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An Introdution to Monotoniity Methods 471. IntrodutionMany nonlinear kineti equations for omplex systems appear as generaliza-tion of the lassial Boltzmann equation (see, e.g. [4℄). The last years havebeen marked by an inreased interest in the mathematial properties of suhmodels. This an be explained by various appliations not only in physis,astrophysis and hemistry (e.g. studies of simple and omplex/reating �u-ids, granular media, oagulation-fragmentation, formation of planetary rings,galaxy ollision) but also in modeling evolution proesses in immunology,tra� �ow, ommuniation networks, et.In many situations, the above equations are phenomenologial or mirosopimodels that desribe the evolution of various populations (marosopi sys-tems) of many well individualized, objets (e.g. rare�ed gas partiles, ellsnetworks signals et.) interating among themselves. The interations are(loalized) mirosopi proesses: a) any interation has a very short du-ration, with respet to the time-sale of the marosopi evolution; b) thenumber of partners of any interation is very small, with respet to the totalnumber of the omponents of the population. Depending on the model, an in-teration may hange the state, nature and/or the number of the partiipantsin interation. This may result in modi�ations of the values of the physialquantities haraterizing the states of the interating objets. However, suhmodi�ations must be onsistent with ertain balane laws (e.g. onservation/dissipation laws ) imposed by the peuliarities of the mirosopi proesses.The problem of the existene and uniqueness of solutions of the above modelsis not only of an aademi interest. Indeed, good riteria for the existene ofgeneral solutions and a detailed study of the properties of the solutions anbe partiularly useful in obtaining e�etive onvergent numerial shemes forthe models.The above models present some mathematial properties, similar to those ofthe lassial Boltzmann equation, in partiular similar monotoniity proper-ties (with respet to the order). This made possible to extend nontriviallymonotoniity methods, initially introdued for the lassial Boltzmann equa-tion, [2℄ (see also [28℄) to study these models [18℄, [27℄, [9℄, [7℄. Reentlythe ideas of [2℄ and [28℄) have been reonsidered nontrivially within a moregeneral, abstrat framework, [11℄, [12℄, [13℄. The present work is a surveyof the reent progress in the domain, and inludes �ve setions and an Ap-pendix. This Introdution is the �rst Setion. The next Setion, is a briefpresentation, at formal level, of some relevant examples of Boltzmann modelsfor omplex systems. In Setion 3, we introdue a lass of abstrat evolution



48 Ceil Pompiliu Grünfeldproblems, as a generalization of the examples onsidered in Setion 2. Thenwe develop the general existene theory based on monotoniity arguments.Setion 4 is devoted to appliations. Finally, Setion 5 ontains onlusionsand open problems.2. Boltzmann-like kineti modelsIn this setion we present several nonlinear models with nonlinear singulari-ties, that exhibit similar isotoniity properties. In very general terms, theseequations are essentially desribed by nonlinear evolution equations of theform
df

dt
= Af +Q(t, f), t > 0, (2.1)formulated in the positive one of some suitable ordered funtion spae X,usually an ordered Banah spae. The unknown f = f(t) haraterizes thestate of the marosopi system at time t. The two terms of the r.h.s. ofEq.(2.1), Af (possibly A = 0) and Q(t, f) desribe the free motion and theontribution of the interation proesses, respetively. From a mathematialpoint of view, A is the generator of a evolution linear group in X, while

Q(t, ·) is a nonlinear integral operator.In many situations, we an write Q(t, ·) = Q+(t, ·)−Q−(t, ·), where Q+(t, ·)and Q−(t, ·) are positive and isotone with respet to the order of X. More-over, Q+(t, ·) and Q−(t, ·) satisfy ertain relations -marosopi balane laws-determined by the mirosopi balane properties.In this work we are interested in solving the initial value problem (i.v.p.) forEq.(2.1), whih an take various formulations, depending on the model.2.1. Smoluhowski's oagulation equationSmoluhowski's oagulation equation, [21, 25℄ (see also, e.g., [1℄, for a reentreview), desribes the irreversible evolution of partiles that may oaleseinto larger lusters. The ontinuous version of the Smoluhowski's equationreads
∂

∂t
f = Qc(f) = Q+

c (f) −Q−
c (f) (2.2)



An Introdution to Monotoniity Methods 49for the unknown f(t, y) ≥ 0, the density of lusters of size y ∈ R+ := [0,∞)at time t ≥ 0. Here
Q+

c (g)(y) =
1

2

∫ y

0
q(y − y∗, y∗)g(y − y∗)g(y∗)dy∗, (2.3)

Q−
c (g)(y) = g(y)

∫ ∞

0
q(y, y∗)g(y∗)dy∗, (2.4)with the (oagulation) kernel q : R+ × R+ 7→ R+ a symmetri, measurablefuntion.We assume that there exist the onstants q0, q1 ≥ 0 and 0 ≤ α ≤ β, suhthat

q(y, y∗) ≤ q0 + q1(y
αyβ

∗ + yβyα
∗ ) (y, y∗ ≥ 0), (2.5)where

α+ β ≤ 1. (2.6)Condition (2.5) inludes the ase when either q0 = 0 or q1 = 0. Withoutloss of generality, we an assume that q1 > 0 (indeed the situation when qis bounded by a onstant an be onsidered as a partiularization of (2.5) tothe ase where q1 > 0 and α = β = 0).The following property of the Smoluhowski's model is essential for our anal-ysis. Formally, if g, ψ : R+ 7→ R are measurable, then
∫ ∞

0
ψ(y)

[
Q+

c (g)(y) −Q−
c (g)(y)

]
dy =

=
1

2

∫ ∞

0

∫ ∞

0
ψ̃(y, y∗)q(y, y∗)g(y)g(y∗)dydy∗, (2.7)(provided that the integrals exist), where

ψ̃(y, y∗) := ψ(y + y∗) − ψ(y) − ψ(y∗). (2.8)Property (2.7) follows from the hange of variables (y, y∗) → (y − y∗, y∗) inthe �rst term of the l.h.s. of (2.7), and then applying Fubini's theorem.In partiular, if ψ(y) = y in (2.7), then
∫ ∞

0
Qc(g)(y)ydy = 0. (2.9)This gives formally the mass onservation for Eq. (2.2).



50 Ceil Pompiliu GrünfeldSimilar onsiderations as before an be made for the disrete version of theSmoluhowski equation
ċj =

1

2

j−1∑

k=1

Qj−k,k(c(t)) −
∞∑

k=1

Qj,k(c(t)), cj(0) = cj,0 ≥ 0 (j = 1, 2, ...),(2.10)where Qj,k(c) := q(k, j)ckcj , is de�ned by the same symmetri oagulationkernel introdued before, subjet to (2.5), (2.6), and the omponent cj(t) ≥ 0of c(t) := (cj(t)) is interpreted as the onentration of lusters of size j attime t ≥ 0.2.2. Povzner-like model with dissipative ollisionsThe model desribes a rare�ed mono-omponent �uid of partiles of unitmass, evolving in the free spae with dissipative (onservative) binary olli-sions, i.e., ollisions resulting in the loss (onservation) of the kineti energyof the enounters.Aording to the model, [7℄, the post-ollision veloities v′, w′ are related tothe pre-ollision veloities v and w by
v

′
= v− (1− β(n))〈v − w,n〉n, w

′
= w + (1− β(n))〈v−w,n〉n, (2.11)where 〈·, ·〉 is the Eulidean produt in R

3 and n ∈ Ω - the unit sphere in R
3.Here, β : Ω 7→ [0, 1/2) is a given measurable funtion. The total momentumis onserved in ollisions, v′ + w′ = v + w, but the kineti energy is lost

∣∣v′
∣∣2 +

∣∣w′
∣∣2 = |v|2 + |w|2 − 2β(n)(1 − β(n)) |〈v − w,n〉|2 , (2.12)exepting the ase β = 0, when the ollisions beome elasti.For eah �xed n ∈ Ω, the transformation R

3 × R
3 ∋ (v, w) 7→ (v′,w′) ∈

R
3 × R

3 is invertible. The inversion formulae are
v̂ = v −

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n, ŵ = w +

(
1 − β(n)

1 − 2β(n)

)
〈v − w,n〉n.(2.13)Formally the above model reads

∂

∂t
f = −v · ∇xf +Q+

d (f) −Q−
d (f) (2.14)where f = f(t,x,v) is the one-partile distribution funtion, depending ontime t ≥ 0, position x ∈R

3, and veloity v ∈R
3 of the so-alled test partile,
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Q+

d and Q−
d are the so-alled nonlinear gain and loss operators, respetively,and desribe the in�uene of the ollisions on the evolution of f . They areformally given by

Q+
d (g)(x,v) =

=

∫ R

0
dr

∫

Ω×R3

|〈n,v − w〉|γ

(1 − 2β(n))1+γ P (r,n)g(x, v̂)g(x + rn, ŵ)dndw (2.15)and
Q−

d (g)(x,v) = g(x,v)

∫ R

0
dr

∫

Ω×R3

|〈n,v −w〉|γ P (r,n)g(x + rn,w)dndw,(2.16)respetively, where P : R+ × Ω 7→ R+ is a given measurable funtion with
P (r,n) = P (r,−n) assumed to satisfy

P (r,n) ≤ c0r
2 (r ≥ 0, n ∈Ω), (2.17)for some onstants c0 > 0, 0 ≤ γ ≤ 1, and R > 0, spei� to the ollisionproesses.The basi property of the model is the formal identity

∫

R3

ψ(v)
[
Q+

d (g) −Q−
d (g)

]
dv =

=

∫

Ω×R3×R3

ψ̃(v,w,v′,w′)
|〈n,w − v〉|γ

2
P (r,n)g(x,v)g(x + rn,w)dndvdw,(2.18)where ψ : R

3 7→ R and g : R
3 × R

3 7→ R are measurable funtions suh that(2.18) is well de�ned, and
ψ̃(v,w,v′,w′) := ψ(v′) + ψ(w′) − ψ(v) − ψ(w), (2.19)with v′ and w′ given by (2.11). We dedue easily (2.18), performing thehange of variable (v,w) → (v̂, ŵ) in the �rst term of the l.h.s (2.18).If β ≡ 0, then (2.14) yields a version of the so-alled generalized Boltzmannequation with binary elasti (onservative) ollisions, analyzed in [3℄.2.3. Povzner-like model with hemial reationsWe reall here a Povzner-like model with hemial reations introdued in [8℄for a reating gas mixture of N speies Ai and mass mi, 1 ≤ i ≤ N , withoutinteration with photon �elds. We assume binary reations

Ai +Aj → Ak +Al, 1 ≤ i, j, k, l ≤ N, (2.20)



52 Ceil Pompiliu Grünfeldwhere ase i = j = k = l orresponds to non-reative (elasti) proesses.Aording to the model of [8℄, for eah speies i, the gas partiles have oneinternal energy state, say Ei ≥ 0, 1 ≤ i ≤ N . It is assumed that the reationsare onsistent with the onservation of mass, momentum and total energy,i.e., mi +mj = mk +ml, and miv +mjw = mkv
′ +mlw

′, as well as
mi |v|2

2
+ Ei +

mj |w|2
2

+ Ej =
mk |v′|2

2
+ Ek +

ml |w′|2
2

+ El, (2.21)where (v,w) are the pre-reation veloities of the partiles (i, j) and (v′,w′)are the post-reation veloities of the partiles (k, l)The onservation relations give
mkml |v′ −w′|2

2(mk +ml)
=
mimj |v − w|2

2(mi +mj)
+Ei+Ej−Ek−El := tkl,ij(v,w) (2.22)and obviously, (2.20) ours, provided that

tkl,ij(v,w) ≥ 0. (2.23)It an be easily seen that (v′,w′) an be represented in terms of the pre-reation veloities (v, w) and of the unit vetor n = (v′ −w′) |v′ − w′|−1as
v′ =

miv +mjw

mi +mj
+

21/2(ml)
1/2

m
1/2
k (mi +mj)1/2

tkl,ij(v,w)1/2n := vkl,ij(v,w,n)(2.24)and
w′ =

miv +mjw

mi +mj
− 21/2(mk)

1/2

m
1/2
l (mi +mj)1/2

tkl,ij(v,w)1/2n := wkl,ij(v,w,n)(2.25)It is onvenient to extend the de�nitions of vkl,ij(v,w,n) and wkl,ij(v,w,n)by setting
vkl,ij(v,w,n) = wkl,ij(v,w,n) =

miv +mjw

mi +mj
(2.26)whenever tkl,ij(v,w) < 0. By virtue of the above formulae one has

vkl,ij(v,w,n) = vkl,ji(w,v,n) = wlk,ij(v,w, −n) (2.27)and
wkl,ij(v,w,n) = wkl,ji(w,v,n) = vlk,ij(v,w, −n). (2.28)



An Introdution to Monotoniity Methods 53Eah speies 1 ≤ i ≤ N is desribed by the one-partile distribution funtion
fi = fi(t,x,v) depending on time t ≥ 0, position x and veloity v.Assuming moleular haos and (instant) point loalized reations, the kinetimodel is derived following the original argument for the lassial Boltzmannequation. The obtained model reads, [8℄,

∂

∂t
fi = −v · ∇xfi +Q+

i (f) −Q−
i (f), 1 ≤ i ≤ N, (2.29)where f = (f1, ..., fN ) and, formally,

Q+
i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×S2

pkl,ij(y,v,w,n)gk(t,x,vkl,ij)gl(t,x + y,wkl,ij)dydwdn,(2.30)
Q−

i (g)(x,v) =

=

N∑

j,k,l=1

∫

R3×R3×Ω
rkl,ij(y, v,w,n)gi(t,x,v)gj(t,x + y,w)dydwdn. (2.31)Here, g := (g1, ...gN ) with gi : R

3 × R
3 → R+, Ω := {n ∈ R

3 : |n| =
1}, gk(·, ·,vkl,ij) = gk(·, ·,vkl,ij(v,w), gl(·, ·,wkl,ij) = gl(·, ·,wkl,ij(v,w,n)).Moreover, pkl,ij, rkl,ij : R

3×R
3×R

3×Ω → [0,∞), are given measurable mapswith the property that if (v,w) /∈ Dij,kl := {(v,w) ∈ R
3 ×R

