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1. Introduction
1.1. General frame

During the last decade considerable progress has been achieved in the statisti-
cal description of non-equilibrium thermodynamic processes. While previous
work concentrated and provided a reasonable understanding of situations
near thermal equilibrium, such as stability of equilibrium states (approach
to equilibrium) or linear response, a consistent mathematical framework ini-
tiated by Ruelle [16], is now available for accounting for the installation, at
large time, of a non-equilibrium stationary state (NESS) even when the ini-
tial state of the system is far from equilibrium (see [3] for a recent review).
The typical physical situation which fits in this framework is that of several
reservoirs, R;; i = 1,...,7, coupled to a finite quantum system, S (sample).
One has to give account for the flow of energy and particles through the
sample in the large time asymptotic regime.

The isolated sample S is a usual quantum system with Hilbert space Hg,
algebra of observables Ag equal to the algebra of all bounded operators on
Hg, and unitary dynamics generated by the Hamiltonian Hg. The Heisen-
berg picture of the evolution is the automorphism group on Ag defined as
oy(A) = exp (itHg)Aexp (—itHg). We suppose that the sample is at time
t = 0 in an arbitrary invariant state wg, i.e. the expectation of an observable

A € Ag is given by a density matrix: w2(A) = tr(psA) and [pg, Hg] = 0.

The description of the reservoirs R; is somewhat more elaborated. A reser-
voir is an infinite quantum system, which, before the coupling to the sample
is switched on, is in a certain equilibrium state. Its description in the initial
state fits therefore in the well-established algebraic formalism of equilibrium
quantum statistical mechanics [4]. One starts with reservoirs finitely ex-
tended in some regions A; of space: the pure states are the unit vectors in a
Hilbert space H; a,, the algebra of observables A; A, consists of all bounded
operators on H; 5, and the (Heisenberg) dynamics on A; 5, is generated by
a self-adjoint Hamiltonian H; a,, af o (A) = exp (itH; a,) A exp (=it H; a,); at
given inverse temperature [;, the finite reservoir ¢ has one equilibrium state
w; g;.A; (A) = tr(Ap; g, a;) given by the Gibbs ansatz for the density matrix
pigiA; = (1/Zin,(5i)) exp (—BiH; a,), where the statistical sum Z; o, (5;) is
a normalizing factor. The infinite reservoir is conceived as an idealization
behaving like very large reservoirs, i.e., as a limit of the above structure:
The algebra of observables A; is the smallest C*-algebra containing A; a,

for all finite regions A;, the (strongly continuous) dynamics ol(-) on it is
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the strong limit (provided it exists) of the automorphism groups af, (-),
and the equilibrium state is a limit point w; g, of w;g, A, as A; increases
to the infinite region L; occupied by the reservoir R;. The infinite reser-
voirs in this sense can be represented as genuine quantum systems using
the so-called Gelfand-Neumark-Segal (GNS) construction. The latter con-
sists essentially in the following: a state w on a C*-algebra A defines a
sesquilinear form on it by (A, B) = w(A*B); after division by the ideal Z of
all I € A such that w(I*I) = 0, A/Z becomes a pre-Hilbert space, whose
completion H,, is the representation space. The representation 7, (X) of an
element X € A is the bounded operator which sends the vector A into the
vector X A; thereby, 1 =: Q,, is a cyclic vector for this representation, and
w(A4) = (Q, T (A)S,). If, moreover, the state w is invariant under the auto-
morphism group oy (i.e. woay = w), then 7, (o (X)) = Uy (—t)m,(X) Uy (),
where U, (t) = exp (—itH,) is a unitary group on H,. The generator H,
of this group, named thermal Hamiltonian, has €, as an eigenvector with
eigenvalue 0.

To simplify the notation, we no longer mention the reference states w? = wj g
of the reservoirs, and simply denote {H;, m;(+),Q;, H;} the GNS descrip-
tion for the reservoir R; corresponding to the equilibrium state w?, ie.,
respectively, the Hilbert space, the representation of the observable alge-
bra A;, the cyclic vector and the thermal Hamiltonian generating the uni-
tary implementation of the dynamical automorphism group: m;(al(A)) =
exp (itH;)Aexp (—itH;). Likewise, we denote {Hg,ms(:), s, Hg} the GNS
representation of the sample associated to the state wg invariant for the group
o

The composite system S+ > R; is in turn an infinite quantum system, which
is to be constructed as above from a certain reference state. The algebra of
observables is taken as a C*-tensor product of the algebras A; of the reservoirs
and Ag of the sample:

A=As® (®;A4;), (1.1)

and the reference state is taken as the product of the initial equilibrium
states w? of the reservoirs and the ak-invariant state w2(:) = (Qg,-Qg) of
the sample:

W =l ® (@), (1:2)

On the algebra A one has the uncoupled dynamics described by the auto-
morphism group o = af ® ((®;al), which leaves invariant the state w’:
w(a(A4)) =w’(4), A€ A

At time t = 0, a coupling between reservoirs and the sample is switched on,
meaning that the dynamics of the system at positive times is given by another
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automorphism group of A, 7¢. The evolved reference state will therefore

change in time, and be, at time ¢ > 0, the state for which the expectation of
an observable equals the w%-expectation of the observable evolved at time ¢
according to the new dynarmics:

wi(A) = WO(r1(A)) = V(a7 - TH(A)), (1.3)

where the second equality comes from the al-invariance of w". Suppose
a stationary (7'-invariant) state is approached at large time. This can be
expressed as the existence of the limit of w!(A4) when ¢ — +o0 for all 4 € A.
The latter is ensured by the existence of the limits

lim o' 7H(A) = Q4 (A), (1.4)

t—+o00

i.e. by the existence of the Moller endomorphisms of the two groups. In
this way, the existence of (and the convergence to) a stationary state can
be presented as a scattering problem for two automorphism groups on a
C*-algebra. As a rule, 7 is constructed as a local perturbation of o via a
strongly convergent Dyson series; more precisely, if }E}% H(al(A)—A) = 6(A)
for A in a dense subalgebra D C A, one supposes that there exists V € A,
such that dy (4) := lim 1(r1(A) — A) = 6o(A) +i[V, A] for A € D.
As a consequence of the choice (1.2), the composite system can be realized
in the tensor product of Hilbert spaces H = Hgs ® ((®;H;), which carries the
product representation of A, so that m(A) is the C*-tensor product of oper-
ator algebras mg(Ag) ® ((®;m;(A;)). Thereby, the independent (uncoupled)
dynamics of the reservoirs and of the sample is implemented in H by the
unitary group Up(t) = exp (—itHy) = exp (—itHg) ® ((®; exp (—itH;)). The
cyclic vector Q = Qg ® ((®;£;) is an eigenvector of Hy with eigenvalue 0.
Also, the locally perturbed dynamics is implemented by the unitary group
U(t) = exp (—itH), where

H = Hy+ (V). (1.5)

In this way, the problem can be reformulated as a perturbation problem for
selfadjoint operators on a Hilbert space in a setting depending on the chosen
reference state.

Of course, the construction of the perturbed dynamics and the proof that
the Moller endomorphisms exist are to be done for the models under con-
sideration of reservoirs, samples and couplings between them. It happens
that the program outlined before can accommodate a few reservoir models of
physical interest, such as spin models or free particle models obeying Fermi
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statistics, and samples with finite-dimensional Hg. One of the most restric-
tive assumptions is the existence of the infinite-volume dynamical group of
automorphisms o! and its assumed strong continuity. A way out to a more
permissible framework for the reservoirs, R;, is to construct as above the
reference states w? as limit points of finite-volume Gibbs states and further
work within the GNS representation associated to it. In particular, a weakly
continuous infinite-volume dynamics may appear as a limit of the local dy-
namics afxi(-) viewed as automorphisms of the weak closures of the operator
algebras m;(A;) representing A;, i.e. of the von Neumann algebras m;(A4;)".
This allows to define a representation-dependent dynamics and self-adjoint
thermal Hamiltonian. Hence, the steps leading to a scattering problem in a
Hilbert space are to be performed. In particular, this is the case of free-boson

reservoirs, see Sec. 4. below.

