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1. Introduction

We report some mathematical results on the numerical approximation of a
class of nonlinear diffusion problems. We are concerned with the convection-
diffusion-reaction equation (CDRE)

Ob(u)

5 4V (s(W)Vu + £(u)) = g(t, 2, ), (1.1)
and generalized porous medium equation (GPME),
ou
- _ = 1.2

where div and V are taken with respect to x € R™; A = divV is the Laplace
operator and u(t,z) is the scalar unknown function.

There are some reasons to work with two different equations. The both
equations quantify diffusion phenomena but in different manner. The dif-
fusion flux is modeled by k(u)Vu in the CDRE and by grad¢(u) in the
GPME. In some cases the two forms can be interchanged but in other cases
is not possible. For example, if k(-) is an integrable function one can put
d(u) = [“k(s)ds. Although in almost any physicaly interesting cases this
transformation can be done the calculation of the function ¢, especially when
one deals with numerical approximation, can be a hard problem. In such a
case is recomandable to use the CDRE form. On the other hand if ¢(-) is
a differentiable function one has k(u) = ¢'(u). If ¢(-) is onlya continuous
function it is not posible to evaluate the diffusion coefficient.

The outline of the paper follows.

In Section 2 we delineate some mechanical problems and we will make com-
ments on the constitutive functions.

In Section 3 we present the essential facts relative to solvability of the Cauchy
problem. We revise the concepts of weak solution and weak entropy solution
and we will present a comparison criterion.

Section 4 is devoted to the numerical approximation.

The numerical solution of the Cauchy problem is obtained in two steps. In
the first step a system of ordinary differential equation is set up and in the
second step this ODE system is numericaly integrated.

The mathematical properties of the ODE model are strongly determined by
the numerical diffusion flux and the numerical convective flux. We will define
a numerical approximation of the diffusion flux and a numerical approxima-
tion of the convective flux that lead to a quasimonotone ODE system. Using



DIFFUSION PROCESSES 171

this property we will show that there exists a comparison principle and we
will provide the bounds for the solutions of the discrete model that are inde-
pendent of the mesh size of triangulation.

In Section 5 we give two numerical algorithms to solve GPME equation
and Richards’ equation respectively. To integrate the ODE system which
approximate the GPME equation we will use implicit Euler method and we
we will setup an iterative algorithm to solve the system of nonlinear algebraic
equation that results.

To solve Richards’ equation we use an adaptive time marching scheme and
an inexact Newton type method to solve nonlinear equation.

2. Physical Models

The mathematical models (1.1) and (1.2) cover a wide range of physical
phenomena such that: heat transfer, infiltration of water through porous
media, transport of contaminant in porous media, the flow of the gas through
porous media, plasma radiation, to remaind a few.

The simplest example of the model problem (1.1) is the linear caloric equa-
tion: 5

a—z; = div(kVu), (2.1)
where u models the temperature and x > 0 represents the thermal con-
ductivity. Here it is supposed that the caloric flux obeys the Fourier law
q = —x«VT and that the thermal conductivity is independent of tempera-
ture. The condition k > 0 reflects the fact that heat propagates from high

to lower temperature.

If the temperature of the body is high enough one must consider the radi-
ation effects and the temperature dependence of thermal conductivity. For
example, if the power radiated by a body to environment follows the Stefan-
Boltzmann law of the forth powers, for both the body and the medium, the
heat equation becomes [§]

ou ) 4 4

i div(k(u)Vu) — kp(u” — u). (2.2)
The unsaturated water flow through porous media is described by the well
known Richards’ equations |7]

00(h)

5~ W (K(n)Vh+esK (h) =0, (2.3)
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where 6 represents the relative volumetric water content, h represents the
pressure head, K is the hydraulic conductivity and es is the upward vertical
versor. The function #(h) is a continuous positive function and it is strictly
increasing function on the interval (—oo, 0] and a constant function on h > 0.
Also the hydraulic conductivity is a continuous positive function strictly in-
creasing on (—oo, 0] and a constant function on the set h > 0. The hydraulic
conductivity becomes zero as h approaches —oo.

The transport of contaminant in porous media is governed by an equation of
the form [9], [10]

9 (C + ACP)

5 +v-VC =div(DVC) + g(x,C), (2.4)

where C' represents the mass concentration of the contaminant, v denotes
the velocity of the fluid flow, supposed to be constant. The term ACP, A > 0
takes into account the adsorption reaction by means of Freundlich isotherm.
The absorption reaction is described by the term g(z, C') that usually is given
by

g=—aC? (2.5)

with a > 0, ¢ > 0 (the order of the reaction).
An extremely used form of the GPME is given by the

ou
— = m . 2.
o Au™ 4+ du (2.6)

For m > 1 (slow diffusion) the equation models the flow of the gas through
porous medium for m < 1 (fast diffusion) the model is encountered in plasma
physics, kinetic theory and solid state.

The Stefan problem can be written as a GPME equation with

max{0, (u — 1)}, ifu >0,
u, ifu < 0.

o) = {

3. Mathematical Settings

In this section we review some results concerning the solution of the nonlinear
diffusion equations.

The constitutive functions are supposed to satisfy:
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b:R—R, is a continuous and nondecreasing function,
ALl B R—R,, is a continuous and nondecreasing function,
f:R—R" is a local Lipschitz vector function,
g: Ry x QxR —R, isa Caratheodory function.
A2 ¢ € C([0,00)) UC(0,00)), ¢(0) =0, nodecreasing function,
r € C([0,00)), r(0) =0.

