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98 V. Iftimie et al.1. IntrodutionFor the Shrödinger operator −∆ + V on L2(Rd) (d ≥ 3), one has the well-known CLR (Cwikel-Lieb-Rosenblum) estimation for N(V ), the number ofnegative eigenvalues:
N(V ) ≤ c(d)

∫

Rd

dx |V−(x)|d/2 . (1.1)
V is the multipliation operator with the funtion V ∈ L1

loc(R
d) and V− :=

(|V |−V )/2 ∈ Ld/2(Rd); the onstant c(d) > 0 only depends on the dimension
d ≥ 3 (see [47℄, Th. XII.12).There exist at least four di�erent proofs of this inequality. Rosenblum [35℄uses "piee-wise polynomial approximation in Sobolev spaes". Lieb [25℄relies on the Feynman-Ka formula. Cwikel [4℄ uses ideas from interpolationtheory. Finally, Li and Yau [31℄ make a heat kernel analysis.The inequality (1.1) has been extended in [1℄ and [48℄ to the ase of operatorswith magneti �elds (−i∇ − A)2 + V , where the omponents of the vetorpotential A = (A1, . . . , Ad) belong to L2

loc(R
d). The basi ingredient of theproof is the Feynman-Ka-Ito formula. Melgaard and Rosenblum [41℄ gener-alizes this result (by a di�erent method) to a lass of di�erential operators ofseond order with variable oe�ients. The idea for treating the relativistiHamiltonian (without a magneti �eld), by replaing Brownian motion witha Lévy proess, appears in [5℄ and we follow it in our work giving all thetehnial details. Some similar results but for a di�erent Hamiltonian andwith di�erent tehniques have been obtained reently in [8℄.Our aim in this paper is to obtain an estimation of the type (1.1) for anoperator that is a good andidate for a relativisti Hamiltonian with mag-neti �eld (for salar partiles); it is gauge ovariant and obtained througha quantization proedure from the lassial andidate. We shall make useof a "magneti pseudodi�erential alulus" that has been introdued anddeveloped in some previous papers [34℄, [35℄, [27℄, [28℄, [36℄, [38℄, [24℄.Let us denote by C∞

pol(R
d) the family of funtions f ∈ C∞(Rd) for whih allthe derivatives ∂αf , α ∈ Nd have polynomial growth.Let B be a magneti �eld (a 2-form) with omponents Bjk ∈ C∞

pol(R
d). Itis known that it an be expressed as the di�erential B = dA of a vetorpotential (a 1-form) A = (A1, . . . , Ad) with Aj ∈ C∞

pol(R
d), j = 1, . . . , d; an



eigenvalues of a relativisti Hamiltonian 99example is the transversal gauge:
Aj(x) = −

n
∑

k=1

∫ 1

0
ds Bjk(sx)sxk.We denote by

ΓA(x, y) :=

∫ 1

0
dsA((1 − s)x+ sy) =

∫

[x,y]
A, x, y ∈ Rd. (1.2)the irulation of A along the segment [x, y], x, y ∈ Rd. If a is a symbolon Rd, one de�nes by an osillatory integral the linear ontinuous operator

OpA(a) : S(Rd) → S∗(Rd) by
[

OpA(a)
]

(x) := (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξe
−i

R

[x,y]
A
a

(

x+ y

2
, ξ

)

u(y),(1.3)The orrespondene a 7→ OpA(a) is meant to be a quantization and ouldbe regarded as a funtional alulus OpA(a) = a(Q,ΠA) for the family ofnon-ommuting operators (Q1, . . . , Qd; Π
A
1 , . . . ,Π

A
d ), where Q is the positionoperator, ΠA := D −A(Q) is the magneti momentum, with D := −i∇.If a belongs to the Shwartz spae S(R2d), then OpA(a) ats ontinuously inthe spaes S(Rd) and S∗(Rd), respetively. It enjoys the important physialproperty of being gauge ovariant: if ϕ ∈ C∞

pol(R
d) is a real funtion, Aand A′ := A + dϕ de�ne the same magneti �eld and one prove easily that

OpA′

(a) = eiϕOpA(a)e−iϕ. The property is not shared by the quantization
a 7→ OpA(a) := Op(a ◦ νA), where Op is the usual Weyl quantization and
νA : Rd → Rd, νA(x, ξ) := (x, ξ−A(a)) is an implementation of "the minimaloupling".We mention that in the referenes quoted above, a symboli alulus isdeveloped for the magneti pseudodi�erential operators (1.3). In partiu-lar, a symbol omposition (a, b) 7→ a♯Bb is de�ned and studied, verifying
OpA(a)OpA(b) = OpA(a♯Bb). It depends only on the magneti �eld B, nohoie of a gauge being needed. The formalism has a C∗-algebrai interpre-tation in terms of twisted rossed produts, f. [35℄, [37℄, [39℄ and it has beenused in [40℄ for the spetral theory of quantum Hamiltonians with anisotropipotentials and magneti �elds.We shall denote byHA the unbounded operator in L2(Rd) de�ned on C∞

0 (Rd)by HAu := OpA(h)u, with h(x, ξ) ≡ h(ξ) := 〈ξ〉 − 1 = (1 + |ξ|2)1/2 − 1. One



100 V. Iftimie et al.an express it as
(HAu) (x) = (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξh
(

ξ − ΓA(x, y)
)

u(y). (1.4)
HA is a symmetri operator and, as seen below, essentially self-adjoint on
C∞

0 (Rd). Also denoting its losure by HA, we will have HA ≥ 0.Ihinose and Tamura [19℄, [20℄, using the quantization a 7→ (Op)A(a), studyanother relativisti Hamiltonian with magneti �eld de�ned by
(

H ′
Au

)

(x) = (2π)−d

∫

Rd

∫

Rd

dy dξ ei(x−y)·ξh

(

ξ −A

(

x+ y

2

))

u(y), (1.5)for whih they prove many interesting properties. Unfortunately, H ′
A is notgauge ovariant (f. [24℄). Many of the properties of H ′

A also hold for HA(by replaing A (x+y
2

) with ΓA(x, y) in the statements and proofs) and thiswill be used in the sequel.Aside the magneti �eld B = dA, we shall also onsider an eletri potential
V ∈ L1

loc(R
d), real funtion expressed as V = V+ − V−, V± ≥ 0, suh that

V− ∈ Ld+k(Rd)∩Ld/2+k(Rd) for some k ≥ 0. We are interested in the opera-tor H(A,V ) := HA +V ; it will be shown that it is well-de�ned in form senseas a self-adjoint operator in L2(Rd), with essential spetrum inluded intothe positive real axis. Taking advantage of gauge ovariane, we denote by
N(B,V ) the number of stritly negative eigenvalues of H(A,V ) (multipliityounted); it only depends on the potential V and the magneti �eld B.The main result of the artile isTheorem 1.1 Let B = dA be a magneti �eld with Bjk ∈ C∞

pol(R
d), Aj ∈

C∞
pol(R

d) and let V = V+ − V− ∈ L1
loc(Rd)

be a real funtion with V± ≥ 0 and
V− ∈ Ld(Rd)∩Ld/2(Rd). Then there exists a onstant Cd, only depending onthe dimension d ≥ 3, suh that

N(B,V ) ≤ Cd

(
∫

Rd

dxV−(x)d +

∫

Rd

dxV−(x)d/2

)

. (1.6)A standard onsequene is the next Lieb-Thirring-type estimation:Corollary 1.1 We assume that the omponents of B belong to C∞
pol(R

d)and that V = V+ − V− ∈ L1
loc(R

d) is a real funtion with V± ≥ 0 and
V− ∈ Ld+k(Rd) ∩ Ld/2+k(Rd), k > 0. We denote by λ1 ≤ λ2 ≤ . . . the



eigenvalues of a relativisti Hamiltonian 101stritly negative eigenvalues of H(A,V ) (with multipliity). For any d ≥ 2there exists a onstant Cd(k) suh that
∑

j

|λj |k ≤ Cd(k)

(
∫

Rd

dxV−(x)d+k +

∫

Rd

dxV−(x)d/2+k

)

