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1. Introduction

For the Schrodinger operator —A + V on L?(R%) (d > 3), one has the well-
known CLR (Cwikel-Lieb-Rosenblum) estimation for N(V'), the number of
negative eigenvalues:

N(V) < c(d) /Rdd:z: V()] (1.1)

V' is the multiplication operator with the function V € Llloc(Rd) and V_ =

(|[V|=V)/2 € LY2(R%); the constant ¢(d) > 0 only depends on the dimension
d >3 (see [47], Th. XIL12).

There exist at least four different proofs of this inequality. Rosenblum [35]
uses "piece-wise polynomial approximation in Sobolev spaces". Lieb [25]
relies on the Feynman-Kac formula. Cwickel [4] uses ideas from interpolation
theory. Finally, Li and Yau [31| make a heat kernel analysis.

The inequality (1.1) has been extended in [1| and [48] to the case of operators
with magnetic fields (—iV — A)? 4+ V, where the components of the vector
potential A = (Ay,...,A,) belong to L2 (R?). The basic ingredient of the
proof is the Feynman-Kac-Ito formula. Melgaard and Rosenblum [41] gener-
alizes this result (by a different method) to a class of differential operators of
second order with variable coefficients. The idea for treating the relativistic
Hamiltonian (without a magnetic field), by replacing Brownian motion with
a Lévy process, appears in [5] and we follow it in our work giving all the
technical details. Some similar results but for a different Hamiltonian and
with different techniques have been obtained recently in [8].

Our aim in this paper is to obtain an estimation of the type (1.1) for an
operator that is a good candidate for a relativistic Hamiltonian with mag-
netic field (for scalar particles); it is gauge covariant and obtained through
a quantization procedure from the classical candidate. We shall make use
of a "magnetic pseudodifferential calculus" that has been introduced and
developed in some previous papers [34], |35], |27], [28], [36], [38], |24].

Let us denote by ngl(]Rd) the family of functions f € C*°(R%) for which all
the derivatives 9® f, o € N have polynomial growth.

Let B be a magnetic field (a 2-form) with components Bj;, € ggl(Rd). It

is known that it can be expressed as the differential B = dA of a vector
potential (a 1-form) A = (Ay,...,Aq) with A; € ngl(Rd), j=1,...,d; an
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example is the transversal gauge:
noopl
Aj(z) = — Z/ ds Bji(sx)sxy.
k=1"0
We denote by

1
M (z,y) = / ds A((1 —s)z + sy) = A, z,y€RY (1.2)
0 [2,y]
the circulation of A along the segment [z,y], =,y € R% If a is a symbol

on RY, one defines by an oscillatory integral the linear continuous operator
Op(a) : S(RY) — S*(RY) by

[Op(a)] () := (2m) 7 / dy dg 0t e A (x i y,£> u(y),
Rd JRA 2
(1.3)
The correspondence a +— DpA(a) is meant to be a quantization and could
be regarded as a functional calculus DpA(a) = a(Q,II*) for the family of
non-commuting operators (Q1, ..., Qg; H‘f‘, . ,Hg‘), where (@ is the position

operator, IT* := D — A(Q) is the magnetic momentum, with D := —iV.

If a belongs to the Schwartz space S(R??), then Op“(a) acts continuously in
the spaces S(RY) and S*(R%), respectively. It enjoys the important physical
property of being gauge covariant: if ¢ € ggl(]Rd) is a real function, A
and A" := A 4 dyp define the same magnetic field and one prove easily that
Op?'(a) = e¥Op?(a)e™®. The property is not shared by the quantization
a — Opy(a) == Op(aowrvy), where Op is the usual Weyl quantization and
va:RT— RY va(z,€) := (2,6 — A(a)) is an implementation of "the minimal
coupling".

We mention that in the references quoted above, a symbolic calculus is
developed for the magnetic pseudodifferential operators (1.3). In particu-
lar, a symbol composition (a,b) — afPb is defined and studied, verifying
Op(a)Op?(b) = Op?(at®h). It depends only on the magnetic field B, no
choice of a gauge being needed. The formalism has a C*-algebraic interpre-
tation in terms of twisted crossed products, cf. [35], [37], [39] and it has been
used in [40] for the spectral theory of quantum Hamiltonians with anisotropic
potentials and magnetic fields.

We shall denote by H 4 the unbounded operator in L2(R%) defined on C§°(R9)
by Hau := OpA(h)u, with h(z,&) = h(€) :== (£) =1 = (1 + |¢]*)Y/2 — 1. One
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can express it as
(Haw () = n) " [ [ dydede (- y) ). (1)
Rd JR4
H 4 is a symmetric operator and, as seen below, essentially self-adjoint on
C&°(R%). Also denoting its closure by Ha, we will have Hy > 0.

Ichinose and Tamura [19], [20], using the quantization a — (Op)a(a), study
another relativistic Hamiltonian with magnetic field defined by

dy de el==9)€p, <g iy (”" ;y>> u(y), (1.5)

(H'yu) () = (2m) /

Rd JRR4

for which they prove many interesting properties. Unfortunately, H; is not
gauge covariant (cf. [24]). Many of the properties of H’; also hold for Hy4
(by replacing A (%“y) with T'4(z,%) in the statements and proofs) and this
will be used in the sequel.

Aside the magnetic field B = dA, we shall also consider an electric potential
Ve L%OC(Rd), real function expressed as V =V, — V_, VL > 0, such that
V_ € L4F(RY) N LY2HR(RY) for some k > 0. We are interested in the opera-
tor H(A,V) := Hy+V; it will be shown that it is well-defined in form sense
as a self-adjoint operator in LQ(Rd), with essential spectrum included into
the positive real axis. Taking advantage of gauge covariance, we denote by
N(B, V) the number of strictly negative eigenvalues of H(A, V') (multiplicity

counted); it only depends on the potential V' and the magnetic field B.

The main result of the article is

THEOREM 1.1 Let B = dA be a magnetic field with By, € ggl(Rd), Aj e

ggl(Rd) and let V=V, -V_ € Llloc(Rd) be a real function with V3 > 0 and

V_ € LYRYNLY2(RY). Then there exists a constant Cy, only depending on
the dimension d > 3, such that

N(B,V) < C’d< . dz V_(x)? + . da v_(x)dﬂ). (1.6)

A standard consequence is the next Lieb-Thirring-type estimation:

d
COROLLARY 1.1 We assume that the components of B belong to C’ggl(R )

and that V. = Vi — V_ € LL _(RY) is a real function with Vo > 0 and
Vo € LYFRY) N LY2HERY), k > 0. We denote by \; < Xy < ... the
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strictly negative eigenvalues of H(A, V) (with multiplicity). For any d > 2
there exists a constant Cq(k) such that

zj: A F < Ca(k) (/Rd da V_(x)3+F + g da v_(zp)d/%’f) . (1.7)

Sections 2, 3, 4 will contain essentially known facts (usually presented with-
out proofs), needed for checking Theorem 1.1. So, in Section 2 we introduce
the Feller semigroup (]|20], [17], [26]) associated to the operator Hy := (D)—1.
In the third section we define properly the operator H(A, V) and study its
basic properties. In Section 4 we recall some probabilistic results, as the
Markov process associated to the semigroup defined by Hy ([25], [6], [26])
and the Feynman-Kac-It6 formula adapted to a Lévy process ([20]).

