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202 Dorin Marinesu1. IntrodutionIt is known that the lassial Boltzmann equation desribes the evolution ofthe simple gas. The Boltzmann equation represents the onneting bridgebetween the mirosopi and marosopi desription of the simple �uid evo-lution. The kinetis of the simple gas is essentially governed by elasti binaryollisions between strutureless partiles belonging to a unique speies, themultiple ollisions being very improbable Ref. [1℄. However, this equationis not able to desribe the evolution of the real gas with hemial reationsand/or ionization proesses. Then inelasti ollisions must be onsidered bythe kineti models. Boltzmann himself was aware of the importane of theinelasti ollisions in the real �uid evolution Ref. [9℄.The lassial Boltzmann equation is almost unanimously onsidered as ap-propriate for the kinetis of the rare�ed simple gas. A kineti theory forthe reative (real) gas is a more di�ult task Ref. [30, 21℄. As ompared tothe lassial Boltzmann equation for the simple gas, kineti reative mod-els exhibit new mathematial di�ulties due the ontribution of the partileinternal states to the gas evolution (in partiular the presene or reationthresholds) and the existene of ollision hannels with multiple reationpartiipants Ref. [8, 25, 24, 29℄. In the ase of the reating gas mixturesthe mass balane does not hold for a given speies. Then, the mass on-servation for a speie must be replaed by the total mass balane. In thereative models is present a transfer between the kineti energy and the in-ternal moleular energy. Consequently, the kineti energy balane must bereplaed by the total energy balane (i.e. kineti energy + internal moleularenergy). Then, the transport properties of the reating gas mixtures di�erfrom the properties of the simple gas.Various models have been introdued to desribe the kinetis of the real (re-ative) gas. An important role is played by the Boltzmann-like semi-quantumequations. A known example is the Wang-Chang-Uhlenbek-de Boer systemof kineti equations [32℄ for the real gas with binary ollisions. This modelrefers to a gas of partiles with lassial translational motion, but with quan-tum internal struture. Essentially, the di�erene from the Boltzmann modelRef. [11℄ for the simple gas is to assoiate to eah internal state a distributionfuntion, and to relate eah transition from one quantum internal state (ofsome hemial speies) to another with a ross-setion matrix.A more general model introdued by Ludwig and Heil [25℄ extends Wang-Chang-Uhlenbek-de Boer model. This model desribes reations in a di-atomi gas without emission or absorption of radiation. It inludes proesses



Reative Boltzmann Type Equation 203of reombinations by triple ollisions, as well as three post-ollisional prod-uts like dissoiation and ionization indued by ollisions Ref. [8, 25, 24℄.In some Wang-Chang-Uhlenbek-de Boer or Ludwig and Heil model the num-ber of equations depends on the number of distribution funtions, i.e. on thenumber of di�erent quantum internal states owned by the gas partiles dur-ing the gas evolution. It is known that, there exists only at most a ountableset of internal states. However, only a �nite number of internal states willsigni�antly ontribute to the gas kinetis. Consequently, the Wang-Chang-Uhlenbek-de Boer and Ludwig and Heil models are desribed by a �nitenumber of equations.For analytial purposes, in Ref. [16, 17, 18℄, the Wang-Chang-Uhlenbek-deBoer and Ludwig and Heil equations orresponding to the model with �nitenumber of internal states have been transribed in abstrat form, revealingthe mathematial struture of the equations. In Ref. [17℄ was proved theexistene and uniqueness of the solutions for the Cauhy problem. It wasshown that the solutions verify the onservation of the total mass, momentumand energy respetively. Moreover, it was proved the existene of equilibriumsolutions. H-theorem and a generalized law of the mass ation have beenrigorously proved under extended balane onditions.The interest for reative kinetis is not only intrinsi, but also of pratialnature, in plasma physis, nulear physis, physial hemistry of the highatmosphere, ombustion theory, modeling of missiles �ight.Aurate numerial modeling of nonlinear proesses in dilute, �ows is ritialfor solving transport problems both in fundamental and applied siene. Inthis respet Babovsky and Illner [4, 5℄ have proposed an e�ient numerialsheme onsistent with the lassial Boltzmann equation. Using Nambu'sideas [26℄, by time disretization and loal spae-homogenization, Babovskyand Illner have obtained a onvenient approximate form of the equation.At this point, the nonlinear harater of the ollision operators involve apower-like growth of the numerial omplexity. To provide an algorithm,with small numerial e�ort, they have introdued an additonal stohastiapproximation. Finally, they have proved the onvergene almost sure, insome sense, of the approximation sheme. The tehniques developed byNambu [26℄, Babovsky and Illner of [4, 5℄ were also applied Ref. [6℄ to Pullin'sequation [27℄ with Larsen-Borgnakke [10℄ sattering ross setion for the one-omponent diatomi gas with lassial internal degrees of freedom.For the abstrat model Ref. [16, 17, 18℄ desribing the real reating gas, inRef. [19℄ was introdued a rigorous and e�ient approximation sheme. Thismethod represents a nontrivial extension of the tehniques of Ref. [4, 5℄ for



204 Dorin Marinesusolving spae-homogeneous Boltzmann-like models of reating gas mixturesRef. [32, 8, 25, 24, 16, 17℄.The methods of this hapter have been tested Ref. [14, 13℄ on the Krook-Wu[22℄ two-omponent Boltzmann equation as well as on the reative Boltzmannmodels with three and four omponents Ref. [12, 20℄.This review presents the theoretial approximation method for the solutionsof the Boltzmann model introdued in Ref. [17℄ following the line of Ref. [19℄and adding some improvements skethed in Ref. [12℄.The present hapter is organized as follows.In the next setion one �rst realls the main features of the Boltzmann-likeequations introdued in Ref. [17℄. Then, one formulates the approximationproblem. In Setion 3 one investigates the initial value problem for the spae-homogeneous kineti equations of Setion 2, formulated in a suitable spaeof funtions. In Setion 4 one obtains a onvergent, time-disretized versionof the aforementioned Boltzmann-like equations. Setion 5 is devoted to thegeneralizations of ertain probabilisti seletion results of Ref. [4, 5℄. This ispossible due to some lari�ations with respet to the nature of the onver-gene introdued by Babovsky and Illner. More preisely, the probabilistipart of the onvergene proof of Ref. [4, 5℄ is based on the entral limit theo-rem for row-wise i.i.d. random variables and the Borel-Cantelli Lemma. Ourargument follows from a simple version of the strong law of large numbersfor arrays of (not neessarily identially distributed) row-wise independent,random variables. (Whih results from the Chebyshev inequality and theBorel-Cantelli Lemma.) In Setion 6, the results of Setion 5 are applied tothe disretized sheme obtained in Setion 4. Consequently, one obtains thenumerial algorithm for the original Cauhy problem. This represents ourmain result, namely the onvergene of the numerial sheme. Finally, wedisuss the limitations and possible generalizations of the model.2. The Kineti Model and the Approximation Pro-edureHere, we brie�y reall the features of the model presented in Ref. [17, 18℄(see also Ref. [16℄).The leading idea behind the model is that, unequal internal states of a gaspartile with internal struture an be onsidered as desribing struture-lesspartiles belonging to distint hemial speies. Then, a real gas mixture



Reative Boltzmann Type Equation 205of partiles with internal struture an be thought as a mixture of severalhemial speies of mass points with unique internal states.Spei�ally, the model refers to a gas onsisting of N distint speies of pointmasses, with one-state internal energy, evolving without external fores. Thefollowing assumptions are general: (i) gas partiles have free lassial motionin spae, between (in)elasti, instant, loal ollisions, without emission orabsorption of photons; (ii) ollision (reations) may hange momenta, as wellas the hemial nature (in partiular mass and internal energy) of the gaspartiles; any ollision ours with onservation of total mass, momentumand (kineti+internal) energy, aording to the laws of lassial mehanis.(iii) in eah ollision (reation) hannel, the number of idential partnersannot exeed some number, say M ≥ 2 and any ollision (reation) hannelontains, at least, two partiles.Denote by M the folowing multi-index set
M := {γ = (γk)k=1,...,N |γk ∈ {0, 1, . . . ,M}} . (2.1)A gas ollision (reation) proess is spei�ed by a ouple (α,β) ∈ M×M.Here, the multi-index α = (α1, . . . , αN ) represents the pre-ollision (in) han-nel, with αn ∈ {0, 1, . . . ,M} idential partiipants of the n− th speies. Themulti-index β = (β1, . . . , βN ) represents the post-ollision (out) hannel, with

βn ∈ {0, 1, . . . ,M} idential partiipants of the n − th speies.The pair of multi-indexes (α,β) orresponds to a reation of the followingtype
α1X1+, . . . ,+αNXN → β1X1+, . . . ,+βNXN , (2.2)between the speies X1,. . . ,XN , with stoihiometri oe�ients α1, . . . , αN ,

β1, .., βN . Note that if α = β, the ollision is elasti and if α 6= β, the ollisionis inelasti.For eah hannel γ ∈ M the family N (γ) := {k | γk > 0 for k = 1, . . . ,N}represents the speies existing in that hannel. Obviously, if k /∈ N (γ) thespeies k is not present inside the hannel γ. If k ∈ N (γ), then there are
γk idential partiles of the speies k in the hannel γ. We denote the totalnumber of partiles in the hannel γ by

|γ| :=

N∑

k=1

γk. (2.3)Their veloities are denoted by wk,1, . . . ,wk,γk
∈ R3. Also set w :

= ((wk,i)i=1,...,γk
)k∈N (γ), understanding that w ∈ R3|γ|. We denote by
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mk > 0 and Ek ∈ R, the mass and the internal energy, respetively of amass-point of the speies k = 1, . . . ,N .Let

Vγ(w) := (

N∑

k=1

γkmk)
−1

∑

k∈N (γ)

γk∑

i=1

mkwk,i, (2.4)and
Wγ(w) :=

∑

k∈N (γ)

γk∑

i=1

(2−1mkw
2
k,i + Ek). (2.5)be the lassial mass enter veloity and the total energy, respetively, forthe partiles in the hannel γ. Aording to the onservation assumptions,in the desription of the gas kinetis, for eah ouple (α,β) ∈ M × M weonsider only the ollisions satisfying the relations

N∑

k=1

mk(αk − βk) = 0, (2.6)
Vα(w) = Vβ(u), Wα(w) = Wβ(u), (2.7)In (2.7) w = ((wk,i)i=1,...,γk

)k∈N (α) and u = ((uk,i)i=1,...,βk
)k∈N (β) are theveloities of the partiles in the hannels α and β, respetively.Note that reations with at most one partile in some ollision hannel areexluded by (2.6) and (2.7), beause in the absene of radiative proesses, theonservation laws (2.6) and (2.7) annot be simultaneously ful�lled. There-fore, |γ| ≥ 2. This inequality explains the restrition M ≥ 2 in the de�ni-tion (2.1) of M. Remark that, the onservation of the total energy statedin (2.7) implies the existene of reation thresholds and shows what happenswith the internal energies of the partiles partiipating in reations. Forinstane in the ase of endothermi ollisions (α,β), i.e.

