) := gγ(w)/gk(wk,αk
), (3.12)where the r.h.s. makes sense and gγ;k(w) := 0 otherwise.Our results are based on the followingAssumptionThere is a 
onstant K > 0, su
h that

∫

Ωβ

rβ,α(w,n)dn < K, (3.13)for all w ∈ R3|α| and α,β ∈ M.From (3.13), it is immediate that the maps
X ⊃ Cc(R

3)N ∋ g → Ṡk(g) ∈ L1(R3),

X ⊃ Cc(R
3)N ∋ g → Ṙk(g) ∈ Cb(R

3)

(3.14)are 
ontinuous for ea
h k = 1, . . . ,N . Moreover, using property (3.9) (with
ϕ = 1, f = gβ) 
ombined with Fubini's theorem, it also follows that the map

X ⊃ Cc(R
3)N ∋ g → Ṗk(g) ∈ L1(R3) (3.15)2Note that the fun
tions rα,β and pα,β appear in expli
it form in the proof ofLemma 3.1 (see the Appendix).
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ontinuous for ea
h k = 1, . . . ,N .Sin
e Cc(R
3)N is dense in X, the maps given by (3.14-3.15) have 
ontinuousextensions to X. These extensions will be also denoted Sk, Rk and Pk,respe
tively.Note that (3.10) 
an be extended to all g ∈ X, in the sense that a.e.,

Sk(g)(v) = Rk(g)(v)gk(v), (3.16)for all k = 1, . . . , N .De�ne P,S : X → X by
P(g) = (P1(g), . . . , PN (g)),

S(g) = (S1(g), . . . , SN (g)),
(3.17)for all g ∈ X.We 
onsider the Cau
hy problem for equation (2.18) in X.

dtf(f) = P(f(t)) − S(f(t)), f(0) = f0. (3.18)Theorem 3.1 Let f0 > 0. For ea
h T > 0, equation (3.18) has a uniquesolution f(t) in X on [0, T ]. Moreover, for all t ∈ [0, T ] one has f(t) > 0 and
N∑

k=1

mk

∫

R3

fk(t,v)dv =
N∑

k=1

mk

∫

R3

f0,k(v)dv. (3.19)Proof. One applies the Bana
h �xed point theorem to (3.18) written in
onvenient form.Consider the 
one C+
T := {f ∈ C(0, T ; X)|f(t) ≥ 0, for all t ∈ [0, T ]} with thenorm

‖f‖ := sup
t∈[0,T ]

‖f(t)‖
X

. (3.20)Observe that for all k = 1, . . . ,N , if f ∈ C+
T then Rk(f), Pk(f) ≥ 0 (sin
e

rβ,α, pβ,α ≥ 0, for all α,β ∈ M). Moreover, if f ∈ C+
T , then Rk(f) ∈

C(0, T ;Cb(R
3)). Consequently the Riemann integral ∫ t

s Rk(f(τ))dτ is wellde�ned in Cb(R
3) for all s, t ∈ [0, T ] and k ∈ {1, . . . ,N}.Let f ∈ C+

T . We de�ne the map [0, T ] ∋t → I(f)(t) ∈ X by the 
omponentsof I(f)(t), as:
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Ik(f)(t) = exp

[

−
∫ t

0
Rk(f(τ))dτ

]

· f0,k+

+

∫ t

0
exp

[

−
∫ t

s
Rk(f(τ))dτ

]

· Pk(f(s))ds,

(3.21)where t ∈ [0, T ]. Here, the integration with respe
t to ds is in the sense ofRiemann in L1(R3).Obviously Ik(f)(t) ≥ 0 for all t ∈ [0, T ], k = 1, . . . ,N .The problem (3.18) 
an be rewritten in C+
T , as it follows.

f = I(f) (3.22)Let R > ‖f0‖X
. De�ne

B(R) :=
{
f ∈ C+

T | ‖f‖ ≤ R, f (0) = f0
}

. (3.23)Using (3.11), (3.6) and (3.13), one 
an �nd some positive numbers k1(R) and
k2(R), su
h that

‖I(f)‖ ≤ ‖f0‖X
+ T · k1(R), (3.24)and

‖I(f) − I(h)‖ ≤ T · k2(R) · ‖f − h‖ , (3.25)for all f ,h ∈ B(R). Obviously, from (3.24) and (3.25), for T small enough, themap I be
omes a stri
t 
ontra
tion on B(R). Consequently I : B(R) → B(R)and has a unique �xed point. This proves that (3.18) has a unique positivesolution on [0, T ].The positivity of fk, implies that
‖f(t)‖

X
=

N∑

k=1

mk

∫

R3

fk(t,v)dv, 0 ≤ t ≤ T. (3.26)By (3.18) and using (2.6), (3.11), (3.6) and (3.9) (applied to ϕ ≡ 1) oneobtains
dt ‖f(t)‖X

=

N∑

k=1

mk

∫

R3

[Pk(f) − Sk(f)] dv = 0, (3.27)whi
h proves (3.19). Moreover,
‖f‖ = sup

0≤t≤T
‖f(t)‖

X
= ‖f0‖X

. (3.28)
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ontinuation, and uniqueness, the lo
al solution f(t) 
an be made time-global. This ends the proof. 2For the sake of 
ompleteness we state the following result.Let Φi
n be as in (2.19) for i = 1, . . . , 4. With the remark that the mass
onservation (3.19) has been already proved, the solution of (3.18) has thefollowing properties.Proposition 3.1 Let f(t) be the solution of (3.18) given by Theorem 3.1.a) If

f0,k, (1 + v2)f0,k ∈ L1(R3) (3.29)for ea
h k = 1, . . . , N , then
(1 + v2)fk(t) ∈ L1(R3) (3.30)and

N∑

n=1

∫

R3

Φi
n(v)fn(t,v)dv =

N∑

n=1

∫

R3

Φi
n(v)f0,n(v)dv = 0, (3.31)for ea
h k = 1, . . . , N and i = 1, . . . , 4 and all t ≥ 0.b) In addition to the 
onditions (3.29), suppose that there are some 
onstants

C1, . . . , CN > 0 su
h that 
onditions (2.16) hold. If
f0,k log f0,k ∈ L1(R3) (3.32)for ea
h k = 1, . . . , N , then

fk(t) log fk(t) ∈ L1(R3; dv) (3.33)and
H(f)(t) :=

N∑

n=1

∫

R3

[log Cnfn(t,v) − 1] fn(t,v)dv (3.34)is non-in
reasing as a fun
tion of t, for ea
h k = 1, . . . ,N and all t ≥ 0.The proof of this proposition is beyond the present purposes. Though, wemention that the proof uses Lemma 3.1 and the ideas introdu
ed by of Ark-eryd [2, 3℄ to prove results of the same nature in the 
ase of the 
lassi
alspa
e-homogeneous Boltzmann equation.
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retizationLet ∆t ∈ (0, T ) be a �xed timestep. We 
onsider the following dis
retizedversion of (3.18).
f j = f j−1 + ∆t ·