In Section 5 we prove Theorem 1.1 for B = 0, using some of Lieb’s ideas
for the non-relativistic case (see [48]) in the setting proposed in [5]. The
last section contains the proof of Theorem 1.1 with magnetic field as well as
Corollary 1.1. The main ingredient is the Feynman-Kac-1t6 formula.

2. The Feller semigroup

We consider the following symbol (interpreted as a classical relativistic Hamil-
tonian for m = 1,¢c = 1) h : R — R, defined by h(¢) := (£) — 1 =
V14 €] — 1. Let us observe (as in [17]) that it defines a conditional nega-
tive definite function (see |47]) and thus has a Lévy-Khincin decomposition
(see Appendix 2 to Section XIII of [47]). Computing (Vh)(€) and (Ah)(§)
and using the general Lévy-Khincin decomposition (see for example [47]), one
obtains that there exists a Lévy measure n(dy), i.e. a non-negative, o-finite
measure on R, for which min{1, |y|?} is integrable on R?, such that

We) = = [ {7 1= O T} @)

where Iy, <1y 1s the characteristic function of the open unit ball in R%. One
has the following explicit formula (see [17]):
n(dy) = 2(2m) "Iy T DK ) s (ly]) dy, (2:2)

with K, the modified Bessel function of third type and order v. We recall
the following asymtotic behaviour of these functions:

0 < K,(r) < Cmax(r~, 7Y™, ¥r>0, Yw>0  (2.3)
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We shall denote by H*(R?) the usual Sobolev spaces of order s € R on R? and
by Hy the pseudodifferential operator h(D) = Op(h) considered either as a
continuous operator on S(R?) and on S*(R?) or as a self-adjoint operator in
L?(R%) with domain H!(R%). The semigroup generated by Hy is explicitly
given by the convolution with the following function (for ¢t > 0 and z € R%):

t—/(2P+2)(EP+D))  _

pi(w) = (2m)4

__t (
V|x|? + 2 /]Rd dee

= 27 [D/2 D2yl (12 4 )" HDAR G (VIR +2) (2.4)
(see [20], |2]). We have

o) > 0 and /Rdda:g)t(x) = 1. (2.5)

From (2.3) one easily can deduce the following estimation

3C >0 such that ,(0) < Ct=41+t%?), vi>o0. (2.6)

Let us set
Coo(RY) = {fe C(RY) | Illim f(z) :0} (2.7)
and endow it with the Banach norm ||f|locc := sup,ega |f(z)]. Using the

above properties of the function ét we can extend e 0 to a well-defined
bounded operator P(t) acting in Cu(RY).

REMARK 2.1 One can easily verify that {P(t) }+>0 is a Feller semigroup, i.e.:

1. P(t) is a contraction: |P(t)f]loo < |fllee, ¥f € Coo(R?);

N

. AP(t)}i>0 is a semigroup: P(t + s) = P(t)P(s);

w

. P(t) preserves positivity: P(t)f >0 for any f > 0 in Coo(RY);

S

. We have limp o [|[P(t)f — flloo =0, Vf € Coo(R?).

3. The perturbed Hamiltonian
Suppose given a magnetic field of class C;’gl(Rd) and let us choose a potential

vector A, such that B = dA, with components also of class C%, (R%) (this
is always possible, as said before). We shall denote by H4 the operator
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OpA(h), considered either as a continuous operator on S(R%) and on S*(R?)
(by duality) or as an unbounded operator on L?*(R%) with domain C3°(RY).

Using the Fourier transform one easily proves that for u € Cg°(R9):
(Houl(e) = = [ nldy) e +3) = ) = I 0) (- 00 (@)] . (3.1)
Recalling the definition of Op“(h), we remark that
[Haul(@) = [9pA(h)u] (0) = |Op(h) (@71 u)| @) = (32)

= [Ho <ei(x_')'FA(x")u)} (z).

Combining the above two equations one gets easily

(Had(w) = = [ n(@n) [T @ty —ule)= (3

—I{11<13 () (y - (0 —1A(2))u) (2)] .

Repeating the arguments in [17] with T'4(x,z + y) replacing A((x + y)/2)
one proves the following results similar to those in [17].

PROPOSITION 3.1 Considered as unbounded operator in L?>(RY), H, is es-
sential self-adjoint on C(C)’O(Rd). Its closure, also denoted by H 4, 1s a positive
operator.

PROPOSITION 3.2 For any u € L?(R?) such that Hau € L} _(R%)
R [(signu)(Hau)] > Holul.

Using the method in [49] we can prove the following result.

PROPOSITION 3.3 For any u € L*(RY) we have:
1. for any A > 0 and for any r >0
[(Ha+X)""u| < (Ho+A)"|ul; (3.4)

2. foranyt>0
!e_tHAu‘ < e tHopy), (3.5)



104 V. IFTIMIE et al.
We associate to H 4 its sesquilinear form

D(ha) = D(HY?),

ba(u,v) = (HY u, H*v), ¥(u,0) € D(ha)?. (3.6)

Consider now a function V' € LL_(R?), V > 0 and associate to it the
sesquilinear form

D(av) := {u € L*R?) | VVue L*(RT)},

qv(u,v) == | dzV(x)u(@)o(z), Y(u,v)€ D(av)* (3.7)
R4
Both these sesquilinear forms are symmetric, closed and positive. We shall
abbreviate h4(u) = ha(u,u) and qy (u) = qv(u, u).

PROPOSITION 3.4 Let V : R* — R be a measurable function that can be
decomposed as V =V, — V_ with Vo > 0 and Vi € LL_(R?). Moreover let
us suppose that the sesquilinear form qy._ is small with respect to bo (i.e. it is
ho-relatively bounded with bound strictly less then 1). Then the sesquilinear
form ba+qv, —qv_, that is well defined on D(ha)(\D(qv, ), is symmetric,
closed and bounded from below, defining thus an inferior semibounded self-

adjoint operator H(A; V)= H := Hy +V (sum in sense of forms).

Proof. The sesquilinear form h4+qy, (defined on the intersection of the form
domains) is clearly positive, symmetric and closed. We shall prove now that
the sesquilinear form qy._ is ha + qy, -bounded with bound strictly less then
1, so that the conclusion of the proposition follows by standard arguments.