We consider the Cauchy problem for both equations. The domain €2 on which
the problem is considered satisfies:

A3 H Q € R", is an open, bounded and connected set.

The initial conditions and boundary data are written as
(3.1)

u(0,x) = up(x), x €.
U = up, t>0,x € 00

We assume that
ug € LOO(Q),
up € L2((0,T) : WE2(Q)) N L>=((0,T) x Q).

Cauchy problem for CDRE. The Cauchy problem is defined by the
equation (1.1) in a domain 2 in R"™, the initial condition and boundary data
(3.1).

Due to the nonlinear parabolic term b(u) and nonlinear diffusion coefficient
k(u) the problem (1.1) can be a degenerate problem and consequently there
exists no classical solutions.

The notion of weak solution for the problem of the type (1.1) was introduced
by Alt and Luckhaus in [1]. By imposing some proper conditions on the
constitutive functions, boundary data and initial conditions, the authors were
able to prove the existence of the weak solution in the case of the parabolic-
elliptic degeneration, b(u) is a constant function on some interval of positive
measure and the diffusion coefficient is a strict positive function.

DEFINITION 3.1 (Weak Solution (H. W. Alt and S. Luckhaus)) A measurable
function u is a weak solution of the Cauchy problem (1.1) and (3.1) if it
satisfies:

1) u—up € L2((0,T) : W, (),
Ob(u)

2) b(u) € L*>((0,T) : L(Q)) and o

e L*((0,7) : W1(Q)) with initial
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values b(up), that is,

/T<8%(f >dt+/T/ —buo»g dzdt = 0 (3.2)
0 0 Q

for every v € L2((0,T) : Wy (Q)) n Wh((0,T) : LY(2)), v(T,-) =0
3) k(u)Vu,g(,u(-,-) € L*(0,T) x Q), f(u) € (L*(0,T) x Q)" and u

satisfies the differential equation, that is,

T T .
ab(U)v u vdzdtr = z,u)vdz
0/< 7>dt+0// W)V + f(u)) - Vodadt O/Q/gt Joddt

(3.3)
for every test function v € L*(0,T : W01’2(Q)).

In the paper |7] Carrillo extrapolates the concept of entropy solution intro-
duced by Kruzhkov in theory of hyperbolic PDE [14]. He showed that there
exists a unique weak entropy solution of the Cauchy problem with homo-
geneous boundary data, up = 0, even in the case of parabolic-hyperbolic
degeneration. Such kind of degeneration appears when the diffusion coeffi-
cient is a null function on some interval with the positive measure.

The weak entropy solution is a weak solution that in addition satisfies an
integral entropy inequality.

Let us introduce the function

DEFINITION 3.2 (Weak entropy solution. Homogeneous case (Carrillo)) An
weak entropy solution of the Cauchy problem (1.1) and (3.1) with up = 0, is
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a weak solution which in addition satisfies the entropy inequality

T
[ ] #ote- (K@ + fw) - 1) - Vo~
0 Q
— (b(u) — b(s)) % - gv) dzdt — /(b(uo) —b(s))Tw(0)dz <0,

Q

T
[ ] Hals - (VK@ + 1) - f-5)) - Vo-
0 Q

— (b(u) — b(—s)) % ~ gv)dudt — /(b(uo) — b(—s))"w(0)da > 0,
Q

(3.4)
for any (s,v) € R x (L*((0,T) : Wh2(Q)) nWHL((0,¢) : L>(R))) such that
s> 0,v>0 and v(T) = 0.

In the entropy conditions the following notations:

) 1, ifs>0 + | s ifs>0
HO(S)_{O,ifsgo _{o,ifsgo

were used. If kK > 0 then the two definitions of the weak solution coincide
and any weak solution is an entropy solution |7].

To deal with nonhomogeneous Dirichlet conditions for degenerate problem
one supplementary difficulty is to give a sense to boundary conditions. In the
paper [18] C. Mascia, A. Porreta and A. Terracina proved the existence of the
weak entropy solution of the Cauchy problem with nonhomogeneous Dirichlet
data. Their definition is as follows. Denote by Q7 the direct product Qp =
(0,7) x Q. Also we use the notations:

E(u,v) = V[K(u) — K(v)| +sgn(u —v)(f(u) — f(v)),
B(u,v,w) = E(u,v) + E(u,w) — E(v,w).

The domain € is such that there exists a C? covering of 9Q, A = {U;}iz1.m,
of open sets such that 9Q C UU; and, in some local coordinates x = (z', z,,),
there exists a C? function z,, = a;(z’) such that U; N9 = {z, = a;(z")},
UnNnQ= {xn < Oti(.%'/}.

A sequence {95} of C2(Q2) N CYQ) functions is named a boundary layer
sequence if

5lim+ ¥s = 1, pointwise in 2, 0 < J5 <1, 95 =0 on IN.
-0
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DEFINITION 3.3 (Weak Entropy Solution. Nonhomogeneous case (Mascia et
al.)) A function u € L>((0,T)x Q) is an entropy solution of Cauchy problem
(1.1) and (3.1) if

1) (regularity)
K(u) € L*((0,T) : Wh3(Q))

and for any U € A, and any positive ¢ € C3°(U) we have

< = Ju - UD’”L/%S(U,UD)”L/J) € DM(Q)2;,

where DM(Q)2 is the set of divergence-measure vector fields in Q.

