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170 Stelian Ion1. IntrodutionWe report some mathematial results on the numerial approximation of alass of nonlinear di�usion problems. We are onerned with the onvetion-di�usion-reation equation (CDRE)
∂b(u)

∂t
− div (κ(u)∇u+ f(u)) = g(t, x, u), (1.1)and generalized porous medium equation (GPME),

∂u

∂t
−△φ(u) = r(u), (1.2)where div and ∇ are taken with respet to x ∈ R

n; △ = div∇ is the Laplaeoperator and u(t, x) is the salar unknown funtion.There are some reasons to work with two di�erent equations. The bothequations quantify di�usion phenomena but in di�erent manner. The dif-fusion �ux is modeled by κ(u)∇u in the CDRE and by gradφ(u) in theGPME. In some ases the two forms an be interhanged but in other asesis not possible. For example, if κ(·) is an integrable funtion one an put
φ(u) =

∫ u
κ(s)ds. Although in almost any physialy interesting ases thistransformation an be done the alulation of the funtion φ, espeially whenone deals with numerial approximation, an be a hard problem. In suh aase is reomandable to use the CDRE form. On the other hand if φ(·) isa di�erentiable funtion one has κ(u) = φ′(u). If φ(·) is onlya ontinuousfuntion it is not posible to evaluate the di�usion oe�ient.The outline of the paper follows.In Setion 2 we delineate some mehanial problems and we will make om-ments on the onstitutive funtions.In Setion 3 we present the essential fats relative to solvability of the Cauhyproblem. We revise the onepts of weak solution and weak entropy solutionand we will present a omparison riterion.Setion 4 is devoted to the numerial approximation.The numerial solution of the Cauhy problem is obtained in two steps. Inthe �rst step a system of ordinary di�erential equation is set up and in theseond step this ODE system is numerialy integrated.The mathematial properties of the ODE model are strongly determined bythe numerial di�usion �ux and the numerial onvetive �ux. We will de�nea numerial approximation of the di�usion �ux and a numerial approxima-tion of the onvetive �ux that lead to a quasimonotone ODE system. Using



Diffusion Proesses 171this property we will show that there exists a omparison priniple and wewill provide the bounds for the solutions of the disrete model that are inde-pendent of the mesh size of triangulation.In Setion 5 we give two numerial algorithms to solve GPME equationand Rihards' equation respetively. To integrate the ODE system whihapproximate the GPME equation we will use impliit Euler method and wewe will setup an iterative algorithm to solve the system of nonlinear algebraiequation that results.To solve Rihards' equation we use an adaptive time marhing sheme andan inexat Newton type method to solve nonlinear equation.2. Physial ModelsThe mathematial models (1.1) and (1.2) over a wide range of physialphenomena suh that: heat transfer, in�ltration of water through porousmedia, transport of ontaminant in porous media, the �ow of the gas throughporous media, plasma radiation, to remaind a few.The simplest example of the model problem (1.1) is the linear alori equa-tion:
∂u

∂t
= div(κ∇u), (2.1)where u models the temperature and κ > 0 represents the thermal on-dutivity. Here it is supposed that the alori �ux obeys the Fourier law

q = −κ∇T and that the thermal ondutivity is independent of tempera-ture. The ondition κ > 0 re�ets the fat that heat propagates from highto lower temperature.If the temperature of the body is high enough one must onsider the radi-ation e�ets and the temperature dependene of thermal ondutivity. Forexample, if the power radiated by a body to environment follows the Stefan-Boltzmann law of the forth powers, for both the body and the medium, theheat equation beomes [8℄
∂u

∂t
= div(κ(u)∇u) − kr(u

4 − u4
e). (2.2)The unsaturated water �ow through porous media is desribed by the wellknown Rihards' equations [7℄

∂θ(h)

∂t
− div(K(h)∇h+ e3K(h)) = 0, (2.3)



172 Stelian Ionwhere θ represents the relative volumetri water ontent, h represents thepressure head, K is the hydrauli ondutivity and e3 is the upward vertialversor. The funtion θ(h) is a ontinuous positive funtion and it is stritlyinreasing funtion on the interval (−∞, 0] and a onstant funtion on h > 0.Also the hydrauli ondutivity is a ontinuous positive funtion stritly in-reasing on (−∞, 0] and a onstant funtion on the set h > 0. The hydrauliondutivity beomes zero as h approahes −∞.The transport of ontaminant in porous media is governed by an equation ofthe form [9℄, [10℄
∂ (C + λCp)

∂t
+ v · ∇C = div(D∇C) + g(x,C), (2.4)where C represents the mass onentration of the ontaminant, v denotesthe veloity of the �uid �ow, supposed to be onstant. The term λCp, λ ≥ 0takes into aount the adsorption reation by means of Freundlih isotherm.The absorption reation is desribed by the term g(x,C) that usually is givenby

g = −αCq (2.5)with α > 0, q > 0 (the order of the reation).An extremely used form of the GPME is given by the
∂u

∂t
= △um + λur. (2.6)For m > 1 (slow di�usion) the equation models the �ow of the gas throughporous medium for m < 1 (fast di�usion) the model is enountered in plasmaphysis, kineti theory and solid state.The Stefan problem an be written as a GPME equation with

φ(u) = λ

{
max{0, (u − 1)}, if u ≥ 0,
u, if u < 0.3. Mathematial SettingsIn this setion we review some results onerning the solution of the nonlineardi�usion equations.The onstitutive funtions are supposed to satisfy:



Diffusion Proesses 173A1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ b : R → R, is a continuous and nondecreasing function,
κ : R → R+, is a continuous and nondecreasing function,
f : R → R

n, is a local Lipschitz vector function,
g : R+ × Ω × R → R, is a Caratheodory function.A2 ∣∣∣∣∣∣∣∣ φ ∈ C([0,∞)) ∪ C1((0,∞)), φ(0) = 0, nodecreasing function,
r ∈ C([0,∞)), r(0) = 0.We onsider the Cauhy problem for both equations. The domain Ω on whihthe problem is onsidered satis�es:A3 ∣∣∣∣ Ω ∈ R

n, is an open, bounded and connected set.The initial onditions and boundary data are written as
{
u(0, x) = u0(x), x ∈ Ω.
u = uD, t > 0, x ∈ ∂Ω.