3 : tij,kl(v,w) ≥
0}, then

pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0. (2.32)One assumes that the following properties are satis�ed a.e.:
pkl,ij(y,v,w,n) = rkl,ij(y,v,w,n) = 0 (y > R), (2.33)

pkl,ij(y,v,w,n) = pkl,ij(−y,v,w,n),

rkl,ij(y,v,w,n) = rkl,ij(−y,v,w,n), (2.34)
pkl,ij(y,v,w,n) = pkl,ji(y,w,v,n) = plk,ij(y,v,w,−n), (2.35)
rkl,ij(y,v,w,n) = rkl,ji(y,w,v,n) = rlk,ij(y,v,w,−n). (2.36)Moreover,
∫

R3×R3×Ω
ϕ(v,w)pkl,ij(y,v,w,n)ψ(vkl,ij ,wkl,ij)dvdwdn =
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=

∫

R3×R3×Ω
ϕ(vij,kl,wij,kl)rij,kl(y,v,w,n)ψ(v,w)dvdwdn (2.37)for all (ψ,ϕ) : R

3×R
3 → R, provided that whihever side of (2.37) is de�ned.The kernels pkl,ij, rkl,ij : R

3 × R
3 × Ω → [0,∞) arry the information of thereation proesses. For a gas omposed by one speies of partiles with elastiollisions, the above system of equations redues to the so-alled generalizedBoltzmann equation.Our main hypothesis is as follows:Assumption 2.1 There exist onstants cq > 0 and 0 ≤ q ≤ 1 suh that

∫

Ω
rkl,ij(y,v,w,n)dn ≤ cq

[
1 + |v|2 + |w|2

]q
. (2.38)Observe that sine rkl,ij and pkl,ij are related by (2.37), then the abovehypothesis is also an impliit ondition on pkl,ij.Under Assumption (2.38), one an show that, at least, formally,

N∑

i=1

∫

R3×R3

[Q+
i (g)(x,v) −Q−

i (g)(x,v)]hi(x,v)dvdx =

=
1

4

N∑

i,j,k,l=1

∫

D
[pkl,ij(y,v,w,n)gk(x,vkl,ij)gl(x + y,wkl,ij)

−rkl,ij(y,v,w,n)gi(x,v)gj(x + y,w)]

×[hi(x,v) + hj(x + y,w) − hk(x,vkl,ij) − hl(x + y,wkl,ij)]dxdydvdwdn(2.39)for all g=(g1, ...gN ) and h=(h1, ...hN ), with gi, hi ≥ 0, for whih the integralsare de�ned. Here, D := R
3 × R

3 × R
3 × R

3 × Ω. The last property followsby applying (2.27), (2.28), (2.32)�(2.37), as well as the invariane propertiesof the sums in (2.39), with respet to the hange of variables (x,y,n) →
(x′,y′,n′) := (x + y,−y,−n), and a suitable interhanges of summationindies.At least, at formal level, property (2.39) implies the bulk onservation formass, momentum, and total energy,

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(t,x,v)dxdv =

N∑

i=1

∫

R3×R3

Ψ
(j)
i (x,v)fi(0,x,v)dxdv(2.40)



An Introdution to Monotoniity Methods 55(0 ≤ j ≤ 4), where fi(t) are the omponents of the solution f of Eq. (2.29),and
Ψ

(0)
i (x,v) := mi, Ψ

(4)
i (x,v) := mi |v|2 /2 + Ei, Ψ

(j)
i (x,v) := mivj(2.41)(j = 1, 2, 3), with vj are the omponents of v.2.4. A model with inelasti ollisions and hemial reationsIn this example, we onsider an abstrat system of a Boltzmann-like phe-nomenologial equations, [9, 10, 14℄, for a multi-omponent reating gasof partiles with internal states and disrete values of the internal energy.Thinking a real gas mixture of partiles with internal struture as a mixtureof several hemial speies of mass points with unique internal state, one anassume that any gas partile of the model has only one internal state. Speif-ially, the model refers to a gas onsisting of N hemial speies. A partileof speies n = 1, 2, ..., N is haraterized by mass mn > 0 and internal energy

En. Without loss of generality, one an assume that En ≥ 0, 1 ≤ n ≤ N .It is assumed that the hemial reations are indued by inelasti (possibly)multi-body, instant ollisions. A reation is identi�ed with a ouple (α, β) ∈
M×M, where M := {γ = (γn)1≤n≤N | γn ∈ {0, 1, . . . ,K}} is a multi-indexset. Here α = (α1, . . . , αN ) ∈ M and β = (β1, . . . , βN ) ∈ M designate thepre-ollision and post-ollision hannels, respetively, with 0 ≤ αn, βn ≤ Kpartiipants of speies n; 1 ≤ n ≤ N . Any ouple of the form (γ, γ) ∈ M×Mis identi�ed with a multi-body elasti ollision with γn ollision partners ofspeies n; 1 ≤ n ≤ N . The number of partiles in some hannel γ ∈ M is
|γ| :=

∑N
i=1 γi. The family of hemial speies partiipating in hannel γ isdenoted by N (γ) := {i : γi > 0, 1 ≤ i ≤ N}.LetMγ , Vγ(w) andWγ(w) denote the total mass, veloity of the mass enterand total energy, respetively, for the partiles in hannel γ, i.e.,

Mγ :=

N∑

i=1

γimi, (2.42)
Vγ(w) :=

1

Mγ

∑

i∈N (γ)

γi∑

j=1

miwi,j, (2.43)
Wγ(w) :=

∑

i∈N (γ)

γi∑

j=1

(2−1miw
2
i,j + Ei), (2.44)



56 Ceil Pompiliu Grünfeldwhere w = ((wk,i)i∈{1,...,αk})k∈N (γ) represents the ensemble of veloities ofthe partiles in hannel γ. Then, the kineti energy of the partiles (withveloities w) in hannel γ, relative to the frame of the mass enter, reads
Wr,γ(w) = Wγ(w) − MγVγ(w)2

2
−

N∑

i=1

γiEi. (2.45)Obviously, Wr,γ(w) ≥ 0.A gas reation (α, β) may take plae only if it is onsistent with the onser-vation of mass, momentum and energy, i.e.,
Mα = Mβ , Vα(w) = Vβ(u), Wα(w) = Wβ(u). (2.46)We will assume here that elasti ollisions are always present. Therefore, theset CM := {(α, β) ∈ M×M : Mα = Mβ} is nonempty.The Boltzmann-like system of equations for the above model is

∂

∂t
fi = Q+

i (f) −Q−
i (f). (2.47)Here the unknown fi : R+ × R

3 7→ R+ is the one partile distribution fun-tions fi = fi(t,v) (t-time, v-veloity) of the partiles of speies 1 ≤ i ≤ N .In Eq. (2.47), Q+
i (f) and Q−

i (f), with f := (f1, . . . , fN ), are the so-alledloss and gain (nonlinear) operators for the partiles of speies i, respetively.Formally,
Q+

i (g)(v) =
∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[
pβ,α(w,n)(gβ ◦ uβ,α)(w,n)

]
wi,αi

=v

dw̃idn,(2.48)
Q−

i (g)(v) =
∑

α,β∈M

αi

∫

R3|α|−3×Ωβ

[rβ,α(w,n)gα(w)]
wi,αi

=v
dw̃idn, (2.49)where

gγ(w) :=
∏

i∈N (γ)

γi∏

j=1

gi(wi,j), γ ∈ M, (2.50)
Ωγ is the unit sphere in R

3|γ|−3, with γ ∈ M, and dw̃i is the Eulidean ele-ment of area on {
w ∈R

3|α| | wi,αi
= v

}. Here, the funtions uβ,α ∈ C(R3|α|×
Ωβ; R3|β|), and the measurable funtions rβ,α, pβ,α : R

3|α| × Ωβ 7→ R+ aregiven.



An Introdution to Monotoniity Methods 57The following onditions are assumed ([9, 11, 14℄):(B1) rβ,α = pβ,α = 0 unless: |α| ≥ 2 , |β| ≥ 2, (α, β) ∈ CM , and w ∈ D+
β,α :={

w′ ∈ R
3|α| : Wr,α(w′) +

N∑
i=1

(αi − βi)Ei ≥ 0

}.(B2) For eah i ∈ N (α) �xed, pβ,α(w,n), rβ,α(w,n), and uβ,α(w) are in-variant with respet to the interhange of the omponents wi,1, ...,wi,αi
of

w.(B3) If (α, β) ∈ CM , w ∈ D+
β,α, then

(Vβ ◦ uβ,α)(w,n) = Vα(w), (Wβ ◦ uβ,α)(w,n) = Wα(w), (2.51)for all n ∈ Ωβ, and
∫

R3|α|×Ωβ

pβ,α(w,n)ϕ(w,n)(ψ ◦ uβ,α)(w,n)dwdn =

=

∫

R3|β|×Ωα

rα,β(w,n)(ϕ ◦ uα,β)(w,n)ψ(w,n)dwdn, (2.52)for all ϕ : R3|α| 7→ R and ψ : R3|β| 7→ R, for whih the integrals are wellde�ned.We suppose that the reations are reversible, i.e., if rβ,α 6= 0 for some (α, β),then also rα,β 6= 0.From (3.9), it follows that pβ,α and rβ,α are related one to another. Indeed, amore expliit relationship between pβ,α and rβ,α an be derived, as it resultsfrom a general example onstruted in [9, 14℄. Note also here that if oneassumes a mono-omponent gas of partiles with binary elasti ollisions(i.e., N = 1, K = 2, and pβ,α = rβ,α = 0 unless α = β = (1, 1)), then Eq.(2.47) redues to the spae homogeneous lassial Boltzmann equation
∂

∂t
f = Q+(f) −Q−(f), (2.53)where

Q+(f)(v) =

∫

R3×Ω

q(v,w,n)f(v′)f(w′)dwdn, (2.54)
Q−(f)(v) =

∫

R3×Ω

q(v,w,n)f(v)f(w)dwdn. (2.55)



58 Ceil Pompiliu GrünfeldThe notations are f = f(t,v) � the one-partile distribution funtion, v′ =
v − 〈v − w,n〉n, w

′
= w + 〈v − w,n〉n, and n ∈ Ω � the unit sphere in

R
3. Here, the Boltzmann ollision law q is a positive measurable funtion(depending, in our ase, on v and w through the variable v − w).The last ondition of the model onerns the behavior of rβ,α (see [9℄):Assumption 2.2 There are some onstants 0 ≤ q ≤ 1 and cq > 0 suh that
νβ,α(w) :=

∫

Ωβ

rβ,α(w,n)dn ≤ cq(1 +Wα(w))q (w ∈ R
|α|, a.e.), (2.56)for all α, β ∈ M.Obviously, νβ,α(w) = 0, unless (α, β) ∈ CM .A onsequene of (B1), (B2) and (2.56) is the key equality

N∑

i=1

∫

R3

Ψ
(j)
i (v)

[
Q+

i (g)(v) −Q−
i (g)(v)

]
dv = 0 (0 ≤ j ≤ 4), (2.57)for all g = (g1, ..., gN ) with (1+ |v|2)1+qgi ∈ L1(R3; dv), i = 1, 2, ...,N . Here,

Ψ
(0)
i (v) := mi, Ψ

(4)
i (v) :=

1

2
mi |v|2 +Ei, Ψ

(j)
i (v) := mivj (1 ≤ i ≤ N),(2.58)where vj is the j-omponent, j = 1, 2, 3, of v. Equality (2.57) implies, at lestformally, the bulk onservation of mass, momentum and total energy.2.5. A nonlinear von Neumann-Boltzmann equationBesides lassial models, we an also onsider "quantum" kineti models withmonotoniity properties similar to lassial ones.Let X = T (H) be the spae of trae lass selfadjoint operators in someseparable Hilbert spae H. On X, we onsider the order F ≤ G i� (f, Ff) ≤

(f,Gf), ∀f ∈ D(F ) ∩ D(G). Let ‖F‖ := Tr(|F |) be the norm on X.For some orthogonal base {e0, e1, ...} ⊂ H, de�ne the selfadjoint operator
H =

∑

i≥0

µi(ei, ·)ei, (2.59)



An Introdution to Monotoniity Methods 59where {µn}n ⊂ R. Let {U t}t∈R denote the ontinuous group of positiveisometries on X, given by U t(F ) := exp(−iHt)F exp(iHt), i =
√
−1. Con-sider a seond sequene, 0 ≤ λ0 < λ1 < λ2 ≤ ... λn−1 ≤ λn ... ր ∞, as

n→ ∞. Let {
V t

}
t≥0

be the C0 semigroup on X, de�ned by
(ei, V

t(F )ej) := (V t(F ))i,j = exp[−(1 + λiδi,j)t]Fi,j (2.60)where Fi,j := (ei, Fej), and let the in�nitesimal generator of {
V t

}
t≥0

bedenoted by (−Λ). Then
(Λ)i,j(F ) := (1 + λiδi,j)Fi,j , (2.61)hene Λ ≥ I. Clearly, U t leaves D(Λ) ∩ X+ invariant and U tΛ = ΛU t on

D(Λ) ∩X+.Now we an onsider the following example of nonlinear von Neumann-Boltzmann equation X (see also [12℄):
dF

dt
+ i[H,F ] = Q+(F ) −Q−(F ) (2.62)with Q± : D(Λ) ⊂ X → X given by

Q−(F ) := F0,0Tr(ΛF )(

2∑

i=0

Pi), (2.63)and
Q+(F ) := Q−(F ) + L(F ), (2.64)where Pi := (ei, ·)ei and

L(F ) := F0,0Tr(ΛF )(

2∑

i=0

εiPi). (2.65)Here, ε0 = ε (λ1 − λ0)
−1 (λ2 − λ0)

−1, ε1 = −ε(λ1 − λ0)
−1 (λ2 − λ1)

−1, ε2 =
ε(λ2 − λ0)

−1 (λ2 − λ1)
−1 and 0 < ε < (λ0 − λ1) (λ0 − λ2). Thus Q± arepositive operators, and a simple omputation gives

TrQ+(F ) = TrQ−(F ) (2.66)for 0 ≤ F ∈ D(Λ), and
Tr(ΛQ+)(F ) = Tr(ΛQ−)(F ) (2.67)for 0 ≤ F ∈ D(Λ2), so that both TrF (t) and Tr(ΛF )(t) remain onstant withtime.