Let us denote by H, := H4 + V. the unique positive self-adjoint operator
associated to the sesquilinear form b4 + qy, by the representation theorem
2.6 in §VI.2 of [29]. As V; € Li _(R?), we have C°(R?) C D(ha) N D(qv,)

loc
and thus we can use the form version of the Kato-Trotter formula from [30]:

o—tHe — ¢ _1lim <e—(t/n)HA e—(t/n)V+)n’ vt > 0. (3.8)

n—oo

Let us recall the formula (r > 0 and A > 0)

(Hy+MN)™" = F(r)_l/o dt ¢~ te A et (3.9)
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Combining the above two equalities we obtain

(Hy +0)77f] < F(r)_l/wdt e et f| = (3.10)
0

= I‘(r)_l/ dt ¢t 1
0

< (Ho+AN)7"[fl;
by using the second point of Proposition 3.3.

Taking u = (Ho+ \)~'/2g with g € L?>(R%) arbitrary and A > 0 large enough
and using the hypothesis on V_ we deduce that there exists a € [0,1), b >0
and o’ € [0,1) such that

s — lim (e_(t/")HA e—(t/n)V+)" f‘ <

n—~o0

qv(u) < al| Hy*u|>+b]|u|)? = al|Hy'* (Ho+A) 29| +b|| (Ho+A)"/?g|? <

< (a+0/Mgl* < d'l|g. (3.11)

For any v € D(ha) N\ D(qv. ) let f := (Hy + \)/?v and g := |f|. Using now
(3.10) with r = 1/2, (3.11) and the explicit form of gy we conclude that

av-@) = av. ((He +072F) <av ((Ho+N)"V2g) < (3.12)

Mall2 — ./ 1/22_1 2
<dlgl? = o ||(Hy + 0720 = a [balo) + ar () + Allo]?]

O

DEFINITION 3.1 For a potential function V' satisfying the hypothesis of Propo-
sition 3.4, we call the operator H = H(A; V') introduced in the same propo-
sition the relativistic Hamiltonian with potential V' and magnetic vector po-
tential A.

The spectral properties of H only depend on the magnetic field B, different
choices of a gauge giving unitarly equivalent Hamiltonians, due to the gauge
covariance of our quantization procedure.

PRrROPOSITION 3.5 Let B be a magnetic field with C;gl(Rd) components and
A a wvector potential for B also having C;’gl(Rd) components. Assume that
V :R? — R is a measurable function that can be decomposed asV =V, —V_
with Vo >0, Vi € LL _(RY) and V_ € LP(R?) with p > d. Then

loc

1. qv_ s a ho-bounded sesquilinear form with relative bound 0;
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2. the Hamiltonian H defined in Definition 3.1 is bounded from below and
we have Oess(H) = 0ess(Ha + V4) C [0,00).

Proof. 1. Using Observation 3 in §2.8.1 from [37], we conclude that for d > 1,
the Sobolev space H'/?(R%) (that is the domain of the sesquilinear form )
is continuously embedded in L"(R%) for 2 < r < 2d/(d — 1) < oo. Also using
Holder inequality, we deduce that for r = 2p/(p — 1) € [2,2d/(d — 1)], for
p>d

1/2
V22l < Vo llpllell? < ellVollplull o g (3.13)

)7
Vu € HY2(R%) = D(hg). Thus V2 e B(HY/2(R%); L?(R%)); now let us prove
that it is even compact. Let us observe that for d < p < oo, Cgo(Rd) is dense
in LP(R9). Thus, for d < p < oo let {W }eso C C°(RY) be an approximating
family for V2 in L?(RY), i.e. HV_1/2 — Well2p < €. Moreover, for any
sequence {u;} C HY/?(RY) contained in the unit ball (i.e. |[ujlly12 < 1) we
may suppose that it converges to u € 'Hl/Q(Rd) for the weak topology on
HY/2(R?) and thus |l < 1. Tt follows that Weu; converges to Weu in
L*(R%) and due to (3.13) we have:

1/2 1/2 .
(V22 =Wy (u—u)|| < CVIVE2 =W oo fu—ujllygr 2 < 262, ¥ > 1.
We conclude that V_1/2uj converges in LQ(Rd) to V_1/2u and using the duality
we also get that V_ is a compact operator from H/2(R%) to H~/2(R%). Using
exercise 39 in ch. XIIT of [47] we deduce that q_ has zero relative bound with
respect to hg.

2. The conclusion of point 1 implies that the operator V_l/z(Ho + 1)_1/2 €
B[L?(RY)] is compact. Using the first point of Proposition 3.3 with A =
—1 and r = 1/2, and Pitt Theorem in [45], we conclude that the operator
V_l/Q(HA—i—V++1)_1/2 € B[L?*(R?)] is also compact. Thus V_ : D(ha+qy, ) —
D(ha + qv, ) is compact and the conclusion (2) follows from exercise 39 in
ch. XTIT of [47). O

4. The Feynman-Kac-It6 formula

In this section we gather some probabilistic notions and results needed in
the proof of Theorem 1.1. The main idea is that we obtain a Feynman-Kac-
It6 formula (following [20]) for the semigroup defined by H(A, V) and this
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allows us to reduce the problem to the case B = 0. For this last one we
repeat then the proof in [5| giving all the necessary details for the case of
singular potentials V'; here an essential point is an explicit formula for the
integral kernel of the operator e #(0:V)

Let (©,F,P) be a probability space, i.e. § is a o-algebra of subsets of 2 and P
is a non-negative o-aditive function on § with P(Q2) = 1. For any integrable
random variable X : 2 — R we denote its expectation value by

in terms of a Lévy process.

E(X) = /Q X (w)P(dw). (4.1)

For any sub-o-algebra & C § we denote its associated conditional expectation
by E(X | &); this is the unique ®-measurable random variable Y : @ — R
satisfying

/Y(w)P(dw) = / X (w)P(dw), VB € &. (4.2)
B B

Let us recall the following properties of the conditional expectation (see for
example [26]):

E(E(X |®)) = E(X), (4.3)

E(XZ|®) = ZE(X | ®), (4.4)

for any &-measurable random variable Z : 2 — R, such that ZX is inte-
grable.