. (1.7)Setions 2, 3, 4 will ontain essentially known fats (usually presented with-out proofs), needed for heking Theorem 1.1. So, in Setion 2 we introduethe Feller semigroup ([20℄, [17℄, [26℄) assoiated to the operatorH0 := 〈D〉−1.In the third setion we de�ne properly the operator H(A,V ) and study itsbasi properties. In Setion 4 we reall some probabilisti results, as theMarkov proess assoiated to the semigroup de�ned by H0 ([25℄, [6℄, [26℄)and the Feynman-Ka-It� formula adapted to a Lévy proess ([20℄).In Setion 5 we prove Theorem 1.1 for B = 0, using some of Lieb's ideasfor the non-relativisti ase (see [48℄) in the setting proposed in [5℄. Thelast setion ontains the proof of Theorem 1.1 with magneti �eld as well asCorollary 1.1. The main ingredient is the Feynman-Ka-It� formula.2. The Feller semigroupWe onsider the following symbol (interpreted as a lassial relativisti Hamil-tonian for m = 1, c = 1) h : Rd → R+ de�ned by h(ξ) := 〈ξ〉 − 1 ≡
√

1 + |ξ|2 − 1. Let us observe (as in [17℄) that it de�nes a onditional nega-tive de�nite funtion (see [47℄) and thus has a Lévy-Khinin deomposition(see Appendix 2 to Setion XIII of [47℄). Computing (∇h)(ξ) and (∆h)(ξ)and using the general Lévy-Khinin deomposition (see for example [47℄), oneobtains that there exists a Lévy measure n(dy), i.e. a non-negative, σ-�nitemeasure on Rd, for whih min{1, |y|2} is integrable on Rd, suh that
h(ξ) = −

∫

Rd

n(dy)
{

eiy·ξ − 1 − i (y · ξ) I{|x|<1}(y)
}

, (2.1)where I{|x|<1} is the harateristi funtion of the open unit ball in Rd. Onehas the following expliit formula (see [17℄):
n(dy) = 2(2π)−(d+1)/2 |y|−(d+1)/2K(d+1)/2(|y|) dy, (2.2)with Kν the modi�ed Bessel funtion of third type and order ν. We reallthe following asymtoti behaviour of these funtions:

0 < Kν(r) ≤ Cmax(r−ν , r−1/2)e−r, ∀r > 0, ∀ν > 0. (2.3)



102 V. Iftimie et al.We shall denote byHs(Rd) the usual Sobolev spaes of order s ∈ R on Rd andby H0 the pseudodi�erential operator h(D) ≡ Op(h) onsidered either as aontinuous operator on S(Rd) and on S∗(Rd) or as a self-adjoint operator in
L2(Rd) with domain H1(Rd). The semigroup generated by H0 is expliitlygiven by the onvolution with the following funtion (for t > 0 and x ∈ Rd):

◦
℘t(x) := (2π)−d t

√

|x|2 + t2

∫

Rd

dξ e

“

t−
√

(|x|2+t2)(|ξ|2+1)
”

=

= 2−(d−1)/2 π−(d+1)/2 tet(|x|2 + t2)−(d+1)/4K(d+1)/2(
√

|x|2 + t2) (2.4)(see [20℄, [2℄). We have
◦
℘t(x) > 0 and ∫

Rd

dx
◦
℘t(x) = 1. (2.5)From (2.3) one easily an dedue the following estimation

∃C > 0 suh that ◦
℘t(0) ≤ Ct−d(1 + td/2), ∀t > 0. (2.6)Let us set

C∞(Rd) :=

{

f ∈ C(Rd) | lim
|x|→∞

f(x) = 0

} (2.7)and endow it with the Banah norm ‖f‖∞ := supx∈Rd |f(x)|. Using theabove properties of the funtion ◦
℘t we an extend e−tH0 to a well-de�nedbounded operator P (t) ating in C∞(Rd).Remark 2.1 One an easily verify that {P (t)}t≥0 is a Feller semigroup, i.e.:1. P (t) is a ontration: ‖P (t)f‖∞ ≤ ‖f‖∞, ∀f ∈ C∞(Rd);2. {P (t)}t≥0 is a semigroup: P (t+ s) = P (t)P (s);3. P (t) preserves positivity: P (t)f ≥ 0 for any f ≥ 0 in C∞(Rd);4. We have limtց0 ‖P (t)f − f‖∞ = 0, ∀f ∈ C∞(Rd).3. The perturbed HamiltonianSuppose given a magneti �eld of lass C∞

pol(R
d) and let us hoose a potentialvetor A, suh that B = dA, with omponents also of lass C∞

pol(R
d) (thisis always possible, as said before). We shall denote by HA the operator
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OpA(h), onsidered either as a ontinuous operator on S(Rd) and on S∗(Rd)(by duality) or as an unbounded operator on L2(Rd) with domain C∞

0 (Rd).Using the Fourier transform one easily proves that for u ∈ C∞
0 (Rd):

[H0u](x) = −
∫

Rd

n(dy)
[

u(x+ y) − u(x) − I{|z|<1}(y) (y · ∂xu) (x)
]

. (3.1)Realling the de�nition of OpA(h), we remark that
[HAu](x) =

[

OpA(h)u
]

(x) =
[

Op(h)
(

ei(x−.)·ΓA(x,.)u
)]

(x) = (3.2)
=

[

H0

(

ei(x−.)·ΓA(x,.)u
)]

(x).Combining the above two equations one gets easily
[HAu](x) = −

∫

Rd

n(dy)
[

e−iy·ΓA(x,x+y)u(x+ y) − u(x)− (3.3)
−I{|z|<1}(y) (y · (∂x − iA(x))u) (x)

]

.Repeating the arguments in [17℄ with ΓA(x, x + y) replaing A((x + y)/2)one proves the following results similar to those in [17℄.Proposition 3.1 Considered as unbounded operator in L2(Rd), HA is es-sential self-adjoint on C∞
0 (Rd). Its losure, also denoted by HA, is a positiveoperator.Proposition 3.2 For any u ∈ L2(Rd) suh that HAu ∈ L1

loc(R
d)

ℜ [(signu)(HAu)] ≥ H0|u|.Using the method in [49℄ we an prove the following result.Proposition 3.3 For any u ∈ L2(Rd) we have:1. for any λ > 0 and for any r > 0

∣

∣(HA + λ)−r u
∣

∣ ≤ (H0 + λ)−r |u|; (3.4)2. for any t ≥ 0
∣

∣e−tHAu
∣

∣ ≤ e−tH0 |u|. (3.5)



104 V. Iftimie et al.We assoiate to HA its sesquilinear form
D(hA) = D(H

1/2
A ),

hA(u, v) := (H
1/2
A u,H

1/2
A v), ∀(u, v) ∈ D(hA)2. (3.6)Consider now a funtion V ∈ L1

loc(R
d), V ≥ 0 and assoiate to it thesesquilinear form

D(qV ) := {u ∈ L2(Rd) |
√
V u ∈ L2(Rd)},

qV (u, v) :=

∫

Rd

dxV (x)u(x)v(x), ∀(u, v) ∈ D(qV )2. (3.7)Both these sesquilinear forms are symmetri, losed and positive. We shallabbreviate hA(u) ≡ hA(u, u) and qV (u) ≡ qV (u, u).Proposition 3.4 Let V : Rd → R be a measurable funtion that an bedeomposed as V = V+ − V− with V± ≥ 0 and V± ∈ L1
loc(R

d). Moreover letus suppose that the sesquilinear form qV−
is small with respet to h0 (i.e. it is

h0-relatively bounded with bound stritly less then 1). Then the sesquilinearform hA + qV+ − qV−
, that is well de�ned on D(hA)

⋂

D(qV+), is symmetri,losed and bounded from below, de�ning thus an inferior semibounded self-adjoint operator H(A;V ) ≡ H := HA ∔ V (sum in sense of forms).Proof. The sesquilinear form hA+qV+ (de�ned on the intersetion of the formdomains) is learly positive, symmetri and losed. We shall prove now thatthe sesquilinear form qV−
is hA + qV+ -bounded with bound stritly less then1, so that the onlusion of the proposition follows by standard arguments.Let us denote by H+ := HA ∔ V+ the unique positive self-adjoint operatorassoiated to the sesquilinear form hA + qV+ by the representation theorem2.6 in �VI.2 of [29℄. As V+ ∈ L1

loc(R
d), we have C∞

0 (Rd) ⊂ D(hA)
⋂D(qV+)and thus we an use the form version of the Kato-Trotter formula from [30℄:

e−tH+ = s− lim
n→∞

(

e−(t/n)HA e−(t/n)V+

)n
, ∀t ≥ 0. (3.8)Let us reall the formula (r > 0 and λ > 0)

(H+ + λ)−r = Γ(r)−1

∫ ∞

0
dt tr−1 e−tλ e−tH+ . (3.9)



eigenvalues of a relativisti Hamiltonian 105Combining the above two equalities we obtain
∣

