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1. Introduction

It is known that the classical Boltzmann equation describes the evolution of
the simple gas. The Boltzmann equation represents the connecting bridge
between the microscopic and macroscopic description of the simple fluid evo-
lution. The kinetics of the simple gas is essentially governed by elastic binary
collisions between structureless particles belonging to a unique species, the
multiple collisions being very improbable Ref. [1]. However, this equation
is not able to describe the evolution of the real gas with chemical reactions
and/or ionization processes. Then inelastic collisions must be considered by
the kinetic models. Boltzmann himself was aware of the importance of the
inelastic collisions in the real fluid evolution Ref. [9].

The classical Boltzmann equation is almost unanimously considered as ap-
propriate for the kinetics of the rarefied simple gas. A kinetic theory for
the reactive (real) gas is a more difficult task Ref. [30, 21]|. As compared to
the classical Boltzmann equation for the simple gas, kinetic reactive mod-
els exhibit new mathematical difficulties due the contribution of the particle
internal states to the gas evolution (in particular the presence or reaction
thresholds) and the existence of collision channels with multiple reaction
participants Ref. [8, 25, 24, 29]|. In the case of the reacting gas mixtures
the mass balance does not hold for a given species. Then, the mass con-
servation for a specie must be replaced by the total mass balance. In the
reactive models is present a transfer between the kinetic energy and the in-
ternal molecular energy. Consequently, the kinetic energy balance must be
replaced by the total energy balance (i.e. kinetic energy -+ internal molecular
energy). Then, the transport properties of the reacting gas mixtures differ
from the properties of the simple gas.

Various models have been introduced to describe the kinetics of the real (re-
active) gas. An important role is played by the Boltzmann-like semi-quantum
equations. A known example is the Wang-Chang-Uhlenbeck-de Boer system
of kinetic equations [32] for the real gas with binary collisions. This model
refers to a gas of particles with classical translational motion, but with quan-
tum internal structure. Essentially, the difference from the Boltzmann model
Ref. [11] for the simple gas is to associate to each internal state a distribution
function, and to relate each transition from one quantum internal state (of
some chemical species) to another with a cross-section matrix.

A more general model introduced by Ludwig and Heil [25] extends Wang-
Chang-Uhlenbeck-de Boer model. This model describes reactions in a di-
atomic gas without emission or absorption of radiation. It includes processes
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of recombinations by triple collisions, as well as three post-collisional prod-
ucts like dissociation and ionization induced by collisions Ref. [8, 25, 24|.

In some Wang-Chang-Uhlenbeck-de Boer or Ludwig and Heil model the num-
ber of equations depends on the number of distribution functions, i.e. on the
number of different quantum internal states owned by the gas particles dur-
ing the gas evolution. It is known that, there exists only at most a countable
set of internal states. However, only a finite number of internal states will
significantly contribute to the gas kinetics. Consequently, the Wang-Chang-
Uhlenbeck-de Boer and Ludwig and Heil models are described by a finite
number of equations.

For analytical purposes, in Ref. [16, 17, 18], the Wang-Chang-Uhlenbeck-de
Boer and Ludwig and Heil equations corresponding to the model with finite
number of internal states have been transcribed in abstract form, revealing
the mathematical structure of the equations. In Ref. [17] was proved the
existence and uniqueness of the solutions for the Cauchy problem. It was
shown that the solutions verify the conservation of the total mass, momentum
and energy respectively. Moreover, it was proved the existence of equilibrium
solutions. H-theorem and a generalized law of the mass action have been
rigorously proved under extended balance conditions.

The interest for reactive kinetics is not only intrinsic, but also of practical
nature, in plasma physics, nuclear physics, physical chemistry of the high
atmosphere, combustion theory, modeling of missiles flight.

Accurate numerical modeling of nonlinear processes in dilute, flows is critical
for solving transport problems both in fundamental and applied science. In
this respect Babovsky and Illner [4, 5] have proposed an efficient numerical
scheme consistent with the classical Boltzmann equation. Using Nambu’s
ideas [26], by time discretization and local space-homogenization, Babovsky
and Illner have obtained a convenient approximate form of the equation.
At this point, the nonlinear character of the collision operators involve a
power-like growth of the numerical complexity. To provide an algorithm,
with small numerical effort, they have introduced an additonal stochastic
approximation. Finally, they have proved the convergence almost sure, in
some sense, of the approximation scheme. The techniques developed by
Nambu [26], Babovsky and Illner of [4, 5| were also applied Ref. [6] to Pullin’s
equation |27| with Larsen-Borgnakke [10] scattering cross section for the one-
component diatomic gas with classical internal degrees of freedom.

For the abstract model Ref. [16, 17, 18] describing the real reacting gas, in
Ref. [19] was introduced a rigorous and efficient approximation scheme. This
method represents a nontrivial extension of the techniques of Ref. [4, 5] for
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solving space-homogeneous Boltzmann-like models of reacting gas mixtures
Ref. [32, 8, 25, 24, 16, 17].

The methods of this chapter have been tested Ref. [14, 13| on the Krook-Wu
|22| two-component Boltzmann equation as well as on the reactive Boltzmann
models with three and four components Ref. [12, 20].

This review presents the theoretical approximation method for the solutions
of the Boltzmann model introduced in Ref. [17] following the line of Ref. [19]
and adding some improvements sketched in Ref. [12].

The present chapter is organized as follows.

In the next section one first recalls the main features of the Boltzmann-like
equations introduced in Ref. [17]. Then, one formulates the approximation
problem. In Section 3 one investigates the initial value problem for the space-
homogeneous kinetic equations of Section 2, formulated in a suitable space
of functions. In Section 4 one obtains a convergent, time-discretized version
of the aforementioned Boltzmann-like equations. Section 5 is devoted to the
generalizations of certain probabilistic selection results of Ref. [4, 5]. This is
possible due to some clarifications with respect to the nature of the conver-
gence introduced by Babovsky and Illner. More precisely, the probabilistic
part of the convergence proof of Ref. [4, 5] is based on the central limit theo-
rem for row-wise i.i.d. random variables and the Borel-Cantelli Lemma. Our
argument follows from a simple version of the strong law of large numbers
for arrays of (not necessarily identically distributed) row-wise independent,
random variables. (Which results from the Chebyshev inequality and the
Borel-Cantelli Lemma.) In Section 6, the results of Section 5 are applied to
the discretized scheme obtained in Section 4. Consequently, one obtains the
numerical algorithm for the original Cauchy problem. This represents our
main result, namely the convergence of the numerical scheme. Finally, we
discuss the limitations and possible generalizations of the model.

2. The Kinetic Model and the Approximation Pro-
cedure

Here, we briefly recall the features of the model presented in Ref. [17, 18]
(see also Ref. [16]).

The leading idea behind the model is that, unequal internal states of a gas
particle with internal structure can be considered as describing structure-less
particles belonging to distinct chemical species. Then, a real gas mixture
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of particles with internal structure can be thought as a mixture of several
chemical species of mass points with unique internal states.

Specifically, the model refers to a gas consisting of N distinct species of point
masses, with one-state internal energy, evolving without external forces. The
following assumptions are general: (i) gas particles have free classical motion
in space, between (in)elastic, instant, local collisions, without emission or
absorption of photons; (ii) collision (reactions) may change momenta, as well
as the chemical nature (in particular mass and internal energy) of the gas
particles; any collision occurs with conservation of total mass, momentum
and (kinetic+internal) energy, according to the laws of classical mechanics.
(iii) in each collision (reaction) channel, the number of identical partners
cannot exceed some number, say M > 2 and any collision (reaction) channel
contains, at least, two particles.

Denote by M the folowing multi-index set

M= {"Y = (')’k)k:l,...,Nhk S {0, 1,... ,M}} (2.1)

A gas collision (reaction) process is specified by a couple (a,3) € M x M.
Here, the multi-index & = (ay, . . ., an) represents the pre-collision (in) chan-
nel, with «,, € {0,1,..., M} identical participants of the n — th species. The
multi-index 8 = (1, . .., Bn) represents the post-collision (out) channel, with
Bn € {0,1,..., M} identical participants of the n — th species.

The pair of multi-indexes (e, 3) corresponds to a reaction of the following

type
a Xi+, ..., tanXy — 1 Xa+, ..., +8n XN, (2.2)

between the species X1,...,Xn, with stoichiometric coefficients aq, ..., oy,
081, .., Bn. Note that if a = 3, the collision is elastic and if a # 3, the collision
is inelastic.

