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approximate inertial manifolds 1331. Introdu
tionIn the study of dissipative semi-dynami
al systems generated by semilinearparaboli
 equations, the theory of qualitative behavior of the system at largetimes plays an important role. By paraboli
 semilinear equations we meanpartial di�erential equations that 
an be written as abstra
t equations in aHilbert spa
e, of the form:
du

dt
+ νAu + R(u) = f, (1.1)where u is a fun
tion of time with values in a Hilbert spa
e H (whose de�-nition 
omprises the boundary value 
onditions imposed to equation (1.1)).We atta
h to the above equation an initial 
ondition

u(0) = u0, (1.2)with u0 in H. We assume that A is a linear operator, de�ned on a densesubspa
e D(A) of H, self-adjoint, positive de�nite, with 
ompa
t inverse,while R is a nonlinear operator de�ned on D(R) ⊂ D(A). We do not insisthere on the hypotheses on R, but we assume that it is su
h that the Cau
hyproblem (1)-(2) has an unique solution on [0, T ], for every u0 ∈ H and every
T > 0. Hen
e a semi-dynami
al system is generated by the above problem,by setting S(t)u0 = u(t, u0), where u(t, u0) is the solution of (1.1)�(1.2).For this presentation we assume that f is in H. We also assume that thesemi-dynami
al system generated by (1.1) is dissipative in the sense thatthere is a bounded absorbing set for it. An absorbing set is a set B havingthe property that, for every bounded set M ⊂ H, there is a value of t,depending on M, let us denote it by tM , with the property that, S(t)M ⊂ Bfor t ≥ tM . For the parti
ular problems we 
onsider here, there also areabsorbing balls in some subspa
e V of H, with D(A) ⊂ V ⊂ H.In the theory of qualitative behavior at large times of solutions of equationsof the form (1.1), the notion of global attra
tor plays an important role.A global attra
tor [3℄ is a 
ompa
t set of the phase spa
e H, invariant tothe semigroup S(t)t≥0, that attra
ts the bounded sets of the phase spa
e,when time tends to in�nity. This means that the global attra
tor bears inits stru
ture the properties of the behavior of the semi-dynami
al system atlarge times. For many problems of interest the existen
e of an attra
tor wasproved [37℄.The study of the geometri
al and topologi
al properties of the global attra
-tors �ourished sin
e the last two de
ades of the XXth 
entury and the major
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onne
tion between the stru
ture of the attra
tor and very
omplex phenomena like turbulen
e in the �ow of the �uids will be found.In this 
ontext, another interesting notion appeared, that of inertial mani-fold (i.m.) [11℄. It is a �nite dimensional, invariant and at least Lips
hitzmanifold having the property that it exponentially attra
ts all the traje
to-ries of the problem. More than that, an i.m. has the property of asymptoti

ompleteness meaning that for every u0 in H there is a v0 on the i.m. su
hthat the distan
e between the traje
tories passing through the two pointsde
reases exponentially with time.The invarian
e of the i.m. implies the fa
t that we 
an 
onstru
t a restri
tionof the problem to this manifold. The restri
ted problem is named inertialform [11℄, [37℄ and, sin
e the i.m. is �nite dimensional, is equivalent witha system of ODEs. The above de�ned asymptoti
 
ompleteness of the i.m.implies that the asymptoti
 behavior at large times of the dynami
al systemis des
ribed by the asymptoti
 behavior of the inertial form. Hen
e the largetimes study of the initial semi-dynami
al system (in�nite dimensional sin
eits phase spa
e is H) 
an be redu
ed to that of a �nite-dimensional one.Another important 
onsequen
e of the properties of the i.m.s is that, when aglobal attra
tor exists, it is 
ontained in the i.m. These 
onsiderations explainthe large interest shown by the s
ienti�
 
ommunity in inertial manifolds.From among the great number of papers devoted to the inertial manifoldswe remind: [11℄ (with the extended version [12℄), [8℄, [9℄, [5℄, [36℄. Theimportant monograph [37℄ had a se
ond edition in 1997.From a theoreti
al point of view, the i.m.s looked very promising, but majorobsta
les appeared in trying to use their properties in the study of 
on
reteproblems. One is due to the fa
t that existen
e of i.m.s is in most papersproved by a �xed point theorem, and is not 
onstru
tive. There is a 
on-stru
tive proof in [2℄ but it uses some integral manifolds whose 
onstru
tionis equivalent with solving the equation. Another problem is a restri
tivehypothesis among the hypothesis of the existen
e theorems- the hypothesisof a spe
tral gap that imposes the existen
e of two su

essive eigenvaluesof A situated at a �large enough� distan
e [1℄, [12℄, [37℄. This hypothesis isnot ful�lled by many problems, (e.g. is not ful�lled for the two-dimensionalNavier-Stokes equations).In this situation the approximate inertial manifolds were de�ned as approxi-mations of i.m.s or as substitutes of these, when the i.m.s 
ould not be provedto exist. An approximate inertial manifold (a.i.m.) is a �nite dimensional, atleast Lips
hitz manifold in the spa
e H, with the property that all the traje
-tories of the dynami
al system enter a narrow neighborhood of the manifold



approximate inertial manifolds 135at a 
ertain moment and never leave the neighborhood after. Even if it hasnot the invarian
e property, an a.i.m. is important be
ause, if the problemhas a global attra
tor, it is 
ontained in the narrow neighborhood mentionedabove.The lo
alization of the attra
tors in the spa
e of phases was a �rst interestingappli
ation �eld of the a.i.m.s. Besides this, a.i.m.s found very interestingappli
ations in the 
onstru
tion of some approximate solutions (the numeri
alintegration) of the nonlinear evolution problems. Examples of papers devotedto a.i.m.s are: [10℄, [13℄, [23℄, [26℄, [27℄, [28℄, [33℄, [35℄, [37℄, [38℄, [39℄.In Se
tion 2 we present some methods, that use a.i.m.s, for the 
onstru
tionof approximate solutions for problems of the type (1.1)�(1.2), the so-
allednon-linear Galerkin method and post-pro
essed Galerkin method.We in
lude a method 
on
eived by us, that we named repeatedly adjusted andpost-pro
essed Galerkin method, that is 
onne
ted to the pre
eding methodsbut brings some simpli�
ations to these. In Se
tion 3 we present the waythese method work for the two-dimensional Navier-Stokes equations with pe-riodi
 boundary 
onditions, and in Se
tion 4, for a two-dimensional rea
tion-di�usion equation, with Von Neumann boundary 
onditions.In order to settle the notations and the fun
tional framework of our presenta-tion, we shortly remind below the Galerkin spe
tral method for the abstra
tequation (1.1).1.1. The Galerkin methodIn the hypotheses we assumed on the operator A of equation (1.1), it followsthat A has positive eigenvalues that form a tending to in�nity sequen
e:
0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ..., λn →

n→∞
∞.The eigenfun
tions of A form a total (orthonormal) system for H. We 
on-sider the set, denoted Γm, of the �rst distin
t m eigenvalues (in in
reasingorder) and the eigenfun
tions 
orresponding to these. We denote by P theorthogonal proje
tion operator on the subspa
e spanned by these eigenfun
-tions and we set Q = I − P (where I is the identity appli
ation on H). Thesolution u of (1.1)�(1.2) is proje
ted by the two proje
tors and we set

p = Pu,

q = Qu.
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tions p and q are solutions of
dp

dt
+ νAp + PR(p + q) = Pf, (1.3)

dq

dt
+ νAq + QR(p + q) = Qf, (1.4)

p(0) = Pu0, (1.5)
q(0) = Qu0. (1.6)Usually, the 
omponent q of the solution is proved to be, at large times, �little�in the norm of H 
ompared to the p 
omponent. That is, an inequality ofthe form

|q (t)| ≤ C0δ
a, (1.7)where

δ =
λ1

λm+1
, (1.8)and a is some positive number, is true. For the Navier-Stokes equations it isproved in [38℄ that a inequality of the type (1.7) holds, with a = 1 and C0depending on m. We proved in [19℄ that the inequality 
an be improved in thesense that it is true with a C0 that does not depend on m. For the rea
tion-di�usion equation, |q(t)| is of the order of δ for large enough times [4℄.If in the equation (1.4) q is negle
ted in the presen
e of p, we �nd the equation

dp

dt
+ νAp + PR(p) = Pf. (1.9)This is the Galerkin approximation of the equation (1.1). The solution of theproblem (1.9) with the initial 
ondition (1.5), that we denote by pG(.), is theGalerkin approximation of the solution of (1.1)-(1.2). For several problemsit is proved in the literature that inequalities of the type
|u(t) − pG(t)| ≤ Cδα,where u(t) is the solution of the problem (1.1)-(1.2), δ > 0 is de�ned by (1.8),and α > 0.As example, for a rea
tion-di�usion equation with Neumann boundary valuesand for the two-dimensional Navier-Stokes equations, α = 1 (in the hypoth-esis f ∈ H). The problem (1.9), (1.5) is equivalent to a system of ordinarydi�erential equations for the 
oordinates of p(t) along the eigenfun
tions thatspan PH. The de�nition of δ shows that the greater will be m, (hen
e thedimension of PH), the smaller will be the error.