1.2. Quasi-free models

In the paper we shall consider instances of concrete realizations, within a
class of very simple models, of the paradigm outlined above. Essentially, we
suppose that:

1. The reservoirs are free quantum identical particle systems, obeying
Fermi-Dirac or Bose-Einstein statistics.

2. The perturbed (coupled) dynamics is quasi-free.

In more detail, point 1 means the following: Before taking the thermody-
namic limit, i.e. when the reservoir is confined to a finite region A, the
appropriate Fock space, which bears the Fock representation of the canoni-
cal (anti)commutation relations, can be used, whereby the number of parti-
cles Ny = dI'(1) and Hamiltonian Hy = dI'(h}). According to the grand-
canonical prescription, Hy is to be replaced by Hy — N in the Gibbs ansatz
for the equilibrium density matrix, where the multiplier u is adjusted to en-
sure given particle density in the reservoir. In the thermodynamic limit, the
C*-algebra of observables should "contain" the local operators, i.e. functions
of af(f) with f having support in some finite region. It is therefore natural
to take it as the canonical (anti)commutation relations algebra, CAR(D),
respectively CCR(D), over a certain subspace of the space of reservoir’s one-
particle states, D ¢ HW, containing at least the functions with compact
support. The equilibrium states of the reservoir, i.e. the limit states of the
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finite-volume Gibbs states, are well-known (see e.g. [4]), and turn out to be
quasi-free states (i.e. states in which there are no correlations of order higher
than 2) over these C*-algebras. D may be extended such that the limit states
be defined on the corresponding C*-algebra. In the Fermi case D = HO.
In the Bose case, however, due to the phenomenon of Bose-Einstein conden-
sation, D # HW: in the paper, in order to avoid the domain problems, we
suppose also that the Bosons live on the lattice Z9, leaving the general case
for another publication.

The point 2 means that the evolution automorphism of the C*-algebra is
given by a unitary evolution e 7" in H() which leaves D invariant: 7¢(af(f)) =
aﬁ(eithf). As a consequence, not only the initial (reference) state w’, but also
all w!, t > 0 and the stationary state are quasi-free. Thereby, the problem
is reduced to a scattering problem for the one-particle Hamiltonians, which
can be explicitly solved.

In this respect, the quasi-free models are trivial, in particular they allow
no interaction between particles and thus restrict consideration to simple
tunneling junctions, but they turn out to be a good laboratory for conjectures
concerning various phenomena and providing instances of interesting physical
behavior. In particular, the coupled dynamics no longer conserves the energy
and number of particles in the reservoirs, implying that, in the stationary
state, there exist persistent currents of energy and particles, depending on
the parameters fixing the initial equilibria of the reservoirs, and also on the
geometry of the sample and its coupling to them. In this way various formulae
of transport theory can be obtained beyond the linear response regime.

1.3. Summary

There is an extensive literature on quasi-free quantum systems. This work
started as an attempt to systematize their application to the problems of
return to equilibrium and of approach to NESS in a more abstract, com-
prehensive frame, as outlined in the previous subsection. In the meantime,
we became aware of two recent papers with the same purpose in the Fermi
case [2[, |[12], so we limited to the more modest aim of giving a (hopefully
more friendly) presentation of their general result, of indicating its extension
to the Bose case and of providing a few examples of calculation for certain
interesting physical quantities.

Section 2 is concerned with the spectral and scattering problems for the one-
particle Hamiltonians, as the same analysis applies to both Fermi and Bose
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statistics. In order to have as far as possible explicit expressions, we consider,
as an application, in subsections 2.3. and 2.4. the case of two reservoirs, in
which the particles live on two d-dimensional lattices, and those in the sample
on a chain of N > 0 sites; thereby, the coupling is a simple tunneling involving
one site of each reservoir.

Section 3 is devoted to the Fermi statistics case, which is simpler in many
respects, in particular the C*-framework is sufficient, as the infinite-volume
dynamics is a strongly continuous group of automorphisms of C’AR(H(l)) .
A comprehensive study of this case has been performed in |2], the results of
which are briefly presented. We make explicit their result for the particular
setting in Section 2.3. and point out a few peculiarities of the NESS, such as
the resonant character of the transport and the plateau effect for the carrier
density.

Section 4 is concerned with Bose reservoirs. This brings in several new phe-
nomena and complications. First, at high density and low temperature,
Bose condensation may appear, implying the spontaneous gauge-symmetry
breaking, i.e. existence of several extremal equilibrium states labeled by a
phase. Moreover, the infinite volume dynamics cannot be a strongly continu-
ous group of the CCR algebra; fortunately, as quasi-free states are regular, it
is continuous in the GNS representation corresponding to equilibrium states.
The interesting question here is the dependence of the NESS on the particular
mixtures of phases constituting the initial equilibria of the reservoirs. This
may be viewed as a caricature of the Josephson tunneling of Cooper pairs
between two superconductors. The approach to equilibrium in the presence
of a condensate has been analyzed by Merkli [8]. The problem of approach
to a NESS, left open there, was considered by us in [1], the result of which
is presented in the present, slightly more general, setting.

2. Scattering for the one-particle Hamiltonians

This section is devoted to the spectral analysis of the one-particle Hamil-
tonian h = hY 4+ v, where h° is the one-particle Hamiltonian of the decou-
pled system, i.e. the direct sum of the one-particle Hamiltonians h; (i =
1,...,7), hg of the isolated reservoirs and sample and v describes the tunnel-
ing between them. We make the following assumptions:

Assumption 2.1 The one-particle Hilbert space is an orthogonal sum

HO =HY ony; HY = o, H1Y,
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with dimHg) =N <oo. Let J: Hg) — HW and I : Hg) — HW be the
natural injections:

Jf=0af If=f®0,

Assumption 2.2 In the matriz representation associated to this decomposi-
tion, the unperturbed Hamiltonian hg is block-diagonal:

R = hg @ hY.; RO, = @l h;,

ac?

and the perturbation v has the following structure: There exist maps T; :
Hgl) — H(Sl), such that
v=IrJ"+ Jr*Il*,

where

T Hg) — H(Sl), T(Biz1fi) = ZTifi-
i=1

Assumption 2.3 h;, ¢ = 1,...,r, have absolutely continuous spectra equal
T

to the bounded intervals I; C R. Thereby, we suppose that |J Int(I;) is an
i=1

interval (emin, €max). We denote R;(z) = (h; —2)7%, (2 € C\ ;) and R, =

(hae —2) "t = ®!_1Ri(z). Let p;,m; denote the right, respectively left, support

of 1; (i.e. the orthogonal projections onto the subspaces Ti(Hgl)) C 'Hg),

respectively Ti*(Hg)) C Hgl)). For all x € I;, the limits

lim m; R;(x + ie 1
Ao il (T IOl e

exist as operators in the corresponding subspaces and are continuous functions
of x; thereby, for all interior points x of I;, |

>0 (i=1,..,7).

w38+ 10,

2.1. Resolvent and spectrum of the perturbed Hamiltonian

The spectral decomposition of h = h® + v is based on finding a convenient
representation of the resolvent operator R(z) = (h — 2)~!. We shall use a
variant of the Feshbach method, taking advantage of the fact that v has finite
range, what allows summing the perturbation series in closed form.

We have to solve for fg, f;, i =1,...,r, the system of equations

(hi : Z)fz + Tz-*fs =g; (Z =1, 7“)
Yo7ifi +(hs —2)fs =gs, (2.1)

i=1
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where g = g5 @ (®7_,9;) € HW is arbitrary.
If 2z € C\ [emin, max], the first line in equation (2.1) provide f; in terms of

Is:
fi=Ri(2)(9i — 7] fs), (2.2)

and the second line becomes
(het(2) — 2) fs = Q(2)g, (2.3)

where heg(2) : Hg) — qul) and Q(z) : HV — qul) are defined by:

T

hei(2) = hs— > TiRi(2)7] = hs— TRY (2)T*,

1=1 (24)
Q(z) = I"—71R(2)J*.