∣(H+ + λ)−rf
∣

∣ ≤ Γ(r)−1

∫ ∞

0
dt tr−1 e−tλ

∣

∣e−tH+f
∣

∣ = (3.10)
= Γ(r)−1

∫ ∞

0
dt tr−1

∣

∣

∣

∣

s− lim
n→∞

(

e−(t/n)HA e−(t/n)V+

)n
f

∣

∣

∣

∣

≤

≤ (H0 + λ)−r|f |,by using the seond point of Proposition 3.3.Taking u = (H0 +λ)−1/2g with g ∈ L2(Rd) arbitrary and λ > 0 large enoughand using the hypothesis on V− we dedue that there exists a ∈ [0, 1), b ≥ 0and a′ ∈ [0, 1) suh that
qV−

(u) ≤ a‖H1/2
0 u‖2+b‖u‖2 = a‖H1/2

0 (H0+λ)−1/2g‖2+b‖(H0+λ)−1/2g‖2 ≤

≤ (a+ b/λ)‖g‖2 ≤ a′‖g‖2. (3.11)For any v ∈ D(hA)
⋂

D(qV+) let f := (H+ + λ)1/2v and g := |f |. Using now(3.10) with r = 1/2, (3.11) and the expliit form of qV−
we onlude that

qV−
(v) = qV−

(

(H+ + λ)−1/2f
)

≤ qV−

(

(H0 + λ)−1/2g
)

≤ (3.12)
≤ a′‖g‖2 = a′

∥

∥

∥
(H+ + λ)1/2v

∥

∥

∥

2
= a′

[

hA(v) + q+(v) + λ‖v‖2
]

.Definition 3.1 For a potential funtion V satisfying the hypothesis of Propo-sition 3.4, we all the operator H = H(A;V ) introdued in the same propo-sition the relativisti Hamiltonian with potential V and magneti vetor po-tential A.The spetral properties of H only depend on the magneti �eld B, di�erenthoies of a gauge giving unitarly equivalent Hamiltonians, due to the gaugeovariane of our quantization proedure.Proposition 3.5 Let B be a magneti �eld with C∞
pol(R

d) omponents and
A a vetor potential for B also having C∞

pol(R
d) omponents. Assume that

V : Rd → R is a measurable funtion that an be deomposed as V = V+−V−with V± ≥ 0, V+ ∈ L1
loc(R

d) and V− ∈ Lp(Rd) with p ≥ d. Then1. qV−
is a h0-bounded sesquilinear form with relative bound 0;



106 V. Iftimie et al.2. the Hamiltonian H de�ned in De�nition 3.1 is bounded from below andwe have σess(H) = σess(HA ∔ V+) ⊂ [0,∞).Proof. 1. Using Observation 3 in �2.8.1 from [37℄, we onlude that for d > 1,the Sobolev spae H1/2(Rd) (that is the domain of the sesquilinear form h0)is ontinuously embedded in Lr(Rd) for 2 ≤ r ≤ 2d/(d− 1) <∞. Also usingHölder inequality, we dedue that for r = 2p/(p − 1) ∈ [2, 2d/(d − 1)], for
p ≥ d

‖V 1/2
− u‖2

2 ≤ ‖V−‖p‖u‖2
r ≤ c‖V−‖p‖u‖2

H1/2(Rd)
, (3.13)

∀u ∈ H1/2(Rd) = D(h0). Thus V 1/2
− ∈ B(H1/2(Rd);L2(Rd)); now let us provethat it is even ompat. Let us observe that for d ≤ p <∞, C∞

0 (Rd) is densein Lp(Rd). Thus, for d ≤ p <∞ let {Wǫ}ǫ>0 ⊂ C∞
0 (Rd) be an approximatingfamily for V 1/2

− in L2p(Rd), i.e. ‖V 1/2
− − Wǫ‖2p ≤ ǫ. Moreover, for anysequene {uj} ⊂ H1/2(Rd) ontained in the unit ball (i.e. ‖uj‖H1/2 ≤ 1) wemay suppose that it onverges to u ∈ H1/2(Rd) for the weak topology on

H1/2(Rd) and thus ‖u‖H1/2 ≤ 1. It follows that Wǫuj onverges to Wǫu in
L2(Rd) and due to (3.13) we have:
‖(V 1/2

− −Wǫ)(u−uj)‖ ≤ C1/2‖V 1/2
− −Wǫ‖L2p‖u−uj‖H1/2 ≤ 2c1/2ǫ, ∀j ≥ 1.We onlude that V 1/2

− uj onverges in L2(Rd) to V 1/2
− u and using the dualitywe also get that V− is a ompat operator fromH1/2(Rd) toH−1/2(Rd). Usingexerise 39 in h. XIII of [47℄ we dedue that q− has zero relative bound withrespet to h0.2. The onlusion of point 1 implies that the operator V 1/2

− (H0 + 1)−1/2 ∈
B[L2(Rd)] is ompat. Using the �rst point of Proposition 3.3 with λ =
−1 and r = 1/2, and Pitt Theorem in [45℄, we onlude that the operator
V

1/2
− (HA∔V++1)−1/2 ∈ B[L2(Rd)] is also ompat. Thus V− : D(hA+qV+) →

D(hA + qV+) is ompat and the onlusion (2) follows from exerise 39 inh. XIII of [47℄.4. The Feynman-Ka-It� formulaIn this setion we gather some probabilisti notions and results needed inthe proof of Theorem 1.1. The main idea is that we obtain a Feynman-Ka-It� formula (following [20℄) for the semigroup de�ned by H(A,V ) and this



eigenvalues of a relativisti Hamiltonian 107allows us to redue the problem to the ase B = 0. For this last one werepeat then the proof in [5℄ giving all the neessary details for the ase ofsingular potentials V ; here an essential point is an expliit formula for theintegral kernel of the operator e−tH(0,V ) in terms of a Lévy proess.Let (Ω,F,P) be a probability spae, i.e. F is a σ-algebra of subsets of Ω and Pis a non-negative σ-aditive funtion on F with P(Ω) = 1. For any integrablerandom variable X : Ω → R we denote its expetation value by
E(X) :=

∫

Ω
X(ω)P(dω). (4.1)For any sub-σ-algebra G ⊂ F we denote its assoiated onditional expetationby E(X | G); this is the unique G-measurable random variable Y : Ω → Rsatisfying

∫

B
Y (ω)P(dω) =

∫

B
X(ω)P(dω), ∀B ∈ G. (4.2)Let us reall the following properties of the onditional expetation (see forexample [26℄):

E (E(X | G)) = E(X), (4.3)
E(XZ | G) = ZE(X | G), (4.4)for any G-measurable random variable Z : Ω → R, suh that ZX is inte-grable.We also reall the Jensen inequality ([48℄, [26℄): for any onvex funtion

ϕ : R → R, and for any lower bounded random variable X : Ω → R thefollowing inequality is valid
ϕ(E(X)) ≤ E(ϕ(X)). (4.5)Following [6℄, we an assoiate to our Feller semigroup {P (t)}t≥0, de�nedin Setion 2, a Markov proess {(Ω,F,Px), {Xt}t≥0, {θt}t≥0}; that we brie�yreall here:

• Ω is the set of "adlag" funtions on [0,∞), i.e. funtions ω : [0,∞) →
Rd (paths) that are ontinuous to the right and have a limit to the leftin any point of [0,∞).
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• F is the smallest σ-algebra for whih the oordinate funtions {Xt}t≥0,with Xt(ω) := ω(t), are measurable.
• Px is a probability on Ω suh that for any n ∈ N∗, for any ordered set

{0 < t1 ≤ . . . ≤ tn} and any family {B1, . . . , Bn} of Borel subsets in
Rd, we have

Px {Xt1 ∈ B1, . . . ,Xtn ∈ Bn} = (4.6)
=

∫

B1

dx1
◦
℘

t1
(x− x1)

∫

B2

dx2
◦
℘

t2−t1
(x1 − x2) . . .