approximate inertial manifolds 137In the 
onstru
tion of the Galerkin equation, the q 
omponent of the solution(that is proved to be small for large times) is approximated with 0. Thenonlinear Galerkin (and/or post-pro
essed) methods of approximation arebased upon the idea of approximating q(t) by using a a.i.m instead of themanifold q0.2. Modi�ed Galerkin methodsThe nonlinear Galerkin (and/or post-pro
essed) methods of approximationare based upon the idea of approximating q(t) by using an a.i.m instead oftaking q ≃ 0.2.1. Families of a.i.m.s used in the modi�ed Galerkin meth-odsThere are several types of a.i.m.s de�ned in the literature. Among them,those de�ned in [10℄, [38℄, [39℄ (for the Navier-Stokes equations � NSE) gen-erated new numeri
al integration methods, based on the Galerkin method.They form a family {Mj}j≥0 and are the graphs of some fun
tions
Φj : PH → QH. The de�nitions of these a.i.m.s for the NSE are presented inSe
tion 3 while those for the RDE are given in Se
tion 4. A.i.m.s of the typeof those 
ited above may be (and were) de�ned for many parti
ular problemsof the form (1.1)�(1.2). The main property of these a.i.m.s, on whi
h theiruse in the 
onstru
tion of the numeri
al methods is based, is the following:the distan
e (in the norm of H) between q(t) and the image of p(t) on thea.i.m. Mn is of the order of δa(n) that is

|q(t) − Φn(p(t))| ≤ Cδa(n), (2.1)where a(n) is in
reasing with n.For example, for the two-dimensional NSE it is proved [38℄, [39℄ that a(n) =
= (n+3)/2. Sin
e, for NSE, about the H norm of q(t) only the fa
t of beingof the order of δ is known, it is 
lear that any of the above a.i.m.s providesa better approximation of q(t) than the so-
alled plane manifold q = 0, forthe mentioned problem.
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a Ion2.2. The nonlinear Galerkin methodsThe nonlinear Galerkin method (NL Galerkin method) was �rst de�ned in[29℄. The method relies on the idea that Φ0(p(t)) is a better approximationof q(t) than 0, and 
onsiders, instead of the Galerkin equation (3.25), theequation
dp

dt
+ νAp + PR(p + Φ0(p)) = Pf, (2.2)with initial 
ondition (1.5). By denoting with p̃0(.) the solution of this prob-lem, the approximate solution of (1.1)�(1.2) is taken as
v0(t) = p̃0(t) + Φ0(p̃0(t)).As it is natural, sin
e Φn (p(t)) approximates q(t) better and better with thein
rease of n, the next idea, appeared in [6℄, was to 
onsider the equation

dp

dt
+ νAp + PR(p + Φn(p)) = Pf, (2.3)with the initial 
ondition (1.5). Let p̃n(.) the solution of this problem. Theapproximate solution is then de�ned as
vn(t) = p̃n(t) + Φn(p̃n(t)).For the problems 
onsidered in the 
ontext of nonlinear Galerkin problems,it is proved that the error is of the order of δb(n), where b(n) is in
reasingwith n.E.g., for the Navier-Stokes equations it is proved in [7℄ that b(n) = (n+3)/2,while for the rea
tion-di�usion equation it is asserted in [32℄ that b(n) = n+2provided f ∈ H.2.3. Post-pro
essed Galerkin methodsIn [14℄ the following modi�ed Galerkin method is proposed, that also usesa.i.m.s. Let again pG(.) be the solution of (1.9), (1.5). Then the value of

Φ0(pG(t)) is 
omputed at the right end side of the time interval [0, T ], thatis in T . The approximate solution in T is de�ned as
w(T ) = pG(T ) + Φ0(pG(T )).



approximate inertial manifolds 139This method is named the post-pro
essed Galerkin method (PP Galerkinmethod) be
ause the solution of the Galerkin problem is 
orre
ted only in the�nal phase, after �nishing the numeri
al integration of the Galerkin prob-lem, by using the �rst a.i.m. of the family des
ribed in 2.1 (hen
e post-pro
essed). The error of this approximate solution is less than that of theGalerkin method. Thus, for the two-dimensional Navier-Stokes equations, itis shown in [14℄ to be of the order of δ5/4. Another estimate is proved in [15℄,i.e. the error is proved to be of the order of L2δ3/2, where L = 1 + ln(2m2).This latter estimate of the error is not ne
essary better than the formerbe
ause of the 
oe�
ient L2.The next idea appeared in the literature [32℄ was to postpro
ess the NLGalerkin method of the pre
eding se
tion. More pre
isely, the equation (2.3)is 
onsidered, it is integrated on all the time interval [0, T ], then Φn+1(p̃n(T )),is 
omputed, and the approximate solution in T is de�ned as
wn(T ) = p̃n(T ) + Φn+1(p̃n(T )).This method is 
alled the nonlinear post-pro
essed Galerkin method (NLPP Galerkin method). In [32℄ the use of the method is exempli�ed on therea
tion-di�usion equation and it is proved that, if f ∈ H, then the error isof the order of ln m δn+3.2.4. A new modi�ed Galerkin methodIn [38℄, in the 
ontext of the study of the NSE, a family of fun
tions,

{qj}j≥0, qj : R
+ → QH, having the property

|qj(t) − q(t)| ≤ kjL
1+j/2δ(3+j)/2 (2.4)for large enough times is 
onstru
ted. Here the 
oe�
ients kj depend on thedata of the problem (ν, |f |, λ1), and L = 1 + lnλm+1

λ1
. A
tually, the fun
tion

q0 is of the form
q0 = Φ0(p),while, for j ≥ 1, qj are re
ursively de�ned by relations of the type

qj = Fj(Qf, p, q0, ..., qj−1). (2.5)The fun
tions uj = p + qj, j ≥ 0 de�ne the so-
alled indu
ed traje
tories,
{uj(t); t ≥ 0}, asso
iated to the traje
tory {u(t); t ≥ 0} of the dynami
alsystem. Relation (2.4) shows that the fun
tions uj , j ≥ 0, are approximations
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t solution, of in
reasing with j a

ura
y. The de�nition of thea.i.m.s Mj used in the nonlinear Galerkin methods for the NSE are basedupon the de�nitions of the fun
tions qj.In [20℄, for the two-dimensional NSE with periodi
 boundary 
onditions, wede�ned a new type of modi�ed Galerkin method, that uses some approxima-tions of the indu
ed traje
tories and not the a.i.m.s. We des
ribe here themethod in the general 
ontext of equation (1.1). The purpose of the methodis that of working with a very low-dimensional proje
tion spa
e PH, and theidea from whi
h we started is that, however small is the dimension of PH, ifwe have a very good approximation for q, let us denote it by q̃, then a verygood approximation for p will be obtained by solving the equation
dp

dt
+ νAp + g(p + q̃) = Pf.In 
onsequen
e, a good approximation of u may be obtained. The methodis stru
tured on several levels. One of the ideas we followed in developingthis method is that of having to integrate only di�erential equations of thesame level of di�
ulty as the Galerkin equation. This was possible by usingapproximations of indu
ed traje
tories instead of a.i.m.s.Level 0. This level has two stages. The �rst is the 
lassi
al Galerkin method,i.e. we solve the problem (1.9), (1.5) and we 
onsider its solution, pG(.).The se
ond stage 
onsists in de�ning the fun
tion of time, with values in