∑

k∈N (α)

αkEk <
∑

k∈N (β)

βkEk, (2.8)the kineti energy of the resulting produts is lost as binding energy. In suha ase the ollision an be forbidden if the kineti energy in the hannel αis bellow the reation threshold. Note that, the model aepts also reationthresholds for exothermi ollisions (α,β)

∑

k∈N (α)

αkEk >
∑

k∈N (β)

βkEk. (2.9)



Reative Boltzmann Type Equation 207Following the standard Boltzmann proedure (based on the moleular haosassumption) we introdue the system of kineti equations
∂tfk + v · ∇xfk = Pk(f) − Sk(f), for k = 1, . . . ,N, (2.10)as an abstrat transription of the Wang-Chang-Uhlenbek-de Boer andLudwig and Heil equations. Here fk : R+ × R3 × R3 → R+ are the un-knowns for k = 1, . . . , N , (with R+ := [0,∞)) and f := (f1, . . . , fN ). Eah

fk = fk(t,v,x) (t-time, v -veloity, x -position) is the one-partile distri-bution funtion for speies k = 1, . . . ,N of partiles. In (2.10) the gainoperators Pk and the loss operators Sk(f) desribe the ollision proesses.For g = (g1, . . . , gN ) (with g1, . . . , gN : R3 → R) de�ne,
gγ(w) :=

∏

k∈N (γ)

γk∏

i=1

gk(wk,i), γ ∈ M. (2.11)Formally the gain and the loss operators are de�ned by
Pk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|

σβ,α,k(u,w,v)gβ(u)dudw, (2.12)and
Sk(g)(v) =

∑

α,β∈M

αk

∫

R3|β|×R3|α|
σα,β,k(w,u,v)gα(w)dudw. (2.13)Here, for eah (α,β) ∈ M×M and k = 1, . . . ,N ,

σα,β,k(w,u,v) := Kα,β(w,u)·

δ(wk,αk
− v) · δ(Vβ(u) − Vα(w)) · δ(Wβ(u) − Wα(w)),

(2.14)where Kα,β : R3|α|×R3|β| → R+ are given funtions related to the probabilityof the reation (α,β) ∈ M × M. The following general properties areassumed:1o Kα,β ≡ 0 if |α| < 0, or |β| < 0.2o Kα,β ≡ 0 when the probability of the ollision (α,β) is zero.3o Kα,β ≡ 0 if for some (α,β) ∈ M×M, the ondition (2.6) does not hold.4o Kα,β(w,u) is invariant at the permutation of the omponents wn,1, . . . ,
wn,αn of w for eah �xed u ∈ R3|α|, w ∈ R3|β| and n ∈ N (α); a similar



208 Dorin Marinesustatement holds for the omponents of u. (This ondition expresses the�indistinguishability� of idential ollision partners.)5o For all a ∈ R3 (α,β) ∈ M×M,
Kα,β(T (a)w, T (a)u) ≡ Kα,β(w,u), (2.15)where T (a)w is de�ned on omponents by (T (a)w)k,i = wk,i+a for k ∈ N (α)and i = 1, . . . , αk.6o There exist some given onstants C1, . . . , CN > 0, suh that
CβKα,β(w,u) ≡ CαKβ,α(u,w). (2.16)are veri�ed for all (w,u) ∈ R3|α| × R3|β| and (α,β) ∈ M×M, where

Cγ := Cγ1
1 · . . . · CγN

N , (2.17)for all γ ∈ M.Note that assumption 1o exludes the �spontaneous dissoiation� as well asthe �total fussion�. The ondition 3o refers to the mirosopi onservationof the mass. The form of σα,β,k in (2.14) takes into aount the mirosopionservation laws of the total energy and momentum. The expliit use of onlyone variable, wk,αk
in δ(wk,αk

− v), is possible due to �indistinguishability�of idential ollision partners (ondition 4o). Assumption 5o expresses theabsene of the external �elds. The generalization of the lassial ollisionreversibility is given by the ondition 6o.As announed before, we refer only to the spae-homogeneous version of(2.10), i.e.
∂tfk = Pk(f) − Sk(f), k = 1, . . . ,N. (2.18)Several properties (also valid in the spae-inhomogeneous ase [17, 18℄) an beformally established as for the Ludwig and Heil equations [25℄, and rigorouslyproved by giving a meaning to (2.18) and �nding lasses of solutions withonvenient regularity properties. Thus, formally,

N∑

k=1

∫

R3

Φi
k(v) [Pk(f)(v) − Sk(f)(v)] dv = 0, i = 0, . . . , 4, (2.19)provided that all integrals involved are onvergent, where Φ0

n(v) := mn,
Φi

n(v) = mnvi, for the omponent vi, i = 1, 2, 3, of v, and Φ4
n(v) :=

mnv
2/2 + En. By (2.19) the solutions of (2.18) are formally ompatible



Reative Boltzmann Type Equation 209with the onservation of the mass (i = 0), bulk momentum (i = 1, 2, 3) andenergy (i = 4), respetively.One an de�ne the H-funtion
H(f)(t) =

N∑

k=1

∫

R3

[log Ckfk(t,v) − 1] fk(t,v)dv, (2.20)for those solutions f(t,v) of (2.18), with positive omponents, provided thatthe integrals exist. In (2.20) the onstants Ck are the same to the onstantsfrom the assumption 6o. Formally, by a few algebrai manipulations, oneobtains
d

dt
H(f)(t) =

N∑

k=1

∫

R3

[Pk(f)(t,v) − Sk(f)(t,v)] log Ckfk(t,v)dv =

=
∑

α,β∈M

∫

R3|β|×R3|α|

Kβ,α(u,w)fβ(t,u)F

[
Cαfα(t,w)

Cβfβ(t,u)

]

dudw ≤ 0,(2.21)where F (x) := 1
2(1 − x) log x ≤ 0 for x ≥ 0.The equilibrium solutions of (2.18) are Maxwellian (Gaussian) funtions withdetermining onstants (onentration, bulk veloity and temperature) relatedto the internal energies En and the onstants Cn of (2.16), by the law of themass ation (for more details see e.g. Ref. [25, 17℄).We distinguish the following partiular ases:1. If M = 3 in (2.10-2.13), and the onditions of (2.16) are veri�ed, then(2.10) essentially redues to the Ludwig and Heil system of equationswith disrete internal energies.2. If M = 2 and the onditions of (2.16) are ful�lled with C1 = C2 = 1,then we obtain the Wang-Chang-Uhlenbek-de Boer system of equa-tions.3. If M = 2, N = 1, the ondition (2.16) are ful�lled and the transitionfuntions depend only on the relative veloities of the enounters ineah ollision hannel, then one gets the lassial Boltzmann equation.In order to introdue the numerial sheme assoiated to the equations (2.18),in the next setion we solve a Cauhy problem for (2.18) formulated in aprodut of L1 spaes. Besides the uniqueness and global existene of the



210 Dorin Marinesusolution, we also need the positivity of the solution and the marosopimass onservation. Note that, other onservation properties, as well as theexistene of a H-theorem play no role in this numerial sheme. In partiular,property (2.16) is not needed. However, we will state without proof a generalresult onerning the onservation relations and a H-theorem (only for thesake of ompleteness).Roughly speaking, we would like to approximate the measures dµt
k(v) :=

fk(t,v)dv indued by the solutions fk(t,v) of (2.18), k = 1, . . . ,N , by on-venient homogeneous sums of point measures, de�ned as follows.Let µ be a �nite positive measure on Rm. For an > 0, where n ∈ N∗ :=
{1, 2, . . .}, let

σn =
an

n

n∑

i=1

δxi,n
, n ∈ N∗. (2.22)Here δxi,n

is the Dira measure on Rm onentrated at point xi,n for i =
1, . . . , n. The sequene of measures (σn)n∈N∗ is alled a homogeneous sum ofpoint measures (HSPM) approximating the measure µ, if it onverges weaklyto µ (in the weak sens of the measures) i.e. σn ⇀ µ as n → ∞.We all a sequene (σn)n∈N∗ of the form

σn =

n∑

i=1

ai,n

n
δxi,n

, n ∈ N∗, (2.23)(where ai,n > 0 for i ∈ {1, . . . , n} and n ∈ N∗) a weighted sum of pointmeasures (WSPM) approximating the measure µ, if it onverges weakly to
µ, i.e. σn ⇀ µ as n → ∞. Obviously, if ai,n = aj,n for i, j ∈ {1, . . . , n} and
n ∈ N∗, the WSPM approximation beomes a HSPM approximation.The HSPM approximation is onvenient for numerial solving of equationswhere the solutions are �nite (probability) measures on Rm, and where onealso wishes to approximate moments of some (random) variables with respetto solutions. In this ase, the ontrol of the approximation an be made bymeans of the Koksma-Hlavka inequality Ref. [23℄, in terms of disrepany.We reall that, by de�nition Ref. [5, 15, 23℄, the disrepany between thenonnegative measures µ and ν on Rm is given by the following formula,

D(µ, ν) := sup
a∈Rm

|µ(Λ(a)) − ν(Λ(a))| , (2.24)where Λ(a) := {x ∈ Rm |xl ≤ al, l = 1, . . . ,m}.