For each channel v € M the family N (y) :={k |y >0fork=1,...,N}
represents the species existing in that channel. Obviously, if & ¢ N () the
species k is not present inside the channel 4. If k € N(v), then there are
v, identical particles of the species k in the channel vv. We denote the total
number of particles in the channel ~ by

N
=D e (2.3)
k=1

Their velocities are denoted by wy1,...,wWg,, € R3.  Also set w:
= ((Wk,i)i=1,...y JkeN'(v), understanding that w € R37. We denote by
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my > 0 and E; € R, the mass and the internal energy, respectively of a
mass-point of the species k =1,...,N.

Let
Z’Ykmk > kawku (2.4)
keN (v) i=1
and
.S 22 Umgwd; + E). (2.5)
keEN (v

be the classical mass center velocity and the total energy, respectively, for
the particles in the channel . According to the conservation assumptions,
in the description of the gas kinetics, for each couple (a,8) € M x M we
consider only the collisions satisfying the relations

N
> mr(ak — Br) =0, (2.6)
k=1

Va(w) = Vﬁ(u)7 Wa(w) = W,@(u)7 (27)

n (2.7) w = ((Wgi)i=1,.. )keN(e and u = ((Wg;)i=1,...6,)ken(s) are the
velocities of the particles in the channels v and 3, respectively.

Note that reactions with at most one particle in some collision channel are
excluded by (2.6) and (2.7), because in the absence of radiative processes, the
conservation laws (2.6) and (2.7) cannot be simultaneously fulfilled. There-
fore, || > 2. This inequality explains the restriction M > 2 in the defini-
tion (2.1) of M. Remark that, the conservation of the total energy stated
in (2.7) implies the existence of reaction thresholds and shows what happens
with the internal energies of the particles participating in reactions. For
instance in the case of endothermic collisions (a, 3), i.e.

Y arEp< Y BiEy, (2.8)

kEN (o) keN(B)

the kinetic energy of the resulting products is lost as binding energy. In such
a case the collision can be forbidden if the kinetic energy in the channel o
is bellow the reaction threshold. Note that, the model accepts also reaction
thresholds for exothermic collisions (a, 3)

Z ap By > Z Br Bk (2.9)

keEN (o) keN(B)
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Following the standard Boltzmann procedure (based on the molecular chaos
assumption) we introduce the system of kinetic equations

Oufi +V - Vafe = Po(f) — Sp(f), for k=1,...,N, (2.10)

as an abstract transcription of the Wang-Chang-Uhlenbeck-de Boer and
Ludwig and Heil equations. Here f; : Ry x R?® x R® — R, are the un-
knowns for k = 1,..., N, (with Ry := [0,00)) and f := (f1,..., fn). Each
fx = fr(t,v,x) (t-time, v -velocity, x -position) is the one-particle distri-
bution function for species k = 1,..., N of particles. In (2.10) the gain
operators Py and the loss operators Si(f) describe the collision processes.

For g = (g1,...,9n) (With g1,..., gy : R® — R) define,

Tk
gy(w) = [[ I oxwri) veM. (2.11)
keEN () i=1

Formally the gain and the loss operators are defined by

P(g)(v) = Y o / 08.ar(1, w,v)gg(u)dudw,  (2.12)
a.BEM R3IB| x R3lx|

and

Sk(g)(v) = Z ak/ Oo,B.k(W,1,V)8q (W)dudw. (2.13)
a,BeM R3I8I xRSl ex|

Here, for each (a,3) e M x M and k=1,..., N,

OaBk(W,u,v) = Kq g(w,u)-
(2.14)
6(Wk,ap, — V) - 0(Va(u) = Va(w)) - 6(Wg(u) — Wa(w)),

where Ko g : R3lelx R3IBI — R, are given functions related to the probability
of the reaction (a,3) € M x M. The following general properties are
assumed:

1° Kag=0if |a| <0, or |3] <0.
2° Ko 8 = 0 when the probability of the collision (e, 3) is zero.
3 Ko p = 0 if for some (o, ) € M x M, the condition (2.6) does not hold.

4° Kq g(w,u) is invariant at the permutation of the components wy, 1,...,
Wia, Of W for each fixed u € R3l®l w € R38 and n € N(a); a similar
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statement holds for the components of u. (This condition expresses the
“indistinguishability” of identical collision partners.)

5° For all a € R? (o, B) € M x M,
Ka,ﬁ(T(a)Wv T(a)u) = Kaf}(wv u)7 (215)

where T'(a)w is defined on components by (T'(a)w)x; = wi;+afor k € N ()
andi=1,...,ap.

6° There exist some given constants Cq,...,Cyn > 0, such that
CPKap(w,u) = C“Kg o(u, w). (2.16)
are verified for all (w,u) € R3® x R38l and (o, 8) € M x M, where
cv.=07 .. O, (2.17)
for all v € M.

Note that assumption 1° excludes the “spontaneous dissociation” as well as
the “total fussion”. The condition 3° refers to the microscopic conservation
of the mass. The form of 0o g in (2.14) takes into account the microscopic
conservation laws of the total energy and momentum. The explicit use of only
one variable, Wy, o, in §(wy o, — V), is possible due to “indistinguishability”
of identical collision partners (condition 4°). Assumption 5° expresses the
absence of the external fields. The generalization of the classical collision
reversibility is given by the condition 6°.

As announced before, we refer only to the space-homogeneous version of
(2.10), i.e.
Ocfre = Pr(f) — Si(f), k=1,...,N. (2.18)

Several properties (also valid in the space-inhomogeneous case [17, 18]) can be
formally established as for the Ludwig and Heil equations |25], and rigorously
proved by giving a meaning to (2.18) and finding classes of solutions with
convenient regularity properties. Thus, formally,

N
Z/ BL(v) [Pe(E)(v) — Sk(E)(V)]dv =0, i=0,....4,  (2.19)
k—1/R?

provided that all integrals involved are convergent, where ®°(v) := m,,
®i (v) = myv;, for the component v;, i = 1,2,3, of v, and ®*(v) :=
mpv?/2 + E,. By (2.19) the solutions of (2.18) are formally compatible
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with the conservation of the mass (i = 0), bulk momentum (7 = 1,2, 3) and
energy (i = 4), respectively.

One can define the H-function
N
=3 [ IogCuptey) ~ 1 fitviav. (220
k=1

for those solutions f(¢,v) of (2.18), with positive components, provided that
the integrals exist. In (2.20) the constants C} are the same to the constants
from the assumption 6°. Formally, by a few algebraic manipulations, one
obtains

d N
GO0 =3 [ A0 - S0 log Cuftiviay =

E Oy (t, w)
a,BeM /waw Kp.alu, wis(t,wF [C:@fﬁ( u) } dudw < 0,
(2.21)

where F(z) := 3(1 — z)logz < 0 for z > 0.
The equilibrium solutions of (2.18) are Maxwellian (Gaussian) functions with
determining constants (concentration, bulk velocity and temperature) related

to the internal energies E,, and the constants C,, of (2.16), by the law of the
mass action (for more details see e.g. Ref. |25, 17]).

We distinguish the following particular cases:

1. If M =3 in (2.10-2.13), and the conditions of (2.16) are verified, then
(2.10) essentially reduces to the Ludwig and Heil system of equations
with discrete internal energies.

2. If M = 2 and the conditions of (2.16) are fulfilled with C; = Cy = 1,
then we obtain the Wang-Chang-Uhlenbeck-de Boer system of equa-
tions.

3. If M =2, N =1, the condition (2.16) are fulfilled and the transition
functions depend only on the relative velocities of the encounters in
each collision channel, then one gets the classical Boltzmann equation.

In order to introduce the numerical scheme associated to the equations (2.18),
in the next section we solve a Cauchy problem for (2.18) formulated in a
product of L' spaces. Besides the uniqueness and global existence of the
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solution, we also need the positivity of the solution and the macroscopic
mass conservation. Note that, other conservation properties, as well as the
existence of a H-theorem play no role in this numerical scheme. In particular,
property (2.16) is not needed. However, we will state without proof a general
result concerning the conservation relations and a H-theorem (only for the
sake of completeness).

Roughly speaking, we would like to approximate the measures d,u']fc(v) =
fx(t,v)dv induced by the solutions fi(t,v) of (2.18), k =1,..., N, by con-
venient homogeneous sums of point measures, defined as follows.

Let p be a finite positive measure on R™. For a, > 0, where n € N* :=

{1,2,...}, let

n
a
op = ?” Zé”“’”’ n € N*. (2.22)
1=1
Here d;,, is the Dirac measure on R™ concentrated at point x;, for i =
1,...,n. The sequence of measures (o, )nen- is called a homogeneous sum of
point measures (HSPM) approximating the measure p, if it converges weakly

to p (in the weak sens of the measures) i.e. g, = p as n — oo.