Whenever heg(z) — 2 is invertible, we denote Reg(z) = (her(2) — 2)71, s0
that Eq. (2.3) has the unique solution

fs = Rer(2)Q(2)g, (2.5)

With fg given by Eq. (2.5) and f; given in terms of it by Eq. (2.2),
f = fs® (®_,fi) = Q(2)*fs provides the solution to the system (2.1).
Therefore, remarking that U]_,I; C o(h) (by the invariance of the essential
spectrum under compact perturbations), the following characterization has
been proved:

LEMMA 2.1 The resolvent set of h is
p(h) ={z € C\ [emin, €max); ker (heg(2) — 2) = {0}}.
For all z € p(h),

R(z) = JRy.(2)J" + Q(2)" Rest (2)Q(2). (2.6)

The Kato-Rosenblum scattering theory [15] ensures the existence and com-

pleteness of the wave operators W Hg) — H® for the unitary groups

H ith 0 . . ..
e ith e~ithac je. the existence of the strong limits:

Wy :=(s) lim elth Jeithie (2.7)

t—too

Hence,
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LEMMA 2.2 h has absolutely continuous spectrum cac(h) = [€min, €max] and
no singular continuous spectrum. The absolutely continuous part hae of h,
i.e. h restricted Hé?(h) = Wi(Hg)), is unitarily equivalent to h. via the
intertwining relations hac Wy = Wihl,

Finally, we determine the point spectrum of h, op(h).

Let z € op(h), and f = fg @ (P]_,fi) # 0 be an eigenvector of h with
eigenvalue z. Then f is a solution of Eq. (2.1) for g = 0.

If, thereby, 7/ fg = 0 for all i = 1, ..., 7, then (h; — 2) f; = 0, Vi, hence f; =0,
because h; have no point spectrum. If so, the second line in (2.1) shows that
z € op(hg) and that fg € ker 7;* is a corresponding eigenvector. Conversely,
if fg € N;ker 7 is an eigenvector of hg, then fg @ 0 is an eigenvector of h
with the same eigenvalue.

Suppose next that 7 fg # 0 for at least one i. If z & [emin, €max), Eq. (2.2),
which expresses f; in terms of fg, and Eq. (2.3) show that fg # 0 is an
eigenvector of heg(z) with eigenvalue z. Conversely, if ker (heg(z) — 2) 2
fs # 0, then z € op(h) and Q(2)* fs is an eigenvector of h with eigenvalue z
(in particular, we have that Sz = 0). Let us consider the family of self-adjoint
operators {heg(x); 2 =z € (—00, €min) } and let A\j(z) < ... < An(z) be the
eigenvalues of heg(z) and ¢ (z )( s (T ) ) the Correspondlng eigenvectors.
As remarked before, x € o, (h) if, and only if, = A\ (z) for some k =1,...,N.
As heg(z) is a decreasing operator-valued function of z in the considered
interval, all its eigenvalues A\i(z) are decreasing functions, hence, the equation
x = Ai(z) has a simple solution z = e, if, and only if, lm Ay(2) < emin.
€T

€min
Then, every eigenvector of heg(e, ) with eigenvalue e, can be completed to
an eigenvector of h with this eigenvalue. Likewise, on (emax, 00) the equation
x = Ag(z) has a solution e,j if, and only if, \l}m Ak(x) > emax, implying
x

emax
ey € op(h).

Next, let fg@® f be an eigenvector of h corresponding to x in (€pin, €max) and
such that 7 fg # 0 for some i = 1,...,r. Let z = x + iy, with Sz =y > 0.
We have, by the first line of equations (2.1), fi = Ri(x+iy)(hy —x —iy) fr =
— Ry (z +iy) 7} fs — iyRi(x +1iy) fr, which, plugged into the second equation,
implies, in partlcular, that

(fs, (he(z +1iy) —x)fs) =1y Z(kas,Rk(erly)fk)
Z(||f1c||2 iy(fr, Ri(z +iy) fr.))-

Equating the imaginary parts of this equality, letting y \, 0 and using
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|Ri(z + iy)|| = 1/y, we arrive at
S(fs: e Ri(z +10)7; fs) = 0, VE,

which contradicts assumption 2.3.

In summary:

LEMMA 2.3 The point spectrum of h in R\ {emin, €max} consists, besides
T

the possible eigenvalues of hg possessing eigenvectors fs € () ker 7, of the
=1

solutions e, € (—00,€min) and elj € (emax,00) of the equations \i(x) = x.

The latter exist if, and only if, Ag(émin — 0) < €min and Ag(emax +0) > €max,

respectively.

The values enin Or emax may be eigenvalues of h, either if they are eigenvalues

r
of hg with eigenvector fg € () ker 7/, or if \;(z) = = and the corresponding
i=1

eigenvector ¢(z)®) fulfills lim | R;(2")m30(x")®)|| < oo, Vi. The latter con-

dition, being dependent on the structure of h? and 7;, is to be checked for
each concrete model.

2.2. Wave operators and scattering matrix

In this subsection we derive the expressions of the wave operators and S-
matrix using the formalism of stationary scattering theory [15], [17|. Namely,
with the spectral representation of the unitary groups e " = fe_itxdE(:E),
e ithi — [e7"®dE;(z), we can express the wave operators in terms of the
resolvent R(z) of h. We have

Wi =(s) l{%e JoT e exp (ith) J exp (—ith°)dt
= (9)lime [dE(') [ JAE () [g dte= o) (2.8)
= (s) 1{1})(16) [ R(z —ie) JAEY, (z).
where we denoted EY. () = @7_, F;(x). Similar calculations are valid for W_.

Using Eq. (2.6) for R(z), taking into account that FieRY,(x + ie)dEL. (x) =
dE? (z) and Assumption 2.2, the following representation is obtained:

Wi = J = (3) lim / Qlx +i€)* Rg (2 F i€)rd E°. (). (2.9)
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Also,

Wi=J—(s) 1/1{10 dES (2")7* Reg (2 £ i) Q(2’ £ i€’). (2.10)

Egs. (2.9), (2.10) give for the S-matrix:

S=WiW_=1 —J*[Q(z —i0)"Reg(z +i0)rd EY.(z)

— [dE2 (2")7* Regr (2" 4 10)Q (2 +10).J (2.11)
+;i%{l%degc(x’)T*Reﬁ(x’ +i)Q (2’ +i€’)
< [ Qe — i6)* Ru(x + 10)rd BL,(x)}.

We calculate the last term using the resolvent equation, which implies

Q2" +i)Q(z —ie)* =1 + 7RO (z' + i) RO, (z + ie)T*
=1+ (@ —z+i(d — ) 17[RY(2' +i€') — RO, (x +ie)]7*
= (2 — 2 +i( =€) (heg(x + i€) — x — i€) — (heg (2’ +i€) — 2’ —i€’)].

Each term of the latter expression, when plugged into Eq. (2.11), is sand-
wiched between Res, what, after making the obvious simplification, allows
one of the integrals to be performed (e.g. [dES (2)(2/ —x+i(¢' —¢)) 7% =
RO (x—i(d —€))7* = J*Q(x—i(e—¢€))*). Therefore, after taking the iterated
limit, the last term of Eq. (2.11) equals

/ J*Q(z +10)* Regt( + i0)rd B2, () + / AEY (/)7 Reg (' +i0)Q(a’ +10).
As Q(2)J = —TRY.(2), one obtains finally
S =1+ 21/ I(RY (x4 10))7* Regr (z + 10)Td B, (). (2.12)

REMARK 2.1 It is sometimes useful to represent the Hilbert space Ha.(h°) as
a direct integral over energy of Hilbert "eigenspaces” K., i.e. there exists a

unitary U : Hac(h°) — f[® Kydy =: K, such that UES(A)U* = x4 (")

eminyemax]

(the operator of multiplication with the indicator of the measurable set A). It
is clear that, for ¥(-) € f[fmm,emax1 K,dy, (UR(2)U*)(y) = (y — 2) "0 (y).
Also, TU*Y = |, }Ty(i/)(y))dy, where 7, : Ky — Hg). Eq. (2.12)

[emimemax
shows that, in this representation, the S-matriz is diagonal, i.e. USU* =
fﬁa Sydx, where Sy : ICp — Ky equals

eminyemax]

Sy = 14277} Regr (x +10) 7, =: 1 + T, (2.13)
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T, 15 called the on-shell T-matriz.