60 Ceil Pompiliu Grünfeld3. General theory3.1. A monotoniity result for the lassial Boltzmann equa-tionBefore proeeding to a more general analysis, we start with a relevant exam-ple - the Arkeryd's monotoniity result for the Boltzmann equation ([2℄).Spei�ally, in [2℄, the main interest is to solve the Cauhy problem for thespae homogeneous Boltzmann equation (2.47) in the positive one L1
+ of

L1 = L1(R3,dv), namely
d

dt
f = Q(f) ≡ Q+(f) −Q−(f), f(0) = f0 ≥ 0 (t ≥ 0) (3.1)with Q± de�ned by (2.54) and (2.55), respetively.The basi hypothesis is that the ollision kernel q satis�es
q(v,w,n) ≤ Cq(1 + |v|λ + |w|λ) (0 ≤ λ ≤ 2), (3.2)for some onstant Cq > 0. The initial data f0 is supposed to satisfy (at least)the ondition of �nite mass and energy, i.e. ‖f0‖2 <∞, where

‖g‖l :=

∫
(1 + |v|2) l

2 |g(v)| dv. (3.3)Unfortunately, under ondition (3.2), the operators Q± are too singular toallow for applying general methods to the above problem. The idea of [2℄is to approximate Q± by ollision-like operators Q±
m with bounded (henesimpler) kernels qm(v,w) := min{q(v,w),m}, m = 1, 2, ... .Thus one starts by solving the simple model

d

dt
f = Qm(f) ≡ Q+

m(f) −Q−
m(f), f(0) = f0 (t ≥ 0). (3.4)Note that, sine (3.4) is a Boltzmann-type equation, then for "many" g ∈ L1,

∫
ϕi(v)Qm(g)dv = 0, (3.5)where ϕ0(v) = 1, ϕi(v) = vi , i = 1, 2, 3, ϕ4(v) = |v|2. An immediateonsequene is that for any solution f = f(t,v) of (3.4),

‖f(t)‖0 = ‖f0‖0 (t ≥ 0). (3.6)



An Introdution to Monotoniity Methods 61Moreover, if also ‖f(t)‖2 <∞, then
‖f(t)‖2 = ‖f0‖2 . (3.7)Writing the solution of (3.4) as fm, one ould hope that if m → ∞, then

fm onverges somehow to a solution of the original problem (3.1). Anotherkey point in the analysis is to use the above equalities as a priori estimatesin order to replae (3.4) with other (somehow equivalent) equations, moresuitable for monotone iteration with respet to the natural order of L1.Thus, one an �rst prove the following result ([2℄).Proposition 3.1 There exists a unique non-negative solution fm(t,v) ∈ L1of (3.4) for every 0 ≤ f0 ∈ L1.Proof. By (3.6), the positive solutions (in L1) of (3.4) are exatly the positivesolutions of the equation
d

dt
f + C ‖f0‖0 f = Qm(f) + C ‖f(t)‖0 f, f(0) = f0 (t ≥ 0), (3.8)whih satisfy equality (3.6). Here C > 0 is some onstant. Let v(t) :=

exp(−C ‖f0‖0 t). Sine the operators Q±
m are loally Lipshitz in L1, (3.8)has a unique loal solution fm(t), whih is also a unique loal solution to themild equation

f(t) = v(t)f0 +

∫ t

0
v(t− s)[Qm(f)(s) + C ‖f(s)‖0 f(s)]ds. (3.9)De�ne the sequene {fn

m}n by
f1

m = 0, fn
m = v(t)f0 +

∫ t

0
v(t− s)[Qm(fn

m)(s) + C ‖fn
m(s)‖0 f

n
m(s)]ds.(3.10)If C is su�iently large, then the operator X ∋ g → Qm(g) + C ‖g‖0 g ∈ Xis positive. Then the sequene {fn

m(t)}n is positive and inreasing in L1. Asimple indution, making use of (3.5), gives ‖fn
m(t)‖0 ≤ ‖f0‖0. Then bythe monotone ompleteness of L1 (Levi's theorem) {fn

m(t)}n is onvergent,its limit gm(t) satis�es (3.9), and ‖gm(t)‖0 ≤ ‖f0‖0. But by virtue of theuniqueness of the aforementioned loal solution fm(t) (of both (3.8) and(3.9)), learly gm(t) = fm(t) ≥ 0 for t small enough. Moreover, gm(t) extends
fm(t), as the unique solution of (3.8), for all t ≥ 0. It remains to show that



62 Ceil Pompiliu Grünfeldthis solution satis�es (3.6). To this end, one integrates (3.8), with fm assolution, and rearrange onveniently the resulting expression as
fm +

∫ t

0
[Q−

m(fm)(s) + C ‖f0‖0 fm(s)]ds =

= f0 +

∫ t

0
[Q+

m(fm)(s) + C ‖fm(s)‖0 fm(s)]ds. (3.11)As fm(t), Q±
m(fm)(t) ≥ 0, invoking the additivity of the L1 norm, and theproperty ‖fm(t)‖0 ≤ ‖f0‖0, one �nally obtains

0 ≤ ‖f0‖0 − ‖fm(t)‖0 ≤ C ‖f0‖0

∫ t

0
(‖f0‖0 − ‖fm(s)‖0)ds. (3.12)Thus by Gronwall's inequality,

‖fm(t)‖0 = ‖f0‖0 , (t ≥ 0) (3.13)so the proof is onluded. 2An indution involving (3.10), and making use of (3.5) also shows ([2℄) thatif fm is as in Prop. 3.1, and (1 + |v|2)f0 ∈ L1, then (1 + |v|2)fm ∈ L1, and
‖fm(t)‖2 = ‖f0‖2 (t ≥ 0). (3.14)Another important property is the following estimation, uniform with respetto m (see [2℄): for any t∗ > 0,

‖fm(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4, (3.15)for some number 0 < K = K(t∗, ‖f0‖2 , Cq, l). The proof (see the slightlymore general Prop. 1.3 of [2℄) is indutive, and applies (3.10) and the basiinequality ∫

R3

(1 + |v|2) l
2Qm(fm)dv ≤

≤ 3

2
Cqβl[‖fm(t)‖l+λ−θ ‖fm(t)‖θ + ‖fm(t)‖l−θ ‖fm(t)‖λ+θ , (3.16)valid for some βl > 0 and for any 0 ≤ θ ≤ 2. Inequality (3.16) follows (see,e.g., [2℄) from an elementary inequality due to Povzner, [23℄, and will be alsoalled Povzner inequality2.One an prove that fm onverges to a solution of (3.1), under a strongerondition on f0 than in Prop. 3.1. Indeed, one has ([2℄)2Povzner-like inequalities an be also proved for the models presented in theprevious setions.



An Introdution to Monotoniity Methods 63Proposition 3.2 If ‖f0‖l < ∞ for some l ≥ 4, then there exists a uniquesolution f ≥ 0 of problem (3.1) suh that (1 + |v|l)f(t) ∈ L1. Moreover,
‖f(t)‖2 = ‖f0‖2 ( t ≥ 0), and for any t∗ > 0, there is some number K =
K(t∗, ‖f0‖2 , l) suh that ‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗).Proof. Consider the equation,

d

dt
f + hf = Qa

m(f), f(0) = f0 (t ≥ 0), (3.17)where h(v) := C(1 + |v|2) ‖f0(v)‖2 and Qa
m(f) := Qm + hf .If fm is as in Prop. 3.1, but f0 is as in Prop. 3.2, then fm is also the uniquepositive solution of Eq. (3.17), whih satis�es (3.14). Further, onsider

d

dt
f + hf = Qb

m(f), f(0) = f0 (t ≥ 0), (3.18)where Qb
m(f) := Q+

m(f) −Q−(f) + hf .Let V (t) := exp(−th). One an introdue reurrenes similar to (3.10),
f̃1,i

m = 0, f̃n+1,i
m = V (t)f0 +

∫ t

0
V (t− s)Qi

m(f̃n,i
m )(s)ds (n ≥ 1); i = a, b.(3.19)Under ondition (3.2), if C > 0 is su�iently large, the operators Qi

m arepositive and isotone so that the sequenes {
f̃m

n,i
(t)

}
n
are positive and in-reasing (i = a, b). Moreover, if 0 ≤ (1 + |v|2)g ∈ L1, then Qa

m (g) ≥ Qb
m(g)and Qb

m (g) ≥ Qb
j(g) for all m, 0 ≤ j ≤ m. Using the above properties, one�nds by indution that

0 ≤ f̃j
n,b

(t) ≤ f̃m
n,b

(t) ≤ f̃n,a
m (t) ≤ fm(t); 0 ≤ j ≤ m. (3.20)Hene, the inreasing sequenes {
f̃m

n,i
(t)

}
n
are onvergent. Note that ifwe set f b

m(t) := limn→∞ f̃m
n,b

(t), then 0 ≤ f b
j (t) ≤ f b

m(t) ≤ fm(t); 0 ≤
j ≤ m. Then {

f b
m(t)

}
n
is inreasing and ∥∥f b

m(t)
∥∥

2
≤ ‖f0‖2, hene {

f b
m(t)

}
nonverges to some limit f(t), as m→ ∞, and

‖f(t)‖2 ≤ ‖f0‖2 . (3.21)Moreover,
d

dt
f + hf = Q(f) + hf (3.22)



64 Ceil Pompiliu Grünfeldand, by (3.15),
‖f(t)‖l ≤ K ‖f0‖l (0 ≤ t ≤ t∗), l ≥ 4. (3.23)Thus f is a solution of (3.1) if there is equality in (3.21). This an be provedby estimating sm := fm − f b

m(t). Indeed, as fm is the solution of (3.17),(3.18), one an write
d

dt
sm + hsm = Qa

m(fm) −Qb
m(f b

m). (3.24)A short omputation, whih takes advantage that sm is non-negative, andapplies (3.23), gives (under hypothesis (3.2))
‖sm(t)‖2 ≤ tCK ‖f0‖4 sup

0≤s≤t∗

‖sm(s)‖2 + o(1) (3.25)as m→ ∞ (with C > 0 su�iently large, and K, t∗ as in (3.23)).Then for t su�iently small, ‖sm(t)‖2 → 0 as m → ∞, hene ‖f(t)‖2 =
limm→∞

∥∥f b
m(t)

∥∥
2

= limm→∞ ‖fm(t)‖2 = ‖f0‖2.To prove the uniqueness part of the proposition, observe that if g ≥ 0 satis�esEq. (3.1), and if ‖g(t)‖2 ≤ ∞, then ‖g(t)‖2 = ‖f0‖2. But g also satis�es themild form of (3.22). Then g ≥ f , by the onstrution of f . 2Variants of Arkeryd's monotoniity argument were suessfully applied toother models lose to the lassial Boltzmann equation, [18℄, [27℄, [9℄, [7℄.Thus, developing the above line of reasoning within a more general frameworkhas beome a tempting task. But this is not trivial, and requires new ideas (aswill be seen in this setion). Indeed, for instane, too key issues of Arkeryd'sanalysis seem rather spei� to the model onsidered in [2℄: a) hoie of apriori estimates; b) onstrution of suitable regular operator approximationsof the Boltzmann ollision operators.3.2. An abstrat modelWe begin with some terminology and fats related to Banah latties ([17,24℄).The frame of our analysis is a separable AL-spae X with norm ‖·‖, order
≤, and positive one X+. We reall that an (AL) spae, is a Banah lattiewhose norm satis�es

‖g + h‖ = ‖g‖ + ‖h‖ (g, h ∈ X+). (3.26)



An Introdution to Monotoniity Methods 65As X is an AL-spae, if h : R 7→ X+ is Bohner integrable, then property(3.26) gives ∥∥∥∥
∫

S
h(s)ds

∥∥∥∥ =

∫

S
‖h(s)‖ ds (3.27)for any measurable set S of R, the integral being in the sense of Lebesgue.Examples of AL-spaes are L1-real and the real subspae of self-adjoint trae-lass operators (with trae norm)3.Related to the order of X, we shall also use the standard notations (g ≥

h)⇔(h ≤ g), as well as (g < h)⇔( h > g)⇔(g ≤ h and g 6= h). AL-spaesare monotone omplete, in the sense that any inreasing (i.e., direted ≤)norm-bounded family onverges. The norm of an AL-spae is order ontin-uous, i.e., any direted ≥ �lters that onverges to 0 is also norm onvergentto 0 . A map Γ : D(Γ) ⊂ X 7→ X, with D(Γ) ∩ X+ 6= ∅, is alled positive(stritly positive) if 0 ≤ Γg for 0 ≤ g ∈ D(Γ) (if 0 < Γg for 0 < g ∈ D(Γ)).Further, Γ : D(Γ) ⊂ X 7→ X is alled isotone (stritly isotone) if Γg ≤ Γh,whenever g ≤ h (if Γg < Γh, whenever g < h), g, h ∈ D(Γ). Obviously,if Γ : D(Γ) ⊂ X 7→ X is isotone, 0 ∈ D(Γ) and 0 ≤ Γ(0), then Γ is posi-tive. We say that a subset M ⊂ X is p-saturated (positively saturated) if
M∩X+ 6= ∅, and from 0 ≤ g ≤ h ∈ M, it follows that g ∈ M. An operator
Γ : D(Γ) ⊂ X 7→ X will be alled o-losed (losed with respet to the or-der) if for any inreasing sequene {gn} ⊂ D(Γ) suh that {gn} is inreasingand onvergent (in symbols, ր) to some g, and {Γgn} is Cauhy, one has
g ∈ D(Γ) and limn→∞ Γgn = Γg. Clearly, any losed mapping is o-losed.We reall (see, e.g., [16℄) that if Γ : D(Γ) ⊂ X 7→ X is a losed linearoperator, then

Γ

∫

S

h(s)ds =

∫

S

Γh(s)ds. (3.28)for any funtion h Bohner integrable on some measurable set S ∈ R, withvalues in D(Γ), and suh that Γh is Bohner integrable.We reall that a positive C0 semigroup on X is a C0 semigroup of posi-tive linear operators on X. If {
St

}
t≥0

is a positive C0 semigroup on X,then its in�nitesimal generator G is densely de�ned and losed (as the in-�nitesimal generator of a C0 semigroup). Moreover, Gk is densely de�nedand losed, k = 2, 3, ... . Additional useful properties are olleted in thefollowing lemma.Let I denote the identity on X. Set D∞
+ (G) := ∩∞

k=1D(Gk) ∩X+.3Atually, aording to Kakutani's theorem, [24℄, every AL-spae is isometriallyisomorphi (as an ordered vetor spae) to a spae of type L1.



