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1. Introduction

In the study of dissipative semi-dynamical systems generated by semilinear
parabolic equations, the theory of qualitative behavior of the system at large
times plays an important role. By parabolic semilinear equations we mean
partial differential equations that can be written as abstract equations in a
Hilbert space, of the form:

du

" +vAu+ R(u) = f, (1.1)

where u is a function of time with values in a Hilbert space H (whose defi-
nition comprises the boundary value conditions imposed to equation (1.1)).
We attach to the above equation an initial condition

u(0) = uo, (1.2)

with ug in H. We assume that A is a linear operator, defined on a dense
subspace D(A) of H, self-adjoint, positive definite, with compact inverse,
while R is a nonlinear operator defined on D(R) C D(A). We do not insist
here on the hypotheses on R, but we assume that it is such that the Cauchy
problem (1)-(2) has an unique solution on [0, T, for every ug € H and every
T > 0. Hence a semi-dynamical system is generated by the above problem,
by setting S(t)ug = u(t,ug), where u(t,ug) is the solution of (1.1)—(1.2).

For this presentation we assume that f is in H. We also assume that the
semi-dynamical system generated by (1.1) is dissipative in the sense that
there is a bounded absorbing set for it. An absorbing set is a set B having
the property that, for every bounded set M C H, there is a value of t,
depending on M, let us denote it by 57, with the property that, S(¢)M C B
for t > tpr. For the particular problems we consider here, there also are
absorbing balls in some subspace V of H, with D(A) C V C H.

In the theory of qualitative behavior at large times of solutions of equations
of the form (1.1), the notion of global attractor plays an important role.
A global attractor 3] is a compact set of the phase space H, invariant to
the semigroup S(t)¢>0, that attracts the bounded sets of the phase space,
when time tends to infinity. This means that the global attractor bears in
its structure the properties of the behavior of the semi-dynamical system at
large times. For many problems of interest the existence of an attractor was

proved [37].

The study of the geometrical and topological properties of the global attrac-
tors flourished since the last two decades of the XX century and the major
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hope was that a connection between the structure of the attractor and very
complex phenomena like turbulence in the flow of the fluids will be found.

In this context, another interesting notion appeared, that of inertial mani-
fold (i.m.) [11]. It is a finite dimensional, invariant and at least Lipschitz
manifold having the property that it exponentially attracts all the trajecto-
ries of the problem. More than that, an i.m. has the property of asymptotic
completeness meaning that for every ug in H there is a vg on the i.m. such
that the distance between the trajectories passing through the two points
decreases exponentially with time.

The invariance of the i.m. implies the fact that we can construct a restriction
of the problem to this manifold. The restricted problem is named inertial
form [11], [37] and, since the i.m. is finite dimensional, is equivalent with
a system of ODEs. The above defined asymptotic completeness of the i.m.
implies that the asymptotic behavior at large times of the dynamical system
is described by the asymptotic behavior of the inertial form. Hence the large
times study of the initial semi-dynamical system (infinite dimensional since
its phase space is H) can be reduced to that of a finite-dimensional one.

Another important consequence of the properties of the i.m.s is that, when a
global attractor exists, it is contained in the i.m. These considerations explain
the large interest shown by the scientific community in inertial manifolds.
From among the great number of papers devoted to the inertial manifolds
we remind: [11] (with the extended version [12]), [8], [9], [5], [36]. The
important monograph [37] had a second edition in 1997.

From a theoretical point of view, the i.m.s looked very promising, but major
obstacles appeared in trying to use their properties in the study of concrete
problems. One is due to the fact that existence of i.m.s is in most papers
proved by a fixed point theorem, and is not constructive. There is a con-
structive proof in |2] but it uses some integral manifolds whose construction
is equivalent with solving the equation. Another problem is a restrictive
hypothesis among the hypothesis of the existence theorems- the hypothesis
of a spectral gap that imposes the existence of two successive eigenvalues
of A situated at a “large enough” distance [1], [12], [37]. This hypothesis is
not fulfilled by many problems, (e.g. is not fulfilled for the two-dimensional
Navier-Stokes equations).

In this situation the approximate inertial manifolds were defined as approxi-
mations of i.m.s or as substitutes of these, when the i.m.s could not be proved
to exist. An approximate inertial manifold (a.i.m.) is a finite dimensional, at
least Lipschitz manifold in the space H, with the property that all the trajec-
tories of the dynamical system enter a narrow neighborhood of the manifold
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at a certain moment and never leave the neighborhood after. Even if it has
not the invariance property, an a.i.m. is important because, if the problem
has a global attractor, it is contained in the narrow neighborhood mentioned
above.

The localization of the attractors in the space of phases was a first interesting
application field of the a.i.m.s. Besides this, a.i.m.s found very interesting
applications in the construction of some approximate solutions (the numerical
integration) of the nonlinear evolution problems. Examples of papers devoted
to a.i.m.s are: [10], [13], [23], [26], [27], |28], [33], [35], [37], [38], [39]

In Section 2 we present some methods, that use a.i.m.s, for the construction
of approximate solutions for problems of the type (1.1) (1.2), the so-called
non-linear Galerkin method and post-processed Galerkin method.

We include a method conceived by us, that we named repeatedly adjusted and
post-processed Galerkin method, that is connected to the preceding methods
but brings some simplifications to these. In Section 3 we present the way
these method work for the two-dimensional Navier-Stokes equations with pe-
riodic boundary conditions, and in Section 4, for a two-dimensional reaction-
diffusion equation, with Von Neumann boundary conditions.

In order to settle the notations and the functional framework of our presenta-
tion, we shortly remind below the Galerkin spectral method for the abstract
equation (1.1).

1.1. The Galerkin method

In the hypotheses we assumed on the operator A of equation (1.1), it follows
that A has positive eigenvalues that form a tending to infinity sequence:

D<M <. <A<, A, — .

n—oo

The eigenfunctions of A form a total (orthonormal) system for H. We con-
sider the set, denoted I';,, of the first distinct m eigenvalues (in increasing
order) and the eigenfunctions corresponding to these. We denote by P the
orthogonal projection operator on the subspace spanned by these eigenfunc-
tions and we set @Q = I — P (where [ is the identity application on H). The
solution u of (1.1) (1.2) is projected by the two projectors and we set

p = Pu,
q = Qu.



136 ANCA-VERONICA [ION

It follows that the functions p and ¢ are solutions of

¥ b vAp+ PR +a) = PF, (13
b vAg+ QRO+ )= QF, (1.4
p(O) = PUO,
q(0) = Quo. (1.6)

Usually, the component ¢ of the solution is proved to be, at large times, “little”
in the norm of H compared to the p component. That is, an inequality of
the form

lq ()] < Coo*, (1.7)

where )
5=t 1.8
>\m+1 ( )

and a is some positive number, is true. For the Navier-Stokes equations it is
proved in [38] that a inequality of the type (1.7) holds, with a = 1 and Cj
depending on m. We proved in [19] that the inequality can be improved in the
sense that it is true with a Cjy that does not depend on m. For the reaction-
diffusion equation, |¢(t)| is of the order of § for large enough times [4].