Calculating, for f e 'ch), separately the component I"Wif € H(l)
JWif e 'Hac of Eq. (2.9), one obtains

r'wyf = — [ Reg(z Fi0)7, (U f)(z)dz
UIWefl@) = U))+ 249
+ [ — :c¢10 T¥ Regt (2 F10) 7, (U f)(2")da’
Also, the action of W1 on f € HD is given by
UWLf) ()= (UJf)(z)-
— [ 25 7i Rer(z £10) 7 (U J* f) (2/)da’ — (2.15)

—7) Regr(xz £10)I* f.

2.3. An example: two half-infinite lattice reservoirs coupled
by a wire

In this subsection we describe, as an illustration of the more general setting
of the model, a particular geometry and dynamics: the system consisting of
two particle reservoirs, Ry, Ro, connected by a one-dimensional wire, .S.

The reservoirs, R;, 1 = 1,2, are taken as infinitely extended lattice quantum
gases. The particles in the reservoirs live, respectively, on the two (left,
respectively, right) half-infinite lattices,

Li=17¢= {r = (,rd); ' e 24 (~1)irt =1,2, } . (2.16)

The Hilbert space of one-particle states in R; is therefore

’Hz(l) = l2(Lz) = f (fr)T’EL,7 ”f”2 Z ‘fr‘2 <00 . (2-17)

rel;

The kinetic energy operator of one particle in R; is 1/2 times the lattice
Laplace operator with free boundary conditions, i.e.

(hif)r = dfr — % oo (2.18)

q€L;,|q—r|=1

A complete set of generalized eigenvectors of h; are (k) € lo(L;), k € T¢,
where the index sets T¢ = {k = (K, k%); k' € [0,2m)4" L k? € (0,7)} are
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identical (the subscript ¢ has the only role to make the difference between
the two reservoirs, e.g. by ']I“li U Tg we mean the disjoint union of two copies
this set), and

(k) = 2(2m) Y2 exp (ik'r") sin (K9]r7)). (2.19)

(k) corresponds to the generalized eigenvalue

d
wi(k) =2 Z sin? (k%/2). (2.20)
a=1

Again, though the two dispersion laws (2.20) are identical, we keep the label
1 to mark the reservoir they correspond to. Therefore the spectra of h; are
absolutely continuous and coincide with the intervals 7, I C R (both equal

to [0,2d]). In fact, we define the unitary operators w; : Hgl) — Ly(T%) by

wif = ('), f); (2.21)
then, u;h;u} is the operator of multiplication with the function w;(k) on
Lo (T%).

The sample S, providing our model of a nanowire, is a free quantum gas in
which particles live on the finite set of sites {1,2,...,N}. The states with

one particle are vectors f = (f1,..., fn) € 'Hg) =1,({1,2,...,N}) =C" and
their evolution is controlled by the Hamiltonian

(hsf)i= (1+eg)fi—1/2(fic1+ fix1), i=1,... N (fo= fny1=0), (2.22)

where the parameter e, plays the role of an adjustable gate potential. The
eigenvalues of hg are g, = ey + 2sin? (¢,,/2);m = 1,..., N, where ¢,, =
mn /(N + 1), with eigenvectors 1(™):

2
N +1

P = sin (gmi). (2.23)

The one-particle Hilbert space for the entire system, S + Ry + Rs is
HO =HP oHP oH) = 1y(L), where L= {1,2,.., N}UL; ULy. (2.24)

The evolution of the one-particle states for the uncoupled system is given by
the one-particle Hamiltonian

R = hg ® hy @ hy (2.25)
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At t = 0, tunneling junctions are turned on between the reservoirs and the
ends of the wire through the pairs of sites (a; = (0/,—1),{1}) and (a2 =
(0/,1),{N}), N > 0. On H® this is given by the one-particle operator v
defined by the matrix

Ups = (2.26)

t, if either {r,s} = {a1,1} or {aa, N}
0, otherwise,

Thus, the evolution of the one-particle states in the coupled system is gen-
erated by the Hamiltonian:
h=h"+v. (2.27)

ProprOSITION 2.1 The model defined above fulfills the assumptions 2.1 2.3.
Thereby, h has no eigenvalue embedded in (0,2d).

Proof. Assumptions 2.1 and 2.2 are obvious, with 7 = 2 and 7, 70 having all
matrix elements equal to 0, but for (71)1,4, = (T2)N,a, = t. We have that

(1 R1(2)7)ij = t20;165,19(2), (2.28)

where

g(z) = 4(2m)~? [14sin? (k) (w1 (k) — 2)~'dk

= 4(2n)7¢ 2fd(y —2) Ny J sin? (kd)duy(k), (2.29)
0 T4(y)

where dy, (k) = |Vw(k)| " 'doy, (k) is the Gelfand-Leray measure on the level
set TY(y) = {k € T4 w(k) = y} (where doy(k) is the area measure on this
surface). Using the Sokhotski formula (z —i0)~! = P(%) + ird(z) (where P
denotes the principal part), we have

lg gz + iy) = 4(27) / sin? (k%) dpa(k) > 0, Va € (0,2d).  (2.30)
)
Ti(e)

Finally, the eigenfunctions (2.23) of hg fulfill ¢1m) = \/Ni_i_lsin (gm) #

0,¥Ym =1,..., N, implying that there are no eigenvalues embedded in (0, 2d).
(]

For this model one may define the unitary U of Remark 2.1 as the compo-

sition the unitary uy @ up : Hac(H®) — @12:1[12(']1‘?) (where u; are defined
5]

in Eq. (2.21)), with the unitary v; @ vg : ®2_, Lo(T¢) — 02d Kydz, with

Ky = @2 Lao(T¢ (), d; »(k)), where (v; f;)(x) is the restriction of f; to the
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"energy shell" ']I'd( ) and dp; . is the Gelfand-Leray measure on the latter.
Then, 7f = f dz7 (U f(x)), where 7, : Kz — Hg) is given by:

(qub)m = mltf’]rd ( ) ( )d:ul Zv(k)+ (2 31)
+0m, Nt de U2 (K)ay 62 (k)dpz,. (), '

and (UT*f)(x) = 7 f, where 7 : Hg) — Iy is given by

(3 /) (k) =t (k)ay f1 ® t9° (K)o [ - (2.32)

We remind that 9% (k),, = 2(21)~%? sin (k%), see Eq. (2.19).

Upon insertion of Egs. (2.31), (2.32), the equations of the previous remark
are made explicit. For instance, the T-matrix T, : K, — K, appearing in
Eq. (2.13) is an integral operator with matrix kernel:

T (k, k) j = sin (k%) Regr (2 +10)s,. 5, sin (K'), (2.33)

4i
(27‘r)d_1

where s1 =1, s9 = N.

2.4. An example of direct tunneling between reservoirs

The case when the reservoirs are directly coupled through a tunneling junc-
tion without any intermediate sample is special. Indeed, e.g. for two reser-
voirs, HD = H,(h0) = HY @ 1Y,

In view of the application to Bose gases, where the surface effects may be
drastic, we consider now the translation invariant case of lattice reservoirs,
i.e. we suppose that particles live on L; = Z% i = 1,2. The one-particle
Hilbert spaces 'Hgl) and reservoir Hamiltonians h; are defined by Eqs.(2.17),
(2.18), respectively. Then, the generalized eigenfunctions of h; are plane
waves

YH(k), = (2m)" Y2 exp (ikr), k € T = [0, 27)¢, (2.34)

with generalized eigenvalues w(k), Eq. (2.20), and the unitaries u; are simply
the Fourier transform.

