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Quantum Statistial Models 131. Introdution1.1. General frameDuring the last deade onsiderable progress has been ahieved in the statisti-al desription of non-equilibrium thermodynami proesses. While previouswork onentrated and provided a reasonable understanding of situationsnear thermal equilibrium, suh as stability of equilibrium states (approahto equilibrium) or linear response, a onsistent mathematial framework ini-tiated by Ruelle [16℄, is now available for aounting for the installation, atlarge time, of a non-equilibrium stationary state (NESS) even when the ini-tial state of the system is far from equilibrium (see [3℄ for a reent review).The typial physial situation whih �ts in this framework is that of severalreservoirs, Ri; i = 1, ..., r, oupled to a �nite quantum system, S (sample).One has to give aount for the �ow of energy and partiles through thesample in the large time asymptoti regime.The isolated sample S is a usual quantum system with Hilbert spae HS,algebra of observables AS equal to the algebra of all bounded operators on
HS , and unitary dynamis generated by the Hamiltonian HS. The Heisen-berg piture of the evolution is the automorphism group on AS de�ned as
αt

S(A) = exp (itHS)A exp (−itHS). We suppose that the sample is at time
t = 0 in an arbitrary invariant state ω0

S, i.e. the expetation of an observable
A ∈ AS is given by a density matrix: ω0

S(A) = tr(ρSA) and [ρS ,HS ] = 0.The desription of the reservoirs Ri is somewhat more elaborated. A reser-voir is an in�nite quantum system, whih, before the oupling to the sampleis swithed on, is in a ertain equilibrium state. Its desription in the initialstate �ts therefore in the well-established algebrai formalism of equilibriumquantum statistial mehanis [4℄. One starts with reservoirs �nitely ex-tended in some regions Λi of spae: the pure states are the unit vetors in aHilbert spae Hi,Λi , the algebra of observables Ai,Λi onsists of all boundedoperators on Hi,Λi and the (Heisenberg) dynamis on Ai,Λi is generated bya self-adjoint Hamiltonian Hi,Λi , αt
i,Λi

(A) = exp (itHi,Λi)A exp (−itHi,Λi); atgiven inverse temperature βi, the �nite reservoir i has one equilibrium state
ωi,βi,Λi

(A) = tr(Aρi,βi,Λi
) given by the Gibbs ansatz for the density matrix

ρi,βi,Λi
= (1/Zi,Λi(βi)) exp (−βiHi,Λi), where the statistial sum Zi,Λi(βi) isa normalizing fator. The in�nite reservoir is oneived as an idealizationbehaving like very large reservoirs, i.e., as a limit of the above struture:The algebra of observables Ai is the smallest C∗-algebra ontaining Ai,Λifor all �nite regions Λi, the (strongly ontinuous) dynamis αt

i(·) on it is



14 N. Angelesu et al.the strong limit (provided it exists) of the automorphism groups αt
i,Λi

(·),and the equilibrium state is a limit point ωi,βi
of ωi,βi,Λi

as Λi inreasesto the in�nite region Li oupied by the reservoir Ri. The in�nite reser-voirs in this sense an be represented as genuine quantum systems usingthe so-alled Gelfand-Neumark-Segal (GNS) onstrution. The latter on-sists essentially in the following: a state ω on a C∗-algebra A de�nes asesquilinear form on it by 〈A,B〉 = ω(A∗B); after division by the ideal I ofall I ∈ A suh that ω(I∗I) = 0, A/I beomes a pre-Hilbert spae, whoseompletion Hω is the representation spae. The representation πω(X) of anelement X ∈ A is the bounded operator whih sends the vetor Â into thevetor X̂A; thereby, 1̂ =: Ωω is a yli vetor for this representation, and
ω(A) = (Ωω, πω(A)Ωω). If, moreover, the state ω is invariant under the auto-morphism group αt (i.e. ω ◦αt = ω), then πω(αt(X)) = Uω(−t)πω(X)Uω(t),where Uω(t) = exp (−itHω) is a unitary group on Hω. The generator Hωof this group, named thermal Hamiltonian, has Ωω as an eigenvetor witheigenvalue 0.To simplify the notation, we no longer mention the referene states ω0

i = ωi,βiof the reservoirs, and simply denote {Hi, πi(·),Ωi,Hi} the GNS desrip-tion for the reservoir Ri orresponding to the equilibrium state ω0
i , i.e.,respetively, the Hilbert spae, the representation of the observable alge-bra Ai, the yli vetor and the thermal Hamiltonian generating the uni-tary implementation of the dynamial automorphism group: πi(α

t
i(A)) =

exp (itHi)A exp (−itHi). Likewise, we denote {HS , πS(·),ΩS ,HS} the GNSrepresentation of the sample assoiated to the state ω0
S invariant for the group

αt
S .The omposite system S+

∑
Ri is in turn an in�nite quantum system, whihis to be onstruted as above from a ertain referene state. The algebra ofobservables is taken as a C∗-tensor produt of the algebras Ai of the reservoirsand AS of the sample:
A = AS ⊗ (⊗iAi), (1.1)and the referene state is taken as the produt of the initial equilibriumstates ω0

i of the reservoirs and the αt
S-invariant state ω0

S(·) = (ΩS , ·ΩS) ofthe sample:
ω0 = ω0

S ⊗ ((⊗iω
0
i ). (1.2)On the algebra A one has the unoupled dynamis desribed by the auto-morphism group αt = αt

S ⊗ ((⊗iα
t
i), whih leaves invariant the state ω0:

ω0(αt(A)) = ω0(A), A ∈ A.At time t = 0, a oupling between reservoirs and the sample is swithed on,meaning that the dynamis of the system at positive times is given by another



Quantum Statistial Models 15automorphism group of A, τ t. The evolved referene state will thereforehange in time, and be, at time t > 0, the state for whih the expetation ofan observable equals the ω0-expetation of the observable evolved at time taording to the new dynamis:
ωt(A) = ω0(τ t(A)) = ω0(α−t · τ t(A)), (1.3)where the seond equality omes from the αt-invariane of ω0. Supposea stationary (τ t-invariant) state is approahed at large time. This an beexpressed as the existene of the limit of ωt(A) when t→ +∞ for all A ∈ A.The latter is ensured by the existene of the limits

lim
t→+∞

α−t · τ t(A) = Ω+(A), (1.4)i.e. by the existene of the Möller endomorphisms of the two groups. Inthis way, the existene of (and the onvergene to) a stationary state anbe presented as a sattering problem for two automorphism groups on a
C∗-algebra. As a rule, τ t is onstruted as a loal perturbation of αt via astrongly onvergent Dyson series; more preisely, if lim

t→0

1
t (α

t(A)−A) = δ0(A)for A in a dense subalgebra D ⊂ A, one supposes that there exists V ∈ A,suh that δV (A) := lim
t→0