QH:
q̃0(t) = Φ0(pG(t)), (2.6)the fun
tion Φ0 being the one that de�nes the �rst a.i.m. of the family 
itedin 2.1.Then we de�ne the approximate solution at this �rst level as

ũ0 = pG + q̃0.Sin
e the fun
tion q̃0(t) will be used at the se
ond level of our method, in thenumeri
al implementation of this method, the fun
tion q̃0 should be 
om-puted in ea
h point of the time mesh, unlike in the post-pro
essing de�nedin [14℄, where it is 
omputed only at the �nal point of the integration in-terval [0, T ]. Besides this, Level 0 of our method is essentially the Galerkinpost-pro
essed method.Level 1. We 
onsider the problem
dp

dt
+ νAp + PR(p + q̃0) = Pf, (2.7)

p(0) = Pu0



approximate inertial manifolds 141and we denote by p̃0 its solution. This is an "adjusted" Galerkin problem.This equation is essentially di�erent from the 
orresponding one of the NLGalerkin method (see equation (2.3)) sin
e q̃0 is known from Level 1.Then we de�ne
q̃1(t) = F1(Qf, p̃0(t), q̃0(t)).The approximate solution is

ũ1 = p̃0 + q̃1.Level j > 1.We assume that q̃0, q̃1, q̃2, ..., q̃j−1 were 
onstru
ted. The problem
dp

dt
+ νAp + PR(p + q̃j−1) = Pf, (2.8)

p(0) = Pu0,is 
onsidered and its solution is denoted by p̃j−1. Then we denote
q̃j = Fj (Qf, p̃j−1, q̃0, q̃1, ..., q̃j−1)and the approximate solution is̃

uj = p̃j−1 + q̃j.At �rst sight, the idea of performing several time integrations seems a badidea, sin
e every su
h integration involves a large amount of 
omputations.However, a 
areful analysis shows that the amount of 
omputations involvedin the NL Galerkin method (based upon the a.i.m. Mj) is greater thanthat involved in solving the problems from Level 1 to the eq. (2.8) of Levelj, in
lusive. Su
h an analysis is performed for the Navier-Stokes equationsin 3.8. Hen
e our method, that we 
all the repeatedly adjusted and post-pro
essed Galerkin method (R-APP Galerkin method) is an alternative tothe NL Galerkin method. The �nal post-pro
essing, by adding q̃j to p̃j−1 isequivalent to the post-pro
essing of NL Galerkin method and does not implya large amount of 
al
uli sin
e it will be performed only in some sele
tedmoments of time (eventually only at the last moment, T ). In what 
on
ernsthe error, for the problems dis
ussed below we 
an prove that the error ofR-APP Galerkin method is of the same order of magnitude as that for NLPP Galerkin method, for the two parti
ular problems in Se
tions 3 and 4.
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a Ion3. Modi�ed Galerkin methods for the Navier-StokesequationWe present here the modi�ed Galerkin methods for the Navier-Stokes equa-tions: the NL, NL PP Galerkin methods already de�ned in the literature andour R-APP Galerkin method.3.1. The setting of the problemWe 
onsider the problem of the two-dimensional �ow of a in
ompressibleNewtonian �uid, modeled by the Navier-Stokes equations. We impose pe-riodi
 boundary 
onditions and 
hoose the periodi
ity 
ell to be a square,
Ω = (0, l) × (0, l). Thus the problem is

∂u

∂t
− ν∆u + (u · ∇)u+∇p = f , (3.1)divu = 0, (3.2)where u (t,x) ∈ R

2 is the velo
ity of the �uid, t ≥ 0, x ∈Ω, p (t,x) ∈ R is thepressure of the �uid, ν is the kinemati
 vis
osity, and f is the volume for
e.We add the initial 
ondition
u (0, ·) = u0(·). (3.3)We assume that f is independent of time and is an element of [

L2
per (Ω)

]2. Asis usual in the study of the Navier-Stokes equations with periodi
 boundary
onditions, we assume that [40℄, [34℄
f =

1

l2

∫

Ω
f (x) dx = 0, (3.4)and that the pressure is a periodi
 fun
tion on Ω. For simpli
ity we willassume also that the average u of the velo
ity over the periodi
ity 
ell iszero.The velo
ity u is thus looked for in the spa
e H =

{
v; v ∈

[
L2

per (Ω)
]2

,divv = 0, v = 0} with the s
alar produ
t (u,v) =
∫
Ω (u1v1 + u2v2) dx,(where u = (u1, u2) , v = (v1, v2)) and the indu
ed norm is denoted by

|·|. Let us also 
onsider the spa
e V =
{
u ∈

[
H1

per (Ω)
]2

, div u = 0,u = 0
}

,with the s
alar produ
t ((u,v)) =
∑2

i,j=1

(
∂ui

∂xj
, ∂vi

∂xj

)
, and the indu
ed norm,denoted by ‖·‖ .



approximate inertial manifolds 143The variational formulation of the Navier-Stokes equations [40℄ leads, for theperiodi
 boundary 
onditions, to the Cau
hy problem
du

dt
− ν∆u + (u · ∇)u = f in V ′, (3.5)

u (0) = u0, u0 ∈ H. (3.6)The notations
B(u,v) = (u · ∇)v, (3.7)

B(u) = B(u,u), (3.8)will be used below.We remind here the 
lassi
al existen
e and uniqueness results for the Navier-Stokes equations in R
2, with periodi
 boundary 
onditions.We denote A = −∆. The de�nition domain of the linear operator A is

D(A) = V ∩ H2
per(Ω).Theorem 3.1 [40℄. a) If u0 ∈ H, f ∈ H, then the problem (3.5), (3.6)has an unique solution u ∈ C0 ([0, T ];H) ∩ L2 (0, T ;V) . b) If, in addition,

u0 ∈ V, then u ∈ C0 ([0, T ];V) ∩ L2 (0, T ;D(A)) . The solution is, in thislatter 
ase, analyti
 in time on the positive real axis.The semi-dynami
al system {S (t)}t≥0 generated by problem (3.5) is dissi-pative [37℄. More pre
isely, there is a ρ0 > 0 su
h that for every R > 0,there is a t0(R) > 0 with the property that for every u0 ∈ H with |u0| ≤ R,we have |S (t)u0| ≤ ρ0 for t > t0(R). In addition, there are absorbing ballsin V and D (A) for {S (t)}t≥0, [34℄ i.e. there are ρ1 > 0, ρ2 > 0 and, forevery R > 0, there are t1(R), t2(R) with t2(R) ≥ t1(R) ≥ t0(R) su
h that
|u0| ≤ R implies ‖S (t)u0‖ ≤ ρ1 for t > t1(R) and |AS (t)u0| ≤ ρ2 for
t > t2(R).3.2. The de
omposition of the spa
e, the proje
ted equationsThe eigenvalues of A are λj1,j2 = 4π2

l2

(
j2
1 + j2

2

)
, (j1, j2) ∈ N

2\ {(0, 0)} , andthe 
orresponding eigenfun
tions are
ws±

j1,j2
=

√
2

l

(j2,∓j1)

|j| sin

(
2π

j1x1 ± j2x2

l

)
,

wc±
j1,j2

=

√
2

l

(j2,∓j1)

|j| cos

(
2π

j1x1 ± j2x2

l

)
,
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(
j2
1 + j2

2

) 1

2 [38℄. These eigenfun
tions form a total system for H.For a �xed m ∈ N we 
onsider the set Γm of eigenvalues λj1,j2 having
0 ≤ j1, j2 ≤ m. We de�ne

λ := λ1,0 = λ0,1 =
4π2

l2
,

Λ := λm+1,0 = λ0,m+1 =
4π2

l2
(m + 1)2 ,

δ = δ (m) :=
λ

Λ
=

1

(m + 1)2
.