The tunneling is between the origins of L;, i.e. we take a; = 0 € Z%. Let

Ty =m Dy : HW — C2 denote the restriction to the pair aq, as of coupled
sites:

mo(f1 @ f2) = (f1)o ® (f2)o,
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(10 . . 9 (01
00—<0 1 > be the unit matrix in C* and o1 = ( 10

Pauli matrix (interchange of 1 and 2). The interaction can be represented as

> be the first

v = tmho17o (2.35)

One can simplify significantly the expressions of R(z), Q4+, S by using the
Fourier representation (2.21) on both spaces: u = u; @ ugy : @12:1H§1)
®?2_ Ly(T¢). The resolvent equation (h — z)f = g reduces in moH™M to the
equation (o9 + tmoR°(2)m01) (7o f) = moR°(2)g, which amounts to inverting
a 2 x 2 matrix. Thereby,

—

moB2(2)75 = §(2)ov, (2.36)
with §(z) given by "
§(z) = (2m) 4 Y — .
i) = (2n)! [ (2.37)

It should be remarked that Jg(z +10) > 0 for all z € (0,2d) (and is, as a
matter of fact, 7 times the density of states of the lattice Laplaceian (2.18))
and, for d > 3, goes to 0 at the spectrum ends x = 0, 2d.

We obtain finally:
LEMMA 2.4 In the direct-coupling model described above
1. The resolvent of h = h® + v has the representation:
R(z) = Ro(2) — tRo(2)m (01 + t§(2)00) tmoRo(2),
(2.38)
(z € C\ [0,2d], t2G(2)% # 1).
2. 0ac(h) =1[0,2d].
3. If il}% g(x) > 1/t, the equation t2§(2)? = 1 has two real solutions ey < 0
and 2d — eg, which are simple eigenvalues of h; otherwise, op(h) = 0.
Using this representation in Eq. (2.8) (in this case, J = 1), one finds that

the wave operators have the form WL =1 — K., where uKu* are integral
operators in Lo(T%) @ Lo(T?) with 2 x 2-matrix kernels

t(2m)~@
w(k) —w(k") £i0

The S-matrix acquires the form S = 1+ T with u7Tu* having the generalized
kernel

Ki(k,K) = (01 + tg(w(k') Fi0)ag) . (2.39)

i5(w(k) — w(k)
(27)d—1

t(k, k) (o1 + tg(w(k') +i0)og) L. (2.40)
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3. Quasi-free Fermion models

3.1. The algebra of observables, the C*-dynamics and the
reference state

We consider the physical situation described in the Introduction, with r
reservoirs of free Fermi gases at equilibrium, coupled via a tunneling junction
with a sample consisting of free Fermi particles with a finite-dimensional one-
particle state space. The dynamics is supposed quasi-free, specified by the
one-particle Hamiltonian h = h° 4 v, fulfilling the assumptions of Sec. 2.
This subsection is devoted to a precise definition of the quantum system
under consideration. We use the notation of subsections 2.1., 2.2..

We start with defining the C*-dynamical system:

Let .7:(7'((1)) be the antisymmetric Fock space over the one-particle space
of Assumption 2.1, and denote a*(f)/a(f) the usual creation/annihilation
operators of one particle in the state f € H1); a*(f) is linear and a(f)
is antilinear with respect with f € H®W. The following anticommutation
relations hold: for f,g € HW

Y

{a(f);al9)} ={a"(f),a"(9)} = 0, {a(f),a*(9)} = (f,9)-  (3.1)

It follows that [|a(f)|| = [[a*(f)|| = ||f|l- The norm-closed operator algebra
generated by them, denoted CAR(H™M) (called the the algebra of canonical
anticommutation relations), is taken as the algebra of local observables of the
system. As an instance, we shall consider elements in C AR(H(!)) which are
the second quantization of one-particle operators: for a trace-class operator
a acting in H() with canonical form a = > sk(frs )9k (where si are the
singular values of a), dI'(a) = . spa*(gr)a(fr) € CAR(HW).

The one-particle Hamiltonians k" and h define two (strongly continuous)
groups of automorphisms of C’AR('H(l)) (corresponding to the uncoupled
and coupled dynamics, respectively) by

ol (@*(f)) = d* (€™ f), (@ (f)) = d*(eM ). (3.2)
Also, let ¢? denote the gauge automorphism group of CAR(H), i.e.
¢ (a*(f)) = a* (e ). (3.3)

Corresponding to the decomposition HM) = qul) o (EB;leEl)), one can de-
fine gauge automorphisms ¢; (i = 1,...,7), ¢g of the kinematical algebras
CAR(HZO)) (t=1,..,71), CAR(HES})) of the reservoirs and of the sample.



30 N. ANGELESCU et al.

The states of the system are positive linear functionals w : CAR(HM) — C

of norm ||w|| = w(1) = 1. A state w is gauge invariant (i.e. wo ¢’ = w) if,
n m

and only if, w([] a*(g:) [] a(fi)) =0, ¥n # m. For any state w, the formula
i=1 i=1

w(a*(g)a(f)) = (9, pu f) (3.4)

defines a self-adjoint operator 0 < p,, < 1 on H(), called its density operator.

Given p self-adjoint with 0 < p < 1, there exists a unique quasi-free, gauge-
invariant state w, with density operator p. The higher order expectations
are expressed in this state w, by

wp(a™(gm)...a*(g1)a(f1)...a(fn)) = Omn det {(fi, pg;)}- (3.5)

If the initial state w® of our system is quasi-free and o!-invariant, what hap-
pens if its density operator p commutes with A%, its evolution w? under the
perturbed dynamics 7! is likewise a quasi-free state with density operator:

—ith0 eith]* po e—itho oith. (3.6)

9

t_
p=le
indeed, using the a’-invariance of w°,

w'(a*(g)a(f)) = (r*(a*(9)a(f))) = w’(a " o T(a*(g)a(f))) =

— wO(a*(e—ithoeithg)a(e—ithoeithf)) _ (e—ithoeithg,poe—ithoeithf)‘

The initial state is taken as a product state w® = wg® (®!_,w;), where w; are
the equilibrium states of two lattice free Fermi gases with one-particle state
spaces 'Hgl)
the isolated sample.

and one-particle Hamiltonians h; and wg is an invariant state of

It is well-known [4] that, at given values of the temperature S~! > 0 and
chemical potential 1 € R, a free Fermi gas has a unique equilibrium state: it
is the gauge-invariant quasi-free state with density operator fg ,(h), where
h is the one-particle Hamiltonian, and fs , is the Fermi-Dirac function:

1

71 1 eBlz—p) (3.7)

fou(@)

This defines in particular the initial states of the reservoirs w;.

3.2. Convergence to the NESS and currents

We present here the main results of [2| within the framework defined by
Assumptions 2.1-2.3. As with our assumptions no regularization is necessary,
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the proof can be made considerably more transparent, so we shall sketch the
argument for reader’s convenience.

As all states involved are quasi-free and gauge-invariant, it is sufficient, in
view of Eq. (3.5), to establish the convergence of the state on elements of
the form a(g)a*(f). This means to calculate the limit density operator as a
weak limit of the density operators p’.

As shown in Sec. 2, H() = H,.(h) @ Hp(h), with H,(h) finite-dimensional.
Let Pjc, P, denote the corresponding orthogonal projections. We calculate
the density operator:

T
pi =), lim (/1) [ gl 38)

For f € Hac(h), we have, in view of Eq. (3.6)

Y

: te O/
tl}Toop F=W-pWZf

because , liJlZl e_ithoeithf = WZ* f exists. On the other hand, if f € Hy(h),
— T 00

it is a finite combination of eigenvectors, so, we can suppose that f is an
eigenvector of h with eigenvalue e,

(W)t liJlZl Pyee™th p0cith £ — (w) 1121 Pyeith=e) (P°f)=0

t—

by the Riemann-Lebesgue lemma, while, for any eigenvector g of h with
eigenvalue €/,

T—+o0 T—+o0

T T
lim (1/T)/ (9,p'f)dt = lim (1/T)/ "= (g, 0 f)dt = Ge.or (g, 0" f).