(3.1)We assume thatA4 ∣∣∣∣∣∣∣∣ u0 ∈ L∞(Ω),
uD ∈ L2((0, T ) : W 1,2(Ω)) ∩ L∞((0, T ) × Ω).Cauhy problem for CDRE. The Cauhy problem is de�ned by theequation (1.1) in a domain Ω in R

n, the initial ondition and boundary data(3.1).Due to the nonlinear paraboli term b(u) and nonlinear di�usion oe�ient
κ(u) the problem (1.1) an be a degenerate problem and onsequently thereexists no lassial solutions.The notion of weak solution for the problem of the type (1.1) was introduedby Alt and Lukhaus in [1℄. By imposing some proper onditions on theonstitutive funtions, boundary data and initial onditions, the authors wereable to prove the existene of the weak solution in the ase of the paraboli-ellipti degeneration, b(u) is a onstant funtion on some interval of positivemeasure and the di�usion oe�ient is a strit positive funtion.Definition 3.1 (Weak Solution (H. W. Alt and S. Lukhaus)) A measurablefuntion u is a weak solution of the Cauhy problem (1.1) and (3.1) if itsatis�es:1) u− uD ∈ L2((0, T ) : W 1,2

0 (Ω)),2) b(u) ∈ L∞((0, T ) : L1(Ω)) and ∂b(u)

∂t
∈ L2((0, T ) : W−1,2(Ω)) with initial



174 Stelian Ionvalues b(u0), that is,
T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(b(u) − b(u0))
∂v

∂t
dxdt = 0 (3.2)for every v ∈ L2((0, T ) : W 1,2

0 (Ω)) ∩W 1,1((0, T ) : L1(Ω)), v(T, ·) ≡ 03) κ(u)∇u, g(·, ·, u(·, ·)) ∈ L2((0, T ) × Ω), f(u) ∈
(
L2((0, T ) × Ω)

)n and usatis�es the di�erential equation, that is,
T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(κ(u)∇u+ f(u)) · ∇vdxdt =

T∫

0

∫

Ω

g(t, x, u)vdxdt(3.3)for every test funtion v ∈ L2(0, T : W 1,2
0 (Ω)).In the paper [7℄ Carrillo extrapolates the onept of entropy solution intro-dued by Kruzhkov in theory of hyperboli PDE [14℄. He showed that thereexists a unique weak entropy solution of the Cauhy problem with homo-geneous boundary data, uD = 0, even in the ase of paraboli-hyperbolidegeneration. Suh kind of degeneration appears when the di�usion oe�-ient is a null funtion on some interval with the positive measure.The weak entropy solution is a weak solution that in addition satis�es anintegral entropy inequality.Let us introdue the funtion

K(u) =

u∫

0

κ(s)ds,Definition 3.2 (Weak entropy solution. Homogeneous ase (Carrillo)) Anweak entropy solution of the Cauhy problem (1.1) and (3.1) with uD = 0, is



Diffusion Proesses 175a weak solution whih in addition satis�es the entropy inequality
T∫

0

∫

Ω

H0(u− s)
(

(∇K(u) + f(u) − f(s)) · ∇v−

− (b(u) − b(s))
∂v

∂t
− gv

)
dxdt−

∫

Ω

(b(u0) − b(s))+v(0)dx ≤ 0,

T∫

0

∫

Ω

H0(−s− u)
(

(∇K(u) + f(u) − f(−s)) · ∇v−

− (b(u) − b(−s))
∂v

∂t
− gv

)
dxdt−

∫

Ω

(b(u0) − b(−s))−v(0)dx ≥ 0,(3.4)for any (s, v) ∈ R ×
(
L2((0, T ) : W 1,2(Ω)) ∩W 1,1((0, t) : L∞(Ω))

) suh that
s ≥ 0, v ≥ 0 and v(T ) = 0.In the entropy onditions the following notations:

H0(s) =

{
1, if s > 0
0, if s ≤ 0

s+ =

{
s, if s > 0
0, if s ≤ 0were used. If κ > 0 then the two de�nitions of the weak solution oinideand any weak solution is an entropy solution [7℄.To deal with nonhomogeneous Dirihlet onditions for degenerate problemone supplementary di�ulty is to give a sense to boundary onditions. In thepaper [18℄ C. Masia, A. Porreta and A. Terraina proved the existene of theweak entropy solution of the Cauhy problem with nonhomogeneous Dirihletdata. Their de�nition is as follows. Denote by QT the diret produt QT =

(0, T ) × Ω. Also we use the notations:
E(u, v) = ∇ |K(u) −K(v)| + sgn(u− v)(f(u) − f(v)),

B(u, v,w) = E(u, v) + E(u,w) − E(v,w).The domain Ω is suh that there exists a C2�overing of ∂Ω, A = {Ui}i=1,m,of open sets suh that ∂Ω ⊂ ∪U i and, in some loal oordinates x = (x′, xn),there exists a C2 funtion xn = αi(x
′) suh that Ui ∩ ∂Ω = {xn = αi(x

′)},
Ui ∩ Ω = {xn < αi(x

′}.A sequene {ϑδ} of C2(Ω) ∩ C0(Ω) funtions is named a boundary layersequene if
lim

δ→0+
ϑδ = 1, pointwise in Ω, 0 ≤ ϑδ ≤ 1, ϑδ = 0 on ∂Ω.



176 Stelian IonDefinition 3.3 (Weak Entropy Solution. Nonhomogeneous ase (Masia etal.)) A funtion u ∈ L∞((0, T )×Ω) is an entropy solution of Cauhy problem(1.1) and (3.1) if1) (regularity)
K(u) ∈ L2((0, T ) : W 1,2(Ω))and for any U ∈ A, and any positive ψ ∈ C∞

0 (U) we have
(
− |u− uD|ψ, E(u, uD)ψ

)
∈ DM(Q)2,where DM(Q)2 is the set of divergene-measure vetor �elds in Q.2) (entropy ondition in interior of QT )

∫

QT

{
|b(u) − b(s)|

∂v

∂t
− E(u, s)∇v + gv

}
dxdt ≥ 0for any v ∈W 1,2

0 (QT ) and v ≥ 0 and s ∈ R.3) (initial ondition)
lim

t→0+

∫

Ω

|u(t, x) − u0(x)| dx = 04) (boundary onditions) in sense of trae in L2((0, T ) : W 1,2(Ω)) we have
K(u) = K(uD), t > 0, x ∈ ∂Ω,and for any boundary layer sequene ϑδ, and for any U ∈ A, and any positive

ψ ∈ C∞
0 (U) we have

lim inf
δ→0

∫

QT

B(u, s, uD)∇ϑδξψdxdt ≥ 0, ∀s ∈ R,for any ξ ∈ L2((0, T ) : W 1,2(Ω)), ξ ≥ 0.Cauhy problem for GPME. The Cauhy problem onsists in theequation (1.2) and the data (3.1).The existene of the weak solution was proved by many authors see for ex-ample, [4℄, [25℄.