If in the equation (1.4) ¢ is neglected in the presence of p, we find the equation

dp

T vAv+ PR(p) = Pf. (1.9)

This is the Galerkin approximation of the equation (1.1). The solution of the
problem (1.9) with the initial condition (1.5), that we denote by pg(.), is the
Galerkin approximation of the solution of (1.1)-(1.2). For several problems
it is proved in the literature that inequalities of the type

u(t) = pa(t)] < C6%,

where u(t) is the solution of the problem (1.1)-(1.2), § > 0 is defined by (1.8),
and o > 0.

As example, for a reaction-diffusion equation with Neumann boundary values
and for the two-dimensional Navier-Stokes equations, & = 1 (in the hypoth-
esis f € H). The problem (1.9), (1.5) is equivalent to a system of ordinary
differential equations for the coordinates of p(t) along the eigenfunctions that
span PH. The definition of ¢ shows that the greater will be m, (hence the

dimension of PH), the smaller will be the error.
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In the construction of the Galerkin equation, the ¢ component of the solution
(that is proved to be small for large times) is approximated with 0. The
nonlinear Galerkin (and/or post-processed) methods of approximation are
based upon the idea of approximating ¢(t) by using a a.i.m instead of the
manifold qg.

2. Modified Galerkin methods

The nonlinear Galerkin (and/or post-processed) methods of approximation
are based upon the idea of approximating ¢(¢) by using an a.i.m instead of
taking q ~ 0.

2.1. Families of a.i.m.s used in the modified Galerkin meth-
ods

There are several types of a.i.m.s defined in the literature. Among them,
those defined in [10], [38], [39] (for the Navier-Stokes equations NSE) gen-
erated new numerical integration methods, based on the Galerkin method.
They form a family {M,;};>o and are the graphs of some functions
®; : PH — QH. The definitions of these a.i.m.s for the NSE are presented in
Section 3 while those for the RDE are given in Section 4. A.i.m.s of the type
of those cited above may be (and were) defined for many particular problems
of the form (1.1)—(1.2). The main property of these a.i.m.s, on which their
use in the construction of the numerical methods is based, is the following:
the distance (in the norm of H) between ¢(%) and the image of p(t) on the
a.im. M, is of the order of 8% that is

la(t) — @ (p(t))] < C5*™, (2.1)

where a(n) is increasing with n.

For example, for the two-dimensional NSE it is proved [38], [39] that a(n) =
= (n+3)/2. Since, for NSE, about the H norm of ¢(t) only the fact of being
of the order of § is known, it is clear that any of the above a.i.m.s provides
a better approximation of ¢(¢) than the so-called plane manifold ¢ = 0, for
the mentioned problem.



138 ANCA-VERONICA [ION

2.2. The nonlinear Galerkin methods

The nonlinear Galerkin method (NL Galerkin method) was first defined in
[29]. The method relies on the idea that ®o(p(t)) is a better approximation
of ¢(t) than 0, and considers, instead of the Galerkin equation (3.25), the
equation

dp

dt
with initial condition (1.5). By denoting with py(.) the solution of this prob-
lem, the approximate solution of (1.1)—(1.2) is taken as

+vAp+ PR(p + ®o(p)) = Pf, (2.2)

vo(t) = po(t) + Po(Po(t)).

As it is natural, since ®,, (p(t)) approximates ¢(t) better and better with the
increase of n, the next idea, appeared in |6], was to consider the equation

% +vAp+ PR(p+ ®,(p)) = P, (2.3)

with the initial condition (1.5). Let p,(.) the solution of this problem. The
approximate solution is then defined as

'Un(t) = ﬁn(t) + (I)n(ﬁn(t))

For the problems considered in the context of nonlinear Galerkin problems,
it is proved that the error is of the order of 6°), where b(n) is increasing
with n.

E.g., for the Navier-Stokes equations it is proved in [7] that b(n) = (n+3)/2,

while for the reaction-diffusion equation it is asserted in [32] that b(n) = n+2
provided f € H.

2.3. Post-processed Galerkin methods

In [14] the following modified Galerkin method is proposed, that also uses
a.im.s. Let again pg(.) be the solution of (1.9), (1.5). Then the value of

®y(pi(t)) is computed at the right end side of the time interval [0, 7], that
isin T. The approximate solution in 7' is defined as

w(T) = pa(T) + Po(pc(T)).
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This method is named the post-processed Galerkin method (PP Galerkin
method) because the solution of the Galerkin problem is corrected only in the
final phase, after finishing the numerical integration of the Galerkin prob-
lem, by using the first a.i.m. of the family described in 2.1 (hence post-
processed). The error of this approximate solution is less than that of the
Galerkin method. Thus, for the two-dimensional Navier-Stokes equations, it
is shown in [14] to be of the order of °/%. Another estimate is proved in [15],
i.e. the error is proved to be of the order of L?§%?  where L = 1 + In(2m?).
This latter estimate of the error is not necessary better than the former
because of the coefficient L2.

The next idea appeared in the literature [32] was to postprocess the NL
Galerkin method of the preceding section. More precisely, the equation (2.3)
is considered, it is integrated on all the time interval [0, T], then ®,,11(p,,(T)),
is computed, and the approximate solution in 7" is defined as

Wn, (T) = ﬁn(T) + (I)n—i-l(ﬁn(T))'

This method is called the nonlinear post-processed Galerkin method (NL
PP Galerkin method). In [32]| the use of the method is exemplified on the
reaction-diffusion equation and it is proved that, if f € H, then the error is
of the order of Inm 63,

2.4. A new modified Galerkin method

In [38], in the context of the study of the NSE, a family of functions,
{¢;}j>0, ¢j : R — QH, having the property

|q;(t) — q(t)] < k; L1 H/2534)2 (2.4)

for large enough times is constructed. Here the coefficients k; depend on the

data of the problem (v, |f], A1), and L =1+ ln)";—l“. Actually, the function
qo is of the form

qo = @0(]9),
while, for j > 1, g; are recursively defined by relations of the type

q; :FJ(Qfapu QO77Q_7—1) (25)

The functions u; = p + ¢q;, j > 0 define the so-called induced trajectories,
{u;(t);t > 0}, associated to the trajectory {u(t);t > 0} of the dynamical
system. Relation (2.4) shows that the functions u;, j > 0, are approximations
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of the exact solution, of increasing with j accuracy. The definition of the
a.i.m.s M; used in the nonlinear Galerkin methods for the NSE are based
upon the definitions of the functions g;.