1
t (τ

t(A) −A) = δ0(A) + i[V,A] for A ∈ D.As a onsequene of the hoie (1.2), the omposite system an be realizedin the tensor produt of Hilbert spaes H = HS ⊗ ((⊗iHi), whih arries theprodut representation of A, so that π(A) is the C∗-tensor produt of oper-ator algebras πS(AS) ⊗ ((⊗iπi(Ai)). Thereby, the independent (unoupled)dynamis of the reservoirs and of the sample is implemented in H by theunitary group U0(t) = exp (−itH0) = exp (−itHS) ⊗ ((⊗i exp (−itHi)). Theyli vetor Ω = ΩS ⊗ ((⊗iΩi) is an eigenvetor of H0 with eigenvalue 0.Also, the loally perturbed dynamis is implemented by the unitary group
U(t) = exp (−itH), where

H = H0 + π(V ). (1.5)In this way, the problem an be reformulated as a perturbation problem forselfadjoint operators on a Hilbert spae in a setting depending on the hosenreferene state.Of ourse, the onstrution of the perturbed dynamis and the proof thatthe Möller endomorphisms exist are to be done for the models under on-sideration of reservoirs, samples and ouplings between them. It happensthat the program outlined before an aommodate a few reservoir models ofphysial interest, suh as spin models or free partile models obeying Fermi



16 N. Angelesu et al.statistis, and samples with �nite-dimensional HS . One of the most restri-tive assumptions is the existene of the in�nite-volume dynamial group ofautomorphisms αt and its assumed strong ontinuity. A way out to a morepermissible framework for the reservoirs, Ri, is to onstrut as above thereferene states ω0
i as limit points of �nite-volume Gibbs states and furtherwork within the GNS representation assoiated to it. In partiular, a weaklyontinuous in�nite-volume dynamis may appear as a limit of the loal dy-namis αt

Λi
(·) viewed as automorphisms of the weak losures of the operatoralgebras πi(Ai) representing Ai, i.e. of the von Neumann algebras πi(Ai)

′′.This allows to de�ne a representation-dependent dynamis and self-adjointthermal Hamiltonian. Hene, the steps leading to a sattering problem in aHilbert spae are to be performed. In partiular, this is the ase of free-bosonreservoirs, see Se. 4. below.1.2. Quasi-free modelsIn the paper we shall onsider instanes of onrete realizations, within alass of very simple models, of the paradigm outlined above. Essentially, wesuppose that:1. The reservoirs are free quantum idential partile systems, obeyingFermi-Dira or Bose-Einstein statistis.2. The perturbed (oupled) dynamis is quasi-free.In more detail, point 1 means the following: Before taking the thermody-nami limit, i.e. when the reservoir is on�ned to a �nite region Λ, theappropriate Fok spae, whih bears the Fok representation of the anoni-al (anti)ommutation relations, an be used, whereby the number of parti-les NΛ = dΓ(1) and Hamiltonian HΛ = dΓ(h0
Λ). Aording to the grand-anonial presription, HΛ is to be replaed by HΛ−µNΛ in the Gibbs ansatzfor the equilibrium density matrix, where the multiplier µ is adjusted to en-sure given partile density in the reservoir. In the thermodynami limit, the

C∗-algebra of observables should "ontain" the loal operators, i.e. funtionsof a♯(f) with f having support in some �nite region. It is therefore naturalto take it as the anonial (anti)ommutation relations algebra, CAR(D),respetively CCR(D), over a ertain subspae of the spae of reservoir's one-partile states, D ⊂ H(1), ontaining at least the funtions with ompatsupport. The equilibrium states of the reservoir, i.e. the limit states of the



Quantum Statistial Models 17�nite-volume Gibbs states, are well-known (see e.g. [4℄), and turn out to bequasi-free states (i.e. states in whih there are no orrelations of order higherthan 2) over these C∗-algebras. D may be extended suh that the limit statesbe de�ned on the orresponding C∗-algebra. In the Fermi ase D = H(1).In the Bose ase, however, due to the phenomenon of Bose-Einstein onden-sation, D 6= H(1); in the paper, in order to avoid the domain problems, wesuppose also that the Bosons live on the lattie Z
d, leaving the general asefor another publiation.The point 2 means that the evolution automorphism of the C∗-algebra isgiven by a unitary evolution e−ith inH(1) whih leavesD invariant: τ t(a♯(f)) =

a♯(eithf). As a onsequene, not only the initial (referene) state ω0, but alsoall ωt, t > 0 and the stationary state are quasi-free. Thereby, the problemis redued to a sattering problem for the one-partile Hamiltonians, whihan be expliitly solved.In this respet, the quasi-free models are trivial, in partiular they allowno interation between partiles and thus restrit onsideration to simpletunneling juntions, but they turn out to be a good laboratory for onjeturesonerning various phenomena and providing instanes of interesting physialbehavior. In partiular, the oupled dynamis no longer onserves the energyand number of partiles in the reservoirs, implying that, in the stationarystate, there exist persistent urrents of energy and partiles, depending onthe parameters �xing the initial equilibria of the reservoirs, and also on thegeometry of the sample and its oupling to them. In this way various formulaeof transport theory an be obtained beyond the linear response regime.1.3. SummaryThere is an extensive literature on quasi-free quantum systems. This workstarted as an attempt to systematize their appliation to the problems ofreturn to equilibrium and of approah to NESS in a more abstrat, om-prehensive frame, as outlined in the previous subsetion. In the meantime,we beame aware of two reent papers with the same purpose in the Fermiase [2℄, [12℄, so we limited to the more modest aim of giving a (hopefullymore friendly) presentation of their general result, of indiating its extensionto the Bose ase and of providing a few examples of alulation for ertaininteresting physial quantities.Setion 2 is onerned with the spetral and sattering problems for the one-partile Hamiltonians, as the same analysis applies to both Fermi and Bose