We call a sequence (o, )nen+ of the form

n
o= a;—’”axm, n € N¥, (2.23)
=1

(where a;, > 0 for i € {1,...,n} and n € N*) a weighted sum of point
measures (WSPM) approximating the measure u, if it converges weakly to
W, ie. o, = pas n — oo. Obviously, if a;, = a;j, for 4,5 € {1,...,n} and
n € N*, the WSPM approximation becomes a HSPM approximation.

The HSPM approximation is convenient for numerical solving of equations
where the solutions are finite (probability) measures on R™, and where one
also wishes to approximate moments of some (random) variables with respect
to solutions. In this case, the control of the approximation can be made by
means of the Koksma-Hlavka inequality Ref. [23], in terms of discrepancy.

We recall that, by definition Ref. |5, 15, 23], the discrepancy between the
nonnegative measures g and v on R™ is given by the following formula,

D(p,v) == sup |u(A(a)) —v(A(a))[, (2.24)

acR™

where A(a) :={xeR"|z;<a, l=1,...,m}.
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We also recall, Ref. [5], that a sequence of measures p, is said to converge
to p with respect to discrepancy if, D(uy, u) — 0 as n — oo.

It is known, Ref. [5], that if p is a measure absolutely continuous with respect
to the Lebesgue measure on R™, then the convergence of u, to u with respect
to discrepancy is equivalent to the weak convergence in the sense of measures.

Starting with HSPM approximation for each ,ug induced by the initial data in
(2.18), with k£ =1,..., N, our purpose is to provide a convergent algorithm
generating HSPM approximations for the measures u}, where k =1,..., N
at any t > 0.

Y

In this respect, one chooses some fixed timestep At < T'. Let

- (]

where [[z]] denotes the integer part of z € R. One associates a time-
discretized version of equations to (2.18). Starting with an initial data, f) =
f2(v), k=1,...,N, one obtains a family of functions fg(v), j=1,...,Ta
verifying the discretized form of (2.18). The discretized version of (2.18)
can be formulated in the weak form for the measures dj (v) = fi(v)dv
where £ = 1,...,N. We shall prove that if each ﬂg is close, to ,ug
some sense, then (for At sufficiently small), f k is close to pl on the inter-
val ((j - 1)At jAt], with an error of order At, for all j = 1,...,Ta and
k=1,...,N.

The scheme is initialized for £k = 1,..., N by approximating for the measures
2 by a HSPM approximation of the form:

= hn Zév,méﬂg, as n — 00. (2.26)

The above approximation prov1des forall j =1,...,7Txr and k = 1,..., N
approximations by discrete measures ,ufc n ﬂi as n — 00.

Because of the nonlinearity of the initial problem, each step of the iteration
produces a power-like growing number of terms in the sums of point measures
expressing uim. In computations, the numerical effort would also be power-
like increasing, so that the algorithm could not be effective at this level.

To approximate ,ai by sums of Dirac measures with a non-increasing number
of terms, for technical reasons, it is necessary to have a HSPM approximation.
However, in general, uim appears as a WSPM of the form (2.23). For this
reason we introduce a homogenization procedure of approximation to obtain
measures of the form (2.22). At this level, one can reduce the numerical
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effort by using probabilistic techniques of selection. Then, the convergence
of the numerical scheme is proved in probabilistic terms.

3. The Existence of the Solution

Define the space X := LY(R?) x ... x LY(R?) — real, equipped with the norm

N‘;irmes
N
lgllx == > m llgellis » (3.1)
k=1
where g = (g1,...,9n) and g € LY(R3), k = 1,...,N. We recall that
my, > 0 denotes the mass of a particle of species k for each k=1,..., N.

Note that if g > 0 (i.e. g > 0 a.e. forall k =1,...,N) then the norm ||g||x
is equal to the mass of the gas in the state described by the distribution
functions given by the components of g.

For approximation purposes, we suppose that the functions of the family
{Ka,8} o pep are continuous. We formulate the Cauchy problem for (2.18)
in the space X.

Before, we must give a meaning to the collision operators Py and Sy as
operators acting in the space X. This can be performed, using regularization
as in Ref. [16, 17| to define o4 g as distributions for all o, 8 € M x M and
k=1,...,N.

For m € N* denote by C,(R™) the space of the bounded functions of C'(R"™; R),
endowed with the usual sup norm. Let C.(R") be the subset of the functions
of C,(R™) with compact support.

Let J € C.(R) be positive and even function, such that supp(J) = [—1,1]
and ||J|;» = 1. For ¢ > 0 denote by 6.(t) =: e 1J(e7! - t) and §3(y) :=
Se(y1) - 0e(y2) - 0c(y3) , where y = (y1,y2,y3) € R3. Define

Tap(W W) == Ko g(w, u)d2 (Va(u) — Va(w))d, (Wa(w)) — Wa(w)), (3.2)

Pren(8)(v) := Z oy [/Rw i 30'223‘(11,W)gg(u)dudﬁlk
a,BeM XRele =

Wk, ay, =V

(3.3)
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and
Sken(8)(v) = > [/w ol 302%(w,u)ga(w)dud€vk ,
o,BeM R xXRled= Wi,ap, =V
(3.4)
with g and gg as in (2.11), for all g € C.(R?)N 1= C.(R?) x ... x C.(R?);
N times

veR3 kel,...,N. In (3.3) and (3.4), the terms with oy = 0, vanish,
by definition, and dwj is the Euclidean element of area on the manifold
{w € R3|a||wk7ak = V}.
Let €2, be the unit sphere in R3Y=3, where 4 € M. The operators P, and
Sy can be defined by means of the following result.
LEMMA 3.1 For each g € CN(R3), there exist the limits
Py(g)(v) := lim lim Py, (g)(v), S1(g)(v) = lim lim S, (g)(v).
n—0e—0 n—0e—0
(3.5)

There are the families of functions {rg,a}, gesms {PB.atapert C C(R3le x
Qp;Ry) and {ugat, gy C C(R3l x Qg R3IBY) such that

Pi(g)(v)= Z Qg [/R PB.a(W,n)gs(ug o(w, n))dv"vkdn] ,

a,BeM S‘QFSXQ'B
(3.6)
Sk(g)(v) = Z Ak [/ rﬁ,a(wvn)ga(w)dﬁ/kdn] ) (37)
a,BeM Rl =3x Qg Wh,ap, =V

for all g € CN(R3), and the following properties are verified:

i) there are some constants c,d > 0 such that |ug o(w,n)| > c|w| for all
|lw| >d and a, B € M.

i) if Wa(w) — 271 (N anmn)Va(w)? = SN B,E, < 0 for some w €
R3l | then

rg.a(W,n) = pgo(w,n) =0, forallne Qgand a,B € M. (3.8)
i) for each o € C(R3®) and f € C.(R3P) and Vo, B € M
Lo o) D) - E(wg o, ) dwdn =
R?"O“Xﬂg
(3.9)
= / p(ug,g(u,n)) - reg(u,n) - f(u)dudn.
R3I1BIxQq
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The results of the above Lemma were obtained in Ref. [17]. However, for the
sake of completeness, the proof is outlined in Appendix?.

Property (3.8) follows by the presence of reaction thresholds (in the frame
of the conservation relations (2.6) and (2.7)). Moreover, (3.6) and (3.7) are
well defined, because of property i) in Lemma 3.1.

From (3.7), we can write

Y

Sk(8)(v) = Ri(g)(v)gr(v), (3.10)
where
Ri(g)(v) =
(3.11)
= Z g / T,B,oc(wa n)g’y;k(w&i)dwkdn
apem LRI Whay =V
In (3.11), for v € N(v) we assumed the convention
8k (W) := 8(W) /91 (Wi,a) (3.12)
where the r.h.s. makes sense and g-~.;(w) := 0 otherwise.
Our results are based on the following
Assumption
There is a constant K > 0, such that
/ rg.a(w,n)dn < K, (3.13)
2
for allw € R3¢ and o, B8 € M.
From (3.13), it is immediate that the maps
XD C.(RHN 5 g — Si(g) € L(R?),
(3.14)
XD C(R*)N > g — Ri(g) € Cyp(R?)
are continuous for each k = 1,..., N. Moreover, using property (3.9) (with

¢ =1, f = gg) combined with Fubini’s theorem, it also follows that the map
X 2 C.(RYN 5 g — Py(g) € L'(R?) (3.15)

*Note that the functions rq,g and ps g appear in explicit form in the proof of
Lemma 3.1 (see the Appendix).
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is continuous for each Kk =1,... N.