We also recall the Jensen inequality (|48], [26]): for any convex function
¢ : R — R, and for any lower bounded random variable X : € — R the
following inequality is valid

p(E(X)) < E(p(X)). (4.5)

Following [6], we can associate to our Feller semigroup {P(t)}+>0, defined
in Section 2, a Markov process {(€2,§, Ps), {X¢ }>0, {0+ }+>0}; that we briefly
recall here:

e ) is the set of "cadlag" functions on [0,00), i.e. functions w : [0,00) —
R (paths) that are continuous to the right and have a limit to the left
in any point of [0, c0).
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e § is the smallest o-algebra for which the coordinate functions {X;}+>0,
with X;(w) := w(t), are measurable.

e P, is a probability on 2 such that for any n € N*, for any ordered set
{0 <t; <...<t,} and any family {By,..., By} of Borel subsets in
R?, we have

P. {th c Bl, - ,th S Bn} = (46)

/ dxy %tl (v — xl)/ dzo %trtl (X1 —22) ... / dz, &n,t%l (Tp—1 — xp).
B1 B n

One can deduce that, if E, denotes the expectation value with respect
to P, then for any f € Coo(R?) and for any ¢ > 0 one has

Eo(f o Xi) = [P()f](2). (4.7)

We also remark that P, is the image of the probability Po = P under
the map S, : Q — Q defined by [S,w] (¢) := x + w(t).

e For any ¢ > 0, the map 6 : Q — Q is defined by [6;w] (s) := w(s + t).
If we denote by §; the sub-g-algebra of § generated by the processes

{Xs}o<s<t, then for any ¢t > 0 and any bounded random variable
Y:Q—-R

E: (Yo0;|3:)(w) = Ex,)(Y), Pz—a.e. on. (4.8)

We use the fact that (see [25], [20]) the probability P, is concentrated on the
set of paths X such that Xg = 2 and by the Lévy-Ito Theorem:

i+ -
Xi=z+ / / y Nx (dsdy). (4.9)
0 Jrd

Here Nx (dsdy) := Nx(dsdy) — Nx(dsdy), Nx(dsdy) := E,(Nx(dsdy)) =
dsn(dy) with n(dy) the Lévy measure appearing in (2.1) and Nx a ’counting
measure’ on [0,00) x R? that for 0 < ¢t < #' and B a Borel subset of R is
defined as Nx((t,t'] x B) =

=4 {se ]| X;# X,—, X;X,— € B}. (4.10)

Following the procedure developped in |20] by Ichinose and Tamura one ob-
tains a Feynman-Kac-It6 formula for Hamiltonians of the type H = H4+ V.
In fact we have
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ProproSITION 4.1 Under the same conditions as in Definition 3.1, for any
function u € L?(R%) we have

(e7Hu) (v) = E; ((u o Xt)e_S(t’X)> , t>0,2€R? (4.11)

St X) = i/ot+ [ Fx(asay </01dr (A(X,. +ry)),y> 4

+i/0t . Nx(dsdy)<</01dTA(Xs+7‘y)—A(Xs)> : y> +

+ s V(X,). (4.12)
0

In the sequel we shall take A = 0 and V € C§°(R?). As it is proved in [6],
the operator e *(Ho+V) has an integral kernel that can be described in the
following way. Let us denote by §;— the sub-o-algebra of § generated by the
random variables {X}o<s<s. For any pair (z,y) € [RY? and any t > 0 we
define a measure ,uf)’f; on the Borel space (€2,§;—) by the equality

N67Z:JC(M) = Ex XM %t—s(Xs - y)] y (4.13)

)

for any M € s and 0 < s < t, where xjs is the characteristic function of
M. This measure is concentrated on the family of ‘paths’ {w € Q | Xo(w) =

z, X;—(w) =y} and we have ,ug’zc(Q) = pu(z — ).

PROPOSITION 4.2 Let F': Q — R be a non-negative §—-measurable random
variable and let f : R — R be a positive borelian function. Then the following
equality holds for any t > 0 and any = € RY:

/ dy{ / ua’f;(dw)F(w)e-f5d8V<Xs>} () = (4.14)
R4 Q
= B (Fe bV 5(xy)).

Proof. This is a direct consequence of relations (2.29) and (2.33) from [6]. O

Let us now take A = 0 in Proposition 4.1 and F' = 1 in Proposition 4.2
in order to deduce that the operator e ?Ho+V) ig an integral operator with
integral kernel given by the function

pr(w,y) = /QNB’Z(dw) el VI 50, (2,y) eRIxRL (4.15)
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Proposition 3.3 from [6] implies that the function [0, 00) xRIxR? 3 (t, 2, y)
pi(x,y) € R is non-negative, continuous and verifies py(x,y) = p¢(y,z). We
shall also need the following result.

PROPOSITION 4.3 For any t > 0, any x € R? and any function g : @ — R
that is integrable with respect to the measure ,ug’fc we have the equality:

/ W (dw) g(w) = / 10 (dw) gl + w). (4.16)
Q Q

Proof. 1t is evidently sufficient to prove that for any s € [0,¢) and any M €
we have

t, t0 -
uen (M) = (o Sz (M)
where the map S, : Q — Q is defined by (S;(w)(t) := x + w(t). We noticed
previously the identity P, = Pg o S;!; thus for any function F' : Q — R
integrable with respect to P, we have E,(F') = Eo(F o S;). We remark that
Xs(w+z) =w(s) + = = Xs(w) + x, and using the definition of the measure
tx . .
Ko 0 (4.13), we obtain

i (M) = B [ fra (X = 2)] = Bo [(aar 0 50) i (X0)] = (417)

= Eo | (a1 91-+(X0) | = iy (S5 (0D)) = w0 5] (2.

5. Proof of the bound for N (0; V)

In this Section we will consider A = 0 and we shall work only with a potential
V =V, — V_ satisfying the properties:

o V4 >0,
i V+ S Llloc(Rd))

o V_ e LYRY) N L2 (RY).

We shall use the notations H := Hy+V, Hy := Hy+Vy, H_ := Hy+(-V_)
for the operators associated to the sesquilinear forms h = hg + qy, b =
bo+av,, b— =bo —aqv_.
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Due to the results of Proposition 3.5 we have 0ess(H) = 0ess(Hy) C 0(H4) C
[0,00) and oess(H_) = dess(Hp) = o(Hp) = [0, 00).

For any potential function W verifying the same conditions as V above, we
denote by N (W) the number of strictly negative eigenvalues (counted with

their multiplicity) of the operator Hy + W. The following result reduces our
study to the case V, = 0.

LeEMMA 5.1 The following inequality is true:
N({V) < N(=V_).
In particular we have that N(V') = oo implies that N(—V_) = oc.

Proof. We apply the Min-Max principle (see Theorem XIII.2 in [47]) noticing
that D(h_) = D(ho) D D(h) and h_ < b and we deduce that the operator
H_ has at least N (V) strictly negative eigenvalues. O

Thus we shall suppose from now on that V. = 0.

5.1. Reduction to smooth, compactly supported potentials

In this subsection we shall prove that we can suppose V_ € C'(C)’O(Rd). This
will be done by approximation, using a result of the type of Theorem 4.1
from [50].

LEMMA 5.2 Let V and V, (n > 1) functions as in Proposition 3.4. In
addition, Vi = V4 = 0 for all n > 1 and lim,—o Vy, - = V_ in LL (R?)

and V, _ are uniformly Ho-bounded with relative bound < 1. We set H,, :=
Hy+V,. Then H, — H when n — oo in strong resolvent sense.