18 N. Angelesu et al.statistis. In order to have as far as possible expliit expressions, we onsider,as an appliation, in subsetions 2.3. and 2.4. the ase of two reservoirs, inwhih the partiles live on two d-dimensional latties, and those in the sampleon a hain ofN ≥ 0 sites; thereby, the oupling is a simple tunneling involvingone site of eah reservoir.Setion 3 is devoted to the Fermi statistis ase, whih is simpler in manyrespets, in partiular the C∗-framework is su�ient, as the in�nite-volumedynamis is a strongly ontinuous group of automorphisms of CAR(H(1)) .A omprehensive study of this ase has been performed in [2℄, the results ofwhih are brie�y presented. We make expliit their result for the partiularsetting in Setion 2.3. and point out a few peuliarities of the NESS, suh asthe resonant harater of the transport and the plateau e�et for the arrierdensity.Setion 4 is onerned with Bose reservoirs. This brings in several new phe-nomena and ompliations. First, at high density and low temperature,Bose ondensation may appear, implying the spontaneous gauge-symmetrybreaking, i.e. existene of several extremal equilibrium states labeled by aphase. Moreover, the in�nite volume dynamis annot be a strongly ontinu-ous group of the CCR algebra; fortunately, as quasi-free states are regular, itis ontinuous in the GNS representation orresponding to equilibrium states.The interesting question here is the dependene of the NESS on the partiularmixtures of phases onstituting the initial equilibria of the reservoirs. Thismay be viewed as a ariature of the Josephson tunneling of Cooper pairsbetween two superondutors. The approah to equilibrium in the preseneof a ondensate has been analyzed by Merkli [8℄. The problem of approahto a NESS, left open there, was onsidered by us in [1℄, the result of whihis presented in the present, slightly more general, setting.2. Sattering for the one-partile HamiltoniansThis setion is devoted to the spetral analysis of the one-partile Hamil-tonian h = h0 + v, where h0 is the one-partile Hamiltonian of the deou-pled system, i.e. the diret sum of the one-partile Hamiltonians hi (i =
1, ..., r), hS of the isolated reservoirs and sample and v desribes the tunnel-ing between them. We make the following assumptions:Assumption 2.1 The one-partile Hilbert spae is an orthogonal sum

H(1) = H(1)
S ⊕H(1)

R ; H(1)
R = ⊕r

i=1H
(1)
i ,



Quantum Statistial Models 19with dimH(1)
S = N < ∞. Let J : H(1)

R → H(1) and I : H(1)
S → H(1) be thenatural injetions:

Jf = 0 ⊕ f If = f ⊕ 0,Assumption 2.2 In the matrix representation assoiated to this deomposi-tion, the unperturbed Hamiltonian h0 is blok-diagonal:
h0 = hS ⊕ h0

ac; h0
ac = ⊕r

i=1hi,and the perturbation v has the following struture: There exist maps τi :

H(1)
i → H(1)

S , suh that
v = IτJ∗ + Jτ∗I∗,where

τ : H(1)
R → H(1)

S , τ(⊕r
i=1fi) =

r∑

i=1

τifi.Assumption 2.3 hi, i = 1, ..., r, have absolutely ontinuous spetra equalto the bounded intervals Ii ⊂ R. Thereby, we suppose that r⋃
i=1

Int(Ii) is aninterval (emin, emax). We denote Ri(z) = (hi − z)−1, (z ∈ C \ Ii) and R0
ac =

(hac −z)−1 = ⊕r
i=1Ri(z). Let pi, πi denote the right, respetively left, supportof τi (i.e. the orthogonal projetions onto the subspaes τi(H(1)

i ) ⊂ H(1)
S ,respetively τ∗i (H(1)

S ) ⊂ H(1)
i ). For all x ∈ Ii, the limits
lim
ǫց0

πiRi(x+ iǫ)|
πi(H

(1)
i )exist as operators in the orresponding subspaes and are ontinuous funtionsof x; thereby, for all interior points x of Ii, ,

lim
ǫց0

πiℑRi(x+ iǫ)|
πi(H

(1)
i )

> 0 (i = 1, ..., r).2.1. Resolvent and spetrum of the perturbed HamiltonianThe spetral deomposition of h = h0 + v is based on �nding a onvenientrepresentation of the resolvent operator R(z) = (h − z)−1. We shall use avariant of the Feshbah method, taking advantage of the fat that v has �niterange, what allows summing the perturbation series in losed form.We have to solve for fS, fi, i = 1, ..., r, the system of equations




(hi − z)fi + τ∗i fS = gi (i = 1, ...r)
r∑

i=1
τifi +(hS − z)fS = gS ,

(2.1)



20 N. Angelesu et al.where g = gS ⊕ (⊕r
i=1gi) ∈ H(1) is arbitrary.If z ∈ C \ [emin, emax], the �rst line in equation (2.1) provide fi in terms of

fS :
fi = Ri(z)(gi − τ∗i fS), (2.2)and the seond line beomes

(heff (z) − z)fS = Q(z)g, (2.3)where heff (z) : H(1)
S → H(1)

S and Q(z) : H(1) → H(1)
S are de�ned by:

heff (z) = hS −
r∑

i=1
τiRi(z)τ

∗
i = hS − τR0

ac(z)τ
∗,

Q(z) = I∗ − τR0
ac(z)J

∗.
(2.4)Whenever heff(z) − z is invertible, we denote Reff(z) = (heff(z) − z)−1, sothat Eq. (2.3) has the unique solution

fS = Reff(z)Q(z)g, (2.5)With fS given by Eq. (2.5) and fi given in terms of it by Eq. (2.2),
f = fS ⊕ (⊕r

i=1fi) = Q(z̄)∗fS provides the solution to the system (2.1).Therefore, remarking that ∪r
i=1Ii ⊂ σ(h) (by the invariane of the essentialspetrum under ompat perturbations), the following haraterization hasbeen proved:Lemma 2.1 The resolvent set of h is

ρ(h) = {z ∈ C \ [emin, emax]; ker (heff(z) − z) = {0}}.For all z ∈ ρ(h),
R(z) = JR0

ac(z)J
∗ +Q(z̄)∗Reff(z)Q(z). (2.6)The Kato-Rosenblum sattering theory [15℄ ensures the existene and om-pleteness of the wave operators W± : H(1)

R → H(1) for the unitary groups
e−ith, e−ith0

ac , i.e. the existene of the strong limits:
W± := (s) lim

t→±∞
eithJe−ith0

ac . (2.7)Hene,



Quantum Statistial Models 21Lemma 2.2 h has absolutely ontinuous spetrum σac(h) = [emin, emax] andno singular ontinuous spetrum. The absolutely ontinuous part hac of h,i.e. h restrited H(1)
ac (h) = W±(H(1)