66 Ceil Pompiliu GrünfeldLemma 3.1 ([11℄)a) The sets D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are dense in X+.b) Suppose that there is some number γ ≥ 0 suh that

(G+ γI)g ≤ 0 (g ∈ D(G) ∩X+). (3.29)Then D(Gk) ∩X+, k = 1, 2, ..., and D∞
+ (G) are p-saturated. Moreover, forany h ∈ X+,

0 ≤ Sth ≤ exp(−γt)h (t ≥ 0), (3.30)and there is an inreasing sequene {hn} ⊂ D∞
+ , suh that hn ր h as n→ ∞.Motivated by the examples of the previous setion, it is of interest to onsiderthe following abstrat i.v.p., [11℄,

df

dt
= Q(t, f) = Q+(t, f) −Q−(t, f), f(0) = f0 ∈ X+ (t > 0), (3.31)formulated in X+ (the partiular autonomous ase is not exluded).In Eq. (3.31), Q+ and Q− are mappings de�ned from R+×D to X, for some

D ⊂ X suh that D ∩X+ is dense in X+.The following properties are assumed for Q±:a) For a.e. t ≥ 0, the operators Q±(t, ·) : D 7→ X are positive and isotone.b) The mappings R+ ∋ t 7→ Q±(t, g(t)) ∈ X+ are measurable for anyLebesgue measurable funtion g : R+ 7→ X that satis�es g(t) ∈ D ∩ X+a.e. on R+.) For a.e. t ≥ 0, the operators Q±(t, ·) are o-losed and their ommondomain D is p-saturated.We are interested in the existene and uniqueness of positive (i.e., in X+)strong solutions of Eq. (3.31) under additional hypotheses whih abstratfurther properties of the Boltzmann model.We reall that a funtion f : R+ 7→ X is a strong solution of Eq. (3.31), if itis absolutely ontinuous on R+, di�erentiable a.e. on R+, satis�es Eq. (3.31)a.e. on R+, and veri�es the initial ondition. Equivalently, f is a strongsolution of problem (3.31) if it is solution of the integral equation
f(t) = f0 +

∫ t

0
Q(s, f(s))ds (t ≥ 0), (3.32)where the integral is in the sense of Bohner.



An Introdution to Monotoniity Methods 67We also onsider the following problem related to Eq. (3.31)
df

dt
= Af +Q(t, f), f(0) = f0 ∈ X+ (t > 0), (3.33)with Q as in Eq. (3.31). Here A is the in�nitesimal generator of a C0 groupof positive linear isometries on X, whih ommutes with Λ.We are interested in the existene and uniqueness of mild solutions of Eq.(3.31) in X+, i.e, solutions of the integral equation

f(t) = U tf0 +

∫ t

0
U t−sQ(s, f(s))ds (t ≥ 0) (3.34)in X+, where {

U t
}

t∈R
is the C0 group of positive linear isometries on X,generated by A (the integral is in the sense of Bohner).As the above model is still too general for developing an existene theory ofsolutions, additional hypotheses are needed. The examples of the previoussetion suggest to assume some sort of dissipation (onservation) property,[11℄. This laims the existene of a positive, densely de�ned, losed linearoperator Λ : D(Λ) ⊂ X 7→ X suh that, for any positive solution f(t) ∈

D(Λ2) of Eq. (3.31), the quantity ‖Λf(t)‖ is dissipated (onserved), i.e., isdereasing (onstant) in t, and ∥∥Λ2f(t)
∥∥ is loally bounded in t. The "lawof derease" of ‖Λf(t)‖ an be used as a "natural" a priori estimate4. Inpartiular,

‖Λf(t)‖ ≤ ‖Λf0‖ (t ≥ 0). (3.35)To be preise, we introdue the following "dissipation" property ([11℄). Let
M be a subset of D ∩X+ dense in X+.Definition 3.1 ([11℄) A losed positive linear operator Γ : D(Γ) ⊂ X 7→
X is alled of type D on M (with respet to Eq. (3.31)) if M ⊂D(Γ),
Q±(t,M) ⊂ D(Γ) a.e. on R+, and for any g ∈ M,

0 ≤ ∆(t, g; Γ, Q) :=
∥∥ΓQ−(t, g)

∥∥ −
∥∥ΓQ+(t, g)

∥∥ (t ≥ 0 a.e.). (3.36)If Γ is of type D on M, then the following property an be easily establishedby making use of (3.27) and (3.28).Lemma 3.2 ([11℄) Let g0, g(t), h(t) ∈ M, t ≥ 0 a.e., with Q±(·, h(·)),
ΓQ±(·, h(·)) ∈ L1

loc(R+;X+), and
g(t) ≤ g0 +

∫ t

0
Q(s, h(s))ds (t ≥ 0). (3.37)4This an take various forms in appliations, depending on the form of Λ and

Q, e.g., onservation energy, in the ase of the model of [2℄.
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‖Γg(t)‖ +

∫ t

0
∆(s, h(s); Γ, Q)ds ≤ ‖Γg0‖ (t ≥ 0). (3.38)Moreover, (3.38) holds with equality sign for any t ≥ 0, provided that thereis equality in (3.37) for all t ≥ 0.On the other hand, in determining the behavior of ∥∥Λ2f(t)

∥∥, a major role ap-pears to be played by the Povzner inequality (3.16). This has to be somehowinluded in the model.Now we are in position to omplete the setting of Eq. (3.31) with additionalhypotheses, making more preise the above onsiderations.Spei�ally, we assume that there is a linear operator Λ : D(Λ) ⊂ X 7→ X,with D(Λ) ⊂ D and Q±(t,D(Λk)∩X+) ⊂ D(Λk−1), t ≥ 0 a.e., k = 2, 3, suhthat:
(A0) The operator (−Λ) is the in�nitesimal generator of a C0 semigroup ofpositive linear operators on X, and there is a number λ0 > 0 suh that

(Λ − λ0I)g ≥ 0 (g ∈ D(Λ) ∩X+). (3.39)(A1) For a.e. t ≥ 0,
∆(t, g) := ∆(t, g; Λ, Q) ≥ 0 (g ∈ D(Λ2) ∩X+), (3.40)and the map D(Λ2) ∩X+ ∋ g 7→ ∆(t, g) ∈ R+ is isotone.(A2) There exists a non-dereasing onvex funtion a : R+ 7→ R+ suh that

a(‖Λg‖)Λg −Q−(t, g) ≥ 0, (g ∈ D(Λ) ∩X+, t ≥ a.e.), (3.41)and for a.e. t ≥ 0, the map D(Λ) ∩X+ ∋ g 7→ a(‖Λg‖)Λg − Q−(t, g)
∈ X is isotone.(A3) There exists a non-dereasing funtion ρ : R+ 7→ R+, and there is anoperator Λ1 : D(Λ1) ⊂ X 7→ X of type D on D(Λ2) ∩X+ suh that
−∆(t, g; Λ2, Q) ≤ ρ(‖Λ1g‖)

∥∥Λ2g
∥∥ (g ∈ D(Λ3) ∩X+, t ≥ 0 a.e.).(3.42)Some remarks are in order.First, observe that if g ∈ D(Λ2) ∩X+, then by (3.39), (3.40) and (3.41) wehave the simple inequalities

‖g‖ ≤ λ−1
0 ‖Λg‖ ≤ λ−2

0

∥∥Λ2g
∥∥ (3.43)
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∥∥ ≤ λ−1

0

∥∥ΛQ±(t, g)
∥∥ ≤ λ−1

0

∥∥ΛQ−(t, g)
∥∥ ≤

≤ a(‖Λg‖)λ−1
0

∥∥Λ2g
∥∥ ≤ a(λ−1

0

∥∥Λ2g
∥∥)λ−1

0

∥∥Λ2g
∥∥ (t ≥ 0 a.e.), (3.44)with the following obvious onsequenes.Remark 3.1 Q±(t, 0) = 0 and ∆(t, 0) = 0 a.e. on R+.Let Λ0 := I.Remark 3.2 If g : R+ 7→ X+ is measurable, with g(t) ∈ D(Λ2), t ≥

0, a.e., and ∥∥Λ2g
∥∥ ∈ L∞

loc(R+), then g, Λk+1g, and ΛkQ±(·, g(·)) are in
L1

loc(R+;X+), k = 0, 1.Lemma 3.1a) and (A0) imply that D(Λk) ∩ X+, k = 1, 2, ..., and D∞
+ :=

D∞
+ (Λ) are p-saturated and dense in X+. Obviously, (3.39) shows that Λ ispositive. Thus, by (3.40), the operator Λ is of type D on D(Λ2) ∩X+. Thishas the following important onsequene.If f(t) ∈ D(Λ2), t ≥ 0, a.e., and if Q±(·, f(·)), ΛQ±(·, f(·)) ∈ L1(R+;X+),then by (3.38), applied with equality sign,

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ (t ≥ 0). (3.45)Thus ‖Λf(t)‖ is dereasing in time and satis�es (3.35). In partiular, if

∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t ≥ 0 a.e., then ‖Λf(t)‖ is onserved forall t ≥ 0.Observe that inequality (3.42) is of the form
−∆(t, g; Γ, Q) ≤ ρΓ(‖Λ1g‖) ‖Γg‖ (g ∈ M1, t ≥ 0 a.e.), (3.46)where Γ : D(Γ) ⊂ X 7→ X is some positive linear operator, and M1 ⊂ D(Γ)∩

D(Λ2)∩X+ is suh that Q±(t,M1) ⊂ D(Γ), t ≥ 0 a.e., while ρΓ : R+ 7→ R+is some non-dereasing funtion.Formula (3.45) generalizes a priori estimates introdued in e.g., [2, 7, 8, 9, 27℄.Formula (3.46) an be regarded as an abstrat orrespondent to the Povznerinequality, [2, 23℄.We �nally remark that the above setting does not exlude the ase Λ1 = Λwhen, obviously, some of the above onditions beome redundant.



70 Ceil Pompiliu Grünfeld3.3. General results on the existene of solutionsWe are now in position to state some results ([11℄, [13℄) on the existeneof solutions to our abstrat model. The proofs will be skethes in the nextsubsetion (for more details, the reader is referred to [11℄ and [13℄). First weonsider problem (3.31).Theorem 3.1 Let either of the following two sets of onditions be ful�lled:a) Q+(t,D∞
+ ) ⊂ D∞

+ , t ≥ 0 a.e., ΛkQ+(·,D∞
+ ) ⊂ L1

loc(R+;X+), k = 1, 2, ... .In problem (3.31), f0 ∈ D(Λ2) ∩X+.b) The operators Q± do not depend expliitly on t. In problem (3.31), f0 ∈
D(Λ3) ∩X+.Then there exists a unique positive strong solution of the i.v.p. (3.31) suhthat f(t) ∈ D(Λ2) for any t ≥ 0, and ∥∥Λ2f(·)

∥∥ is loally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es Eq. (3.45) and
∥∥Λ2f(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.47)Note here that Theorem 3.1a) is also appliable to the autonomous ase, but,learly, its onditions are di�erent from those of Theorem 3.1b).Theorem 3.1 has an immediate notieable onsequene, as follows:Consider Eq. (4.22) and let {
U t

}
t∈R

be the C0 group of positive linearisometries on X, generated by A.If f is a solution of (3.34), then setting F (t) := U−tf(t) in (3.34), we get
F (t) = f0 +

∫ t

0
QU(s, F (s))ds (t ≥ 0), (3.48)hene, by di�erentiation,

d

dt
F = QU (t, F ) = Q+

U (t, F )−Q−
U (t, F ), F (0) = f0 (t ≥ 0 a.e.), (3.49)where QU (t, ·) := U−tQ(t, U t·) and Q±

U (t, ·) := U−tQ±(t, U t·).Suppose that U tD(Λ) = D(Λ) and U tΛ = ΛU t on D(Λ) for every t > 0.Also, let U tD(Λ1) = D(Λ1) and U tΛ1 = Λ1U
t on D(Λ1) for all t > 0.Now Q±

U and QU are well de�ned as maps from R+ × D(Λ) to X, the lastequation is of the form (3.31), and we an state the following onsequene([11℄) of Theorem 3.1a):
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+ ) ⊂ D∞

+ , t ≥ 0 a.e., and ΛkQ+(·, U ·g) ∈
L1

loc(R+;X+) for all g ∈ D∞
+ , k = 1, 2, ... . Suppose that f0 ∈ D(Λ2) ∩X+in (4.22). Then problem (4.22) has a unique positive mild solution f suhthat f(t) ∈ D(Λ2) for any t ≥ 0 and ∥∥Λ2f(·)

∥∥ is loally bounded on R+.Moreover, f,Λf ∈ C(R+;X+). Furthermore, f satis�es (3.45) and (3.47).The following result, [13℄, extends the existene of strong solutions of Eq.(3.31) to the ase of initial datum f0 ∈ D(Λ) ∩X+ (instead of D(Λ2) ∩X+,as assumed in Theorem 3.1).Theorem 3.2 Under the assumptions of Theorem 3.1a) on Λ and Q±, let
f0 ∈ D(Λ) ∩ X+ in Eq. (3.31). Then there exists a strong solution, f ∈
C([0,∞);X+), of the i.v.p. (3.31). Moreover, for any t ≥ 0, f(t) ∈ D(Λ),
‖Λf(t)‖ ≤ ‖Λf0‖, and

‖f(t)‖ = ‖f0‖ +

∫ t

0

∥∥Q+(s, f(s))
∥∥ −

∥∥Q−(s, f(s))
∥∥ ds. (3.50)Note here that if f is as in Theorem 3.2, we know only that f ∈ D(Λ)∩X+.Then ∆(t, f) and Λ2f may not be not well-de�ned. Therefore, we annotobtain inequalities of the form (3.45) (exept the ase when ∆ = 0 on D(Λ2)∩

X+,) or like (3.47), at the level of abstration of the theorem.Also remark that Theorem 3.2 leaves open the question on the uniqueness ofthe solution in the general ase (under the onditions of the theorem).However, uniqueness an be proved under additional onditions, [13℄.Proposition 3.3 If ∆(t, g) = 0 for all g ∈ D(Λ2) ∩X+, t � a.e., then
‖Λf(t)‖ = ‖Λf0‖ (t ≥ 0), (3.51)and there is a unique solution of the i.v.p. (3.31) as in Theorem 3.2, whihsatis�es (3.51).A similar result like Corollary 3.1 an be formulated for Theorem 3.2.The following proposition yields additional useful estimates, [11℄, for the so-lutions of Eq. (3.31). For simpliity, we remain in the onditions of Theorem3.1a). However, similar results are valid when Theorem 3.1b) holds, as anbe seen by inspeting the proof of the proposition.Assume that Γ : D(Γ) ⊂ X 7→ X is a losed, positive linear operator. Let fbe a solution of problem (3.31), provided by Theorem 3.1a).