Reative Boltzmann Type Equation 211We also reall, Ref. [5℄, that a sequene of measures µn is said to onvergeto µ with respet to disrepany if, D(µn, µ) → 0 as n → ∞.It is known, Ref. [5℄, that if µ is a measure absolutely ontinuous with respetto the Lebesgue measure on Rm, then the onvergene of µn to µ with respetto disrepany is equivalent to the weak onvergene in the sense of measures.Starting with HSPM approximation for eah µ0
k indued by the initial data in(2.18), with k = 1, . . . , N , our purpose is to provide a onvergent algorithmgenerating HSPM approximations for the measures µt

k, where k = 1, . . . ,N ,at any t > 0.In this respet, one hooses some �xed timestep ∆t < T . Let
T∆ :=

[[
T

∆t

]]

, (2.25)where [[x]] denotes the integer part of x ∈ R. One assoiates a time-disretized version of equations to (2.18). Starting with an initial data, f0
k =

f0
k (v), k = 1, . . . , N , one obtains a family of funtions f j

k(v), j = 1, . . . , T∆verifying the disretized form of (2.18). The disretized version of (2.18)an be formulated in the weak form for the measures dµ̄j
k(v) := f j

k(v)dv,where k = 1, . . . , N . We shall prove that if, eah µ̄0
k is lose, to µ0

k, insome sense, then (for ∆t su�iently small), µ̄j
k is lose to µt

k on the inter-val ((j − 1)∆t, j∆t], with an error of order ∆t, for all j = 1, . . . , T∆ and
k = 1, . . . , N .The sheme is initialized for k = 1, . . . ,N by approximating for the measures
µ̄0

k by a HSPM approximation of the form:
µ0

k,n :=
ak,n

n

n∑

i=1

δvk,n
⇀µ̄0

k, as n → ∞. (2.26)The above approximation provides for all j = 1, . . . , T∆ and k = 1, . . . ,Napproximations by disrete measures µj
k,n ⇀ µ̄j

k as n → ∞.Beause of the nonlinearity of the initial problem, eah step of the iterationprodues a power-like growing number of terms in the sums of point measuresexpressing µj
k,n. In omputations, the numerial e�ort would also be power-like inreasing, so that the algorithm ould not be e�etive at this level.To approximate µ̄j

k by sums of Dira measures with a non-inreasing numberof terms, for tehnial reasons, it is neessary to have a HSPM approximation.However, in general, µj
k,n appears as a WSPM of the form (2.23). For thisreason we introdue a homogenization proedure of approximation to obtainmeasures of the form (2.22). At this level, one an redue the numerial



212 Dorin Marinesue�ort by using probabilisti tehniques of seletion. Then, the onvergeneof the numerial sheme is proved in probabilisti terms.3. The Existene of the SolutionDe�ne the spae X := L1(R3) × . . . × L1(R3)
︸ ︷︷ ︸

N times � real, equipped with the norm
‖g‖

X
:=

N∑

k=1

mk ‖gk‖L1 , (3.1)where g = (g1, . . . , gN ) and gk ∈ L1(R3), k = 1, . . . ,N . We reall that
mk > 0 denotes the mass of a partile of speies k for eah k = 1, . . . ,N .Note that if g ≥ 0 (i.e. gk ≥ 0 a.e. for all k = 1, . . . ,N) then the norm ‖g‖

Xis equal to the mass of the gas in the state desribed by the distributionfuntions given by the omponents of g.For approximation purposes, we suppose that the funtions of the family
{Kα,β}α,β∈M are ontinuous. We formulate the Cauhy problem for (2.18)in the spae X.Before, we must give a meaning to the ollision operators Pk and Sk asoperators ating in the spae X. This an be performed, using regularizationas in Ref. [16, 17℄ to de�ne σα,β,k as distributions for all α,β ∈ M×M and
k = 1, . . . , N .For m ∈ N∗ denote by Cb(R

m) the spae of the bounded funtions of C(Rm; R),endowed with the usual sup norm. Let Cc(R
m) be the subset of the funtionsof Cb(R

m) with ompat support.Let J ∈ Cc(R) be positive and even funtion, suh that supp(J) = [−1, 1]and ‖J‖
L1 = 1. For ε > 0 denote by δε(t) =: ε−1J(ε−1 · t) and δ3

ε(y) :=
δε(y1) · δε(y2) · δε(y3) , where y = (y1, y2, y3) ∈ R3. De�ne

σε,η
α,β(u,w) := Kα,β(w,u)δ3

ε (Vβ(u) − Vα(w))δη(Wβ(u)) − Wα(w)), (3.2)
Pkεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
β,α(u,w)gβ(u)dudw̃k

]

wk,αk
=v(3.3)
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Skεη(g)(v) :=

∑

α,β∈M

αk

[∫

R3|β|×R3|α|−3

σε,η
α,β(w,u)gα(w)dudw̃k

]

wk,αk
=v

,(3.4)with gα and gβ as in (2.11), for all g ∈ Cc(R
3)N := Cc(R

3) × . . . × Cc(R
3)

︸ ︷︷ ︸

N times ;
v ∈ R3, k ∈ 1, . . . , N . In (3.3) and (3.4), the terms with αk = 0, vanish,by de�nition, and dw̃k is the Eulidean element of area on the manifold
{
w ∈ R3|α||wk,αk

= v
}.Let Ωγ be the unit sphere in R3|γ|−3, where γ ∈ M. The operators Pk and

Sk an be de�ned by means of the following result.Lemma 3.1 For eah g ∈ CN
c (R3), there exist the limits

Ṗk(g)(v) := lim
η→0

lim
ε→0

Pkεη(g)(v), Ṡk(g)(v) := lim
η→0

lim
ε→0

Skεη(g)(v).(3.5)There are the families of funtions {rβ,α}α,β∈M, {pβ,α}α,β∈M ⊂ C(R3|α| ×
Ωβ; R+) and {uβ,α}α,β∈M ⊂ C(R3|α| × Ωβ; R3|β|) suh that

Ṗk(g)(v)=
∑

α,β∈M

αk

[
∫

R3|α|−3×Ωβ

pβ,α(w,n)gβ(uβ,α(w,n))dw̃kdn

]

wk,αk
=v

,(3.6)
Ṡk(g)(v) =

∑

α,β∈M

αk

[
∫

R3|α|−3×Ωβ

rβ,α(w,n)gα(w)dw̃kdn

]

wk,αk
=v

, (3.7)for all g ∈ CN
c (R3), and the following properties are veri�ed:i) there are some onstants c, d > 0 suh that |uβ,α(w,n)| ≥ c |w| for all

|w| ≥ d and α,β ∈ M.ii) if Wα(w) − 2−1(
∑N

n=1 αnmn)Vα(w)2 −∑N
n=1 βnEn ≤ 0 for some w ∈

R3|α|, then
rβ,α(w,n) = pβ,α(w,n) = 0, for all n ∈ Ωβ and α,β ∈ M. (3.8)iii) for eah ϕ ∈ C(R3|α|) and f ∈ Cc(R

3|β|) and ∀α,β ∈ M
∫

R3|α|×Ωβ

ϕ(w) · pβ,α(w,n) · f(uβ,α(w,n))dwdn =

=

∫

R3|β|×Ωα

ϕ(uα,β(u,n)) · rα,β(u,n) · f(u)dudn.

(3.9)



214 Dorin MarinesuThe results of the above Lemma were obtained in Ref. [17℄. However, for thesake of ompleteness, the proof is outlined in Appendix2.Property (3.8) follows by the presene of reation thresholds (in the frameof the onservation relations (2.6) and (2.7)). Moreover, (3.6) and (3.7) arewell de�ned, beause of property i) in Lemma 3.1.From (3.7), we an write
Ṡk(g)(v) = Ṙk(g)(v)gk(v), (3.10)where

Ṙk(g)(v) :=

:=
∑

α,β∈M

αk

[
∫

R3|α|−3×Ωβ

rβ,α(w,n)gγ;k(ws,i)dw̃kdn

]

wk,αk
=v

.
(3.11)In (3.11), for γ ∈ N (γ) we assumed the onvention

gγ;k(w) := gγ(w)/gk(wk,αk
), (3.12)where the r.h.s. makes sense and gγ;k(w) := 0 otherwise.Our results are based on the followingAssumptionThere is a onstant K > 0, suh that

∫

Ωβ

rβ,α(w,n)dn < K, (3.13)for all w ∈ R3|α| and α,β ∈ M.From (3.13), it is immediate that the maps
X ⊃ Cc(R

3)N ∋ g → Ṡk(g) ∈ L1(R3),

X ⊃ Cc(R
3)N ∋ g → Ṙk(g) ∈ Cb(R

3)

(3.14)are ontinuous for eah k = 1, . . . ,N . Moreover, using property (3.9) (with
ϕ = 1, f = gβ) ombined with Fubini's theorem, it also follows that the map

X ⊃ Cc(R
3)N ∋ g → Ṗk(g) ∈ L1(R3) (3.15)2Note that the funtions rα,β and pα,β appear in expliit form in the proof ofLemma 3.1 (see the Appendix).