R ), is unitarily equivalent to h0
ac via theintertwining relations hacW± = W±h

0
ac.Finally, we determine the point spetrum of h, σp(h).Let z ∈ σp(h), and f = fS ⊕ (⊕r

i=1fi) 6= 0 be an eigenvetor of h witheigenvalue z. Then f is a solution of Eq. (2.1) for g = 0.If, thereby, τ∗i fS = 0 for all i = 1, ..., r, then (hi − z)fi = 0, ∀i, hene fi = 0,beause hi have no point spetrum. If so, the seond line in (2.1) shows that
z ∈ σp(hS) and that fS ∈ ker τ∗i is a orresponding eigenvetor. Conversely,if fS ∈ ∩i ker τ

∗
i is an eigenvetor of hS , then fS ⊕ 0 is an eigenvetor of hwith the same eigenvalue.Suppose next that τ∗i fS 6= 0 for at least one i. If z 6∈ [emin, emax], Eq. (2.2),whih expresses fi in terms of fS , and Eq. (2.3) show that fS 6= 0 is aneigenvetor of heff(z) with eigenvalue z. Conversely, if ker (heff (z) − z) ∋

fS 6= 0, then z ∈ σp(h) and Q(z̄)∗fS is an eigenvetor of h with eigenvalue z(in partiular, we have that ℑz = 0). Let us onsider the family of self-adjointoperators {heff (x); z = x ∈ (−∞, emin)} and let λ1(x) ≤ ... ≤ λN (x) be theeigenvalues of heff (x) and ψ(x)
(1)
S , ..., ψ(x)

(N)
S the orresponding eigenvetors.As remarked before, x ∈ σp(h) if, and only if, x = λk(x) for some k = 1, ...,N .As heff (x) is a dereasing operator-valued funtion of x in the onsideredinterval, all its eigenvalues λk(x) are dereasing funtions, hene, the equation

x = λk(x) has a simple solution x = e−k if, and only if, lim
xրemin

λk(x) < emin.Then, every eigenvetor of heff (e−k ) with eigenvalue e−k an be ompleted toan eigenvetor of h with this eigenvalue. Likewise, on (emax,∞) the equation
x = λk(x) has a solution e+k if, and only if, lim

xցemax

λk(x) > emax, implying
e+k ∈ σp(h).Next, let fS ⊕f be an eigenvetor of h orresponding to x in (emin, emax) andsuh that τ∗i fS 6= 0 for some i = 1, ..., r. Let z = x + iy, with ℑz = y > 0.We have, by the �rst line of equations (2.1), fk = Rk(x+iy)(hk −x− iy)fk =
−Rk(x+ iy)τ∗kfS − iyRk(x+ iy)fk, whih, plugged into the seond equation,implies, in partiular, that

(fS , (heff (x+ iy) − x)fS) = iy
r∑

k=1

(τ∗kfS, Rk(x+ iy)fk)

= iy
r∑

k=1

(‖fk‖2 − iy(fk, Rk(x+ iy)fk)).Equating the imaginary parts of this equality, letting y ց 0 and using
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‖Rk(x+ iy)‖ = 1/y, we arrive at

ℑ(fS , τkRk(x+ i0)τ∗kfS) = 0, ∀k,whih ontradits assumption 2.3.In summary:Lemma 2.3 The point spetrum of h in R \ {emin, emax} onsists, besidesthe possible eigenvalues of hS possessing eigenvetors fS ∈
r⋂

i=1
ker τ∗i , of thesolutions e−k ∈ (−∞, emin) and e+k ∈ (emax,∞) of the equations λk(x) = x.The latter exist if, and only if, λk(emin − 0) < emin and λk(emax + 0) > emax,respetively.The values emin or emax may be eigenvalues of h, either if they are eigenvaluesof hS with eigenvetor fS ∈

r⋂
i=1

ker τ∗i , or if λk(x) = x and the orrespondingeigenvetor ψ(x)(k) ful�lls lim
x′→x

‖Ri(x
′)τ∗i ψ(x′)(k)‖ < ∞, ∀i. The latter on-dition, being dependent on the struture of h0 and τi, is to be heked foreah onrete model.2.2. Wave operators and sattering matrixIn this subsetion we derive the expressions of the wave operators and S-matrix using the formalism of stationary sattering theory [15℄, [17℄. Namely,with the spetral representation of the unitary groups e−ith =

∫
e−itxdE(x),

e−ithi =
∫

e−itxdEi(x), we an express the wave operators in terms of theresolvent R(z) of h. We have
W+ = (s) lim

ǫց0
ǫ
∫ ∞
0 e−tǫ exp (ith)J exp (−ith0)dt

= (s) lim
ǫց0

ǫ
∫

dE(x′)
∫
JdE0

ac(x)
∫ ∞
0 dteit(x′−x+iǫ)

= (s) lim
ǫց0

(iǫ)
∫
R(x− iǫ)JdE0

ac(x).

(2.8)where we denoted E0
ac(x) = ⊕r

i=1Ei(x). Similar alulations are valid forW−.Using Eq. (2.6) for R(z), taking into aount that ∓iǫR0
ac(x± iǫ)dE0

ac(x) =
dE0

ac(x) and Assumption 2.2, the following representation is obtained:
W± = J − (s) lim

ǫց0

∫
Q(x± iǫ)∗Reff(x∓ iǫ)τdE0

ac(x). (2.9)
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W ∗

± = J∗ − (s) lim
ǫ′ց0

∫
dE0

ac(x
′)τ∗Reff(x′ ± iǫ′)Q(x′ ± iǫ′). (2.10)Eqs. (2.9), (2.10) give for the S-matrix:

S = W ∗
+W− = 1 −J∗

∫
Q(x− i0)∗Reff(x+ i0)τdE0

ac(x)

−
∫

dE0
ac(x

′)τ∗Reff(x′ + i0)Q(x′ + i0)J

+ lim
ǫ′ց0

{lim
ǫց0

∫
dE0

ac(x
′)τ∗Reff(x′ + iǫ′)Q(x′ + iǫ′)

×
∫
Q(x− iǫ)∗Reff(x+ iǫ)τdE0

ac(x)}.

