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approximate inertial manifolds 1331. IntrodutionIn the study of dissipative semi-dynamial systems generated by semilinearparaboli equations, the theory of qualitative behavior of the system at largetimes plays an important role. By paraboli semilinear equations we meanpartial di�erential equations that an be written as abstrat equations in aHilbert spae, of the form:
du

dt
+ νAu + R(u) = f, (1.1)where u is a funtion of time with values in a Hilbert spae H (whose de�-nition omprises the boundary value onditions imposed to equation (1.1)).We attah to the above equation an initial ondition

u(0) = u0, (1.2)with u0 in H. We assume that A is a linear operator, de�ned on a densesubspae D(A) of H, self-adjoint, positive de�nite, with ompat inverse,while R is a nonlinear operator de�ned on D(R) ⊂ D(A). We do not insisthere on the hypotheses on R, but we assume that it is suh that the Cauhyproblem (1)-(2) has an unique solution on [0, T ], for every u0 ∈ H and every
T > 0. Hene a semi-dynamial system is generated by the above problem,by setting S(t)u0 = u(t, u0), where u(t, u0) is the solution of (1.1)�(1.2).For this presentation we assume that f is in H. We also assume that thesemi-dynamial system generated by (1.1) is dissipative in the sense thatthere is a bounded absorbing set for it. An absorbing set is a set B havingthe property that, for every bounded set M ⊂ H, there is a value of t,depending on M, let us denote it by tM , with the property that, S(t)M ⊂ Bfor t ≥ tM . For the partiular problems we onsider here, there also areabsorbing balls in some subspae V of H, with D(A) ⊂ V ⊂ H.In the theory of qualitative behavior at large times of solutions of equationsof the form (1.1), the notion of global attrator plays an important role.A global attrator [3℄ is a ompat set of the phase spae H, invariant tothe semigroup S(t)t≥0, that attrats the bounded sets of the phase spae,when time tends to in�nity. This means that the global attrator bears inits struture the properties of the behavior of the semi-dynamial system atlarge times. For many problems of interest the existene of an attrator wasproved [37℄.The study of the geometrial and topologial properties of the global attra-tors �ourished sine the last two deades of the XXth entury and the major



134 Ana-Veronia Ionhope was that a onnetion between the struture of the attrator and veryomplex phenomena like turbulene in the �ow of the �uids will be found.In this ontext, another interesting notion appeared, that of inertial mani-fold (i.m.) [11℄. It is a �nite dimensional, invariant and at least Lipshitzmanifold having the property that it exponentially attrats all the trajeto-ries of the problem. More than that, an i.m. has the property of asymptotiompleteness meaning that for every u0 in H there is a v0 on the i.m. suhthat the distane between the trajetories passing through the two pointsdereases exponentially with time.The invariane of the i.m. implies the fat that we an onstrut a restritionof the problem to this manifold. The restrited problem is named inertialform [11℄, [37℄ and, sine the i.m. is �nite dimensional, is equivalent witha system of ODEs. The above de�ned asymptoti ompleteness of the i.m.implies that the asymptoti behavior at large times of the dynamial systemis desribed by the asymptoti behavior of the inertial form. Hene the largetimes study of the initial semi-dynamial system (in�nite dimensional sineits phase spae is H) an be redued to that of a �nite-dimensional one.Another important onsequene of the properties of the i.m.s is that, when aglobal attrator exists, it is ontained in the i.m. These onsiderations explainthe large interest shown by the sienti� ommunity in inertial manifolds.From among the great number of papers devoted to the inertial manifoldswe remind: [11℄ (with the extended version [12℄), [8℄, [9℄, [5℄, [36℄. Theimportant monograph [37℄ had a seond edition in 1997.From a theoretial point of view, the i.m.s looked very promising, but majorobstales appeared in trying to use their properties in the study of onreteproblems. One is due to the fat that existene of i.m.s is in most papersproved by a �xed point theorem, and is not onstrutive. There is a on-strutive proof in [2℄ but it uses some integral manifolds whose onstrutionis equivalent with solving the equation. Another problem is a restritivehypothesis among the hypothesis of the existene theorems- the hypothesisof a spetral gap that imposes the existene of two suessive eigenvaluesof A situated at a �large enough� distane [1℄, [12℄, [37℄. This hypothesis isnot ful�lled by many problems, (e.g. is not ful�lled for the two-dimensionalNavier-Stokes equations).In this situation the approximate inertial manifolds were de�ned as approxi-mations of i.m.s or as substitutes of these, when the i.m.s ould not be provedto exist. An approximate inertial manifold (a.i.m.) is a �nite dimensional, atleast Lipshitz manifold in the spae H, with the property that all the traje-tories of the dynamial system enter a narrow neighborhood of the manifold



approximate inertial manifolds 135at a ertain moment and never leave the neighborhood after. Even if it hasnot the invariane property, an a.i.m. is important beause, if the problemhas a global attrator, it is ontained in the narrow neighborhood mentionedabove.The loalization of the attrators in the spae of phases was a �rst interestingappliation �eld of the a.i.m.s. Besides this, a.i.m.s found very interestingappliations in the onstrution of some approximate solutions (the numerialintegration) of the nonlinear evolution problems. Examples of papers devotedto a.i.m.s are: [10℄, [13℄, [23℄, [26℄, [27℄, [28℄, [33℄, [35℄, [37℄, [38℄, [39℄.In Setion 2 we present some methods, that use a.i.m.s, for the onstrutionof approximate solutions for problems of the type (1.1)�(1.2), the so-allednon-linear Galerkin method and post-proessed Galerkin method.We inlude a method oneived by us, that we named repeatedly adjusted andpost-proessed Galerkin method, that is onneted to the preeding methodsbut brings some simpli�ations to these. In Setion 3 we present the waythese method work for the two-dimensional Navier-Stokes equations with pe-riodi boundary onditions, and in Setion 4, for a two-dimensional reation-di�usion equation, with Von Neumann boundary onditions.In order to settle the notations and the funtional framework of our presenta-tion, we shortly remind below the Galerkin spetral method for the abstratequation (1.1).1.1. The Galerkin methodIn the hypotheses we assumed on the operator A of equation (1.1), it followsthat A has positive eigenvalues that form a tending to in�nity sequene:
0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ..., λn →

n→∞
∞.The eigenfuntions of A form a total (orthonormal) system for H. We on-sider the set, denoted Γm, of the �rst distint m eigenvalues (in inreasingorder) and the eigenfuntions orresponding to these. We denote by P theorthogonal projetion operator on the subspae spanned by these eigenfun-tions and we set Q = I − P (where I is the identity appliation on H). Thesolution u of (1.1)�(1.2) is projeted by the two projetors and we set

p = Pu,

q = Qu.