In |20], for the two-dimensional NSE with periodic boundary conditions, we
defined a new type of modified Galerkin method, that uses some approxima-
tions of the induced trajectories and not the a.i.m.s. We describe here the
method in the general context of equation (1.1). The purpose of the method
is that of working with a very low-dimensional projection space PH, and the
idea from which we started is that, however small is the dimension of PH, if
we have a very good approximation for ¢, let us denote it by ¢, then a very
good approximation for p will be obtained by solving the equation

dp

n +vAp+g(p+4q) = Pf.

In consequence, a good approximation of v may be obtained. The method
is structured on several levels. One of the ideas we followed in developing
this method is that of having to integrate only differential equations of the
same level of difficulty as the Galerkin equation. This was possible by using
approximations of induced trajectories instead of a.i.m.s.

Level 0. This level has two stages. The first is the classical Galerkin method,
i.e. we solve the problem (1.9), (1.5) and we consider its solution, pg(.).
The second stage consists in defining the function of time, with values in
QH:

qo(t) = Po(pa(t)), (2.6)
the function ®y being the one that defines the first a.i.m. of the family cited
in 2.1.

Then we define the approximate solution at this first level as

uy = pe + qo-
Since the function go(t) will be used at the second level of our method, in the
numerical implementation of this method, the function gy should be com-
puted in each point of the time mesh, unlike in the post-processing defined
in |14], where it is computed only at the final point of the integration in-

terval [0, 7). Besides this, Level 0 of our method is essentially the Galerkin
post-processed method.

Level 1. We consider the problem

dp

4 vAp+ PR(p+ o) = PF. (2.7)

p(O) = PUO
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and we denote by pg its solution. This is an "adjusted" Galerkin problem.

This equation is essentially different from the corresponding one of the NL
Galerkin method (see equation (2.3)) since qg is known from Level 1.

Then we define
qi1(t) = F1(Qf, po(t), qo(t)).

The approximate solution is
u1 =po+qi-

Level 5 > 1.

We assume that qo, q1, g2, ...,¢j—1 were constructed. The problem

d -
& HvAp+ PR(p+ ;1) = PJ. (2.8)
p(0) = Puy,

is considered and its solution is denoted by p;_i. Then we denote
qj = Fj (Qf, pj-1, 4o, q1,--,qj-1)
and the approximate solution is
uj = pj—1+qj-

At first sight, the idea of performing several time integrations seems a bad
idea, since every such integration involves a large amount of computations.
However, a careful analysis shows that the amount of computations involved
in the NL Galerkin method (based upon the a.im. M,) is greater than
that involved in solving the problems from Level 1 to the eq. (2.8) of Level
j, inclusive. Such an analysis is performed for the Navier-Stokes equations
in 3.8. Hence our method, that we call the repeatedly adjusted and post-
processed Galerkin method (R-APP Galerkin method) is an alternative to
the NL Galerkin method. The final post-processing, by adding ¢; to pj_1 is
equivalent to the post-processing of NL. Galerkin method and does not imply
a large amount of calculi since it will be performed only in some selected
moments of time (eventually only at the last moment, 7"). In what concerns
the error, for the problems discussed below we can prove that the error of
R-APP Galerkin method is of the same order of magnitude as that for NL
PP Galerkin method, for the two particular problems in Sections 3 and 4.
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3. Modified Galerkin methods for the Navier-Stokes
equation

We present here the modified Galerkin methods for the Navier-Stokes equa-
tions: the NL, NL PP Galerkin methods already defined in the literature and
our R-APP Galerkin method.

3.1. The setting of the problem

We consider the problem of the two-dimensional flow of a incompressible
Newtonian fluid, modeled by the Navier-Stokes equations. We impose pe-
riodic boundary conditions and choose the periodicity cell to be a square,
Q= (0,1) x (0,1). Thus the problem is
0
a—ltl—uAu—i-(u-V)u—i-Vp:f, (3.1)
diva = 0, (3.2)

where u (t,x) € R? is the velocity of the fluid, t > 0, x €9, p (t,x) € R is the
pressure of the fluid, v is the kinematic viscosity, and f is the volume force.
We add the initial condition

u (0,-) = uo(:)- (3:3)

We assume that f is independent of time and is an element of [L2,, (Q)] ? As
is usual in the study of the Navier-Stokes equations with periodic boundary

conditions, we assume that [40], [34]

= 1
f:l—z/ﬂf(x)dx:o, (3.4)

and that the pressure is a periodic function on 2. For simplicity we will
assume also that the average u of the velocity over the periodicity cell is
ZEr0.

The velocity u is thus looked for in the space H = {V; v E [Lz (Q)]2,

per
divv =0,V = 0} with the scalar product (u,v) = [, (u1v1 + upvs) dx,
(where u = (u1,u2), v = (v1,v2)) and the induced norm is denoted by
||. Let us also consider the space V = {u € [H]} (Q)]2 ,divu=0,u= 0} ,

per

with the scalar product ((u,v)) = Z?,j:l (g;‘;, g;’;) , and the induced norm,
denoted by ||-]| .
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The variational formulation of the Navier-Stokes equations [40] leads, for the
periodic boundary conditions, to the Cauchy problem

i—ltl—uAqu(u-V)u:f inV/ (3.5)
u(0) =ug, ug € H. (3.6)
The notations
B(u,v) = (u-V)v, (3.7)
B(u) = B(u,u),

will be used below.

We remind here the classical existence and uniqueness results for the Navier-
Stokes equations in R?, with periodic boundary conditions.

We denote A = —A. The definition domain of the linear operator A is
D(A) =VNH2,.(Q).

per

THEOREM 3.1 [40]. a) If uy € H, £ € H, then the problem (3.5), (3.6)
has an unique solution u € C°([0,T); H) N L2 (0,T;V).b) If, in addition,
uy €V, then u € CY([0,T);V)NL2(0,T; D(A)). The solution is, in this

latter case, analytic in time on the positive real axis.

The semi-dynamical system {S (¢)},-, generated by problem (3.5) is dissi-
pative [37]. More precisely, there is a pg > 0 such that for every R > 0,
there is a to(R) > 0 with the property that for every ug € H with |ug| < R,
we have |S (t) ug| < pg for t > to(R). In addition, there are absorbing balls
in Vand D (A) for {S(t)},5o, |34] i.e. there are p; > 0, po > 0 and, for
every R > 0, there are t1(R), t2(R) with t3(R) > t1(R) > to(R) such that
|lug] < R implies ||S (¢)ug|| < p1 for t > t1(R) and |AS (t)ug| < pg for
t> tg(R).

3.2. The decomposition of the space, the projected equations

The eigenvalues of A are \j, j, = 41L22 (j3+73), (1, j2) € N2\ {(0,0)}, and
the corresponding eigenfunctions are

st = ﬁ(h,?ﬁh) sin 9, J1TLE J2T2 7
J1,J2 l |J| l

5 (i o o
et V202, Fh) cos <27T31351 sz2>7

Witge = T m I



144 ANCA-VERONICA [ION

1
where |j| = (47 + j3)2 [38]. These eigenfunctions form a total system for H.