Λ is the least eigenvalue not belonging to Γm. The eigenfun
tions 
orre-sponding to the eigenvalues of Γm span a �nite-dimensional subspa
e of H.We denote by P the orthogonal proje
tion operator on this subspa
e and by
Q the orthogonal proje
tion operator on the 
omplementary subspa
e. Wewrite for the solution u of (3.5), (3.6), u = p + q, where p = Pu, q = Qu.By proje
ting equation (3.5) on the above 
onstru
ted spa
es, we obtain

dp

dt
− ν∆p + PB(p + q) = Pf , (3.9)

dq

dt
− ν∆q + QB(p + q) = Qf . (3.10)In [10℄ is proved that for every R > 0, there is a moment t3 (R) ≥ t2(R) su
hthat for every |u0| ≤ R,

|q (t)| ≤ K0L
1

2 δ, ‖q (t)‖ ≤ K1L
1

2 δ
1

2 , (3.11)
∣∣q′ (t)

∣∣ ≤ K ′
0L

1

2 δ, |∆q (t)| ≤ K2L
1

2 , t ≥ t3 (R) ,where, for our 
hoi
e of the set of eigenvalues Γm, L = 1 + ln(2m2). In [19℄we proved that estimates of the same order are true for the various norms of
q (t) above, but with 
oe�
ients of the powers of δ not depending on m.3.3. Indu
ed traje
tories for the Navier-Stokes problemIn [38℄ the notion of indu
ed traje
tory is de�ned and a family of indu
edtraje
tories is 
onstru
ted for this problem. The asymptoti
 expansions thatrely behind this 
onstru
tion are not made expli
it there.
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tions, {qj; j ∈ N} , that satisfy the equations
−ν∆q0 + QB (p) = Qf ,(3.12)

−ν∆q1 + QB (p) + QB (p,q0) + QB (q0,p) = Qf ,(3.13)
−ν∆q2 + QB(p) + QB (p,q1) + QB (q1,p) + QB(q0,q0) + q′

0 = Qf ,(3.14)
−ν∆qj + q′

j−2 + QB (p) + QB (p,qj−1)+ (3.15)
+QB (qj−1,p) + QB (qj−2,qj−2) = Qf , j ≥ 2,is de�ned.If p (t) is, as above, the P proje
tion of the solution u(t) of the NSE, thesets {uj(t) = p (t) + qj (t) ; t ≥ 0} are 
alled indu
ed traje
tories asso
iatedto the traje
tory {u(t) = p (t) + q (t) ; t ≥ 0}. The inequalities

|qj | ≤ κjδL
1/2, ‖qj‖ ≤ κjδ

1/2L1/2,
∣∣q′

j

∣∣ ≤ κjδL
1/2,are proved in [38℄, as well as the following

|q(t) − qj(t)| ≤
_
κjL

(1+j)/2δ(3+j)/2. (3.16)3.4. A family of approximate inertial manifolds for the Navier-Stokes equationsThe family of indu
ed traje
tories above, more pre
isely the fun
tions qj , j ≥
0, form the starting point for the 
onstru
tion of a family of approximate in-ertial manifolds de�ned in the literature, the �rst one in [10℄ and the followingin [38℄ and [39℄. The �rst a.i.m. of this family is the graphM0 of the fun
tion
Φ0 : PH →QH, that satis�es the relation

−ν∆Φ0 (X) + QB(X) = Qf ,where X ∈ PH. Thus Φ0 (X) is expli
itly given by
Φ0 (X) = (−ν∆)−1 (Qf − QB(X)) . (3.17)
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onne
tion between this de�nition and the de�nition (3.12) of q0 isobvious: the set of points {p(t) + q0(t); t ≥ 0} lies on M0. The next a.i.m.de�ned in [38℄ is M1, the graph of the fun
tion Φ1 : PH →QH, given by thesolution of the problem
−ν∆Φ1 (X) + QB(X) + QB(X,Φ0 (X)) + QB(Φ0 (X) ,X) = Qf ,that is

Φ1(X) = − (ν∆)−1 [Qf − QB(X) − QB(X,Φ0 (X)) − QB(Φ0 (X) ,X)] .(3.18)The relation with the de�nition (3.13) of the 
orresponding fun
tion q1 is
lear.For j ≥ 2, inspired by the de�nition (3.15) of qj , the a.i.m. Mj is de�nedas the graph of Φj : PH →QH, with Φj (X) the solution of
−ν∆Φj (X) + QB(X) + QB(X,Φj−1 (X)) + QB(Φj−1 (X) ,X)+

+QB(Φj−2 (X)) + DΦj−2 (X) Γj−2 (X) = Qf ,where DΦj−2 (X) Γj−2 (X) is the Fré
het di�erential of Φj−2 (X), applied to
Γj−2 (X) = ν∆X− PB (X + Φj−2 (X)) + Pf . (3.19)Hen
e

Φj (X) = − (ν∆)−1 [Qf − QB (X) − QB (X,Φj−1 (X))− (3.20)
−QB (Φj−1 (X) ,X) − QB(Φj−2 (X)) − DΦj−2 (X) Γj−2 (X)] .The inequalities (3.16) allow us to estimate the distan
e between the traje
-tories of the problem and the a.i.m.s. This is immediate for the �rst twoa.i.m.s, sin
e for j = 0, 1, we have uj(t) ∈ Mj , and thus
distH (u(t), Mj) ≤ dist (u(t),uj(t)) = |q(t) − qj(t)| .For the a.i.m.s Mj with j > 1, some extra work is ne
essary, sin
e

DΦj−2 (p(t)) Γj−2 (p (t)) is only an approximation of [qj−2(p (t))]′ . How-ever, in [38℄ and [39℄ it is proved that
distH (u (t) ,Mj) ≤

_
κjL

(1+j)/2δ(3+j)/2.



approximate inertial manifolds 1473.5. Nonlinear Galerkin method for the Navier Stokes equa-tionsThe nonlinear Galerkin method was �rst presented in [29℄. It is de�ned for a
lass of equations that 
ontains the Navier-Stokes equations as a parti
ular
ase, i.e. an equation of the type (1.1) with
R(u) = B(u) + Cu,where B(u) = B(u, u), B(., .) is a bilinear operator having essentially theproperties of B and C is a linear operator. It is assumed that A + C ispositive in H and C is bounded from V = D(A1/2) to H.We write the method for the Navier-Stokes problem we 
onsidered here (thatis we take A = −ν∆, B = B, C = 0). It 
onsists in approximating in theP proje
tion of the equation, the fun
tion q with help of the �rst a.i.m. ofthe family des
ribed above. That is, instead of the Galerkin equation, theequation

dp

dt
− ν∆p + P [B(p) + B(p,Φ0(p)) + B(Φ0(p),p)] = Pf , (3.21)with the initial 
ondition

p(0) = Pu0,is 
onsidered, where Φ0 is given by (3.17) (the notations are adapted toours). We see from the term PB(p + Φ0(p)) the term PB(Φ0(p),Φ0(p))is missing. This is be
ause it is of lower order than the pre
eding terms.As for the equation of Φ0, this is taken in [29℄ as
Φ0 (p) = (−ν∆)−1