136 Ana-Veronia IonIt follows that the funtions p and q are solutions of
dp

dt
+ νAp + PR(p + q) = Pf, (1.3)

dq

dt
+ νAq + QR(p + q) = Qf, (1.4)

p(0) = Pu0, (1.5)
q(0) = Qu0. (1.6)Usually, the omponent q of the solution is proved to be, at large times, �little�in the norm of H ompared to the p omponent. That is, an inequality ofthe form

|q (t)| ≤ C0δ
a, (1.7)where

δ =
λ1

λm+1
, (1.8)and a is some positive number, is true. For the Navier-Stokes equations it isproved in [38℄ that a inequality of the type (1.7) holds, with a = 1 and C0depending on m. We proved in [19℄ that the inequality an be improved in thesense that it is true with a C0 that does not depend on m. For the reation-di�usion equation, |q(t)| is of the order of δ for large enough times [4℄.If in the equation (1.4) q is negleted in the presene of p, we �nd the equation

dp

dt
+ νAp + PR(p) = Pf. (1.9)This is the Galerkin approximation of the equation (1.1). The solution of theproblem (1.9) with the initial ondition (1.5), that we denote by pG(.), is theGalerkin approximation of the solution of (1.1)-(1.2). For several problemsit is proved in the literature that inequalities of the type
|u(t) − pG(t)| ≤ Cδα,where u(t) is the solution of the problem (1.1)-(1.2), δ > 0 is de�ned by (1.8),and α > 0.As example, for a reation-di�usion equation with Neumann boundary valuesand for the two-dimensional Navier-Stokes equations, α = 1 (in the hypoth-esis f ∈ H). The problem (1.9), (1.5) is equivalent to a system of ordinarydi�erential equations for the oordinates of p(t) along the eigenfuntions thatspan PH. The de�nition of δ shows that the greater will be m, (hene thedimension of PH), the smaller will be the error.



approximate inertial manifolds 137In the onstrution of the Galerkin equation, the q omponent of the solution(that is proved to be small for large times) is approximated with 0. Thenonlinear Galerkin (and/or post-proessed) methods of approximation arebased upon the idea of approximating q(t) by using a a.i.m instead of themanifold q0.2. Modi�ed Galerkin methodsThe nonlinear Galerkin (and/or post-proessed) methods of approximationare based upon the idea of approximating q(t) by using an a.i.m instead oftaking q ≃ 0.2.1. Families of a.i.m.s used in the modi�ed Galerkin meth-odsThere are several types of a.i.m.s de�ned in the literature. Among them,those de�ned in [10℄, [38℄, [39℄ (for the Navier-Stokes equations � NSE) gen-erated new numerial integration methods, based on the Galerkin method.They form a family {Mj}j≥0 and are the graphs of some funtions
Φj : PH → QH. The de�nitions of these a.i.m.s for the NSE are presented inSetion 3 while those for the RDE are given in Setion 4. A.i.m.s of the typeof those ited above may be (and were) de�ned for many partiular problemsof the form (1.1)�(1.2). The main property of these a.i.m.s, on whih theiruse in the onstrution of the numerial methods is based, is the following:the distane (in the norm of H) between q(t) and the image of p(t) on thea.i.m. Mn is of the order of δa(n) that is

|q(t) − Φn(p(t))| ≤ Cδa(n), (2.1)where a(n) is inreasing with n.For example, for the two-dimensional NSE it is proved [38℄, [39℄ that a(n) =
= (n+3)/2. Sine, for NSE, about the H norm of q(t) only the fat of beingof the order of δ is known, it is lear that any of the above a.i.m.s providesa better approximation of q(t) than the so-alled plane manifold q = 0, forthe mentioned problem.



138 Ana-Veronia Ion2.2. The nonlinear Galerkin methodsThe nonlinear Galerkin method (NL Galerkin method) was �rst de�ned in[29℄. The method relies on the idea that Φ0(p(t)) is a better approximationof q(t) than 0, and onsiders, instead of the Galerkin equation (3.25), theequation
dp

dt
+ νAp + PR(p + Φ0(p)) = Pf, (2.2)with initial ondition (1.5). By denoting with p̃0(.) the solution of this prob-lem, the approximate solution of (1.1)�(1.2) is taken as
v0(t) = p̃0(t) + Φ0(p̃0(t)).As it is natural, sine Φn (p(t)) approximates q(t) better and better with theinrease of n, the next idea, appeared in [6℄, was to onsider the equation

dp

dt
+ νAp + PR(p + Φn(p)) = Pf, (2.3)with the initial ondition (1.5). Let p̃n(.) the solution of this problem. Theapproximate solution is then de�ned as
vn(t) = p̃n(t) + Φn(p̃n(t)).For the problems onsidered in the ontext of nonlinear Galerkin problems,it is proved that the error is of the order of δb(n), where b(n) is inreasingwith n.E.g., for the Navier-Stokes equations it is proved in [7℄ that b(n) = (n+3)/2,while for the reation-di�usion equation it is asserted in [32℄ that b(n) = n+2provided f ∈ H.2.3. Post-proessed Galerkin methodsIn [14℄ the following modi�ed Galerkin method is proposed, that also usesa.i.m.s. Let again pG(.) be the solution of (1.9), (1.5). Then the value of

Φ0(pG(t)) is omputed at the right end side of the time interval [0, T ], thatis in T . The approximate solution in T is de�ned as
w(T ) = pG(T ) + Φ0(pG(T )).



approximate inertial manifolds 139This method is named the post-proessed Galerkin method (PP Galerkinmethod) beause the solution of the Galerkin problem is orreted only in the�nal phase, after �nishing the numerial integration of the Galerkin prob-lem, by using the �rst a.i.m. of the family desribed in 2.1 (hene post-proessed). The error of this approximate solution is less than that of theGalerkin method. Thus, for the two-dimensional Navier-Stokes equations, itis shown in [14℄ to be of the order of δ5/4. Another estimate is proved in [15℄,i.e. the error is proved to be of the order of L2δ3/2, where L = 1 + ln(2m2).This latter estimate of the error is not neessary better than the formerbeause of the oe�ient L2.The next idea appeared in the literature [32℄ was to postproess the NLGalerkin method of the preeding setion. More preisely, the equation (2.3)is onsidered, it is integrated on all the time interval [0, T ], then Φn+1(p̃n(T )),is omputed, and the approximate solution in T is de�ned as
wn(T ) = p̃n(T ) + Φn+1(p̃n(T )).This method is alled the nonlinear post-proessed Galerkin method (NLPP Galerkin method). In [32℄ the use of the method is exempli�ed on thereation-di�usion equation and it is proved that, if f ∈ H, then the error isof the order of ln m δn+3.2.4. A new modi�ed Galerkin methodIn [38℄, in the ontext of the study of the NSE, a family of funtions,

{qj}j≥0, qj : R
+ → QH, having the property

|qj(t) − q(t)| ≤ kjL
1+j/2δ(3+j)/2 (2.4)for large enough times is onstruted. Here the oe�ients kj depend on thedata of the problem (ν, |f |, λ1), and L = 1 + lnλm+1

λ1
. Atually, the funtion

q0 is of the form
q0 = Φ0(p),while, for j ≥ 1, qj are reursively de�ned by relations of the type

qj = Fj(Qf, p, q0, ..., qj−1). (2.5)The funtions uj = p + qj, j ≥ 0 de�ne the so-alled indued trajetories,
{uj(t); t ≥ 0}, assoiated to the trajetory {u(t); t ≥ 0} of the dynamialsystem. Relation (2.4) shows that the funtions uj , j ≥ 0, are approximations



140 Ana-Veronia Ionof the exat solution, of inreasing with j auray. The de�nition of thea.i.m.s Mj used in the nonlinear Galerkin methods for the NSE are basedupon the de�nitions of the funtions qj.In [20℄, for the two-dimensional NSE with periodi boundary onditions, wede�ned a new type of modi�ed Galerkin method, that uses some approxima-tions of the indued trajetories and not the a.i.m.s. We desribe here themethod in the general ontext of equation (1.1). The purpose of the methodis that of working with a very low-dimensional projetion spae PH, and theidea from whih we started is that, however small is the dimension of PH, ifwe have a very good approximation for q, let us denote it by q̃, then a verygood approximation for p will be obtained by solving the equation
dp

dt
+ νAp + g(p + q̃) = Pf.In onsequene, a good approximation of u may be obtained. The methodis strutured on several levels. One of the ideas we followed in developingthis method is that of having to integrate only di�erential equations of thesame level of di�ulty as the Galerkin equation. This was possible by usingapproximations of indued trajetories instead of a.i.m.s.Level 0. This level has two stages. The �rst is the lassial Galerkin method,i.e. we solve the problem (1.9), (1.5) and we onsider its solution, pG(.).The seond stage onsists in de�ning the funtion of time, with values in

QH:
q̃0(t) = Φ0(pG(t)), (2.6)the funtion Φ0 being the one that de�nes the �rst a.i.m. of the family itedin 2.1.Then we de�ne the approximate solution at this �rst level as