∫

Bn

dxn
◦
℘

tn−tn−1
(xn−1 − xn).One an dedue that, if Ex denotes the expetation value with respetto Px, then for any f ∈ C∞(Rd) and for any t ≥ 0 one has

Ex(f ◦Xt) = [P (t)f ] (x). (4.7)We also remark that Px is the image of the probability P0 ≡ P underthe map Sx : Ω → Ω de�ned by [Sxω] (t) := x+ ω(t).
• For any t ≥ 0, the map θt : Ω → Ω is de�ned by [θtω] (s) := ω(s + t).If we denote by Ft the sub-σ-algebra of F generated by the proesses

{Xs}0≤s≤t, then for any t ≥ 0 and any bounded random variable
Y : Ω → R

Ex (Y ◦ θt | Ft) (ω) = EXt(ω)(Y ), Px − a.e. on Ω. (4.8)We use the fat that (see [25℄, [20℄) the probability Px is onentrated on theset of paths Xt suh that X0 = x and by the Lévy-Ito Theorem:
Xt = x+

∫ t+

0

∫

Rd

y ÑX(ds dy). (4.9)Here ÑX(ds dy) := NX(ds dy)− N̂X(ds dy), N̂X(ds dy) := Ex(NX(ds dy)) =
ds n(dy) with n(dy) the Lévy measure appearing in (2.1) and NX a 'ountingmeasure' on [0,∞) × Rd that for 0 < t < t′ and B a Borel subset of Rd isde�ned as NX((t, t′] ×B) :=

:= ‖=
{

s ∈ (t, t′] | Xs 6= Xs−, XsXs− ∈ B
}

. (4.10)Following the proedure developped in [20℄ by Ihinose and Tamura one ob-tains a Feynman-Ka-It� formula for Hamiltonians of the type H = HA ∔V .In fat we have



eigenvalues of a relativisti Hamiltonian 109Proposition 4.1 Under the same onditions as in De�nition 3.1, for anyfuntion u ∈ L2(Rd) we have
(

e−tHu
)

(x) = Ex

(

(u ◦Xt) e−S(t,X)
)

, t ≥ 0, x ∈ Rd (4.11)where
S(t,X) := i

∫ t+

0

∫

Rd

ÑX(ds dy)

〈
∫ 1

0
dr

(

A(Xs− + ry)
)

, y

〉

+

+ i

∫ t

0

∫

Rd

N̂X(ds dy)

〈(
∫ 1

0
dr A(Xs + ry) −A(Xs)

)

, y

〉

+

+

∫ t

0
ds V (Xs). (4.12)In the sequel we shall take A = 0 and V ∈ C∞

0 (Rd). As it is proved in [6℄,the operator e−t(H0∔V ) has an integral kernel that an be desribed in thefollowing way. Let us denote by Ft− the sub-σ-algebra of F generated by therandom variables {Xs}0≤s<t. For any pair (x, y) ∈ [Rd]2 and any t > 0 wede�ne a measure µt,y
0,x on the Borel spae (Ω,Ft−) by the equality
µt,y

0,x(M) := Ex

[

χM
◦
℘t−s(Xs − y)

]

, (4.13)for any M ∈ Fs and 0 ≤ s < t, where χM is the harateristi funtion of
M . This measure is onentrated on the family of 'paths' {ω ∈ Ω | X0(ω) =

x,Xt−(ω) = y} and we have µt,y
0,x(Ω) =

◦
℘t(x− y).Proposition 4.2 Let F : Ω → R be a non-negative Ft−-measurable randomvariable and let f : Rd → R be a positive borelian funtion. Then the followingequality holds for any t > 0 and any x ∈ Rd:

∫

Rd

dy

{
∫

Ω
µt,y

0,x(dω)F (ω) e−
R t
0 ds V (Xs)

}

f(y) = (4.14)
= Ex

(

F e−
R t
0 ds V (Xs) f(Xt)

)

.Proof. This is a diret onsequene of relations (2.29) and (2.33) from [6℄.Let us now take A = 0 in Proposition 4.1 and F = 1 in Proposition 4.2in order to dedue that the operator e−t(H0∔V ) is an integral operator withintegral kernel given by the funtion
℘t(x, y) :=

∫

Ω
µt,y

0,x(dω) e−
R t
0 ds V (Xs), t > 0, (x, y) ∈ Rd × Rd. (4.15)



110 V. Iftimie et al.Proposition 3.3 from [6℄ implies that the funtion [0,∞)×Rd×Rd ∋ (t, x, y) 7→
℘t(x, y) ∈ R is non-negative, ontinuous and veri�es ℘t(x, y) = ℘t(y, x). Weshall also need the following result.Proposition 4.3 For any t > 0, any x ∈ Rd and any funtion g : Ω → Rthat is integrable with respet to the measure µt,x

0,x we have the equality:
∫

Ω
µt,x

0,x(dω) g(ω) =

∫

Ω
µt,0

0,0(dω) g(x+ ω). (4.16)Proof. It is evidently su�ient to prove that for any s ∈ [0, t) and anyM ∈ Fswe have
µt,x

0,x(M) =
(

µt,0
0,0 ◦ S−1

x

)

(M)where the map Sx : Ω → Ω is de�ned by (Sx(ω)(t) := x+ ω(t). We notiedpreviously the identity Px = P0 ◦ S−1
x ; thus for any funtion F : Ω → Rintegrable with respet to Px we have Ex(F ) = E0(F ◦ Sx). We remark that

Xs(ω + x) = ω(s) + x = Xs(ω) + x, and using the de�nition of the measure
µt,x

0,x in (4.13), we obtain
µt,x

0,x(M) = Ex

[

χM
◦
℘t−s(Xs − x)

]

= E0

[

(χM ◦ Sx)
◦
℘t−s(Xs)

]

= (4.17)
= E0

[

(χS−1
x (M)

◦
℘t−s(Xs)

]

= µt,0
0,0

(

S−1
x (M)

)

=
[

µt,0
0,0 ◦ S−1

x

]

(M).

5. Proof of the bound for N(0; V )In this Setion we will onsider A = 0 and we shall work only with a potential
V = V+ − V− satisfying the properties:

• V± ≥ 0,
• V+ ∈ L1

loc(R
d),

• V− ∈ Ld(Rd) ∩ Ld/2(Rd).We shall use the notations H := H0 ∔V , H+ := H0 ∔V+, H− := H0 ∔(−V−)for the operators assoiated to the sesquilinear forms h = h0 + qV , h+ =
h0 + qV+ , h− = h0 − qV−

.



eigenvalues of a relativisti Hamiltonian 111Due to the results of Proposition 3.5 we have σess(H) = σess(H+) ⊂ σ(H+) ⊂
[0,∞) and σess(H−) = σess(H0) = σ(H0) = [0,∞).For any potential funtion W verifying the same onditions as V above, wedenote by N(W ) the number of stritly negative eigenvalues (ounted withtheir multipliity) of the operator H0 ∔W . The following result redues ourstudy to the ase V+ = 0.Lemma 5.1 The following inequality is true:

N(V ) ≤ N(−V−).In partiular we have that N(V ) = ∞ implies that N(−V−) = ∞.Proof. We apply the Min-Max priniple (see Theorem XIII.2 in [47℄) notiingthat D(h−) = D(h0) ⊃ D(h) and h− ≤ h and we dedue that the operator
H− has at least N(V ) stritly negative eigenvalues.Thus we shall suppose from now on that V+ = 0.5.1. Redution to smooth, ompatly supported potentialsIn this subsetion we shall prove that we an suppose V− ∈ C∞

0 (Rd). Thiswill be done by approximation, using a result of the type of Theorem 4.1from [50℄.Lemma 5.2 Let V and Vn (n ≥ 1) funtions as in Proposition 3.4. Inaddition, V+ = Vn,+ = 0 for all n ≥ 1 and limn→∞ Vn,− = V− in L1
loc(R

d)and Vn,− are uniformly h0-bounded with relative bound < 1. We set Hn :=
HA ∔ Vn. Then Hn → H when n→ ∞ in strong resolvent sense.Proof. We denote by hn the quadrati form assoiated to Hn, i.e. hn =
hA − qn,−, where qn,− is assoiated to Vn,− by (3.7). We have D(hn) =
D(hA) ⊂ D(qn,−), and aording to Proposition 3.4 there exist α ∈ (0, 1)and β > 0 suh that

qn,−(v) ≤ αhA(v) + β ‖ v ‖, ∀v ∈ D(hA), ∀n ≥ 1. (5.1)It follows that hn are uniformly lower bounded and the norms de�ned on
D(hA) by hA and hn are equivalent, uniformly with respet to n ≥ 1. More-over, C∞

0 (Rd) is a ore for HA, thus for hA, h and hn also.