72 Ceil Pompiliu GrünfeldProposition 3.4 a) Suppose that Γ is of type D on D∞
+ . Then f(t) ∈ D(Γ),

t ≥ 0, and
‖Γf(t)‖ ≤ ‖Γf0‖ (t ≥ 0). (3.52)b) Suppose that Γ and ρΓ are as in (3.46), with M1 ⊇ D∞

+ . Then f(t) ∈
D(Γ), t ≥ 0, and

‖Γf(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0). (3.53)In appliations, the hoie of Λ and Λ1 may be not unique. In some ases,the role of Λ1 and Γ may be played by suitable powers of Λ, while, in otherexamples, Λ = Λ1 = Γ.A orrespondent to Prop. 3.4, appliable to Corollary 3.1, an be readilyobtained. The modi�ations in the reformulation of the proposition are ob-vious and inlude additional hypotheses for the ommutation of U t with Γ,et.3.4. ProofsSketh of the proof of Theorem 3.1In the following, we give an insight into the rather lengthy argument of The-orem 3.1 (see [11℄ for a detailed proof), and explain the role of assumptions(A0)-(A3).We start by observing that if f0 = 0 in (3.31), then, by Remark 3.1, learly
f(t) ≡ 0 is a solution to Eq. (3.31). It is the unique strong solution in
D(Λ2) ∩ X+, as it follows from (3.45). Moreover, if 0 6= f0 ∈ D(Λ2) ∩ X+,but a(‖Λf0‖) = 0, then Q±(t, f0) = 0, for a.e. t ≥ 0, by (3.44), hene
f(t) ≡ f0 is a solution to (3.31). It is the unique solution in D(Λ2) ∩ X+,beause any other solution f∗(t) ∈ D(Λ2) ∩ X+ must be a.e. onstant.Indeed, applying (3.45), and invoking the positivity and monotoniity of a,we obtain 0 ≤ a(‖Λf∗(t)‖) ≤ a(‖Λf0‖) = 0. This leads (again by (3.44)) to
Q±(t, f(t)) = 0 a.e.Therefore, one an assume below that f0 6= 0 and a(‖Λf0‖) 6= 0.We �rst refer to the existene part of the theorem. Inspired from [2℄, onean onsider the problem

d

dt
f + a(‖Λf0‖)Λf = B(t, f, f), f(0) = f0 ∈ X+ (t ≥ 0). (3.54)



An Introdution to Monotoniity Methods 73Here a is as in (A2), and B is formally de�ned by
B(t, g, h) := Q(t, g(t))+a

(
‖Λg(t)‖ +

∫ t

0
∆(s, h(s))ds

)
Λg(t) (t ≥ 0 a.e.)(3.55)for all g(t) ∈ D(Λ) ∩ X+ and h(t) ∈ D(Λ2) ∩ X+ with ΛQ±(·, h(·)) ∈

L1
loc(R+;X+).By (3.45), any strong positive solution of Eq. (3.31) is also a solution to(3.54). Conversely, any positive strong solution of problem (3.54) is a solutionof Eq. (3.31), provided that it satis�es (3.45).Reall now that, by (A0) and Lemma 3.1b), the operator L = −a(‖Λf0‖)Λis the in�nitesimal generator of a C0 positive semigroup {

V t
}

t≥0
, and

0 ≤ V th ≤ exp(−a(‖Λf0‖)λ0t)h ≤ h (h ∈ X+). (3.56)Thus any solution of Eq. (3.54) is also a solution of the mild problem
f(t) = V tf0 +

∫ t

0
V t−sB(s, f, f)ds , (3.57)the integral being in the sense of Bohner.Eq. (3.57) is useful for monotone iteration. Indeed, {

V t
}

t≥0
is positive, andone an prove5 the following properties ([11℄).Lemma 3.3 Let gi, hi, i = 1, 2, satisfy the onditions of Remark 3.2. Sup-pose that g1(t) ≤ g2(t) and h1(t) ≤ h2(t) a.e. on R+. Then B(·, gi, hj) ∈

L1
loc(R+;X+), i, j = 1, 2. In addition, for a.e. t ≥ 0,

0 ≤ B(t, g1, h1) ≤ B(t, g2, h2). (3.58)Thus, formally, by (3.57) one ould onsider the following iteration, hopefully,inreasing:
f1(t) = 0, f2(t) = V tf0, (3.59)

fn(t) = V tf0 +

∫ t

0
V t−sB(s, fn−1, fn−2)ds (n = 3, 4, ...). (3.60)Note that if {fn(t)}n is su�iently regular, by di�erentiation, (3.60) gives

d

dt
fn(t) = B(t, fn−1, fn−2) − a(‖Λf0‖)Λfn(t) (t > 0 a.e., n ≥ 3),(3.61)5See the Appendix.



74 Ceil Pompiliu Grünfeldand integrating (3.61) one has
fn(t) = f0 +

∫ t

0
Q(s, fn−1(s))ds+

+

∫ t

0
a

(
‖Λfn−1(s)‖ +

∫ s

0
∆(τ, fn−2(τ))dτ

)
Λfn−1(s)ds.

−
∫ t

0
a(‖Λf0‖)Λfn(s)ds. (3.62)However, in general, B(·, g, h) does not exist for all g, h ∈ X. Hene we needgive a meaning to (3.60), at least for f0 in a su�iently large set. Here omesthe role of D∞

+ (of D(Λ3) ∩ X+). Indeed, if f0 ∈ D∞
+ (f0 ∈ D(Λ3) ∩ X+),then one an show that fn(t) ∈ D∞

+ (f0 ∈ D(Λ3) ∩ X+), and is su�ientlyregular. This is lari�ed in the lemma bellow, whih summarizes the mainresults6 of [11℄ on the properties of {fn(t)}n.Lemma 3.4 a) In addition, to the onditions of Theorem 3.1a), let f0 ∈ D∞
+ .Then fn(t), Q±(t, fn(t)) ∈ D∞

+ a.e. on R+. Moreover, ΛkQ±(·, fn(·)) ∈
L1

loc(R+;X+), k = 0, 1, ...., n = 1, 2, ... .b) Assume the onditions of Theorem 3.1b). Then fn(t) ∈ D(Λ3) ∩X+ and
Q±(fn(t)) ∈ D(Λ2) ∩ X+; t ≥ 0. Moreover, ΛkQ±(fn) ∈ L1

loc(R+;X+),
k = 0, 1, 2, , n = 1, 2, ... .) In both ases a) and b), Λkfn ∈ C(R+;X+), k = 0, 1, 2, and fn is a.e.di�erentiable on R+ and satis�es (3.61) (and (3.62)). Moreover, for any
t ≥ 0, the sequene {fn(t)}n is inreasing.d) If fn(t) is as in a) or b), and n ≥ 2, then

fn(t) ≤ f0 +

∫ t

0
Q(s, fn−1(s))ds (3.63)and

‖Λfn(t)‖ +

∫ t

0
∆(s, fn−1(s))ds ≤ ‖Λf0‖ . (3.64)e) If fn(t) is as in a) or b), and Γ is an operator of type D on D∞

+ , (on
D(Λ2) ∩X+) then for any t ≥ 0,

‖Γfn(t)‖ ≤ ‖Γf0‖ (n = 1, 2, ...). (3.65)6See the Appendix for a proof.
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∥∥Λ2fn(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0, n = 1, 2, ...), (3.66)with ρ as in (3.42).f) Suppose that fn(t) is as in a) (as in b)). Let Γ : D(Γ) ⊂ X 7→ X besome losed, positive linear operator, satisfying (3.46), with M1 ⊇ D∞
+ (with

M1 ⊇ D(Λ3) ∩X+). Then for any t ≥ 0,
‖Γfn(t)‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (n = 1, 2, ...), (3.67)with ρΓ as in (3.46).By the above lemma, {fn(t)}n is inreasing, and the key inequality (3.64)shows that {fn(t)}n is norm bounded7. Thus {fn(t)}n is onvergent, be-ause X is monotone omplete. One expets the limit to satisfy (3.54) (and(3.57), too). The proof hinges on the appliation of Lebesgue's dominatedonvergene theorem to (3.62) (as the operators Q± are o-losed, and Λ islosed). To this end, the limit of {fn(t)}n must be in D(Λ2), whih followsfrom (3.66). Now, to prove that the limit of {fn(t)}n is a strong solution to(3.31), it remains to show that the above limit satis�es (3.45). This is doneby applying Gronwall's Lemma to an inequality to be obtained from (3.62)(by using (3.66) and the onvexity of a). But the above proedure providesthe existene part of the Theorem 3.1a) only for f0 ∈ D∞

+ , hene one morestep is needed. Sine D∞
+ is dense in X+ (f. Lemma 3.1), any initial datumas in the assumptions of Theorem 3.1a), an be approximated by elementsof D∞

+ . This leads to a monotone sheme approximating (3.60) and one anapply suessively Lebesgue's onvergene theorem. In details, one proeedsas follows.Step A. If in addition to the onditions of Theorem 3.1 a), one assumes
f0 ∈ D∞

+ then Lemma 3.4 applies. As Λk is losed, learly, by (3.39) andthe monotone ompleteness of X, it follows that there is some f(t) ∈ D(Λk)suh that Λkfn(t) ր Λkf(t) as n → ∞, t ≥ 0, k = 0, 1, 2. Consequently,
f(t) satis�es (3.47). Moreover, Remark 3.2 implies that Λkf , k = 0, 1, 2,
Q±(·, f(·)), and ΛQ±(·, f(·)) are in L1

loc(R+;X+). Then, applying Lebesgue'sdominated onvergene theorem in (3.62) and (3.64), we get
f(t) = f0 +

∫ t

0
Q(s, f(s))ds+7Inequality (3.64) motivates the onstrution (3.60) as a seond-order reurrene.Indeed, exept for the ase ∆ ≡ 0, an inequality of the form (3.64) ould not beproved if (3.60) was rede�ned with B(s, fn−1, fn−1) instead of B(s, fn−1, fn−2).
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+

∫ t

0

[
a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)
− a(‖Λf0‖)

]
Λf(s)ds (t ≥ 0)(3.68)(i.e., f is a strong solution of Eq.(3.54)) and, also,

0 ≤ ψ(t) := ‖Λf0‖ − ‖Λf(t)‖ −
∫ t

0
∆(s, f(s))ds (t ≥ 0). (3.69)Obviously, (3.68) implies f,Λf ∈ C(R+;X+).Note now the usefulness of (3.68): to prove that f is a strong solution of(3.31), it is su�ient to show that ψ ≡ 0 (whih means exatly (3.45)).To this end, �rst observe that sine, by (A2), a is non-dereasing and loallyLipshitz, then inequality (3.69) implies that there is a number 0 < c =

c(‖Λf0‖), depending only on ‖Λf0‖, suh that
0 ≤ a(‖Λf0‖) − a

(
‖Λf(t)‖ +

∫ t

0
∆(τ, f(τ))dτ

)
< cψ(t). (3.70)Further rewriting Eq. (3.68) onveniently, and applying Λ to the resultingequation, one an invoke (3.26) and (3.27) to obtain

ψ(t) =

∫ t

0

[
a(‖Λf0‖) − a

(
‖Λf(s)‖ +

∫ s

0
∆(τ, f(τ))dτ

)]∥∥Λ2f(s)
∥∥ds.(3.71)As f(t) satis�es (3.47), introduing (3.70) in (3.71), we �nd

0 ≤ ψ(t) ≤ c

∫ t

0
ψ(s)

∥∥Λ2f(s)
∥∥ds ≤ cT

∫ t

0
ψ(s)ds (0 ≤ t ≤ T ), (3.72)for eah T > 0. Here, cT > 0 is a number depending only on T and f0.Now the Gronwall inequality implies ψ(t) = 0, 0 ≤ t ≤ T , for any T > 0.This onludes the existene part of the proof of the Theorem 3.1a), in thease f0 ∈ D∞

+ ).Step B. We use the result of the previous step to prove the existene partof Theorem 3.1 a), in the ase f0 ∈ D(Λ2) ∩ X+, as follows. First notethat by Lemma 3.1b), there is an inreasing sequene {f0,i} ⊂ D∞
+ suh that

f0,i ր f0, as i→ ∞. Then, by Step A, there is a sequene of strong solutions
{Fi}i of Eq. (3.31) with Fi(0) = f0,i, satisfying the properties of the theorem.In partiular,

∥∥Λ2Fi(t)
∥∥ ≤ exp [ρ(‖Λ1f0,i‖)]

∥∥Λ2f0,i

∥∥ (t ≥ 0). (3.73)
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Fi(t) = f0,i +

∫ t

0
Q(s, Fi(s))ds, (3.74)

ΛFi(t) = Λf0,i +

∫ t

0
ΛQ(s, Fi(s))ds, (3.75)and

‖ΛFi(t)‖ +

∫ t

0
∆(s, Fi(s))ds = ‖Λf0,i‖ . (3.76)Moreover, by Step A, eah Fi is the limit of an inreasing sequene {fn,i(t)}nde�ned by (3.60) with fn,i(0) = f0,i. But the positivity of V t and Lemma3.3 imply that if f0,i ≤ f0,j, then fn,i(t) ≤ fn,j(t) for all n and t ≥ 0. Thenthe sequene {Fi} is inreasing.Furthermore, sine ‖Λ1f0,i‖ ≤ ‖Λ1f0‖, ∥∥Λ2f0,i

∥∥ ≤
∥∥Λ2f0

∥∥, and sine ρ isnon-dereasing, it follows from inequality (3.73) that
∥∥Λ2Fi(t)

∥∥ ≤ exp(ρ(‖Λ1f0‖)t)
∥∥Λ2f0

∥∥ (t ≥ 0). (3.77)Now a onvergene argument, as in the beginning of Step A, implies thatthere is an element f ∈ L1
loc(R+;X+), with the properties stated in Re-mark 3.2, suh that Fi(t) ր f(t) as i → ∞, a.e. It remains to apply, say,Lebesgue's onvergene theorem in (3.74)�(3.76) to onlude the existenepart of Theorem 3.1a).Existene in ase b). In this ase, Lemma 3.4 applies, orresponding to theful�llment of the onditions of Theorem 3.1b). Then, the proof is as in StepA of ase a).Finally, we prove the uniqueness part of Theorem 3.1.Let f be the solution of Eq. (3.31) provided by the existene part of thisproof, and reall that it satis�es Eq. (3.45). If F is another positive solutionof Eq. (3.31) with regularity properties as in Theorem 3.1, then F satis�esEq. (3.45), too, hene