(2.11)We alulate the last term using the resolvent equation, whih implies
Q(x′ + iǫ′)Q(x− iǫ)∗ = 1 + τR0

ac(x
′ + iǫ′)R0

ac(x+ iǫ)τ∗

= 1 + (x′ − x+ i(ǫ′ − ǫ))−1τ [R0
ac(x

′ + iǫ′) −R0
ac(x+ iǫ)]τ∗

= (x′ − x+ i(ǫ′ − ǫ))−1[(heff (x+ iǫ) − x− iǫ) − (heff (x′ + iǫ′) − x′ − iǫ′)].Eah term of the latter expression, when plugged into Eq. (2.11), is sand-wihed between Reff , what, after making the obvious simpli�ation, allowsone of the integrals to be performed (e.g. ∫
dE0

ac(x
′)(x′−x+i(ǫ′− ǫ))−1τ∗ =

R0
ac(x− i(ǫ′−ǫ))τ∗ = J∗Q(x− i(ǫ−ǫ′))∗). Therefore, after taking the iteratedlimit, the last term of Eq. (2.11) equals

∫
J∗Q(x+ i0)∗Reff(x+ i0)τdE0

ac(x) +

∫
dE0

ac(x
′)τ∗Reff(x′ + i0)Q(x′ + i0)J.As Q(z)J = −τR0

ac(z), one obtains �nally
S = 1 + 2i

∫
ℑ(R0

ac(x+ i0))τ∗Reff(x+ i0)τdE0
ac(x). (2.12)Remark 2.1 It is sometimes useful to represent the Hilbert spae Hac(h

0) asa diret integral over energy of Hilbert "eigenspaes" Kx, i.e. there exists aunitary U : Hac(h
0) →

∫ ⊕
[emin,emax] Kydy =: K, suh that UE0

ac(Λ)U∗ = χΛ(·)(the operator of multipliation with the indiator of the measurable set Λ). Itis lear that, for ψ(·) ∈
∫ ⊕
[emin,emax] Kydy, (UR0(z)U∗ψ)(y) = (y − z)−1ψ(y).Also, τU∗ψ =

∫
[emin,emax] τy(ψ(y))dy, where τy : Ky → H(1)

S . Eq. (2.12)shows that, in this representation, the S-matrix is diagonal, i.e. USU∗ =∫ ⊕
[emin,emax] Sxdx, where Sx : Kx → Kx equals

Sx = 1 + 2πiτ∗xReff(x+ i0)τx =: 1 + Tx. (2.13)
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Tx is alled the on-shell T -matrix.Calulating, for f ∈ H(1)

ac , separately the omponent I∗W±f ∈ H(1)
S and

J∗W±f ∈ H(1)
ac of Eq. (2.9), one obtains

I∗W±f = −
∫
Reff(x∓ i0)τx(Uf)(x)dx,

[UJ∗W±f ] (x) = (Uf)(x)+
+

∫
1

x−x′∓i0τ
∗
xReff(x′ ∓ i0)τx′(Uf)(x′)dx′.

(2.14)Also, the ation of W ∗
± on f ∈ H(1) is given by

(UW ∗
±f)(x) = (UJ∗f)(x)−

−
∫

1
x−x′±i0τ

∗
xReff(x± i0)τx′(UJ∗f)(x′)dx′−

−τ∗xReff(x± i0)I∗f.

(2.15)2.3. An example: two half-in�nite lattie reservoirs oupledby a wireIn this subsetion we desribe, as an illustration of the more general settingof the model, a partiular geometry and dynamis: the system onsisting oftwo partile reservoirs, R1, R2, onneted by a one-dimensional wire, S.The reservoirs, Ri, i = 1, 2, are taken as in�nitely extended lattie quantumgases. The partiles in the reservoirs live, respetively, on the two (left,respetively, right) half-in�nite latties,
Li = Z

d
i =

{
r = (r′, rd); r′ ∈ Z

d−1, (−1)ird = 1, 2, ...
}
. (2.16)The Hilbert spae of one-partile states in Ri is therefore

H(1)
i = l2(Li) =



f = (fr)r∈Li ; ‖f‖2 =

∑

r∈Li

|fr|2 <∞



 . (2.17)The kineti energy operator of one partile in Ri is 1/2 times the lattieLaplae operator with free boundary onditions, i.e.

(hif)r = dfr −
1

2

∑

q∈Li,|q−r|=1

fq. (2.18)A omplete set of generalized eigenvetors of hi are ψi(k) ∈ l∞(Li), k ∈ T
d
i ,where the index sets T

d
i = {k = (k′, kd); k′ ∈ [0, 2π)d−1, kd ∈ (0, π)} are



Quantum Statistial Models 25idential (the subsript i has the only role to make the di�erene betweenthe two reservoirs, e.g. by T
d
1 ∪ T

d
2 we mean the disjoint union of two opiesthis set), and

ψi(k)r = 2(2π)−d/2 exp (ik′r′) sin (kd|rd|). (2.19)
ψi(k) orresponds to the generalized eigenvalue

ωi(k) = 2
d∑

α=1

sin2 (kα/2). (2.20)Again, though the two dispersion laws (2.20) are idential, we keep the label
i to mark the reservoir they orrespond to. Therefore the spetra of hi areabsolutely ontinuous and oinide with the intervals I1, I2 ⊂ R (both equalto [0, 2d]). In fat, we de�ne the unitary operators ui : H(1)

i → L2(T
d
i ) by

uif = (ψi(·), f); (2.21)then, uihiu
∗
i is the operator of multipliation with the funtion ωi(k) on

L2(T
d
i ).The sample S, providing our model of a nanowire, is a free quantum gas inwhih partiles live on the �nite set of sites {1, 2, ...,N}. The states withone partile are vetors f = (f1, ..., fN ) ∈ H(1)

S = l2({1, 2, ...,N}) ≡ C
N andtheir evolution is ontrolled by the Hamiltonian

(hSf)i = (1+eg)fi−1/2(fi−1 +fi+1), i = 1, ...,N (f0 = fN+1 = 0), (2.22)where the parameter eg plays the role of an adjustable gate potential. Theeigenvalues of hS are εm = eg + 2 sin2 (qm/2);m = 1, ...,N , where qm =
mπ/(N + 1), with eigenvetors ψ(m):

ψ
(m)
i =

√
2

N + 1
sin (qmi). (2.23)The one-partile Hilbert spae for the entire system, S +R1 +R2 is

H(1) = H(1)
S ⊕H(1)

1 ⊕H(1)
2 = l2(L), where L = {1, 2, ...,N}∪L1 ∪L2. (2.24)The evolution of the one-partile states for the unoupled system is given bythe one-partile Hamiltonian

h0 = hS ⊕ h1 ⊕ h2 (2.25)