112 V. Iftimie et al.Let f ∈ L2(Rd) and un := (Hn + i)−1f ∈ D(Hn) ⊂ D(hA), n ≥ 1. We havelearly
‖ un ‖≤‖ f ‖, |hn(un)| = |(Hnun, un)| ≤‖ f ‖, ∀n ≥ 1. (5.2)From (5.1), the subsequent omments and (5.2) it follows that the sequene

(un)n≥1 is bounded in D(hA), while the sequene (

V
1/2
n,−un

)

n≥1
is bounded in

L2(Rd). Let u ∈ L2(Rd) be a limit point of the sequene (un)n≥1 with respetto the weak topology on L2(Rd). By restriting maybe to a subsequene, wemay assume that there exist ψ, η ∈ L2(Rd) suh that H1/2
A un →

n→∞
ψ and

V
1/2
n,−un →

n→∞
η in the weak topology of L2(Rd). For g ∈ D

(

H
1/2
A

) we have
(

H
1/2
A g, u

)

= lim
n→∞

(

H
1/2
A g, un

)

= lim
n→∞

(

g,H
1/2
A un

)

= (g, ψ),thus u ∈ D(H
1/2
A ) and H1/2

A u = ψ. Then u ∈ D(q−) and for any g ∈ C∞
0 (Rd)

(η, g) = lim
n→∞

(

V
1/2
n,−un, g

)

= lim
n→∞

(

un, V
1/2
n,−g

)

=
(

u, V
1/2
− g

)

=
(

V
1/2
− u, g

)

,implying V 1/2
− u = η.It follows that for every g ∈ C∞

0 (Rd) we have
(g, f) = (g, (Hn + i)un) = hn(g, un) − i(g, un) =

=
(

H
1/2
A g,H

1/2
A un

)

−
(

V
1/2
n,− g, V

1/2
n,−un

)

− i(g, un) → h(g, u) − i(g, u).Consequently, u ∈ D(H) and (H + i)u = f . Thus the sequene (un)n≥1 hasthe single limit point u = (H + i)−1f for the weak topology of L2(Rd). Itfollows that (Hn ± i)−1f → (H ± i)−1f weakly in L2(Rd) for n→ ∞.By the resolvent identity we get
‖ (Hn+i)−1f ‖2=

i

2

(

(f, (Hn − i)−1f) − (f, (Hn + i)−1f)
)

→‖ (H+i)−1f ‖2,therefore (Hn + i)−1f → (H + i)−1f in L2(Rd).A diret onsequene of Lemma 5.2 and Theorem VIII.20 from [47℄ isCorollary 5.1 Under the hypothesis of Lemma 5.2, for any funtion fbounded and ontinuous on R and any u ∈ L2(Rd), we have f(Hn)u →
f(H)u.



eigenvalues of a relativisti Hamiltonian 113Approximating V− is done by the standard proedures: uto�s and regular-ization. The �rst of the lemmas below is obvious.Lemma 5.3 Let V− ∈ L1
loc(R

d) with V− ≥ 0 and assume that its assoiatedsesquilinear form is h0-bounded with relative bound stritly less then 1. Let
θ ∈ C∞

0 ([0,∞)) satisfy the following: 0 ≤ θ ≤ 1, θ is a dereasing funtion,
θ(t) = 1 for t ∈ [0, 1] and θ(t) = 0 for t ∈ [2,∞).If we denote by θn(x) := θ(|x|/n) and V n

− = θnV−, then V n
− → V− in

L1
loc(R

d), 0 ≤ V n
− ≤ V n+1

− and the sesquilinear forms assoiated to V n
− are

h0-bounded with relative bound stritly less then 1, uniformly in n ∈ N∗.Moreover, if we denote by hn the sesquilinear form assoiated to the operator
HA ∔ (−V n

− ), we have h(n) ≥ h(n+1) ≥ h and h(n)(u) →
n→∞

h(u) for any
u ∈ D(hA).If, in addition, V− ∈ Lp(Rd), p ≥ 1, then V n

− ∈ Lp
comp(Rd), ‖V n

−‖Lp ≤
‖V−‖Lp for any n ≥ 1, and V n

− → V− in Lp(Rd).Lemma 5.4 (a) Let V− ∈ L1
loc(R

d), V− ≥ 0 and h0-bounded with relativebound < 1. Let θ ∈ C∞
0 (Rd), θ ≥ 0 and ∫

Rd θ = 1. We set θn(x) := ndθ(nx),
x ∈ Rd, n ∈ N∗ and Vn,− := V− ∗ θn ∈ C∞

0 . In partiular, Vn,− ∈ C∞
0 (Rd) if

V− ∈ L1
comp(R

d).Then Vn,− → V− in L1
loc(R

d) for n → ∞ and the funtions Vn,− are non-negative and uniformly h0-bounded, with relative bound < 1. Moreover,
hn(u) → h(u) for any u ∈ D(hA), where hn is the quadrati form assoi-ated to Hn := HA

·
+ (−Vn).(b) If, in addition, V− ∈ Lp(Rd) with p ≥ 1, then Vn,− ∈ Lp(Rd) ∩ C∞(Rd),

‖ Vn,− ‖Lp≤‖ V− ‖Lp , ∀n ≥ 1 and Vn,− → V− in Lp(Rd).Proof. (a) We have for any x ∈ Rd

Vn,−(x) =

∫

Rd

dy θn(y)V−(x− y) =

∫

Rd

dy θ(y)V−(x− n−1y). (5.3)By the Dominated Convergene Theorem, for any ompat K ⊂ Rd

∫

K
dx |Vn,−(x) − V−(x)| ≤

∫

Rd

dy θ(y)

∫

K
dx |V−(x− n−1y) − V−(x)| → 0,hene Vn,− onverges to V− in L1

loc(R
d) when n→ ∞.If V− is relatively small with respet to h0, we use the fat that H1/2

0 is aonvolution operator (hene it ommutes with translations) and using the



114 V. Iftimie et al.omments after inequality (5.1), we dedue that for any u ∈ C∞
0 (Rd) thereexists α ∈ (0, 1) and β ≥ 0 suh that

∫

Rd

dxVn,−|u|2 =

∫

Rd

dy θn(y)

∫

Rd

dz V−(z)|u(z + y)|2 ≤

≤
∫

Rd

dy θn(y)
[

α ‖ H1/2
0 u(· + y) ‖2 +β ‖ u(· + y) ‖2

]

=

= α ‖ H1/2
0 u ‖2 +β ‖ u ‖2 .(b) From (5.3) it follows that

‖ Vn,− ‖Lp≤
∫

Rd

dy θn(y) ‖ V−(· − y) ‖Lp≤‖ V− ‖Lp .Also, using the Dominated Convergene Theorem, we infer that
‖ Vn,− − V− ‖Lp≤

∫

Rd

dy θ(y) ‖ V−(·) − V−(· − n−1y) ‖Lp→ 0.Thus Lemmas 5.3 and 5.4 imply, for a potential funtion V− satisfying thehypothesis of the Lemma, the existene of a sequene (Vn,−)n≥1 ⊂ C∞
0 (Rd)suh that Vn,− ≥ 0, ‖ Vn,− ‖Lp≤‖ V− ‖Lp , ∀n ≥ 1, Vn,− → V− in Lp(Rd)(for p = d and p = d/2) when n → ∞ and the funtions Vn,− are uniformly

h0-bounded with relative bound < 1.Lemma 5.5 Assume that there exists a onstant C > 0, suh that the in-equality
N(−Vn,−) ≤ C

(
∫

Rd

dx |Vn,−(x)|d +

∫

Rd

dx |Vn,−(x)|d/2

) (5.4)holds for any n ≥ 1. Then one also has
N(−V−) ≤ C

(
∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)

. (5.5)Proof. We set Hn,− := H0 ∔ (−Vn,−); (En,−(λ))λ∈R will be the spetralfamily of Hn,− and (E−(λ))λ∈R the spetral family of H−. For λ < 0, wedenote by Nλ(W ) the number of eigenvalues of H0 ∔ W whih are stritlysmaller than λ (for any potential funtion W satisfying the hypothesis at the



eigenvalues of a relativisti Hamiltonian 115begining of this setion). It su�es to show that for any λ < 0 not belongingto the spetrum of H−, one has the inequality
Nλ(−V−) ≤ C

(
∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)

. (5.6)Sine Vn,− onverges to V− in L1
loc(R

d), f. Lemma 5.2, Hn,− will onvergeto H− in strong resolvent sense. By [29℄, Ch. VIII, Th. 1.15, this implies thestrong onvergene of En,−(λ) to E−(λ) for any λ /∈ σ(H−). By Lemmas 1.23and 1.24 from [29℄, Ch. VII, for λ < 0 suh that λ /∈ σ(H−), one also has
‖ En,−(λ) − E−(λ) ‖→ 0. Let us suppose that there exists some λ < 0 notbelonging to σ(H−) and suh that for it the inequality (5.6) is not veri�ed.Thus for the given λ < 0 we have ∀n ≥ 1:

N(−Vn,−) ≤ C

(
∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)