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds = ‖Λf0‖ = ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))ds.By Lebesgue's onvergene theorem applied to (3.60), learly, f also solvesEq. (3.57). On the other hand, F is a solution to (3.57). But f ≤ F , beauseof the form of (3.60), so that

‖Λf(t)‖ +

∫ t

0
∆(s, f(s))ds < ‖ΛF (t)‖ +

∫ t

0
∆(s, F (s))dson some subset of R+ with nonzero Lebesgue measure. 2



78 Ceil Pompiliu GrünfeldProof of Theorem 3.2As in the proof of Theorem 3.1, to exlude trivial situations, we suppose the
‖f0‖ 6= 0 or a(‖f0‖) 6= 0. By Lemma 3.1, there is a sequene {fn,0}n ⊂ D∞

+suh that fn,0 ր f0 as n → ∞. Then by Theorem 3.1a) the i.v.p. (3.31)with initial ondition fn,0 has a unique positive solutions Fn ∈ D(Λ2) ∩X+suh that (3.31) provided by Theorem 3.1 with initial datum fn,0 forms aninreasing sequene suh that Fn,ΛFn ∈ C(R+;X+),
Fn(t) = fn,0 +

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, Fn(s))ds (t ≥ 0). (3.78)and

‖ΛFn(t)‖ +

∫ t

0
∆(s, Fn(s)ds = ‖Λfn,0‖ (t ≥ 0). (3.79)But ∆(s, Fn(s) ≥ 0 so that

‖ΛFn(t)‖ ≤ ‖Λfn,0‖ ≤ ‖Λf0‖ (t ≥ 0). (3.80)Note now that Fn, fn,0, Q±(t, Fn(t)) are positive. Then (3.26) and (3.27)imply
‖Fn(t)‖ = ‖fn,0‖ +

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, Fn(s))
∥∥ ds (t ≥ 0),(3.81)To prove the theorem, we need show that {Fn(t)}n and {Q±(t, Fn(t))}n areonvergent, and, then we need to interhange the limits onveniently in (3.78)and (3.81).To this end, �rst observe that sine {fn,0}n is positive and inreasing, andeah Fn is the limit of a sequene of the form (3.60), we obtain by a sim-ple indution (whih uses the positivity and isotoniity of B in (3.60)) that

{Fn(t)}n is inreasing. Thus, by (A0), the positive sequene {ΛFn(t)}n isalso inreasing. Then (A0) and (3.80) give ‖Fn(t)‖ ≤ λ0
−1 ‖ΛFn(t)‖ ≤

λ0
−1 ‖Λfn,0‖ ≤ λ0

−1 ‖Λf0‖. Hene, for eah t ≥ 0, both {Fn(t)}n and
{ΛFn(t)}n are onvergent, beause X is monotone omplete. Moreover, as Λis losed, the limit f(t) of {Fn(t)}n satis�es f(t) ∈ D(Λ) ∩X+, and we have
ΛFn(t) ր Λf(t) as n → ∞. Then, also {Q±(t, Fn(t))}n are inreasing, and
Q±(t, Fn(t)) ≤ Q±(t, f(t)) a.e. In partiular, ‖Q±(t, Fn(t))‖ ≤ ‖Q±(t, f(t))‖a.e. Consequently, Q±(t, Fn(t)) ր Q±(t, f(t)) as n → ∞, t -a.e., beause Xis monotone omplete and Q±(t, ·) are o-losed t-a.e.Now, applying (A2) and (3.80) we get

∥∥Q−(t, f(t))
∥∥ = lim

n→∞

∥∥Q−(t, Fn(t))
∥∥ ≤ a(‖Λf0‖) ‖Λf0‖ (3.82)



An Introdution to Monotoniity Methods 79a.e., hene Q−(·, f) ∈ L1
loc(R+;X+).Thus we an take the limit n → ∞ in (3.78) and (3.81), and we an apply,say, Lebesgue's theorem to the seond term of (3.78) and (3.81), respetively.We obtain

f(t) = f0 + lim
n→∞

∫ t

0
Q+(s, Fn(s))ds−

∫ t

0
Q−(s, f(s))ds, (3.83)and, by (3.26),

‖f(t)‖ = ‖f0‖ + lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds−

∫ t

0

∥∥Q−(s, f(s))
∥∥ ds. (3.84)Sine ‖f(t)‖ <∞ for t ≥ 0, and Q−(·, f) ∈ L1

loc(R+;X+), by (3.84), for eah
t ≥ 0,

lim
n→∞

∫ t

0

∥∥Q+(s, Fn(s))
∥∥ ds <∞. (3.85)Hene, applying, e.g., the monotone onvergene theorem, it follows that

Q+(·, f) is Bohner integrable and we an �nally pass to the limit under theintegral sign in (3.83), (3.84), (3.80), and in (3.79), to onlude the proof oftheorem. 2Proof of Proposition 3.3Equality (3.51) follows observing that ∆(s, Fn(s)) ≡ 0 in (3.79), and takingthe ∞ limit. As in the uniqueness part of the proof of Theorem 3.1, thesolution f of (3.31) provided by Theorem 3.2 also solves the mild problem(3.57) (but here, ∆(t, f) = 0 in the expression (3.55) of B, by virtue of(3.51)). Now the uniqueness follows by an argument similar to the one usedin the uniqueness part of the proof of Theorem 3.1, taking now advantage ofthe property ∆(s, Fn(s)) ≡ 0 (hene of (3.51)). 2Proof of Proposition 3.4a) Let f0, {f0,i} , {fn,i(t)}n, and {Fi(t)}i be as in Step B of the proof ofTheorem 3.1a). Then for eah i, the sequene {Γfn,i(t)}n is positive andinreasing. Moreover, it is norm-bounded beause
‖Γfn,i(t)‖ ≤ ‖Γf0‖ (t ≥ 0), (3.86)as a onsequene of (3.65) and of the property Γf0,i ≤ Γf0.



80 Ceil Pompiliu GrünfeldAs X is monotone omplete, it follows that {Γfn,i(t)}n is onvergent for all
i.Reall that Γ is losed, and fn,i(t) ր Fi(t) as n→ ∞, for all i. Consequently,
Fi(t) ∈ D(Γ) and Γfn,i(t) ր ΓFi(t) as n → ∞, i = 1, 2, .... In addition,
‖ΓFi‖ ≤ ‖Γf0‖, t ≥ 0,i = 1, 2, .... Then, reasoning as before, we onludethat f(t) ∈ D(Γ), ΓFi(t) ր Γf(t) as i→ ∞, and that ‖Γf‖ satis�es (3.52).b) The proof of (3.53) follows as in a), with the only remark that instead of(3.86), we make use of the inequalities
‖Γfn,i(t)‖ ≤ exp(ρΓ(‖Λ1f0,i‖)t) ‖Γf0,i‖ ≤ exp(ρΓ(‖Λ1f0‖)t) ‖Γf0‖ (t ≥ 0),(3.87)whih are immediate by (3.67), beause ρΓ is non-dereasing. 24. Appliations4.1. Smoluhowski's oagulation equationFor k ≥ 0, let L1

k := L1
k(R+; dy) be the spae of real measurable funtions

g : R+ 7→ R suh that
‖g‖L1

k
:=

∫

R+

(1 + y)k |g(y)| dy <∞. (4.1)Denote L1
k,+ = {g ∈ L1

k : g ≥ 0}. Consider problem (2.2) in the spae
X = L1(R+; dy) (equipped with the usual norm ‖·‖ = ‖·‖L1 , and with thenatural order ≤).Consider L1

k as a subset of X. Let i = 0, 1 and de�ne the positive linearoperators Λc,i : D(Λc,i) ⊂ X 7→ X by D(Λc,i) = L1
γi
, (Λc,ig)(y) := λi(y)g(y),with λi(y) := (1 + y)γi, y ≥ 0 a.e., where γ0 = β and γ1 = α+ β.Note that (2.3) and (2.4) de�ne Q+

c and Q−
c as positive and isotone nonlinearoperators in X, respetively, with the ommon domain Dc := L1

β.Then the i.v.p. for (2.2) an be formulated in X as
d

dt
f = Qc(f) = Q+

c (f) −Q−
c (f) f(0) = f0, t > 0. (4.2)In this ase, one an apply Theorem 3.1a). The only point is to hek that Λc,i(i = 0, 1) and Q±

c verify inequalities of the form (3.40) and (3.42). Indeed, if
g ∈ L1

2β,+, then starting from (2.7), we �nd
0 ≤

∥∥Λc,iQ
−
c (g)

∥∥ −
∥∥Λc,iQ

+
c (g)

∥∥ =
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=

1

2

∫

R2
+

[(1 + y)γi + (1 + y∗)
γi − (1 + y + y∗)

γi ]q(y, y∗)g(y)g(y∗)dydy∗,(4.3)beause 0 ≤ γi ≤ 1, and
(1 + y)γ + (1 + y∗)

γ

(1 + y + y∗)γ
≥ inf

x≥0

1 + xγ

(1 + x)γ
= 1 (0 ≤ γ ≤ 1, y, y′ ≥ 0). (4.4)Inequality (4.3) shows that g 7→ ∆c(g) := ‖Λc,0Q

−
c (g)‖−‖Λc,0Q

+
c (g)‖ de�nesa positive isotone map ∆c : D(∆c) 7→ R with domain D(∆c) = L1

2β,+.Starting again from (2.7), we �nd that if g ∈ L1
3β,+, then

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ =

=
1

2

∫

R2
+

[
(1 + y + y∗)

2β − (1 + y)2β − (1 + y∗)
2β

]
q(y, y∗)g(y)g(y∗)dydy∗.(4.5)If 0 ≤ β ≤ 1/2, applying again (4.4) in (4.5), we get

∥∥Λ2
c,0Q

+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ 0, (4.6)whih is of the form (3.42) with ρ ≡ 0.If 1/2 < β ≤ 1, then to estimate (4.5), we apply the following form ([11℄) ofPovzner's algebrai inequality, whih an be easily proved8:
(1+y+y∗)

2β −(1+y)2β −(1+y∗)
2β ≤ 2(1+y)β(1+y∗)

β (y, y∗ ≥ 0). (4.7)Thus, applying (4.7) in (4.5), we �nd that there is a number c > 0 suh that
∥∥Λ2

c,0Q
+
c (g)

∥∥ −
∥∥Λ2

c,0Q
−
c (g)

∥∥ ≤ c ‖Λc,1g‖
∥∥Λ2

c,0g
∥∥ . (4.8)Clearly, inequality (4.8) is of the form (3.42) with ρ(x) = cx.Let ac(x) := a0x, for some onstant a0 > 0. If a0 is su�iently large, then themap L1

β,+ ∋ g 7→ a0 ‖Λc,0g‖Λc,0g − Q−
c (g) ∈ X has the properties requiredin (A2).It appears that Q±

c , Λc,0, Λc,1 and ac verify the onditions of Theorem 3.1a)for Q±, Λ, Λ1 and a, respetively, provided that a0 is su�iently large.Consequently, one an apply Theorem 3.1a) to the i.v.p. (4.2). We obtain8Indeed, (4.7) is equivalent to ζ(x) = 2xβ +1+x2β − (1+x)2β ≥ 0 for all x > 0.However, as ζ(x−1) = x−2βζ(x), to prove that ζ(x) ≥ 0 for x > 0, we need onlyshow that ζ(x) ≥ 0 on (0, 1], whih is immediate, beause 1/2 < β ≤ 1.



82 Ceil Pompiliu GrünfeldTheorem 4.1 Let f0 ∈ L1
2β,+ in problem (4.2). Then Eq. (4.2) has a uniquestrong solution f suh that f(t) ∈ L1

2β,+, t ≥ 0, and ‖f(t)‖L1
2β

is loallybounded on R+. In addition f, (1 + y)βf ∈ C(R+;L1(R+,dy)),
‖f(t)‖L1

β
+

∫ t

0
∆c(f(s))ds = ‖f0‖L1

β
(t ≥ 0), (4.9)and there is a onstant c > 0 suh that

‖f(t)‖L1
2β

≤ exp(c ‖f0‖L1
α+β

t) ‖f0‖L1
2β

(t ≥ 0). (4.10)Note here that if 0 ≤ 2β < 1, then Theorem 4.1 allows for the existeneof solutions with in�nite initial mass (see also [22℄) i.e., f0 ∈ L1
2β,+, but

f0 /∈ L1
1. The theorem does not imply diretly the mass onservation, exeptfor the ase q1 > 0, β = 1 and α = 0. However, if f0 ∈ L1

2β,+ ∩ L1
1, thenthe solution f(t) has �nite mass: indeed, if Γ : L1

1 ⊂ L1 7→ L1 is de�ned by
(Γg)(y) = yg(y) a.e. on R+, then learly, Γ is of type D on ∩∞

k=1L
1
kβ,+, heneProp. 3.4a) applies, so that f ∈ L1

2β,+ ∩ L1
1, and ‖Γf(t)‖ ≤ ‖Γf0‖.Theorem 4.1 remains valid in the ase of the disrete Smoluhowski equation(2.10), with obvious hange in formulation9.4.2. Povzner-like model with dissipative ollisionsLet X = L1(R3 ×R

3; dxdv) = L1, equipped with the norm ‖·‖ := ‖·‖L1 andthe natural order ≤. Denote by L1
k := L1

k(R
3 × R

3; dxdv), k ∈ R, the spaeof measurable funtions on g : R
3 × R

3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(x,v)| dxdv <∞. (4.11)As before, L1

k,+ denotes the positive one in L1
k. It an be seen that (2.15) and(2.16) de�ne Q±

d as positive and isotone operators on the ommon domain
D := L1

γ . This follows easily if we perform the hange of variable (0, R]×Ω ∋
(r,n) 7→ y := rn ∈ {z ∈R

3 : |z| ≤ R} in (2.15) and (2.16), and then takeinto aount (2.17).Now, formulated in X, the i.v.p. (2.14) reads
d

dt
f = Af +Q+

d (f) −Q−
d (f), f(0) = f0 ≥ 0, (4.12)9Note that L1

r, de�ned before, must be now replaed by l1r(R) = {c = (cj) : cj ∈
R, j = 1, 2, ..., ‖c‖r :=

∑
∞

j=1
jr |cj | <∞}, r ≥ 0.