[
P(f j−1) − S(f j−1)

]
,

f0 = f0 ≥ 0, a.e., j = 1, . . . , T∆,
(4.1)where f j = (f j

1 , . . . , f j
N ) and f j

k = f j
k(v).The dis
retized s
heme (4.1) may destroy the positivity of the fun
tions f jfor j ≥ 1. However, one 
an prove that for ∆t small enough, f j is positiveand 
lose, in some sense, to the solution f provided by Theorem 3.1.Proposition 4.1a) If ∆t is su�
iently small, then f j ≥ 0 for all j = 1, . . . , T∆. Moreover,

∥
∥f j
∥
∥ = ‖f0‖ , (4.2)for all j = 1, . . . , T∆.b) There exists some number C = C(‖f0‖X

) > 0, depending only on ‖f0‖X
,su
h that

∥
∥f(t) − f j

∥
∥

X
≤ C · ∆t, (4.3)for all j = 1, . . . , T∆ and t ∈ ((j − 1)∆t, j∆t].Proof. a) First we write (4.1) more 
onveniently.Let

U := {γ = (γ1, . . . , γN ) |γk ∈ {0, 1, . . . ,NM} , |γ| ≥ 2} . (4.4)For any ξ = (ξ1, ..., ξN ) ∈ RN for k = 1, ...,N and α ∈ M, denote
ξα,k :=







1

ξk

∏

n∈N (α)

ξαn
n if αk ≥ 1 and ξk 6= 0 ,

0 if αk = 0 or ξk = 0 .

(4.5)For k = 1, . . . , N and α ∈ M, using the multinomial formula, we get
NM∑

p=2

(ξ1 + . . . + ξN )p−1 =

NM∑

p=2

p−1∂ξk
(ξ1 + . . . + ξN )p =

∑

α∈U

cααkξα,k, (4.6)
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cα := (|α| − 1)!

(
N∏

k=1

αk!

)−1

. (4.7)If
ξ1 + . . . + ξN = 1, (4.8)then, by (4.6) we get

MN − 1 =




1

(M + 1)N − N − 1

∑

α,β∈M

αkcαξα,k +
∑

α∈U\M

αkcαξα,k



 .(4.9)For ea
h k = 1, . . . , N , put
ξk = µkIk, (4.10)where

µk = mk

(
N∑

n=1

mn

∫

R3

f0,n(v)dv

)−1 (4.11)and
Ik =

∫

R3

f j
k(v)dv. (4.12)It follows that (4.8) is satis�ed, due to (4.19). Consequently, by (4.9),

1 =
∑

α,β∈M

αk · Γα,k · Iα,k +
∑

α∈U\M

Λα,k · Iα,k, (4.13)where the notation Iα,k is given by (4.5) for I = (I1, . . . ,IN ). In (4.13),
Λα,k :=

αkc
αµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN

N

MN − 1
(4.14)and

Γα,k :=
cαµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN

N

(MN − 1) [(M + 1)N − N − 1]
. (4.15)Multiplying on 
omponents (k = 1, . . . ,N), the �rst term of the right side of(4.1) by (4.13) and using (3.11), equation (4.1) be
omes

f j
k = Qk(f

j−1) + Lk(f
j−1) + ∆t · Pk(f

j−1), (4.16)
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ufor k = 1, . . . , N . Here
Qk(f

j)(v) :=

=
∑

α,β∈M

αk

[
∫

R3|α|−3

(

Γα,k− ∆t

∫

Ωβ

rβ,α(w,n)dn

)

f j
α(w)dw(k)

]

wα,k=v

,(4.17)
Lk(f

j)(v) :=
∑

α∈U\M

Λα,k

[∫

R3|α|−3

dw(k)f
j
α(w)

]

wα,k=v

. (4.18)If K is the 
onstant introdu
ed in (3.13), we 
an 
hoose ∆t su
h that ∆t·K ≤
inf
α,k

Γα,k.Then, the positivity of f j, for all j = 1, . . . , T∆, follows by indu
tion, usingAssumption (3.13). As f j ≥ 0 for all j = 1, . . . , T∆, then the mass 
onserva-tion is always ful�lled. Indeed, by indu
tion and using the same argumentas in (3.27) we have
N∑

k=1

mk

∫

R3

f j
k(v)dv =

N∑

k=1

mk

∫

R3

fk,0(v)dv (4.19)for all j = 1, . . . , T∆.b) Combining (3.18) and (4.1), for all j = 1, . . . , T∆ we 
an write
∥
∥f(j · ∆t) − f j

∥
∥

X
≤
∥
∥f(j − 1) · ∆t) − f j−1

∥
∥

X
+

+

∫ j·∆t

(j−1)·∆t

∥
∥P (f(s)) − P (f j−1)

∥
∥

X
ds+

+

∫ j·∆t

(j−1)·∆t

∥
∥S(f(s)) − S(f j−1)

∥
∥

X
ds.

(4.20)
Denote by Oj :=

∥
∥f(j∆t) − f j

∥
∥

X
. Using the expli
it forms of P and S, takinga

ount of the 
onservation relations (3.19) and (4.19), we �nd that there issome number c0 > 0, depending on ‖f0‖X

su
h that Oj < Oj−1(1+ c0∆t) forall j = 2, . . . , T∆ and O1 ≤ c0∆t. Then
Oj ≤ O1(1 + c0∆t)T∆ ≤ c1 · ∆t, (4.21)with c1 > 0 depending only on ‖f0‖X

. Suppose that t ∈ ((j − 1)∆t, j∆t].
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it forms of P and S together with (3.18) and (3.19) lead to
‖f(t) − f((j − 1)∆t)‖

X
≤

≤
∫ j∆t

(j−1)∆t
(‖P(f(s))‖

X
+ ‖S(f(s))‖

X
)ds ≤ c2 · ∆t,

(4.22)where c2 depends only on ‖f0‖X
. Now estimation (4.3) is an immediate
onsequen
e of (4.21) and (4.22). 2For numeri
al purposes, one has to write the equation (4.1) in the weak formfor measures. In this respe
t, we asso
iate the the following measures to thesolutions f(t) and f j appearing in Proposition 4.1. For k = 1, . . . ,N de�ne

dµt
k(v) := fk(t,v)dv, (4.23)where t ≥ 0, and

dµ̄j
k(v) := f j

k(v)dv, (4.24)for j = 1, . . . , T∆.Proposition 4.1 has the following 
onsequen
e expressed in terms of the dis-
repan
y de�ned by (2.24).Corollary 4.1 If the 
onditions of Proposition 4.1 are ful�lled, then
max

k=1,...,N
max

j=1,...,T∆

D(µj∆t
k , µ̄j

k) → 0 as ∆t → 0. (4.25)5. The Probabilisti
 FrameThe 
entral result of this se
tion extends, in some sense, the probabilisti
methods of sele
tion used by Babovsky and Illner [4, 5℄ (see e.g. Lemma 2of Ref. [4℄).We start with a simple generalization (to row-wise independent random vari-ables) of the strong law of large numbers for independent random variableswith bounded fourth momentum (see, e.g., Theorem IV.�3-1 in Ref. [28℄,p.363).Let (Ω, β, P ) be a probability spa
e. For some real random variable X, by
〈X〉 we denote its mean with respe
t to P .Let N∗ ∋ n → qn ∈ N∗. We 
all the family ((Xn,i)i∈{1,...,qn})n∈N∗ of realvalued random variables on Ω an array of row-wise independent randomvariables, if for ea
h �xed n ∈ N∗ the random variables (Xn,i)i∈{1,...,qn} areindependent.
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uProposition 5.1 Let ((Xn,i)i∈{1,...,qn})n∈N∗ be an array of row-wise inde-pendent random variables with zero mean. Denote An := sup
i∈{1,...,qn}