Diffusion Proesses 177Definition 3.4 (M. Borelli and M. Ughi) A nonnegative funtion u de�nedon the Ω × [0, T ] is said to be a weak solution of the Cauhy problem (1.2)and (3.1) if1) u ∈ C
(
[0, T ];L1(Ω)

)
∩ L∞([0, T ] × Ω),2) for any test funtion η ∈ C1,0([0, T ]×Ω)∩C2,1((0, T ]×Ω) suh that η ≥ 0on (0, T ] × Ω) and η = 0 on (0, T ] × ∂Ω u satis�es the integral identity:

∫

Ω

u(t, x)η(t, x)dx =

∫

Ω

u0(x)η(0, x)dx −

t∫

0

∫

∂Ω

φ(uD)
∂η

∂n
+

+

t∫

0

∫

Ω

[u∂tη + φ(u)△η + r(u)η] dtdx

(3.5)for any 0 ≤ t ≤ T .The presene of the reation term and nonlinearity in the equation (1.2)generate interesting phenomena namely, extintion time or blow up of thesolution and the �nite speed of propagation of disturbane [25℄.Suh problems have been studied by several authors: Borelli-Ughi [4℄, Ferreira-Vasquez [13℄, Leoni [16℄, Levin-Saks [17℄, Peletier and Z. Junninig [23℄. Inthe ase r(u) = 0 and φ(s) = sm, 0 < m < 1, uD = 0 there exists an ex-tintion time Te suh that the problem (1.2 has a unique lassial solution,positive on Ω × [0, Te] and null for t ≥ Te, see [17℄.For generalized fast di�usion with strong absorption and Ω = R
2 there alsoexists an extintion time and the support of the solution is bounded for anytime t > 0, [4℄.In the power ase, φ(s) = sm, r(s) = λps, λ > 0, the numerial methods toompute the solution of the similar problem (1.2) have been proposed byM.-N. Le Roux, [21℄ the ase m > 1, M.-N. Le Roux and P.-E. Mainge, [22℄.Pointwise omparison priniple. For both Cauhy problems CDREand GPME there exists several omparison riteria [1℄, [10℄, [25℄. We willgive here a result that allows one to ompare two solutions with respet totheir boundary and initial onditions.For any two real funtions f(x) and g(x) we write f ≤ g if f(x) ≤ g(x),∀x ∈

Ω. In addition to assumptions A1 the onstitutive funtions in CDRE prob-lem satisfy



178 Stelian IonA1′ ∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

(1)κ : R → R+, κ(u) ≥ η,

(2) |κ(u1) − κ(u2)| < C|u1 − u2|
γ1 , γ1 >

1

2
, ∀u1, u2 ∈ R,

(3) |f (u1) − f(u2)| < C|u1 − u2|
γ2 , γ2 >

1

2
, ∀u1, u2 ∈ R,

(4) g(u1) − g(u2) < C(b(u1) − b(u2)), for u1 > u2.Theorem 3.1 (Comparison Theorem) Let (uD, u0), (ûD, û0) be suh that
uD ≤ ûD, u0 ≤ û0. Let u and û) be two bounded weak solutions of the Cauhyproblem (1.1), (3.1) assoiated to (uD, u0) and (ûD, û0) respetively. Assume,in addition, that

b(u)t, b(û)t ∈ L1((0, T ) × Ω).Then
u ≤ ûon (0, T ) × Ω.Proof. We follow the main ideas from [1℄. As in [1℄ for any δ > 0 let

Ψδ(α) = min(1,max(0, α/δ)). The funtion w = Ψδ(u − û) belongs to
L2(0, T : W 1,2

0 (Ω)) and its gradient is given by
∇w =

{ 1

δ
(∇u−∇û) , if 0 < u− û < δ

0, otherwiseSet w as test funtion in (3.3). Then
t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt+
1

δ

t∫

0

∫

Ωδ

(κ(u)∇u− κ(û)∇û)∇(u− û)dxdt

︸ ︷︷ ︸
I1

+

+
1

δ

t∫

0

∫

Ωδ

(f(u) − f(û)) · ∇(u− û)dxdt

︸ ︷︷ ︸
I2

=

t∫

0

∫

Ω

(g(u) − g(û))wdxdt, (3.6)where Ωδ := {x|0 < h− ĥ < δ}. The integral I1 an be rewritten as
I1 =

t∫

0

∫

Ωδ

κ(u)||∇(u − û)||2dxdt+

t∫

0

∫

Ωδ

(κ(u) − κ(û))∇ũ · ∇(u− û)dxdt.



Diffusion Proesses 179Using Young inequality, ab ≤ C(ǫ)p−1ap + ǫq−1bq, and A1′-(1) we obtain
I1 ≥

(
η −

ǫ

2

) t∫

0

∫

Ωδ

||∇(u− û)||2dxdt−
C(ǫ)

2

t∫

0

∫

Ωδ

(κ(u) − κ(û))2||∇ũ||2dxdtand
I2 ≥ −

ǫ

2

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt−
C(ǫ)

2

t∫

0

∫

Ωδ

||f(u) − f(û)||2dxdt.Then
I1 + I2 ≥ (η − ǫ)

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt− Cδ2γ

T∫

0

∫

Ωδ

(||∇ũ||2 + 1)dxdt.From A1′(4) the prodution an be estimate as
t∫

0

∫

Ω

(g(u) − g(û))wdxdt ≤

t∫

0

∫

Ω

1{u−bu>0} max{0, g(u) − g(û}dxdt ≤

≤ C

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt.Taking ǫ < η we obtain
t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt+
c