2) (entropy condition in interior of Q)
ov
/ {|b(u) —b(s)] i E(u, s)Vo +gv} dzdt > 0
Qr

for any v € Wol’z(QT) and v >0 and s € R.

3) (initial condition)

t—0t

lim /\u(t,x) —up(x)|dz =0
Q

4) (boundary conditions) in sense of trace in L?((0,T) : W12(Q)) we have
K(u) = K(up), t>0, x€ 09,

and for any boundary layer sequence Vs, and for any U € A, and any positive

€ C§5°(U) we have

lilgl ionf / B(u,s,up)VIs&pdadt > 0, Vs € R,
Qr

for any & € L*((0,T) : WH2(Q)),& > 0.

Cauchy problem for GPME. The Cauchy problem consists in the
equation (1.2) and the data (3.1).

The existence of the weak solution was proved by many authors see for ex-
ample, 4], |25].
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DEFINITION 3.4 (M. Borelli and M. Ughi) A nonnegative function u defined
on the Q x [0,T] is said to be a weak solution of the Cauchy problem (1.2)
and (3.1) if

1) we C([0,T]; LY(2) N L>([0,T] x Q),

2) for any test function n € C10([0,T] x Q)NC>1((0,T] x Q) such that n > 0
on (0,T] x Q) and n =0 on (0,T] x OQ u satisfies the integral identity:

/U(t,w)n(tyx)dx = /uo(az)n(o,x)dx —/t/¢(uD)§_Z+

Q Q 0 90 (35)

+ O/Q/ [udin + p(u)An + r(u)n| dtdzx

forany 0 <t <T.

The presence of the reaction term and nonlinearity in the equation (1.2)
generate interesting phenomena namely, extinction time or blow up of the
solution and the finite speed of propagation of disturbance [25].

Such problems have been studied by several authors: Borelli-Ughi [4], Ferreira-
Vasquez [13], Leoni [16], Levin-Sacks [17], Peletier and Z. Junninig [23]. In
the case r(u) = 0 and ¢(s) = s™,0 < m < 1l,up = 0 there exists an ex-
tinction time T, such that the problem (1.2 has a unique classical solution,
positive on © x [0,T¢] and null for ¢t > T, see [17].

For generalized fast diffusion with strong absorption and € = R? there also
exists an extinction time and the support of the solution is bounded for any
time ¢ > 0, [4].

In the power case, ¢(s) = s",7(s) = Ap®, A > 0, the numerical methods to
compute the solution of the similar problem (1.2) have been proposed by
M.-N. Le Roux, |21] the case m > 1, M.-N. Le Roux and P.-E. Mainge, [22].

Pointwise comparison principle. For both Cauchy problems CDRE
and GPME there exists several comparison criteria [1|, [10], [25]. We will
give here a result that allows one to compare two solutions with respect to
their boundary and initial conditions.

For any two real functions f(z) and g(x) we write f < g if f(z) < g(z),Vz €
Q. In addition to assumptions A1l the constitutive functions in CDRE prob-
lem satisfy
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(1)"1 R— R-i-? K,(U) > m,
1
AL (2) |k(u1) = K(u2)| < Cluy —ug", m > =, Yuy,uz € R,
(3) [F(u1) = flu2)| < Cluy —ual??, 2 > 3 Vui,ug € R,
(4) g(u1) — g(uz) < C(b(uy) — b(uz)), for ug > us.

THEOREM 3.1 (Comparison Theorem) Let (up,up), (Up,up) be such that
up < Up,uy < ug. Let u and @) be two bounded weak solutions of the Cauchy
problem (1.1), (3.1) associated to (up,uo) and (Up, up) respectively. Assume,
i addition, that

b(u),,b(@), € L*((0,T) x Q).

Then
u<u

on (0,T) x €.

Proof. We follow the main ideas from [1|. As in [1] for any § > 0 let
Us(a) = min(1l,max(0,a/d)). The function w = ¥s(u — u) belongs to
L*(0,T : W012(Q)) and its gradient is given by

1 . -
Vw:{ S(VU—VU), f0<u—u<d

0, otherwise

Set w as test function in (3.3). Then

t
// u)y — b(u wd$dt+5// u)Vu — k(u)Vu) V(u — u)dzdt +
0

0 Qs

I

¢ t
// ) - V(u—u)dzdt :// )) wdzdt,
0 0 Q

Qs

S| =

+

12
R (3.6)
where Qs := {z]|0 < h — h < §}. The integral I} can be rewritten as

L = ///i NIV (u — @)||*dadt + /t/ (w))Vu - V(u — u)dzdt.
0

0 Qs Qs



DIFFUSION PROCESSES 179

Using Young inequality, ab < C(e)p~taP + eq~'b9, and A1’-(1) we obtain

> (n—g)j/r\v<u—a>r\2dxdt

)2 Va2 dedt

0 Qs 0 Qs

and
/ C(

Bz -5 [ [ 196 - < //Hf (@ Pdede,

0 Qs 0 Qs

Then

L+1L>(n—ce¢ //||V u — )||*dadt — 527// (J|Va| > + 1)dazdt.
0 Qs 0 Qs

From A1’(4) the production can be estimate as

t

// ) wdxdt < //1{u a>0y max{0, g(u) — g(u}dzdt <

0

<cC Oj Q/ max{0, b(w) — b(d) bdzdt.