〈X4
n,i〉.If

∞∑

n=1

An

q2
n

< ∞, (5.1)then, with probability one,
1

qn

qn∑

i=1

Xn,i → 0, as n → ∞. (5.2)Proof. A

ording to a version of the Borel-Cantelli Lemma, it is su�
ient toshow that for ea
h ε > 0,
∞∑

n=1

P

(∣
∣
∣
∣
∣

1

qn

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣
> ε

)

< ∞. (5.3)To this end, by Chebyshev's inequality, we obtain
P

(∣
∣
∣
∣
∣

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣
> ε · qn

)

≤ 1

ε4q4
n

〈∣
∣
∣
∣
∣

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣

4〉

. (5.4)Expanding the fourth power, we invoke the independen
e of Xn,i and use thefa
t that 〈Xn,i〉 = 0. Then a simple 
omputation shows that for all ε > 0,
0 ≤

∞∑

n=1

P

(

1

qn

∣
∣
∣
∣
∣

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣
> ε

)

≤ 3

ε4

∞∑

n=1

An

q2
n

< ∞. (5.5)This 
on
ludes the proof. 2Consider N∗ ∋ n → mn ∈ N∗ a sequen
e, su
h that mn → ∞ as n → ∞.For ea
h n ∈ N∗, let In := {1, 2, . . . ,mn} be an index set and let Ip
n :=

In × . . . × In
︸ ︷︷ ︸

p times for a �xed p ∈ N∗.Consider some given set X ⊂ Rm and a given sequen
e (Fn)n∈N∗ of fun
tions
Fn : X× Ip

n → R. De�ne Sn : X → R by
Sn(x) :=







1

mp
n

∑

j∈In

Fn(x, j) if p ≥ 2,

mn∑

j=1

an,jFn(x, j) if p = 1,

(5.6)
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)n∈N∗ is a family of nonnegative numbers, su
h that

sup
n∈N∗

mn∑

l=1

an,j < ∞,

mn∑

l=1

an,l > 0, for all n ∈ N∗.

(5.7)
Suppose that there is some fun
tion F : X → R su
h that, for ea
h x ∈ X,

F (x) = lim
n→∞

Sn(x). (5.8)In general, for a given n, the sum Sn 
ontains mp
n terms. Roughly speaking,our problem is to 
onveniently diminish the numbers of terms in Sn, byrandom sele
tion of the terms in (5.6) and �renormalize� the resulting sumsu
h that the 
onvergen
e to F (x) be kept, in some sense. In this respe
t,we de�ne some spe
ial families of random variables.Let (Ω, β, P ) be a probability spa
e, where Ω := [0, 1)∞ (in the 
ountablesense) is endowed with the usual produ
t Borel σ−algebra β and P the usualprodu
t probability indu
ed on Ω by the uniform distribution of [0, 1).For ea
h n ∈ N∗ and j ∈ In, de�ne the weights

pn,j :=
an,j

mn∑

l=1

an,l

, (5.9)where ((an,l)l∈In
)n∈N∗ is the family with properties (5.7). For ea
h n ∈ N∗,let

qn,s :=







0 if s = 0,

s∑

j=1

pn,j if s ∈ In.
(5.10)For ea
h n ∈ N∗ and l ∈ In we 
onsider the random variables cn,l , c̃n,l : Ω →

In given by
cn,l(ω) := [[ωl · mn]] + 1, (5.11)and

c̃n,l(ω) := s if ωl ∈ [qn,s−1, qn,s) , (5.12)
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uwhere ωl is the lth 
omponent of ω = (ω1, ω2, . . .) ∈ Ω. In (5.12) we makethe 
onvention that [x, x) := φ (the void set) for any x ∈ R. Obviously, forea
h j ∈ In

P (cn,l(ω) = j) =
1

mn
, (5.13)and

P (c̃n,l(ω) = j) = pn,j. (5.14)Consequently, ((cn,l)l∈In
)n∈N∗ and ((c̃n,l)l∈In

)n∈N∗ , are arrays of row-wiseindependent random variables.Remark that the random variables cn,l are parti
ular forms of c̃n,l, with
pn,j = m−1

n in (5.9).Let p ≥ 2. For n ∈ N∗ and l ∈ In, de�ne the random variables Jn,l : Ω → Ip
nby

Jn,l(ω) := (i, cn,(l−1)p+1(ω), cn,(l−1)p+2(ω), . . . , cn,lp−1(ω)), (5.15)where ω = (ω1, ω2, . . .) ∈ Ω.Observe that ip + j = i′p + j′ if and only if i = i′ and j = j′, for all
i, i′ ∈ N∗ and j, j′ ∈ {1, 2, . . . , p}. Then, using the row-wise independen
e of
((cn,l)l∈In

)n∈N∗ , we 
on
lude the row-wise independen
e of ((Jn,l)l∈In
)n∈N∗ .Suppose that one of the following 
onditions is ful�lled:1. X is at most 
ountable.2. X is the whole Rm, the fun
tion F is 
ontinuous and ea
h Fn(·, j) isin
reasing with respe
t to the order of Rm for ea
h �xed n ∈ N∗ and

j ∈ Ip
n. De�ne for ea
h n ∈ N∗ and x ∈ X by

an(x) := max
j∈Ip

n

|Fn(x, j)| . (5.16)Proposition 5.2 1. Let p ≥ 2. If
∞∑

n=1

an(x)4

m2
n

< ∞ (5.17)for all x ∈ X, then for ea
h x ∈ X, with probability one,
lim

n→∞

1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i = F (x). (5.18)
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tive Boltzmann Type Equation 2252. Let p = 1. Consider N∗ ∋ n → kn ∈ N∗ a sequen
e su
h that, kn → ∞ as
n → ∞. If kn ≤ mn for all n ∈ N∗, and

∞∑

n=1

an(x)4

k2
n

< ∞, (5.19)for all x ∈ X, then for all x ∈ X, with probability one,
lim

n→∞





mn∑

j−1

an,j




1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i = F (x). (5.20)Proof. Remark that it is su�
ient to 
onsider the 
ase in whi
h all fun
tions
Fn are positive.Case X 
ountable1. Let x ∈ X be �xed. For ea
h n ∈ N∗ and i ∈ In, de�ne