ũ0 = pG + q̃0.Sine the funtion q̃0(t) will be used at the seond level of our method, in thenumerial implementation of this method, the funtion q̃0 should be om-puted in eah point of the time mesh, unlike in the post-proessing de�nedin [14℄, where it is omputed only at the �nal point of the integration in-terval [0, T ]. Besides this, Level 0 of our method is essentially the Galerkinpost-proessed method.Level 1. We onsider the problem
dp

dt
+ νAp + PR(p + q̃0) = Pf, (2.7)

p(0) = Pu0



approximate inertial manifolds 141and we denote by p̃0 its solution. This is an "adjusted" Galerkin problem.This equation is essentially di�erent from the orresponding one of the NLGalerkin method (see equation (2.3)) sine q̃0 is known from Level 1.Then we de�ne
q̃1(t) = F1(Qf, p̃0(t), q̃0(t)).The approximate solution is

ũ1 = p̃0 + q̃1.Level j > 1.We assume that q̃0, q̃1, q̃2, ..., q̃j−1 were onstruted. The problem
dp

dt
+ νAp + PR(p + q̃j−1) = Pf, (2.8)

p(0) = Pu0,is onsidered and its solution is denoted by p̃j−1. Then we denote
q̃j = Fj (Qf, p̃j−1, q̃0, q̃1, ..., q̃j−1)and the approximate solution is̃

uj = p̃j−1 + q̃j.At �rst sight, the idea of performing several time integrations seems a badidea, sine every suh integration involves a large amount of omputations.However, a areful analysis shows that the amount of omputations involvedin the NL Galerkin method (based upon the a.i.m. Mj) is greater thanthat involved in solving the problems from Level 1 to the eq. (2.8) of Levelj, inlusive. Suh an analysis is performed for the Navier-Stokes equationsin 3.8. Hene our method, that we all the repeatedly adjusted and post-proessed Galerkin method (R-APP Galerkin method) is an alternative tothe NL Galerkin method. The �nal post-proessing, by adding q̃j to p̃j−1 isequivalent to the post-proessing of NL Galerkin method and does not implya large amount of aluli sine it will be performed only in some seletedmoments of time (eventually only at the last moment, T ). In what onernsthe error, for the problems disussed below we an prove that the error ofR-APP Galerkin method is of the same order of magnitude as that for NLPP Galerkin method, for the two partiular problems in Setions 3 and 4.



142 Ana-Veronia Ion3. Modi�ed Galerkin methods for the Navier-StokesequationWe present here the modi�ed Galerkin methods for the Navier-Stokes equa-tions: the NL, NL PP Galerkin methods already de�ned in the literature andour R-APP Galerkin method.3.1. The setting of the problemWe onsider the problem of the two-dimensional �ow of a inompressibleNewtonian �uid, modeled by the Navier-Stokes equations. We impose pe-riodi boundary onditions and hoose the periodiity ell to be a square,
Ω = (0, l) × (0, l). Thus the problem is

∂u

∂t
− ν∆u + (u · ∇)u+∇p = f , (3.1)divu = 0, (3.2)where u (t,x) ∈ R

2 is the veloity of the �uid, t ≥ 0, x ∈Ω, p (t,x) ∈ R is thepressure of the �uid, ν is the kinemati visosity, and f is the volume fore.We add the initial ondition
u (0, ·) = u0(·). (3.3)We assume that f is independent of time and is an element of [

L2
per (Ω)

]2. Asis usual in the study of the Navier-Stokes equations with periodi boundaryonditions, we assume that [40℄, [34℄
f =

1

l2

∫

Ω
f (x) dx = 0, (3.4)and that the pressure is a periodi funtion on Ω. For simpliity we willassume also that the average u of the veloity over the periodiity ell iszero.The veloity u is thus looked for in the spae H =

{
v; v ∈

[
L2

per (Ω)
]2

,divv = 0, v = 0} with the salar produt (u,v) =
∫
Ω (u1v1 + u2v2) dx,(where u = (u1, u2) , v = (v1, v2)) and the indued norm is denoted by

|·|. Let us also onsider the spae V =
{
u ∈

[
H1

per (Ω)
]2

, div u = 0,u = 0
}

,with the salar produt ((u,v)) =
∑2

i,j=1

(
∂ui

∂xj
, ∂vi

∂xj

)
, and the indued norm,denoted by ‖·‖ .



approximate inertial manifolds 143The variational formulation of the Navier-Stokes equations [40℄ leads, for theperiodi boundary onditions, to the Cauhy problem
du

dt
− ν∆u + (u · ∇)u = f in V ′, (3.5)

u (0) = u0, u0 ∈ H. (3.6)The notations
B(u,v) = (u · ∇)v, (3.7)

B(u) = B(u,u), (3.8)will be used below.We remind here the lassial existene and uniqueness results for the Navier-Stokes equations in R
2, with periodi boundary onditions.We denote A = −∆. The de�nition domain of the linear operator A is

D(A) = V ∩ H2
per(Ω).Theorem 3.1 [40℄. a) If u0 ∈ H, f ∈ H, then the problem (3.5), (3.6)has an unique solution u ∈ C0 ([0, T ];H) ∩ L2 (0, T ;V) . b) If, in addition,

u0 ∈ V, then u ∈ C0 ([0, T ];V) ∩ L2 (0, T ;D(A)) . The solution is, in thislatter ase, analyti in time on the positive real axis.The semi-dynamial system {S (t)}t≥0 generated by problem (3.5) is dissi-pative [37℄. More preisely, there is a ρ0 > 0 suh that for every R > 0,there is a t0(R) > 0 with the property that for every u0 ∈ H with |u0| ≤ R,we have |S (t)u0| ≤ ρ0 for t > t0(R). In addition, there are absorbing ballsin V and D (A) for {S (t)}t≥0, [34℄ i.e. there are ρ1 > 0, ρ2 > 0 and, forevery R > 0, there are t1(R), t2(R) with t2(R) ≥ t1(R) ≥ t0(R) suh that
|u0| ≤ R implies ‖S (t)u0‖ ≤ ρ1 for t > t1(R) and |AS (t)u0| ≤ ρ2 for
t > t2(R).3.2. The deomposition of the spae, the projeted equationsThe eigenvalues of A are λj1,j2 = 4π2

l2

(
j2
1 + j2

2

)
, (j1, j2) ∈ N

2\ {(0, 0)} , andthe orresponding eigenfuntions are
ws±

j1,j2
=

√
2

l

(j2,∓j1)

|j| sin

(
2π

j1x1 ± j2x2

l

)
,

wc±
j1,j2

=

√
2

l

(j2,∓j1)

|j| cos

(
2π

j1x1 ± j2x2

l

)
,



144 Ana-Veronia Ionwhere |j| =
(
j2
1 + j2

2

) 1

2 [38℄. These eigenfuntions form a total system for H.For a �xed m ∈ N we onsider the set Γm of eigenvalues λj1,j2 having
0 ≤ j1, j2 ≤ m. We de�ne

λ := λ1,0 = λ0,1 =
4π2

l2
,

Λ := λm+1,0 = λ0,m+1 =
4π2

l2
(m + 1)2 ,

δ = δ (m) :=
λ

Λ
=

1

(m + 1)2
.