< Nλ(−V−).But for n large enough, one has Nλ(−V−) = Nλ(−Vn,−) and thus
Nλ(−V−) = Nλ(−Vn,−) ≤ N(−Vn,−) ≤

≤ C

(
∫

Rd

dx |Vn,−(x)|d +

∫

Rd

dx |Vn,−(x)|d/2

)

≤

≤ C

(
∫

Rd

dx |V−(x)|d +

∫

Rd

dx |V−(x)|d/2

)that is a ontradition with our initial hypothesis.5.2. Proof of the Theorem 1.1 without magneti �eldWe shall assume from now on that V+ = 0 and 0 ≤ V− ∈ C∞
0 (Rd). We heka Birman-Shwinger priniple. For α > 0 we set Kα := V

1/2
− (H0 +α)−1V

1/2
− ;it is a positive ompat operator on L2(Rd).Lemma 5.6

N−α(−V−) ≤ ‖= {µ > 1 | µ eigenvalue of Kα}. (5.7)Proof. We introdue the sequene of funtions µn : [0,∞) → (−∞, 0], n ≥ 1,where µn(λ) is the n'th eigenvalue of H0 − λV− if this operator has at least
n stritly negative eigenvalues and µn(λ) = 0 if not. Cf. [47℄, �XIII.3, µn isontinuous and dereasing (even stritly dereasing on intervals on whih it



116 V. Iftimie et al.is stritly negative). Obviously, we have N−α(−V−) ≤‖= {n ≥ 1 | µn(1) <
−α}. Now �x some n suh that µn(1) < −α and reall that µn(0) = 0.The funtion µn is ontinuous and injetive on the interval [ǫn, 1], where
ǫn := sup{λ ≥ 0 | µn(λ) = 0}, therefore it exists a unique λ ∈ (0, 1) suhthat µn(λ) = −α. Thus

N−α(−V−) = ‖= {λ ∈ (0, 1) | ∃n ≥ 1 s.t. µn(λ) = −α} =

= ‖= {λ ∈ (0, 1) | ∃ϕ ∈ D(H0) \ {0} s.t. (H0 − λV−)ϕ = −αϕ} ≤
≤ ‖= {λ ∈ (0, 1) | ∃ψ ∈ L2(Rd) \ {0} s.t. Kαψ = λ−1ψ},where for the last inequality we set ψ := V

1/2
− ϕ, notiing that the equality

(H0 + α)ϕ = λV−ϕ implies ψ 6= 0.Lemma 5.7 Let F : [0,∞) → [0,∞) be a stritly inreasing ontinuousfuntion with F (0) = 0. Then F (Kα) is a positive ompat operator and thenext inequality holds:
N−α(−V−) ≤ F (1)−1

∑

F (µ)∈σ[F (Kα)],F (µ)>F (1)

F (µ).Proof. The �rst part is obvious. Using (5.7) and F 's monotony, we get
N−α(−V−) ≤ ♯{µ > 1 | µ ∈ σ(Kα)} = ‖= {F (µ) | µ > 1, F (µ) ∈ σ[F (Kα)]} =

=
∑

µ>1,F (µ)∈σ[F (Kα)]

F (µ)

F (µ)
≤ F (1)−1

∑

µ>1,F (µ)∈σ[F (Kα)]

F (µ).So, we shall be interested in �nding funtions F having the properties in thestatement above, suh that F (Kα) ∈ B1 (the ideal of trae-lass operatorsin L2(Rd)) and suh that Tr [F(Kα)] is onveniently estimated.Using an idea from [48℄, we are going to onsider funtions of the form
F (t) := t

∫ ∞

0
ds e−sg(ts), t ≥ 0,where g : [0,∞) → [0,∞) is ontinuous, bounded and g ≡� 0. Plainly, F :

[0,∞) → [0,∞) is ontinuous, F (0) = 0, satis�es F (t) ≤ Ct for some C > 0and the identity
F (t) =

∫ ∞

0
dr e−rt−1

g(r)



eigenvalues of a relativisti Hamiltonian 117implies that F is stritly inreasing. We shall use the notations F = Φ(g),
g̃(t) := tg(t).In partiular, gλ(t) = e−λt, λ > 0 leads to Fλ(t) = t(1+λt)−1. In the sequel,relations valid for this partiular ase will be extended to the following ase,that we shall be interested in:
g∞ : [0,∞) → [0,∞), g∞(t) = 0 if 0 ≤ t ≤ 1, g∞(t) = 1 − 1/t if t > 1,(5.8)by using an approximation that we now introdue. The �rst lemma is obvi-ous.Lemma 5.8 Let g∞ be given by (5.8). For n ≥ 1 we de�ne gn : [0,∞) →

[0, 1], gn(t) = g(t) for 0 ≤ t ≤ n, gn(t) = 2n−1
t − 1 for n ≤ t ≤ 2n − 1,

gn(t) = 0 for t ≥ 2n − 1. Then gn ∈ C0((0,∞)), 0 ≤ gn ≤ gn+1 ≤ g∞, ∀nand gn → g∞ when n→ ∞ uniformly on any ompat subset of [0,∞).Lemma 5.9 Let f be a nonnegative ontinuous funtion on [0,∞) suh that
limt→∞ f(t) = 0. There exists a sequene (fk)k≥1 of real funtions on [0,∞)with the properties(a) Every fk is a �nite linear ombination of funtions of the form gλ, λ > 0.(b) fk ≥ fk+1 ≥ f ≥ 0 on [0,∞), ∀k ≥ 1,() fk → f uniformly on [0,∞) when k → ∞.Proof. We de�ne the funtion h : [0, 1] → [0,∞), h(s) := f(−lns) for s ∈
(0, 1], h(0) := 0. It follows that h ∈ C([0, 1]). We an hose now twosequenes of positive numbers {ǫk}k≥1 and {δk}k≥1 verifying the properties:
lim

k→∞
(ǫk + δk) = 0 and δk − ǫk ≥ ǫk+1 + δk+1 > 0,∀k ≥ 1 (for example we maytake δk = (k+ 2)−1 and ǫk = (k+ 2)−3). Using the Weierstrass Theorem wemay �nd for any k ≥ 1 a real polynomial P ′

k suh that sup
s∈[0,1]

|h(s)−P ′
k(s)| ≤ ǫkand let us denote by Pk := P ′

k + δk. We get:
sup

s∈[0,1]
|h(s) − Pk(s)| ≤ ǫk + δk →

k→∞
0,

h ≤ h+ δk+1 − ǫk+1 ≤ P ′
k+1 + δk+1 = Pk+1 ≤ h+ δk+1 + ǫk+1 ≤

≤ h+ δk − ǫk ≤ P ′
k + δk = Pkon [0, 1]. Thus fk(t) := Pk(e

−t) de�ned on [0,∞) for k ≥ 1 have the requiredproperties.



118 V. Iftimie et al.Proposition 5.1 Let F∞ := Φ(g∞). The operator F∞(Kα) is self-adjoint,positive and ompat on L2(Rd). It admits an integral kernel of the form
[F∞(Kα)] (x, y) = (5.9)

= V
1/2
− (x)V

1/2
− (y)

∫ ∞

0
dt e−αt

∫

Ω
µt,y

0,x(dω)g∞

(
∫ t

0
ds V−(Xs)

)

,whih is ontinuous, symmetri, with [F∞(Kα)] (x, x) ≥ 0.Proof. The �rst part is lear. To establish (3.27), we treat �rst the operator
Bλ := Fλ(Kα), λ > 0. We have

Bλ = Kα(1 + λKα)−1 =⇒ Bλ = Kα − λBλKα. (5.10)The seond resolvent identity gives
(H0 + α)−1 − (H0 + λV− + α)−1 = λ(H0 + λV− + α)−1V−(H0 + α)−1.Multiplying by V

1/2
− to the left and to the right and taking into aount(5.10) and the de�nition of Kα, one gets

Bλ = V
1/2
− (H0 + λV− + α)−1V

1/2
− = V

1/2
−

[
∫ ∞

0
dt e−αte−t(H0+λV−)

]

V
1/2
− .By Proposition 4.2 and its onsequenes, for any u ∈ C0(R

d), u ≥ 0, we have
[Fλ(Kα)u] (x) = (5.11)

= V
1/2
− (x)

∫ ∞

0
dte−αt

∫

Rd

dy

[
∫

Ω
µt,y

0,x(dω) gλ

(
∫ t

0
ds V−(Xs)

)]

V
1/2
− (y)u(y).Sine Φ maps monotonous onvergent sequenes into monotonous onvergentsequenes, by applying Lemmas 5.8 and 5.9 and the Monotonous ConvergeneTheorem (B. Levi), we get (5.11) for λ = ∞, for the ouple (g∞, F∞).We introdue the notation