δ

t∫

0

∫

Ωδ

||∇(u− û)||2dxdt ≤

≤ Cδ2γ−1

T∫

0

∫

Ωδ

(||∇ũ||2 + 1)dxdt+

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt.(3.7)For δ → 0 the �rst term on the right onverge to 0 and the �rst term on leftbeomes
lim
δ→0

t∫

0

∫

Ω

(b(u)t − b(û)t)wdxdt =

t∫

0

∫

Ω

1{u−bu>0} (b(u)t − b(û)t) dxdt =
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=

t∫

0

∫

Ω

∂t max{b(u) − b(û), 0}dxdt =

∫

Ω

max{b(u) − b(û), 0}(t, x)dx.One obtains
∫

Ω

max{0, b(u) − b(û)}dxdt ≤

t∫

0

∫

Ω

max{0, b(u) − b(û)}dxdt,and using Gronwall's inequality we get
b(u) ≤ b(û),and using this inequality in (3.7) we have ∇(u−û) = 0 on the set {0 < u−û}.So, we have u− û=onst. whih implies u− û ≤ 0 sine on boundary u ≤ û.As a orollary of the omparison priniple one an obtain an upper boundfor the solution of Cauhy problems in the both ase CDRE and GPMEequations.Corollary 3.1 Assume that A1 and A1′ are full�led and g(t, x, u) = g(u),

g(0) = 0. Let u be the solution of the problem (1.1), (3.1) on some interval
[0, T ]. Then1) if uD ≥ 0 and u0 ≥ 0 so is u ≥ 0,2) Let α = ||uD||L∞([0,T ]×∂Ω), β = max{||u0||∞, α}. If α > 0 we assume that
g(w) ≥ 0. Let w(t) be the solution of the di�erential equation

∂tb(w) = g(w)
w(0) = β.on the same interval t ∈ [0, T ]. Then the solution u satis�es
u < w on [0, T ].Proof. 1). One ompares the solution u with the trivial solution v = 0.2). De�ne the funtion v(t, x) = w(t),∀x ∈ Ω. The funtion v(t, x) veri�esthe equation (1.1), at the time t = 0 v(0, x) = β > u0 and on boundary

v(t, x)|x∈∂Ω = w(t) ≥ β > uD that implies u < v.Corollary 3.2 In the GPME the di�usion funtion and prodution fun-tion are given by φ(u) = um, r(u) = −λus respetively λ > 0,m > 0, s > 0.The initial onditions satisfy A4, u0 > 0 and uD = 0. Let β = ||u0||∞.1) If s > 1 then the solution u of the problem 1.2, 3.1 satis�es
||u||∞ < β

(
1 − λ(1 − s)βs−1t

) 1

1−s .



Diffusion Proesses 1812) If s < 1 then there exists a time T ∗, extintion time, given by
T ∗ =

1

λ

β1−s

1 − ssuh that the solution exists on the interval [0, T ∗] and it satis�es
||u||∞ < β

(
1 −

t

T ∗

) 1

1−s

.Proof. In the generalized porous medium equation
∂tu = △um − λuswe make the substitution um = v and we obtain
∂tv

p = △v − λvr,

vt=0 = um
0 , v|x∈∂Ω = 0,where p = 1/m, r = s/m. By using the orollary 1 one obtain that thefuntion v is bounded from above by the solution of di�erential equation

pwp−1w′ = −λwr,
w(0) = βm,whih has the solution

w = βm(1 − λ(1 − s)βs−1t)
m

1−s .4. Quasimonotone ODE Approximation4.1. Disrete ApproximationBy the method of lines (MOL), one an assoiate an ordinary di�erentialsystem of equations (ODE) to a paraboli partial di�erential equation. TheMOL onsists in the disretization of the spae variable using one of thestandard methods as �nite element, �nite di�erenes or �nite-volume method(FVM). The FVM �ts very well to onservative equations and there exists alarge literature devoted to the method, we reall here the papers that dealwith Dirihlet problem, [6℄ for hyperboli PDE, [11℄, [12℄, [19℄ for nonlinearparaboli PDE.
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x i

ω i

Ω

Du

Fig. 1: Triangulation of polygonal domain in R
2.The FVM deals with a deomposition of the domain Ω into small polygonaldomains ωi and a net of the inner knots xi. The assembly {ωi, xi} de�nesa triangulation of the domain and it is an admissible mesh if it satis�es thefollowing onditions, [12℄.Definition 4.1 (Admissible mesh) The triangulation T = {(ωi, xi)}i∈I isalled an admissible mesh if it satis�es:A5 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ωi is open poligonal set ⊆ Ω, xi ∈ ωi

(1) ∪i∈Iωi = Ω
(2) ∀i 6= j ∈ I and ωi ∩ ωj 6= Φ, either Hn−1(ωi ∩ ωj) = 0 or
σij := ωi ∩ ωj is a common (n − 1)-face of ωi and ωj

(3) for all σij, [xi, xj ] ⊥ σijHere Hn−1 is the (n − 1)-dimensional Hausdor� measure. For eah volume
ωi that has a ommon (n − 1)-fae with the boundary ∂Ω one de�nes anexternal volume ωib ∈ CΩ by the re�etion of the ωi with respet to the fae
σib = ωi∩∂Ω. Denotes by T b the olletion of all external volumes {(ωib , xib)}and by Ib the set of their indies. Let T e = T ∪ T b and IE = I ∪ Ib. Wesay that the volumes ωi, ωj ∈ T e are neighbours if they share a ommon
n− 1�fae and we denote by ni,j the unit normal vetor to the fae σij thatpoint to ωj.