26 N. Angelesu et al.At t = 0, tunneling juntions are turned on between the reservoirs and theends of the wire through the pairs of sites (α1 = (0′,−1), {1}) and (α2 =
(0′, 1), {N}), N > 0. On H(1), this is given by the one-partile operator vde�ned by the matrix

vr,s =

{
t, if either {r, s} = {α1, 1} or {α2,N}
0, otherwise,

(2.26)Thus, the evolution of the one-partile states in the oupled system is gen-erated by the Hamiltonian:
h = h0 + v. (2.27)Proposition 2.1 The model de�ned above ful�lls the assumptions 2.1�2.3.Thereby, h has no eigenvalue embedded in (0, 2d).Proof. Assumptions 2.1 and 2.2 are obvious, with r = 2 and τ1, τ2 having allmatrix elements equal to 0, but for (τ1)1,α1 = (τ2)N,α2 = t. We have that

(τ1R1(z)τ
∗
1 )i,j = t2δi,1δj,1g(z), (2.28)where

g(z) = 4(2π)−d
∫

Td sin2 (kd)(ω1(k) − z)−1dk

= 4(2π)−d
2d∫
0

(y − z)−1dy
∫

Td(y)

sin2 (kd)dµy(k),
(2.29)where dµy(k) = |∇ω(k)|−1dσy(k) is the Gelfand-Leray measure on the levelset T

d(y) = {k ∈ T
d; ω(k) = y} (where dσy(k) is the area measure on thissurfae). Using the Sokhotski formula (x− i0)−1 = P( 1

x ) + iπδ(x) (where Pdenotes the prinipal part), we have
lim
yց0

ℑg(x+ iy) = 4(2π)−d

∫

Td(x)

sin2 (kd)dµx(k) > 0, ∀x ∈ (0, 2d). (2.30)Finally, the eigenfuntions (2.23) of hS ful�ll ψ(m)
1 =

√
2

N+1 sin (qm) 6=
0,∀m = 1, ..., N , implying that there are no eigenvalues embedded in (0, 2d).
�For this model one may de�ne the unitary U of Remark 2.1 as the ompo-sition the unitary u1 ⊕ u2 : Hac(H

0) → ⊕2
i=1L2(T

d
i ) (where ui are de�nedin Eq. (2.21)), with the unitary v1 ⊕ v2 : ⊕2

i=1L2(T
d
i ) →

∫ 2d
0

⊕Kxdx, with
Kx = ⊕2

i=1L2(T
d
i (x),dµi,x(k)), where (vifi)(x) is the restrition of fi to the
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d
i (x) and dµi,x is the Gelfand-Leray measure on the latter.Then, τf =

∫ 2d
0 dxτx(Uf(x)), where τx : Kx → H(1)

S is given by:
(τxφ)m = δm,1t

∫
T

d
1(x) ψ

1(k)α1φ1(k)dµ1,x(k)+

+δm,N t
∫

T
d
2(x) ψ

2(k)α2φ2(k)dµ2,x(k),
(2.31)and (Uτ∗f)(x) = τ∗xf , where τ∗x : H(1)

S → Kx is given by
(τ∗xf)(k) = tψ1(k)α1f1 ⊕ tψ2(k)α2fN . (2.32)We remind that ψi(k)αi = 2(2π)−d/2 sin (kd), see Eq. (2.19).Upon insertion of Eqs. (2.31), (2.32), the equations of the previous remarkare made expliit. For instane, the T -matrix Tx : Kx → Kx appearing inEq. (2.13) is an integral operator with matrix kernel:

Tx(k, k′)i,j =
4i

(2π)d−1
sin (kd)Reff(x+ i0)si,sj sin (k′

d
), (2.33)where s1 = 1, s2 = N.2.4. An example of diret tunneling between reservoirsThe ase when the reservoirs are diretly oupled through a tunneling jun-tion without any intermediate sample is speial. Indeed, e.g. for two reser-voirs, H(1) = Hac(h

0) = H(1)
1 ⊕H(1)

2 .In view of the appliation to Bose gases, where the surfae e�ets may bedrasti, we onsider now the translation invariant ase of lattie reservoirs,i.e. we suppose that partiles live on Li = Z
d, i = 1, 2. The one-partileHilbert spaes H(1)

i and reservoir Hamiltonians hi are de�ned by Eqs.(2.17),(2.18), respetively. Then, the generalized eigenfuntions of hi are planewaves
ψi(k)r = (2π)−d/2 exp (ikr), k ∈ T

d = [0, 2π)d, (2.34)with generalized eigenvalues ω(k), Eq. (2.20), and the unitaries ui are simplythe Fourier transform.The tunneling is between the origins of Li, i.e. we take αi = 0 ∈ Z
d. Let

π0 = π1 ⊕π2 : H(1) → C
2 denote the restrition to the pair α1, α2 of oupledsites:
π0(f1 ⊕ f2) = (f1)0 ⊕ (f2)0,
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σ0 =

(
1 0
0 1

) be the unit matrix in C
2 and σ1 =

(
0 1
1 0

) be the �rstPauli matrix (interhange of 1 and 2). The interation an be represented as
v = tπ∗0σ1π0 (2.35)One an simplify signi�antly the expressions of R(z), Ω±, S by using theFourier representation (2.21) on both spaes: u = u1 ⊕ u2 : ⊕2

i=1H
(1)
i →

⊕2
i=1L2(T

d
i ). The resolvent equation (h − z)f = g redues in π0H(1) to theequation (σ0 + tπ0R

0(z)π∗0σ1)(π0f) = π0R
0(z)g, whih amounts to invertinga 2 × 2 matrix. Thereby,

π0R
0(z)π∗0 = g̃(z)σ0, (2.36)with g̃(z) given by

g̃(z) = (2π)−d

∫

Td

dk

ω(k) − z
. (2.37)It should be remarked that ℑg̃(x+ i0) > 0 for all x ∈ (0, 2d) (and is, as amatter of fat, π times the density of states of the lattie Laplaeian (2.18))and, for d ≥ 3, goes to 0 at the spetrum ends x = 0, 2d.We obtain �nally:Lemma 2.4 In the diret-oupling model desribed above1. The resolvent of h = h0 + v has the representation:

R(z) = R0(z) − tR0(z)π
∗
0(σ1 + tg̃(z)σ0)

−1π0R0(z),

(z ∈ C \ [0, 2d], t2g̃(z)2 6= 1).
(2.38)2. σac(h) = [0, 2d].3. If lim

xր0
g̃(x) > 1/t, the equation t2g̃(z)2 = 1 has two real solutions e0 < 0and 2d− e0, whih are simple eigenvalues of h; otherwise, σp(h) = ∅.Using this representation in Eq. (2.8) (in this ase, J = 1), one �nds thatthe wave operators have the form W± = 1 −K±, where uK±u