Since C.(R?)" is dense in X, the maps given by (3.14-3.15) have continuous
extensions to X. These extensions will be also denoted S, Ry and Py,
respectively.

Note that (3.10) can be extended to all g € X, in the sense that a.e.,

Sk(g)(v) = Ri(g)(v)gk(v), (3.16)

forall k=1,...,N.
Define P,S : X — X by

P(g) = (Pi(g),.--, Pn(g)),

(3.17)
S(g) = (51(8);- -, Sn(8)),
for all g € X.
We consider the Cauchy problem for equation (2.18) in X.
def(£) = P(E(H) — S(E(®),  £(0) = . (3.18)

THEOREM 3.1 Let fy > 0. For each T > 0, equation (3.18) has a unique
solution £(t) in X on [0,T]. Moreover, for allt € [0,T] one has f(t) > 0 and

N N
;mk /RS fr(t,v)dv = ;mk /RS for(v)dv. (3.19)

Proof. One applies the Banach fixed point theorem to (3.18) written in
convenient form.

Consider the cone Cf := {f € C(0,T;X)|f(t) > 0, for all t € [0,T]} with the
norm

[£]l == sup [[£(?)]lx- (3.20)
te[0,T

Observe that for all k = 1,..., N, if f € C then Ry(f), Py(f) > 0 (since
TB.e» PBa > 0, for all a, 3 € M). Moreover, if f € CF, then Ry(f) €
C(0,T;Cy(R3)). Consequently the Riemann integral f; Ry(f(7))dr is well
defined in Cy(R3) for all s,¢ € [0,T] and k € {1,...,N}.

Let f € Cf. We define the map [0,7] 5t — I(f)(t) € X by the components
of I(f)(t), as:
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L ()(t) = exp [— /0 t Rk(f(T))dT] Fot
(3.21)

v [ -/ t Ru(8(r)dr] - Pu(E(s)ds,

where t € [0,T]. Here, the integration with respect to ds is in the sense of
Riemann in L'(R3).
Obviously Ij(f)(t) > 0 for all t € [0,T], k=1,...,N.

The problem (3.18) can be rewritten in C7, as it follows.

f =1(f) (3.22)
Let R > [/fo|lx. Define
B(R):={f € Cf||If| <R, f£(0)=1f}. (3.23)

Using (3.11), (3.6) and (3.13), one can find some positive numbers k; (R) and
ka2(R), such that

IO < [[follxx + T - k1(R), (3.24)

and
I1(f) = I(h)[| < T~ k2(R) - [|f — h, (3.25)

for all f,h € B(R). Obviously, from (3.24) and (3.25), for 7" small enough, the
map I becomes a strict contraction on B(R). Consequently I: B(R) — B(R)
and has a unique fixed point. This proves that (3.18) has a unique positive
solution on [0, T].

The positivity of fi, implies that

N
1) = ka/ Fo(tv)dv,0 <t < T, (3.26)
k=1 R?

By (3.18) and using (2.6), (3.11), (3.6) and (3.9) (applied to ¢ = 1) one
obtains

N
di £ 5 = ka/ [Po(f) — Sp(£)] dv = 0, (3.27)
k=1 R3
which proves (3.19). Moreover,

I£]] = sup [[£(#)]lx = lIfollx - (3.28)
0<t<T
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By continuation, and uniqueness, the local solution f(¢) can be made time-
global. This ends the proof. O

For the sake of completeness we state the following result.

Let ®! be as in (2.19) for i = 1,...,4. With the remark that the mass
conservation (3.19) has been already proved, the solution of (3.18) has the
following properties.

PRrOPOSITION 3.1 Let £(t) be the solution of (3.18) given by Theorem 3.1.

a) If
for, @ +V?) for € L'(R?) (3.29)

for each k=1,...,N, then
(14 v?) fr(t) € LY(R?) (3.30)

and

N ' N |
nEZ:l /]R3 @n(v)fn(t,V)dV = ;/Rg q)n(V)f()’n(V)dv = 07 (331)

foreachk=1,..., N andi=1,...,4 and all t > 0.

b) In addition to the conditions (3.29), suppose that there are some constants
Cy,...,Cn > 0 such that conditions (2.16) hold. If

foxlog for, € L'(R?) (3.32)

for each k=1,... N, then

fe(t)log fr(t) € LY(R3; dv) (3.33)
and
N
HE)®) =S / 108 Cin (£, v) — 1] fult, v)dv (3.34)
n=1 R3
18 non-increasing as a function of t, for each k =1,...,N and all t > 0.

The proof of this proposition is beyond the present purposes. Though, we
mention that the proof uses Lemma 3.1 and the ideas introduced by of Ark-
eryd |2, 3| to prove results of the same nature in the case of the classical
space-homogeneous Boltzmann equation.
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4. Time Discretization

Let At € (0,7") be a fixed timestep. We consider the following discretized
version of (3.18).

£l =f-1 4 At [P(E771) - S(F771)]
(4.1)
fO=£ >0, ae., j=1,...,Ta,

where f/ = (ff,,ffv) and f,g = f,g(v)

The discretized scheme (4.1) may destroy the positivity of the functions f7
for j > 1. However, one can prove that for At small enough, f7 is positive
and close, in some sense, to the solution f provided by Theorem 3.1.

ProrosiTIiON 4.1
a) If At is sufficiently small, then £7 >0 for all j =1,...,Ta. Moreover,

[£7]] = Iifoll . (4.2)

forallj=1,...,Ta.

b) There ezists some number C = C(|/fo|lx) > 0, depending only on |/fo|x,
such that '
|£(t) — ||, < C- At (4.3)

forallj=1,...,Tan and t € ((j — 1)At, jAt].

Proof. a) First we write (4.1) more conveniently.

Let
U={y=(r,..w) |k €{0,1,... . NM}, |y >2}. (4.4)
For any & = (&1,...,én) € RN for k =1,..., N and o € M, denote

1
— JI & far>1andg #0,

&k
€aji=q "N (4.5)
0 ifap=0or & =0.
For k=1,...,N and a« € M, using the multinomial formula, we get

NM

NM
S+ AP =D 0 (G NP =) oy, (46)

p=2 p=2 acld
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where
-1
= (la| = 1)! (H ozk> . (4.7)
If
G +...+év=1, (4.8)
then, by (4.6) we get
1
MN —1= (M—l—l)N—N—l Z O‘kcaga,k—i_ Z O‘kcaéa,k
(4.9)
For each k. =1,..., N, put
&k = bk Tk, (4.10)
where
N -1
M = My (Z Mp s f07n(V)dV> (4.11)
n=1
and
Je= [ fl(v)dv. (4.12)
R3

It follows that (4.8) is satisfied, due to (4.19). Consequently, by (4.9),

Z ayg - rek. Lok + Z A Lok, (4.13)
a,BeM acl\M

where the notation I is given by (4.5) for I = (J1,...,Jn). In (4.13),

- —1
peok o RN T
' MN —1 '
and
uft -t T el
peuk . €M R R KN (4.15)

(MN—1)[(M+1)N — N —1]

Multiplying on components (k = 1,...,N), the first term of the right side of
(4.1) by (4.13) and using (3.11), equation (4.1) becomes

F= Qe ™) + Lp(F ") + At P(£7), (4.16)
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for k=1,...,N. Here

Qi(f7)(v) ==

_ a ak_ r w,n)dn w
-3 k[/Rgag (r At/ﬂﬁﬁa( )d >f( )d (>]wak:v=

a,BeM
(4.17)
aclU\M R Wo , k=V

If K is the constant introduced in (3.13), we can choose At such that At-K <
inf ok,

ok

Then, the positivity of £/, for all j = 1,...,Ta, follows by induction, using
Assumption (3.13). As f7 > 0 for all j = 1,...,Ta, then the mass conserva-
tion is always fulfilled. Indeed, by induction and using the same argument
as in (3.27) we have

N ‘ N
j —
kZ:lmk /R3 fi(v)dv = ;mk /RS fro(v)dv (4.19)

forall j=1,...,Ta.

b) Combining (3.18) and (4.1), for all j =1,...,TA we can write

I8G-a0) =], < [£G —1)-Af) - £, +

At -
+/(J I LGRS TP
N
]1
e s - s s

Denote by O; := Hf JjAt) — I HX Using the explicit forms of P and S, taking
account of the conservation relations (3.19) and (4.19), we find that there is
some number ¢y > 0, depending on ||fy|x such that O; < O;_1(1+ ¢oAt) for
all j =2,...,Ta and O < ¢gAt. Then

O; < O1(1 4 coAt)™™ < ¢p - At, (4.21)

with ¢; > 0 depending only on ||fy||x. Suppose that ¢ € ((j — 1)At, jA¢].
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The explicit forms of P and S together with (3.18) and (3.19) lead to
1£(t) — £((7 — DAY <

jat (4.22)
< [ P+ ISR s < o A

(G=DAt
where ¢y depends only on || follx. Now estimation (4.3) is an immediate
consequence of (4.21) and (4.22). O

For numerical purposes, one has to write the equation (4.1) in the weak form
for measures. In this respect, we associate the the following measures to the
solutions f(t) and f/ appearing in Proposition 4.1. For k =1,..., N define

duk(v) := fr(t,v)dv, (4.23)

where ¢t > 0, and ‘ '
A (v) = fi(v)dv, (4.24)

forj=1,...,TA.