Proof. We denote by b,, the quadratic form associated to H,, i.e. bh, =
ha — qn,—, where g, _ is associated to V,, — by (3.7). We have D(h,) =
D(ha) C D(gn,—), and according to Proposition 3.4 there exist a € (0,1)
and 8 > 0 such that

Gn—(v) < aha(v) + B || v, VYve D(ha), Vn > 1. (5.1)

It follows that b, are uniformly lower bounded and the norms defined on
D(h4) by b4 and b, are equivalent, uniformly with respect to n > 1. More-
over, C§°(R%) is a core for Hy, thus for ha, h and b, also.
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Let f € L>(R?) and w, := (H, +i)"'f € D(H,) C D(ha), n > 1. We have
clearly

[ un 1< I [bn(un)| = [(Hptn, un)| <[| f I, Yn>1. (5.2)

From (5.1), the subsequent comments and (5.2) it follows that the sequence
(tn)n>1 1s bounded in D(h4), while the sequence <an/_2un) is bounded in

n>1
L*(R%). Let u € L2(R?) be a limit point of the sequence (uy,),>1 with respect
to the weak topology on L2(Rd). By restricting maybe to a subsequence, we

may assume that there exist 1,7 € L?(RY) such that Hi‘ﬂun — 1) and
n—oo

V1/2un — 7 in the weak topology of L2(R). For g € D (Hi‘m) we have

(1%0.8) = i (50t (030) = )

thus u € D(HY?) and HY*u = 4. Then u € D(q_) and for any g € Cg°(R¢)

(n,9) = nh_)ngo (an7/_2un,g) = lim (un,an,/_zg) = (u, V_l/zg) = (V_l/zu,g) ,

n—~o0

implying V_l/zu =1.

It follows that for every g € C$°(R?) we have

= ()29, 1 Pun) = (Vo 2,V 2un) = i(g, wn) = b(g,u) ~ i(g, ).

Consequently, v € D(H) and (H +1i)u = f. Thus the sequence (uy)p>1 has
the single limit point u = (H +1i)~'f for the weak topology of L?(R%). Tt
follows that (H, £1)™'f — (H £1i)~' f weakly in L?(R%) for n — oo.

By the resolvent identity we get

a—1 2 i N—1 —1 o —1 2
A0 1P= 5 ((F (o = D)70) = (f (Ha 1)) = (H+) 7,
therefore (H, +1i)~'f — (H +1i)~'f in L2(R9). O
A direct consequence of Lemma 5.2 and Theorem VIII.20 from [47] is

COROLLARY 5.1 Under the hypothesis of Lemma 5.2, for any function f
bounded and continuous on R and any u € L*(RY), we have f(H,)u —
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Approximating V_ is done by the standard procedures: cutoffs and regular-
ization. The first of the lemmas below is obvious.

LemMMA 5.3 Let V_ € LﬂOC(Rd) with V_ > 0 and assume that its associated
sesquilinear form is bho-bounded with relative bound strictly less then 1. Let
8 € C5°([0,00)) satisfy the following: 0 < 6 <1, 0 is a decreasing function,

0(t) =1 fort €[0,1] and 6(t) =0 for t € [2,00).

If we denote by 0"(x) = O(|z|/n) and V' = 6"V_, then V' — V_ in
LL (R, 0 <V < VL and the sesquilinear forms associated to V™ are
ho-bounded with relative bound strictly less then 1, uniformly in n € N*.

Moreover, if we denote by h™ the sesquilinear form associated to the operator

Hy 4+ (=V™), we have b™ > 5D > p and 40V (u) — b(u) for any
n—oo

u€D(ha).

If, in addition, V_ € LP(R?), p > 1, then V" € Liomp(RY), [|[V*|» <
IV_|lze for any n > 1, and V™ — V_ in LP(RY).

LEMMA 5.4 (a) Let Vo € LL (RY), V_ > 0 and ho-bounded with relative
bound < 1. Let 0 € C*(R?), 6 > 0 and [5,0 = 1. We set 0,,(z) := n%(nx),
r€RY neN and V,, _ :=V_ %0, € C. In particular, V,, — € C(R?) if

1 d
Then V,,— — V_ in LL _(R?) for n — oo and the functions V,, _ are non-

negative and uniformly hg-bounded, with relative bound < 1. Moreover,
bn(u) — bh(u) for any uw € D(ha), where b, is the quadratic form associ-

ated to Hy, := Hy + (=Vh)-

(b) If, in addition, V_ € LP(R?) with p > 1, then V,,_ € LP(R%) N C>®(RY),
| Voo e <|| V= llze, ¥n > 1 and V,, - — V_ in LP(R?).

Proof. (a) We have for any = € R¢

Vi) = [ duou)Voe=9) = [ ayb@V-@e—ntp. 63)

By the Dominated Convergence Theorem, for any compact K C R¢
[ @) = vo@) < [ ayot) [ dslVoe—nty) = V@) —0,
K R4 K

hence V,, _ converges to V_ in L (R?) when n — oo.

If V_ is relatively small with respect to hg, we use the fact that Hé/z is a
convolution operator (hence it commutes with translations) and using the
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comments after inequality (5.1), we deduce that for any u € C§°(R?) there
exists @ € (0,1) and § > 0 such that

/ de Vo _|uf? = / dy 6. (y) / d=V_(2)|u(z + ) <
R4 R4 R4

< [ atuw) [o I 1 ule +) 1B 461wl +3) 2] =
= o | Hy*u | 4+ | u >

(b) From (5.3) it follows that

Vi lir< | u0ul) | V- =) 1] V- oo

Also, using the Dominated Convergence Theorem, we infer that

Vo = Vol [ dwb(0) [ V-0 = Vo= n7') 1= 0.
O

Thus Lemmas 5.3 and 5.4 imply, for a potential function V_ satisfying the
hypothesis of the Lemma, the existence of a sequence (Vi —)n>1 C C§°(RY)
such that Vi, — >0, || Voo lzo<|| V_ ||ze, ¥n > 1, Vo, — — V_ in LP(R%)
(for p = d and p = d/2) when n — oo and the functions V;, _ are uniformly
ho-bounded with relative bound < 1.

LEMMA 5.5 Assume that there exists a constant C > 0, such that the in-
equality

N(=V,_)<C (/Rd da |V (2)]* + /Rd dz |V, ,_(g;)yd/2> (5.4)

holds for any n > 1. Then one also has

N(-V)<C (/R dz |V_(2)|* + /R dz \v_(g;)ydﬂ) . (55)

Proof. We set H,, _ = Hy + (=Vh—); (En—(N)xer will be the spectral
family of H,, — and (E_(X))aer the spectral family of H_. For A < 0, we
denote by Ny(W) the number of eigenvalues of Hy + W which are strictly
smaller than A (for any potential function W satisfying the hypothesis at the
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begining of this section). It suffices to show that for any A < 0 not belonging
to the spectrum of H_, one has the inequality

NA(—V) < C (/R dz |V (2)|* + /R dz |V_(x)|d/2> . (5.6

Since V,, — converges to V_ in L{ _(R?), cf. Lemma 5.2, H, _ will converge
to H_ in strong resolvent sense. By [29], Ch. VIII, Th. 1.15, this implies the
strong convergence of E,, _(A) to E_()) for any A ¢ o(H_). By Lemmas 1.23
and 1.24 from [29], Ch. VII, for A < 0 such that A ¢ o(H_), one also has
| En,—(A) — E_(\) ||— 0. Let us suppose that there exists some A < 0 not
belonging to o(H_) and such that for it the inequality (5.6) is not verified.
Thus for the given A < 0 we have Vn > 1:

N(~V,_) < C’( de |V_(z)|¢ + /Rd dx|V_(:1:)|d/2> < Ny(=V_).