An Introdution to Monotoniity Methods 83where f = f(t,x,v) is the one-partile distribution funtion, A is the in-�nitesimal generator of the C0 group (U tf)(x,v) := f(x− tv,v), a.e.Let the positive linear operator Λd : L1
2 7→ X be de�ned by (Λdg)(x,v) :=

λ(v)g(x,v) a.e. on R
3 ×R

3, with λ(v) := (1 + |v|2). De�ne ad(x) := c0x forsome onstant c0 > 0. If c0 is su�iently large, then ad, Λd and Q±
d verifythe onditions of Corollary 3.1 for a, Λ = Λ1 and Q±, respetively.Indeed, the operators Q±

d are p-saturated. Moreover, they are o-losed, bythe monotone onvergene theorem. It is immediate that the domain on-ditions imposed in Corollary 3.1 are satis�ed. Further, applying (2.12) in(2.18), we obtain an inequality of the form (3.40), i.e., if g ∈ L1
4,+, then

0 ≤ ∆d(g) :=
∥∥ΛdQ

−
d (g)

∥∥ −
∥∥ΛdQ

+
d (g)

∥∥ =

=

∫ R

0
dr

∫

Ω×R3×R3×R3

π(r,n,v,w,x)g(x,v)g(x + rn,w)dndvdwdx,(4.13)where π(r,n,v,w,x) := β(n)(1−β(n)) |〈n,v − w〉|2+γ P (r,n). Remark herethat the map L1
4,+ ∋ g 7→ ∆d(g) ∈ R is positive and isotone. Moreover, for

c0 su�iently large, the map L1
2,+ ∋ g 7→ c0 ‖Λdg‖Λdg −Q−

d (g) ∈ X is alsopositive and isotone. Further, to obtain an inequality of the form (3.42), notethat (2.12) gives λ(v′)2 + λ(w′)2 ≤ (2 + |v′|2 + | w′|2)2 ≤ (2 + |v|2 + |w|2)2
= λ(v)2 + λ(w)2 + 2λ(v)λ(w), whih an be applied in ( 2.18) to onludeeasily that there are two onstants c1, c > 0 suh that

∥∥Λ2
dQ

+
c (g)

∥∥ −
∥∥Λ2

dQ
−
d (g)

∥∥ ≤

≤ c1

∫ R

0
dr

∫

Ω×R3×R3×R3

r2λ(v)λ(w)1+
γ
2 g(x,v)g(x + rn,w)dndvdwdx ≤

≤ c ‖Λdg‖
∥∥Λ2

dg
∥∥ , (4.14)for all g ∈ L1

6,+. Finally, it is obvious that the group U t (generated by
A) ommutes with the semigroup V t generated by Λd, and ΛkQ+(U ·g) ∈
L1

loc(R+;X+) for all g ∈ ∩∞
n=1L

1
n,+, k = 1, 2, .....Therefore, by Corollary 3.1, we have the following result ([11℄):Theorem 4.2 Let f0 ∈ L1

4,+ in problem (4.12). Then Eq. (4.12) has aunique positive mild solution f suh that f(t) ∈ L1
4,+, t ≥ 0, and ‖f(t)‖L1

4
isloally bounded on R+. In addition, f , (1 + |v|2)f ∈ C(R+;L1),

‖f(t)‖L1
2
+

∫ t

0
∆d(f(s))ds = ‖f0‖L1

2
(t ≥ 0), (4.15)



84 Ceil Pompiliu Grünfeldand there is a onstant c > 0 suh that
‖f(t)‖L1

4
≤ exp(c ‖f0‖L1

2
t) ‖f0‖L1

4
(t ≥ 0). (4.16)The argument of Theorem 4.2 an be repeated with obvious modi�ationsto provide a similar result for the spae-homogeneous version of Eq. (2.14),whih oinides with the fore-free, three dimensional spae-homogeneousBoltzmann model for granular �ows, [5, 6℄.4.3. Povzner-like model with hemial reationsLet X := L1(R3 ×R

3; dxdv)N be equipped with the order ≤ indued by theorder of the omponents (i.e., the natural order of L1). The norm on X isde�ned as
‖g‖ :=

N∑

i=1

∫

R3×R3

|gi(x,v)| dxdv =
N∑

i=1

‖gi‖L1 . (4.17)Denote by L1
k := L1

k(R
3×R

3; dxdv), k ∈ R, the spae of measurable funtions
g : R

3 × R
3 7→ R satisfying

‖g‖L1
k

:=

∫

R3×R3

(1 + |v|2 )
k
2 |g(x,v)| dxdv (4.18)and let L1

k,+ be the positive one in L1
k.It is natural to formulate the i.v.p. (2.29) in the spae X.Under the onditions of the model, (2.30) and (2.31) de�ne Q+

i and Q−
i ,

1 ≤ i ≤ N , as operators from the ommon domain (L1
2)

N ⊂ X to L1(R3; dv).De�ning the operators Q±
B : (L1

2)
N ⊂ X 7→ X by Q±

B = (Q±
1 , ....., Q

±
N ), wean write the i.v.p. for Eq. (2.29) in X as

d

dt
f +A = Q+

B(t, f) −Q−
B(t, f), 0 ≤ f(0) = f0 ∈ X (t > 0), (4.19)where A is the in�nitesimal generator of the C0 group of isometries {U t}t∈Ron X, given by (U tf)(x,v) := f((x− tv,v).De�ne the positive losed linear operator ΛB : (L1

2)
N 7→ X by (ΛBg)i(v) =

λi(v)g(v) a.e. on R
3 × R

3 , where λi(v) := mi +mi |v|2 /2 +Ei, 1 ≤ i ≤ N.One an state the following result ([12℄):



An Introdution to Monotoniity Methods 85Theorem 4.3 Suppose that in problem (4.19), f0,i ∈ L1
4,+ , 1 ≤ i ≤ N .Then Eq. (4.19) has a unique mild solution f(t) = (f1, ..., fN ) suh that

fi(t) ∈ L1
4,+, t ≥ 0, and ‖fi(t)‖L1

4
is loally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.20)and there is a onstant ρ0 > 0 suh that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρ0 ‖ΛBf0‖ t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.21)The above result follows by applying Theorem 3.1 in the ase Λ = Λ1 = ΛB .Indeed, the domain onditions of Theorem 3.1, as well as properties (A0),(A1) an be immediately heked (with ∆ = 0, owing to (2.38). Next, let
a0 > 0 be some onstant, and de�ne a(x) := a0x. Owing to (2.38), for a0su�iently large, the map L1

2,+ ∋ g → a0 ‖ΛBg‖ΛBg −Q−(g) ∈ X satis�es(A2). Finally, note that, as a onsequene of (2.39) (and of (2.37)), thereexists a number ρ0 > 0 suh that
N∑

i=1

∫

R3

(Ψ
(0)
i + Ψ

(4)
i )2

[
Q+

i (g) −Q−
i (g)

]
dxdv ≤

≤ ρ0

∥∥∥(1 + |v|4 )g
∥∥∥

L1

∥∥∥(1 + |v|2 )g
∥∥∥

L1
, (4.22)for, say, all g ∈ (L1

6+)N .Then inequality (3.13) gives exatly (A3) with ρ(x) := ρ0x.4.4. Boltzmann model with inelasti ollisions and reationsLet X := (L1(R3; dv))N be equipped with the order ≤ indued by the orderof the omponents (i.e., the natural order of L1). The norm on X is de�nedas
‖g‖ :=

N∑

i=1

∫

R3

|gi(v)| dv =
N∑

i=1

‖gi‖L1 . (4.23)Denote by L1
k := L1

k(R
3; dv), k ∈ R, the spae of measurable funtions

g : R
3 × R

3 7→ R satisfying
‖g‖L1

k
:=

∫

R+

(1 + |v|2)k
2 |g(v)| dv <∞ (4.24)



86 Ceil Pompiliu Grünfeldand let L1
k,+ be the positive one in L1

k.It is natural to formulate the i.v.p. for Eq. (2.47) in the spae X. Underthe above onditions, (2.48) and (2.49) de�ne Q+
i and Q−

i , 1 ≤ i ≤ N ,respetively, as operators from the ommon domain D = (L1
2)

N ⊂ X to
L1(R3; dv). De�ning Q±

B : D ⊂ X 7→ X by Q±
B = (Q±

1 , ....., Q
±
N ), we anwrite the i.v.p. for Eq. (2.47) in X

d

dt
f = Q+

B(f) −Q−
B(f), f(0) = f0 = (f0,1, ..., f0,N ) ∈ X+. (4.25)We shall prove the existene of solutions to problem (4.25), by applyingTheorem 3.1a) (in the ase Λ = Λ1). To this end, let the positive losedlinear operator ΛB : (L1
2)

N 7→ X be de�ned on omponents by (ΛBg)i(v) =
λi(v)g(v) a.e. on R

3 × R
3, where λi(v) := mi +mi |v|2 /2 + Ei, 1 ≤ i ≤ N .Denote lγ(w) :=

∑
i∈N (γ)

∑γi

j=1 λi(wi,j); γ ∈ M. Then learly, lγ(w) =
Mγ +Wγ(w), hene

0 ≤Wγ(w) < lγ(w). (4.26)In addition, de�ning λγ(w) :=
∏

i∈N (γ)

∏γi

j=1 λi(wi,j), γ ∈ M, we have
lγ(w) ≤ |γ|E1−|γ|λγ(w), (4.27)where E := min{mi + Ei : 1 ≤ i ≤ N}. It is useful to remark that, sine

Wγ(w) ≥ E |γ| > 0, and 0 ≤ q ≤ 1, then by (2.56), (4.26) and (4.27),
νβ,α(w) ≤ Cλα(w) (w ∈ R

|α|, a.e.), (4.28)for all α, β ∈ M. Here C = C(E,K) > 0 is a number depending on E and
K (reall that K is the maximum number of partners in a reation hannel).To apply Theorem 3.1a) to (4.25), �rst remark that Q±

B and ΛB verify thedomain onditions imposed to Q± and Λ by the theorem. Moreover, ΛB hasthe properties required for Λ in (A0). Further, observe that formula (2.57)provides a orrespondent to (3.40), spei�ally,
∆B(g) :=

∥∥ΛBQ
−
B(g)

∥∥ −
∥∥ΛBQ

+
B(g)

∥∥ = 0 (g ∈ (L1
4,+)N ). (4.29)To obtain a orrespondent to (3.42), let sγ(w) :=

∑
i∈N (γ)

∑γi

j=1 λi( wi,j)
2.Next, using the de�nition of Q+

B and property (B2), and applying the obviousinequality sα(w) ≤ lα(w)2, we �nd that if g ∈ (L1
6,+)N , then

∥∥Λ2
BQ

+
B(g)

∥∥ =
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn ≤
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≤

∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2pβ,α(w,n)(gβ ◦ uβ,α)(w,n)dwdn. (4.30)We apply property (3.9) in the last integral. Then interhanging α and β,we get
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈ M

∫

R3|α|×Ωβ

(lβ ◦ uβ,α)2(w,n)rβ,α(w,n)gα(w)dwdn.(4.31)Sine lβ(w) = Mβ +Wβ(w), property (B3) implies that (lβ ◦ uβ,α)(w,n) =
lα(w) for all (α, β) ∈ CM , w ∈ D+

β,α. This and (B1) enable us to deduefrom (4.31) that
∥∥Λ2

BQ
+
B(g)

∥∥ ≤
∑

α,β∈M

∫

R3|α|×Ωβ

lα(w)2rβ,α(w,n)gα(w)dwdn. (4.32)Now, using the de�nitions of lα(w) and Q−
B , and then, taking advantage of(2.56) and (4.26), we obtain from (4.32)

∥∥Λ2
BQ

+
B(g)

∥∥ ≤

≤
∑

α,β∈M

∫

R3|α|×Ωβ

sα(w)rβ,α(w,n)gα(w)dwdn + ρB(‖ΛBg‖)
∥∥Λ2

Bg
∥∥ =

=
∥∥Λ2

BQ
−
B(g)

∥∥ + ρB(‖(ΛBg‖)
∥∥Λ2

Bg
∥∥ , (4.33)where ρB is a positive non-dereasing (polynomial) funtion.Therefore, the last inequality is the required orrespondent to (3.42) (in thease Λ = Λ1).Further, let a0 > 0 be some onstant, and de�ne a(x) := a0

∑NK
p=1 x

p, x ≥ 0.Therefore, a(‖ΛBg‖) = a0
∑NK

p=1 ‖ΛBg‖p. But eah term ‖ΛBg‖p in the r.h.sof the last equality an be expressed by (4.23), and the resulting expressionan be expanded by the multinomial formula. Then, after some elementaryalgebra we get the following useful expression
a(‖ΛBg‖) = a0

∑

γ∈M, |γ|≥1

cγ,i

∫

R3|γ|

λγ(w)gγ(w)dw, (4.34)where cγ,i > 0 are stritly positive, onstant oe�ients, γ ∈ M, |γ| ≥ 1,
1 ≤ i ≤ N .