Proposition 4.1 has the following consequence expressed in terms of the dis-
crepancy defined by (2.24).

COROLLARY 4.1 If the conditions of Proposition 4.1 are fulfilled, then

DA ) — 0 At — 0. 425
jmax  max (g5 i) — 0 as At — (4.25)

5. The Probabilistic Frame

The central result of this section extends, in some sense, the probabilistic
methods of selection used by Babovsky and Illner [4, 5| (see e.g. Lemma 2
of Ref. [4]).

We start with a simple generalization (to row-wise independent random vari-
ables) of the strong law of large numbers for independent random variables
with bounded fourth momentum (see, e.g., Theorem IV.§3-1 in Ref. [28],
p.363).

Let (€, 3, P) be a probability space. For some real random variable X, by
(X)) we denote its mean with respect to P.

Let N* 5 n — ¢, € N*. We call the family ((Xn:)ie(i,.. q.})nen+ of real
valued random variables on £ an array of row-wise independent random
variables, if for each fixed n € N* the random variables (Xy;)ic(1,... .} are
independent.
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PROPOSITION 5.1 Let ((Xni)ie(1,....qu}nen+ be an array of row-wise inde-

pendent random variables with zero mean. Denote A, := sup (X1.).
i€{lgn}
If
[e.e]
A
> <o, (5.1)
q
n=1 "

then, with probability one,

1 qn
— ZXW — 0, as n — oo. (5.2)
In i

Proof. According to a version of the Borel-Cantelli Lemma, it is sufficient to
show that for each € > 0,

Z P ( > g> < 0. (5.3)
To this end, by Chebyshev’s inequality, we obtain

(ZXM >e- qn> E < > (5.4)

Expanding the fourth power, we invoke the independence of X,, ; and use the
fact that (X, ;) = 0. Then a simple computation shows that for all € > 0,

> 3 = A
0<y P el <5 ) S <o (5.5)

This concludes the proof. O

qn

> %,

4n =

qn

ZXM
=1

Consider N* 3 n — m,, € N* a sequence, such that m,, — 0o as n — .

For each n € N* let Z,, := {1,2,...,m,} be an index set and let Z} :=
Lo X ... x T, for a fixed p € N*,
—_——

p times

Consider some given set X C R™ and a given sequence (F}, )pen+ of functions
g g q €

F, : X x ITh — R. Define S, :X—>]Rby

ZF x,j) if p>2,

" JE€Tn
Sp(z) = (5.6)

Zan] J it p=1,




REACTIVE BOLTZMANN TYPE EQUATION 223

where ((an,)iez, )nen+ is a family of nonnegative numbers, such that

mn
sup E QA 5 < 00,
neN* =1

(5.7)

Mn
Zaml > 0, for all n € N*,
1=1

Suppose that there is some function F' : X — R such that, for each x € X,

F(z) = lim Sp(x). (5.8)

n—oo

In general, for a given n, the sum S,, contains m}, terms. Roughly speaking,
our problem is to conveniently diminish the numbers of terms in S,, by
random selection of the terms in (5.6) and "renormalize” the resulting sum
such that the convergence to F'(z) be kept, in some sense. In this respect,
we define some special families of random variables.

Let (Q,3,P) be a probability space, where Q := [0,1)* (in the countable
sense) is endowed with the usual product Borel o—algebra 3 and P the usual
product probability induced on € by the uniform distribution of [0, 1).

For each n € N* and j € Z,,, define the weights

o
Prj = (5.9)

E Qn,1
=1

where ((an1)iez, )nen+ is the family with properties (5.7). For each n € N*,
let
0 if =0,

Gn,s ‘= (5.10)

s
an,j if seZ,.
j=1

For each n € N* and [ € Z,, we consider the random variables ¢, ;,¢,;: 2 —
I, given by
cni(w) = [[wr - ma]] + 1, (5.11)

and
6%[((")) =s ifw € [Qn,s—17Qn,s)7 (512)
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where w; is the ™" component of w = (wy,ws,...) € Q. In (5.12) we make
the convention that [z,x) := ¢ (the void set) for any z € R. Obviously, for
each j € Z,

P (cpi(w) =j) = min (5.13)
and
P (Cni(w) =j) = pn,j- (5.14)

Consequently, ((¢n1)iez, )nen+ and ((én1)iez, )nen+, are arrays of row-wise
independent random variables.

Remark that the random variables ¢, ; are particular forms of ¢, ;, with
pn; =m, L in (5.9).

Let p > 2. For n € N* and [ € Z,,, define the random variables J,,; : Q@ — I},
by

Jn,l(w) = (Za Cn,(l—l)p—l—l(w)v Cn,(1—-1)p+2 ((.U), s acn,lp—l(w))v (515)

where w = (w1,wa,...) € Q.

Observe that ip + j = ¢'p + 5/ if and only if ¢ = ¢ and 7 = j/, for all
i, € N* and j,j5 € {1,2,...,p}. Then, using the row-wise independence of
((en,1)iez, Jnen=, we conclude the row-wise independence of ((J,,1)iez, Jnen=-

Suppose that one of the following conditions is fulfilled:

1. X is at most countable.

2. X is the whole R™, the function F' is continuous and each F,(-,j) is
increasing with respect to the order of R for each fixed n € N* and
j € Z%. Define for each n € N* and = € X by

an(x) = max |F,(z,j)|. (5.16)
ez

PROPOSITION 5.2 1. Let p > 2. If

0 4
3y a”(‘? < (5.17)
n=1 My

for all x € X, then for each x € X, with probability one,

lim — S By (2,) 0 Jns = F(a), 5.18
Jim =) Fa(@,) 0 Jng = Flx) (5.18)
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2. Let p=1. Consider N* 5 n — k, € N* a sequence such that, k, — oo as
n — oo. If k, < m, for alln € N* and

2 ap(z)?
> 2 <00, (5.19)

n=1

for all x € X, then for all x € X, with probability one,

m k
n 1 n
lim > an,; k—ZFn(x,-) 0 &pi = F(x). (5.20)
j—1 ™ i=1

n—~o0

Proof. Remark that it is sufficient to consider the case in which all functions
F,, are positive.

Case X countable
1. Let x € X be fixed. For each n € N* and i € 7,,, define

Ynﬂ; = Fn(x, ) 9] Jnﬂ;. (521)

The row-wise independence of ((J,,i)iez, )nen= implies that ((Y5,:)iez, )nen=
is an array of row-wise independent random variables. Let j = (j1,...,Jp) €
7¥. Using (5.13) and the definition (5.15) of J,, ;, we get

1—p . . .
mMn if =71,
P({Jni(w) =J}) = (5.22)
0 if i,
for all n € N* and j € Z,,. Consequently,

Mn

Vnid = —— 3 Ful, s ), (5.23)

J2se-Jp=1

so that

1 & 1 ,
— Z<Yn,z> =7 Z Fn($a.]) = Sn(x) (5'24)
Mn 5 Mn sczv
i€In
Put X,,; == Y,; — (Y,,;). Then, the family ((X, ;)icz,)nen+ satisfies the
conditions of Proposition 5.1, with A4,, < (2a,(x))*. Therefore, for each fixed
x, by (5.24) and (5.6) one obtains (5.18). For each z € X, let £, be the
subset of 2 where the limit (5.18) holds. Define Qx := [, cx . Since X is
countable, we have P({2x) = 1, so that the argument is complete.
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2. Let x € X be fixed. For each n € N* and 7 € Z,, define

Mn
Y= (Z anJ) Fo(x,-) 0. (5.25)
=1

The row-wise independence of ((€y,)icz, Jnen+ ensures that ((Y5,:)iez, )nen=
is an array row-wise independent family of random variables. From (5.14),
we get

(Yoi) = aniFo(a,1), (5.26)
=1

for all ¢ € Z,, and n € N*. Consequently,

k
1 n
= > (Vi) = Sulx). (5.27)
™ i=1
Define X, ; := Y}, ; — (Y5,,;). From here the argument works similarly as in 1.