Rd

But for n large enough, one has Ny(—V_) = Ny(—V,, ) and thus

<C </ dz |V, (z)|* + /dgpﬂ/_ |d/2>§
<o( [ avwr+ [ @)

that is a contradiction with our initial hypothesis. ]

Ny(=V2) = Nx(=Vy-) < N(=Vp ) <

5.2. Proof of the Theorem 1.1 without magnetic field

We shall assume from now on that Vy = 0 and 0 < V_ € C§°(R%). We check

a Birman-Schwinger principle. For a > 0 we set K, := V1/2(H0 —|—a)_1V_1/2;
it is a positive compact operator on L2(]Rd).

LEMMA 5.6

N_o(—=V_) <4 {u > 1] p eigenvalue of K,}. (5.7)

Proof. We introduce the sequence of functions p, : [0,00) — (—00,0], n > 1,
where pi,(A) is the n’th eigenvalue of Hy — AV_ if this operator has at least
n strictly negative eigenvalues and p,(A) = 0 if not. Cf. [47], §XIIL.3, p,, is
continuous and decreasing (even strictly decreasing on intervals on which it
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is strictly negative). Obviously, we have N_,(—V_) <# {n > 1| u,(1) <
—a}. Now fix some n such that u,(l) < —« and recall that p,(0) = 0.
The function p, is continuous and injective on the interval [e,, 1], where
€n = sup{A > 0 | un(N\) = 0}, therefore it exists a unique A € (0,1) such
that p,(A) = —a. Thus

N_o(=Vo)=#{A€(0,1) | In>1 s.t. pp(N) = —a} =
=#{\e€(0,1) | Jp € D(Hp) \ {0} s.t. (Hy — A\V_)p = —ap} <
<#{Ae(0,1)] T € LR\ {0} s.t. Kotp = A1},

where for the last inequality we set ¢ := V_1/2cp, noticing that the equality
(Ho + a)p = AV_¢p implies 1) # 0. O

LEMMA 5.7 Let F : [0,00) — [0,00) be a strictly increasing continuous
function with F(0) = 0. Then F(K,) is a positive compact operator and the
next inequality holds:

N (Vo) < F(1)™! > F(u).
F (1) €0lF(Ka)lF (u)>F (1)

Proof. The first part is obvious. Using (5.7) and F’s monotony, we get

Noo(=Vo) <t{u > 1| peo(Ka)} =4 {F(p) [ n>1,F(u) € o[F(Ka)]} =

- ¥

p>1,F(p)€olF(Ka)

o

Wermt Y F@)

(1) p>1,F(p)€o[F(Ka)

!

O

So, we shall be interested in finding functions F' having the properties in the
statement above, such that F(K,) € B (the ideal of trace-class operators
in L?(R%)) and such that Tr [F(K,)] is conveniently estimated.

Using an idea from [48], we are going to consider functions of the form

F(t) = t/ dse %g(ts), t >0,
0

where g : [0,00) — [0,00) is continuous, bounded and g Z0. Plainly, F :
[0,00) — [0,00) is continuous, F'(0) = 0, satisfies F'(t) < Ct for some C > 0
and the identity

F(t) = /000 dre_rflg(r)
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implies that F is strictly increasing. We shall use the notations F' = ®(g),
g(t) :=tg(t).

In particular, gy(t) = e™, X\ > 0 leads to F)\(¢) = t(1+ At)~!. In the sequel,
relations valid for this particular case will be extended to the following case,
that we shall be interested in:

Joo @ [0,00) = [0,00), goo(t) =01 0 <t <1, goo(t)=1—-1/tif t > 1,
(5.8)
by using an approximation that we now introduce. The first lemma is obvi-
ous.

LEMMA 5.8 Let goo be given by (5.8). For n > 1 we define g, : [0,00) —
[0,1], gn(t) = g(t) for 0 <t < mn, go(t) = 2L —1 forn <t < 2n—1,
gn(t) =0 for t > 2n — 1. Then g, € Cp((0,00)), 0 < gp < gnt1 < goo, V1

and gn, — goo when n — oo uniformly on any compact subset of [0, 00).

LEMMA 5.9 Let f be a nonnegative continuous function on [0,00) such that
limy—oo f(t) = 0. There exists a sequence (f¥)g>1 of real functions on [0,00)
with the properties

(a) Every f* is a finite linear combination of functions of the form gx, A > 0.
(b) fE> A1 > f>0 0n[0,00), Vk > 1,

(c) f¥ — f uniformly on [0,00) when k — oo.

Proof. We define the function h : [0,1] — [0,00), h(s) := f(—Ins) for s €
(0,1], A(0) := 0. It follows that h € C([0,1]). We can chose now two

sequences of positive numbers {e;}r>1 and {J; }r>1 verifying the properties:

klim (ex+0r) =0 and 0 — € > €11+ Opr1 > 0,Vk > 1 (for example we may
—0o0

take 6y = (k+2)7! and e, = (k +2)73). Using the Weierstrass Theorem we

may find for any k£ > 1 a real polynomial P}, such that sup |h(s)—P,(s)| < €
s€[0,1]
and let us denote by P := P]g + 0. We get:

sup |h(s) — Py(s)| < ex + 0, — 0O,
s€[0,1] k—o0

h < h+ 01— €hr1 < Plyq + 01 = Pog1 < h+ 1 + €41 <
§h+5k—€k§P];+5k:Pk

on [0,1]. Thus f¥(t) := Py(e™") defined on [0, 00) for k& > 1 have the required
properties. ]
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PROPOSITION 5.1 Let Foo := ®(goo). The operator Foo(Ky) is self-adjoint,
positive and compact on L*(R?). It admits an integral kernel of the form

[Foo(Ka)] (‘Ta y) = (5'9)

v ) [Taee [t ([ asv-).

which is continuous, symmetric, with [Fs(Ky)] (z,2) > 0.

Proof. The first part is clear. To establish (3.27), we treat first the operator
By := F\(K4), A > 0. We have

By = K,(1+ MK, = By =K, — AB\K,. (5.10)
The second resolvent identity gives
(Ho+ o)™ — (Hy + AV_ 4+ )P = AN(Hy + A\V_ 4+ ) 'V_(Hy + ).