Yn,i := Fn(x, ·) ◦ Jn,i. (5.21)The row-wise independen
e of ((Jn,i)i∈In)n∈N∗ implies that ((Yn,i)i∈In)n∈N∗is an array of row-wise independent random variables. Let j = (j1, . . . , jp) ∈
Ip

n. Using (5.13) and the de�nition (5.15) of Jn,i, we get
P ({Jn,i(ω) = j}) =







m1−p
n if i = j1,

0 if i 6= j1,

(5.22)for all n ∈ N∗ and j ∈ In. Consequently,
〈Yn,i〉 =

1

mp−1
n

mn∑

j2,...,jp=1

Fn(x, (i, j2, . . . , jp)), (5.23)so that
1

mn

mn∑

i=1

〈Yn,i〉 =
1

mp
n

∑

j∈Ip
n

Fn(x, j) = Sn(x). (5.24)Put Xn,i := Yn,i − 〈Yn,i〉. Then, the family ((Xn,i)i∈In)n∈N∗ satis�es the
onditions of Proposition 5.1, with An ≤ (2an(x))4. Therefore, for ea
h �xed
x, by (5.24) and (5.6) one obtains (5.18). For ea
h x ∈ X, let Ωx be thesubset of Ω where the limit (5.18) holds. De�ne ΩX :=

⋂

x∈X Ωx. Sin
e X is
ountable, we have P (ΩX) = 1, so that the argument is 
omplete.
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u2. Let x ∈ X be �xed. For ea
h n ∈ N∗ and i ∈ In de�ne
Yn,i :=

(
mn∑

l=1

an,l

)

Fn(x, ·) ◦ c̃n,i. (5.25)The row-wise independen
e of ((c̃n,i)i∈In)n∈N∗ ensures that ((Yn,i)i∈In)n∈N∗is an array row-wise independent family of random variables. From (5.14),we get
〈Yn,i〉 =

mn∑

l=1

an,lFn(x, l), (5.26)for all i ∈ In and n ∈ N∗. Consequently,
1

kn

kn∑

i=1

〈Yn,i〉 = Sn(x). (5.27)De�ne Xn,i := Yn,i −〈Yn,i〉. From here the argument works similarly as in 1.Case X = Rm1. Observe that the argument with X 
ountable is valid on the 
ountable set
Qm of the ve
tors of Rm with rational 
omponents. Further, remark that forany x ∈ Rm \Qm and ε > 0, by the 
ontinuity of F and the monotoni
ity of
Fn, we 
an �nd two elements x−, x+ ∈ Qm, with x− ≤ x ≤ x+ su
h that

F (x+) − 1

mn

mn∑

i=1

Fn(x+, ·) ◦ Jn,i(ω) − ε ≤

≤ F (x) − 1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i(ω) ≤

≤ F (x−) − 1

mn

mn∑

i=1

Fn(x−, ·) ◦ Jn,i(ω) + ε,

(5.28)
for all ω ∈ Ω. Now we approximate x by two sequen
es {x+

p

}

p∈N
, {x−

p

}

p∈N
⊂

Qm, with x−
p ≤ x ≤ x+

p . Then, to 
on
lude the proof in the 
ase X = Rm,we refer to the result in the 
ase X 
ountable.
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ing only (5.28) with
F (x+) − 1

kn

kn∑

i=1

Fn(x+, ·) ◦ c̃n,i(ω) − ε ≤

≤ F (x) − 1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i(ω) ≤

≤ F (x−) − 1

kn

kn∑

i=1

Fn(x−, ·) ◦ c̃n,i(ω) + ε,

(5.29)
one repeats step by step the arguments of the part 1 to 
on
lude the proofof the part 2. 2The index set Ip

n being de�ned as before, let ((µn,j)j∈Ip
n
)n∈N∗ be a boundedfamily of positive measures on Rm, i.e. there exists some 
onstant a > 0, su
hthat |µn,j| ≤ a for all j ∈ Ip

n and n ∈ N∗ (we re
all the notation |µ| := µ(Rm)for some �nite measure µ on Rm).Let (Ω, β, P ) be the probability spa
e be as in Proposition 5.2 and the arraysof row-wise random variables ((Jn,i)i∈In)n∈N∗ and ((c̃n,i)i∈In)n∈N∗ de�ned by(5.15) and (5.12) respe
tively.Theorem 5.1 1. Let p ≥ 2. Suppose that there is a positive measure µ on
Rm, absolutely 
ontinuous with respe
t to the Lebesgue measure on Rm, su
hthat

1

mp
n

∑

j∈Ip
n

µn,j ⇀ µ, as n → ∞. (5.30)De�ne µn,i(ω) := µn,j|j=Jn,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. If
∞∑

n=1

1

m2
n

< ∞, (5.31)then for P−almost all ω,
σ1,n(ω) :=

1

mn

mn∑

i=1

µn,i(ω) ⇀ µ as n → ∞. (5.32)2. Let p = 1. Suppose that there is a positive measure µ on Rm, absolutely
ontinuous with respe
t to the Lebesgue measure on Rm, su
h that
mn∑

l=1

an,l · µn,l ⇀ µ, as n → ∞. (5.33)
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uDe�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n → kn ∈ N∗ be a sequen
e su
h that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

< ∞. (5.34)Then, for P−almost all ω,
σ2,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n → ∞. (5.35)Proof. De�ne for ea
h x ∈ Rm

Fn(x, j) :=

∫

y≤x
dµn, j(y), (5.36)and

F (x) :=

∫

y≤x
dµ(y). (5.37)Then it is su�
ient to observe that F and Fn(x, j) satisfy the 
onditions ofProposition 5.2, (with an(x) = a) and the family {y ∈ Rm |y ≤ x}x∈Rm isdetermining, Ref. [28℄, for the weak 
onvergen
e of the measures µn, j. 2Remark 5.1 It 
an be easily seen that Babovsky Lemma (see Lemma 2 ofRef. [4℄) is a parti
ular 
ase of Theorem 5.1.1 with mn = n2, for all n ∈ N∗and with µn, j given by a produ
t of two point measures.Remark 5.2 As we have mentioned in Se
tion 1, our purpose is to approx-imate the solutions of (2.18) by sums of Dira
 measures of the form (2.22).Due to the nonlinear 
hara
ter of the 
ollision operators P and S, at ea
htimestep, the numeri
al 
omplexity in
reases dramati
ally (power-like). Al-though, we are able to redu
e the 
omputational e�ort using repeatedly theTheorem 5.1.1.However, ex
ept the 
ase of (2.18) modelling the one 
omponent gas withpurely elasti
 
ollisions, a 
ertain step of the numeri
al s
heme destroys thehomogeneity of the sums of Dira
 measures, i.e. instead of HSPM approx-imations one obtains WSPM approximations. This di�
ulty will be sur-mounted by using Theorem 5.1.2, whi
h 
onverts the WSPM approximationsinto HSPM approximations.Theorem 5.1 will be the basi
 point of the probabilisti
 part of our numeri
als
heme for the solutions of (2.18) in the next se
tion.
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tive Boltzmann Type Equation 2296. The Main ResultFor our numeri
al s
heme, we need a weak form of (4.16), where the fun
tions
f j

k are repla
ed by the measures µ̄j
k given by (4.24). Denote

(ϕ, h) :=

∫

R3

ϕ(v)h(v)dv, (6.1)for ϕ ∈ Cb(R
3) and h ∈ L1(R3). From (4.16) using (6.1) we get

(

ϕ, f j
k

)