Gλ(t;x, y) :=

∫

Ω
µt,y

0,x(dω) gλ

(
∫ t

0
ds V−(Xs)

)

, (5.12)for t > 0, x, y ∈ Rd, 0 < λ ≤ ∞. By the onsequenes of Proposition 4.2,for any 0 < λ < ∞ the funtion Gλ is ontinuous on (0,∞) × Rd × Rd andsymmetri in x, y. To obtain the same properties for λ = ∞, we approximate
g∞ by using one again Lemmas 5.8 and 5.9. So it exists a sequene (fn)n≥1 ofreal ontinuous funtions on [0,∞), eah one being a �nite linear ombination



eigenvalues of a relativisti Hamiltonian 119of funtions of the form gλ, suh that fn onverges to g∞ uniformly on anyompat subset of [0,∞). On the other hand, if M > 0 is an upper boundfor V−, we have
0 ≤

∫ t

0
ds V−(Xs) ≤Mt,and µt,y

0,x(Ω) =
◦
℘t(x−y). It follows that G∞ is, uniformly on ompat subsetsof [0,∞) × Rd × Rd, the limit of a sequene of ontinuous funtions, whihare symmetri in x, y. Thus G∞ has the same properties. Moreover, sine

0 ≤ g∞ ≤ 1 and g∞(t) = 0 for 0 ≤ t ≤ 1, we have G∞(t;x, y) = 0 for
t ≤ 1/M . Using (2.4) and (2.3), there is a onstant C > 0 suh that

0 ≤ G∞(t;x, y) ≤ C, ∀t > 0, ∀x, y ∈ Rd. (5.13)From (5.11) for λ = ∞, we infer that F∞(Kα) has an integral kernel of theform
[F∞(Kα)] (x, y) = V

1/2
− (x)V

1/2
− (y)

∫ ∞

0
dt e−αtG∞(t;x, y), (5.14)so (3.27) is veri�ed. The ontinuity of F∞(Kα) follows from the DominatedConvergene Theorem and from (5.13). The symmetry is obvious, and thelast property of the statement follows from F∞(Kα) ≥ 0.Remark 5.1 By a lemma from [47℄, �XI.4, F∞(Kα) ∈ B1 if the funtion

Rd ∋ x 7→ [F∞(Kα)] (x, x) is integrable and one has
Tr [F∞(Kα)] =

∫

Rd

dx [F∞(Kα)] (x, x). (5.15)Setting D∞(t;x) := V−(x)G∞(t;x, x), t > 0, x ∈ Rd, we have
[F∞(Kα)] (x, x) =

∫ ∞

0
dt e−αtD∞(t;x). (5.16)To hek the integrability of this funtion, one introdues

Ψ∞ : (0,∞) × Rd → R+,

Ψ∞(t;x) := t−1

∫

Ω
µt,x

0,x(dω) g̃∞

(
∫ t

0
ds V−(Xs)

)

,where g̃∞(t) := tg∞(t). The role of this funtion is stressed by



120 V. Iftimie et al.Lemma 5.10 For d ≥ 3 onsider the following onstant depending only on
d:
Cd := C

(
∫ ∞

1
ds s−d g∞(s) ∨

∫ ∞

1
ds s−d/2 g∞(s)

)

= C

∫ ∞

1
ds s−d/2 g∞(s)where C is the onstant verifying (2.6). One has

∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x) ≤ Cd

(
∫

Rd

dxV d
−(x) +

∫

Rd

dxV
d/2
− (x)

)

.(5.17)Proof. The funtion g̃∞ is onvex and ds
t is a probability on (0, t); thus bythe Jensen inequality we obtain

g̃∞

(
∫ t

0
ds V−(Xs)

)

≤
∫ t

0

ds

t
g̃∞ (t V−(Xs)) .Let us also remark that for the onstant Cd to be �nite we have to ask that

d ≥ 3 for the fator s−d/2 to be integrable at in�nity, beause the onvexityondition on g̃∞ rather implies that g∞ annot vanish at in�nity.Then
∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x) ≤

≤
∫ ∞

0
dt t−2 e−αt

∫

Rd

dx

[
∫

Ω
µt,x

0,x(dω)

∫ t

0
ds g̃∞ (tV−(Xs))

]

.Using now Proposition 4.3, the last expression is equal to:
∫ ∞

0
dt t−2 e−αt

∫

Rd

dx

[
∫

Ω
µt,0

0,0(dω)

∫ t

0
ds g̃∞ (tV−(x+ ω(s)))

]

=

=

∫ ∞

0
dt t−2 e−αt

[
∫

Ω
µt,0

0,0(dω)

∫ t

0
ds

∫

Rd

dx g̃∞ (tV−(x))

]

=

=

∫ ∞

0
dt t−1 e−αt

[
∫

Ω
µt,0

0,0(dω)

]
∫

Rd

dx g̃∞ (tV−(x)) =

=

∫ ∞

0
dt t−1 e−αt ◦℘t(0)

∫

Rd

dx g̃∞ (tV−(x)) ≤

≤ C

∫

Rd

dx

[
∫ ∞

0
dt t−d−1(1 + td/2)g̃∞ (tV−(x))

]

≤

≤ Cd

(
∫

Rd

dxV d
−(x) +

∫

Rd

dxV
d/2
− (x)

)

,where we have used the fat that s < 1 implies g∞(s) = 0.



eigenvalues of a relativisti Hamiltonian 121The next result gives the onnetion between D∞ and Ψ∞:Proposition 5.2
∫

Rd

dxD∞(t, x) =

∫

Rd

dxΨ∞(t, x).Proof. First let us verify the following identity for any t > 0:
∫

Rd

dxDλ(t, x) =

∫

Rd

dxΨλ(t, x), for λ ∈ (0,∞) (5.18)where Dλ and Ψλ are de�ned in terms of gλ in the same way that D∞ and
Ψ∞ are de�ned in terms of g∞. Let us point out that both Dλ and Ψλ arepositive measurable funtions on (0,∞) × Rd but only the integral on theleft hand side of (5.18) is evidently �nite by what we have proven so far. Forsimplifying the writing we shall take λ = 1. For any r ∈ [0, t] we denote by

Sr := e−r(H0+V−)V−e−(t−r)(H0+V−).Following the remarks after Proposition 4.2 above, for r ∈ (0, t), both expo-nentials appearing in the above right hand side are integral operators withnon-negative ontinuous integral kernels; thus Sr will also be an integral op-erator with non-negative ontinuous kernel that we shall denote by Kr, andwe an ompute it expliitely as follows. For a non-negative u ∈ C0(R
d),using Proposition 4.1 with A = 0 gives

(Sru)(x) = Ex

{

e−
R r
0

V−(Xρ)dρV−(Xr)EXr

[

e−
R t−r
0

V−(Xσ)dσu(Xt−r)
]}and using the Markov property (4.8) we obtain

EXr

[

e−
R t−r
0

V−(Xσ)dσu(Xt−r)
]

= Ex

[

e−
R t−r
0

V−(Xσ◦θr)dσu(Xt) | Fr

]

=

= Ex

[

e−
R t
r V−(Xσ)dσu(Xt) | Fr

]

.As the funtion e−
R r
0 V−(Xρ)dρV−(Xr) : Ω → R is evidently Fr-measurable,we get (using the property (4.4) of onditional expetations)

(Sru)(x) = Ex

{

Ex

(

V−(Xr)e
−

R t
0 V−(Xσ)dσu(Xt) | Fr

)}

.We use now the property (4.3) and Proposition 4.2 taking F := V−(Xr) inorder to get
(Sru)(x) = Ex

{

V−(Xr)e
−

R t
0

V−(Xσ)dσu(Xt)
}

=
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=

∫

Rd

dy

{
∫

Ω
µt,y

0,x(dω)V−(Xr)e
−

R t
0

V−(Xσ)dσ

}

u(y).In onlusion for any (x, y) ∈ Rd × Rd we have
Kr(x, y) =

∫

Ω
µt,y

0,x(dω)V−(Xr)e
−

R t
0

V−(Xσ)dσ . (5.19)Using Proposition 4.3 we obtain
∫

Rd

dxKr(x, x) ≤
∫

Rd

dx

[
∫

Ω
µt,x

0,x(dω)V−(ω(r))

]

=

∫

Rd

dx

[
∫

Ω
µt,x

0,0(dω)V−(x+ ω(r))

]

=
◦
℘t(0)