For a fixed m € N we consider the set I',, of eigenvalues A;, j, having
0 < j1,J2 < m. We define

472
A= Ao =No,1 = R
4 2
A = )‘m+1,0 = )\O,m—i-l = liz (m + 1)2,
A 1
0=0(m)=3 =

A is the least eigenvalue not belonging to I',,. The eigenfunctions corre-
sponding to the eigenvalues of I, span a finite-dimensional subspace of H.
We denote by P the orthogonal projection operator on this subspace and by
Q the orthogonal projection operator on the complementary subspace. We
write for the solution u of (3.5), (3.6), u = p + q, where p = Pu, q = Qu.

By projecting equation (3.5) on the above constructed spaces, we obtain

dp

T —vAp + PB(p + q) = Pf, (3.9)
d
d—‘tl — vAq+ QB(p + q) = Qf. (3.10)

In [10] is proved that for every R > 0, there is a moment t3 (R) > to(R) such
that for every |ug| < R,
()] < KoL2d,  [la(t)] < KiL252, (3.11)
o ()] < KL, |Aq(0)] < KoL, t>15(R),
where, for our choice of the set of eigenvalues T',,, L = 1 + In(2m?). In [19]

we proved that estimates of the same order are true for the various norms of
q (t) above, but with coefficients of the powers of § not depending on m.

3.3. Induced trajectories for the Navier-Stokes problem

In [38] the notion of induced trajectory is defined and a family of induced
trajectories is constructed for this problem. The asymptotic expansions that
rely behind this construction are not made explicit there.
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A family of functions, {q;; j € N}, that satisfy the equations

-vAqo + QB (p) = Qf,

(3.12)
(3.13)
—vAqz + QB(p) + QB (p,q1) + QB (a1, p) + QB(qo, o) + q = Qf,
(3.14)
—vAq; +q;_+ QB (p) + QB (p,q;-1) + (3.15)

+QB(q;-1,p) + QB (qj_2,q9j-2) = Qf, j >2,

is defined.

If p(t) is, as above, the P projection of the solution u(t) of the NSE, the
sets {u;(t) =p(t) +q;(t);t > 0} are called induced trajectories associated
to the trajectory {u(t) = p (t) + q(t);t > 0}. The inequalities

laj| < w002, oyl < ki 8PLY2, o] < RiOLM2,
are proved in [38], as well as the following

qt) — q; ()] < 7. [(+0)/253+5)/2 3.16
j J

3.4. A family of approximate inertial manifolds for the Navier-
Stokes equations

The family of induced trajectories above, more precisely the functions q;, j >
0, form the starting point for the construction of a family of approximate in-
ertial manifolds defined in the literature, the first one in [10] and the following
in [38] and [39]. The first a.i.m. of this family is the graph M, of the function
®y : PH —QH, that satisfies the relation

—vA%y (X) + QB(X) = Qf,
where X € PH. Thus @ (X) is explicitly given by

g (X) = (—vA) ™ (Qf — QB(X)). (3.17)
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The connection between this definition and the definition (3.12) of qo is
obvious: the set of points {p(t) + qo(t); t > 0} lies on My. The next a.i.m.
defined in [38] is M, the graph of the function ®; : PH —QH, given by the
solution of the problem

—vA®; (X) + QB(X) + QB(X, 2 (X)) + QB(® (X), X) = Qf,
that is

21(X) = — (vA) ' [Qf - QB(X) — QB(X,® (X)) — QB(® (X),X)].
(3.18)
The relation with the definition (3.13) of the corresponding function q; is
clear.

For j > 2, inspired by the definition (3.15) of q;, the a.i.m. M; is defined
as the graph of ®; : PH —QH, with ®; (X) the solution of

~VA®; (X) + QB(X) + QB(X,; 1 (X)) + QB(®;_1 (X), X)+
+QB(®;_2 (X)) +D®, o (X)I[;_2 (X) = Qf,
where D®,_5 (X) I';_2 (X) is the Fréchet differential of ®;_5 (X), applied to

Fj_g (X) =vAX - PB (X + ‘I’j_g (X)) + Pf. (319)

Hence

®;(X)=—(vA)"'[Qf - QB (X) - QB (X, ®;_; (X)) - (3.20)
-QB (®;-1(X),X) -QB(®;-2 (X)) —D®; 2 (X)I';_2(X)].

The inequalities (3.16) allow us to estimate the distance between the trajec-
tories of the problem and the a.i.m.s. This is immediate for the first two
a.i.m.s, since for j = 0,1, we have u;(t) € M;, and thus

distyy (u(t), M;) < dist (u(t),u;(t)) = [q(t) — q;(t)] .
For the a.i.m.s M; with j > 1, some extra work is necessary, since

D®; 5 (p(t))Tj_2 (p(t)) is only an approximation of [q;—2(p (¢))]". How-
ever, in [38]| and [39] it is proved that

disty; (u (t) , M;) < &; LIFD/2563+)/2,
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3.5. Nonlinear Galerkin method for the Navier Stokes equa-
tions

The nonlinear Galerkin method was first presented in [29]. It is defined for a
class of equations that contains the Navier-Stokes equations as a particular
case, i.e. an equation of the type (1.1) with

R(u) = B(u) + Cu,

where B(u) = B(u,u), B(.,.) is a bilinear operator having essentially the
properties of B and C is a linear operator. Tt is assumed that A + C is
positive in H and C is bounded from V = D(AY?) to H.

We write the method for the Navier-Stokes problem we considered here (that
is we take A = —vA, B = B, C = 0). It consists in approximating in the
P projection of the equation, the function q with help of the first a.i.m. of
the family described above. That is, instead of the Galerkin equation, the
equation

dp

3~ VAP +P[B(p) + B(p, ®9(p)) + B(®o(p), p)] = Pf, (3.21)

with the initial condition

p(O) = Puo,

is considered, where ®¢ is given by (3.17) (the notations are adapted to
ours). We see from the term PB(p + ®,(p)) the term PB(®,(p), Py(p))
is missing. This is because it is of lower order than the preceding terms.

As for the equation of ®¢, this is taken in [29] as

@ (p) = (—~vA) "' Qo [f — B(p)], (3.22)

where Qg is the projection operator defined as Qg = QP,,,, where Py,
is the projector on the space spanned by the eigenfunctions corresponding to
the eigenvalues in I'y,, (of Aj j, having 0 < ji,j2 < 2m). This is because
the space QH is infinite dimensional and a truncation must be made (at
least for f, since for periodic boundary conditions, if X € PH then B(X) is
anyway in Po,, H).