Diffusion Proesses 183Disrete form of CDRE. The spae disretized equations are derivedfrom the integral form of (1.1) for eah ontrol volume ωi

∫

ωi

∂b(u)

∂t
dx−

∫

∂ωi

(κ(u)∇u+ f(u)) · nda =

∫

ωi

g(t, x, u)dx, ∀i ∈ I. (4.1)By a proper approximation of the volume integrals and surfae integrals oneobtains disrete form of CDRE.We de�ne the numerial di�usion oe�ient κ̃ : R × R → R+ by
κ̃(u, v) = max(κ(u), κ(v)). (4.2)It is easy to show that numerial di�usion oe�ient satis�esA6 ∣∣∣∣∣∣∣∣∣∣∣∣ κ̃(u, v) = κ̃(v, u), symmetry,

(κ̃(u1, v) − κ̃(u2, v))(u1 − u2) > 0, monotonicity,
κ̃(u, u) = κ(u), consistency.Corresponding to eah fae σij we admit that there exists a numerial �uxfuntion f̃ : R × R → R with the following properties:A7 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ f̃i,j(u, v) = −f̃j,i(v, u), conservation,

(f̃i,j(u1, v) − f̃i,j(u2, v))(u1 − u2) ≤ 0, monotonicity,

(f̃i,j(u, v1) − f̃i,j(u, v2))(v1 − v2) ≥ 0,

f̃i,j(u, u) = f(u) · ni,j, consistency.A numerial onvetive �ux whih satis�es A7 is systematialy used in theapproximation of hyperboli equation see, for example [6℄. The integrals in(4.1) will be approximated as follows:
∫

ωi

∂b(u)

∂t
dx ≈ m(ωi)

∂b(ui)

∂t
,

∫

∂ωi

κ(u)∇u · nda ≈
∑

j∈N (i)

m(σij)κ̃(ui, uj)
uj − ui

dij
,

∫

∂ωi

f(u) · nda ≈
∑

j∈N (i)

f̃i,j(ui, uj),

∫

ωi

g(t, x, u)dx ≈

∫

ωi

g(t, x, ui)dx := gi(t, ui).

N (i) denotes all neighbours in T e of ωi, m(ωi) represents the volume ofpolyhedron ωi and m(σij) represents the n − 1-dimensional measure of thefae σij and di,j = |xi − xj |.
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u0i =

1

m(ωi)

∫

ωi

u0(x)dx, (4.3)
uib =

1

m(σib)

∫

σib

uDda, (4.4)respetively.As a result one an de�ne a Cauhy problem for a system of ordinary di�eren-tila equations whose solution gives an approximation of the Cauhy problem(1.1), (3.1).




db(ui)

dt
=
∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij
+ f̃i,j(ui, uj)

]
+ gi(t, ui)

ui|t=0 = u0i, (4.5)for t > 0 and for any i ∈ I.Let us introdue the numerial di�usion-onvetion �ux funtions
Fi(u;uD) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij
+ f̃i,j(ui, uj)

] (4.6)then the ODE approximation reads as
db(ui)

dt
= Fi(u;uD) + gi(t, ui). (4.7)The boundary onditions are taken into aount by the volume elements nextto boundary ∂Ω. For suh element the ontribution of the boundary valuesto the Fi is given by

m(σib)

m(ωi)

[
κ̃(uib , uj)

uib − ui

dib

+ f̃i,ib(ui, uib)

]
. (4.8)In�ltration model. Here is an example of a numerial onvetive �ux thatsatis�es A7 with f(u) = e3K(u) that appears in the Rihards' equation(2.3).

f̃i,j(u, v) =
1

2
(e3 · ni,j + |e3 · ni,j|)K(v) +

1

2
(e3 · ni,j − |e3 · ni,j|)K(u).(4.9)
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∫

ωi

∂u

∂t
dx−

∫

∂ωi

∂φ(u)

∂n
da =

∫

ωi

r(u)dx, ∀i ∈ I. (4.10)To approximate (4.10) we use the same shemes as in previous paragraph.The new integral that ontains the di�usion funtion φ will be approximatedby ∫

∂ωi

∂φ(u)

∂n
da ≈

∑

j∈N (i)

m(σij)
φ(uj) − φ(ui)

dij
. (4.11)The ODE approximation of (4.10) is given by

∂ui

∂t
=
∑

j∈N (i)

m(σij)

m(ωi)

φ(uj) − φ(ui)

dij
+ r(ui). (4.12)The boundary onditions are taken into aount by the volume elements nextto boundary ∂Ω. For suh an element the boundary values enters into theplay by a term of the form

m(σie)

m(ωi)

φ(uie
D) − φ(ui)

de
ij

. (4.13)For shortness we introdue the notation
Gi =

∑

j∈N (i)

m(σij)

m(ωi)

φ(uj) − φ(ui)

dij
.4.2. ODE ModelAs in the ontinuum ase we want to prove that the solutions of ODE (4.5)and (4.10) obey a omparison riterion.For that, we �rstly prove that F and G satisfy Kamke onditions.Lemma 4.1 Assume A2, A6 and A7. Then

Fi(u
e) = 0, Gi(u

e) = 0 (4.14)for any onstant state ui = u,∀i ∈ Ie.
F and G satisfy Kamke onditions, that is

Fi(v
e) ≥ Fi(w

e), Gi(v
e) ≥ Gi(w

e), ∀i ∈ I, (4.15)for any two vetors that satisfy vk ≥ wk, ∀k ∈ Ie, and vi = wi.
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Fi(u

e) =
∑

j∈N (i)

m(σij)

m(ωi)
f(u) · nij = 0.We only prouve the ounterpart relativ to F . To prove the Kamke onditionswe have

Fi(v
e) −Fi(w

e) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(u, vj)

vj − u

dij
+ f̃i,j(u, vj) − κ̃(u,wj)

wj − u

dij
− f̃i,j(u,wj)

]and from (4.2) and the monotoniity property of A7 the a�rmation results.As F and G are both quasimonotone and nondereasing with respet toboundary data vetorial funtions the next two results are equaly true fordisrete ODE (4.12).Assumptions on soure termA1′′ There exists the real numbers α < α < β < β suh that(1) b ∈ C1((α, β)) and b′ > 0 on (α, β).There exists two Lipshitz funtions g, g : R+ × R → R suh that(2) g(t, u) ≤ g(t, x, u) ≤ g(t, u), ∀u ∈ (α, β),(3) g(t, α) ≤ 0, g(t, β ≥ 0.Theorem 4.1 (Boundedness of disrete solutions) Consider the Cauhyproblem (4.5). Assume A1, A1′′, A4, A6, A7. We suppose also that initialonditions and boundary data satisfy
α ≤ u0(x) ≤ β, a.e x ∈ Ω, α ≤ uD(t, x) ≤ β, a.e (t, x) ∈ (0, T ) × Ω. (4.16)Let u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u)

|u|t=0 = α,

(4.17)
u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u)

|u|t=0 = β

(4.18)