Q2m [f − B(p)] , (3.22)where Q2m is the proje
tion operator de�ned as Q2m = QP2m, where P2mis the proje
tor on the spa
e spanned by the eigenfun
tions 
orresponding tothe eigenvalues in Γ2m (of λj1,j2 having 0 ≤ j1, j2 ≤ 2m). This is be
ausethe spa
e QH is in�nite dimensional and a trun
ation must be made (atleast for f , sin
e for periodi
 boundary 
onditions, if X ∈ PH then B(X) isanyway in P2mH).Let us denote, together with the authors of [29℄, the solution of (3.21) by
um. It is proved in the paper we refer at, that, if u0 ∈ H then um →

m→∞

u in L2 (0, T ;V) , um →
m→∞

u in Lp (0, T ;H) , strongly (for any T > 0, p ≥
1) and um →

m→∞
u in L∞ (R+;H) weak-star.
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m→∞

u in L2 (0, T ;D(A)) , um →
m→∞

u in Lp (0, T ;V) ,strongly (for any T > 0, p ≥ 1) and um →
m→∞

u in L∞ (R+;V) weak-star.As an alternative nonlinear Galerkin method, that starting from the equation(similar to (2.2))
dp

dt
− ν∆p + PB(p + Φ0(p)) = Pf , (3.23)with Φ0 de�ned by (3.22) is also given in [29℄. Convergen
e results similarto those asserted above are proved.In [7℄ an estimate of the error of the method is given

|u(t)− [um(t) + Φ0(um(t))]| ≤ C(t)δ3/2.In [6℄ the NL Galerkin method is improved by using more a

urate a.i.m.s.The equation that provides the approximate solution is (we write it here alsofor the N-S equations)
dp

dt
− ν∆p + PB(p + Φj(p))] = Pf , (3.24)where Φj is the the fun
tion whose graph is the 
orresponding a.i.m. (similarto that de�ned in (3.20), but slightly di�erent). Let us denote by um,jthe solution of (3.24) and by vm,j = um,j + Φj(um,j). It is proved in [6℄that if u0 ∈ V, both um,j and vm,j 
onverge to u (when m → ∞) in

L2 (0, T ;D(A)) and in Lp (0, T ;V) , strongly (for all p ≥ 1 and all T > 0),and in L∞ (R+;V) weak-star. It is also proved that, for a �x j, zm,j =
Φj(um) 
onverges (when m → ∞) to 0 in L∞ (R+;V) and L2 (0, T ;D(A))strongly for any T > 0. In [7℄ some estimates for the error are obtained. Morepre
isely, for the NSE, it is shown that (with our numbering of the a.i.m.s)

|u(t) − vm,j(t)| ≤ KjL
(j+3)/2
m δ(j+3)/2.3.6. Post-pro
essed Galerkin method for the Navier-StokesequationsThe ideas on whi
h the post-pro
essed Galerkin method relies are exposed in2.3. In [14℄ a general equation is 
onsidered and the Navier-Stokes equation
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ular 
ase. The solution pG of the Galerkin equation,
dp

dt
− ν∆p + PB(p) = Pf , (3.25)

p(0) = Pu0,is post-pro
essed. This means, at a 
ertain moment T (the end of the timeinterval on whi
h the integration of (3.25) was performed) the image of pGon the �rst a.i.m. M0, that is Φ0 (pG(T )) , is 
omputed and is added to
pG (T ) . It is proved that, if f ∈ H, then

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ Cδ5/4. (3.26)In a subsequent paper, [15℄, the same authors prove another estimate for theNavier-Stokes problem. More exa
tly, they prove that, for f ∈H,

|u (T ) − (pG (T ) + Φ0 (pG(T )))| ≤ CL2δ3/2. (3.27)Estimate (3.27) is not ne
essarily better than (3.26), sin
e the 
oe�
ient L2appears (as before, L = 1 + ln(2m2)). In [32℄ the method is improved. Thatpaper 
onsiders a rea
tion-di�usion equation, but the algorithm works forthe Navier-Stokes equations as well. Instead of the Galerkin equations, theNL Galerkin equations (3.24) are 
onsidered. The solution um,j(t) of theseequations is post-pro
essed, i.e. the sum
um,j(T ) + Φj+1 (um,j(T ))is 
onsidered and proposed as an approximate solution. The estimate of theerror is made in [32℄ for the rea
tion-di�usion equation, hen
e is not relevantfor the Navier-Stokes equation.3.7. The repeatedly adjusted and post-pro
essed Galerkinmethod for the Navier-Stokes equationWe adapt the general method presented in 2.4 to the Navier-Stokes equations.Level 0. We de�ne the �rst step of this level as the 
lassi
al Galerkinmethod. Let us 
onsider the Cau
hy problem

dp

dt
− ν∆p + PB (p) = Pf , (3.28)

p(0) = Pu0.
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q̃0(t) = Φ0 (pG (t)) .In the implementation of the method, the equation (3.28) must be numeri-
ally integrated. We remark that the values of q̃0(t) must be 
omputed inevery point of the time mesh used in the 
ourse of the numeri
al integration,sin
e they will be used at the next level of the method.We de�ne the fun
tion

ũ0 (t) = pG (t) + q̃0(t). (3.29)This preliminary level di�ers from the PP Galerkin method only in the post-pro
essing part, in the fa
t that we 
ompute q̃0(t) at any moment of timeand not only at the end of the time interval on whi
h (3.28) is integrated.Level 1. Now we 
onsider the problem
dp

dt
− ν∆p + PB (p+q̃0) = Pf , (3.30)

p(0) = Pu0,with q̃0(t) 
omputed at the pre
eding step. Sin
e q̃0(t) is already known, thisequation is not more di�
ult to integrate than the simple Galerkin equationatta
hed to the Navier-Stokes equation. It is an adjusted Galerkin equationsin
e the nonlinear term is adjusted by adding to p(t) the term q̃0(t) thatapproximates q(t) better than 0 does. We denote by p̃0 (t) the solution ofproblem (3.30). The 
omputation of the error showed that p̃0 is a betterapproximation of p than pG (see the 
omments in 3.8).Then we de�ne
q̃1(t) = −(ν△)−1 [Qf − QB (p̃0(t)) − QB (p̃0(t), q̃0(t))−

−QB (q̃0(t), p̃0(t))]The approximate solution will be de�ned at this level as
ũ1 (t) = p̃0 (t) + q̃1(t). (3.31)This fun
tion is an approximation of u1 that de�nes the se
ond indu
edtraje
tories.
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onstru
ted the fun
tions q̃j−2, q̃j−1(t).We 
onsider the adjusted Galerkin problem
dp

dt
− ν∆p + PB (p+q̃j−1) = Pf , (3.32)

p(0) = Pu0,and denote by p̃j−1 (t) its solution. Then we set
q̃j (t) = (−ν∆)−1

[
Qf − QB(p̃j−1 (t)) − QB(p̃j−1 (t) , q̃j−1 (t))− (3.33)

−QB(q̃j−1 (t) , p̃j−1 (t)) − QB(q̃j−2 (t) , q̃j−2 (t)) − q̃ ′
j−2 (t)

]
.We de�ne the approximate solution at this level as

ũj(t) = p̃j−1 (t) + q̃j(t).We remark that ũj (t) is an approximation of uj (t) (that de�nes a indu
edtraje
tory of the family 
onstru
ted in [38℄).We must say that, at the last level, as in the NL PP Galerkin method, wemay 
orre
t p̃j−1 by adding q̃j only at some moments of interest (the �nalpostpro
essing step).We also must remark that, when the method is numeri
ally implemented,the proje
tor Q must be repla
ed by a �nite dimensional proje
tor as, e.g.
Q2m de�ned in Se
tion 3.5.3.8. The error of the R-APP Galerkin methodIt is not the purpose of this work to present the expli
it 
al
ulus of the errorof the methods presented. We proved in [20℄ that

|p(t) − p̃j(t)| ≤ Cδ5/4+j/2and
|q(t) − q̃j(t)| ≤ Cδ3/2+j/2,where C depends on the data of the problem: Ω, f , ν, λ1, and on t but noton m.With other methods, other estimates may be obtained. If we start fromestimates of [15℄ of |p (t) − pG (t)| , where pG (t) is, as before, the 
lassi
alGalerkin approximation of the solution, that is
|p (t) − pG (t)| ≤ C ′L2δ3/2,
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essive solutions by afa
tor of δ1/4 seems to be obtained. However, the appearan
e of the fa
tor
L2 (L = 1 + ln(2m2)) diminishes this su

ess. A very 
areful analysis of the
onstants C, C ′ should be performed in order to see what approa
h is better.Anyway, the R-APP Galerkin provides approximates solutions as a

urateas those provided by the NL PP Galerkin method.3.9. R-APP Galerkin method 
ompared to the high-ordera

ura
y NLPP Galerkin methodThe R-APP Galerkin method is intended to bring some simpli�
ations to theNL Galerkin methods that use high a