Let us denote, together with the authors of [29], the solution of (3.21) by

u,,. It is proved in the paper we refer at, that, if uy € H then u,, T

uin L?(0,T;V), u,, — wuin LP(0,T;H), strongly (for any T > 0, p >
m—o0

1) and u,, — uin L® (RT;H) weak-star.
m—o0
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If up € V then u,, — win L?(0,T;D(A)), v, — uin LP(0,T;V),
m— 00 m—00
strongly (for any 7> 0, p > 1) and u,, — wuin L* (RT;V) weak-star.
m—0o0

As an alternative nonlinear Galerkin method, that starting from the equation
(similar to (2.2))

d

d—‘t’ — vAp + PB(p + ®,(p)) = Pf, (3.23)
with ®( defined by (3.22) is also given in [29]. Convergence results similar
to those asserted above are proved.

In [7] an estimate of the error of the method is given
[u(t)= [wn(t) + @o(un(t))]| < C()5*>.

In |6] the NL Galerkin method is improved by using more accurate a.i.m.s.
The equation that provides the approximate solution is (we write it here also
for the N-S equations)

X AP+ PB(p + &, (p))] = PF. (3.24)
where @ is the the function whose graph is the corresponding a.i.m. (similar
to that defined in (3.20), but slightly different). Let us denote by u,,
the solution of (3.24) and by vy, ; = Wn; + ®;(y,, ;). It is proved in [6]
that if up € V, both wu,,; and v, ; converge to u (when m — o0) in
L?(0,T; D(A)) and in LP (0,T;V), strongly (for all p > 1 and all T > 0),
and in L*° (RT;V) weak-star. It is also proved that, for a fix j, z,,; =
®,;(uy,) converges (when m — o) to 0 in L (RT;V) and L? (0,7 D(A))
strongly for any 7" > 0. In |7] some estimates for the error are obtained. More
precisely, for the NSE, it is shown that (with our numbering of the a.i.m.s)

u(t) = Vi, ()] < KGLGT250+9/2,
3.6. Post-processed Galerkin method for the Navier-Stokes
equations

The ideas on which the post-processed Galerkin method relies are exposed in
2.3. In [14] a general equation is considered and the Navier-Stokes equation
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is treated as a particular case. The solution pg of the Galerkin equation,

d
d—lt’ — vAp + PB(p) = Pf, (3.25)

p(0) = Puy,

is post-processed. This means, at a certain moment 7' (the end of the time
interval on which the integration of (3.25) was performed) the image of pg
on the first a.i.m. My, that is ®¢ (pg(T)), is computed and is added to
pc (T). It is proved that, if f € H, then

u(T) — (pc (T) + o (pe(T)))| < C&/%. (3.26)

In a subsequent paper, [15], the same authors prove another estimate for the
Navier-Stokes problem. More exactly, they prove that, for f €H,

[ (T) = (P (T) + o (p(T)))| < CL*6*/2. (3.27)

Estimate (3.27) is not necessarily better than (3.26), since the coefficient L?
appears (as before, L = 1+ In(2m?)). In [32] the method is improved. That
paper considers a reaction-diffusion equation, but the algorithm works for
the Navier-Stokes equations as well. Instead of the Galerkin equations, the
NL Galerkin equations (3.24) are considered. The solution u,, ;(t) of these
equations is post-processed, i.e. the sum

W i (T) + @1 (W (1))

is considered and proposed as an approximate solution. The estimate of the
error is made in [32] for the reaction-diffusion equation, hence is not relevant
for the Navier-Stokes equation.

3.7. The repeatedly adjusted and post-processed Galerkin
method for the Navier-Stokes equation

We adapt the general method presented in 2.4 to the Navier-Stokes equations.

Level 0. We define the first step of this level as the classical Galerkin
method. Let us consider the Cauchy problem

d
d—lt’ — vAp + PB (p) = Pf, (3.28)
p(O) = Puo.
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We denote by p¢ (t) its solution and define
Qo(t) = ®o (pa (1)) -

In the implementation of the method, the equation (3.28) must be numeri-
cally integrated. We remark that the values of qo(¢) must be computed in
every point of the time mesh used in the course of the numerical integration,
since they will be used at the next level of the method.

We define the function
o (t) = pc (1) + qo(t)- (3.29)

This preliminary level differs from the PP Galerkin method only in the post-
processing part, in the fact that we compute qg(t) at any moment of time
and not only at the end of the time interval on which (3.28) is integrated.

Level 1. Now we consider the problem

d _
P _ JAp + PB (p+do) = Pf, (3.30)

dt
p(0) = Puy,

with qo(t) computed at the preceding step. Since qq(t) is already known, this
equation is not more difficult to integrate than the simple Galerkin equation
attached to the Navier-Stokes equation. It is an adjusted Galerkin equation
since the nonlinear term is adjusted by adding to p(t) the term qo(¢) that
approximates q(t) better than 0 does. We denote by pg () the solution of
problem (3.30). The computation of the error showed that pg is a better
approximation of p than pg (see the comments in 3.8).

Then we define

a(t) = —(wA)HQf — QB (po(t)) — QB (Po(t), qo(t)) —
—QB (qo(t), po(?))]

The approximate solution will be defined at this level as
uy () = po (t) + ai(t). (3.31)

This function is an approximation of uy that defines the second induced
trajectories.
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Level j (j > 2). We assume that we constructed the functions q;_»2, q;—1(t).
We consider the adjusted Galerkin problem

d _
P Ap+PB(p+q;_,) = Pf, (3.32)

dt
p(0) = Puy,

and denote by p;j_1 (t) its solution. Then we set

q; () = (—vA)™H|Qf - QB(B,_, (1)) - QB(B,_, (1), q;-1 (t)— (3.33)
—QB(q;-1 (1), ;1 (1) — QB(dj—2 (1), qj—2 (1)) — o (t)] -
We define the approximate solution at this level as
u;(t) = pj-1 () + q; (1)
We remark that u; (¢) is an approximation of u; (¢) (that defines a induced

trajectory of the family constructed in [38]).

We must say that, at the last level, as in the NL PP Galerkin method, we
may correct p;—; by adding q; only at some moments of interest (the final
postprocessing step).

We also must remark that, when the method is numerically implemented,
the projector Q must be replaced by a finite dimensional projector as, e.g.
Q2 defined in Section 3.5.

3.8. The error of the R-APP Galerkin method

It is not the purpose of this work to present the explicit calculus of the error
of the methods presented. We proved in |20] that

Ip(t) — pj;(t)| < C6°/4H/2
and ‘
la(t) —q;(t)]| < 08321972,

where C depends on the data of the problem: €, f, v, A1, and on ¢ but not
on m.

With other methods, other estimates may be obtained. If we start from
estimates of [15] of |p(t) — pa (t)|, where pg (t) is, as before, the classical
Galerkin approximation of the solution, that is

Ip(t) — pa (t)| < C'L26%/2,
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an improvement of the estimate of the error of the successive solutions by a
factor of §1/4 seems to be obtained. However, the appearance of the factor
L? (L =1+ In(2m?)) diminishes this success. A very careful analysis of the
constants C, C” should be performed in order to see what approach is better.

Anyway, the R-APP Galerkin provides approximates solutions as accurate
as those provided by the NL PP Galerkin method.