Taking € < 1 we obtain

t t

// u)e — b(i)y) wdwdt + //HVU—u)Hda;dt<

0 0 Qs
t

< coo / / (Va2 + 1)dzdt + / / max{0, b(u) — b(@) }ddt.
0 Qs 0 Q
(3.7)
For § — 0 the first term on the right converge to 0 and the first term on left
becomes

t

(%1_1%// u)y — b(w)) wdzdt = //1{u a>0) (b(u)y — b(u);) dzdt =

0
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t

= //&t max{b(u) — b(u),0}dzdt = /max{b(u) —b(u),0}(t, z)dx.
0 Q Q

One obtains
¢

/ max{0, b(u) — b(@) }dwdt < / / max{0, b(w) — b(d) }dzdt,
Q Q

0

and using Gronwall’s inequality we get
b(u) < b(u),

and using this inequality in (3.7) we have V(u—u) = 0 on the set {0 < u—u}.
So, we have u — u—const. which implies u —u < 0 since on boundary u < u.
As a corollary of the comparison principle one can obtain an upper bound
for the solution of Cauchy problems in the both case CDRE and GPME

equations.

COROLLARY 3.1 Assume that A1 and A1’ are fullfiled and g(t,z,u) = g(u),
g(0) = 0. Let u be the solution of the problem (1.1), (3.1) on some interval
[0,T]. Then

1) if up >0 and ug > 0 so is u > 0,

2) Let a = |[upl|pe(o,r)x00), B = max{|[ug||oc, a}. If a > 0 we assume that
g(w) > 0. Let w(t) be the solution of the differential equation

Opb(w) = g(w)
w(0) = .
on the same interval t € [0,T]. Then the solution u satisfies

u < w on [0,7T].

Proof. 1). One compares the solution u with the trivial solution v = 0.

2). Define the function v(t,z) = w(t),Vz € Q. The function v(t, ) verifies
the equation (1.1), at the time t = 0 v(0,z) = B > wug and on boundary
v(t, )| yepq = w(t) > B > up that implies u < v.

COROLLARY 3.2 In the GPME the diffusion function and production func-
tion are given by ¢(u) = u™, r(u) = —Au® respectively A > 0,m > 0,s > 0.
The initial conditions satisfy A4, ug > 0 and up = 0. Let = ||ug||oo-

1) If s > 1 then the solution u of the problem 1.2, 3.1 satisfies

ulloo < B (1= A(L— 8)3° 1) 75 |
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2) If s < 1 then there exists a time T*, extinction time, given by

- 1 ﬁl—s

T =
Al —s

such that the solution exists on the interval [0,T*] and it satisfies

L\t
lulle <5 (1= 72 )

Proof. In the generalized porous medium equation
Ou = Au™ — \u®

we make the substitution ©™ = v and we obtain
OpP = Av — A",

V=0 = Ug', V]zean = 0,
where p = 1/m,r = s/m. By using the corollary 1 one obtain that the

function v is bounded from above by the solution of differential equation

-1,/ _ r
pwP~w = —=Aw",

w(0) =B,

which has the solution

m

w=F"(1—\1-s)5 1)1,

4. Quasimonotone ODE Approximation
4.1. Discrete Approximation

By the method of lines (MOL), one can associate an ordinary differential
system of equations (ODE) to a parabolic partial differential equation. The
MOL consists in the discretization of the space variable using one of the
standard methods as finite element, finite differences or finite-volume method
(FVM). The FVM fits very well to conservative equations and there exists a
large literature devoted to the method, we recall here the papers that deal
with Dirichlet problem, [6] for hyperbolic PDE, [11], [12], [19] for nonlinear
parabolic PDE.
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Fig. 1: Triangulation of polygonal domain in R2.

The FVM deals with a decomposition of the domain 2 into small polygonal
domains w; and a net of the inner knots x;. The assembly {w;,x;} defines
a triangulation of the domain and it is an admissible mesh if it satisfies the
following conditions, [12].

DEFINITION 4.1 (Admissible mesh) The triangulation T = {(w;, x;)},c; 15
called an admissible mesh if it satisfies:

w; s open poligonal set C Q, x; € W;
(1) Urerai = 0
A5 || (2)Vi#jel andw, Nw; # ®,either Hp—1(w; Nw;) =0 or
oij == w; Nw; is a common (n — 1)-face of w; and w;
(3) fOT all 0ij, [xi,xj] L Oij

Here H,,— is the (n — 1)-dimensional Hausdorff measure. For each volume
w; that has a common (n — 1)-face with the boundary 9 one defines an
external volume w;, € CS2 by the reflection of the w; with respect to the face
i, = w;NOQ. Denotes by 7? the collection of all external volumes {(w;, , 74, )}
and by I” the set of their indices. Let 7¢ = T U7? and I¥ = TU I’. We
say that the volumes w;, w; € T7° are neighbours if they share a common
n — 1 face and we denote by n; ; the unit normal vector to the face o;; that
point to wj.
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Discrete form of CDRE. The space discretized equations are derived
from the integral form of (1.1) for each control volume w;

856(:) dz — / (k(u)Vu+ f(u)) -nda = /g(t,az,u)daz, Viel. (4.1

wj Ow; Wi

By a proper approximation of the volume integrals and surface integrals one
obtains discrete form of CDRE.

We define the numerical diffusion coefficient x : R x R — Ry by

F(u,v) = max(k(u), k(v)). (4.2)
It is easy to show that numerical diffusion coefficient satisfies
R(u,v) = k(v,u), symmetry,
A6 || (R(u1,v) — K(ug,v))(us —uz) >0, monotonicity,
k(u,u) = k(u), consistency.