Reative Boltzmann Type Equation 215is ontinuous for eah k = 1, . . . ,N .Sine Cc(R
3)N is dense in X, the maps given by (3.14-3.15) have ontinuousextensions to X. These extensions will be also denoted Sk, Rk and Pk,respetively.Note that (3.10) an be extended to all g ∈ X, in the sense that a.e.,

Sk(g)(v) = Rk(g)(v)gk(v), (3.16)for all k = 1, . . . , N .De�ne P,S : X → X by
P(g) = (P1(g), . . . , PN (g)),

S(g) = (S1(g), . . . , SN (g)),
(3.17)for all g ∈ X.We onsider the Cauhy problem for equation (2.18) in X.

dtf(f) = P(f(t)) − S(f(t)), f(0) = f0. (3.18)Theorem 3.1 Let f0 > 0. For eah T > 0, equation (3.18) has a uniquesolution f(t) in X on [0, T ]. Moreover, for all t ∈ [0, T ] one has f(t) > 0 and
N∑

k=1

mk

∫

R3

fk(t,v)dv =
N∑

k=1

mk

∫

R3

f0,k(v)dv. (3.19)Proof. One applies the Banah �xed point theorem to (3.18) written inonvenient form.Consider the one C+
T := {f ∈ C(0, T ; X)|f(t) ≥ 0, for all t ∈ [0, T ]} with thenorm

‖f‖ := sup
t∈[0,T ]

‖f(t)‖
X

. (3.20)Observe that for all k = 1, . . . ,N , if f ∈ C+
T then Rk(f), Pk(f) ≥ 0 (sine

rβ,α, pβ,α ≥ 0, for all α,β ∈ M). Moreover, if f ∈ C+
T , then Rk(f) ∈

C(0, T ;Cb(R
3)). Consequently the Riemann integral ∫ t

s Rk(f(τ))dτ is wellde�ned in Cb(R
3) for all s, t ∈ [0, T ] and k ∈ {1, . . . ,N}.Let f ∈ C+

T . We de�ne the map [0, T ] ∋t → I(f)(t) ∈ X by the omponentsof I(f)(t), as:
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Ik(f)(t) = exp

[

−
∫ t

0
Rk(f(τ))dτ

]

· f0,k+

+

∫ t

0
exp

[

−
∫ t

s
Rk(f(τ))dτ

]

· Pk(f(s))ds,

(3.21)where t ∈ [0, T ]. Here, the integration with respet to ds is in the sense ofRiemann in L1(R3).Obviously Ik(f)(t) ≥ 0 for all t ∈ [0, T ], k = 1, . . . ,N .The problem (3.18) an be rewritten in C+
T , as it follows.

f = I(f) (3.22)Let R > ‖f0‖X
. De�ne

B(R) :=
{
f ∈ C+

T | ‖f‖ ≤ R, f (0) = f0
}

. (3.23)Using (3.11), (3.6) and (3.13), one an �nd some positive numbers k1(R) and
k2(R), suh that

‖I(f)‖ ≤ ‖f0‖X
+ T · k1(R), (3.24)and

‖I(f) − I(h)‖ ≤ T · k2(R) · ‖f − h‖ , (3.25)for all f ,h ∈ B(R). Obviously, from (3.24) and (3.25), for T small enough, themap I beomes a strit ontration on B(R). Consequently I : B(R) → B(R)and has a unique �xed point. This proves that (3.18) has a unique positivesolution on [0, T ].The positivity of fk, implies that
‖f(t)‖

X
=

N∑

k=1

mk

∫

R3

fk(t,v)dv, 0 ≤ t ≤ T. (3.26)By (3.18) and using (2.6), (3.11), (3.6) and (3.9) (applied to ϕ ≡ 1) oneobtains
dt ‖f(t)‖X

=

N∑

k=1

mk

∫

R3

[Pk(f) − Sk(f)] dv = 0, (3.27)whih proves (3.19). Moreover,
‖f‖ = sup

0≤t≤T
‖f(t)‖

X
= ‖f0‖X

. (3.28)



Reative Boltzmann Type Equation 217By ontinuation, and uniqueness, the loal solution f(t) an be made time-global. This ends the proof. 2For the sake of ompleteness we state the following result.Let Φi
n be as in (2.19) for i = 1, . . . , 4. With the remark that the massonservation (3.19) has been already proved, the solution of (3.18) has thefollowing properties.Proposition 3.1 Let f(t) be the solution of (3.18) given by Theorem 3.1.a) If

f0,k, (1 + v2)f0,k ∈ L1(R3) (3.29)for eah k = 1, . . . , N , then
(1 + v2)fk(t) ∈ L1(R3) (3.30)and

N∑

n=1

∫

R3

Φi
n(v)fn(t,v)dv =

N∑

n=1

∫

R3

Φi
n(v)f0,n(v)dv = 0, (3.31)for eah k = 1, . . . , N and i = 1, . . . , 4 and all t ≥ 0.b) In addition to the onditions (3.29), suppose that there are some onstants

C1, . . . , CN > 0 suh that onditions (2.16) hold. If
f0,k log f0,k ∈ L1(R3) (3.32)for eah k = 1, . . . , N , then

fk(t) log fk(t) ∈ L1(R3; dv) (3.33)and
H(f)(t) :=

N∑

n=1

∫

R3

[log Cnfn(t,v) − 1] fn(t,v)dv (3.34)is non-inreasing as a funtion of t, for eah k = 1, . . . ,N and all t ≥ 0.The proof of this proposition is beyond the present purposes. Though, wemention that the proof uses Lemma 3.1 and the ideas introdued by of Ark-eryd [2, 3℄ to prove results of the same nature in the ase of the lassialspae-homogeneous Boltzmann equation.



218 Dorin Marinesu4. Time DisretizationLet ∆t ∈ (0, T ) be a �xed timestep. We onsider the following disretizedversion of (3.18).
f j = f j−1 + ∆t ·

[
P(f j−1) − S(f j−1)

]
,

f0 = f0 ≥ 0, a.e., j = 1, . . . , T∆,
(4.1)where f j = (f j

1 , . . . , f j
N ) and f j

k = f j
k(v).The disretized sheme (4.1) may destroy the positivity of the funtions f jfor j ≥ 1. However, one an prove that for ∆t small enough, f j is positiveand lose, in some sense, to the solution f provided by Theorem 3.1.Proposition 4.1a) If ∆t is su�iently small, then f j ≥ 0 for all j = 1, . . . , T∆. Moreover,

∥
∥f j
∥
∥ = ‖f0‖ , (4.2)for all j = 1, . . . , T∆.b) There exists some number C = C(‖f0‖X

) > 0, depending only on ‖f0‖X
,suh that

∥
∥f(t) − f j

∥
∥

X
≤ C · ∆t, (4.3)for all j = 1, . . . , T∆ and t ∈ ((j − 1)∆t, j∆t].Proof. a) First we write (4.1) more onveniently.Let

U := {γ = (γ1, . . . , γN ) |γk ∈ {0, 1, . . . ,NM} , |γ| ≥ 2} . (4.4)For any ξ = (ξ1, ..., ξN ) ∈ RN for k = 1, ...,N and α ∈ M, denote
ξα,k :=







1

ξk

∏

n∈N (α)

ξαn
n if αk ≥ 1 and ξk 6= 0 ,

0 if αk = 0 or ξk = 0 .

(4.5)For k = 1, . . . , N and α ∈ M, using the multinomial formula, we get
NM∑

p=2

(ξ1 + . . . + ξN )p−1 =

NM∑

p=2

p−1∂ξk
(ξ1 + . . . + ξN )p =

∑

α∈U

cααkξα,k, (4.6)
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cα := (|α| − 1)!

(
N∏

k=1

αk!

)−1

. (4.7)If
ξ1 + . . . + ξN = 1, (4.8)then, by (4.6) we get

MN − 1 =




1

(M + 1)N − N − 1

∑

α,β∈M

αkcαξα,k +
∑

α∈U\M

αkcαξα,k



 .(4.9)For eah k = 1, . . . , N , put
ξk = µkIk, (4.10)where

µk = mk

(
N∑

n=1

mn

∫

R3

f0,n(v)dv

)−1 (4.11)and
Ik =

∫

R3

f j
k(v)dv. (4.12)It follows that (4.8) is satis�ed, due to (4.19). Consequently, by (4.9),

1 =
∑

α,β∈M

αk · Γα,k · Iα,k +
∑

α∈U\M

Λα,k · Iα,k, (4.13)where the notation Iα,k is given by (4.5) for I = (I1, . . . ,IN ). In (4.13),
Λα,k :=

αkc
αµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN

N

MN − 1
(4.14)and

Γα,k :=
cαµα1

1 · . . . µαk−1

k−1 · µαk−1
k · µαk+1

k+1 · . . . · µαN

N

(MN − 1) [(M + 1)N − N − 1]
. (4.15)Multiplying on omponents (k = 1, . . . ,N), the �rst term of the right side of(4.1) by (4.13) and using (3.11), equation (4.1) beomes

f j
k = Qk(f

j−1) + Lk(f
j−1) + ∆t · Pk(f

j−1), (4.16)
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Qk(f

j)(v) :=

=
∑

α,β∈M

αk

[
∫

R3|α|−3

(

Γα,k− ∆t

∫

Ωβ

rβ,α(w,n)dn

)

f j
α(w)dw(k)

]

wα,k=v

,(4.17)
Lk(f

j)(v) :=
∑

α∈U\M

Λα,k

[∫

R3|α|−3

dw(k)f
j
α(w)

]

wα,k=v

. (4.18)If K is the onstant introdued in (3.13), we an hoose ∆t suh that ∆t·K ≤
inf
α,k

Γα,k.Then, the positivity of f j, for all j = 1, . . . , T∆, follows by indution, usingAssumption (3.13). As f j ≥ 0 for all j = 1, . . . , T∆, then the mass onserva-tion is always ful�lled. Indeed, by indution and using the same argumentas in (3.27) we have
N∑

k=1

mk

∫

R3

f j
k(v)dv =

N∑

k=1

mk

∫

R3

fk,0(v)dv (4.19)for all j = 1, . . . , T∆.b) Combining (3.18) and (4.1), for all j = 1, . . . , T∆ we an write
∥
∥f(j · ∆t) − f j

∥
∥

X
≤
∥
∥f(j − 1) · ∆t) − f j−1

∥
∥

X
+

+

∫ j·∆t

(j−1)·∆t

∥
∥P (f(s)) − P (f j−1)

∥
∥

X
ds+

+

∫ j·∆t

(j−1)·∆t

∥
∥S(f(s)) − S(f j−1)

∥
∥

X
ds.