Λ is the least eigenvalue not belonging to Γm. The eigenfuntions orre-sponding to the eigenvalues of Γm span a �nite-dimensional subspae of H.We denote by P the orthogonal projetion operator on this subspae and by
Q the orthogonal projetion operator on the omplementary subspae. Wewrite for the solution u of (3.5), (3.6), u = p + q, where p = Pu, q = Qu.By projeting equation (3.5) on the above onstruted spaes, we obtain

dp

dt
− ν∆p + PB(p + q) = Pf , (3.9)

dq

dt
− ν∆q + QB(p + q) = Qf . (3.10)In [10℄ is proved that for every R > 0, there is a moment t3 (R) ≥ t2(R) suhthat for every |u0| ≤ R,

|q (t)| ≤ K0L
1

2 δ, ‖q (t)‖ ≤ K1L
1

2 δ
1

2 , (3.11)
∣∣q′ (t)

∣∣ ≤ K ′
0L

1

2 δ, |∆q (t)| ≤ K2L
1

2 , t ≥ t3 (R) ,where, for our hoie of the set of eigenvalues Γm, L = 1 + ln(2m2). In [19℄we proved that estimates of the same order are true for the various norms of
q (t) above, but with oe�ients of the powers of δ not depending on m.3.3. Indued trajetories for the Navier-Stokes problemIn [38℄ the notion of indued trajetory is de�ned and a family of induedtrajetories is onstruted for this problem. The asymptoti expansions thatrely behind this onstrution are not made expliit there.



approximate inertial manifolds 145A family of funtions, {qj; j ∈ N} , that satisfy the equations
−ν∆q0 + QB (p) = Qf ,(3.12)

−ν∆q1 + QB (p) + QB (p,q0) + QB (q0,p) = Qf ,(3.13)
−ν∆q2 + QB(p) + QB (p,q1) + QB (q1,p) + QB(q0,q0) + q′

0 = Qf ,(3.14)
−ν∆qj + q′

j−2 + QB (p) + QB (p,qj−1)+ (3.15)
+QB (qj−1,p) + QB (qj−2,qj−2) = Qf , j ≥ 2,is de�ned.If p (t) is, as above, the P projetion of the solution u(t) of the NSE, thesets {uj(t) = p (t) + qj (t) ; t ≥ 0} are alled indued trajetories assoiatedto the trajetory {u(t) = p (t) + q (t) ; t ≥ 0}. The inequalities

|qj | ≤ κjδL
1/2, ‖qj‖ ≤ κjδ

1/2L1/2,
∣∣q′

j

∣∣ ≤ κjδL
1/2,are proved in [38℄, as well as the following

|q(t) − qj(t)| ≤
_
κjL

(1+j)/2δ(3+j)/2. (3.16)3.4. A family of approximate inertial manifolds for the Navier-Stokes equationsThe family of indued trajetories above, more preisely the funtions qj , j ≥
0, form the starting point for the onstrution of a family of approximate in-ertial manifolds de�ned in the literature, the �rst one in [10℄ and the followingin [38℄ and [39℄. The �rst a.i.m. of this family is the graphM0 of the funtion
Φ0 : PH →QH, that satis�es the relation

−ν∆Φ0 (X) + QB(X) = Qf ,where X ∈ PH. Thus Φ0 (X) is expliitly given by
Φ0 (X) = (−ν∆)−1 (Qf − QB(X)) . (3.17)



146 Ana-Veronia IonThe onnetion between this de�nition and the de�nition (3.12) of q0 isobvious: the set of points {p(t) + q0(t); t ≥ 0} lies on M0. The next a.i.m.de�ned in [38℄ is M1, the graph of the funtion Φ1 : PH →QH, given by thesolution of the problem
−ν∆Φ1 (X) + QB(X) + QB(X,Φ0 (X)) + QB(Φ0 (X) ,X) = Qf ,that is

Φ1(X) = − (ν∆)−1 [Qf − QB(X) − QB(X,Φ0 (X)) − QB(Φ0 (X) ,X)] .(3.18)The relation with the de�nition (3.13) of the orresponding funtion q1 islear.For j ≥ 2, inspired by the de�nition (3.15) of qj , the a.i.m. Mj is de�nedas the graph of Φj : PH →QH, with Φj (X) the solution of
−ν∆Φj (X) + QB(X) + QB(X,Φj−1 (X)) + QB(Φj−1 (X) ,X)+

+QB(Φj−2 (X)) + DΦj−2 (X) Γj−2 (X) = Qf ,where DΦj−2 (X) Γj−2 (X) is the Fréhet di�erential of Φj−2 (X), applied to
Γj−2 (X) = ν∆X− PB (X + Φj−2 (X)) + Pf . (3.19)Hene

Φj (X) = − (ν∆)−1 [Qf − QB (X) − QB (X,Φj−1 (X))− (3.20)
−QB (Φj−1 (X) ,X) − QB(Φj−2 (X)) − DΦj−2 (X) Γj−2 (X)] .The inequalities (3.16) allow us to estimate the distane between the traje-tories of the problem and the a.i.m.s. This is immediate for the �rst twoa.i.m.s, sine for j = 0, 1, we have uj(t) ∈ Mj , and thus
distH (u(t), Mj) ≤ dist (u(t),uj(t)) = |q(t) − qj(t)| .For the a.i.m.s Mj with j > 1, some extra work is neessary, sine

DΦj−2 (p(t)) Γj−2 (p (t)) is only an approximation of [qj−2(p (t))]′ . How-ever, in [38℄ and [39℄ it is proved that
distH (u (t) ,Mj) ≤

_
κjL

(1+j)/2δ(3+j)/2.



approximate inertial manifolds 1473.5. Nonlinear Galerkin method for the Navier Stokes equa-tionsThe nonlinear Galerkin method was �rst presented in [29℄. It is de�ned for alass of equations that ontains the Navier-Stokes equations as a partiularase, i.e. an equation of the type (1.1) with
R(u) = B(u) + Cu,where B(u) = B(u, u), B(., .) is a bilinear operator having essentially theproperties of B and C is a linear operator. It is assumed that A + C ispositive in H and C is bounded from V = D(A1/2) to H.We write the method for the Navier-Stokes problem we onsidered here (thatis we take A = −ν∆, B = B, C = 0). It onsists in approximating in theP projetion of the equation, the funtion q with help of the �rst a.i.m. ofthe family desribed above. That is, instead of the Galerkin equation, theequation

dp

dt
− ν∆p + P [B(p) + B(p,Φ0(p)) + B(Φ0(p),p)] = Pf , (3.21)with the initial ondition

p(0) = Pu0,is onsidered, where Φ0 is given by (3.17) (the notations are adapted toours). We see from the term PB(p + Φ0(p)) the term PB(Φ0(p),Φ0(p))is missing. This is beause it is of lower order than the preeding terms.As for the equation of Φ0, this is taken in [29℄ as
Φ0 (p) = (−ν∆)−1

Q2m [f − B(p)] , (3.22)where Q2m is the projetion operator de�ned as Q2m = QP2m, where P2mis the projetor on the spae spanned by the eigenfuntions orresponding tothe eigenvalues in Γ2m (of λj1,j2 having 0 ≤ j1, j2 ≤ 2m). This is beausethe spae QH is in�nite dimensional and a trunation must be made (atleast for f , sine for periodi boundary onditions, if X ∈ PH then B(X) isanyway in P2mH).Let us denote, together with the authors of [29℄, the solution of (3.21) by
um. It is proved in the paper we refer at, that, if u0 ∈ H then um →

m→∞

u in L2 (0, T ;V) , um →
m→∞

u in Lp (0, T ;H) , strongly (for any T > 0, p ≥
1) and um →

m→∞
u in L∞ (R+;H) weak-star.