Corresponding to each face o;; we admit that there exists a numerical flux
function f: R x R — R with the following properties:

fg,vj (u7 U) = J;
A7 (fij(ur,v) = fij(u2,v))(u1 —uz) <0, monotonicity,

(fij(u,v1) = fij(u,v2))(v1 — v2) >0,

fi,j(U, u) = f(u) - n;j, consistency.

_fj,i(v, U), conservation,

A numerical convective flux which satisfies A7 is systematicaly used in the
approximation of hyperbolic equation see, for example |6]. The integrals in
(4.1) will be approximated as follows:

Ob(u) 0b(u;)
ot ot ’

dz ~ m(w;)
//{(u)Vu-nda% Z m(f’ij)%(ui’uj)ujd_..w’
dw; IENE !
/f(u)-nda% Z ﬁ,j(uiauj)a

Ows FEN (D)

otz de [ ot = gt ).

wj Wi

N (i) denotes all neighbours in 7¢ of w;, m(w;) represents the volume of
polyhedron w; and m(o;;) represents the n — 1-dimensional measure of the
face o;; and d; j = |z; — z;]|.
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The initial data and boundary conditions are approximated by:

Ug; = ﬁw/uo(w)dx, (4.3)

1
L , 4.4
ui, e /uDda (4.4)

Uib

respectively.

As aresult one can define a Cauchy problem for a system of ordinary differen-
tila equations whose solution gives an approximation of the Cauchy problem

(1.1), (3.1).

db(g;iz) _ Z m(O'z]) [E(uz,u])% + fi,j(ui,u]'):| + gi(t,ui)
JEN(4)
ui’t:() = Uoi,
(4.5)
for t > 0 and for any i € I.

Let us introduce the numerical diffusion-convection flux functions

Filwiup) = 3 m(0yy) [E(ui,uj)“j_“i+};j(ui,uj)} (4.6)

jen ™) i

then the ODE approximation reads as

dt

= Fi(u;up) + gi(t, u;). (4.7)

The boundary conditions are taken into account by the volume elements next
to boundary 9. For such element the contribution of the boundary values
to the F; is given by
m(o;,) [~ Uiy — U+
le:) /{(uib,’LLj)Zbsz +fi,ib(ui’uib) : (4-8)
Infiltration model. Here is an example of a numerical convective flux that
satisfies A7 with f(u) = e3K(u) that appears in the Richards’ equation
(2.3).
- 1 1
fij(u,v) = 5 (e3-mij + les - nij|) K(v) + 5 (e - nij — les - miyl) K(u).
(4.9)
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Discrete form of GPME. For each control volume w; we write

Ou 4 / 90() 4, — /r(u)dx, Viel (4.10)

ot on

Wi Ow; wj

To approximate (4.10) we use the same schemes as in previous paragraph.
The new integral that contains the diffusion function ¢ will be approximated

by
0 ) — Blu;
B JEN () Y

The ODE approximation of (4.10) is given by

O . A .
Yoy 1;11((0,‘])) é(uﬂ)d“qﬁ(u» + (). (4.12)
jeN () T &
The boundary conditions are taken into account by the volume elements next

to boundary 0f2. For such an element the boundary values enters into the
play by a term of the form

(o) B{ujp) — dus)

m(wz) dfj

(4.13)

For shortness we introduce the notation
m(o;; u;) — o(u;
gz‘ _ Z ( zy) qb( J) qb( z)‘

m(w;) dij

JEN(3)

4.2. ODE Model

As in the continuum case we want to prove that the solutions of ODE (4.5)
and (4.10) obey a comparison criterion.

For that, we firstly prove that F and G satisfy Kamke conditions.
LEMMA 4.1 Assume A2, A6 and A7. Then
Fi(u) =0, Gi(u®) =0 (4.14)
for any constant state u; = u,Vi € I°.
F and G satisfy Kamke conditions, that is
Fi(v®) > Fi(w®), G;(v°) > Gi(w®), Vi€ I, (4.15)

for any two vectors that satisfy vy > wy, Vk € 1¢, and v; = w;.
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Proof. To prove (4.14) we have

Fi(u®) = Z m(aij)f(u) ‘n;; = 0.

JEN() m(ws)

We only prouve the counterpart relativ to F. To prove the Kamke conditions
we have
Filv) - Fi(w) =
m(o;j) [~ vj—u o~ ~ w;—u >
2 o) [m(u, o)L o Fogluy0) = R, w) = = Fij(u,wy)
JEN (i) ! K "

and from (4.2) and the monotonicity property of A7 the affirmation results.

As F and G are both quasimonotone and nondecreasing with respect to
boundary data vectorial functions the next two results are equaly true for
discrete ODE (4.12).

Assumptions on source term

There exists the real numbers o < a < 8 < 3 such that
(1) b€ C'((a, B)) and &' > 0 on (o, B).

A1" | There exists two Lipschitz functions g,g : Ry x R — R such that
(2) g(t,u) < g(t,2,u) <G(t,u), Yu € (a,B),

(3) g(t,@) <0, g(t,8 > 0.