(4.20)
Denote by Oj :=

∥
∥f(j∆t) − f j

∥
∥

X
. Using the expliit forms of P and S, takingaount of the onservation relations (3.19) and (4.19), we �nd that there issome number c0 > 0, depending on ‖f0‖X

suh that Oj < Oj−1(1+ c0∆t) forall j = 2, . . . , T∆ and O1 ≤ c0∆t. Then
Oj ≤ O1(1 + c0∆t)T∆ ≤ c1 · ∆t, (4.21)with c1 > 0 depending only on ‖f0‖X

. Suppose that t ∈ ((j − 1)∆t, j∆t].
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‖f(t) − f((j − 1)∆t)‖

X
≤

≤
∫ j∆t

(j−1)∆t
(‖P(f(s))‖

X
+ ‖S(f(s))‖

X
)ds ≤ c2 · ∆t,

(4.22)where c2 depends only on ‖f0‖X
. Now estimation (4.3) is an immediateonsequene of (4.21) and (4.22). 2For numerial purposes, one has to write the equation (4.1) in the weak formfor measures. In this respet, we assoiate the the following measures to thesolutions f(t) and f j appearing in Proposition 4.1. For k = 1, . . . ,N de�ne

dµt
k(v) := fk(t,v)dv, (4.23)where t ≥ 0, and

dµ̄j
k(v) := f j

k(v)dv, (4.24)for j = 1, . . . , T∆.Proposition 4.1 has the following onsequene expressed in terms of the dis-repany de�ned by (2.24).Corollary 4.1 If the onditions of Proposition 4.1 are ful�lled, then
max

k=1,...,N
max

j=1,...,T∆

D(µj∆t
k , µ̄j

k) → 0 as ∆t → 0. (4.25)5. The Probabilisti FrameThe entral result of this setion extends, in some sense, the probabilistimethods of seletion used by Babovsky and Illner [4, 5℄ (see e.g. Lemma 2of Ref. [4℄).We start with a simple generalization (to row-wise independent random vari-ables) of the strong law of large numbers for independent random variableswith bounded fourth momentum (see, e.g., Theorem IV.�3-1 in Ref. [28℄,p.363).Let (Ω, β, P ) be a probability spae. For some real random variable X, by
〈X〉 we denote its mean with respet to P .Let N∗ ∋ n → qn ∈ N∗. We all the family ((Xn,i)i∈{1,...,qn})n∈N∗ of realvalued random variables on Ω an array of row-wise independent randomvariables, if for eah �xed n ∈ N∗ the random variables (Xn,i)i∈{1,...,qn} areindependent.



222 Dorin MarinesuProposition 5.1 Let ((Xn,i)i∈{1,...,qn})n∈N∗ be an array of row-wise inde-pendent random variables with zero mean. Denote An := sup
i∈{1,...,qn}

〈X4
n,i〉.If

∞∑

n=1

An

q2
n

< ∞, (5.1)then, with probability one,
1

qn

qn∑

i=1

Xn,i → 0, as n → ∞. (5.2)Proof. Aording to a version of the Borel-Cantelli Lemma, it is su�ient toshow that for eah ε > 0,
∞∑

n=1

P

(∣
∣
∣
∣
∣

1

qn

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣
> ε

)

< ∞. (5.3)To this end, by Chebyshev's inequality, we obtain
P

(∣
∣
∣
∣
∣

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣
> ε · qn

)

≤ 1

ε4q4
n

〈∣
∣
∣
∣
∣

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣

4〉

. (5.4)Expanding the fourth power, we invoke the independene of Xn,i and use thefat that 〈Xn,i〉 = 0. Then a simple omputation shows that for all ε > 0,
0 ≤

∞∑

n=1

P

(

1

qn

∣
∣
∣
∣
∣

qn∑

i=1

Xn,i

∣
∣
∣
∣
∣
> ε

)

≤ 3

ε4

∞∑

n=1

An

q2
n

< ∞. (5.5)This onludes the proof. 2Consider N∗ ∋ n → mn ∈ N∗ a sequene, suh that mn → ∞ as n → ∞.For eah n ∈ N∗, let In := {1, 2, . . . ,mn} be an index set and let Ip
n :=

In × . . . × In
︸ ︷︷ ︸

p times for a �xed p ∈ N∗.Consider some given set X ⊂ Rm and a given sequene (Fn)n∈N∗ of funtions
Fn : X× Ip

n → R. De�ne Sn : X → R by
Sn(x) :=







1

mp
n

∑

j∈In

Fn(x, j) if p ≥ 2,

mn∑

j=1

an,jFn(x, j) if p = 1,

(5.6)



Reative Boltzmann Type Equation 223where ((an,l)l∈In
)n∈N∗ is a family of nonnegative numbers, suh that

sup
n∈N∗

mn∑

l=1

an,j < ∞,

mn∑

l=1

an,l > 0, for all n ∈ N∗.

(5.7)
Suppose that there is some funtion F : X → R suh that, for eah x ∈ X,

F (x) = lim
n→∞

Sn(x). (5.8)In general, for a given n, the sum Sn ontains mp
n terms. Roughly speaking,our problem is to onveniently diminish the numbers of terms in Sn, byrandom seletion of the terms in (5.6) and �renormalize� the resulting sumsuh that the onvergene to F (x) be kept, in some sense. In this respet,we de�ne some speial families of random variables.Let (Ω, β, P ) be a probability spae, where Ω := [0, 1)∞ (in the ountablesense) is endowed with the usual produt Borel σ−algebra β and P the usualprodut probability indued on Ω by the uniform distribution of [0, 1).For eah n ∈ N∗ and j ∈ In, de�ne the weights

pn,j :=
an,j

mn∑

l=1

an,l

, (5.9)where ((an,l)l∈In
)n∈N∗ is the family with properties (5.7). For eah n ∈ N∗,let

qn,s :=







0 if s = 0,

s∑

j=1

pn,j if s ∈ In.
(5.10)For eah n ∈ N∗ and l ∈ In we onsider the random variables cn,l , c̃n,l : Ω →

In given by
cn,l(ω) := [[ωl · mn]] + 1, (5.11)and

c̃n,l(ω) := s if ωl ∈ [qn,s−1, qn,s) , (5.12)



224 Dorin Marinesuwhere ωl is the lth omponent of ω = (ω1, ω2, . . .) ∈ Ω. In (5.12) we makethe onvention that [x, x) := φ (the void set) for any x ∈ R. Obviously, foreah j ∈ In

P (cn,l(ω) = j) =
1

mn
, (5.13)and

P (c̃n,l(ω) = j) = pn,j. (5.14)Consequently, ((cn,l)l∈In
)n∈N∗ and ((c̃n,l)l∈In

)n∈N∗ , are arrays of row-wiseindependent random variables.Remark that the random variables cn,l are partiular forms of c̃n,l, with
pn,j = m−1

n in (5.9).Let p ≥ 2. For n ∈ N∗ and l ∈ In, de�ne the random variables Jn,l : Ω → Ip
nby

Jn,l(ω) := (i, cn,(l−1)p+1(ω), cn,(l−1)p+2(ω), . . . , cn,lp−1(ω)), (5.15)where ω = (ω1, ω2, . . .) ∈ Ω.Observe that ip + j = i′p + j′ if and only if i = i′ and j = j′, for all
i, i′ ∈ N∗ and j, j′ ∈ {1, 2, . . . , p}. Then, using the row-wise independene of
((cn,l)l∈In

)n∈N∗ , we onlude the row-wise independene of ((Jn,l)l∈In
)n∈N∗ .Suppose that one of the following onditions is ful�lled:1. X is at most ountable.2. X is the whole Rm, the funtion F is ontinuous and eah Fn(·, j) isinreasing with respet to the order of Rm for eah �xed n ∈ N∗ and

j ∈ Ip
n. De�ne for eah n ∈ N∗ and x ∈ X by

an(x) := max
j∈Ip

n

|Fn(x, j)| . (5.16)Proposition 5.2 1. Let p ≥ 2. If
∞∑

n=1

an(x)4

m2
n

< ∞ (5.17)for all x ∈ X, then for eah x ∈ X, with probability one,
lim

n→∞

1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i = F (x). (5.18)



Reative Boltzmann Type Equation 2252. Let p = 1. Consider N∗ ∋ n → kn ∈ N∗ a sequene suh that, kn → ∞ as
n → ∞. If kn ≤ mn for all n ∈ N∗, and

∞∑

n=1

an(x)4

k2
n

< ∞, (5.19)for all x ∈ X, then for all x ∈ X, with probability one,
lim

n→∞





mn∑

j−1

an,j




1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i = F (x). (5.20)Proof. Remark that it is su�ient to onsider the ase in whih all funtions
Fn are positive.Case X ountable1. Let x ∈ X be �xed. For eah n ∈ N∗ and i ∈ In, de�ne

Yn,i := Fn(x, ·) ◦ Jn,i. (5.21)The row-wise independene of ((Jn,i)i∈In)n∈N∗ implies that ((Yn,i)i∈In)n∈N∗is an array of row-wise independent random variables. Let j = (j1, . . . , jp) ∈
Ip

n. Using (5.13) and the de�nition (5.15) of Jn,i, we get
P ({Jn,i(ω) = j}) =







m1−p
n if i = j1,

0 if i 6= j1,

(5.22)for all n ∈ N∗ and j ∈ In. Consequently,
〈Yn,i〉 =

1

mp−1
n

mn∑

j2,...,jp=1

Fn(x, (i, j2, . . . , jp)), (5.23)so that
1

mn

mn∑

i=1

〈Yn,i〉 =
1

mp
n

∑

j∈Ip
n

Fn(x, j) = Sn(x). (5.24)Put Xn,i := Yn,i − 〈Yn,i〉. Then, the family ((Xn,i)i∈In)n∈N∗ satis�es theonditions of Proposition 5.1, with An ≤ (2an(x))4. Therefore, for eah �xed
x, by (5.24) and (5.6) one obtains (5.18). For eah x ∈ X, let Ωx be thesubset of Ω where the limit (5.18) holds. De�ne ΩX :=

⋂

x∈X Ωx. Sine X isountable, we have P (ΩX) = 1, so that the argument is omplete.