Multiplying by V_l/2 to the left and to the right and taking into account
(5.10) and the definition of K, one gets

By = VY2 (Hy + AWV 4 a) V2 = /2 [ / Tt e—ate—“Ho“V)] vz,
0

By Proposition 4.2 and its consequences, for any u € C'O(Rd), u > 0, we have

[Fx(Ka)u] (z) = (5.11)

v [t [ a | [ aipano ([ asv-o0) | VG,

Since ® maps monotonous convergent sequences into monotonous convergent
sequences, by applying Lemmas 5.8 and 5.9 and the Monotonous Convergence
Theorem (B. Levi), we get (5.11) for A = oo, for the couple (goo, Fro)-

We introduce the notation
t
Gi(t;z,y) ::/ ,ué’f;(dw) g (/ ds V_(XS)> , (5.12)
Q 0

fort >0, z,y € R% 0 < X\ < co. By the consequences of Proposition 4.2,
for any 0 < A\ < oo the function G is continuous on (0,00) x R? x R? and
symmetric in x,y. To obtain the same properties for A = oo, we approximate
Joo by using once again Lemmas 5.8 and 5.9. So it exists a sequence (fy,)pn>1 of
real continuous functions on [0, 00), each one being a finite linear combination
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of functions of the form gy, such that f, converges to g, uniformly on any
compact subset of [0,00). On the other hand, if M > 0 is an upper bound
for V_, we have

t
0 g/ dsV_(X,) < Mt,
0

and NBZ(Q) = o,(x—y). It follows that G is, uniformly on compact subsets
of [0,00) X R? x R?, the limit of a sequence of continuous functions, which
are symmetric in z,y. Thus G4 has the same properties. Moreover, since
0 < goo <1 and goo(t) = 0 for 0 < ¢t < 1, we have G (t;z,y) = 0 for
t <1/M. Using (2.4) and (2.3), there is a constant C' > 0 such that

0< Guoolt;z,y) <C, Vt>0, Va,y € RY (5.13)

From (5.11) for A = oo, we infer that Fio(K,) has an integral kernel of the
form

[Foo(Ka)] (2,y) = V22 (2)V2 (y) /0 T dte G (b2, y), (5.14)

so (3.27) is verified. The continuity of Fio(K,) follows from the Dominated
Convergence Theorem and from (5.13). The symmetry is obvious, and the
last property of the statement follows from Fo.(Ky) > 0. O

REMARK 5.1 By a lemma from [47], §X1.4, Fsx(K,) € By if the function
RY S 2+ [Foo (Ko )] (x,2) is integrable and one has

Tr [Foo(Ky)] = y dz [Foo (Ky)] (z, 2). (5.15)

Setting Doo(t;7) := V_(2)G(t;,2), t > 0,2 € R, we have

(o (K)] (2, 7) = /0 T dte=ot Do (1), (5.16)

To check the integrability of this function, one introduces

Uy : (0,00) x RT = Ry,

bt = 0 [ i g [ as2060).

0

where oo (t) := tgoo(t). The role of this function is stressed by
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LEMMA 5.10 For d > 3 consider the following constant depending only on
d:

Cy:=0C </ ds 5™ goo(s) \// dss_d/zgoo(s)> = C/ ds s~ g (s)
1 1 1

where C' is the constant verifying (2.6). One has

/ dte™ [ da Uy (tz) < C4 < dz V4(z) + dz Vd/2( )> :
0 R4 R4

(5.17)

Rd

Proof. The function g, is convex and % is a probability on (0,%); thus by
the Jensen inequality we obtain

§w</odsV ) /—gootV ).

Let us also remark that for the constant Cy to be finite we have to ask that
d > 3 for the factor s=%2 to be integrable at infinity, because the convexity
condition on g, rather implies that g, cannot vanish at infinity.

Then -
/ dte_at/ dz ¥ (t;x) <
0 Rd

§/ dtt_ze_at/ dz [/ ,uogcdw / ds goo (tV_( ))]
0 R

Using now Proposition 4.3, the last expression is equal to:

[Tarree [ a [ [ i [ asge @] -
:/Ooodtt—%“’t U 1160(dw) / ds/Rddzngoo (tV_( ))]
:/Oodtt_le_at [/ 16 dw]/ dz goo (tV-(2)) =
/ dtt~te oty /dxgoo (tV_(z)) <

<C Rddx [/0 dtt= (1 + 92 (tV_(:E))} <

<T, </Rddxvf(x)+/Rddxvd/2( )>,

where we have used the fact that s < 1 implies goo(s) = 0. O
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The next result gives the connection between Dy, and WU,

/da:Doo(t,a;) :/ dz oo (t, x).
R4 Rd

Proof. First let us verify the following identity for any ¢ > 0:

PRrorosITION 5.2

/deA(t,x) :/ dz W) (t,x), for A€ (0,00) (5.18)
R4 R4

where D)y and ¥y are defined in terms of gy in the same way that D, and
U, are defined in terms of go. Let us point out that both Dy and W) are
positive measurable functions on (0,00) x R? but only the integral on the
left hand side of (5.18) is evidently finite by what we have proven so far. For
simplifying the writing we shall take A = 1. For any r € [0,¢] we denote by

S, = e_T(HO-FVf)V_e—(t—r)(Ho-i-Vf)'

Following the remarks after Proposition 4.2 above, for r € (0,¢), both expo-
nentials appearing in the above right hand side are integral operators with
non-negative continuous integral kernels; thus S, will also be an integral op-
erator with non-negative continuous kernel that we shall denote by K, and
we can compute it explicitely as follows. For a non-negative u € C'O(Rd),
using Proposition 4.1 with A = 0 gives

(Sru)(a) = E, {e= 0 V-V (X, )Ex, [en BTV |
and using the Markov property (4.8) we obtain

o] < [ ] -

= £, o VOO |,

As the function e~ Jo V-(Xp)dpy/_ (X,) : Q@ — R is evidently §,-measurable,
we get (using the property (4.4) of conditional expectations)

(Sru) (@) = Ex {Ex (Vo) I V-0 7u(xy) | §,) }

We use now the property (4.3) and Proposition 4.2 taking F' := V_(X,) in
order to get

(Sr)(@) = Ep {Vo (K)o o V- 057y (x| =
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= [ { [ @ f-ome g,

In conclusion for any (z,7) € R? x R? we have

Ko(z,y) = / HY (dw)V (X, Yo~ Jo V- (Xo)do (5.19)
Q

,T

Using Proposition 4.3 we obtain

/Rd dz Ky (z,z) < /Rd dz [/QMB’Z(dw)V_(w(r))] _

/Rd 4 UQ “gz(dw)v‘(““(”)} = :(0) /Rd dzV_(z) < o0, Vt>0.