Diffusion Proesses 187and Tsup = inf(sup{t|u(t) > α, u(t) < β}, T ) Then the solution u(t) of theCauhy problem is bounded by u and u on the interval [0, Tsup] i.e.,
u(t) ≤ ui(t) ≤ u(t)∀i ∈ I,∀t ∈ [0, Tsup] (4.19)Proof. The essential tool in the proof is the Nikel's theorem that provide themonotony of the solution of the quasimonotone ODE. The Kamke onditionsensure us that we deal with quasimonotone system.Observe that the onditions A1′′-3 guaranties that

α ≤ u(t) ≤ α, β ≤ u(t) ≤ β. (4.20)De�ne
F i(u) = Fi(u;u),F i(u) = Fi(u;u).From (4.4), (4.8), (4.15), (4.20) and the onditions A1′-2 one obtains

F i(u) + g(t, u) ≤ Fi(u;uD) + gi(t, u) ≤ F i(u) + g(t, u).Sine usup
i (t) = u(t),∀i ∈ I is a solution of the problem





db(ui)

dt
= F i(u) + g(t, ui)

ui|t=0 = β,
(4.21)

uinf
i (t) = u(t),∀i ∈ I is a solution of the problem





db(ui)

dt
= F i(u) + g(t, ui)

ui|t=0 = α,
(4.22)and α ≤ u0i < β one an apply the Nikel's theorem and one obtains

uinf
i (t) ≤ ui(t) ≤ usup

i (t),whih is (4.19).Theorem 4.2 (Comparison theorem. Disrete ase) Assume we are as inthe boundedness theorem. Let u(t) and û(t), t ∈ (0, T ), be the solutions ofthe problem (4.5) assoiated to (uD,u0) and (ûD, û0) respetively. Supposethat
uD ≤ ûD < 0, u0 ≤ û0 < 0.Then

u ≤ ûon (0, T ).Proof. The same as in the boundedness theorem.



188 Stelian Ion5. Numerial Algorithms and Numerial ResultsIn this setion we give two numerial algorithms to solve GPME equationand Rihards' equations respetively.5.1. Fast Di�usion with Strong AbsorptionWe will present here an algorithm to solve numerially (4.12) in the ase ofthe fast di�usion with strong absorption. In addition to assumptions A2 theonstitutive funtions φ and r satisfyA2′ ∣∣∣∣∣∣∣∣ φ is increasing function and lims→0 φ(x)/x = ∞,
r(s) ≤ 0, for s > 0,The ODE an be rewritten as

∂ui

∂t
= Aijφ(uj) + r(ui). (5.1)We use the lassial full impliit Euler time integration sheme to integratethe system. It follows

un+1 = un + △t
(
Aφ(un+1) + r(un+1)

)
, (5.2)where △t represents the time step. Depending on the initial data u0 andthe type of nonlinearity of the funtions φ and r to solve the arising systeman be a very hard problem, in the viinity of the zero the derivative of thefuntion φ in the ase of fast di�usion beome in�nite. We propose herean algorithm suggested by the Gauss-Sidel iterative method. The methoduses the very speial struture of the matrix A generated by �nite volumemethod. One writes the matrix A as

A = Ã+ Γ,where Γ is a diagonal matrix ontaining the diagonal entries of the matrix
A. We point the following properties of the two matries

Ãij ≥ 0, Γii < 0,
∑

j

Ãij ≤ −Γii. (5.3)We rewrite also the funtions φ and r as
φ(x) = φ̃(x) · x, r(x) = −r̃(x) · x. (5.4)



Diffusion Proesses 189The equation (5.2) an be written now as
(
I + △t

(
−Γφ̃(un+1) + r̃(un+1)

))
un+1 = un + △tÃφ(un+1). (5.5)The next theorem gives the main properties of the solution of impliit Eulermethod.Theorem 5.1 In addition of the onditions A2 and A2′ we assume that

φ̃ is a noninreasing funtion and r̃ ≥ 0. If the initial data and boundaryonditions are positive and upper bounded funtions, i.e.
0 ≤ u0 ≤ ρ, 0 ≤ uD ≤ ρ,then for any time step △t there exists a solution of the equation (5.2) thatsatis�es

0 ≤ un ≤ ρ, ∀n. (5.6)Proof. Let us assume that for a time level n there exists a solution un thatsatis�es (5.6). We will use the Browder �xed point theorem to demonstratethe existene of un+1 with the same properties. De�ne the R
N -values funtion

Ψ by
Ψi(y) =

un
i + △t

∑
j Ãijφ(yj)

1 + △t
(
−Γiiφ̃(yi) + r̃(yi)

) .We laim that the funtion Ψ is a ontinuous funtion on the set [0, ρ]N andtake values in the same set. So, it has a �xed point.Sine φ̃ and r̃ are ontinuous funtions on (0,∞) and let us assume that theirlimits in 0 are �nite we an prolong by ontinuity the funtion Ψ in 0. It isobviously that Ψi > 0. For the upper bound we have
Ψi(y) − ρ ≤

un
i + △t

∑
j Ãijφ(yj)

1 −△tΓiiφ̃(yi)
− ρ =

=
un

i − ρ+ △t
(∑

j Ãijφ(yj) + ρΓiiφ̃(yi)
)

1 −△tΓiiφ̃(yi)
.For any y ∈ [0, ρ]N we have

∑

j

Ãijφ(yj) + ρΓiiφ̃(yi) ≤ φ(ρ)
∑

j

Ãij + ρΓiiφ̃(yi) ≤

≤ −φ(ρ)Γii + ρΓiiφ̃(yi) = −ρΓii(φ̃(ρ) − φ̃(yi)) ≤ 0.
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xη xη

φηφη xηηη

Fig. 2: The regularization of the �ux funtion.To obtain the �rst inequality one uses: assumptionsA2′ (φ is a nondereasingfuntion), boundary data is bounded from above by ρ and Ãij > 0, the seondinequality results from the struture of the matrix A and the last inequalityfrom the onstitutive assumption on the φ̃.So, we have
0 ≤ Ψi(y) ≤ ρand for it results the existenes of a �xed point, say u. Sine for any i onehas

1 + △t
(
−Γiiφ̃(yi) + r̃(yi)

)
<∞, on [0, ρ],it follows that the �x point u is a solution of the of the nonlinear equation(5.6).Let us analyse the ase in whih the funtions φ̃ and r̃ have in�nite limits in

0. One regularises the funtion φ̃ by
φ̃η(x) =

{
η, if φ̃(x) > η

φ̃(x), if φ̃(x) ≤ η
(5.7)and from it one has

φη(x) =

{
xη, if φ(x) > xη
φ(x), if φ(x) ≤ xη.