226 Dorin Marinesu2. Let x ∈ X be �xed. For eah n ∈ N∗ and i ∈ In de�ne
Yn,i :=

(
mn∑

l=1

an,l

)

Fn(x, ·) ◦ c̃n,i. (5.25)The row-wise independene of ((c̃n,i)i∈In)n∈N∗ ensures that ((Yn,i)i∈In)n∈N∗is an array row-wise independent family of random variables. From (5.14),we get
〈Yn,i〉 =

mn∑

l=1

an,lFn(x, l), (5.26)for all i ∈ In and n ∈ N∗. Consequently,
1

kn

kn∑

i=1

〈Yn,i〉 = Sn(x). (5.27)De�ne Xn,i := Yn,i −〈Yn,i〉. From here the argument works similarly as in 1.Case X = Rm1. Observe that the argument with X ountable is valid on the ountable set
Qm of the vetors of Rm with rational omponents. Further, remark that forany x ∈ Rm \Qm and ε > 0, by the ontinuity of F and the monotoniity of
Fn, we an �nd two elements x−, x+ ∈ Qm, with x− ≤ x ≤ x+ suh that

F (x+) − 1

mn

mn∑

i=1

Fn(x+, ·) ◦ Jn,i(ω) − ε ≤

≤ F (x) − 1

mn

mn∑

i=1

Fn(x, ·) ◦ Jn,i(ω) ≤

≤ F (x−) − 1

mn

mn∑

i=1

Fn(x−, ·) ◦ Jn,i(ω) + ε,

(5.28)
for all ω ∈ Ω. Now we approximate x by two sequenes {x+

p

}

p∈N
, {x−

p

}

p∈N
⊂

Qm, with x−
p ≤ x ≤ x+

p . Then, to onlude the proof in the ase X = Rm,we refer to the result in the ase X ountable.
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F (x+) − 1

kn

kn∑

i=1

Fn(x+, ·) ◦ c̃n,i(ω) − ε ≤

≤ F (x) − 1

kn

kn∑

i=1

Fn(x, ·) ◦ c̃n,i(ω) ≤

≤ F (x−) − 1

kn

kn∑

i=1

Fn(x−, ·) ◦ c̃n,i(ω) + ε,

(5.29)
one repeats step by step the arguments of the part 1 to onlude the proofof the part 2. 2The index set Ip

n being de�ned as before, let ((µn,j)j∈Ip
n
)n∈N∗ be a boundedfamily of positive measures on Rm, i.e. there exists some onstant a > 0, suhthat |µn,j| ≤ a for all j ∈ Ip

n and n ∈ N∗ (we reall the notation |µ| := µ(Rm)for some �nite measure µ on Rm).Let (Ω, β, P ) be the probability spae be as in Proposition 5.2 and the arraysof row-wise random variables ((Jn,i)i∈In)n∈N∗ and ((c̃n,i)i∈In)n∈N∗ de�ned by(5.15) and (5.12) respetively.Theorem 5.1 1. Let p ≥ 2. Suppose that there is a positive measure µ on
Rm, absolutely ontinuous with respet to the Lebesgue measure on Rm, suhthat

1

mp
n

∑

j∈Ip
n

µn,j ⇀ µ, as n → ∞. (5.30)De�ne µn,i(ω) := µn,j|j=Jn,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. If
∞∑

n=1

1

m2
n

< ∞, (5.31)then for P−almost all ω,
σ1,n(ω) :=

1

mn

mn∑

i=1

µn,i(ω) ⇀ µ as n → ∞. (5.32)2. Let p = 1. Suppose that there is a positive measure µ on Rm, absolutelyontinuous with respet to the Lebesgue measure on Rm, suh that
mn∑

l=1

an,l · µn,l ⇀ µ, as n → ∞. (5.33)



228 Dorin MarinesuDe�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n → kn ∈ N∗ be a sequene suh that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

< ∞. (5.34)Then, for P−almost all ω,
σ2,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n → ∞. (5.35)Proof. De�ne for eah x ∈ Rm

Fn(x, j) :=

∫

y≤x
dµn, j(y), (5.36)and

F (x) :=

∫

y≤x
dµ(y). (5.37)Then it is su�ient to observe that F and Fn(x, j) satisfy the onditions ofProposition 5.2, (with an(x) = a) and the family {y ∈ Rm |y ≤ x}x∈Rm isdetermining, Ref. [28℄, for the weak onvergene of the measures µn, j. 2Remark 5.1 It an be easily seen that Babovsky Lemma (see Lemma 2 ofRef. [4℄) is a partiular ase of Theorem 5.1.1 with mn = n2, for all n ∈ N∗and with µn, j given by a produt of two point measures.Remark 5.2 As we have mentioned in Setion 1, our purpose is to approx-imate the solutions of (2.18) by sums of Dira measures of the form (2.22).Due to the nonlinear harater of the ollision operators P and S, at eahtimestep, the numerial omplexity inreases dramatially (power-like). Al-though, we are able to redue the omputational e�ort using repeatedly theTheorem 5.1.1.However, exept the ase of (2.18) modelling the one omponent gas withpurely elasti ollisions, a ertain step of the numerial sheme destroys thehomogeneity of the sums of Dira measures, i.e. instead of HSPM approx-imations one obtains WSPM approximations. This di�ulty will be sur-mounted by using Theorem 5.1.2, whih onverts the WSPM approximationsinto HSPM approximations.Theorem 5.1 will be the basi point of the probabilisti part of our numerialsheme for the solutions of (2.18) in the next setion.



Reative Boltzmann Type Equation 2296. The Main ResultFor our numerial sheme, we need a weak form of (4.16), where the funtions
f j

k are replaed by the measures µ̄j
k given by (4.24). Denote

(ϕ, h) :=

∫

R3

ϕ(v)h(v)dv, (6.1)for ϕ ∈ Cb(R
3) and h ∈ L1(R3). From (4.16) using (6.1) we get

(

ϕ, f j
k

)

= (ϕ,Qk(f
j−1)) + (ϕ,Lk(f j−1)) + ∆t · (ϕ,Pk(f j−1)) (6.2)for all ϕ ∈ Cb(R

3), all j = 1, . . . , T∆ and k = 1, . . . ,N . Denoting by
V (Ωβ) :=

∫

Ωβ

dn, (6.3)in (6.2),
(ϕ,Qk(f

j)) :=
∑

α,β∈M

αk

∫

R3|α|×Ωβ

(ϕ ◦ ik,α)(w)×

×
(

Γα,k

V (Ωβ)
− ∆t · rβ,α(w,n)

)

f j
α(w)dwdn,

(6.4)and
(ϕ,Lk(f

j)(v)) :=
∑

α∈U\M

Λα,k

∫

R3|α|
(ϕ ◦ ik,α)(w)f j

α(w)dw. (6.5)In the formulas (6.4) and (6.5), the projetion appliation ik,γ : R3|γ| → R3is de�ned by ik,γ(w) = wk,γk
, for γ ∈ M and k = 1, . . . ,N . Using (3.6) and(3.9) we get

(ϕ,Pk(f j)) =

=
∑

α,β∈M

βk

∫

R3|α|×Ωβ

ϕ ◦ ik,β(uβ,α(w,n))rβ,α(w,n)f j
α(w)dwdn,

(6.6)for all ϕ ∈ Cb(R
3), all j = 0, 1, . . . , T∆ and k = 1, . . . ,N .Now, we are able to formulate (6.2) as an equation for measures. For some

γ ∈ M and j = 0, 1, . . . , T∆, de�ne the measure µ̄j
γ on R3|γ| by

dµ̄j
γ(w) =

⊗

k∈Nγ

γk⊗

i=1

dµ̄j
k(wk,i). (6.7)



230 Dorin MarinesuFrom (6.2-6.6), using spherial oordinates
[0, π)3|β|−5 × [0, 2π) ∋ (θ, ϕ) → n(θ, ϕ) ∈ Ωβ, (6.8)to integrate on eah unit sphere Ωβ, it follows that there are some sets

A ⊂ U , B ⊂ M, the funtions qα,β,k ∈ C(R3|α| × [0, π)3|β|−5 × [0, 2π) ; R+)and Hα,β,k ∈ C(R3|α|× [0, π)3|β|−5× [0, 2π) ; R3) suh that we an write (6.2)in the ompressed form
∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

R3|α|

dµ̄j−1
α (w)×

×
∫

[0,π)3|β|−5
dθ

∫ 2π

0
(ϕ ◦ Hα,β,k)(w, θ, φ)qα,β,k(w, θ, φ)dφ,

(6.9)for ϕ ∈ Cb(R
3) and k ∈ 1, . . . ,N .First, we onsider rβ,α verifying the properties of Lemma 3.1 and we on-strut the algorithm starting from (6.9). Then, we show how the numerialsheme an be improved, if one introdues additional onditions on rβ,α.Now, we write (6.9) in a more onvenient form. Note that, we an �nd some

L ∈ N∗ and1. a family {α(l)}l=1,...,L ⊂ U of multi-indexes,2. a family {q(l)}l=1,...,L ⊂ N∗,3. a family {πl}l=1,...,L of measures absolute ontinuous with respet tothe Lebesgue measure on Rq(l),4. a family {Rk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R+) of funtions,5. a family {hk,l}k=1,...,N ;l=1,...,L ⊂ C(R3|α(l)|+q(l); R3) of funtions,suh that (6.9) an be written
∫

R3

ϕ(v)dµ̄j
k(v) =

L∑

l=1

∫

R3|α(l)|+q(l)

Rk,l(z)(ϕ◦hk,l)(z)d(µ̄j−1
α(l)⊗πl)(z). (6.10)Let (Ω, β, P ) be as in Theorem 5.1.



Reative Boltzmann Type Equation 231a) For eah l = 1, . . . , L, we approximate πl by a onvenient HSPM of theform (2.22), ontaining n-terms, πl,n ⇀ πl as n → ∞ (this an be done, e.g.by means of low disrepany, well distributed sequenes Ref. [6, 27℄).b) The initialization of the sheme is done by giving n-terms HSPM approx-imations ν0
k,n of the initial data µ̄0

k, where k = 1, . . . ,N .) The n-terms HSPM approximations ν1
k,n of µ̄1

k, with k = 1, . . . ,N , result-ing from the sheme, an be obtained as follows:Step 1 (�rst seletion). For eah l = 1, . . . , L and k = 1, . . . ,N we replae
µ̄0

k by ν0
k,n in (6.7) (for γ = α(l), j = 0). Then for eah l = 1, . . . , L, weobtain a sequene of �nite measures ν0

α(l),n ⇀ µ̄0
α(l) as n → ∞, implying

ν0
α(l),n ⊗ πl,n ⇀ µ̄0

α(l) ⊗ πl as n → ∞. Obviously, eah ν0
α(l),n ⊗ πl,n is asum of the form (5.30), ontaining n|α(l)|+1 terms. We apply the seletionalgorithm f. Theorem 5.1.1 (with mn = n and p = |α(l)|+1) to onstrut n- -terms HSPM approximations for all ν0

α(l),n⊗πl,n. Thus, by Theorem 5.1.1,for eah l = 1, . . . , L, there exists some set Ωl ⊂ Ω, with P (Ωl) = 1, suhthat from ν0
α(l),n ⊗ πl,n, one an extrat a n-terms HSPM approximation (ofthe form (5.32)) σ1,l,n(ωl) ⇀ µ̄0