∗ are integraloperators in L2(T
d) ⊕ L2(T

d) with 2 × 2-matrix kernels
K±(k, k′) =

t(2π)−d

ω(k) − ω(k′) ± i0
(σ1 + tg̃(ω(k′) ∓ i0)σ0)

−1. (2.39)The S-matrix aquires the form S = 1+T with uTu∗ having the generalizedkernel
t(k, k′) =

iδ(ω(k) − ω(k′))

(2π)d−1
(σ1 + tg̃(ω(k′) + i0)σ0)

−1. (2.40)



Quantum Statistial Models 293. Quasi-free Fermion models3.1. The algebra of observables, the C∗-dynamis and thereferene stateWe onsider the physial situation desribed in the Introdution, with rreservoirs of free Fermi gases at equilibrium, oupled via a tunneling juntionwith a sample onsisting of free Fermi partiles with a �nite-dimensional one-partile state spae. The dynamis is supposed quasi-free, spei�ed by theone-partile Hamiltonian h = h0 + v, ful�lling the assumptions of Se. 2.This subsetion is devoted to a preise de�nition of the quantum systemunder onsideration. We use the notation of subsetions 2.1., 2.2..We start with de�ning the C∗-dynamial system:Let F(H(1)) be the antisymmetri Fok spae over the one-partile spaeof Assumption 2.1, and denote a∗(f)/a(f) the usual reation/annihilationoperators of one partile in the state f ∈ H(1); a∗(f) is linear and a(f)is antilinear with respet with f ∈ H(1). The following antiommutationrelations hold: for f, g ∈ H(1),
{a(f), a(g)} = {a∗(f), a∗(g)} = 0, {a(f), a∗(g)} = (f, g). (3.1)It follows that ‖a(f)‖ = ‖a∗(f)‖ = ‖f‖. The norm-losed operator algebragenerated by them, denoted CAR(H(1)) (alled the the algebra of anonialantiommutation relations), is taken as the algebra of loal observables of thesystem. As an instane, we shall onsider elements in CAR(H(1)) whih arethe seond quantization of one-partile operators: for a trae-lass operator

a ating in H(1) with anonial form a =
∑
sk(fk, ·)gk (where sk are thesingular values of a), dΓ(a) =

∑
ska

∗(gk)a(fk) ∈ CAR(H(1)).The one-partile Hamiltonians h0 and h de�ne two (strongly ontinuous)groups of automorphisms of CAR(H(1)) (orresponding to the unoupledand oupled dynamis, respetively) by
αt(a♯(f)) = a♯(eih0tf), τ t(a♯(f)) = a♯(eihtf). (3.2)Also, let φθ denote the gauge automorphism group of CAR(H(1)), i.e.

φθ(a♯(f)) = a♯(eiθf). (3.3)Corresponding to the deomposition H(1) = H(1)
S ⊕ (⊕r

i=1H
(1)
i ), one an de-�ne gauge automorphisms φi (i = 1, ..., r), φS of the kinematial algebras

CAR(H(1)
i ) (i = 1, ..., r), CAR(H(1)

S ) of the reservoirs and of the sample.



30 N. Angelesu et al.The states of the system are positive linear funtionals ω : CAR(H(1)) → Cof norm ‖ω‖ = ω(1) = 1. A state ω is gauge invariant (i.e. ω ◦ φθ = ω) if,and only if, ω(
n∏

i=1
a∗(gi)

m∏
i=1

a(fi)) = 0, ∀n 6= m. For any state ω, the formula
ω(a∗(g)a(f)) = (g, ρωf) (3.4)de�nes a self-adjoint operator 0 ≤ ρω ≤ 1 onH(1), alled its density operator.Given ρ self-adjoint with 0 ≤ ρ ≤ 1, there exists a unique quasi-free, gauge-invariant state ωρ with density operator ρ. The higher order expetationsare expressed in this state ωρ by

ωρ(a
∗(gm)...a∗(g1)a(f1)...a(fn)) = δm,n det {(fi, ρgj)}. (3.5)If the initial state ω0 of our system is quasi-free and αt-invariant, what hap-pens if its density operator ρ0 ommutes with h0, its evolution ωt under theperturbed dynamis τ t is likewise a quasi-free state with density operator:

ρt = [e−ith0
eith]∗ρ0e−ith0

eith; (3.6)indeed, using the α0-invariane of ω0,
ωt(a∗(g)a(f)) := ω0(τ t(a∗(g)a(f))) = ω0(α−t ◦ τ t(a∗(g)a(f))) =

= ω0(a∗(e−ith0
eithg)a(e−ith0

eithf)) = (e−ith0
eithg, ρ0e−ith0

eithf).The initial state is taken as a produt state ω0 = ωS ⊗(⊗r
i=1ωi), where ωi arethe equilibrium states of two lattie free Fermi gases with one-partile statespaes H(1)

i and one-partile Hamiltonians hi and ωS is an invariant state ofthe isolated sample.It is well-known [4℄ that, at given values of the temperature β−1 ≥ 0 andhemial potential µ ∈ R, a free Fermi gas has a unique equilibrium state: itis the gauge-invariant quasi-free state with density operator fβ,µ(h), where
h is the one-partile Hamiltonian, and fβ,µ is the Fermi-Dira funtion:

fβ,µ(x) =
1

1 + eβ(x−µ)
(3.7)This de�nes in partiular the initial states of the reservoirs ωi.3.2. Convergene to the NESS and urrentsWe present here the main results of [2℄ within the framework de�ned byAssumptions 2.1�2.3. As with our assumptions no regularization is neessary,



Quantum Statistial Models 31the proof an be made onsiderably more transparent, so we shall sketh theargument for reader's onveniene.As all states involved are quasi-free and gauge-invariant, it is su�ient, inview of Eq. (3.5), to establish the onvergene of the state on elements ofthe form a(g)a∗(f). This means to alulate the limit density operator as aweak limit of the density operators ρt.As shown in Se. 2, H(1) = Hac(h) ⊕Hp(h), with Hp(h) �nite-dimensional.Let Pac, Pp denote the orresponding orthogonal projetions. We alulatethe density operator:
ρ+ = (w) lim

T→+∞
(1/T )

∫ T

0
ρtdt. (3.8)For f ∈ Hac(h), we have, in view of Eq. (3.6),

lim
t→+∞

ρtf = W−ρ
0W ∗

−fbeause lim
t→+∞

e−ith0eithf = W ∗
−f exists. On the other hand, if f ∈ Hp(h),it is a �nite ombination of eigenvetors, so, we an suppose that f is aneigenvetor of h with eigenvalue e,