Thus, for any r € [0,t] the operator S, is trace class. Moreover, due to the
properties of the trace we have TrS, = TrSy, Vr € [0,t]. We have:

t t t
TrSy = 1/ dr (TrSp) = 1/ dr (TrS,) = 1/ dr [/ dx K,«(ZE,ZL‘):| =
t Jo t Jo t Jo Rd

:%/Rddx [/ngf;(dw)gl </Otdsv_<Xs)>] =/Rd daWy(t, z)

In particular, for any ¢ > 0, Wy(¢;-) is integrable on RY.
On the other hand

TrSo = | Ko(z,z)dz :/ dz V_(x)/ 115" (dw)e™ Jo dpV=-(X,)
R R Q
= dz V_(2)G(t;z,x) = dx Dy (t; ).
R4 Rd

One uses the approximation properties contained in Lemmas 5.8 and 5.9 as
well as the Monotone Convergence Theorem. O

Proof. of Theorem 1.1 for B =0

We can assume Vy = 0 and V_ € C°(R?%). Lemma 5.7 implies that for any

a > 0 one has
N_o(=V_) < Foo (1) M [Foo (KW)] -

Using (5.15), (5.16), we obtain

Tr [Foo(Ka)] = /OOO dte /Rd dz Deo(t; ) =
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o
= / dt e_o‘t/ dz oo (t; x). (5.20)
0 Rd
Inequality (6.1) for B = 0 follows from (5.20) and Lemma 5.10. In addition
Cq = F(1)7'Cq. O

6. Proof of the bounds in the magnetic case

Proof. of Theorem 1.1 for B # 0.

Analogously to Section 5, we can assume Vy = 0 and V_ € C§°(R?). For
a > 0 one sets K, (A) := V_l/Q(HA +a)_1V_1/2. By inequality (3.4) forr =1
and also using Pitt’s Theorem [45], K, (A) is a positive compact operator, and
the same can be said about Fi, [K4(A)]. We show that Fi, [K4(A)] € By and
we estimate the trace-norm. Repeating the arguments from the beginning of
the proof of Proposition 5.1,

Fy [Ko(A)] = VM2 /0 dte e (HATNV)1/2, (6.1)

By using Proposition 4.1, we get for any u € Co(R?), u > 0

[Fx [Ka(A)] ] (x) = (6.2)

— V2 /O T dtetp, [u()g)v_m(Xt)e—iSAWﬂgA < /0 s V_(XS)>] .

Approximating go, by means of Lemmas 5.8 and 5.9 and using the Monotone
Convergence Theorem, we see that (6.2) also holds for the pair (goo, Fixo). The
next inequality follows:

|Foo [Ko(A)] u| < Foo(Ko)|ul, Yue L*(RY). (6.3)
By Lemma 15.11 from [48|, we have Fiy, [K,(A)] € B; and
Tr (Foo [Ka(A)]) < Tr (Fx [Ka)) - (6.4)

Denoting by N_,(B,—V_) the number of eigenvalues of Hy — V_ strictly
less than —q, analogously to Lemmas 5.6 and 5.7, we deduce that

N_o(B,~V_) < Fao(1) ™M Tr (Fi [Ka) - (6.5)

Inequality (6.1) follows from (6.5) by using the estimations at the end of
Section 5. The constant Cy is the same as for the case B = 0. ]
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Proof. of Corollary 1.1. The idea of the proof is standard (cf. [48] for
instance), but one has to use parts of the arguments from the proof of The-
orem 1.1 in the case B = 0.

1. We show that it is enough to treat the case V; = 0.

We denote by N (resp. N_) the number of strictly negative eigenvalues of
Hp+V (resp. Ha+ (—=V_)). We have N,N_ € [0,00] and the min-max
principle shows that N < N_. In addition, if H4 + V has strictly negative

eigenvalues A\ < Ao < ..., then Hq+(—V_) has strictly negative eigenvalues
A <Ay < ... and )\j_ < Xj, j > 1. Therefore, one has 2]21 ]Aj\k <
> st AT

2. We show that treating compactly supported V_ is enough (remark that
this property implies that V_ € LP(R?) for any p € [1,d + k]).

We take into account the approximation sequence defined in Lemma 5.3. The
sequence of forms (h™),>1 satisfies the hypothesis of Theorem 3.11, Ch. VIII
from [29]. If we denote by A; < Ao < ... the strictly negative eigenvalues

of Ha +V and by )\gn) < )\én) < ... the strictly negative eigenvalues of
H® = Hy + V(™ once again by Theorem 3.15, Ch. VIII from [29], we
have )\gn) > Aj, Vj,n € N* and )\gn) converges to A;. So it will be sufficient
to prove (6.1) for the operators H™.

3. We assume from now on that V = —V_, V_ € L4*(R?) (k > 0) and that
supp(V_) is compact. Let Sy > 0 and for 5 € (0, Fo] let

A <A< <A, <0

be the eigenvalues of H = Hy + (—V_) strictly smaller than —( and let
M <A< <Ay < 0
be the distinct eigenvalues with m; the multiplicity of X;, 1 < j < M(6).

We have N_, := N_,(B,—V_). Using the definition of the Stieltjes integral
and integration by parts, we get

N_g M(B) M(B) 8

k N |k N |k k
SN = DT mNE =Y Al (ijﬂ —ij) Z/A IA[FdNy =
j=1 j=1 j=1 !

-p
= |BI*N_5+ k/ IAFINY dA. (6.6)

A1
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We denote by I the last integral and use (6.5) and (5.20) and the arguments
in the proof of Lemma 5.10 to estimate I:

j /ﬁ N da = [Fa (1)) /ﬁ

1
I F (K )da =

o) -1
= [Fye(1)] /Rd dx/o dt‘I’oo(t,ZL")/ﬁ daaf e <

00 —A1
< [Fao (D] /Rd da;/o dtt_lét(O)goo(tV_(a;))/ﬁ daaf~lemot <

00 —A1
<C [Foo(l)]_l/ dx/ dt <t_d_1+ t_d/z_l) Goo (tV_ (a:))/ doaf~tet,
Rd 0 B

The « integral may be bounded by
[e.e] oo
/ daafle ot = t_k/ dssFle™® < OtF.
0 0

Recalling that goo(t) = 0 for t < 1 and goo(t) =t — 1 for t > 1, we get that
Goo(tV_(x)) = 0 for V_(z) = 0 and for V_(x) >0

/OOO dtt=*F (t‘d‘l + t‘d/z‘l) oo (tV_ () =

V()] /1 skl q)ds 4 [V (2)] Y2 /1 a2k (g 1),

the integrals being convergent for d > 2.

Using these estimations in (6.6) we conclude that

N_g
X (ot -1 < of [ b+ [ Vo,
thus
N—30)
; <\/\j!k - \ﬂ!k) < C{/Rd Vo (2)]* de + /Rd V()42 dx},

with the constant C' not depending on 3 or By. Taking the limit 3\, 0 ends
the proof. O
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