α(l) ⊗ πl as n → ∞, for almost all ωl ∈ Ωl.Step 2 (seond seletion). In the right side of (6.10), written for j = 1,replae eah µ̄0
α(l) ⊗ πl by the orresponding σ1,l,n. Then the right side of(6.10) de�nes the measures Mk,n on R3, for k = 1, . . . ,N and n ∈ N∗,
Mk,n =

1

n

L∑

l=1

n∑

i=1

alRk,l(zl,i,n(ωl))δhk,l(zl,i,n(ωl)), (6.11)onentrated at the points hk,l(zl,i,n(ωl)), where zl,i,n(ωl) ∈ R3|α(l)|+q(l) and
al ≥ 0 are some onstants (for l = 1, . . . , L and i = 1, . . . , n). By Step 1, itfollows that

Mk,n ⇀ µ̄1
k as n → ∞, (6.12)for all ω1 ∈ Ω1, ω2 ∈ Ω2 , . . . , ωL ∈ ΩL and for k = 1, . . . ,N . Now, it anbe easily seen that (6.11) an be written as WSPM, ontaining, at most L ·nterms.As we mentioned before, we want to obtain HSPM approximations at the endof eah step of time. We �x, for the moment, some ω1 ∈ Ω1, . . . ,ω

L ∈ ΩL, sothat (6.12) holds. We apply the seletion algorithm formulated Theorem 5.1.2



232 Dorin Marinesufor eah �xed k = 1, . . . , N , as follows. For l = 1, . . . , L · n de�ning
ι(l) :=

[[
l − 1

L

]]

+ 1,

λ(l) :=

[[
l − 1

n

]]

+ 1,

(6.13)put
an,l =

1

n
aλ(l)Rk,λ(l)(zλ(l),ι(l),n(ωλ(l))). (6.14)We hoose mn = L · n and kn = n. Then, for eah k = 1, . . . ,N , there existssome ΩL+k ⊂ Ω, with P (ΩL+k) = 1, suh that from Mk,n, we obtain a n--terms HSPM approximation (of the form (5.35)) σ2,k,n(ωL+k;ω1, . . . ,ωL) ⇀

µ̄1
k as n → ∞, for all ωL+k ∈ ΩL+k. Set ν̄1

k,n(ω1, . . . ,ωL+k) :=

σ2,k,n(ωL+k;ω1, . . . ,ωL). Therefore for eah µ̄1
k in (6.10), we obtain a or-responding n-terms HSPM approximation ν̄1

k,n ⇀ µ̄1
k as n → ∞, for all

ω1 ∈ Ω1, . . . ,ω
L+k ∈ ΩL+k and for all k = 1, . . . ,N .e) The proedure an be repeated, with the entering data ν̄1

k,n, to obtainHSPM approximations ν̄2
k,n(ω1, . . . ,ω2L+N+k) of µ̄2

k for k = 1, . . . ,N .f) Repeating this proedure over and over, after j timesteps, we providethe n-terms HSPM approximations ν̄j
k,n(ω1, . . . ,ωjL+(j−1)N+k) ⇀ µ̄j

k for all
ω1 ∈ Ω1, ω2 ∈ Ω2,. . .,ωjL+(j−1)N+k ∈ ΩjL+(j−1)N+k, all j = 1, . . . , T∆ andall k = 1, . . . , N , where Ωl ⊂ Ω with P (Ωl) = 1, for l = 1, . . . , T∆(L + N).Now, observe that we an �nd a family {Ql}l∈N∗ of measurable maps Ql :
Ω → Ω, with P (Q−1

l (A)) = 1, for all A ⊂ Ω with P (A) = 1. For instane,we an onsider U, V : Ω → Ω, given by
U(ω) = U(ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω1, ω3, . . . ω2n−1, ω2n+1, . . .),(6.15)
V (ω) = V (ω1, ω2, . . . , ω2n−1, ω2n, . . .) := (ω2, ω4, . . . , ω2n, ω2n+2, . . .),(6.16)respetively, for all ω = (ω1, ω2, . . . , ω2n−1, ω2n, . . .) ∈ Ω. Then it is su�ientto put Q1 = U and Ql := U ◦ V l−1, l = 2, 3, . . . Let

Ω∆t :=

T∆(L+N)
⋂

l=1

Q−1
l (Ωl). (6.17)Sine P (Q−1

l (Ωl)) = 1 for all l = 1, . . . , T∆(L + N), learly P (Ω∆t) = 1.De�ning νj
k,n(ω) := ν̄j

k,n(Q1(ω), . . . , QjL+(j−1)N+k(ω)) for all ω ∈ Ω, j =
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1, . . . , T∆, k = 1, . . . , N , it follows that νj

k,n(ω) ⇀ µ̄j
k as n → ∞, for all

ω ∈ Ω∆t, j = 1, . . . , T∆, k = 1, . . . ,N .In partiular, if D(·, ·) is the disrepany introdued in Setion 2., then
lim

n→∞
max

k=1,...,N
max

j=1,...,T∆

D
(

νj
k,n(ω), µ̄j

k

)

= 0, (6.18)for almost all ω ∈ Ω.All these and Corollary 4.1 lead to our main result.Let f(t) be the solution of equation (3.18), provided by Theorem 3.1 andlet µt
k be given by dµt

k(v) := fk(t,v)dv, for all t ≥ 0 and k = 1, . . . ,N .Consider some family {∆tp}p∈N
of disretization timesteps as in Setion 4..For eah ∆tp and for the initial data µ̄0

k, onsider the solutions µ̄j
k,p of (6.10),with j = 1, . . . , T∆ and k = 1, . . . ,N . For eah µ̄j

k,p, denote by νj
k,p,n theorresponding n-terms HSPM approximation obtained by the above sheme.Similar to (2.25), we introdue the following notation T∆p := [[T/∆tp]], forall p ∈ N.Theorem 6.1 For eah sequene of timesteps ∆tp → 0 as p → ∞, there isa sequene of positive integers n(p) → ∞ as p → ∞, suh that

lim
p→∞

max
k=1,...,N

max
j=1,...,T∆p

D
(

νj
k,p,n(p)(ω), µ

j·∆tp
k

)

= 0, (6.19)for almost all ω ∈ Ω.Proof. Let
dp,n(ω) := max

k=1,...,N
max

j=1,...,T∆p

D
(

νj
k,p,n(ω), µ̄j

k,p

)

. (6.20)Consider some positive sequene εp ↓ 0 as p → ∞. Using (6.18), for eah p,we obtain that
lim

n→∞
P (dp,n > εp) = 0. (6.21)Then, for eah p, we an hoose n = n(p), suh that

P (dp,n(p) > εp) ≤
1

p2
. (6.22)Consequently,

∞∑

p=1

P (dp,n(p) > εp) < ∞. (6.23)



234 Dorin MarinesuThen, for almost all ω ∈ Ω,
lim

n→∞
dp,n(p)(ω) = 0. (6.24)Now, by Corollary 4.1, we onlude the proof of the Theorem. 2This theorem represents a spae homogeneous reative orrespondent to themain result in the Babovsky-Illner simulation sheme for the lassial Boltz-mann equation (Theorem 7.1 of Ref. [5℄).Note that the numerial e�ort of the method is at most, O(n log n) (thedominant ontribution being introdued by the random seletions of Theo-rem 5.1.2, i.e. (seond seletion) Step 2). However, under additional ondi-tions on rβ,α, the sum (6.10) the numerial e�ort an be improved.We onsider the following simple ase. Denote Dαβ :=

{
w′ ∈ R3|α||0 <

Wα(w′) − 2−1(
∑N

n=1 αnmn)Vα(w′)2 −∑N
n=1 βnEn

} (we reall that Wα(w)is the energy de�ned in Setion 2). By Lemma 3.1, rβ,α(w,n) ≥ 0 on
Dαβ ×Ωβ. Suppose that in (6.2 -6.6), we have rβ,α(w,n) > 0 on Dαβ ×Ωβfor all α, β ∈ M. Taking into aount the form of the element dn on Ωβ inspherial oordinates (when (6.9) is obtained from (6.2 -6.6)) it follows easilythat in (6.9), eah funtion qα,β,k(w, θ, φ) an be onstruted suh that theset {θ|qα,β,k(w, θ, φ) = 0} is �nite and does not depend on the hoie of
(w, φ) ∈ Dαβ × [0, 2π). Consequently, for eah β ∈ B, there is a measurableset Θβ ⊂ [0, π)3|β|−5 suh that qα,β,k(w, θ, φ) > 0, for all w ∈ Dαβ, θ ∈ Θβ,
φ ∈ [0, 2π), α ∈ A. Denote

Ik(φ;w, θ) :=

∫ φ

0
qα,β,k(w, θ, ρ)dρ, φ ∈ [0, 2π) . (6.25)Then, for all w ∈ Dαβ, θ ∈ Θβ, �xed, (6.25) de�nes an invertible map

[0, 2π) ∋ φ → Ik(φ;w, θ) ∈ [0, Ik(2π;w, θ)) , (6.26)with the inverse I−1
k . In eah integral of (6.9), with respet to dφ, we performthe hange of variable φ = I−1

k (y;w, θ). De�ne
H̃α,β,k(w, θ, y) = Hα,β,k(w, θ, I−1

k (y;w, θ)). (6.27)We an hoose some measurable sets
Cαβ ⊆ R3|α| × [0, π)3|β|−5 × R+, for α ∈ A,β ∈ B,suh that, (6.9) takes the following form

∫

R3

ϕ(v)dµ̄j
k(v) =

∑

α∈A,β∈B

∫

Cαβ

(ϕ ◦ H̃α,β,k)(w, θ, y)dµ̄j−1
α (w)dθdy. (6.28)



Reative Boltzmann Type Equation 235For appliations it is important to observe that the onlusion remains thesame if weaker onditions are imposed on rβ,α, e. g. if one supposes that foreah α,β ∈ M, rβ,α(w,n) > 0 on Dαβ × Ωβ exept a ountable set, et.Obviously, (6.28) has the form (6.10), but has the important property thatif µ̄j−1
k , for k = 1, . . . , N are HSPM, after Step 1 (�rst seletion) the outputmeasures are also a HSPM.In order to obtain µ̄j

k, for k = 1, . . . ,N as HSPM with the same number ofterms as µ̄j−1
k , we an apply the following immediate orollary of Theorem5.1.2, whih introdues a numerial omplexity of only O(n).Corollary 6.1 Suppose that there is a positive measure µ on Rm, absolutelyontinuous with respet to the Lebesgue measure on Rm, suh that