Case X =R™

1. Observe that the argument with X countable is valid on the countable set
Q™ of the vectors of R™ with rational components. Further, remark that for
any z € R™\ Q™ and £ > 0, by the continuity of F' and the monotonicity of
F,,, we can find two elements z—, 27 € Q™, with x~ < 2 < 27 such that

<F@) - Fu(,) 0 dni(w) < (5.28)

. + —
for all w € 2. Now we approximate x by two sequences {ajp }pEN’ {:Ep }pGN C
Q™, with z, <z < :17;. Then, to conclude the proof in the case X = R™,

we refer to the result in the case X countable.
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2. Replacing only (5.28) with

——ZF Joéni(w)—e <
> - _ZF OCnZ( ) < (5.29)

< F(x™ __ZF Ocnz(w)+€7

one repeats step by step the arguments of the part 1 to conclude the proof
of the part 2. O

The index set 7, being defined as before, let ((in.j);ez? Jnen+ be a bounded
family of positive measures on R™, i.e. there exists some constant a > 0, such
that |, 5| < afor all j € 7}, and n € N* (we recall the notation |u| := u(R™)
for some finite measure p on R™).

Let (€2, 8, P) be the probability space be as in Proposition 5.2 and the arrays
of row-wise random variables ((J,,.;)iez, Jnen+ and ((€n,i)iez, Jnen+ defined by
(5.15) and (5.12) respectively.

THEOREM 5.1 1. Let p > 2. Suppose that there is a positive measure p on
R™  absolutely continuous with respect to the Lebesque measure on R™, such
that

" Z Honj = [, as m — 0. (5.30)
" jer?

Define pni(w) = pinjli_y () forallw €, alli €I, and n € N*. If
— 1
Y 5 <o, (5.31)
— mn
then for P—almost all w,

oip(w) = — ZM”Z — pas n — oo. (5.32)

2. Let p = 1. Suppose that there is a positive measure  on R™, absolutely
continuous with respect to the Lebesque measure on R™, such that

mn

Zan,l fn = [, as m— 00. (5.33)
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Define pin;(w) = finl,_. () Jor allw € Q, all i € I, and n € N*. Let
N*>n—k, e N* be a seqﬁence such that k, < my,, for all n € N* and

1
; 2 <o (5.34)
Then, for P—almost all w,
1o
oo pn(w) = ™ E;um(w) — [ as n — oo. (5.35)
=

Proof. Define for each x € R™

Fo(a.j) = / At 5(0), (5.36)
y<z

and

F(x) := du(y). (5.37)
y<z
Then it is sufficient to observe that F' and F,(z,]j) satisfy the conditions of
Proposition 5.2, (with a,(z) = a) and the family {y € R |y <2}, gm is
determining, Ref. [28], for the weak convergence of the measures j,, ;. O

REMARK 5.1 It can be easily seen that Babovsky Lemma (see Lemma 2 of
Ref. [4]) is a particular case of Theorem 5.1.1 with m, = n?, for all n € N*
and with (i, 5 given by a product of two point measures.

REMARK 5.2 As we have mentioned in Section 1, our purpose is to approx-
imate the solutions of (2.18) by sums of Dirac measures of the form (2.22).

Due to the nonlinear character of the collision operators P and S, at each
timestep, the numerical complezity increases dramatically (power-like). Al-

though, we are able to reduce the computational effort using repeatedly the
Theorem 5.1.1.

However, except the case of (2.18) modelling the one component gas with
purely elastic collisions, a certain step of the numerical scheme destroys the
homogeneity of the sums of Dirac measures, i.e. instead of HSPM approx-
imations one obtains WSPM approxzimations. This difficulty will be sur-
mounted by using Theorem 5.1.2, which converts the WSPM approximations
mto HSPM approzimations.

Theorem 5.1 will be the basic point of the probabilistic part of our numerical
scheme for the solutions of (2.18) in the next section.
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6. The Main Result

For our numerical scheme, we need a weak form of (4.16), where the functions
fk are replaced by the measures fi], given by (4.24). Denote

(o= [ ehvav. (6.1
for ¢ € Cy(R?) and h € L' (R3). From (4.16) using (6.1) we get

(0. £]) = (. QUET) + (0 LeE) + At (9. BT (62)

for all o € Cy(R?), all j =1,...,Ta and k = 1,..., N. Denoting by

V(Qp) ::/ﬂ dn, (6.3)
s
n (6.2),
(0, Qi (7)) ge:/w o /RSQXQE(SOO%,OL)(W)X
(6.4)
o,k )
X <VI‘(795) — At - 18,0(W, n)> f) (w)dwdn,
and
(L)) = 3 A [ (poia)wikwiw. (65

acl\M

In the formulas (6.4) and (6.5), the projection application i,  : R3N — R3
is defined by iy (W) = wy, ,, fory € M and k =1,..., N. Using (3.6) and
(3.9) we get

(0, Pi(£7)) =

(6.6)
Z /R3 I (Pozkﬁ(uﬁa(w n))rga(w n)f (w)dwdn,
o,BeM X3iB

for all p € Cy(R?), all j =0,1,...,Tan and k=1,...,N.

Now, we are able to formulate (6.2) as an equation for measures. For some
y€Mand j=0,1,...,Ta, define the measure fi, on R317 by

Al (w) = X @duk (Whi). (6.7)

keNy i=1
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From (6.2-6.6), using spherical coordinates
0,m)P7%x [0,27) 5 (6, ) — n(0, ) € O, (6.8)

to integrate on each unit sphere g, it follows that there are some sets
A CU, BC M, the functions g gx € C(R3 x [0,71')3‘@_5 x [0,27) ;R4)
and Hy g1 € C(R3® < [0, 7)3B1=5 5[0, 27) ; R3) such that we can write (6.2)
in the compressed form

_j . 21w
formaner= 3 [ antions
(6.9)

2
X /[0 )3‘3‘75 de/() (SO © Ha,,@,k)(wa 97 ¢)QQ,ﬁ,k(W7 97 ¢)d¢7

for p € Cp(R®) and k € 1,...,N.

First, we consider rg o verifying the properties of Lemma 3.1 and we con-
struct the algorithm starting from (6.9). Then, we show how the numerical
scheme can be improved, if one introduces additional conditions on rg 4.

Now, we write (6.9) in a more convenient form. Note that, we can find some
L € N* and

L. a family {a(l)},_; _;, CU of multi-indexes,
2. a family {q(1)};=1,..r C N¥,

3. a family {m},_; , of measures absolute continuous with respect to

the Lebesgue measure on R?()

Y

4. a family {Ry }re1,  Nu=1,.,r C C(RIOHIDR ) of functions,

5. a family {hp k=1, Ni=1,.1 C C(R3le®l+a); R3) of functions,

such that (6.9) can be written

L
i = z)(po z)d(7 H ©m)(z). (6.
Lot =32 [ Reeeoh @@ on)e. 610

Let (2,3, P) be as in Theorem 5.1.
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a) For each | = 1,..., L, we approximate 7; by a convenient HSPM of the
form (2.22), containing n-terms, m , — m as n — oo (this can be done, e.g.
by means of low discrepancy, well distributed sequences Ref. [6, 27]).

b) The initialization of the scheme is done by giving n-terms HSPM approx-
imations l/]gn of the initial data ﬂg, where k=1,..., N.

¢) The n-terms HSPM approximations V,i . of ,a}w with k=1,..., N, result-
ing from the scheme, can be obtained as follows:

Step 1 (first selection). For each [ = 1,...,L and k = 1,..., N we replace
i by 19 in (6.7) (for v = a(l), 5 = 0). Then for each | = 1,...,L, we
obtain a sequence of finite measures Vg(l)’n — ,a?x(l) as n — oo, implying
Vg(l)n ® mpp — ﬂ?x(l) ® 7w as n — oo. Obviously, each I/g(l)n ® M, s a
sum of the form (5.30), containing nleWI+1 terms. We apply the selection
algorithm cf. Theorem 5.1.1 (with m,, = n and p = |a(l)| +1) to construct n
- -terms HSPM approximations for all Vg(l)  ©T . Thus, by Theorem 5.1.1,
for each [ = 1,..., L, there exists some set €; C €, with P(€;) = 1, such

that from ug(l) ., @ T, One can extract a n-terms HSPM approximation (of
the form (5.32)) o9y n(w!) — ﬂoa(l) ® m as n — oo, for almost all w! € Q.
Step 2 (second selection). In the right side of (6.10), written for j = 1,
replace each ﬂ?x(l) ® m by the corresponding o1 ;,. Then the right side of
(6.10) defines the measures My, on R3 for k=1,...,N and n € N*,

L n
1
Mpn = — Y D @Ry (21i0(w))0h, o)) (6.11)
=1 i=1

concentrated at the points hkyl(zmm(wl)), where zl,i,n(wl) € R3leDl+al) 4pq
a; > 0 are some constants (for [ =1,...,Land i =1,...,n). By Step 1, it
follows that

My — fi}, as n — 00, (6.12)

for all w! € O, w2 €Qy,..., wl e Qp and for k =1,...,N. Now, it can
be easily seen that (6.11) can be written as WSPM, containing, at most L-n
terms.