= (ϕ,Qk(f
j−1)) + (ϕ,Lk(f j−1)) + ∆t · (ϕ,Pk(f j−1)) (6.2)for all ϕ ∈ Cb(R

3), all j = 1, . . . , T∆ and k = 1, . . . ,N . Denoting by
V (Ωβ) :=

∫

Ωβ

dn, (6.3)in (6.2),
(ϕ,Qk(f

j)) :=
∑

α,β∈M

αk

∫

R3|α|×Ωβ

(ϕ ◦ ik,α)(w)×

×
(

Γα,k

V (Ωβ)
− ∆t · rβ,α(w,n)

)

f j
α(w)dwdn,

(6.4)and
(ϕ,Lk(f

j)(v)) :=
∑

α∈U\M

Λα,k

∫

R3|α|
(ϕ ◦ ik,α)(w)f j

α(w)dw. (6.5)In the formulas (6.4) and (6.5), the proje
tion appli
ation ik,γ : R3|γ| → R3is de�ned by ik,γ(w) = wk,γk
, for γ ∈ M and k = 1, . . . ,N . Using (3.6) and(3.9) we get

(ϕ,Pk(f j)) =

=
∑

α,β∈M

βk

∫

R3|α|×Ωβ

ϕ ◦ ik,β(uβ,α(w,n))rβ,α(w,n)f j
α(w)dwdn,

(6.6)for all ϕ ∈ Cb(R
3), all j = 0, 1, . . . , T∆ and k = 1, . . . ,N .Now, we are able to formulate (6.2) as an equation for measures. For some

γ ∈ M and j = 0, 1, . . . , T∆, de�ne the measure µ̄j
γ on R3|γ| by

dµ̄j
γ(w) =

⊗

k∈Nγ

γk⊗

i=1

dµ̄j
k(wk,i). (6.7)
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uFrom (6.2-6.6), using spheri
al 
oordinates
[0, π)3|β|−5 × [0, 2π) ∋ (θ, ϕ) → n(θ, ϕ) ∈ Ωβ, (6.8)to integrate on ea
h unit sphere Ωβ, it follows that there are some sets

A ⊂ U , B ⊂ M, the fun
tions qα,β,k ∈ C(R3|α| × [0, π)3|β|−5 × [0, 2π) ; R+)and Hα,β,k ∈ C(R3|α|× [0, π)3|β|−5× [0, 2π) ; R3) su
h that we 
an write (6.2)in the 
ompressed form
∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

R3|α|

dµ̄j−1
α (w)×

×
∫

[0,π)3|β|−5
dθ

∫ 2π

0
(ϕ ◦ Hα,β,k)(w, θ, φ)qα,β,k(w, θ, φ)dφ,

(6.9)for ϕ ∈ Cb(R
3) and k ∈ 1, . . . ,N .First, we 
onsider rβ,α verifying the properties of Lemma 3.1 and we 
on-stru
t the algorithm starting from (6.9). Then, we show how the numeri
als
heme 
an be improved, if one introdu
es additional 
onditions on rβ,α.Now, we write (6.9) in a more 
onvenient form. Note that, we 
an �nd some

L ∈ N∗ and1. a family {α(l)}l=1,...,L ⊂ U of multi-indexes,2. a family {q(l)}l=1,...,L ⊂ N∗,3. a family {πl}l=1,...,L of measures absolute 
ontinuous with respe
t tothe Lebesgue measure on Rq(l),4. a family {Rk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R+) of fun
tions,5. a family {hk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R3) of fun
tions,su
h that (6.9) 
an be written
∫

R3

ϕ(v)dµ̄j
k(v) =

L∑

l=1

∫

R3|α(l)|+q(l)

Rk,l(z)(ϕ◦hk,l)(z)d(µ̄j−1
α(l)⊗πl)(z). (6.10)Let (Ω, β, P ) be as in Theorem 5.1.
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h l = 1, . . . , L, we approximate πl by a 
onvenient HSPM of theform (2.22), 
ontaining n-terms, πl,n ⇀ πl as n → ∞ (this 
an be done, e.g.by means of low dis
repan
y, well distributed sequen
es Ref. [6, 27℄).b) The initialization of the s
heme is done by giving n-terms HSPM approx-imations ν0
k,n of the initial data µ̄0

k, where k = 1, . . . ,N .
) The n-terms HSPM approximations ν1
k,n of µ̄1

k, with k = 1, . . . ,N , result-ing from the s
heme, 
an be obtained as follows:Step 1 (�rst sele
tion). For ea
h l = 1, . . . , L and k = 1, . . . ,N we repla
e
µ̄0

k by ν0
k,n in (6.7) (for γ = α(l), j = 0). Then for ea
h l = 1, . . . , L, weobtain a sequen
e of �nite measures ν0

α(l),n ⇀ µ̄0
α(l) as n → ∞, implying

ν0
α(l),n ⊗ πl,n ⇀ µ̄0

α(l) ⊗ πl as n → ∞. Obviously, ea
h ν0
α(l),n ⊗ πl,n is asum of the form (5.30), 
ontaining n|α(l)|+1 terms. We apply the sele
tionalgorithm 
f. Theorem 5.1.1 (with mn = n and p = |α(l)|+1) to 
onstru
t n- -terms HSPM approximations for all ν0

α(l),n⊗πl,n. Thus, by Theorem 5.1.1,for ea
h l = 1, . . . , L, there exists some set Ωl ⊂ Ω, with P (Ωl) = 1, su
hthat from ν0
α(l),n ⊗ πl,n, one 
an extra
t a n-terms HSPM approximation (ofthe form (5.32)) σ1,l,n(ωl) ⇀ µ̄0

α(l) ⊗ πl as n → ∞, for almost all ωl ∈ Ωl.Step 2 (se
ond sele
tion). In the right side of (6.10), written for j = 1,repla
e ea
h µ̄0
α(l) ⊗ πl by the 
orresponding σ1,l,n. Then the right side of(6.10) de�nes the measures Mk,n on R3, for k = 1, . . . ,N and n ∈ N∗,
Mk,n =