ura
y approximate inertial manifolds.Hen
e this method makes sense only if more of its levels are passed through.The simpli�
ations 
ome from the following fa
ts:a) the use of some already known fun
tions (the q̃js) for the adjustment ofthe Galerkin equation, makes the equations for the approximations of p tohave essentially the same stru
ture as the Galerkin equation; this imply sim-pli�
ations of the algorithms for the numeri
al integration of these equations,
ompared to the 
orresponding equations of the NL Galerkin equations;b) the use of the "approximate indu
ed traje
tories" instead of the ap-proximate inertial manifolds makes some 
omputations easier, be
ause, inthe fun
tion q̃j the term q̃′

j−2 appears instead of the 
orresponding term
DΦj−2 (X) Γj−2 (X) of the a.i.m. Φj; the term q̃′

j−2 
an be approximatedby the numeri
al derivative (sin
e we know its values in the points of thetime mesh);
) when we pro
eed to Level j of the method, all we need are the values of
q̃j−2 and q̃j−1, while all values of p̃k, k < j − 1 and q̃k, k < j − 2 may beerased from the memory of the 
omputer; this must be 
ompared to the NLGalerkin method that uses Mj , where in the 
ourse of a single numeri
alintegration one must handle the values of all fun
tions Φk, k ≤ j, and allthese must be stored in the memory of the 
omputer.In order to 
ompare the R-APP Galerkin method with the NL PP Galerkinmethod, we must look at the levels j with j ≥ 2.Let us analyze in parallel the �rst stage of Level 3 (that delivers us thefun
tion p̃2) of our method and the 
orresponding NL Galerkin method (thatuses the a.i.m. M2). It is easier to follow our reasoning on this parti
ular
ase than than on the general one.
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lear as possible, we des
ribe the 
ompu-tations ne
essary for the simple Euler integration method. Of 
ourse, moreelaborated algorithms must be used, but the di�
ulties added by these shouldbe evaluated for ea
h spe
i�
 algorithm individually.In order to pro
eed, we 
onsider a time-mesh 0 = t0 < t1 < t2 < ... < tk <
... < tN = T on the time integration interval [0, T ].Let us make the notations

ΓG (p) = Pf + ν∆p− PB (p)

Γ̃j (p) = Pf + ν∆p− PB (p+q̃j) .R-APP Galerkin method, at the third level, requires the following 
om-putations for the determination of p̃2(t):at Level 0 � 
omputation of pG(tk), k = 1, ...,N, by numeri
al integration ofeq. (3.28) (this is equivalent with the 
omputation of ΓG (pG(tk−1))); then
omputation of q̃0(tk);at Level 1 � 
omputation of p̃0(tk), k = 1, ...,N, by numeri
al integrationof eq. (3.30) (this is equivalent with the 
omputation of Γ̃0 (p̃(tk−1))); then
omputation of q̃1(tk);at Level 2 � 
omputation of p̃1(tk), k = 1, ...,N, by numeri
al integra-tion of eq. (3.32) with j = 2, (this is equivalent with the 
omputation of
Γ̃1 (p̃1(tk−1))), then 
omputation of q̃2(tk);at Level 3 � 
omputation of p̃2(tk), by numeri
al integration of eq. (3.32)with j = 3 (this is equivalent with the 
omputation of Γ̃2 (p̃2(tk−1))).NL Galerkin method that uses M2, presented in [29℄, 
onsists in theintegration of the system of ODEs

dp

dt
− ν∆p + P [B(p + Φ2(p))] = Pf , (3.34)

p (0) = Pu0,where the fun
tion Φ2 is given by
−ν∆Φ2(p) + Q2mB (p + Φ1(p))+q1

1 = Q2mf , (3.35)
−ν∆q1

1 + Q2m

[
B(

(
p1

0, p + Φ1(p)
)
+B

(
p + Φ1(p),p1

0

)]
= 0,

p1

0 − ν∆p + P [B(p + Φ1(p))] = Pf ,

−ν∆Φ1(p) + Q2mB(p + Φ0(p)) = Q2mf ,

−ν∆Φ0(p) + Q2mB(p) = Q2mf .
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ed here the de�nition of M2 from [29℄, but we adapted thenotations from [29℄ to our notations and we started 
ounting a.i.m.s with 0,as in [38℄, while in [29℄ this 
ount begins with 1.In the 
ourse of the numeri
al integration, with p(tk−1), k = 1, ...,N, alreadydetermined, in order to �nd p(tk), we have to 
ompute:
Φ0(p (tk−1)), Φ1(p (tk−1)), Γ1 (p (tk−1)) (for the 
al
ulation of p1

0
(tk) , with

Γ1 given by (3.19), j = 3), q1
1 (tk−1) , Φ2(p (tk−1)), and �nally Γ2 (p (tk−1)) .This will yield p(tk).Now we 
an 
ompare the two methods from the point of view of the 
ompu-tations involved. We have the following:� 
omputation of q̃0(tj) is equivalent to that of Φ0(p (tj));� 
omputation of q̃1(tj) is equivalent to that of Φ1(p (tj));� 
omputation of Γ̃1 (p̃1 (tj)) is equivalent to that of Γ1 (p (tj)) ;� 
omputation of q̃2(tj) is equivalent to that of Φ2(p (tj)), assuming that

q1
1 (tj) is already 
omputed;� �nally we observe that the 
omputation of pG(tj) and p̃0(tj) (from R-APPGalerkin method) together, involve less 
omputations than that of q1

1(tj)(from the NL Galerkin method).This is be
ause in 
omputing pG(tj) we have to 
ompute a number of 4m2 +
2m proje
tions of the term ΓG (pG(tj−1)) and in 
omputing p̃0(tj) we have to
ompute 4m2 + 2m proje
tions of the term Γ̃0 (p̃(tj−1)), while in 
omputing
q1

1 (tj) we have to 
ompute 12m2 + 6m proje
tions.At the following level, indu
ed traje
tories, respe
tively a.i.m.s, of higherorder are used. The de�nition of these involves approximations of the deriva-tives similar to the above. Hen
e, the di�eren
e in the amounts of 
ompu-tations between the two methods in
reases with the order of the method.It follows that the R-APP Galerkin method involves a smaller amount of
omputations than the NL Galerkin method.The 
omputational e�ort involved in the �nal post-pro
essing part is eased inthe R-APP Galerkin method by the fa
t that, by using approximations of theindu
ed traje
tories we 
an approximate dire
tly (by numeri
al derivative)the fun
tion q′, while in the NL PP Galerkin method it is approximatedby the di�erential DΦj−2 (X) Γj−2 (X). In 
on
lusion, the R-APP Galerkinmethod brings simpli�
ations to the NL PP Galerkin method relying onhigher a

ura
y a.i.m.s.
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tion-di�usionproblemWe 
onsider a rea
tion-di�usion (RD) equation of the form
∂u

∂t
− D (∆u−u) + g(u) = f, (4.1)where u is a real-valued fun
tion, u = u(t,x), x ∈ Ω = (0, l)× (0, l), l > 0,

D is the di�usion 
oe�
ient and the fun
tion g is a polynomial fun
tion ofodd degree. In order to simplify the following 
onsiderations we take here apolynomial fun
tion of degree 3,
g(u) = b0 + b1u + b2u

2 + b3u
3, bi ∈ R, b3 > 0.We take f∈L2 (Ω) . To the equation (4.1) we asso
iate an initial 
ondition

u(0) = u0 (4.2)and the boundary 
ondition
∂u

∂n

∣∣∣∣
∂Ω

= 0. (4.3)The phase spa
e is here H =L2(Ω). We 
onsider also the spa
e V = H1 (Ω)with the usual norm.The operator A = −∆ + I is a positive-de�nite, self�adjoint, with 
ompa
tinverse operator with de�nition domain D(A) = H2 (Ω). The following exis-ten
e result may be obtained by the Galerkin-Faedo method [37℄, [34℄Theorem 4.1 If u0 ∈ H, then there exists a unique solution u ∈ C (R+; H) ,
u ∈ L2(0, T ; V) ∩ L2p(0, T ;L2p(Ω)) where p > 1, T > 0. If, more than that,
u0 ∈ V, then u ∈ C([0, T ); V) ∩ L2(0, T ; H2 (Ω)).The semi-dynami
al system {S(t)}t≥0 , generated by (4.1) is proved to bedissipative in H and V [37℄, [34℄. Hen
e there is a ρ0 > 0 (respe
tively a
ρ1 > 0), su
h that for every R > 0, there is a moment t0(R) (respe
tively
t1(R) > t0(R)) with the property that for every u0∈ H with |u0| ≤ R, wehave |S(t)u0| < ρ0, for t ≥ t0(R) (respe
tively ‖S(t)u0‖ < ρ1, for t ≥ t1(R)).
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eThe eigenvalues of A are
λj,k =