As we mentioned before, we want to obtain HSPM approximations at the end
of each step of time. We fix, for the moment, some w' € Q,...,w’ € Qr, so
that (6.12) holds. We apply the selection algorithm formulated Theorem 5.1.2
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for each fixed k =1,..., N, as follows. For [ =1,...,L-n defining

(6.13)

put
1
Any = EU«)\(l)Rk,A(l) (Z2@ 000 (WD), (6.14)

We choose my, = L-n and k, = n. Then, for each k =1,..., N, there exists
some Q4 C Q, with P(Qr4%) = 1, such that from Mj,,, we obtain a n-

~terms HSPM approximation (of the form (5.35)) og . (W™ * 0!, ... Jwl) —
fr as n — oo, for all wl™ € Qi Set vl (wl,...,wlth)
oo kn(wrF wh o wl). Therefore for each fii. in (6.10), we obtain a cor-

responding n-terms HSPM approximation 17]1” — ,a,lc as n — oo, for all
WweQ,.. ., wtrtecqQ; pandforall k=1,...,N.

e) The procedure can be repeated, with the entering data ﬂ;n, to obtain
HSPM approximations 72 (w?,... ,WALANERY of g2 for k=1,...,N.

f) Repeating this procedure over and over, after j timesteps, we provide
the n-terms HSPM approximations 7} n(wl, o wIEHU=DNERY [, for all
wl e O, w? € Oy,... wktU-DN+k ¢ Qiri(—1)N4k all 7 =1,..., T and
all k=1,..., N, where Q; C Q with P(;) =1, for l=1,...,Ta(L+ N).
Now, observe that we can find a family {Q;};cy- of measurable maps @ :
Q — Q, with P(Q;'(A)) = 1, for all A C Q with P(A) = 1. For instance,

we can consider U,V : ) — Q. given by

Uw) =U(wi,wa, ..., wan—1,Wan, - - ) = (W1,Ws, .+ - Won—1,Wan+1, - - ),
(6.15)

V(w) =V(w,ws,...,wan—1,w2n, . ..) = (W2, W, . .+ ,Wan, W2n42, - - ),
(6.16)
respectively, for all w = (w1, ws, ..., wan—1,wn,...) € Q. Then it is sufficient

toput Qu =U and Q; :=Uo V™1 [ =23,... Let

Ta(L+N)

Oac= () Q@) (6.17)
=1

Since P(Q; () = 1 for all I = 1,...,Ta(L + N), clearly P(Qpa) = 1.
Defining v} (w) = 7}, (Q1(w), -, Qjri(j—1yn+k(w)) for all w € Q, j =
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1,...,Tan, k = 1,...,N, it follows that I/Zn(w) — ,ai as n — oo, for all
wEQAt,jZI,...,TA,kZl,...,N.

In particular, if D(-,-) is the discrepancy introduced in Section 2., then

I D< J ,—j> —0, 6.18
o k:IrllaXN j:Ilr}?f{TA Vk’”(w) Fi ( )

for almost all w € Q.
All these and Corollary 4.1 lead to our main result.

Let f(t) be the solution of equation (3.18), provided by Theorem 3.1 and
let pt be given by dul(v) := fi(t,v)dv, for all ¢ > 0 and k = 1,..., N.
Consider some family {Atp}peN of discretization timesteps as in Section 4..
For each At, and for the initial data ﬁg, consider thg solutions ﬂi’p of (6.10),
with j = 1,...,TaA and k = 1,...,N. For each ﬂfmp, denote by V{wm the
corresponding n-terms HSPM approximation obtained by the above scheme.

Similar to (2.25), we introduce the following notation Ta, = [[T//At,]], for
all pe N.

THEOREM 6.1 For each sequence of timesteps At, — 0 as p — oo, there is
a sequence of positive integers n(p) — oo as p — 00, such that

. J J-Atp _
f e s D (@) d ") =0 619
for almost all w € Q.
Proof. Let
dpalee) = x| max D (1, @) F,) (620

Consider some positive sequence ¢, | 0 as p — oo. Using (6.18), for each p,
we obtain that
lim P(dp, > ¢p) =0. (6.21)

n—~o0

Then, for each p, we can choose n = n(p), such that

1
P(dp,n(p) > ¢gp) < ]? (6.22)
Consequently,
> Pldynp) > &) < 0. (6.23)

p=1
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Then, for almost all w € €,
lim dp,n(p)(w) =0. (6.24)

n—oo
Now, by Corollary 4.1, we conclude the proof of the Theorem. O
This theorem represents a space homogeneous reactive correspondent to the
main result in the Babovsky-Illner simulation scheme for the classical Boltz-
mann equation (Theorem 7.1 of Ref. |5]).

Note that the numerical effort of the method is at most, O(nlogn) (the
dominant contribution being introduced by the random selections of Theo-
rem 5.1.2, i.e. (second selection) Step 2). However, under additional condi-
tions on rg o, the sum (6.10) the numerical effort can be improved.

We consider the following simple case. Denote Dog := {w' e R0 <
Wea(w') = 271N amn ) Va(w')? = 0N BnEn} (we recall that W (w)
is the energy defined in Section 2). By Lemma 3.1, rgo(w,n) > 0 on
Dag % Qg. Suppose that in (6.2 -6.6), we have rg o(w,n) > 0 on Dyg X Qg
for all o, B € M. Taking into account the form of the element dn on {13 in
spherical coordinates (when (6.9) is obtained from (6.2 -6.6)) it follows easily
that in (6.9), each function go g r(W,0,¢) can be constructed such that the
set {0|¢a,8k(W,0,¢) =0} is finite and does not depend on the choice of
(W, ¢) € Dag x [0,27). Consequently, for each 8 € B, there is a measurable
set ©g C [0,7)3181=5 such that Ja gk (W,0,0) >0, for all w € Dog, 0 € Og,
¢ €1[0,27), a € A. Denote

¢
L(6w.0)i= [ dapriw 0o, scl02m).  (625)
0
Then, for all w € Dqg, 0 € Og, fixed, (6.25) defines an invertible map
[0,27m) 2 ¢ — Ix(d;w,0) € [0, [ (2m; w,6)), (6.26)

[
with the inverse Ik_l. In each integral of (6.9), with respect to d¢, we perform
the change of variable ¢ = Ik_l(y; w,0). Define

ﬁa757k(w, 0,y) = Ha7[37k(w,9,lk_1(y; w,0)). (6.27)
We can choose some measurable sets
Cap C RN x [0,m)3P175 xR, for a € A, 8 € B,
such that, (6.9) takes the following form

[Leant) = S [ (oo faga)w,6.0)dny  (widbdy. (629
R3 acA,BeB Cap
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For applications it is important to observe that the conclusion remains the
same if weaker conditions are imposed on 7g o, €. g. if one supposes that for
each a, 3 € M, 13 o(W,n) > 0 on Dag X Qg except a countable set, etc.
Obviously, (6.28) has the form (6.10), but has the important property that
if ﬂi_l, for k=1,..., N are HSPM, after Step 1 (first selection) the output
measures are also a HSPM.

In order to obtain ﬂi, for k =1,..., N as HSPM with the same number of
terms as ﬂi_l, we can apply the following immediate corollary of Theorem
5.1.2, which introduces a numerical complexity of only O(n).
COROLLARY 6.1 Suppose that there is a positive measure p on R™, absolutely
continuous with respect to the Lebesque measure on R™, such that
R

— > g — [, aS T — 0. (6.29)

Mn
Define pini(w) = pinl_;, (o, for allw € Q, alli € I, and n € N*. Let
N*>n—k, € N* be a seqﬁence such that k, < my,, for all n € N* and

1
> = < 0. (6.30)
n=1 "
Then, for P—almost all w,
1 &
o3 p(w) = ™ ZEz;um(w) — [ as n — oo. (6.31)

Further we can proceed as in the scheme constructed before, but without
applying Theorem 5.1.2. Instead we apply Corollary 6.1. The scheme reduces
to iterations alternating with selections, and the conclusion of Theorem 6.1
remains valid. The numerical effort becomes O(n).