THEOREM 4.1 (Boundedness of discrete solutions) Consider the Cauchy
problem (4.5). Assume A1, A1”, A4, A6, A7. We suppose also that initial
conditions and boundary data satisfy

a<uy(zr) <BaereQa<up(t,r) <p, ae (t,z) e (0,T) x Q. (4.16)

Let u(t) be the solution of the problem

Ob(u
8(1: ) = Q(t7u)
(4.17)
|u|t:0 = Q,
u(t) be the solution of the problem
ob(u .
8(t ) g(t.u)
(4.18)

‘U‘tzo =p
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and Ty, = inf(sup{t|u(t) > a,u(t) < B},T) Then the solution u(t) of the
Cauchy problem is bounded by w and @ on the interval [0, Tsyp) i.€.,

u(t) < wi(t) <a(t)Vi € 1,V € [0, Toup) (4.19)

Proof. The essential tool in the proof is the Nickel’s theorem that provide the
monotony of the solution of the quasimonotone ODE. The Kamke conditions
ensure us that we deal with quasimonotone system.

Observe that the conditions A1”-3 guaranties that
a<u(t) <o, f<T(t) < B (4.20)
Define

Fi(u) = Fi(u;u), Fi(u) = Fi(u; ).
From (4.4), (4.8), (4.15), (4.20) and the conditions A1’-2 one obtains

Y

Fi(u) +g(t,u) < Fi(u;up) + gi(t,u) < Fi(u) +g(t,u).

Since u; P (t) = u(t),Vi € I is a solution of the problem
T Fi(u) +g(t, u;) (4.21)
u’i’t:() = 57

ul™ (t) = u(t),Vi € I is a solution of the problem

2

dt = F;(u) + Q(t7 ;) (4.22)
Uili_g = o,

and a < ug; < 8 one can apply the Nickel’s theorem and one obtains
u () < wilt) < ug™ (1),

which is (4.19).

THEOREM 4.2 (Comparison theorem. Discrete case) Assume we are as in
the boundedness theorem. Let u(t) and u(t), t € (0,T), be the solutions of
the problem (4.5) associated to (up,ug) and (up,ug) respectively. Suppose
that

uDgﬁD<0, u0§ﬁ0<0.

Then
u<u

on (0,7).

Proof. The same as in the boundedness theorem.
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5. Numerical Algorithms and Numerical Results

In this section we give two numerical algorithms to solve GPME equation
and Richards’ equations respectively.

5.1. Fast Diffusion with Strong Absorption

We will present here an algorithm to solve numerically (4.12) in the case of
the fast diffusion with strong absorption. In addition to assumptions A2 the
constitutive functions ¢ and r satisfy

A2 ¢ is increasing function and lim,_,o ¢(x)/x = oo,

r(s) <0, for s >0,

The ODE can be rewritten as

ui
ot

= Aijp(ug) +r(uq). (5.1)

We use the classical full implicit Euler time integration scheme to integrate
the system. It follows

"t =0 4+ At (Ap(u™T) + r(uth)) (5.2)

where At represents the time step. Depending on the initial data ug and
the type of nonlinearity of the functions ¢ and r to solve the arising system
can be a very hard problem, in the vicinity of the zero the derivative of the
function ¢ in the case of fast diffusion become infinite. We propose here
an algorithm suggested by the Gauss-Sidel iterative method. The method
uses the very special structure of the matrix A generated by finite volume
method. One writes the matrix A as

A=A+T,

where I' is a diagonal matrix containing the diagonal entries of the matrix
A. We point the following properties of the two matrices

Aij 2 0, Ty; <0, Zgij < —T. (5.3)
J

We rewrite also the functions ¢ and r as

o(z) = o(z) -z, r(x) = —r(x) - x. (5.4)
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The equation (5.2) can be written now as
(1 + At( Té(u) + 7(u "+1))) W = ot + AtAg(™Y).  (5.5)

The next theorem gives the main properties of the solution of implicit Euler
method.

THEOREM 5.1 In addition of the conditions A2 and A2 we assume that
¢ is a nonincreasing function and v > 0. If the initial data and boundary
conditions are positive and upper bounded functions, i.e.

0<up<p, 0<up <p,

then for any time step At there exists a solution of the equation (5.2) that
satisfies
0<u" <p, Vn. (5.6)

Proof. Let us assume that for a time level n there exists a solution u” that
satisfies (5.6). We will use the Browder fixed point theorem to demonstrate
the existence of u™*! with the same properties. Define the RV-values function
U by N

ut + ALY, Ay (yy)

1+ At <—Pz’i$(yi) + F(yz')) |

We claim that the function ¥ is a continuous function on the set [0, o]V and
take values in the same set. So, it has a fixed point.

Vi(y) =

Since ¢ and 7 are continuous functions on (0, 00) and let us assume that their
limits in 0 are finite we can prolong by continuity the function ¥ in 0. It is
obviously that ¥; > 0. For the upper bound we have

ull + AtY Ayd(y;)
U (y) —p < I —p=
W-ps< 1 — Atly0(yi) g

ul' — p + At (Zj Asjo(y;) + pl“imNS(yi))
1 — Aty (yi) '

For any y € [0, p]"¥ we have

Z Aijo(y;) + pLad(yi) < b(p Z Aij + pliid(yi) <

< —o(p)Tii + pLid(yi) = —pLii(d(p) — d(yi)) < 0.
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NXn|----

Fig. 2: The regularization of the flux function.

To obtain the first inequality one uses: assumptions A2’ (¢ is a nondecreasing

function), boundary data is bounded from above by p and A;; > 0, the second
inequality results from the structure of the matrix A and the last inequality
from the constitutive assumption on the ¢.