π2

l2
[j2 + k2] + 1and the 
orresponding eigenfun
tions are

wj,k =

√
αjαk

l
cos

jπx

l
cos

kπy

l
,where αj = 1 for j = 0 and αj = 2 for j 6= 0.As for the Navier-Stokes equations, we 
onsider the set Γm of eigenvalues

λj1,j2 with 0 ≤ j1, j2 ≤ m. We make the notations
Λ = λm+1,0 = λ0,m+1,

δ =
1

Λ
.We also 
onsider the spa
e spanned by the eigenfun
tions 
orresponding tothese eigenvalues and we denote by P the proje
tor on this spa
e. We set

Q = I − P, where I is the identity on H, p = Pu, q = Qu.We proje
t the equation (4.1) by using these proje
tors, to obtain
dp

dt
− D (∆p−p) + Pg(p + q) = Pf,

dq

dt
− D (∆q−q) + Qg(p + q) = Qf.It 
an be proved (e.g. [4℄) that

|q| ≤ Cδfor t great enough, where the 
oe�
ient C depends on the data of the prob-lem.4.2. Indu
ed traje
tories for the rea
tion-di�usion problemIn 
onstru
ting a family of indu
ed traje
tories for the rea
tion-di�usionproblem, we try an asymptoti
 analysis of the RD equations. We developthe fun
tion q in series of powers of δ

q = δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
. (4.4)
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g(p + q) = g(p) + g′(p)q +

1

2
g′′(p)q2 +

1

6
g′′′(p)q3 =

= g(p) + g′(p)δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)
+

+
1

2
g′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]2
+

+
1

6
g′′′(p)

[
δ
(
k0 + δk1 + δ2k2 + δ3k3 + ...

)]3
,hen
e, by ordering the terms after the powers of δ,

g(p + q) = g(p) + δg′(p)k0+ (4.5)
+ δ2

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3

[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4

[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... .Then, by substituting (4.4) in the equation for q, we obtain

δk′
0 + δ2k′

1 + δ3k′
2 + δ4k′

3 + ...

− D
[
δ∆k0 + δ2∆k1 + δ3∆k2 + δ4∆k3 + δ5∆k4 + ...

]
+

+ D
[
δk0 + δ2k1 + δ3k2 + δ4k3 + δ5k4 + ...

]
+

+ Qg(p) + δQg′(p)k0 + δ2Q

[
g′(p)k1 +

1

2
g′′(p)k2

0

]
+

+ δ3Q

[
g′(p)k2 +

1

2
g′′(p)2k0k1 +

1

6
g′′′(p)k3

0

]
+

+ δ4Q

[
g′(p)k3 +

1

2
g′′(p)

(
k2
1 + 2k0k2

)
+

1

6
g′′′(p)3k2

0k1

]
+ ... = Qf.In ordering the terms in (4.5) we simply performed an algebrai
 
al
ulus, andtreated the right-hand side as a polynomial in δ, but when we look for theterms of the same order of magnitude, a 
areful analysis should be performed.Sin
e kj(t) ∈ QH, we have

|∆kj| ≥ Λ |kj | =
1

δ
|kj | (4.6)and it follows that the term δj+1ν∆kj is of the order of j. We also mustevaluate 
arefully the terms 
ontaining produ
ts or powers of kjs. E.g., forthe term 1

2g′′(p)k2
0 we have the estimates
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∣∣∣∣
1

2
g′′(p)k2

0

∣∣∣∣ =

(∫

Ω

(
g′′(p)

)2
k4
0dx

)1/2

≤
(∫

Ω

(
g′′(p)

)4
dx

)1/4 (∫

Ω
k8
0dx

)1/4

.Sobolev embedding theorem gives
‖u‖Lp(Ω) ≤ C(p, s) ‖u‖s ,with 1/p = 1/2 − s/2, s < 1, and, sin
e

‖u‖s ≤ C ‖u‖1 ,we obtain
(∫

Ω
k8
0dx

)1/4

= ‖k0‖2
L8(Ω) ≤ C2(8,

3

4
) ‖k0‖2

3/4 ≤ C2(8,
3

4
) ‖k0‖2

1 .In a similar way we see that (∫
Ω (g′′(p))4 dx

)1/4 is a fun
tion of ρ0 and ρ1.This together with inequality ‖k0‖1 ≥
(

1
δ

)1/2 |k0| show that all we 
an sayabout the term 1
2δ2g′′(p)k2

0 is that it is of order δ and we have to 
onsiderit together with the terms of the same order. Similar reasonings will be
onsidered impli
it for the other terms 
ontaining produ
ts or powers of kjs.Thus we obtain the relations:
−δD∆k0 + Qg(p) = Qf,

δk′
0 − δ2D∆k1 + δDk0 + δQg′(p)k0 +

1

2
δ2Qg′′(p)k2

0 = 0,

δ2k′
1 − δ3D∆k2 + δ2Dk1 + δ2Qg′(p)k1+

+
1

2
δ3Qg′′(p)2k0k1 +

1

6
δ3Qg′′′(p)k3

0 = 0,

δ3k′
2 − δ4D∆k3 + δ3Dk2 + δ3Qg′(p)k2+

1

2
δ4Qg′′(p)

(
k2
1 + 2k0k2

)
+

1

6
δ4Qg′′′(p)3k2

0k1 = 0,...Now we de�ne the fun
tions
qj = δk0 + δ2k1 + δ3k2 + δ4k3 + ... + δj+1kj .
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−D∆q0 + Qg(p) = Qf, (4.7)

q′0 − D∆q1 + Dq0 + Qg (p) + Qg′(p)q0 +
1

2
Qg′′(p)q2

0 = Qf,

q′1 − D∆q2 + Dq1 + Qg (p) + Qg′ (p) q1+

1

2
Qg′′(p)q2

0 +
1

2
Qg′′(p)2q0 (q1 − q0) +

1

6
Qg′′′(p)q3

0 = Qf,

q′2 − D∆q3 + Dq2 + Qg (p) + Qg′ (p) q2+

1

2
Qg′′(p)q2

1 +
1

6
Qg′′′(p)3q2

0 (q1 − q0) = Qf,...We see that the nonlinearity of the polynomial makes the equations neither�beautiful�, nor with a 
lear stru
ture. However, we 
onsider the fun
tions
uj(t) = p(t) + qj(t),and de�ne the indu
ed traje
tories of the problem as the sets {uj(t); t ≥ 0} .These will be used to de�ne the R-APP method for the rea
tion-di�usionequations.4.3. Approximate inertial manifolds for the rea
tion-di�usionequationIn the NL Galerkin method and in the NL PP Galerkin method des
ribed inliterature [32℄, the following a.i.m.s are de�ned for the RD equation: for any

j ≥ 0, Mj is the graph of the fun
tion Φj : PH →QH, des
ribed below
DAΦ0(p) + Qg(p) = Qf, (4.8)

q1
j−1 + DAΦj(p) + Qg (p + Φj−1(p)) = Qf, j ≥ 1. (4.9)Here q1

j−1 = DΦj−1(p)Γj−1(p), with DΦj−1(p) the Fré
het di�erential of
Φj−1 
omputed in p and applied to Γj−1(p) = Pf −DAp−Pg(p+Φj−1(p)).If we would want to 
onstru
t a family of a.i.m.s M̃j starting from theindu
ed traje
tories we de�ned above (as is done in [38℄ for the Navier-Stokes equation), the �rst a.i.m. of the family, M̃0, would be identi
al with
M0 sin
e the fun
tion Φ̃0 de�ning it would be identi
al to Φ0 of (4.8), as theequation for q0(t) shows.
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ond a.i.m., M̃1, would be quite di�erent from M1 above. That is, itwould be the graph of the fun
tion Φ̃1 de�ned by the equation
DQΦ̃0(p)Γ0(p) − D∆Φ̃1 (p) +DΦ̃0(p) + Qg (p)+