1

mn

mn∑

l=1

µn,l ⇀ µ, as n → ∞. (6.29)De�ne µn,i(ω) := µn,l|l=c̃n,i(ω)
for all ω ∈ Ω, all i ∈ In and n ∈ N∗. Let

N∗ ∋ n → kn ∈ N∗ be a sequene suh that kn ≤ mn, for all n ∈ N∗ and
∞∑

n=1

1

k2
n

< ∞. (6.30)Then, for P−almost all ω,
σ3,n(ω) :=

1

kn

kn∑

i=1

µn,i(ω) ⇀ µ as n → ∞. (6.31)Further we an proeed as in the sheme onstruted before, but withoutapplying Theorem 5.1.2. Instead we apply Corollary 6.1. The sheme reduesto iterations alternating with seletions, and the onlusion of Theorem 6.1remains valid. The numerial e�ort beomes O(n).Finally remark that if (2.18) redues the lassial Boltzmann equation, forthe one-omponent simple gas, then the sum in the r.h.s of (6.28) an beompressed to a unique term as in Ref. [4℄. In general, this is not possible inthe ase of gas mixtures.7. Conluding RemarksFrom the above analysis, it follows that besides a onvenient existene theory,only the onservation of the total mass is needed to introdue the numer-



236 Dorin Marinesuial sheme desribed here. The other properties (e.g. detailed balane,H-Theorem) of the Wang-Chang-Uhlenbek-de Boer and Ludwig and Heilsystem of equations play no role in this algorithm. Note that, the numerialsheme an also be used and when the detailed balane does not hold, e.g.,for models where we ignore some reombination proesses (as in the situationwhen we onsider the ollisional dissoiation, but neglet the reombinationby triple ollisions Ref. [24℄).We disuss possible generalizations as well as some limitations of the results.10 In the ase of non-reating gas mixtures one an obtain similar numerialshemes for the spae-dependent equation (2.10), in the frame of the theoryof existene of solutions of Ref. [17℄. This an be done by adapting diretlythe spatial ell homogenization method of Ref. [5℄.20 In the ase of reating gas mixtures, one an also obtain similar numerialshemes for the spae-dependent equation (2.10). To this end, the adaptationof the spatial ell homogenization method of Ref. [5℄ is not as straightforwardas it appears. This is due to the ollisions that produe new partiles in agiven spaial ell. For this purpose, we need �to establish� the spae positionin the ell for eah �new born� partile and at the same time, to keep theontrol on onvergene.30 Assumption (3.13) replaes in the reative model the boundedness ondi-tion on the ollision law used in Ref. [4, 5℄. This ondition is essential forthe ontrol of the positivity of the solutions in the time-disretized equation(4.1). Indeed, Assumption (3.13) is restritive from an analytial point ofview. Nevertheless, for pratial purposes, it is satisfatory for those mod-els where the high energy-tail of the gas onsists of very few moleules (seeRef. [7℄).The existene of unique positive solutions to (2.10) and (2.18) an be provedfor more general transition funtions Kα,β (see Ref. [18℄). The simulationsheme an be also extended in this respet, but the (possible) singulari-ties of Kα,β must not destroy the ontinuity of the funtions rα,β and pα,β(neessary for the onvergene in the weak sense of the measures).40 One an improve the approximation algorithm as follows. Instead ofassigning to eah speies the same number of terms in HSPM, one an �x agiven number of terms n for all the speies. Then, when we apply the seletionalgorithm given by Theorem 5.1.2 (or Corollary 6.1), we an alloate to eahspeies a number of terms �proportional� to its mass, suh that the totalnumber of terms for all the speies to be (approximative) n. The same is alsovalid for the approximation of the initial data. By example if we designateby nk the number of terms orresponding to the speies k = 1, . . . ,N , then
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nk :=



















n ·
mk

∫

R3

f0
k (v)dv

N∑

l=1

ml

∫

R3

f0
l (v)dv



















. (7.1)50 In this numerial sheme there are three essential soures of approximationerrors.1. The errors from the approximation of the initial data.2. The errors produed by the time disretization.3. The errors introdued by stohasti seletions.The ontribution of the stohasti errors over the time disretized sheme anbe illustrated as it follows. Giving, for the hemial speies k = 1, . . . ,N , aninitial data, say ν0,0
k of the form (2.22) the algorithm follows the omputa-tional hain

ν0,0
k → ν1,1

k → ν2,2
k → . . . → νT∆−1,T∆−1

k → νT∆,T∆

k (7.2)orresponding to the diagonal of the sheme
ν0,0

k −→ ν0,1
k −→ ν0,2

k −→ ... −→ ν0,T∆−1
k −→ ν0,T∆

k
≀≀

ν1,1
k −→ ν1,2

k −→ ... −→ ν1,T∆−1
k −→ ν1,T∆

k

≀≀
ν2,2

k −→ ... −→ ν2,T∆−1
k −→ ν2,T∆

k... ...
≀≀

νT∆−1,T∆−1
k −→ νT∆−1,T∆

k

≀≀
νT∆,T∆

k (7.3)Here, the horizontal hains represent the exat iterations of the time dis-retized equations, suh that for eah j = 0, . . . , T∆−1 and p = j+1, . . . , T∆the measure νj,p
k is given as (p − j) - th iteration for the input data νj,j

k . Inaddition, νj,j
k is provided by random seletion form νj−1,j

k , for j = 1, . . . , T∆.The above omputational hain shows that one an expet that the errors dueto the random seletions inrease when the timestep ∆t dereases. Indeed,



238 Dorin Marinesusuh a behavior was observed in numerial appliations Ref. [13, 12℄. Sometheoretial estimations on the errors Ref. [12℄ prove that the probabilistierrors ε behave like
ε ∼ 1

∆t · √n
. (7.4)Consequently, when we derease the timestep (to improve the errors for thetime disretization, Proposition 4.1.b) we shall inrease the number of termsfor the initial approximation, in order to keep the stohasti errors in aept-able limits.8. AppendixProof of Lemma 3.1.Let n ∈ N∗ and let a1, . . . , an > 0, be some onstants. Consider the positivequadrati form de�ned on R3n by

T := T (v1, . . . ,vn) =

n∑

i=1

aiv
2
i , (8.1)where vi ∈ R3, for all i = 1, . . . , n. One introdues the Jaobi-type transfor-mation

R3n ∋ (v1, . . . ,vn) → (V , ξ) ∈ R3 × R3n−3, (8.2)where
V := (

n∑

i=1

ai)
−1

n∑

i=1

aivi, (8.3)and ξ := (ξ1, . . . , ξn−1), with
ξi :=








1

ai+1
+

1
i∑

j=1
aj








− 1
2






vi+1 −

i∑

j=1
ajvj

i∑

j=1
aj








, (8.4)for i = 1, . . . , n − 1.By (8.2), the form T takes the form
T = T (V , ξ) =

(
n∑

i=1

ai

)

· V 2 + ξ2. (8.5)
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Wβ,α(w) := Wα(w) − 1

2

(
N∑

n=1

αnmn

)

· Vα(w)2 −
N∑

n=1

βnEn, (8.6)and
tβ,α(w) :=







[Wβ,α(w)]1/2 if Wβ,α(w) ≥ 0,

0, otherwise. (8.7)Now, onsider the form on R3|β|,
Tβ(u) := Wβ(u) −

N∑

n=1

βnEn (8.8)and a orresponding Jaobi-type transformation as in (8.2),
R3|β| ∋ u → (V , ξ) ∈ R3 × R3|β|−3, (8.9)with ξ := (ξ1, . . . , ξ|β|−1), where ξi ∈ R3, for all i = 1, . . . , |β| − 1. Denote by

∆β the Jaobian determinant of the transformation. Let ξ be represented inspherial oordinates on R3|β|−3, ξ = rn, with (r,n) ∈ [0,∞)×Ωβ. Considerthe inverse map
R3 × R+ × Ωβ ∋ (V , r,n) → u(V , r,n) ∈ R3|β| (8.10)of the transformation u → (V , r,n) and set

uβα(w,n) := u(V , r,n)| V =Vα(w),r=tβ,α(w). (8.11)Obviously, for all α,β ∈ M suh that (2.6) is satis�ed, we have
Vβ(uβ,α(w,n)) = Vα(w) Wβ(uβ,α(w,n)) = Wα(w). (8.12)De�ne
pβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kβ,α(uβα(w,n),w),

rβα(w,n) := 2−1∆β · tβ,α(w)3|β|−5Kα,β(w,uβα(w,n)).

(8.13)From (8.12), one obtains property i) of the Lemma 3.1. Property ii) followsfrom the de�nitions introdued in (8.7) and (8.13).



240 Dorin MarinesuThe limits (3.6) and (3.7), an be obtained from (3.3) and (3.4). We startthe omputation with the integral upon du, by hoosing (V , r,n) as newintegration variables suh that u = u(V , r,n). Sine fα ∈ Cc(R
3|α|) and

fβ ∈ Cc(R
3|β|), using the properties of Kα,β, δ3

ε , δη and uβ,α, we obtain(3.6) and (3.7) by repeated appliation of Lebesgue's dominated onvergenetheorem.Using a similar argument as in the proof (3.6), for all f ∈ Cc(R
3|β|) and

ϕ ∈ Cb(R
3|α|), we get

lim
η→0

lim
ε→0

∫

R3|α|×R3|β|
ϕ(w)σε,η

β,α(u,w)f(u)dwdu

=

∫

R3|α|×Ωβ

ϕ(w)pβ,α(w,n)f(uβ,α(w,n))dwdn,

(8.14)giving the left side of (3.9). To obtain the right side of (3.9), we repeatthe proedure, but �rst we perform the integral upon dw in the left sideof (8.14) (using the hange of variables indued by the Jaobi-type trans-formation R3|α| ∋ w → (V , ξ) ∈ R3 × R3|α|−3, assoiated to the form
Tα(w) = Wα(w) − ∑N

n=1 αnEn, and then taking the representation of
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