148 Ana-Veronia IonIf u0 ∈ V then um →
m→∞

u in L2 (0, T ;D(A)) , um →
m→∞

u in Lp (0, T ;V) ,strongly (for any T > 0, p ≥ 1) and um →
m→∞

u in L∞ (R+;V) weak-star.As an alternative nonlinear Galerkin method, that starting from the equation(similar to (2.2))
dp

dt
− ν∆p + PB(p + Φ0(p)) = Pf , (3.23)with Φ0 de�ned by (3.22) is also given in [29℄. Convergene results similarto those asserted above are proved.In [7℄ an estimate of the error of the method is given

|u(t)− [um(t) + Φ0(um(t))]| ≤ C(t)δ3/2.In [6℄ the NL Galerkin method is improved by using more aurate a.i.m.s.The equation that provides the approximate solution is (we write it here alsofor the N-S equations)
dp

dt
− ν∆p + PB(p + Φj(p))] = Pf , (3.24)where Φj is the the funtion whose graph is the orresponding a.i.m. (similarto that de�ned in (3.20), but slightly di�erent). Let us denote by um,jthe solution of (3.24) and by vm,j = um,j + Φj(um,j). It is proved in [6℄that if u0 ∈ V, both um,j and vm,j onverge to u (when m → ∞) in

L2 (0, T ;D(A)) and in Lp (0, T ;V) , strongly (for all p ≥ 1 and all T > 0),and in L∞ (R+;V) weak-star. It is also proved that, for a �x j, zm,j =
Φj(um) onverges (when m → ∞) to 0 in L∞ (R+;V) and L2 (0, T ;D(A))strongly for any T > 0. In [7℄ some estimates for the error are obtained. Morepreisely, for the NSE, it is shown that (with our numbering of the a.i.m.s)

|u(t) − vm,j(t)| ≤ KjL
(j+3)/2
m δ(j+3)/2.3.6. Post-proessed Galerkin method for the Navier-StokesequationsThe ideas on whih the post-proessed Galerkin method relies are exposed in2.3. In [14℄ a general equation is onsidered and the Navier-Stokes equation



approximate inertial manifolds 149is treated as a partiular ase. The solution pG of the Galerkin equation,
dp

dt
− ν∆p + PB(p) = Pf , (3.25)

p(0) = Pu0,is post-proessed. This means, at a ertain moment T (the end of the timeinterval on whih the integration of (3.25) was performed) the image of pGon the �rst a.i.m. M0, that is Φ0 (pG(T )) , is omputed and is added to
pG (T ) . It is proved that, if f ∈ H, then

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ Cδ5/4. (3.26)In a subsequent paper, [15℄, the same authors prove another estimate for theNavier-Stokes problem. More exatly, they prove that, for f ∈H,

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ CL2δ3/2. (3.27)Estimate (3.27) is not neessarily better than (3.26), sine the oe�ient L2appears (as before, L = 1 + ln(2m2)). In [32℄ the method is improved. Thatpaper onsiders a reation-di�usion equation, but the algorithm works forthe Navier-Stokes equations as well. Instead of the Galerkin equations, theNL Galerkin equations (3.24) are onsidered. The solution um,j(t) of theseequations is post-proessed, i.e. the sum
um,j(T ) + Φj+1 (um,j(T ))is onsidered and proposed as an approximate solution. The estimate of theerror is made in [32℄ for the reation-di�usion equation, hene is not relevantfor the Navier-Stokes equation.3.7. The repeatedly adjusted and post-proessed Galerkinmethod for the Navier-Stokes equationWe adapt the general method presented in 2.4 to the Navier-Stokes equations.Level 0. We de�ne the �rst step of this level as the lassial Galerkinmethod. Let us onsider the Cauhy problem

dp

dt
− ν∆p + PB (p) = Pf , (3.28)

p(0) = Pu0.



150 Ana-Veronia IonWe denote by pG (t) its solution and de�ne
q̃0(t) = Φ0 (pG (t)) .In the implementation of the method, the equation (3.28) must be numeri-ally integrated. We remark that the values of q̃0(t) must be omputed inevery point of the time mesh used in the ourse of the numerial integration,sine they will be used at the next level of the method.We de�ne the funtion

ũ0 (t) = pG (t) + q̃0(t). (3.29)This preliminary level di�ers from the PP Galerkin method only in the post-proessing part, in the fat that we ompute q̃0(t) at any moment of timeand not only at the end of the time interval on whih (3.28) is integrated.Level 1. Now we onsider the problem
dp

dt
− ν∆p + PB (p+q̃0) = Pf , (3.30)

p(0) = Pu0,with q̃0(t) omputed at the preeding step. Sine q̃0(t) is already known, thisequation is not more di�ult to integrate than the simple Galerkin equationattahed to the Navier-Stokes equation. It is an adjusted Galerkin equationsine the nonlinear term is adjusted by adding to p(t) the term q̃0(t) thatapproximates q(t) better than 0 does. We denote by p̃0 (t) the solution ofproblem (3.30). The omputation of the error showed that p̃0 is a betterapproximation of p than pG (see the omments in 3.8).Then we de�ne
q̃1(t) = −(ν△)−1 [Qf − QB (p̃0(t)) − QB (p̃0(t), q̃0(t))−

−QB (q̃0(t), p̃0(t))]The approximate solution will be de�ned at this level as
ũ1 (t) = p̃0 (t) + q̃1(t). (3.31)This funtion is an approximation of u1 that de�nes the seond induedtrajetories.



approximate inertial manifolds 151Level j (j ≥ 2). We assume that we onstruted the funtions q̃j−2, q̃j−1(t).We onsider the adjusted Galerkin problem
dp

dt
− ν∆p + PB (p+q̃j−1) = Pf , (3.32)

p(0) = Pu0,and denote by p̃j−1 (t) its solution. Then we set
q̃j (t) = (−ν∆)−1

[
Qf − QB(p̃j−1 (t)) − QB(p̃j−1 (t) , q̃j−1 (t))− (3.33)

−QB(q̃j−1 (t) , p̃j−1 (t)) − QB(q̃j−2 (t) , q̃j−2 (t)) − q̃ ′
j−2 (t)

]
.We de�ne the approximate solution at this level as

ũj(t) = p̃j−1 (t) + q̃j(t).We remark that ũj (t) is an approximation of uj (t) (that de�nes a induedtrajetory of the family onstruted in [38℄).We must say that, at the last level, as in the NL PP Galerkin method, wemay orret p̃j−1 by adding q̃j only at some moments of interest (the �nalpostproessing step).We also must remark that, when the method is numerially implemented,the projetor Q must be replaed by a �nite dimensional projetor as, e.g.
Q2m de�ned in Setion 3.5.3.8. The error of the R-APP Galerkin methodIt is not the purpose of this work to present the expliit alulus of the errorof the methods presented. We proved in [20℄ that

|p(t) − p̃j(t)| ≤ Cδ5/4+j/2and
|q(t) − q̃j(t)| ≤ Cδ3/2+j/2,where C depends on the data of the problem: Ω, f , ν, λ1, and on t but noton m.With other methods, other estimates may be obtained. If we start fromestimates of [15℄ of |p (t) − pG (t)| , where pG (t) is, as before, the lassialGalerkin approximation of the solution, that is
|p (t) − pG (t)| ≤ C ′L2δ3/2,



152 Ana-Veronia Ionan improvement of the estimate of the error of the suessive solutions by afator of δ1/4 seems to be obtained. However, the appearane of the fator
L2 (L = 1 + ln(2m2)) diminishes this suess. A very areful analysis of theonstants C, C ′ should be performed in order to see what approah is better.Anyway, the R-APP Galerkin provides approximates solutions as aurateas those provided by the NL PP Galerkin method.3.9. R-APP Galerkin method ompared to the high-orderauray NLPP Galerkin methodThe R-APP Galerkin method is intended to bring some simpli�ations to theNL Galerkin methods that use high auray approximate inertial manifolds.Hene this method makes sense only if more of its levels are passed through.The simpli�ations ome from the following fats:a) the use of some already known funtions (the q̃js) for the adjustment ofthe Galerkin equation, makes the equations for the approximations of p tohave essentially the same struture as the Galerkin equation; this imply sim-pli�ations of the algorithms for the numerial integration of these equations,ompared to the orresponding equations of the NL Galerkin equations;b) the use of the "approximate indued trajetories" instead of the ap-proximate inertial manifolds makes some omputations easier, beause, inthe funtion q̃j the term q̃′

j−2 appears instead of the orresponding term
DΦj−2 (X) Γj−2 (X) of the a.i.m. Φj; the term q̃′

j−2 an be approximatedby the numerial derivative (sine we know its values in the points of thetime mesh);) when we proeed to Level j of the method, all we need are the values of
q̃j−2 and q̃j−1, while all values of p̃k, k < j − 1 and q̃k, k < j − 2 may beerased from the memory of the omputer; this must be ompared to the NLGalerkin method that uses Mj , where in the ourse of a single numerialintegration one must handle the values of all funtions Φk, k ≤ j, and allthese must be stored in the memory of the omputer.In order to ompare the R-APP Galerkin method with the NL PP Galerkinmethod, we must look at the levels j with j ≥ 2.Let us analyze in parallel the �rst stage of Level 3 (that delivers us thefuntion p̃2) of our method and the orresponding NL Galerkin method (thatuses the a.i.m. M2). It is easier to follow our reasoning on this partiularase than than on the general one.