+Qg′(p)Φ̃0(p)+ 1
2Qg′′(p)Φ̃0(p)2 = Qf,

(4.10)with Γ0(p) = Pf + D (∆p−p) − Pg(p + Φ̃0(p)). We see that the di�eren
ebetween this equation and that for Φ1, that we write expli
itly below
DΦ0(p)Γ0(p) − D∆Φ1(p) + DΦ1(p) + Qg (p + Φ0(p)) = Qf, (4.11)
onsists essentially in the presen
e of the term 1

6g′′′(p)Φ0(p)3 in this lat-ter equation. If the polynomial g would be of higher degree, the di�eren
ebetween the two families of a.i.m.s, that de�ned starting from the indu
edtraje
tories and the one de�ned by the relations (4.8) and (4.9) would in-
rease. However, for the sake of the elegan
e of the de�nitions, (4.11) maybe taken as the equation for Φ1(p) even if it does not spring from an a

urateasymptoti
 analysis. The presen
e of the higher order terms does not a�e
tthe order of magnitude of the distan
e between the exa
t solution of the R-Dequation and the �rst a.i.m. [21℄.4.4. �Indu
ed traje
tories� inspired by a.i.m.sFor the sake of the simpli
ity of the de�nitions and having in mind somesimpli�
ations of the 
omputations in the R-APP Galerkin method below,we 
an 
hoose an alternate de�nition for the indu
ed traje
tories of the R-Dproblem, inspired from the de�nitions of the a.i.m. of [32℄. That is, we de�nethe fun
tions q̃j through the relations
DAq̃0 + Qg(p) = Qf, (4.12)

q̃ ′
j−1 + DAq̃j + Qg (p + q̃j−1) = Qf, j ≥ 1,where p(t) = Pu(t). The fun
tions̃

uj = p + q̃jde�ne the new �indu
ed traje
tories� {ũj(t); t ≥ 0}.
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onsists in integrating the di�erentialequation:
dp

dt
+ DAu + g(p + Φ0(p)) = Pf, (4.13)with the initial 
ondition

p(0) = Pu0. (4.14)If we denote by ym its solution, the approximate solution is taken as
ym(t) + Φ0(ym(t)).In [32℄ it is asserted that, for large enough t,

|u(t) − (ym(t) + Φ0(ym(t)))| ≤ Cδ2.Improved NL Galerkin methods make use of the higher a

ura
y a.i.m.s,
Mj , j ≥ 1. That is an equation of the type

dp

dt
+ DAu + g(p + Φj(p)) = Pf, (4.15)with the initial 
ondition (4.14) is solved, let ym,j be its solution. The ap-proximate solution of the RDE is taken as:

ym,j(t) + Φj(ym,j(t)).In [32℄ it is proved that the H norm of the error of this approximate solutionis of the order of C(t)δj+2.4.6. The PP NL Galerkin method for the RDEAlso in [32℄ the NL Galerkin method is post-pro
essed, i.e. to the solution
ym,j of the NL Galerkin problem, 
onsidered in T, the quantity Φj+1(ym,j(T ))is added and

ym,j(T ) + Φj+1(ym,j(T ))is taken as the approximate solution in T . It is proved in [32℄ that
|u(t) − (ym,j(t) + Φj+1(ym,j(t)))| ≤ C ln m δj+3.
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ribe the R-APP Galerkin method for the rea
tion-di�usion equation.In [21℄ we presented a variant of our method that has as initial level a NLGalerkin method (this was meant to skip a numeri
al integration - that ofthe Galerkin problem). Let us denote generi
ally
qj = Fj(Qf, p, q0, q1, ..., qj−1),either the fun
tions given by the set of relations (4.7) or the fun
tions q̃jgiven by (4.12). We see that in this latter 
ase, Fj , j ≥ 1 a
tually dependsonly on Qf, p, qj−1, q′j−1.Level 0. We 
onsider the NL Galerkin problem

dp

dt
− D (∆p−p) + Pg(p) = Pf, (4.16)

p(0) = Pu0and denote it's solution by pG.Then we 
ompute, at every moment of time
q̃0 (t) = F0(Qf, pG (t)).When the numeri
al implementation of the method is a
tually done, this isequivalent to the 
omputation of q1 at the nodes of the time mesh, and q′0 (ti)is approximated by (q0(ti) − q0(ti−1))/(ti − ti−1). The approximate solutionis

u0 = pG + q̃0.Level 1. We 
onsider the equation
dp

dt
− D (∆p−p) + Pg(p + q̃0) = Pf,and denote its solution by p̃0. Then we 
ompute
q̃1 (t) = F1(Qf, p̃0 (t) , q̃0 (t)).The approximate solution at this level is de�ned as

ũj = p̃j−1 + q̃j.
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essively 
onstru
ted. We
onsider the equation
dp

dt
− D (∆p−p) + Pg(p + q̃j−1) = Pf,and denote its solution by p̃j−1. Then we 
ompute

q̃j (t) = Fj(Qf, p̃j−1 (t) , q̃0 (t) , q̃1(t), ..., q̃j−1(t), ).The approximate solution at this level is de�ned as
ũj = p̃j−1 + q̃j.Remarks: 1. While the equations for pj are equivalent to a �nite, 
onstantnumber, of (di�erential) equations, the equations for qj are equivalent to asystem of equations having (if Qf admits non-null proje
tions on an in�nitenumber of eigenfun
tions) a in�nite number of equations.Hen
e a trun
ation must be done. In [6℄ the trun
ation is made by using aproje
tor, denoted P2m, that is the analogous of P but with 2m instead of m.If Qf would have nonzero proje
tions only on a �nite number of eigenfun
-tions, then qj would also be �nite dimensional. In this situation, we 
ouldalso 
ompute the dimension of qj, by using the 
onsequen
es of the trigono-metri
al relation 2 cos α cos β = cos (α + β) + cos (α − β) , on the produ
tsof eigenfun
tions. Then, in order to not a�e
t the estimate of the error pre-di
ted by our method, we 
ould take a trun
ation of Qf, let us denote it by

Qjf su
h that ∣∣∆−1 (Qf − Qjf)
∣∣ is less that the error of the level j.2. Both families of {qj}j≥0 de�ned above present advantages and disadvan-tages one relative to the other. The �rst family, de�ned in (4.7), has theadvantage of demanding a smaller amount of 
omputations sin
e in (4.7)fewer terms than in (4.12) are taken into a

ount at a 
ertain level. Itpresents the disadvantage of re
alling all qi with i < j, at a 
ertain level j.The se
ond family of approximations of q, given by (4.12), re
alls at a 
ertainlevel j, only the values of qj−1. This is important from the point of view oforganizing the memory of the 
omputer in the numeri
al implementation ofthe method. However, this se
ond family takes into a

ount more terms inthe polynomial g. This in
reases a lot the 
omputations when g has a highdegree.
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an prove that both families of indu
edtraje
tories de�ned above lead to the same orders of error, for every level ofthe R-APP method, as the 
orresponding NL PP Galerkin method. That is,we 
an prove [22℄ that at the level j + 1 of our method
|p − p̃j| ≤ Cj (ln m ) δj+3and
|q − q̃j+1| ≤ Kjδ

j+3,and thus
|u − ũj+1| ≤ [Cj (ln m ) + Kj ] δ

j+3.4.9. Comments on the methodThe 
omparison of the 
omputational 
ost of the R-APP Galerkin methodto that of the NL Galerkin method is similar to that we performed for theNavier-Stokes equations. The 
on
lusions are the same: the R-APP Galerkinmethod is more e
onomi
 than the NL PP Galerkin method. The di�eren
ein the 
omputational 
ost between the two methods in
reases with their level.Referen
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