88 Ceil Pompiliu GrünfeldWe show that if a0 is large enough, then (L1
2,+)N ∋ g 7→ a(‖ΛBf‖)ΛBg −

Q−
B(g) ∈ X is positive and isotone. To this end, �rst note that one an write
Q−

i (g)(v) = Ri(g)(v) gi(v), (g ∈ (L1
2,+)N , v ∈ R

3 a.e., 1 ≤ i ≤ N),(4.35)where
Ri(g)(v) :=

∑

α,β∈M

αi

∫

R3|α|−3


νβ,α(w)

∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.36)with νβ,α as in (2.56). Hene,
a(‖ΛBg‖)(ΛBg)i(v)−Q−

i (g)(v) = [a(‖ΛBg‖)λi(v) −Ri(g)(v)] gi(v). (4.37)It is onvenient to set
RA

i (g)(v) := C
∑

α,β∈M

αi

∫

R3|α|−3


λ

α(w)
∏

s∈N (α)

(s,j)6=(i,αi)

αs∏

j=1

gs(ws,j)




wi,αi
=v

dw̃i,(4.38)with C as in (4.28). Summing on β in (4.38), using the expliit form of
λα(w), and invoking property (B1), we are easily led to

RA
i (g)(v) = Cλi(v)

∑

γ∈M, |γ|≥1

qγ,i

∫

R3|γ|

λγ(w)gγ(w) dw, (4.39)where qγ,i ≥ 0 are onstant oe�ients, γ ∈ M, |γ| ≥ 1, 1 ≤ i ≤ N .We introdue (4.34) and (4.38) in (4.37). Consequently, for v ∈ R
3 a.e.,

a(‖ΛBg‖)(ΛBg)i(v) −Q−
i (g)(v) = [RA

i (g)(v) −Ri(g)(v)]gi(v) + Ti(g)(v),(4.40)where
Ti(g)(v) := λi(v)gi(v)

∑

γ∈M, |γ|≥1

(a0cγ,i −Cqγ,i)

∫

R3|γ|

λγ(w)gγ(w)dw. (4.41)Now we ompare (4.36) and (4.38), by taking advantage of (4.28). It fol-lows that the map (L1
2,+)N ∋ g 7→ [RA

i (g) − Ri(g)]gi ∈ L1 is positive and



An Introdution to Monotoniity Methods 89isotone, 1 ≤ i ≤ N . Moreover, beause of the form of Ti(g), if a0 > 0is su�iently large, then the mapping (L1
2,+)N ∋ g 7→ Ti(g)(v) ∈ L1 ispositive and isotone for all i. In this ase, by virtue of (4.40), the map

(L1
2,+)N ∋ g 7→ a(‖ΛBg‖)ΛBg −Q−

B(g) ∈ X is also positive and isotone.In onlusion, the onditions of Theorem 3.1a) are ful�lled (in the ase Λ =
Λ1), so that we are in position to state the following result ([11℄):Theorem 4.4 Suppose that in problem (4.25), f0,i ∈ L1

4,+, 1 ≤ i ≤ N .Then Eq. (4.25) has a unique strong solution f(t) = (f1, ..., fN ) suh that
fi(t) ∈ L1

4,+, t ≥ 0, and ‖fi(t)‖L1
4
is loally bounded on R+, 1 ≤ i ≤ N . Inaddition, fi, (1 + |v|2)fi ∈ C(R+;L1), 1 ≤ i ≤ N ,

‖ΛBf(t)‖ = ‖ΛBf0‖ (t ≥ 0), (4.42)and there is a non-dereasing funtion ρB : R+ 7→ R+ suh that
∥∥Λ2

Bf(t)
∥∥ ≤ exp(ρB(‖f0‖)t)

∥∥Λ2
Bf0

∥∥ (t ≥ 0). (4.43)Theorem 4.4 does not state the onservation of mass, momentum and en-ergy, but the onservation (in arbitrary units) of the quantity mass+(total)energy. However, the properties of f(t), f. Theorem 4.4, allow for hekingimmediately the separate onservation for eah of the above quantities.Theorem 4.4 redues to the main monotoniity result of [2℄ when Eq. (4.25)is partiularized to the ase of the lassial Boltzmann equation. Moreover,in that ase, using suitable additional Povzner-like estimations, we an re-obtain the general moment estimations of [2℄, as appliation of Prop. 3.4b).Finally, remark that similar analyses as for Theorems 4.2 and 4.4 an bedeveloped for the main model onsidered, e.g., in [27℄.4.5. Nonlinear von Neumann-Boltzmann equationAs Λ is unbounded (by onstrution), the existene of solutions to problem(2.62) seems not immediate from general onsiderations.However, one an show that the onditions of Theorem 3.1 are ful�lled with
a(x) = x.First reall that Tr[Λk(Q+ − Q−)](F ) = 0, for all 0 ≤ F ∈ D(Λk) ∩ X+,
k = 0, 1. Then observe that, sine Λ ≥ I, it follows easily that Tr[Λ2(Q+ −
Q−)](F ) ≤ εTr(ΛF )TrF ≤ εTr(ΛF )Tr(Λ2F ) for all 0 ≤ F ∈ D(Λ3) ∩X+.So we an now formulate our existene result ([12℄):



90 Ceil Pompiliu GrünfeldTheorem 4.5 Suppose that in problem (2.62), 0 ≤ F0 ∈ D(Λ2). ThenEq. (2.62) has a unique mild solution 0 ≤ F (t) ∈ D(Λ2), and TrF (t) isloally bounded. Moreover, F,ΛF ∈ C(R+;X), TrF (t) = TrF0, Tr(ΛF )(t) =
Tr(ΛF0) and Tr(Λ2F )(t) ≤ exp(tεTr(ΛF0))Tr(Λ2F0) (t ≥ 0).5. Conluding remarksThe results of the previous setion of appliations an be easily ompletedtaking advantage of Theorem 3.2. As an example, the previous Theorem 4.1an be ompleted as followsProposition 5.1 Let f0 ∈ L1

β,+ in problem (4.2). Then Eq. (4.2) has astrong solution f(t) ∈ L1
β,+, t ≥ 0.As mentioned before, the uniqueness is no longer ensured in the latter ase.Theorem 3.2 extends the main existene result of [11℄. The other generalexistene results formulated in [11℄ an be similarly ompleted, with obviousmodi�ations. This allows to reonsider the appliations of [11℄, aordingly,in an obvious manner.Prop. 3.3 provides uniqueness of the solutions in the speial ase when ∆vanishes on a rather large set. This an be applied, for instane, to thespae-homogeneous Boltzmann equation with hard potentials, to obtain asimilar existene result as in, e.g., [20℄. However, in a more general ase,the uniqueness problem, under the onditions of Theorem 3.2, remains open.Here we an however remark that the regularity onditions required in thetheorem might be neessary to ensure the uniqueness of the strong solutions.Indeed, examples of non-unique (but) less regular solutions of the Boltzmannequation have been reently disovered, [26℄, [19℄.In this hapter, we presented various examples of existene results for gen-eralized Boltzmann models obtained by monotoniity methods. The abovemethods are potentially appliable to investigate other evolution problems.On the other hand, the results presented in this review desribe only par-tially the properties of the models onsidered. They must be ompleted bya thorough study of other properties of the models, e.g. the existene of sta-tionary or/and equilibrium solutions, Lyapunov funtionals, H-theorems (seee.g. [7℄), asymptoti properties, onstrution of e�etive numerial methods.



An Introdution to Monotoniity Methods 916. Appendix1) Sketh of the Proof of Lemma 3.3Property B(·, gi, hj) ∈ L1
loc(R+;X+), i, j = 1, 2, follows from (A1), (A2) andRemark 3.2.To prove (3.58), let

yi(t) :=

∫ t

0
∆(s, hi(s))ds (i = 1, 2). (6.1)Clearly, 0 ≤ y1(t) ≤ y2(t), beause of the isotoniity of ∆(t, ·) (f. (A1)).Further, de�ne F (x, y) := a(x+ y)− a(x), with a as in (A2). The propertiesof a (f.(A2)) imply

F (x∗, y) − F (x, y) =

∫ y

0

[
a′(x∗ + ξ) − a′(x+ ξ)

]
dξ ≥ 0 (6.2)for all 0 ≤ x ≤ x∗ and y ≥ 0. Then one an show easily (invoking (A2), theisotoniity of Q+(t, ·) and the obvious inequality Λg1(t) ≤ Λg2(t)) that

0 ≤ B(t, g1, h1) = B(t, g1, 0) + F (‖Λg1(t)‖ , y1(t)) Λg1(t) ≤

≤ B(t, g2, 0) + F (‖Λg1(t)‖ , y1(t)) Λg2(t) (6.3)and
0 ≤ F (‖Λg1(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y1(t)) ≤ F (‖Λg2(t)‖ , y2(t)) . (6.4)Inequalities (6.3) and (6.4) an be now easily ombined to obtain (3.58). 22) Sketh of the Proof of Lemma 3.4a) Sine D∞

+ is p-saturated and ΛkQ±(t, ·) are positive and isotone, the keypoint is to show that for eah T > 0 and n = 1, 2, ..., there is gn,T ∈ D∞
+suh that

0 ≤ fn(t) ≤ gn,T (0 ≤ t ≤ T a.e.). (6.5)Then (3.41) gives Q−(t, gn,T ) ∈ D∞
+ a.e. on R+, hene ΛkQ−(·, gn,T ) ∈

L1
loc(R+;X+) for all k = 0, 1, 2, .... The same properties hold for Q+(t, gn,T )and ΛkQ+(·, gn,T ), respetively (by virtue of the assumptions of Theorem3.1a) and by (3.44)).Inequality (6.5) an be proved by indution.Indeed, note that (6.5) is trivially veri�ed for n = 1 by g1,T := 0, and for

n = 2 by g2,T := f0. Further, at the indution step, assuming that (6.5) is



92 Ceil Pompiliu Grünfeldful�lled for n = 1, 2, ..q − 1 (with q ≥ 3) applying, in essene, the propertiesof ∆, a, and (3.28), one �rst obtains
Λk

∫ t

0
B(s, gn−1,T , gn−2,T )ds =

∫ t

0
ΛkB(s, gn−1,T , gn−2,T )ds (0 ≤ t ≤ T ),(6.6)for all k = 1, 2, ... and n = 1, 2, ..., q − 1. Then observe that fq−1(t) ≤ gq−1,Tand fq−2(t) ≤ gq−2,T satisfy the onditions of Lemma 3.3 for g1 ≤ g2 and

h1 ≤ h2, respetively. Thus, applying onveniently (3.56) and (3.58) in(3.60), and invoking (6.6), we get
0 ≤ fq(t) ≤ f0 +

∫ T

0
B(s, gq−1,T , gq−2,T )ds := gq,T ∈ D∞

+ (0 ≤ t ≤ T ).(6.7)b) As before, it is su�ient to show by indution that property (6.5) is veri�edby gn,T ∈ D(Λ3) ∩X+.First note that if g1,T = 0 and g2,T = f0, then (6.5) is trivially veri�ed for
n = 1, 2, respetively.The indution step is simpler than in a), beause now one an make use ofthe fat that V t is C0. Then, ∫ t

0 V
shds ∈ D(Λ) for all h ∈ X, t ≥ 0, whih,in our ase, implies (for any 0 ≤ t ≤ T )

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds =

∫ t

0
V sB(T, gq−1,T , gq−2,T )ds ∈ D(Λ3)∩X+.(6.8)Sine, in our ase, B(t, gq−1,T , gq−2,T ) ≤ B(T, gq−1,T , gq−2,T ), we onludethe indution step, using property (6.8) with the key inequality

0 ≤ fq(t) ≤ f0 +

∫ t

0
V t−sB(T, gq−1,T , gq−2,T )ds (0 ≤ t ≤ T ), (6.9)whih follows, in essene, by Lemma 3.3, and by applying (3.56) and (3.58)in (3.60).) The statement follows from simple regularity onsiderations and somediret omputation.d) Obviously, 0 = f1(t) ≤ f2(t) ≤ f3(t) a.e.. Then a straightforward indu-tion, applying (3.58), shows that {fn(t)} is a.e. inreasing.For the rest of the proof, note that (3.63) implies (3.64). Inequality (3.63) anbe proved by indution. Indeed, sine 0 = f1 ≤ f2(t) ≤ f0, and ∆(t, 0) = 0a.e. (f. Remark 3.1), formula (3.63) is trivially veri�ed for n = 2. Let q ≥ 3



An Introdution to Monotoniity Methods 93and suppose inequality (3.63) to be valid for n = 2, 3, ..., q − 1. If n = q in(3.62), then the positivity of a and 0 ≤ Λfq−1(t) ≤ Λfq(t) give
fq(t) ≤ f0 +

∫ t

0
Q(s, fq−1(s))ds+

+

∫ t

0

[
a

(
‖Λfq−1(s)‖ +

∫ s

0
∆(τ, fq−2(τ))dτ

)
− a (‖Λf0‖)

]
Λfq(s)ds.(6.10)Aording to the indution hypothesis, (3.63) holds true for n = q−1. Hene(3.64) is also valid for n = q − 1, as onluded before. Then a(‖Λfq−1(s)‖ +∫ s

0 ∆(τ, fq−2(τ))dτ)) ≤ a (‖Λf0‖), beause a is non-dereasing. As Λfq(s) ispositive, learly the integral term ontaining Λfq(s), in the r.h.s. of (6.10) isnegative. Then (3.63) beomes true for n = q.e) Note that Q±(t, fn(t)) ∈ D(Γ), for a.e. t ≥ 0. Also, ΓQ±(·, fn(·)) ∈
L1

loc(R+;X+). Indeed, let T > 0 and gn,T ≥ fn(t) be as in a). If Γ is of typeD on D∞
+ (on D(Λ2) ∩ X+), then (3.36) and (3.41) give ‖ΓQ±(t, fn(t))‖ ≤

‖ΓQ±(t, gn,T )‖ ≤ ‖ΓQ−(t, gn,T )‖ ≤ a(‖gn,T ‖) ‖ΓΛgn,T ‖ for a.e. 0 ≤ t ≤ T .On the other hand, if Γ satis�es (3.46), then (3.41) implies
∥∥ΓQ+(t, fn(t))

∥∥ ≤
∥∥ΓQ−(t, fn(t))

∥∥ + ρΓ(‖Λ1gn,T ‖) ‖Γgn,T ‖ ≤

≤ a(‖gn,T ‖) ‖ΓΛgn,T‖ + ρΓ(‖Λ1gn,T‖) ‖Γgn,T‖ (0 ≤ t ≤ T a.e.).But (3.63) is of the form (3.37), and the above onsiderations show thatLemma 3.2 applies (with Γ instead of Λ). Hene,
‖Γfn(t)‖ +

∫ t

0
∆(s, fn−1(s); Γ, Q)ds ≤ ‖Γf0‖ (t ≥ 0, n ≥ 2). (6.11)Now the proof an be immediately onluded: if n = 1, then formula (3.65)is trivially satis�ed; if n ≥ 2, then (3.65) is diretly implied by (6.11).To obtain (3.66) observe that Λ2 satis�es the onditions for Γ in e).f) First apply inequality (3.46) in (6.11). It follows that

‖Γfn(t)‖ ≤ ‖Γf0‖ +

∫ t

0
ρΓ(‖Λ1fn−1(s)‖) ‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2).(6.12)But Λ1 satis�es the onditions of e) in the present lemma, hene ‖Λ1fn(t)‖ ≤

‖Λ1f0‖, t ≥ 0, n = 1, 2, ... . Introduing the last inequality in (4.16), weobtain
‖Γfn(t)‖ ≤ ‖Γf0‖+ ρΓ(‖Λ1f0‖)

∫ t

0
‖Γfn−1(s)‖ ds (t ≥ 0, n ≥ 2). (6.13)
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