approximate inertial manifolds 153In order to make the following as lear as possible, we desribe the ompu-tations neessary for the simple Euler integration method. Of ourse, moreelaborated algorithms must be used, but the di�ulties added by these shouldbe evaluated for eah spei� algorithm individually.In order to proeed, we onsider a time-mesh 0 = t0 < t1 < t2 < ... < tk <
... < tN = T on the time integration interval [0, T ].Let us make the notations

ΓG (p) = Pf + ν∆p− PB (p)

Γ̃j (p) = Pf + ν∆p− PB (p+q̃j) .R-APP Galerkin method, at the third level, requires the following om-putations for the determination of p̃2(t):at Level 0 � omputation of pG(tk), k = 1, ...,N, by numerial integration ofeq. (3.28) (this is equivalent with the omputation of ΓG (pG(tk−1))); thenomputation of q̃0(tk);at Level 1 � omputation of p̃0(tk), k = 1, ...,N, by numerial integrationof eq. (3.30) (this is equivalent with the omputation of Γ̃0 (p̃(tk−1))); thenomputation of q̃1(tk);at Level 2 � omputation of p̃1(tk), k = 1, ...,N, by numerial integra-tion of eq. (3.32) with j = 2, (this is equivalent with the omputation of
Γ̃1 (p̃1(tk−1))), then omputation of q̃2(tk);at Level 3 � omputation of p̃2(tk), by numerial integration of eq. (3.32)with j = 3 (this is equivalent with the omputation of Γ̃2 (p̃2(tk−1))).NL Galerkin method that uses M2, presented in [29℄, onsists in theintegration of the system of ODEs

dp

dt
− ν∆p + P [B(p + Φ2(p))] = Pf , (3.34)

p (0) = Pu0,where the funtion Φ2 is given by
−ν∆Φ2(p) + Q2mB (p + Φ1(p))+q1

1 = Q2mf , (3.35)
−ν∆q1

1 + Q2m

[
B(

(
p1

0, p + Φ1(p)
)
+B

(
p + Φ1(p),p1

0

)]
= 0,

p1

0 − ν∆p + P [B(p + Φ1(p))] = Pf ,

−ν∆Φ1(p) + Q2mB(p + Φ0(p)) = Q2mf ,

−ν∆Φ0(p) + Q2mB(p) = Q2mf .



154 Ana-Veronia IonWe reprodued here the de�nition of M2 from [29℄, but we adapted thenotations from [29℄ to our notations and we started ounting a.i.m.s with 0,as in [38℄, while in [29℄ this ount begins with 1.In the ourse of the numerial integration, with p(tk−1), k = 1, ...,N, alreadydetermined, in order to �nd p(tk), we have to ompute:
Φ0(p (tk−1)), Φ1(p (tk−1)), Γ1 (p (tk−1)) (for the alulation of p1

0
(tk) , with

Γ1 given by (3.19), j = 3), q1
1 (tk−1) , Φ2(p (tk−1)), and �nally Γ2 (p (tk−1)) .This will yield p(tk).Now we an ompare the two methods from the point of view of the ompu-tations involved. We have the following:� omputation of q̃0(tj) is equivalent to that of Φ0(p (tj));� omputation of q̃1(tj) is equivalent to that of Φ1(p (tj));� omputation of Γ̃1 (p̃1 (tj)) is equivalent to that of Γ1 (p (tj)) ;� omputation of q̃2(tj) is equivalent to that of Φ2(p (tj)), assuming that

q1
1 (tj) is already omputed;� �nally we observe that the omputation of pG(tj) and p̃0(tj) (from R-APPGalerkin method) together, involve less omputations than that of q1

1(tj)(from the NL Galerkin method).This is beause in omputing pG(tj) we have to ompute a number of 4m2 +
2m projetions of the term ΓG (pG(tj−1)) and in omputing p̃0(tj) we have toompute 4m2 + 2m projetions of the term Γ̃0 (p̃(tj−1)), while in omputing
q1

1 (tj) we have to ompute 12m2 + 6m projetions.At the following level, indued trajetories, respetively a.i.m.s, of higherorder are used. The de�nition of these involves approximations of the deriva-tives similar to the above. Hene, the di�erene in the amounts of ompu-tations between the two methods inreases with the order of the method.It follows that the R-APP Galerkin method involves a smaller amount ofomputations than the NL Galerkin method.The omputational e�ort involved in the �nal post-proessing part is eased inthe R-APP Galerkin method by the fat that, by using approximations of theindued trajetories we an approximate diretly (by numerial derivative)the funtion q′, while in the NL PP Galerkin method it is approximatedby the di�erential DΦj−2 (X) Γj−2 (X). In onlusion, the R-APP Galerkinmethod brings simpli�ations to the NL PP Galerkin method relying onhigher auray a.i.m.s.



approximate inertial manifolds 1554. Modi�ed Galerkin methods for a reation-di�usionproblemWe onsider a reation-di�usion (RD) equation of the form
∂u

∂t
− D (∆u−u) + g(u) = f, (4.1)where u is a real-valued funtion, u = u(t,x), x ∈ Ω = (0, l)× (0, l), l > 0,

D is the di�usion oe�ient and the funtion g is a polynomial funtion ofodd degree. In order to simplify the following onsiderations we take here apolynomial funtion of degree 3,
g(u) = b0 + b1u + b2u

2 + b3u
3, bi ∈ R, b3 > 0.We take f∈L2 (Ω) . To the equation (4.1) we assoiate an initial ondition

u(0) = u0 (4.2)and the boundary ondition
∂u

∂n

∣∣∣∣
∂Ω

= 0. (4.3)The phase spae is here H =L2(Ω). We onsider also the spae V = H1 (Ω)with the usual norm.The operator A = −∆ + I is a positive-de�nite, self�adjoint, with ompatinverse operator with de�nition domain D(A) = H2 (Ω). The following exis-tene result may be obtained by the Galerkin-Faedo method [37℄, [34℄Theorem 4.1 If u0 ∈ H, then there exists a unique solution u ∈ C (R+; H) ,
u ∈ L2(0, T ; V) ∩ L2p(0, T ;L2p(Ω)) where p > 1, T > 0. If, more than that,
u0 ∈ V, then u ∈ C([0, T ); V) ∩ L2(0, T ; H2 (Ω)).The semi-dynamial system {S(t)}t≥0 , generated by (4.1) is proved to bedissipative in H and V [37℄, [34℄. Hene there is a ρ0 > 0 (respetively a
ρ1 > 0), suh that for every R > 0, there is a moment t0(R) (respetively
t1(R) > t0(R)) with the property that for every u0∈ H with |u0| ≤ R, wehave |S(t)u0| < ρ0, for t ≥ t0(R) (respetively ‖S(t)u0‖ < ρ1, for t ≥ t1(R)).