3.9. R-APP Galerkin method compared to the high-order
accuracy NLPP Galerkin method

The R-APP Galerkin method is intended to bring some simplifications to the
NL Galerkin methods that use high accuracy approximate inertial manifolds.
Hence this method makes sense only if more of its levels are passed through.

The simplifications come from the following facts:

a) the use of some already known functions (the q;s) for the adjustment of
the Galerkin equation, makes the equations for the approximations of p to
have essentially the same structure as the Galerkin equation; this imply sim-
plifications of the algorithms for the numerical integration of these equations,
compared to the corresponding equations of the NL Galerkin equations;

b) the use of the "approximate induced trajectories" instead of the ap-
proximate inertial manifolds makes some computations easier, because, in
the function q; the term 69_2 appears instead of the corresponding term
D®; 5 (X)I'j_2(X) of the a.im. ®;; the term qj_, can be approximated
by the numerical derivative (since we know its values in the points of the
time mesh);

¢) when we proceed to Level j of the method, all we need are the values of
qj—2 and qj_1, while all values of py, ¥ < j — 1 and qi, k < j — 2 may be
erased from the memory of the computer; this must be compared to the NL
Galerkin method that uses M, where in the course of a single numerical
integration one must handle the values of all functions ®p, k£ < j, and all
these must be stored in the memory of the computer.

In order to compare the R-APP Galerkin method with the NL PP Galerkin
method, we must look at the levels j with j > 2.

Let us analyze in parallel the first stage of Level 3 (that delivers us the
function ps) of our method and the corresponding NL Galerkin method (that
uses the a.im. My). It is easier to follow our reasoning on this particular
case than than on the general one.
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In order to make the following as clear as possible, we describe the compu-
tations necessary for the simple Euler integration method. Of course, more
elaborated algorithms must be used, but the difficulties added by these should
be evaluated for each specific algorithm individually.

In order to proceed, we consider a time-mesh 0 =5 < t] <ty < ... < tp <
.. <ty =T on the time integration interval [0, 7.

Let us make the notations
I'c (p) =Pf+vAp — PB (p)
T, (p) = Pf + vAp — PB (p+3;).-
R-APP Galerkin method, at the third level, requires the following com-

putations for the determination of pa(t):

at Level 0 — computation of pg(tx), k = 1, ..., N, by numerical integration of
eq. (3.28) (this is equivalent with the computation of I'q (pa(tk-1))); then
computation of qo(tg);

at Level 1 — computation of po(tx), K = 1,..., N, by numerical integration
of eq. (3.30) (this is equivalent with the computatlon of To (B(tp—1))); then
computation of q;(t);

at Level 2 — computation of pi(tx), & = 1,..., N, by numerical integra-
tion of eq. (3.32) with j = 2, (this is equivalent with the computation of
Iy (p1(tg—1))), then computation of qo(tx);

at Level 3 — computation of pa(t), by numerical integration of eq. (3.32)
with j = 3 (this is equivalent with the computation of I's (p2(tx—1)))-

NL Galerkin method that uses My, presented in [29], consists in the
integration of the system of ODEs

P _ ) Ap + P [B(p + ®,(p))] = PE, (3:34)

dt
P (O) = Puo,
where the function ®5 is given by

—vA®(p) + Qo B (P + ®1(p)) +ai = Qanf, (3.35)
—vAqj + Qom [B((P§, P+ 21(p)) +B (p + ®1(P). Py)] =0,
po — vAp + P [B(p + @,(p))]
—vA®(p) + Q2 B(p + ®o(p)) = Qanf,
—vA®y(p) + Q2,,B(p) = Qa2 f.
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We reproduced here the definition of My from [29]|, but we adapted the
notations from [29] to our notations and we started counting a.i.m.s with 0,
as in [38], while in [29] this count begins with 1.

In the course of the numerical integration, with p(¢x_1), kK = 1, ..., N, already
determined, in order to find p(tx), we have to compute:

®o(p (tk—1)), ®1(p (tk—1)), I'1 (p (tk—1)) (for the calculation of pd (tx), with
Ty given by (3.19), j = 3), af (tx—1), ®2(p (fx—1)), and finally s (p (tx—1))-
This will yield p(ty).

Now we can compare the two methods from the point of view of the compu-
tations involved. We have the following:

— computation of qo(t;) is equivalent to that of ®¢(p (¢;));
computation of qi(¢;) is equivalent to that of ®1(p (;));
— computation of I'y (P (tj)) is equivalent to that of I'y (p (¢;));

— computation of qa(t;) is equivalent to that of ®2(p (t;)), assuming that
ai (t;) is already computed;

finally we observe that the computation of pg(t;) and po(t;) (from R-APP
Galerkin method) together, involve less computations than that of q}(¢;)
(from the NL Galerkin method).

This is because in computing pg(t;) we have to compute a number of 4m? +
2m projections of the term I' (pg(t;—1)) and in computing po(t;) we have to
compute 4m? + 2m projections of the term Ig (p(t;_1)), while in computing
qi (t;) we have to compute 12m? + 6m projections.

At the following level, induced trajectories, respectively a.i.m.s, of higher
order are used. The definition of these involves approximations of the deriva-
tives similar to the above. Hence, the difference in the amounts of compu-
tations between the two methods increases with the order of the method.
It follows that the R-APP Galerkin method involves a smaller amount of
computations than the NL Galerkin method.

The computational effort involved in the final post-processing part is eased in
the R-APP Galerkin method by the fact that, by using approximations of the
induced trajectories we can approximate directly (by numerical derivative)
the function q’, while in the NL PP Galerkin method it is approximated
by the differential D®;_5 (X)T'j_2 (X). In conclusion, the R-APP Galerkin
method brings simplifications to the NL PP Galerkin method relying on
higher accuracy a.i.m.s.
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4. Modified Galerkin methods for a reaction-diffusion
problem

We consider a reaction-diffusion (RD) equation of the form

ou

2~ D (Au-u) + glu) = . (41
where u is a real-valued function, u = u(t,x), x € Q = (0, 1) x (0, 1), I >0,
D is the diffusion coefficient and the function ¢ is a polynomial function of
odd degree. In order to simplify the following considerations we take here a
polynomial function of degree 3,

g(u) = by + byu + bou® 4+ bsu®, b; € R, by > 0.

We take fe€L? (). To the equation (4.1) we associate an initial condition

u(0) = ug (4.2)
and the boundary condition

Ou =0. (4.3)

Mg

The phase space is here H =L2(Q2). We consider also the space V = H! (Q)
with the usual norm.

The operator A = —A + [ is a positive-definite, self-adjoint, with compact
inverse operator with definition domain D(A) = H? (). The following exis-
tence result may be obtained by the Galerkin-Faedo method [37], [34]

THEOREM 4.1 Ifug € H, then there exists a unique solution u € C (RT; H),
u € L?(0,T; V)N L*(0,T; L?" () where p > 1, T > 0. If, more than that,
ug €V, then u € C([0,T); V)N L20,T; H?(R)).