So, we have
0<Wi(y) <p

and for it results the existences of a fixed point, say u. Since for any ¢ one
has

L+ At (—Tad(y) +7(9:)) < oo, on [0, ),
it follows that the fix point u is a solution of the of the nonlinear equation
(5.6).

Let us analyse the case in which the functions 5 and 7 have infinite limits in
0. One regularises the function ¢ by

PPN B if%(a:)>n
P {d@7ﬁﬂﬂén o0

and from it one has

|, if p(x) > xn
Pn(w) = { o), if 6lx) < an. (58)

Obviously
60(@) < 6(2), lim 6,(z) = 9(a)
In a similar manner we define Ty

With the functions ¢, and r, we are in the previous case and then results
that there exists a solution u, € [0, p]" of the equation

uy = u" + At (Ady (uy) + ry(uy)) - (5.9)
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As the sequence u, is bounded we can extract a subsequence wu,, that con-
verges to a point u € [0, p]N. The problem is to demonstrate that the limit
point u is a solution of the original equation, i.e.

u=u" 4+ At (Ao(u) + r(u)).

Let us denote by Fj)(u) and F' r.h.s., of the preceding equations, respectively.
We have

lu=Fu)lloe = [lu = ug, + (Fy, (ug,) = Fy, (w)) + (Fy, (v) = F(u)]|, <

o oo —
+|1Fy, (u) = F(u)

We will show that, for any € > 0,
lu = F(u)| <e.

Observe that the first term and the last term can be made arbitrary small,

9
[l =g, [l + 1 () = Fu)ll o < 5

for any n > n®. The middle term can be evaluate as ||-||

1 F () = Fo (u)ll oo < At([|A(¢n,, (ug,) — g, (w)]] 5 +
+ HTnn(unn) - rnn(u)Hoo) <
< At([|All [[én, (un,) — &n, (w)

+ |7, (ug,) — rnn(u)Hoo)'

_.I_

| o0

For each component ¢ we look at

P, (Ugi) — Dn, (wi)]

and note that if u; is not equal with zero then for a great enough number n
one has

(O (i) = D (ui)| = [d(un,i) — Pui)],

if u; equals zero then
|¢77n (unnl) - gbnn (ul)| = ¢77n (unnl) é gb(“‘”/'rﬂ)

Using the continuity of the function ¢ we can find a number nf such that

£
[P () — P ()] o < VA~
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for any n > n§. Using the same arguments we can prove that
€
i < _
for any n > n§. Hence, there exists a n® such that
€
HF 7L(u7]n) - an(u)Hoo S 5
for any n > ne.
This end the proof of the theorem.

In our implementation we calculate the solution of the Euler scheme by the
following iterative solver

<I N (_pgn(unﬂ,k) n ;n(unﬂ,k))) RSN

- (5.10)
u" + AtAG, (uthE),

Numerical Simulation. For the numerical simulation we chose a very
simple domain 2 = [0,1] x [0,1]. The fast diffusion with absorption is mod-
eled by ¢(s) = s™,r(s) = —A- sP.

Table 1: Extinction phenomenon, extinction time T° = 0.18. ¢(s) = s%7, r(s) =
—21. x s95%, up =0

..
..
......

Initial Profile Comparison of the numerical solution
(solid line) with a theoretical estima-
tion (points drawing).

5.2. Water Infiltration through Stratified Soil. Richard’s
Equation

We consider stratified soil. Hereafter the stratified soil means a block-wise
homogeneous soil with horizontal parallel homogeneous strata, see figure (3).
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Fig. 3: Stratified porous soil. Each layer is mod-
elled by different constitutive function.

In the case of stratified soil the different mechanical properties of the soils
require different constitutive functions which in turn lead to a partial differen-
tial equation with discontinuous coefficient. On an interface of two different
strata one must impose some compatible conditions to have a well defined
problem. Physical considerations require the continuity of the pressure head
and normal components of the velocity. So, we have

h|— = h|+)
v-nly. (5.11)

v-n|_

Taking into account the compatibility relations (5.11) appear that it is more
convenient to work with the § — h form of Richards’ equation, i.e.,

B d(h+ z)
8t/‘/9d$ = K(@)Tds,

ov (5.12)

o = 0(h)

We assume that the flow domain is the 2D rectangle Q = [0, a] x [0, b] which
is stratified in Nj strata [0,a] X [Z;—1, Z;] with Zy =0, Zn, = .

Let 0 = 210 < @yq10 < -+ < ng12 =4, 0= 210 < 21410 < -++ <
Zp41/2 = b be two partitions of the intervals [0,a] and [0,b] respectively.
We define the control volumes w; ; = [azi_l/%xiﬂ/z] X [zj_l/z,zj+1/2] , 1=
Ti—1/2 + Tiy1/2
- 5
Zj i =1,N,j = 1,M. We assume that the partition

2
{wi ;} is a conform partition with respect to stratification of the domain €,

1,N, j =1, M and the net inner knots r; ; = (24, 2j), &; =
 Yj—12 T Yjt1)2
- a9
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Fig. 4: 2D mesh.

i.e for any j the line z = Z; does not intersect the interior of any control
volume w ;.