Finally remark that if (2.18) reduces the classical Boltzmann equation, for
the one-component simple gas, then the sum in the r.h.s of (6.28) can be
compressed to a unique term as in Ref. [4]. In general, this is not possible in
the case of gas mixtures.

7. Concluding Remarks

From the above analysis, it follows that besides a convenient existence theory,
only the conservation of the total mass is needed to introduce the numer-
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ical scheme described here. The other properties (e.g. detailed balance,
H-Theorem) of the Wang-Chang-Uhlenbeck-de Boer and Ludwig and Heil
system of equations play no role in this algorithm. Note that, the numerical
scheme can also be used and when the detailed balance does not hold, e.g.,
for models where we ignore some recombination processes (as in the situation
when we consider the collisional dissociation, but neglect the recombination
by triple collisions Ref. [24]).

We discuss possible generalizations as well as some limitations of the results.

19 In the case of non-reacting gas mixtures one can obtain similar numerical
schemes for the space-dependent equation (2.10), in the frame of the theory
of existence of solutions of Ref. [17]. This can be done by adapting directly
the spatial cell homogenization method of Ref. [5].

20 In the case of reacting gas mixtures, one can also obtain similar numerical
schemes for the space-dependent equation (2.10). To this end, the adaptation
of the spatial cell homogenization method of Ref. [5] is not as straightforward
as it appears. This is due to the collisions that produce new particles in a
given spacial cell. For this purpose, we need “to establish” the space position
in the cell for each “new born” particle and at the same time, to keep the
control on convergence.

30 Assumption (3.13) replaces in the reactive model the boundedness condi-
tion on the collision law used in Ref. [4, 5]. This condition is essential for
the control of the positivity of the solutions in the time-discretized equation
(4.1). Indeed, Assumption (3.13) is restrictive from an analytical point of
view. Nevertheless, for practical purposes, it is satisfactory for those mod-
els where the high energy-tail of the gas consists of very few molecules (see

Ref. |7]).

The existence of unique positive solutions to (2.10) and (2.18) can be proved
for more general transition functions Ko g (see Ref. [18]). The simulation
scheme can be also extended in this respect, but the (possible) singulari-
ties of Ko g must not destroy the continuity of the functions ro g and pa g
(necessary for the convergence in the weak sense of the measures).

49 One can improve the approximation algorithm as follows. Instead of
assigning to each species the same number of terms in HSPM, one can fix a
given number of terms n for all the species. Then, when we apply the selection
algorithm given by Theorem 5.1.2 (or Corollary 6.1), we can allocate to each
species a number of terms “proportional” to its mass, such that the total
number of terms for all the species to be (approximative) n. The same is also
valid for the approximation of the initial data. By example if we designate
by nj the number of terms corresponding to the species k = 1,..., N, then
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we define

mi | fe(v)dv
A

N
0
;ml /}R3 i (V)dV_

59 In this numerical scheme there are three essential sources of approximation
Eerrors.

(7.1)

ng =

1. The errors from the approximation of the initial data.

2. The errors produced by the time discretization.

3. The errors introduced by stochastic selections.

The contribution of the stochastic errors over the time discretized scheme can
be illustrated as it follows. Giving, for the chemical species k =1,..., N, an

initial data, say V]870 of the form (2.22) the algorithm follows the computa-
tional chain

0,0 1,1 2,2 Ta—1,Ta—1 Ta,Ta
i R 7R S Ve R 7 — v (7.2)

corresponding to the diagonal of the scheme

0,0 0,1 0,2 0,TA—1 0,7
vy — — —_— ... — vy — vy,
Q
1,1 1,2 1,Ta—1 1,Ta
Vk Ea— Vk _— ... — Vk — Vk
u
2,2 2,Ta—1 2,Ta
Vk _— ... — Vk — 1%
0
Th—1,TAr—1 Th—1,T,
VkA LA VkA LA
u
TA,Ta
Vi

(7.3)
Here, the horizontal chains represent the exact iterations of the time dis-
cretized equations, such that foreach j =0,...,Ta—1land p=7+1,...,TA

the measure I/]]C"p is given as (p — j) - th iteration for the input data V,Z’j. In

addition, V]z’j is provided by random selection form V]z_l’j, forj=1,...,TA.

The above computational chain shows that one can expect that the errors due
to the random selections increase when the timestep At decreases. Indeed,
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such a behavior was observed in numerical applications Ref. [13, 12]. Some
theoretical estimations on the errors Ref. [12] prove that the probabilistic
errors € behave like

1
T At n
Consequently, when we decrease the timestep (to improve the errors for the

time discretization, Proposition 4.1.b) we shall increase the number of terms
for the initial approximation, in order to keep the stochastic errors in accept-

€ (7.4)

able limits.

8. Appendix

Proof of Lemma 3.1.

Let n € N* and let aq,...,a, > 0, be some constants. Consider the positive
quadratic form defined on R3" by

n
T:=T(vi,...,Vp) :Zaivg, (8.1)
i=1
where v; € R3, for all i = 1,...,n. One introduces the Jacobi-type transfor-
mation
R3S (vi,...,vp) — (V,€) € R3 x R 73, (8.2)
where
n n
V=0 "a)™) awv, (8.3)
i=1 i=1

and E = (517 s )61—1)7 with

1 1 j=1
& = + — Vitl — = ) (8.4)

a-+1 K K
‘ Zl aj > aj
]:

fori=1,...,n—1.

By (8.2), the form T takes the form

T=T(V.¢) = (Z ai> Ve (8.5)
=1
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Define
1 (N N
Waa(w) == Wa(w) - 5 (2_:1 anmn> Va(w)? — Z_:I BnEn, (8.6)
and
(W5 a(w)]'/? if Wg,a(w) 20,
tg.a(w) = (8.7)
0, otherwise.
Now, consider the form on R3I8,
N
Ts(u) := Wa(u) = Y BuE, (8.8)
n=1

and a corresponding Jacobi-type transformation as in (8.2),

R385 u— (V,€) e R? x R3IBI=3, (8.9)

with & := (£1,...,§|g—1), where §; € R3, for alli =1,...,|3| — 1. Denote by
Ag the Jacobian determinant of the transformation. Let £ be represented in
spherical coordinates on R3181=3 ¢ = rn, with (r,n) € [0, 00) x Qg. Consider
the inverse map

R xRy x Qg 3 (V,r,n) — u(V,r,n) € R4 (8.10)
of the transformation u — (V,r,n) and set
Uga(W,n) = u(V,r,n)|v_v, (w)r=tg o (w)- (8.11)
Obviously, for all a, 8 € M such that (2.6) is satisfied, we have
Ve(uga(w,n)) =Va(w)  Wa(uga(w,n)) = Wa(w). (8.12)
Define
Pea(W,n) =271 Ag  tga(W) PO Kg o (uga(w, n), w),

(8.13)
T,Ba(w’ Il) = 2_1A[3 : tﬂ,a(w)g‘ﬂl_SKa,,B(W, u,@a(wv n))

From (8.12), one obtains property i) of the Lemma 3.1. Property ii) follows
from the definitions introduced in (8.7) and (8.13).
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The limits (3.6) and (3.7), can be obtained from (3.3) and (3.4). We start
the computation with the integral upon du, by choosing (V,r,n) as new
integration variables such that u = u(V,r,n). Since f5 € C.(R3®!) and
fg ¢ CC(R?’W'), using the properties of Kq g, 53, 0y and ug o, we obtain
(3.6) and (3.7) by repeated application of Lebesgue’s dominated convergence
theorem.

Using a similar argument as in the proof (3.6), for all f € CC(R?)\ﬁl) and
@ € Cyp(R3), we get
6777

lim li dwd
o020 Jsial cgols) P(W)75 (0 W) (w)dwdu

(8.14)
- / o(W)pp.a(w, 1) f (ug.a(w,n))dwdn,
R3lel xQg

giving the left side of (3.9). To obtain the right side of (3.9), we repeat
the procedure, but first we perform the integral upon dw in the left side
of (8.14) (using the change of variables induced by the Jacobi-type trans-
formation R3 5 w — (V,€) € R? x R3®=3 associated to the form
Ta(w) = Wa(w) — ZnNzl apE,, and then taking the representation of
¢ € R3le1=3 in spherical coordinates). O
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