The semi-dynamical system {S(t)},~,, generated by (4.1) is proved to be
dissipative in H and V [37], [34]. Hence there is a pg > 0 (respectively a
p1 > 0), such that for every R > 0, there is a moment to(R) (respectively
t1(R) > to(R)) with the property that for every uge H with |ug| < R, we
have |S(t)ug| < po, for t > to(R) (respectively ||S(t)ug|| < p1, for t > t1(R)).
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4.1. The splitting of the space

The eigenvalues of A are

? .2 2
Ak [1“+ Kk ]+ 1

’ = l_2

and the corresponding eigenfunctions are

Wik = cos cos
I l l .

where aj =1 for j =0 and a; =2 for j # 0.

As for the Navier-Stokes equations, we consider the set I'y, of eigenvalues
Aj1ge With 0 < g1, jo < m. We make the notations

A= Xng1,0 = Ao,
1
0=—.
A
We also consider the space spanned by the eigenfunctions corresponding to

these eigenvalues and we denote by P the projector on this space. We set
Q = I — P, where I is the identity on ‘H, p = Pu, ¢ = Qu.

We project the equation (4.1) by using these projectors, to obtain

% — D (Ap—p) + Pg(p + q) = Pf,
% —D(Aq—q)+Qgp+q) =Qf.

It can be proved (e.g. [4]) that
lq| < Co

for t great enough, where the coefficient C' depends on the data of the prob-
lem.

4.2. Induced trajectories for the reaction-diffusion problem

In constructing a family of induced trajectories for the reaction-diffusion
problem, we try an asymptotic analysis of the RD equations. We develop
the function ¢ in series of powers of §

qg=29 (k‘o + 0k + 52k2 + (53]€3 + ) . (4.4)
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We have
1 1
gp+q)=gp)+9(Pa+ 59"(1})(12 + Eg”’(p)q?’ =
= g(p) + ¢' ()3 (ko + k1 + 0%k + 6%k + ...) +
1
59" (0) [8 (ko + k1 + 0%k + ks + )]+
1

+ ég'”(p) [(5 (ko + 0k1 + 6%ky + ks + )]3 ,

_.I_

hence, by ordering the terms after the powers of 9,

9(p+q) = g(p) + 69’ (p)ko+ (4.5)

1
+37[g oks + 30003 +

1 1
#8850 ()20l + 13" (] +

1 1
+0* | g (p)ks + 59”(19) (k3 + 2koks) + ég"/(p)?)kgkl] + ...

Then, by substituting (4.4) in the equation for ¢, we obtain
OkYy + 0%k + 8%k 4+ 6 KL + ...
— D [0Ako + 0°Aky + 6° Aky + 0* Akg + 8" Aky + .| +
+ D [dko + 6%y + 0%ko + 6%ks + 0%k + ...] +

+Qulp) + 00 )k +5°Q o )k + 303 +

1 1
+63Q [g’(p)kz + 59”(1))2%:0%:1 + Eg’”(p)kg} +

1 1
+5Q [g’(p)ks +59"(0) (K} + 2koks) + gg”'(p)%%kl] .. =Qf.

In ordering the terms in (4.5) we simply performed an algebraic calculus, and
treated the right-hand side as a polynomial in §, but when we look for the
terms of the same order of magnitude, a careful analysis should be performed.
Since k;(t) € QH, we have

1
|Ak;| > Akj| = 5 |51 (4.6)

and it follows that the term &/TlwAk; is of the order of j. We also must
evaluate carefully the terms containing products or powers of k;js. E.g., for

the term 1¢”(p)k3 we have the estimates
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1
k%@%g

-(/ (g”<p>)2k§dx)1/2 < ([ @ww)'a) " (f kédw)1/4-

Sobolev embedding theorem gives

[ull o) < C s 8) llull,
with 1/p=1/2 —5s/2, s < 1, and, since
Jully < Clully,

we obtain

1/4 3 3
([ #2) " =lhollse < €28 21 lmolE < 0282 k.
Q

1/4
In a similar way we see that (fQ (g" ()" da;) is a function of py and p;.

This together with inequality ||koll; > (%)1/2 |ko| show that all we can say

about the term 262" (p)kZ is that it is of order § and we have to consider
it together with the terms of the same order. Similar reasonings will be
considered implicit for the other terms containing products or powers of k;s.
Thus we obtain the relations:

—0DAky + Qg(p) = Qf
kly — 82D Aky 4 6Dko + 6Qg' (p)ko + %62Qg”(p)k3 =0,
82k} — 8°DAky + 62 Dky + 82Qg' (p)ks+
+55°Qq" (p)2hoks + £5°Qq" (K =0,
8Ky — 6 DAks + 62 Dky + 8°Qg/ (p)ka+

1 1
501Qq" (1) (k + 2koks) + -6 Qg" ()3kk1 =0,

Now we define the functions

qj = Oko + 0%k1 + 6%ko + 6ks + ... + 07T ;.
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By summing the equations for k;, we obtain equations for g;:

—DAqgo + Qg(p) = Qf, (4.7)
4o — DAq1 + Dgo + Qg (p) + Qg' (p)go + %Qg”(p)qg =Qf,
¢, — DAga + D1 + Qg (p) + Qg' (p) a1+
500" () + 5Q0" (0)2a0 (a1 — a0) + =Q4" ()} = Q.
¢ — DAgz + Dga + Qg (p) + Q' (p) ga+

%Qg”(p)ﬁ + %Qg’”(p)iiqg (1 — q) = Qf,

We see that the nonlinearity of the polynomial makes the equations neither
“beautiful”, nor with a clear structure. However, we consider the functions

uj(t) = p(t) + ¢; (1),

and define the induced trajectories of the problem as the sets {u;(t); ¢t > 0} .
These will be used to define the R-APP method for the reaction-diffusion
equations.

4.3. Approximate inertial manifolds for the reaction-diffusion
equation

In the NL Galerkin method and in the NL PP Galerkin method described in
literature |32], the following a.i.m.s are defined for the RD equation: for any
Jj =0, M; is the graph of the function ®; : PH —QH, described below

DA®(p) + Qg(p) = Qf, (4.8)
i1+ DA®;(p) + Qg (p+ ®;1(p)) = Qf, j=1. (4.9)

Here qjl-_1 = D®;_(p)I'j_1(p), with D®;_;(p) the Fréchet differential of
®;_; computed in p and applied to I';_1(p) = Pf — DAp— Pg(p+ ®;_1(p)).