(5.8)Obviously
φη(x) ≤ φ(x), lim

η→∞
φη(x) = φ(x).In a similar manner we de�ne rη.With the funtions φη and rη we are in the previous ase and then resultsthat there exists a solution uη ∈ [0, ρ]N of the equation

uη = un + △t (Aφη(uη) + rη(uη)) . (5.9)



Diffusion Proesses 191As the sequene uη is bounded we an extrat a subsequene uηn that on-verges to a point u ∈ [0, ρ]N . The problem is to demonstrate that the limitpoint u is a solution of the original equation, i.e.
u = un + △t (Aφ(u) + r(u)) .Let us denote by Fη(u) and F r.h.s., of the preeding equations, respetively.We have

||u− F (u)||∞ = ||u− uηn + (Fηn(uηn) − Fηn(u)) + (Fηn(u) − F (u)||∞ ≤
≤ ||u− uηn ||∞ + ||Fηn(uηn) − Fηn(u)||∞ +
+ ||Fηn(u) − F (u)||∞ .We will show that, for any ε > 0,

||u− F (u)||∞ ≤ ε.Observe that the �rst term and the last term an be made arbitrary small,
||u− uηn ||∞ + ||Fηn(u) − F (u)||∞ <

ε

2for any n > nε. The middle term an be evaluate as ||·||∞
||Fηn(uηn) − Fηn(u)||∞ ≤ △t

(
||A(φηn(uηn) − φηn(u))||∞ +

+ ||rηn(uηn) − rηn(u)||∞
)
≤

≤ △t(||A|| ||φηn(uηn) − φηn(u)||∞ +
+ ||rηn(uηn) − rηn(u)||∞).For eah omponent i we look at

|φηn(uηni) − φηn(ui)|and note that if ui is not equal with zero then for a great enough number none has
|φηn(uηni) − φηn(ui)| = |φ(uηni) − φ(ui)| ,if ui equals zero then

|φηn(uηni) − φηn(ui)| = φηn(uηni) ≤ φ(uηni).Using the ontinuity of the funtion φ we an �nd a number nε
1 suh that

||φηn(uηn) − φηn(u)||∞ ≤
ε

4||A||△t
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1. Using the same arguments we an prove that

||rηn(uηn) − rηn(u)||∞) <
ε

4△tfor any n > nε
2. Hene, there exists a nε suh that

||Fηn(uηn) − Fηn(u)||∞ ≤
ǫ

2for any n > nǫ.This end the proof of the theorem.In our implementation we alulate the solution of the Euler sheme by thefollowing iterative solver
(
I + △t

(
−Γφ̃η(u

n+1,k) + r̃η(u
n+1,k)

))
un+1,k+1 =

un + △tÃφη(u
n+1,k).

(5.10)Numerial Simulation. For the numerial simulation we hose a verysimple domain Ω = [0, 1] × [0, 1]. The fast di�usion with absorption is mod-eled by φ(s) = sm, r(s) = −λ · sp.Table 1: Extintion phenomenon, extintion time T e = 0.18. φ(s) = s0.75, r(s) =
−21.× s0.5, uD = 0

 0.5

 0.5

 0

 0.5u

x
y

u

 0

 0.5

 1

 0  0.1  0.18

||u
||

timeInitial Pro�le Comparison of the numerial solution(solid line) with a theoretial estima-tion (points drawing).5.2. Water In�ltration through Strati�ed Soil. Rihard'sEquationWe onsider strati�ed soil. Hereafter the strati�ed soil means a blok-wisehomogeneous soil with horizontal parallel homogeneous strata, see �gure (3).
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z

Fig. 3: Strati�ed porous soil. Eah layer is mod-elled by di�erent onstitutive funtion.In the ase of strati�ed soil the di�erent mehanial properties of the soilsrequire di�erent onstitutive funtions whih in turn lead to a partial di�eren-tial equation with disontinuous oe�ient. On an interfae of two di�erentstrata one must impose some ompatible onditions to have a well de�nedproblem. Physial onsiderations require the ontinuity of the pressure headand normal omponents of the veloity. So, we have
h|− = h|+,

v · n|− = v · n|+. (5.11)Taking into aount the ompatibility relations (5.11) appear that it is moreonvenient to work with the θ − h form of Rihards' equation, i.e.,
∂t

∫

V
θdx =

∫

∂V
K(θ)

∂(h+ z)

∂n
ds,

θ = θ(h)

(5.12)We assume that the �ow domain is the 2D retangle Ω = [0, a]× [0, b] whihis strati�ed in Ns strata [0, a] × [Zi−1, Zi] with Z0 = 0, ZNs = b.Let 0 = x1/2 < x1+1/2 < · · · < xN+1/2 = a, 0 = z1/2 < z1+1/2 < · · · <
zM+1/2 = b be two partitions of the intervals [0, a] and [0, b] respetively.We de�ne the ontrol volumes ωi,j =

[
xi−1/2, xi+1/2

]
×
[
zj−1/2, zj+1/2

]
, i =

1, N, j = 1,M and the net inner knots ri,j = (xi, zj), xi =
xi−1/2 + xi+1/2

2
,

zj =
yj−1/2 + yj+1/2

2
, i = 1,N, j = 1,M . We assume that the partition

{ωi,j} is a onform partition with respet to strati�ation of the domain Ω,
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Conformal Mesh with respet tostrata Volumes of the ontrol.Fig. 4: 2D mesh.i.e for any j the line z = Zj does not interset the interior of any ontrolvolume ωi,j.On eah volume ωi,j one approximates the pressure by a onstant value
hi,j and water ontent by a onstant value θi,j. On the ommon boundary
σi+1/2,j = ωi,j ∪ ωi+1,j of two neighbors we approximate the �ux by