1

n

L∑

l=1

n∑

i=1

alRk,l(zl,i,n(ωl))δhk,l(zl,i,n(ωl)), (6.11)
on
entrated at the points hk,l(zl,i,n(ωl)), where zl,i,n(ωl) ∈ R3|α(l)|+q(l) and
al ≥ 0 are some 
onstants (for l = 1, . . . , L and i = 1, . . . , n). By Step 1, itfollows that

Mk,n ⇀ µ̄1
k as n → ∞, (6.12)for all ω1 ∈ Ω1, ω2 ∈ Ω2 , . . . , ωL ∈ ΩL and for k = 1, . . . ,N . Now, it 
anbe easily seen that (6.11) 
an be written as WSPM, 
ontaining, at most L ·nterms.As we mentioned before, we want to obtain HSPM approximations at the endof ea
h step of time. We �x, for the moment, some ω1 ∈ Ω1, . . . ,ω

L ∈ ΩL, sothat (6.12) holds. We apply the sele
tion algorithm formulated Theorem 5.1.2
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ufor ea
h �xed k = 1, . . . , N , as follows. For l = 1, . . . , L · n de�ning
ι(l) :=

[[
l − 1

L

]]

+ 1,

λ(l) :=

[[
l − 1

n

]]

+ 1,

(6.13)put
an,l =

1

n
aλ(l)Rk,λ(l)(zλ(l),ι(l),n(ωλ(l))). (6.14)We 
hoose mn = L · n and kn = n. Then, for ea
h k = 1, . . . ,N , there existssome ΩL+k ⊂ Ω, with P (ΩL+k) = 1, su
h that from Mk,n, we obtain a n--terms HSPM approximation (of the form (5.35)) σ2,k,n(ωL+k;ω1, . . . ,ωL) ⇀

µ̄1
k as n → ∞, for all ωL+k ∈ ΩL+k. Set ν̄1

k,n(ω1, . . . ,ωL+k) :=

σ2,k,n(ωL+k;ω1, . . . ,ωL). Therefore for ea
h µ̄1
k in (6.10), we obtain a 
or-responding n-terms HSPM approximation ν̄1

k,n ⇀ µ̄1
k as n → ∞, for all

ω1 ∈ Ω1, . . . ,ω
L+k ∈ ΩL+k and for all k = 1, . . . ,N .e) The pro
edure 
an be repeated, with the entering data ν̄1

k,n, to obtainHSPM approximations ν̄2
k,n(ω1, . . . ,ω2L+N+k) of µ̄2

k for k = 1, . . . ,N .f) Repeating this pro
edure over and over, after j timesteps, we providethe n-terms HSPM approximations ν̄j
k,n(ω1, . . . ,ωjL+(j−1)N+k) ⇀ µ̄j

k for all
ω1 ∈ Ω1, ω2 ∈ Ω2,. . .,ωjL+(j−1)N+k ∈ ΩjL+(j−1)N+k, all j = 1, . . . , T∆ andall k = 1, . . . , N , where Ωl ⊂ Ω with P (Ωl) = 1, for l = 1, . . . , T∆(L + N).Now, observe that we 
an �nd a family {Ql}l∈N∗ of measurable maps Ql :
Ω → Ω, with P (Q−1

l (A)) = 1, for all A ⊂ Ω with P (A) = 1. For instan
e,we 
an 
onsider U, V : Ω → Ω, given by
U(ω) = U(ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω1, ω3, . . . ω2n−1, ω2n+1, . . .),(6.15)
V (ω) = V (ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω2, ω4, . . . , ω2n, ω2n+2, . . .),(6.16)respe
tively, for all ω = (ω1, ω2, . . . , ω2n−1, ω2n, . . .) ∈ Ω. Then it is su�
ientto put Q1 = U and Ql := U ◦ V l−1, l = 2, 3, . . . Let

Ω∆t :=

T∆(L+N)
⋂

l=1

Q−1
l (Ωl). (6.17)Sin
e P (Q−1

l (Ωl)) = 1 for all l = 1, . . . , T∆(L + N), 
learly P (Ω∆t) = 1.De�ning νj
k,n(ω) := ν̄j

k,n(Q1(ω), . . . , QjL+(j−1)N+k(ω)) for all ω ∈ Ω, j =
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1, . . . , T∆, k = 1, . . . , N , it follows that νj

k,n(ω) ⇀ µ̄j
k as n → ∞, for all

ω ∈ Ω∆t, j = 1, . . . , T∆, k = 1, . . . ,N .In parti
ular, if D(·, ·) is the dis
repan
y introdu
ed in Se
tion 2., then
lim

n→∞
max

k=1,...,N
max

j=1,...,T∆

D
(

νj
k,n(ω), µ̄j

k

)

= 0, (6.18)for almost all ω ∈ Ω.All these and Corollary 4.1 lead to our main result.Let f(t) be the solution of equation (3.18), provided by Theorem 3.1 andlet µt
k be given by dµt

k(v) := fk(t,v)dv, for all t ≥ 0 and k = 1, . . . ,N .Consider some family {∆tp}p∈N
of dis
retization timesteps as in Se
tion 4..For ea
h ∆tp and for the initial data µ̄0

k, 
onsider the solutions µ̄j
k,p of (6.10),with j = 1, . . . , T∆ and k = 1, . . . ,N . For ea
h µ̄j

k,p, denote by νj
k,p,n the
orresponding n-terms HSPM approximation obtained by the above s
heme.Similar to (2.25), we introdu
e the following notation T∆p := [[T/∆tp]], forall p ∈ N.Theorem 6.1 For ea
h sequen
e of timesteps ∆tp → 0 as p → ∞, there isa sequen
e of positive integers n(p) → ∞ as p → ∞, su
h that

lim
p→∞

max
k=1,...,N

max
j=1,...,T∆p

D
(

νj
k,p,n(p)(ω), µ

j·∆tp
k

)

= 0, (6.19)for almost all ω ∈ Ω.Proof. Let
dp,n(ω) := max

k=1,...,N
max

j=1,...,T∆p

D
(

νj
k,p,n(ω), µ̄j

k,p

)

. (6.20)Consider some positive sequen
e εp ↓ 0 as p → ∞. Using (6.18), for ea
h p,we obtain that
lim

n→∞
P (dp,n > εp) = 0. (6.21)Then, for ea
h p, we 
an 
hoose n = n(p), su
h that

P (dp,n(p) > εp) ≤
1

p2
. (6.22)Consequently,

∞∑

p=1

P (dp,n(p) > εp) < ∞. (6.23)
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uThen, for almost all ω ∈ Ω,
lim

n→∞
dp,n(p)(ω) = 0. (6.24)Now, by Corollary 4.1, we 
on
lude the proof of the Theorem. 2This theorem represents a spa
e homogeneous rea
tive 
orrespondent to themain result in the Babovsky-Illner simulation s
heme for the 
lassi
al Boltz-mann equation (Theorem 7.1 of Ref. [5℄).Note that the numeri
al e�ort of the method is at most, O(n log n) (thedominant 
ontribution being introdu
ed by the random sele
tions of Theo-rem 5.1.2, i.e. (se
ond sele
tion) Step 2). However, under additional 
ondi-tions on rβ,α, the sum (6.10) the numeri
al e�ort 
an be improved.We 
onsider the following simple 
ase. Denote Dαβ :=