0 0
In summary,
PROPOSITION 3.1 The following limit exists for A € CAR(HW)

T
lim (1/T) / WHA)AE = w, (A) (3.9)
T——+o0 0
and is the quasi-free gauge invariant state of density operator
pr =W_p"W+ > PP, (3.10)
ecop(h)

where P, 1s the projection onto the eigenspace of h corresponding to the eigen-
value e. Thereby, the restriction of wy to CAR(Hac(h)) is the quasi-free state
of density W_p W*, and we have

lim w'(A) =w,(A), A€ CAR(Hac(h)). (3.11)

t——+o00
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Clearly, the state w, is 7'-invariant, in particular, for any trace-class operator
a on HW, Lwi(r'(dl(a))) = 0, implying that tr(p4[h,a]) = 0. However,
if @ is not a trace-class operator (but py[h,a] is trace-class), it may happen
that tr(p[h,a]) # 0. This is the case for the extensive conserved charges of
the isolated reservoirs, and it expresses the existence of the steady currents
in the NESS w constructed above.

Each of the reservoirs R; has two conserved quantities, the energy and the
particle number, which correspond formally to dI'(hoP;) and dI'(F;), where P,
is the projection of HD onto Hgl). This is expressed by the invariance of their
equilibrium states w; under the dynamical and gauge automorphism groups,
al and ¢f, of the isolated reservoirs. The energy and particle currents from
the reservoirs R; is calculated as the w,i-expectation of the corresponding
fluxes I; on = dU(—ilh, h°P}]) = dT(—i[v, hi°P;]) and I; part = dU(—i[h, P}]) =
dl'(—i[v, P;]), respectively. Remark that, because v is a finite range operator,
the commutators are trace-class in H(®), so the proposition 3.1 applies. As
P.h = hP, = eP,., the sum over the point spectrum in Eq. (3.10) does not
contribute to any of the two currents J = w4 (). Hence,

ProproSITION 3.2 The energy and particle currents from the reservoirs R;
are calculated according to the formulas

Jien = —tr(pTiv,hoB]) = —tr(W_p"WZiv, hoP;)),
(3.12)
T = (ot ) = (W Wiy, PY).

We shall next bring formulas (3.12) to a form, known as Landauer-Biittiker
formulas, which make clear that the currents depend in fact only on the on-
shell T-matrix T,,. We start with a statement |2] relative to a larger class of
conserved reservoir observables.

PROPOSITION 3.3 Let a be a bounded self-adjoint operator in Hé?(ho) com-
muting with h°, so that, in the representation of Remark 2.1, UaU* =
f@ a(x)dx, with a(z) bounded self-adjoint operators in KCy. We denote a =
JaJ* its counterpart in H. Let

J(a) == wi(dL(=i[h, a])) = —tryg,, ) (W_p"W*i[h, a]) (3.13)

be the "current” associated to a. Then,

J(a) = — / e {p0(@)[a(@) Ty + Ta(z) + T;a(a:)Tx]};i—: (3.14)
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Proof. The equality in Eq. (3.13), meaning that the sum over the point
spectrum of A in Eq. (3.10) vanishes, is shown in the same way as for Eq.
(3.12).

As, by Assumption 2.2, v = J7*I* + I7J*, the commutator in the r.h.s. of
(3.13) equals [h,a] = [v,a] = ITaJ* — JaT*I*, which has finite-range. Using
the permutation invariance of the trace,

tryg,. (n) (W p"W[v,a]) = tryc(Up W v, a] W_U¥).

We show that the operator under trace is an integral operator on K, i.e. of
the form K¢ (z) = [dyk(z,y)¥(y), where k(z,y) : K, — K, are continuous,
trace-class-operator valued functions. Therefore, the trace can be calculated
as [ datri, k(z,x).

To this aim, we factorize the two terms of the commutator as
UWH*v,a)W_U* = (UW*ITU*)(UaU*)(UJ*W_U*)
—(UW*JU*(UaU*)(UT*I*W_U™).

Remembering the representation of 7,7* in Remark 2.1 and the expressions
(2.14), (2.15) of W_, WZ* | the generalized kernels of the operators in brackets
are

(UW*JU)(z,y) =6z —y)+ (y —z+ iO)_lT;RCH(x —i0)7y;

(UTW_U*)(x,y) = 6(z — y) + (x — y — i0) "' 75 Regr (y + 10)7;
(UW*ITU*)(2,y) = —7; Regt(x — 10)7;
(Ut I'W_U")(x,y) = —7, Regt (y +10)7,,.

The kernel k(x,y) is obtained as the composition of the kernels of the factors.
The continuity with respect with x,y is a consequence of Assumption 2.2.
The diagonal k(z,z) equals

—7} Regt(x — 10)1a(x) + a(z)7) Rege (2 — 10) 7, —

— [da'7} Regr (z — 10)7La(x) 72 Regi (x + 10) 75 ¥
x[(z' — 2z —i0)"' — (2/ — x +i0)7]

= = [Tra(x) + a(z)Ty + Tra(x)Ty),

2mi

where we used the Sokhotski formula (z —i0)™' = P (1) + ind(x) and the
definition (2.13) of the T-matrix. Insertion of this calculation in Eq. (3.13)
gives Eq. (3.14). O
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We take now into account the decomposition 'H ( 0) = D, H . For an
energy € [emin, €max), we have Ky = @, K, ;; thereby, if = & I;, IC zi = {0}.
Accordingly, the operators under tri, in Eq. (3.14) have matrix representa-
tions. The density p°(x) is the diagonal matrix with p°(z);; = fs, ., (z) - 1.
Also, (Ty)i; = 2mi(7])zRer(x + 10)(7j)5, which vanishes for z ¢ I; N I;.
What concerns a(x), as we are interested in observables associated with
the isolated reservoirs, we suppose that its matrix has block-diagonal form:
a(z);j = d; ja;(z). In this case,

tric, {°(@)[a(@) T + Ta(z) + Tra(2)Tp]} =
T s
Zl Soi (@)trie, {ai(@)(Te)i + (T7)iaai(x) + Z( )i (2)(Te)ji}-
1= :
(3.15)
This can be further simplified using the unitarity of the S-matrix:
(Ty)ii T*”+Z )i (T): =0
and the permutation invariance of the trace, whence
r
> S (@)trie, {ai (@) (Te )i + (T7)iiai(x) }
i=1
T T
== Zlfﬁi,m (z)tric, ; {ai(z) Z (T2)i 4 (T7)ji
1= :
T
= - Zlfﬁj,uj( )tricm{Z( 2 )i (@)(T)ji-
]:

Hence,

COROLLARY 3.1 For a self-adjoint operator a in H&?(ho) such that a(x); ; =
i jai(x), Ve,

0= 32 [l 0) = f W, Ao T T 310

1,j=1
Thereby, (T)i; # 0 only for x € I; N I;.