On each volume w;; one approximates the pressure by a constant value
h;j and water content by a constant value 6; ;. On the common boundary
Oiy1/2,j = wij Uwityj of two neighbors we approximate the flux by

8h—|—z hz ,'—hi,'

Oi+1/2,5

where the numerical hydraulic conductivity K /o ; is an approximation of
the hydraulic conductivity K (0),

Ki+1/2,j == k(9i7j,0i+1’j). (514)

We assume that the function I~((, -) is a symmetric and continuous function
with respect to its arguments. As result, we obtain a differential algebraic
system of equation (DAE), 6 — h form of Richards’ equation,

d6; hiv1j — hi;
(A
P Zhig 4) C
2Y A

hij — i1,
e A
hii—hii 1
+K; 112 %
J

0;; = 0(hij).

+1]),
Azjp

(5.15)

To integrate the DAE (5.15) we use an implicit multi-step method, [5].
Let {tn—k,tn—k+1,---,tn} be a sequence of moments of time and denotes by
0™ = 0(t,,) € RYM NM = N x M. Supposing that one knows the values
{on=F gn=h+1 6"}, the values 67! and h"+! at the next moment of time
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tny1 are calculated as follows. Define a predictor polynomial w®(t) and a
corrector polynomial w®(t). The predictor polynomial interpolates the val-
ues {§77F, gn—k+L 9"} at moments of time {t,,_i, tn_g+1s ..., tn}, Lagrange
interpolation,

k
WO (t) = g5 ()" . (5.16)
j=0

For each j = 0, k the polynomial g;(t) is given by

et
0= 11 ——
i=0,5 I Tt

The corrector polynomial w®(t) interpolates the unknowns 6"*! and the
values of w(t) at the moments of time t,,1 and {t,41 — jAt,;j = 1,k},
respectively. The unknowns #"*! and h"*! are determined by imposing to
the corrector polynomial w®(t) and to A"*! to satisfies the DAE. Then a
system of nonlinear equation results. By denoting

- (pn+1l pn+1ly .
Fig (07 h )E +1 +1 +1
n n n n
—hij —hi

! . R .
1, > _17
Kz‘+1/2,j(9n+1) z+Aj$' , _Ki—1/2,j(9n+1) ,] Am.l J+
hn+lll+_ n+1 ’ h h
1 ij+ ij 1 i, — -1
K jy1/2(0m) <—Azj+1 + 1) — K jo12(0") <Tz] + 1)
(5.17)
one obtains
Y gt Pn) _ ¢ (gntl pntl
m’lv] <Atn 07?] - wiuj > - E’] (on 7hn ) ’ (518)

n+l __ n+1
ei,j - e(hi,j )7

where wfj’»” are known quantities as functions of the preceding values of 6.

The nonlinear system (5.18) is solved iteratively using an inexact Newton
step followed by a Broyden step until a desired accuracy is obtained. Let R
be given by

a
AP

R(O,h) =m ( 6 — va”> —F(6,h). (5.19)

The matrix J (6, h) of the iterative process in INS is an approximation of
the full Jacobian of the function R, the product of it with a vector w read
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ﬂ&Mw:mg;ﬂMw—%wwL (5.20)
where
F (0,w) = 0, F (0, w) (5.21)
and 0
o0 =i

The nonlinear solver is:

Inexact Newton step

Tk pntliygNS — R (grilk pntlk) (g1

B _ pntik | gNS (s2)

LRt _ H(En—i-l,k—i—l), (s2)

Broyden step (5.22)
j(0”+1’k, hn—i—l,k)(sfs - R (yn+1,kjﬁn+1,k) 7 (83)

6]2“ = ES NS (;75?5, thi?S BS\’ (s4)

(0,°,0,°) — (0,7, 0%°)
R (s5)
gnLRHL _ gtk (s5)

The linear equations in the steps sl and s3 are solved by Conjugate Gradient
Method for linear system with symmetric and positive definite matrix. We
present some numerical tests obtained using the above algorithm. As empir-
ical models for water content #(h) and hydraulic conductivity K(#) we use
the van Genuchten model,

2
1 - _ Ql/m\™
K(S) ={ ?S <1 (1-54m) ) ! gi?< L (5.24)
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where S represents the relative water content

_6—6,

S—Hs_er.

The soil in the test is a layered soil with two alternate strata.

197

vh=0

Am

vh=0

* vn=0

Physical configuration. The parameters for the loam soil in the van Genuthen model
n=2a=33m1t =05 K, =0338mh} 6. = 0.012, , = 0.368
and for the Glendale soil are: n = 1.3954, o = 1.04m™ %, [ = 0.5, K, = 0.545 x
10~2mh~1!, 6, = 0.106, 6, = 0.4686. The initial datum is h° = —1.0m in the whole
domain. The boundary conditions are of the mixt type.

are:

% %

s | 80|

70 - 70 -

60 | 60 -

50 - 50 -

4F 0 TR 40

30 - 30 -

20 - L — 20 -

B e SRR W YV N el 0L A o [ 1S

0w w0 = e 70 o ‘o 1w 2 w0 a0 0 o
hl = —0.75 m, h,2 = —0.0 m, hg = hl = —0.75 m, h,2 = —0.3 m, hg =
—0.75m. —0.75m.

The number of the iterations versus time step. Numbers of iteration in nonlinear
solver (line-point) and the total numbers of iteration time step in CGM method
The time simulation was 48h.
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t = 24h

t = 48h

The comparative profiles of the pressure head for two different Dirich-
let datum on the top boundary at different moments of time. h; =
—O75rn, h,2 = —O.Hl, h,g = —075m(left) h,l = —0.75H1, hQ
—0.3m, hg = —0.75m.(right).

3
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