{
w′ ∈ R3|α||0 <

Wα(w′) − 2−1(
∑N

n=1 αnmn)Vα(w′)2 −∑N
n=1 βnEn

} (we re
all that Wα(w)is the energy de�ned in Se
tion 2). By Lemma 3.1, rβ,α(w,n) ≥ 0 on
Dαβ ×Ωβ. Suppose that in (6.2 -6.6), we have rβ,α(w,n) > 0 on Dαβ ×Ωβfor all α, β ∈ M. Taking into a

ount the form of the element dn on Ωβ inspheri
al 
oordinates (when (6.9) is obtained from (6.2 -6.6)) it follows easilythat in (6.9), ea
h fun
tion qα,β,k(w, θ, φ) 
an be 
onstru
ted su
h that theset {θ|qα,β,k(w, θ, φ) = 0} is �nite and does not depend on the 
hoi
e of
(w, φ) ∈ Dαβ × [0, 2π). Consequently, for ea
h β ∈ B, there is a measurableset Θβ ⊂ [0, π)3|β|−5 su
h that qα,β,k(w, θ, φ) > 0, for all w ∈ Dαβ, θ ∈ Θβ,
φ ∈ [0, 2π), α ∈ A. Denote

Ik(φ;w, θ) :=

∫ φ

0
qα,β,k(w, θ, ρ)dρ, φ ∈ [0, 2π) . (6.25)Then, for all w ∈ Dαβ, θ ∈ Θβ, �xed, (6.25) de�nes an invertible map

[0, 2π) ∋ φ → Ik(φ;w, θ) ∈ [0, Ik(2π;w, θ)) , (6.26)with the inverse I−1
k . In ea
h integral of (6.9), with respe
t to dφ, we performthe 
hange of variable φ = I−1

k (y;w, θ). De�ne
H̃α,β,k(w, θ, y) = Hα,β,k(w, θ, I−1

k (y;w, θ)). (6.27)We 
an 
hoose some measurable sets
Cαβ ⊆ R3|α| × [0, π)3|β|−5 × R+, for α ∈ A,β ∈ B,su
h that, (6.9) takes the following form

∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

Cαβ

(ϕ ◦ H̃α,β,k)(w, θ, y)dµ̄j−1
α (w)dθdy. (6.28)
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ations it is important to observe that the 
on
lusion remains thesame if weaker 
onditions are imposed on rβ,α, e. g. if one supposes that forea
h α,β ∈ M, rβ,α(w,n) > 0 on Dαβ × Ωβ ex
ept a 
ountable set, et
.Obviously, (6.28) has the form (6.10), but has the important property thatif µ̄j−1
k , for k = 1, . . . , N are HSPM, after Step 1 (�rst sele
tion) the outputmeasures are also a HSPM.In order to obtain µ̄j

k, for k = 1, . . . ,N as HSPM with the same number ofterms as µ̄j−1
k , we 
an apply the following immediate 
orollary of Theorem5.1.2, whi
h introdu
es a numeri
al 
omplexity of only O(n).Corollary 6.1 Suppose that there is a positive measure µ on Rm, absolutely
ontinuous with respe
t to the Lebesgue measure on Rm, su
h that

1

mn

mn∑

l=1

µn,l ⇀ µ, as n → ∞. (6.29)De�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n → kn ∈ N∗ be a sequen
e su
h that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

< ∞. (6.30)Then, for P−almost all ω,
σ3,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n → ∞. (6.31)Further we 
an pro
eed as in the s
heme 
onstru
ted before, but withoutapplying Theorem 5.1.2. Instead we apply Corollary 6.1. The s
heme redu
esto iterations alternating with sele
tions, and the 
on
lusion of Theorem 6.1remains valid. The numeri
al e�ort be
omes O(n).Finally remark that if (2.18) redu
es the 
lassi
al Boltzmann equation, forthe one-
omponent simple gas, then the sum in the r.h.s of (6.28) 
an be
ompressed to a unique term as in Ref. [4℄. In general, this is not possible inthe 
ase of gas mixtures.7. Con
luding RemarksFrom the above analysis, it follows that besides a 
onvenient existen
e theory,only the 
onservation of the total mass is needed to introdu
e the numer-
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ui
al s
heme des
ribed here. The other properties (e.g. detailed balan
e,H-Theorem) of the Wang-Chang-Uhlenbe
k-de Boer and Ludwig and Heilsystem of equations play no role in this algorithm. Note that, the numeri
als
heme 
an also be used and when the detailed balan
e does not hold, e.g.,for models where we ignore some re
ombination pro
esses (as in the situationwhen we 
onsider the 
ollisional disso
iation, but negle
t the re
ombinationby triple 
ollisions Ref. [24℄).We dis
uss possible generalizations as well as some limitations of the results.10 In the 
ase of non-rea
ting gas mixtures one 
an obtain similar numeri
als
hemes for the spa
e-dependent equation (2.10), in the frame of the theoryof existen
e of solutions of Ref. [17℄. This 
an be done by adapting dire
tlythe spatial 
ell homogenization method of Ref. [5℄.20 In the 
ase of rea
ting gas mixtures, one 
an also obtain similar numeri
als
hemes for the spa
e-dependent equation (2.10). To this end, the adaptationof the spatial 
ell homogenization method of Ref. [5℄ is not as straightforwardas it appears. This is due to the 
ollisions that produ
e new parti
les in agiven spa
ial 
ell. For this purpose, we need �to establish� the spa
e positionin the 
ell for ea
h �new born� parti
le and at the same time, to keep the
ontrol on 
onvergen
e.30 Assumption (3.13) repla
es in the rea
tive model the boundedness 
ondi-tion on the 
ollision law used in Ref. [4, 5℄. This 
ondition is essential forthe 
ontrol of the positivity of the solutions in the time-dis
retized equation(4.1). Indeed, Assumption (3.13) is restri
tive from an analyti
al point ofview. Nevertheless, for pra
ti
al purposes, it is satisfa
tory for those mod-els where the high energy-tail of the gas 
onsists of very few mole
ules (seeRef. [7℄).The existen
e of unique positive solutions to (2.10) and (2.18) 
an be provedfor more general transition fun
tions Kα,β (see Ref. [18℄). The simulations
heme 
an be also extended in this respe
t, but the (possible) singulari-ties of Kα,β must not destroy the 
ontinuity of the fun
tions rα,β and pα,β(ne
essary for the 
onvergen
e in the weak sense of the measures).40 One 
an improve the approximation algorithm as follows. Instead ofassigning to ea
h spe
ies the same number of terms in HSPM, one 
an �x agiven number of terms n for all the spe
ies. Then, when we apply the sele
tionalgorithm given by Theorem 5.1.2 (or Corollary 6.1), we 
an allo
ate to ea
hspe
ies a number of terms �proportional� to its mass, su
h that the totalnumber of terms for all the spe
ies to be (approximative) n. The same is alsovalid for the approximation of the initial data. By example if we designateby nk the number of terms 
orresponding to the spe
ies k = 1, . . . ,N , then
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nk :=



















n ·
mk

∫

R3

f0
k (v)dv

N∑

l=1

ml

∫

R3

f0
l (v)dv



















. (7.1)50 In this numeri
al s
heme there are three essential sour
es of approximationerrors.1. The errors from the approximation of the initial data.2. The errors produ
ed by the time dis
retization.3. The errors introdu
ed by sto
hasti
 sele
tions.The 
ontribution of the sto
hasti
 errors over the time dis
retized s
heme 
anbe illustrated as it follows. Giving, for the 
hemi
al spe
ies k = 1, . . . ,N , aninitial data, say ν0,0
k of the form (2.22) the algorithm follows the 
omputa-tional 
hain