In particular, defining the transmission probability between reservoirs R; and

Rj as t; j(z) = trie, A(Te)ij (17 )54}

= 52 U ) = f,0, (@i (2)
(3.17)
Jipart = ;1 f[fﬁi,ﬂi (z) — fﬁj,uj (x)]t”(a;)
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3.3. Consequences for the model of Sec. 2.3

We specialize here to the case of two reservoirs (r = 2) of free lattice Fermi
gases described in Sec. 2.3. and draw a few conclusions about its behavior
as a function of the dimension of the lattices d; and of the wire length V.

e The currents, Eq. (3.17), are a sum of two currents, each obtained
when one of the two reservoirs is put in turn in the Fock state (cor-
responding to the density matrix fioo —oo(h;) = 0. One may consider
therefore only the particle current

Tt Bo) = [ Brulaltia(o). (3.18)
e The transmission probability
fa@) = [ dua®) [ dm BT ol
T4 (x) T4 (x)

has a resonant structure. In view of Eq. (2.33), one has to study the
energy dependence of the matrix element Reg(x +10); 5. By analytic
perturbation theory, as hg has simple eigenvalues ¢,,, the eigenvalues
Am(z), m = 1,.... N of heg(x + 10) are simple for sufficiently small
tunneling constant t. Let ©)(™)(z) be the corresponding eigenvectors;
then 1(™) (z) is the dual basis (i.e. (™ (x), ™) (x)) = 6. Hence,

N
Reg(z +i0)1,5 ~ Y (Am(2) — )" 0™ (@)ool (x).
m=1

To lowest order in ¢, A\p(z) ~ e — Niﬂtzg(x + i0) sin? g,,,, where
we used Eq. (2.28) and the explicit form (2.23) of the eigenvectors
w(m) at ¢ = 0, which puts into evidence "resonances" at =z = &, —
NLHtQ%g(:B +10) sin? gy, of "width" Niﬂtzgg(:ﬁ +10) sin? gyy,.

e The density profile
_ * _ 0 * 0 *
n(r) = wy(a*(6;)a(o,)) = Z(PeéT,p P.5y )+ (W6, p°WX6,) (3.19)

1s a sum over reservoirs of density profiles corresponding to the other
reservoir put in its Fock state (due to the block structure of p =

ZZEB pi). We calculate the second term of (3.19) with py = 0. We need
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therefore PLW*§,., where P; is the projection onto Hgl).

Eq. (2.15), we have

In view of

(UPWZ5,)(2) = =t (k)ay Resi(x — 10)1,1,
ifre{l,...N},
(UPIWZ6,)(x) = ¢ (k) + 29! (k)ay Re(x — 10)1,1 R (2 +10)
if r € Ly, and
(UP,W?*6,) () = t29" (k) oy Rest (z — i0)1,n Ro (2 4 i0) g

if r € Lo.

In particular, the density profile inside Ry (the initially void reservoir),
is given by

£ / Ak £5, 0 (1 (B)) |1 () Rt (w1 (K) — 10)1 2| Ba (w1 (K) +10)ay o[

It is to be remarked that, if do = 1 (which is the model of infinite leads
used in [6]), the density of transmitted particles has a nonzero limit
as r — oo; this seems improper for a reservoir, which is expected to
keep unchanged its "conserved charges" even after coupling it to other
reservoirs. For dy > 1, the density decays like |r|~! irrespective of dy
[14].

4. Quasi-free Boson models
4.1. The algebra of observables and the reference state

The kinematical C*-algebra of the model is the canonical commutation rela-
tion algebra CC'R(D) over a suitable subspace D € H(1| which is left invari-
ant by the one-particle evolution groups: exp (ith®)D = D, exp (ith)D = D.

CCR(D) is generated by the Weyl operators {W(f); f € D}, satisfying
W(HWIg) = e~ FIW(f + ). (4.1)

The defining equation (4.1) implies that W(0) = 1 and W(f) are unitaries
W(f)*W(f) = 1). According to a theorem by Slawny, such a C*-algebra
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is unique up to an isomorphism; in particular, it can be shown (using the
well-known Fock representation) that [|[W(f) — 1|| > v/2 for f # 0, implying
that the application f — W(f) cannot be norm-continuous [13].

To any state w on CCR(D) a function E : D — C is associated by

E(f) =wWV(f)), (4.2)

named its generating functional. E satisfies: (i) normalization: E(0) = 1,
(ii) unitarity: E(f) = E(—f), and (iii) positivity:

> uwE(fi - fie 2SUnfidz >0, Yn,Vz € C, fi € D(i=1,...,n).

1,7=1

Conversely, any E with these properties defines a unique state by Eq. (4.2).
Therefore, in describing the initial and evolved states of our model, it will be
sufficient to specify the corresponding generating functionals.

A state w is quasi-free if, and only if, E has the particular form

B(f) = exp (WIR(, ) — 1QUF. ). (4.3

where [ € D' is a linear form and Q(-,-) > 1 a quadratic form on D x D.
Quasi-free states w are regular, i.e. in the associated GNS representation 7,
for any f € D, the unitary group R 3 t — m,(W(tf)) is weakly continuous.
Hence, Vf € D, there exist self-adjoint operators ¢(f) "field operators",
such that w,(W(tf)) = exp (itp(f)). The fields ¢(f) are real-linear functions
of f. In terms of the fields ¢(f) one can define creation and annihilation
operators by a*(f) = 27Y2(o(f) — ip(if)), a(f) = 272((f) + ip(if))-

Then, denoting €, the cyclic vector of 7, one has the following

PROPOSITION 4.1 In a quasi-free state with generating functional (4.3), €,
is in the domain of all powers of a*(f), f € D, and the following relations
hold:

(Qu,a™(f) ) = (Q, a(f)) = ({1, f),
(4.4)

(€, a*(g9)a(f)2w) — (R, a™(9)20) (R, a(f)Q) = Q(f, 9);

all other truncated expectations vanish.

The time evolutions af, 7¢, for the uncoupled, respectively, coupled reservoirs
and sample are the groups of Bogoliubov automorphisms on CCR(D) defined
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by their action on W(f):

o (W(f)) = W(e"tf),
(4.5)
THOV(S)) = W(et f).

In view of the canonical commutation relations (4.1), Eq. (4.5) is sufficient to
uniquely define the action of 78 on all elements of CCR(D). By the remark
above, the two automorphism groups are not strongly continuous. However,
in a quasi-free representation they are implemented by weakly continuous
unitary groups. Moreover, the evolution of a quasi-free initial state under
a dynamics of the form (4.5) is likewise quasi-free. This means that the
evolved state at time ¢t > 0 of Boson systems, which, at ¢ = 0, were in a
quasi-free state, is uniquely determined by the evolved one-point and two-
point functions, i.e. by (I, f) = (I,e f) and Q;(f,g9) = Qe f,el’g). In
this respect, their study parallels the study of Fermi systems in the previ-
ous section and the counterpart of proposition 3.1 holds true. There appear,
however, subtleties related to the choice of the initial (reference) state; in par-
ticular, unlike in the Fermi case, the domain D (i.e. the kinematical algebra
CCR(D)) depends on the reference state. In order to keep the exposition at
a reasonable level of complexity, we shall explain them only for the model in
Sec. 2.4., i.e. direct tunneling between reservoirs on Z¢ with no intermediate
sample. The consideration of the general frame (given by assumptions 2.1

2.3, supplemented with special requirements about the existence of a density
of energy levels in the infinite volume limit) is left for another publication.

The equilibrium states of a free Bose gas are quasi-free; they have been stud-
ied in detail in the literature |[4]. The peculiarity of the free Bose gas is that,
under certain conditions, it shows a phase transition at low temperature
and high density. It happens that, in the multi-phase region, the canoni-
cal and grand-canonical are inequivalent. As we are interested in particle
flows between reservoirs, it is natural to use the canonical description for the
reservoirs.

We remind below the expressions of the generating functionals for the canon-
ical equilibrium states for our model of reservoir, obtained by an easy adap-
tation of the derivation by Cannon [4], [11] for the continuum Bose gas.

We start by describing one reservoir R, consisting of a free lattice Bose gas
living on Z%.
Let 3, p be fixed positive numbers and define:

1
per(B) = (27)~ / % < oo, (4.6)

¢
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where w(k) is the dispersion law Eq. (2.20). As w(k) ~ 1|k|? around its
minimum at k = 0, one has that pe () is finite for d > 3 and is infinite for
d=1,2.

For p < pe:(B), the fugacity z is defined to be the unique solution z(3, p) of
the equation

_ —-d [  d
p= (27T) /eﬁw(k) . Zd ka
Td

while, for p > pe;(83), put z(3, p) = 1. The momentum distribution for k # 0
at the given [, p is proportional to

(k) = eﬁw(’;(éjf()ﬂ,p)’ (4.7

while the condensate density is given by
po = max{0, p — per(B)}. (4.8)

Then, the generating functional of the canonical equilibrium state at 3, p is
given by the formula

i
1

Eaalf) =0 { 5(0h.n5u0) f 220 | WHO)D. - (49

where wu is the Fourier transform and Jy is the Bessel function.