156 Ana-Veronia Ion4.1. The splitting of the spaeThe eigenvalues of A are
λj,k =

π2

l2
[j2 + k2] + 1and the orresponding eigenfuntions are

wj,k =

√
αjαk

l
cos

jπx

l
cos

kπy

l
,where αj = 1 for j = 0 and αj = 2 for j 6= 0.As for the Navier-Stokes equations, we onsider the set Γm of eigenvalues

λj1,j2 with 0 ≤ j1, j2 ≤ m. We make the notations
Λ = λm+1,0 = λ0,m+1,

δ =
1

Λ
.We also onsider the spae spanned by the eigenfuntions orresponding tothese eigenvalues and we denote by P the projetor on this spae. We set

Q = I − P, where I is the identity on H, p = Pu, q = Qu.We projet the equation (4.1) by using these projetors, to obtain
dp

dt
− D (∆p−p) + Pg(p + q) = Pf,

dq

dt
− D (∆q−q) + Qg(p + q) = Qf.It an be proved (e.g. [4℄) that

|q| ≤ Cδfor t great enough, where the oe�ient C depends on the data of the prob-lem.4.2. Indued trajetories for the reation-di�usion problemIn onstruting a family of indued trajetories for the reation-di�usionproblem, we try an asymptoti analysis of the RD equations. We developthe funtion q in series of powers of δ

q = δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
. (4.4)
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g(p + q) = g(p) + g′(p)q +

1

2
g′′(p)q2 +

1

6
g′′′(p)q3 =

= g(p) + g′(p)δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
+

+
1

2
g′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]2
+

+
1

6
g′′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]3
,hene, by ordering the terms after the powers of δ,

g(p + q) = g(p) + δg′(p)k0+ (4.5)
+ δ2

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3

[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4

[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... .Then, by substituting (4.4) in the equation for q, we obtain

δk′
0 + δ2k′

1 + δ3k′
2 + δ4k′

3 + ...

− D
[
δ∆k0 + δ2∆k1 + δ3∆k2 + δ4∆k3 + δ5∆k4 + ...

]
+

+ D
[
δk0 + δ2k1 + δ3k2 + δ4k3 + δ5k4 + ...

]
+

+ Qg(p) + δQg′(p)k0 + δ2Q

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3Q

[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4Q

[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... = Qf.In ordering the terms in (4.5) we simply performed an algebrai alulus, andtreated the right-hand side as a polynomial in δ, but when we look for theterms of the same order of magnitude, a areful analysis should be performed.Sine kj(t) ∈ QH, we have

|∆kj| ≥ Λ |kj | =
1

δ
|kj | (4.6)and it follows that the term δj+1ν∆kj is of the order of j. We also mustevaluate arefully the terms ontaining produts or powers of kjs. E.g., forthe term 1

2g′′(p)k2
0 we have the estimates
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∣∣∣∣
1

2
g′′(p)k2

0

∣∣∣∣ =

(∫

Ω

(
g′′(p)

)2
k4
0dx

)1/2

≤
(∫

Ω

(
g′′(p)

)4
dx

)1/4 (∫

Ω
k8
0dx

)1/4

.Sobolev embedding theorem gives
‖u‖Lp(Ω) ≤ C(p, s) ‖u‖s ,with 1/p = 1/2 − s/2, s < 1, and, sine

‖u‖s ≤ C ‖u‖1 ,we obtain
(∫

Ω
k8
0dx

)1/4

= ‖k0‖2
L8(Ω) ≤ C2(8,

3

4
) ‖k0‖2

3/4 ≤ C2(8,
3

4
) ‖k0‖2

1 .In a similar way we see that (∫
Ω (g′′(p))4 dx

)1/4 is a funtion of ρ0 and ρ1.This together with inequality ‖k0‖1 ≥
(

1
δ

)1/2 |k0| show that all we an sayabout the term 1
2δ2g′′(p)k2

0 is that it is of order δ and we have to onsiderit together with the terms of the same order. Similar reasonings will beonsidered impliit for the other terms ontaining produts or powers of kjs.Thus we obtain the relations:
−δD∆k0 + Qg(p) = Qf,

δk′
0 − δ2D∆k1 + δDk0 + δQg′(p)k0 +

1

2
δ2Qg′′(p)k2

0 = 0,

δ2k′
1 − δ3D∆k2 + δ2Dk1 + δ2Qg′(p)k1+

+
1

2
δ3Qg′′(p)2k0k1 +

1

6
δ3Qg′′′(p)k3

0 = 0,

δ3k′
2 − δ4D∆k3 + δ3Dk2 + δ3Qg′(p)k2+

1

2
δ4Qg′′(p)

(
k2
1 + 2k0k2

)
+

1

6
δ4Qg′′′(p)3k2

0k1 = 0,...Now we de�ne the funtions
qj = δk0 + δ2k1 + δ3k2 + δ4k3 + ... + δj+1kj .



approximate inertial manifolds 159By summing the equations for kj , we obtain equations for qj :
−D∆q0 + Qg(p) = Qf, (4.7)

q′0 − D∆q1 + Dq0 + Qg (p) + Qg′(p)q0 +
1

2
Qg′′(p)q2

0 = Qf,

q′1 − D∆q2 + Dq1 + Qg (p) + Qg′ (p) q1+

1

2
Qg′′(p)q2

0 +
1

2
Qg′′(p)2q0 (q1 − q0) +

1

6
Qg′′′(p)q3

0 = Qf,

q′2 − D∆q3 + Dq2 + Qg (p) + Qg′ (p) q2+

1

2
Qg′′(p)q2

1 +
1

6
Qg′′′(p)3q2

0 (q1 − q0) = Qf,...We see that the nonlinearity of the polynomial makes the equations neither�beautiful�, nor with a lear struture. However, we onsider the funtions
uj(t) = p(t) + qj(t),and de�ne the indued trajetories of the problem as the sets {uj(t); t ≥ 0} .These will be used to de�ne the R-APP method for the reation-di�usionequations.4.3. Approximate inertial manifolds for the reation-di�usionequationIn the NL Galerkin method and in the NL PP Galerkin method desribed inliterature [32℄, the following a.i.m.s are de�ned for the RD equation: for any

j ≥ 0, Mj is the graph of the funtion Φj : PH →QH, desribed below
DAΦ0(p) + Qg(p) = Qf, (4.8)

q1
j−1 + DAΦj(p) + Qg (p + Φj−1(p)) = Qf, j ≥ 1. (4.9)Here q1

j−1 = DΦj−1(p)Γj−1(p), with DΦj−1(p) the Fréhet di�erential of
Φj−1 omputed in p and applied to Γj−1(p) = Pf −DAp−Pg(p+Φj−1(p)).If we would want to onstrut a family of a.i.m.s M̃j starting from theindued trajetories we de�ned above (as is done in [38℄ for the Navier-Stokes equation), the �rst a.i.m. of the family, M̃0, would be idential with
M0 sine the funtion Φ̃0 de�ning it would be idential to Φ0 of (4.8), as theequation for q0(t) shows.