∫

Rd

dxV−(x) < ∞, ∀t > 0.Thus, for any r ∈ [0, t] the operator Sr is trae lass. Moreover, due to theproperties of the trae we have TrSr = TrS0, ∀r ∈ [0, t]. We have:
TrS0 =

1

t

∫ t

0
dr (TrS0) =

1

t

∫ t

0
dr (TrSr) =

1

t

∫ t

0
dr

[
∫

Rd

dxKr(x, x)

]

=

=
1

t

∫

Rd

dx

[
∫

Ω
µt,x

0,x(dω)g̃1

(
∫ t

0
ds V−(Xs)

)]

=

∫

Rd

dxΨ1(t, x)In partiular, for any t > 0, Ψ1(t; ·) is integrable on Rd.On the other hand
TrS0 =

∫

Rd

K0(x, x)dx =

∫

Rd

dxV−(x)

∫

Ω
µt,x

0,x(dω)e−
R t
0 dρ V−(Xρ)

=

∫

Rd

dxV−(x)G1(t;x, x) =

∫

Rd

dxD1(t;x).One uses the approximation properties ontained in Lemmas 5.8 and 5.9 aswell as the Monotone Convergene Theorem.Proof. of Theorem 1.1 for B = 0We an assume V+ = 0 and V− ∈ C∞
0 (Rd). Lemma 5.7 implies that for any

α > 0 one has
N−α(−V−) ≤ F∞(1)−1Tr [F∞(Kα)] .Using (5.15), (5.16), we obtain

Tr [F∞(Kα)] =

∫ ∞

0
dt e−αt

∫

Rd

dxD∞(t;x) =
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=

∫ ∞

0
dt e−αt

∫

Rd

dxΨ∞(t;x). (5.20)Inequality (6.1) for B = 0 follows from (5.20) and Lemma 5.10. In addition
Cd = F∞(1)−1Cd.6. Proof of the bounds in the magneti aseProof. of Theorem 1.1 for B 6= 0.Analogously to Setion 5, we an assume V+ = 0 and V− ∈ C∞

0 (Rd). For
α > 0 one sets Kα(A) := V

1/2
− (HA +α)−1V

1/2
− . By inequality (3.4) for r = 1and also using Pitt's Theorem [45℄,Kα(A) is a positive ompat operator, andthe same an be said about F∞ [Kα(A)]. We show that F∞ [Kα(A)] ∈ B1 andwe estimate the trae-norm. Repeating the arguments from the beginning ofthe proof of Proposition 5.1,

Fλ [Kα(A)] = V
1/2
−

∫ ∞

0
dt e−αte−t(HA+λV−)V

1/2
− . (6.1)By using Proposition 4.1, we get for any u ∈ C0(R

d), u ≥ 0

[Fλ [Kα(A)] u] (x) = (6.2)
= V

1/2
− (x)

∫ ∞

0
dt e−αtEx

[

u(Xt)V
1/2
− (Xt)e

−iSA(t,X)gλ

(
∫ t

0
ds V−(Xs)

)]

.Approximating g∞ by means of Lemmas 5.8 and 5.9 and using the MonotoneConvergene Theorem, we see that (6.2) also holds for the pair (g∞, F∞). Thenext inequality follows:
|F∞ [Kα(A)] u| ≤ F∞(Kα)|u|, ∀u ∈ L2(Rd). (6.3)By Lemma 15.11 from [48℄, we have F∞ [Kα(A)] ∈ B1 and

Tr (F∞ [Kα(A)]) ≤ Tr (F∞ [Kα]) . (6.4)Denoting by N−α(B,−V−) the number of eigenvalues of HA − V− stritlyless than −α, analogously to Lemmas 5.6 and 5.7, we dedue that
N−α(B,−V−) ≤ F∞(1)−1Tr (F∞ [Kα]) . (6.5)Inequality (6.1) follows from (6.5) by using the estimations at the end ofSetion 5. The onstant Cd is the same as for the ase B = 0.



124 V. Iftimie et al.Proof. of Corollary 1.1. The idea of the proof is standard (f. [48℄ forinstane), but one has to use parts of the arguments from the proof of The-orem 1.1 in the ase B = 0.1. We show that it is enough to treat the ase V+ = 0.We denote by N (resp. N−) the number of stritly negative eigenvalues of
HA ∔ V (resp. HA ∔ (−V−)). We have N,N− ∈ [0,∞] and the min-maxpriniple shows that N ≤ N−. In addition, if HA ∔ V has stritly negativeeigenvalues λ1 ≤ λ2 ≤ . . . , then HA∔(−V−) has stritly negative eigenvalues
λ−1 ≤ λ−2 ≤ . . . and λ−j ≤ λj, j ≥ 1. Therefore, one has ∑

j≥1 |λj |k ≤
∑

j≥1 |λ−j |k.2. We show that treating ompatly supported V− is enough (remark thatthis property implies that V− ∈ Lp(Rd) for any p ∈ [1, d + k]).We take into aount the approximation sequene de�ned in Lemma 5.3. Thesequene of forms (hn)n≥1 satis�es the hypothesis of Theorem 3.11, Ch. VIIIfrom [29℄. If we denote by λ1 ≤ λ2 ≤ . . . the stritly negative eigenvaluesof HA

·
+ V and by λ

(n)
1 ≤ λ

(n)
2 ≤ . . . the stritly negative eigenvalues of

H(n) := HA

·
+ V (n), one again by Theorem 3.15, Ch. VIII from [29℄, wehave λ(n)

j ≥ λj , ∀j, n ∈ N∗ and λ(n)
j onverges to λj . So it will be su�ientto prove (6.1) for the operators H(n).3. We assume from now on that V = −V−, V− ∈ Ld+k(Rd) (k > 0) and that

supp(V−) is ompat. Let β0 > 0 and for β ∈ (0, β0] let
λ1 ≤ λ2 ≤ · · · ≤ λN−β

< −βbe the eigenvalues of H = HA

·
+ (−V−) stritly smaller than −β and let

λ1 ≤ λ2 ≤ · · · ≤ λM(β) < −βbe the distint eigenvalues with mj the multipliity of λj , 1 ≤ j ≤ M(β).We have N−α := N−α(B,−V−). Using the de�nition of the Stieltjes integraland integration by parts, we get
N−β
∑

j=1

|λj |k =

M(β)
∑

j=1

mj|λj|k =

M(β)
∑

j=1

|λj|k
(

Nλj+1
−Nλj

)

=

∫ −β

λ1

|λ|kdNλ =

= |β|kN−β + k

∫ −β

λ1

|λ|k−1Nλ dλ. (6.6)



eigenvalues of a relativisti Hamiltonian 125We denote by I the last integral and use (6.5) and (5.20) and the argumentsin the proof of Lemma 5.10 to estimate I:
I =

∫ −λ1

β
αk−1N−αdα = [F∞(1)]−1

∫ −λ1

β
αk−1TrF∞(Kα)dα =

= [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dtΨ∞(t, x)

∫ −λ1

β
dααk−1e−αt ≤

≤ [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dt t−1 ◦

℘t(0)g̃∞(tV−(x))

∫ −λ1

β
dααk−1e−αt ≤

≤ C [F∞(1)]−1
∫

Rd

dx

∫ ∞

0
dt

(

t−d−1+ t−d/2−1
)

g̃∞(tV−(x))

∫ −λ1

β
dααk−1e−αt.The α integral may be bounded by

∫ ∞

0
dααk−1e−αt = t−k

∫ ∞

0
ds sk−1e−s ≤ Ct−k.Realling that g̃∞(t) = 0 for t ≤ 1 and g̃∞(t) = t − 1 for t > 1, we get that

g̃∞(tV−(x)) = 0 for V−(x) = 0 and for V−(x) > 0

∫ ∞

0
dt t−k

(

t−d−1 + t−d/2−1
)

g̃∞(tV−(x)) =

= [V−(x)]d+k
∫ ∞

1
s−d−k−1(s− 1)ds + [V−(x)]d/2+k

∫ ∞

1
s−d/2−k−1(s− 1)ds,the integrals being onvergent for d ≥ 2.Using these estimations in (6.6) we onlude that

N−β
∑

j=1

(

|λj |k − |β|k
)

≤ C

{
∫

Rd

[V−(x)]d+k dx +

∫

Rd

[V−(x)]d/2+k dx

}

,thus
N

−(β0)
∑

j=1

(

|λj |k − |β|k
)

≤ C

{
∫

Rd

[V−(x)]d+k dx +

∫

Rd

[V−(x)]d/2+k dx

}

,with the onstant C not depending on β or β0. Taking the limit β ց 0 endsthe proof.
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