∫

σi+1/2,j

K(θ)
∂(h+ z)

∂n
ds ≈ Ki+1/2,j

hi+1,j − hi,j

△xi+1
(5.13)where the numerial hydrauli ondutivity Ki+1/2,j is an approximation ofthe hydrauli ondutivity K(θ),

Ki+1/2,j = K̃(θi,j, θi+1,j). (5.14)We assume that the funtion K̃(·, ·) is a symmetri and ontinuous funtionwith respet to its arguments. As result, we obtain a di�erential algebraisystem of equation (DAE), θ − h form of Rihards' equation,




mi,j
dθi,j

dt
= Ki+1/2,j

hi+1,j − hi,j

△xi+1
−Ki−1/2,j

hi,j − hi−1,j

△xi
+

+Ki,j+1/2

(
hi,j+1 − hi,j

△zj+1
+ 1

)
−Ki,j−1/2

(
hi,j − hi,j−1

△zj
+ 1

)
,

θi,j = θ(hi,j). (5.15)To integrate the DAE (5.15) we use an impliit multi-step method, [5℄.Let {tn−k, tn−k+1, ..., tn} be a sequene of moments of time and denotes by
θm = θ(tm) ∈ R

NM , NM = N ×M . Supposing that one knows the values
{θn−k, θn−k+1, ..., θn}, the values θn+1 and hn+1 at the next moment of time
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tn+1 are alulated as follows. De�ne a preditor polynomial ωP (t) and aorretor polynomial ωC(t). The preditor polynomial interpolates the val-ues {θn−k, θn−k+1, ..., θn} at moments of time {tn−k, tn−k+1, ..., tn}, Lagrangeinterpolation,

ωP (t) =

k∑

j=0

qj(t)θ
n−j. (5.16)For eah j = 0, k the polynomial qj(t) is given by

qj(t) =

k∏

i=0,i6=j

t− tn−i

tn−j − tn−i
.The orretor polynomial ωC(t) interpolates the unknowns θn+1 and thevalues of ωP (t) at the moments of time tn+1 and {tn+1 − j△tn; j = 1, k},respetively. The unknowns θn+1 and hn+1 are determined by imposing tothe orretor polynomial ωC(t) and to hn+1 to satis�es the DAE. Then asystem of nonlinear equation results. By denoting

Fi,j(θ
n+1,hn+1) :=

Ki+1/2,j(θ
n+1)

hn+1
i+1,j − hn+1

i,j

△xi+1
−Ki−1/2,j(θ

n+1)
hn+1

i,j − hn+1
i−1,j

△xi
+

Ki,j+1/2(θ
n+1)

(
hn+1

i,j+1 − hn+1
i,j

△zj+1
+ 1

)
−Ki,j−1/2(θ

n+1)

(
hi,j − hi,j−1

△zj
+ 1

)(5.17)one obtains




mi,j

(
a

△tn
θn+1
i,j − wP,n

i,j

)
= Fi,j

(
θn+1,hn+1

)
,

θn+1
i,j = θ(hn+1

i,j ),
(5.18)where wP,n

i,j are known quantities as funtions of the preeding values of θ.The nonlinear system (5.18) is solved iteratively using an inexat Newtonstep followed by a Broyden step until a desired auray is obtained. Let Rbe given by
R(θ,h) = m

(
a

△tn
θ − wP,n

)
− F (θ,h) . (5.19)The matrix J (θ,h) of the iterative proess in INS is an approximation ofthe full Jaobian of the funtion R, the produt of it with a vetor w read
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J (θ,h)w = m

a

△tn
C(h)w − F̃ (θ,w) , (5.20)where

F̃ (θ,w) = ∂hF (θ,w) (5.21)and
C(·) =

dθ(·)

dh
.The nonlinear solver is:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Inexact Newton step

J (θn+1,k,hn+1,k)δNS
h = −R

(
θn+1,k,hn+1,k

)
, ( s 1)

h
n+1,k+1

= hn+1,k + δNS
h , ( s 2)

θ
n+1,k+1

= θ(h
n+1,k+1

), ( s 2)

Broyden step

J (θn+1,k,hn+1,k)δBS
h = −R

(
θ

n+1,k
,h

n+1,k
)
, ( s 3)

δk+1
h = δBS

h

〈δNS
h , δNS

h 〉

〈δNS
h , δNS

h 〉 − 〈δNS
h , δBS

h 〉
, ( s 4)

hn+1,k+1 = h
n+1,k

+ δk+1
h , ( s 5)

θ n+1,k+1 = θ(hn+1,k+1). ( s 5)

(5.22)
The linear equations in the steps s1 and s3 are solved by Conjugate GradientMethod for linear system with symmetri and positive de�nite matrix. Wepresent some numerial tests obtained using the above algorithm. As empir-ial models for water ontent θ(h) and hydrauli ondutivity K(θ) we usethe van Genuhten model,

S(h) =

{
(1 + (αh)n)−m , h < 0,
1, h ≥ 0,

(5.23)
K(S) =

{
KsS

l
(
1 −

(
1 − S1/m

)m)2
, 0 < S < 1,

Ks, S ≥ 1,
(5.24)



Diffusion Proesses 197where S represents the relative water ontent
S =

θ − θr

θs − θr
.The soil in the test is a layered soil with two alternate strata.

h1 h2 h3

loam 

loam 

glendale

glendale

vn=0

vn=0

vn=0

1m

1m
Physial on�guration. The parameters for the loam soil in the van Genuthen modelare: n = 2, α = 3.35 m−1, l = 0.5, Ks = 0.3318 mh−1, θr = 0.012, θs = 0.368and for the Glendale soil are: n = 1.3954, α = 1.04 m−1, l = 0.5, Ks = 0.545 ×
10−2 mh−1, θr = 0.106, θs = 0.4686. The initial datum is h0 = −1.0 m in the wholedomain. The boundary onditions are of the mixt type.
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−0.75 m.The number of the iterations versus time step. Numbers of iteration in nonlinearsolver (line-point) and the total numbers of iteration time step in CGM methodThe time simulation was 48h.
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−0.3 m, h3 = −0.75 m.(right).
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