160 Ana-Veronia IonThe seond a.i.m., M̃1, would be quite di�erent from M1 above. That is, itwould be the graph of the funtion Φ̃1 de�ned by the equation
DQΦ̃0(p)Γ0(p) − D∆Φ̃1 (p) +DΦ̃0(p) + Qg (p)+

+Qg′(p)Φ̃0(p)+ 1
2Qg′′(p)Φ̃0(p)2 = Qf,

(4.10)with Γ0(p) = Pf + D (∆p−p) − Pg(p + Φ̃0(p)). We see that the di�erenebetween this equation and that for Φ1, that we write expliitly below
DΦ0(p)Γ0(p) − D∆Φ1(p) + DΦ1(p) + Qg (p + Φ0(p)) = Qf, (4.11)onsists essentially in the presene of the term 1

6g′′′(p)Φ0(p)3 in this lat-ter equation. If the polynomial g would be of higher degree, the di�erenebetween the two families of a.i.m.s, that de�ned starting from the induedtrajetories and the one de�ned by the relations (4.8) and (4.9) would in-rease. However, for the sake of the elegane of the de�nitions, (4.11) maybe taken as the equation for Φ1(p) even if it does not spring from an aurateasymptoti analysis. The presene of the higher order terms does not a�etthe order of magnitude of the distane between the exat solution of the R-Dequation and the �rst a.i.m. [21℄.4.4. �Indued trajetories� inspired by a.i.m.sFor the sake of the simpliity of the de�nitions and having in mind somesimpli�ations of the omputations in the R-APP Galerkin method below,we an hoose an alternate de�nition for the indued trajetories of the R-Dproblem, inspired from the de�nitions of the a.i.m. of [32℄. That is, we de�nethe funtions q̃j through the relations
DAq̃0 + Qg(p) = Qf, (4.12)

q̃ ′
j−1 + DAq̃j + Qg (p + q̃j−1) = Qf, j ≥ 1,where p(t) = Pu(t). The funtions̃

uj = p + q̃jde�ne the new �indued trajetories� {ũj(t); t ≥ 0}.



approximate inertial manifolds 1614.5. The NL Galerkin method for the RDEThe NL Galerkin method for RDE onsists in integrating the di�erentialequation:
dp

dt
+ DAu + g(p + Φ0(p)) = Pf, (4.13)with the initial ondition

p(0) = Pu0. (4.14)If we denote by ym its solution, the approximate solution is taken as
ym(t) + Φ0(ym(t)).In [32℄ it is asserted that, for large enough t,

|u(t) − (ym(t) + Φ0(ym(t)))| ≤ Cδ2.Improved NL Galerkin methods make use of the higher auray a.i.m.s,
Mj , j ≥ 1. That is an equation of the type

dp

dt
+ DAu + g(p + Φj(p)) = Pf, (4.15)with the initial ondition (4.14) is solved, let ym,j be its solution. The ap-proximate solution of the RDE is taken as:

ym,j(t) + Φj(ym,j(t)).In [32℄ it is proved that the H norm of the error of this approximate solutionis of the order of C(t)δj+2.4.6. The PP NL Galerkin method for the RDEAlso in [32℄ the NL Galerkin method is post-proessed, i.e. to the solution
ym,j of the NL Galerkin problem, onsidered in T, the quantity Φj+1(ym,j(T ))is added and

ym,j(T ) + Φj+1(ym,j(T ))is taken as the approximate solution in T . It is proved in [32℄ that
|u(t) − (ym,j(t) + Φj+1(ym,j(t)))| ≤ C ln m δj+3.



162 Ana-Veronia Ion4.7. The R-APP Galerkin method for the RDEWe desribe the R-APP Galerkin method for the reation-di�usion equation.In [21℄ we presented a variant of our method that has as initial level a NLGalerkin method (this was meant to skip a numerial integration - that ofthe Galerkin problem). Let us denote generially
qj = Fj(Qf, p, q0, q1, ..., qj−1),either the funtions given by the set of relations (4.7) or the funtions q̃jgiven by (4.12). We see that in this latter ase, Fj , j ≥ 1 atually dependsonly on Qf, p, qj−1, q′j−1.Level 0. We onsider the NL Galerkin problem

dp

dt
− D (∆p−p) + Pg(p) = Pf, (4.16)

p(0) = Pu0and denote it's solution by pG.Then we ompute, at every moment of time
q̃0 (t) = F0(Qf, pG (t)).When the numerial implementation of the method is atually done, this isequivalent to the omputation of q1 at the nodes of the time mesh, and q′0 (ti)is approximated by (q0(ti) − q0(ti−1))/(ti − ti−1). The approximate solutionis

u0 = pG + q̃0.Level 1. We onsider the equation
dp

dt
− D (∆p−p) + Pg(p + q̃0) = Pf,and denote its solution by p̃0. Then we ompute
q̃1 (t) = F1(Qf, p̃0 (t) , q̃0 (t)).The approximate solution at this level is de�ned as

ũj = p̃j−1 + q̃j.



approximate inertial manifolds 163Level j > 1. We assume q̃0, q̃1, ..., q̃j−1 were suessively onstruted. Weonsider the equation
dp

dt
− D (∆p−p) + Pg(p + q̃j−1) = Pf,and denote its solution by p̃j−1. Then we ompute

q̃j (t) = Fj(Qf, p̃j−1 (t) , q̃0 (t) , q̃1(t), ..., q̃j−1(t), ).The approximate solution at this level is de�ned as
ũj = p̃j−1 + q̃j.Remarks: 1. While the equations for pj are equivalent to a �nite, onstantnumber, of (di�erential) equations, the equations for qj are equivalent to asystem of equations having (if Qf admits non-null projetions on an in�nitenumber of eigenfuntions) a in�nite number of equations.Hene a trunation must be done. In [6℄ the trunation is made by using aprojetor, denoted P2m, that is the analogous of P but with 2m instead of m.If Qf would have nonzero projetions only on a �nite number of eigenfun-tions, then qj would also be �nite dimensional. In this situation, we ouldalso ompute the dimension of qj, by using the onsequenes of the trigono-metrial relation 2 cos α cos β = cos (α + β) + cos (α − β) , on the produtsof eigenfuntions. Then, in order to not a�et the estimate of the error pre-dited by our method, we ould take a trunation of Qf, let us denote it by

Qjf suh that ∣∣∆−1 (Qf − Qjf)
∣∣ is less that the error of the level j.2. Both families of {qj}j≥0 de�ned above present advantages and disadvan-tages one relative to the other. The �rst family, de�ned in (4.7), has theadvantage of demanding a smaller amount of omputations sine in (4.7)fewer terms than in (4.12) are taken into aount at a ertain level. Itpresents the disadvantage of realling all qi with i < j, at a ertain level j.The seond family of approximations of q, given by (4.12), realls at a ertainlevel j, only the values of qj−1. This is important from the point of view oforganizing the memory of the omputer in the numerial implementation ofthe method. However, this seond family takes into aount more terms inthe polynomial g. This inreases a lot the omputations when g has a highdegree.



164 Ana-Veronia Ion4.8. Estimates of the errorBy using the method of [32℄, we an prove that both families of induedtrajetories de�ned above lead to the same orders of error, for every level ofthe R-APP method, as the orresponding NL PP Galerkin method. That is,we an prove [22℄ that at the level j + 1 of our method
|p − p̃j| ≤ Cj (ln m ) δj+3and
|q − q̃j+1| ≤ Kjδ

j+3,and thus
|u − ũj+1| ≤ [Cj (ln m ) + Kj ] δ

j+3.4.9. Comments on the methodThe omparison of the omputational ost of the R-APP Galerkin methodto that of the NL Galerkin method is similar to that we performed for theNavier-Stokes equations. The onlusions are the same: the R-APP Galerkinmethod is more eonomi than the NL PP Galerkin method. The di�erenein the omputational ost between the two methods inreases with their level.Referenes[1℄ P. Constantin, C. Foia³, Navier-Stokes Equations, Chiago Letures inMath., Univ. of Chiago Press, IL, 1988.[2℄ P. Constantin, C. Foias, B. Nikolaenko, R. Temam, Spetral barriersand inertial manifolds for dissipative partial di�erential equations, J.Dynamis Di�erential Equations, 1 (1989), 45�73.[3℄ P. Constantin, C. Foia³, R. Temam, Attrators representing turbulent�ows, Mem. of AMS, 53 (1985), 314, AMS, Providene,USA.[4℄ A. Debusshe, M. Marion, On the onstrution of families of approxi-mate inertial manifolds, J. Di�. Eqns., 100 (1992), 173�201.[5℄ F. Demengel, J.M. Ghidaglia, Some remarks of the smoothness of theinertial manifolds, J. Math. Anal. Appl., 155 (1991), 177�225.
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