ν0,0
k → ν1,1

k → ν2,2
k → . . . → νT∆−1,T∆−1

k → νT∆,T∆

k (7.2)
orresponding to the diagonal of the s
heme
ν0,0

k −→ ν0,1
k −→ ν0,2

k −→ ... −→ ν0,T∆−1
k −→ ν0,T∆

k
≀≀

ν1,1
k −→ ν1,2

k −→ ... −→ ν1,T∆−1
k −→ ν1,T∆

k

≀≀
ν2,2

k −→ ... −→ ν2,T∆−1
k −→ ν2,T∆

k... ...
≀≀

νT∆−1,T∆−1
k −→ νT∆−1,T∆

k

≀≀
νT∆,T∆

k (7.3)Here, the horizontal 
hains represent the exa
t iterations of the time dis-
retized equations, su
h that for ea
h j = 0, . . . , T∆−1 and p = j+1, . . . , T∆the measure νj,p
k is given as (p − j) - th iteration for the input data νj,j

k . Inaddition, νj,j
k is provided by random sele
tion form νj−1,j

k , for j = 1, . . . , T∆.The above 
omputational 
hain shows that one 
an expe
t that the errors dueto the random sele
tions in
rease when the timestep ∆t de
reases. Indeed,
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usu
h a behavior was observed in numeri
al appli
ations Ref. [13, 12℄. Sometheoreti
al estimations on the errors Ref. [12℄ prove that the probabilisti
errors ε behave like
ε ∼ 1

∆t · √n
. (7.4)Consequently, when we de
rease the timestep (to improve the errors for thetime dis
retization, Proposition 4.1.b) we shall in
rease the number of termsfor the initial approximation, in order to keep the sto
hasti
 errors in a

ept-able limits.8. AppendixProof of Lemma 3.1.Let n ∈ N∗ and let a1, . . . , an > 0, be some 
onstants. Consider the positivequadrati
 form de�ned on R3n by

T := T (v1, . . . ,vn) =

n∑

i=1

aiv
2
i , (8.1)where vi ∈ R3, for all i = 1, . . . , n. One introdu
es the Ja
obi-type transfor-mation

R3n ∋ (v1, . . . ,vn) → (V , ξ) ∈ R3 × R3n−3, (8.2)where
V := (

n∑

i=1

ai)
−1

n∑

i=1

aivi, (8.3)and ξ := (ξ1, . . . , ξn−1), with
ξi :=








1

ai+1
+

1
i∑

j=1
aj








− 1
2






vi+1 −

i∑

j=1
ajvj

i∑

j=1
aj








, (8.4)for i = 1, . . . , n − 1.By (8.2), the form T takes the form
T = T (V , ξ) =

(
n∑

i=1

ai

)

· V 2 + ξ2. (8.5)
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Wβ,α(w) := Wα(w) − 1

2

(
N∑

n=1

αnmn

)

· Vα(w)2 −
N∑

n=1

βnEn, (8.6)and
tβ,α(w) :=







[Wβ,α(w)]1/2 if Wβ,α(w) ≥ 0,

0, otherwise. (8.7)Now, 
onsider the form on R3|β|,
Tβ(u) := Wβ(u) −

N∑

n=1

βnEn (8.8)and a 
orresponding Ja
obi-type transformation as in (8.2),
R3|β| ∋ u → (V , ξ) ∈ R3 × R3|β|−3, (8.9)with ξ := (ξ1, . . . , ξ|β|−1), where ξi ∈ R3, for all i = 1, . . . , |β| − 1. Denote by

∆β the Ja
obian determinant of the transformation. Let ξ be represented inspheri
al 
oordinates on R3|β|−3, ξ = rn, with (r,n) ∈ [0,∞)×Ωβ. Considerthe inverse map
R3 × R+ × Ωβ ∋ (V , r,n) → u(V , r,n) ∈ R3|β| (8.10)of the transformation u → (V , r,n) and set

uβα(w,n) := u(V , r,n)| V =Vα(w),r=tβ,α(w). (8.11)Obviously, for all α,β ∈ M su
h that (2.6) is satis�ed, we have
Vβ(uβ,α(w,n)) = Vα(w) Wβ(uβ,α(w,n)) = Wα(w). (8.12)De�ne
pβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kβ,α(uβα(w,n),w),

rβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kα,β(w,uβα(w,n)).

(8.13)From (8.12), one obtains property i) of the Lemma 3.1. Property ii) followsfrom the de�nitions introdu
ed in (8.7) and (8.13).



240 Dorin Marines
uThe limits (3.6) and (3.7), 
an be obtained from (3.3) and (3.4). We startthe 
omputation with the integral upon du, by 
hoosing (V , r,n) as newintegration variables su
h that u = u(V , r,n). Sin
e fα ∈ Cc(R
3|α|) and

fβ ∈ Cc(R
3|β|), using the properties of Kα,β, δ3

ε , δη and uβ,α, we obtain(3.6) and (3.7) by repeated appli
ation of Lebesgue's dominated 
onvergen
etheorem.Using a similar argument as in the proof (3.6), for all f ∈ Cc(R
3|β|) and

ϕ ∈ Cb(R
3|α|), we get

lim
η→0

lim
ε→0

∫

R3|α|×R3|β|
ϕ(w)σε,η

β,α(u,w)f(u)dwdu

=

∫

R3|α|×Ωβ

ϕ(w)pβ,α(w,n)f(uβ,α(w,n))dwdn,

(8.14)giving the left side of (3.9). To obtain the right side of (3.9), we repeatthe pro
edure, but �rst we perform the integral upon dw in the left sideof (8.14) (using the 
hange of variables indu
ed by the Ja
obi-type trans-formation R3|α| ∋ w → (V , ξ) ∈ R3 × R3|α|−3, asso
iated to the form
Tα(w) = Wα(w) − ∑N

n=1 αnEn, and then taking the representation of
ξ ∈ R3|α|−3 in spheri
al 
oordinates). 2Referen
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