If we would want to construct a family of a.im.s Mj starting from the
induced trajectories we defined above (as is done in [38] for the Navier-
Stokes equation), the first a.i.m. of the family, Mvo, would be identical with
My since the function &)0 defining it would be identical to ®¢ of (4.8), as the
equation for gy(t) shows.
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The second a.i.m., le, would be quite different from M; above. That is, it
would be the graph of the function ®; defined by the equation

DQ®o(p)To(p) — DAD1 (p) +DPo(p) + Qg (p) + (4.10)
+Qg' (P)Po(p)+ 3Q9"()Po(p)? = QF, '

with To(p) = Pf + D (Ap—p) — Pg(p + ®o(p)). We see that the difference
between this equation and that for ®;, that we write explicitly below

D®y(p)Lo(p) — DA®(p) + DP1(p) + Qg (p + Po(p)) = Qf, (4.11)

consists essentially in the presence of the term %g’”(p)CI)o(p)?’ in this lat-
ter equation. If the polynomial g would be of higher degree, the difference
between the two families of a.i.m.s, that defined starting from the induced
trajectories and the one defined by the relations (4.8) and (4.9) would in-
crease. However, for the sake of the elegance of the definitions, (4.11) may
be taken as the equation for ®;(p) even if it does not spring from an accurate
asymptotic analysis. The presence of the higher order terms does not affect
the order of magnitude of the distance between the exact solution of the R-D
equation and the first a.i.m. [21].

4.4. “Induced trajectories” inspired by a.i.m.s

For the sake of the simplicity of the definitions and having in mind some
simplifications of the computations in the R-APP Galerkin method below,
we can choose an alternate definition for the induced trajectories of the R-D
problem, inspired from the definitions of the a.i.m. of [32]. That is, we define
the functions ¢; through the relations

DAG + Qg(p) = Qf, (4.12)
G5 1+DAG+Qg(p+q-1)=Qf, j>1,

where p(t) = Pu(t). The functions
U =p+q;

define the new “induced trajectories” {u;(t); ¢t > 0}.
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4.5. The NL Galerkin method for the RDE

The NL Galerkin method for RDE consists in integrating the differential
equation:

O DA g(p+ Bo(p) = PF, (4.13)

with the initial condition
p(0) = Puy. (4.14)

If we denote by ¥, its solution, the approximate solution is taken as
ym(t) + (I)O(ym (t))

In |32] it is asserted that, for large enough ¢,

[u(t) = (ym(t) + Po(ym(t)| < CO°.

Improved NL Galerkin methods make use of the higher accuracy a.i.m.s,
M, j > 1. That is an equation of the type

% + DAu+g(p+ ®4(p)) = Pf, (4.15)

with the initial condition (4.14) is solved, let y,, ; be its solution. The ap-
proximate solution of the RDE is taken as:

Ym,j () + P (Ym,j (1))

In [32] it is proved that the H norm of the error of this approximate solution
is of the order of C'(t)6/%2.

4.6. The PP NL Galerkin method for the RDE

Also in |32] the NL Galerkin method is post-processed, i.e. to the solution
Ym,j of the NL Galerkin problem, considered in 7', the quantity ®;1(ym (1))
is added and

Ymj(T) + @js1(Ym,;(T))

is taken as the approximate solution in 7T'. It is proved in [32] that

[(t) = Wiy () + 1 (s (D)) < Clam 6745,
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4.7. The R-APP Galerkin method for the RDE

We describe the R-APP Galerkin method for the reaction-diffusion equation.
In |21] we presented a variant of our method that has as initial level a NL
Galerkin method (this was meant to skip a numerical integration - that of
the Galerkin problem). Let us denote generically

q; = FJ(Qfapa q0, 41, "')qj—1)7

either the functions given by the set of relations (4.7) or the functions g;
given by (4.12). We see that in this latter case, F}, j > 1 actually depends

Only on Qfa b, Qj—lv q_;‘—l'
Level 0. We consider the NL Galerkin problem

b p (Ap—p) + Py(p) = Pf, (4.16)

dt
p(0) = Pug

and denote it’s solution by pg.

Then we compute, at every moment of time
qo (t) = Fo(Qf, pc ().

When the numerical implementation of the method is actually done, this is
equivalent to the computation of ¢; at the nodes of the time mesh, and ¢ (¢;)
is approximated by (go(ti) — qo(ti—1))/(t;i — ti—1). The approximate solution
is

up = pG + qo-
Level 1. We consider the equation

d -
d—]t) — D (Ap—p) + Pg(p+ qo) = Pf,

and denote its solution by pg. Then we compute
q1(t) = F1(Qf,po (), o ())-
The approximate solution at this level is defined as

ﬂj = ﬁj_l + Z]v]
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Level j > 1. We assume qo, q1, ..., j—1 Wwere successively constructed. We
consider the equation

d N
d—f — D (Ap—p) + Pg(p +qj—1) = Pf,

and denote its solution by pj_1. Then we compute
qj (t) = F5(Qf,pj-1(t),q0 (t) ,q1(t), -, Gj—-1(2), )-
The approximate solution at this level is defined as
Uj = Dj—1 + qj-

Remarks: 1. While the equations for p; are equivalent to a finite, constant
number, of (differential) equations, the equations for g; are equivalent to a
system of equations having (if @ f admits non-null projections on an infinite
number of eigenfunctions) a infinite number of equations.

Hence a truncation must be done. In [6] the truncation is made by using a
projector, denoted P, that is the analogous of P but with 2m instead of m.
If @Qf would have nonzero projections only on a finite number of eigenfunc-
tions, then ¢; would also be finite dimensional. In this situation, we could
also compute the dimension of g;, by using the consequences of the trigono-
metrical relation 2cosacos S = cos (o + ) + cos (o — 3), on the products
of eigenfunctions. Then, in order to not affect the estimate of the error pre-
dicted by our method, we could take a truncation of Qf, let us denote it by
Q; f such that |A_1 (Qf — ij)| is less that the error of the level j.

2. Both families of {qj}j>0 defined above present advantages and disadvan-
tages one relative to the other. The first family, defined in (4.7), has the
advantage of demanding a smaller amount of computations since in (4.7)
fewer terms than in (4.12) are taken into account at a certain level. Tt
presents the disadvantage of recalling all g; with ¢ < j, at a certain level j.
The second family of approximations of ¢, given by (4.12), recalls at a certain
level j, only the values of g;_1. This is important from the point of view of
organizing the memory of the computer in the numerical implementation of
the method. However, this second family takes into account more terms in
the polynomial g. This increases a lot the computations when g has a high
degree.
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4.8. Estimates of the error

By using the method of [32], we can prove that both families of induced
trajectories defined above lead to the same orders of error, for every level of
the R-APP method, as the corresponding NL. PP Galerkin method. That is,
we can prove [22] that at the level j + 1 of our method

Ip—p;l < Cj(Inm) &+
and
g = G| < K672,
and thus
lu— 1| < [Cj(Inm) + K] 67+,

4.9. Comments on the method

The comparison of the computational cost of the R-APP Galerkin method
to that of the NL Galerkin method is similar to that we performed for the
Navier-Stokes equations. The conclusions are the same: the R-APP Galerkin
method is more economic than the NL PP Galerkin method. The difference
in the computational cost between the two methods increases with their level.
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