For p < per(0), the canonical state defined by Eq. (4.9) is extremal, however,
if per(B) < 00 and p > per (), it has a nontrivial decomposition into extremal
states indexed by a phase e'?:

2
Eso(f) = (2m)! /0 EY (f)d6, (4.10)
where
2 uwf,ng,u i .
5, 1) = exp { I - Lm0t D) S o). @)

Thereby, the test function space D should be chosen such that the function-
als (4.11) are well defined for f € D, e.g. taking D = I'(Z%) would suffice.
Indeed, with this choice uf is continuous on T?, ensuring both the integra-
bility of ng,|uf|? and the existence of (uf)(0). We shall impose, however
a stronger condition ensuring that uf is Holder-continuous, and take D as
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the space I1(Z%; |x|¢) for some € > 0, consisting of functions f : Z¢ — C for
which [|fllp := 3 [a||fz] < oo

z€Z4

Using the matrix notation associated with the direct sum H) = 'Hgl) EBHS),
we take f = f1 @ fo € D1 @ Dy (where D; are copies of D) and the initial
state w” as a product of canonical equilibrium states of R; at temperatures
B and densities p; (i = 1,2), respectively:

wo(w(f)) = EO(f) = Ep,p (fl)Eﬁzuﬂz (f2), (4.12)

where Eg, ,, (f;) are arbitrary mixtures (with probability measures dj1,2(61,2))
of the extremal state generating functionals (4.11). Denoting pg; the con-
densate densities in R; and

. n 0 ~ —i —i
fip = < ﬁ(l)vpl > , Po(61,62) = (\/2po1e™ ™ \/2poae7 ), (4.13)

NBs,p2

we have

Eo(f) = / dn (01)dpa (02) EE (), (4.14)

where

E81792(f) = exp {_Hsz _ (uf, o uf) _ i

4 2 (2m)d/2

m(ﬁowl,@)(uf)(o»}.

(4.15)
In particular, the canonical states (4.9) are obtained for dy;(#) = (2r)~'dé.

4.2. The approach to, and properties of, the NESS

We are interested in the time evolution of an initial state w” as defined by
Eq. (4.14) (which is o!-invariant) under the coupled dynamics 7%, Eq. (4.5).
We have

WEOWV(f)) = L W(exp (ith) f) = w®(W(exp (—ith®) exp (ith) f).  (4.16)

Using the analysis done in Sec. 2.4., we obtain the following convergence
result, which defines the stationary state.

PROPOSITION 4.2 Under the condition above, the following limit exists and
defines a quasi-free invariant state wgat: Vf € D,

T

lim / W W)t = Egai(f). (4.17)

T—oo T
0
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Corresponding to the decomposition (4.14) of the initial state,

Egat (f) = /dﬂl(el)dﬂ2(02)Esetlz;t02(f)a (4.18)

where

B (F) = BQW (W2 Pac F) B (B f). (4.19)

Thereby, the limit in mean is necessary only for the contribution of the
point spectrum, i.e. for f = P..f, the limit tlim WTOW(f)) exists and equals
— 00

fd,u1 91 d/LQ(@Q) 91,02(W* acf)

Proof. We isolate, in the quadratic and linear forms appearing at the expo-
nent in Eel’ez( ‘htf) the terms which do not depend on P,.f, i.e. T,(t) :=

— 3P fIP = 5(ue™ Py f,fig ue Py f) — i(2) 73/ *R(po(61, 02) (ue™ By f)( ))-
The t- dependence of Tp,(t) comes from exponentials of the form e¢0?, ei(2d—co)t

and el2(d=€0)t  where ey, 2d — e are the two eigenvalues of h. Therefore,

T
er(® is an almost-periodic function, what ensures that Thm %feTP(t)dt =

E?;)’ez(pr) exists. Remark that (P, f), decays exponentially as r — oo,

therefore, if f € D, Paef € D as well. Hence, de(x)(uPacf)(k)dux(k) is

Holder continuous of x, therefore, by the Privalov theorem [7],

(UuWZPac [)(k) = (uPacf)(k)—
P YR (4.20)
- (er)d (0'1 + tf](w(k‘ 10 0'0 f']rd wu(k/acfw((k 110

is likewise Holder continuous of w(k) and, as such, belongs to the domain of
Eg”%. By an analysis like that in the proof of Proposition 3.1, the remaining

terms have (usual) limits as ¢ — oo, which proves the assertion. U

In view of the explicit forms (4.15) of the functionals Egl’ez, Proposition 4.2
provides a detailed description of the stationary state and allows the calcu-
lation of various quantities of physical interest.

We report below the analytic results for the energy and particle currents.
We point out that, like in the Fermi case, the point spectrum of h gives no
contribution to the currents and the contribution of the absolutely continu-
ous spectrum may be expressed in terms of the S-matrix alone (Landauer-
Biittiker-like formula). We shall not repeat here the proof of the latter,
but perform the direct calculation based on Eq. (4.19). Thereby, if d > 3,
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we suppose, for simplicity, that we are in the weak coupling regime, where
op(h) = 0.

In calculating the currents between pure phases of the reservoirs, we take ad-
vantage that the initial state, being a product of extremal equilibrium states,
can be approximated by finite-volume states (possibly with weak symmetry-
breaking perturbations), what allows to substantiate expressions (of the cur-
rents from a reservoir in an extremal state) similar to those in the Fermi case
[1]. As a preparation, we calculate, using Eq. (4.20), W* f for a few local
functions f appearing in these expressions:

e For (63)r = do.r < L

0 > and 58 defined analogously for the second reservoir,

(P W2G5) ) = s {0y = 19(0(8) — 0) (o0 + #a(lh) — 0)) )}

where P; projects onto the reservoir j and we used the definition (2.37) of g;

1
e For (h(l))r = (d5x,0 - %5|m|,1) ( 0 >=

(UPijh(l))(k) = W {w(k)dj1—
~t[(o1 + tg(w(k) —i0)) ;1 [L +w(k)g(w(k) —i0)]} .
PROPOSITION 4.3 In the direct tunneling model of Section 2.4, the currents

. . . 61,0 i .y
flowing from Ry in the stationary state wg,” arising from extremal initial
states are given by:

1. The particle current:

Thart(01,02) = 263w (0l (W* (8))ao (W (63))
2% ) —i0)
= @ne JECRAE) T 23(w(k) — 10))22

2t \/po1poz .
@1 gy %

+

2. The energy current:
Jh(01,05) = 2tSwyb % (af(WE (hd))ao (W (63)))

2 w(k)Sg(w(k) —1i0
= o 9 ) T

Several remarks are in order:
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If both reservoirs are condensed, i.e. pg1, and pg2 are both different from
zero, the particle current shows a peculiar dependence on the phase difference.
This is not true for the energy current, where the second term, coming from
the expectations of the creation/annihilation operators does not contribute
(as expected, as the k = 0 states carry no energy). Also, if pg1p02 # 0 and
f1 = B2, then ni(k) = na(k), in which case the integral terms in the currents,
representing the contribution of the excited states, vanish, therefore particles
are exchanged only between the k = 0 states, and there is no energy flow.

In order to obtain the currents in the canonical state, we have still to integrate
the expressions of the currents over the phases 6; of the two condensates.
This has the effect that the particle currents between the k£ = 0 states are
averaged out, and only the first term in the expression of the particle current
survives. In particular, there is no current if the temperatures are equal and
either p1 = p2 < per(B), or both densities are overcritical (irrespective of
their values).

As a matter of fact, Proposition 4.3 implies that the presence of the con-
densates in the reservoirs has little influence on the currents, as long as one
considers non-symmetry-breaking states. We conjecture that this holds true
for more general junctions.
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