(w) lim
t→+∞

Pace−ithρ0eithf = (w) lim
t→+∞

Pace−it(h−e)(ρ0f) = 0by the Riemann-Lebesgue lemma, while, for any eigenvetor g of h witheigenvalue e′,
lim

T→+∞
(1/T )

∫ T

0
(g, ρtf)dt = lim

T→+∞
(1/T )

∫ T

0
eit(e−e′)(g, ρ0f)dt = δe,e′(g, ρ

0f).In summary,Proposition 3.1 The following limit exists for A ∈ CAR(H(1))

lim
T→+∞

(1/T )

∫ T

0
ωt(A)dt = ω+(A) (3.9)and is the quasi-free gauge invariant state of density operator

ρ+ = W−ρ
0W ∗

− +
∑

e∈σp(h)

Peρ
0Pe, (3.10)where Pe is the projetion onto the eigenspae of h orresponding to the eigen-value e. Thereby, the restrition of ω+ to CAR(Hac(h)) is the quasi-free stateof density W−ρ

0W ∗
−, and we have
lim

t→+∞
ωt(A) = ω+(A), A ∈ CAR(Hac(h)). (3.11)



32 N. Angelesu et al.Clearly, the state ω+ is τ t-invariant, in partiular, for any trae-lass operator
a on H(1), d

dtω+(τ t(dΓ(a))) = 0, implying that tr(ρ+[h, a]) = 0. However,if a is not a trae-lass operator (but ρ+[h, a] is trae-lass), it may happenthat tr(ρ+[h, a]) 6= 0. This is the ase for the extensive onserved harges ofthe isolated reservoirs, and it expresses the existene of the steady urrentsin the NESS ω+ onstruted above.Eah of the reservoirs Ri has two onserved quantities, the energy and thepartile number, whih orrespond formally to dΓ(h0Pi) and dΓ(Pi), where Piis the projetion ofH(1) ontoH(1)
i . This is expressed by the invariane of theirequilibrium states ωi under the dynamial and gauge automorphism groups,

αt
i and φθ

i , of the isolated reservoirs. The energy and partile urrents fromthe reservoirs Ri is alulated as the ω+-expetation of the orresponding�uxes Ii,en = dΓ(−i[h, h0Pi]) = dΓ(−i[v, h0Pi]) and Ii,part = dΓ(−i[h, Pi]) =
dΓ(−i[v, Pi]), respetively. Remark that, beause v is a �nite range operator,the ommutators are trae-lass in H(1), so the proposition 3.1 applies. As
Peh = hPe = ePe, the sum over the point spetrum in Eq. (3.10) does notontribute to any of the two urrents J = ω+(I). Hene,Proposition 3.2 The energy and partile urrents from the reservoirs Riare alulated aording to the formulas

Ji,en = −tr(ρ+i[v, h0Pi]) = −tr(W−ρ
0W ∗

−i[v, h0Pi]),

Ji,part = −tr(ρ+i[v, Pi]) = −tr(W−ρ
0W ∗

−i[v, Pi]).
(3.12)We shall next bring formulas (3.12) to a form, known as Landauer-Büttikerformulas, whih make lear that the urrents depend in fat only on the on-shell T -matrix Tx. We start with a statement [2℄ relative to a larger lass ofonserved reservoir observables.Proposition 3.3 Let a be a bounded self-adjoint operator in H(1)

ac (h0) om-muting with h0, so that, in the representation of Remark 2.1, UaU∗ =∫ ⊕
a(x)dx, with a(x) bounded self-adjoint operators in Kx. We denote â =

JaJ∗ its ounterpart in H(1). Let
J(a) := ω+(dΓ(−i[h, â])) = −trHac(h)(W−ρ

0W ∗
−i[h, â]) (3.13)be the "urrent" assoiated to a. Then,

J(a) = −
∫

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]}dx

2π
. (3.14)



Quantum Statistial Models 33Proof. The equality in Eq. (3.13), meaning that the sum over the pointspetrum of h in Eq. (3.10) vanishes, is shown in the same way as for Eq.(3.12).As, by Assumption 2.2, v = Jτ∗I∗ + IτJ∗, the ommutator in the r.h.s. of(3.13) equals [h, â] = [v, â] = IτaJ∗ − Jaτ∗I∗, whih has �nite-range. Usingthe permutation invariane of the trae,
trHac(h)(W−ρ

0W ∗
−[v, â]) = trK(Uρ0W ∗

−[v, â]W−U
∗).We show that the operator under trae is an integral operator on K, i.e. ofthe form Kψ(x) =

∫
dyk(x, y)ψ(y), where k(x, y) : Ky → Kx are ontinuous,trae-lass-operator valued funtions. Therefore, the trae an be alulatedas ∫

dxtrKxk(x, x).To this aim, we fatorize the two terms of the ommutator as
UW ∗

−[v, â]W−U
∗ = (UW ∗

−IτU
∗)(UaU∗)(UJ∗W−U

∗)
−(UW ∗

−JU
∗)(UaU∗)(Uτ∗I∗W−U

∗).Remembering the representation of τ, τ∗ in Remark 2.1 and the expressions(2.14), (2.15) of W−,W
∗
−, the generalized kernels of the operators in braketsare

(UW ∗
−JU

∗)(x, y) = δ(x− y) + (y − x+ i0)−1τ∗xReff(x− i0)τy;

(UJ∗W−U
∗)(x, y) = δ(x − y) + (x− y − i0)−1τ∗xReff(y + i0)τy ;

(UW ∗
−IτU

∗)(x, y) = −τ∗xReff(x− i0)τy;

(Uτ∗I∗W−U
∗)(x, y) = −τ∗xReff(y + i0)τy .The kernel k(x, y) is obtained as the omposition of the kernels of the fators.The ontinuity with respet with x, y is a onsequene of Assumption 2.2.The diagonal k(x, x) equals

−τ∗xReff(x− i0)τxa(x) + a(x)τ∗xReff(x− i0)τx−

−
∫

dx′τ∗xReff(x− i0)τ ′xa(x
′)τ∗x′Reff(x+ i0)τx×

×[(x′ − x− i0)−1 − (x′ − x+ i0)−1]

= 1
2πi [T

∗
xa(x) + a(x)Tx + T ∗

xa(x)Tx],where we used the Sokhotski formula (x − i0)−1 = P
(

1
x

)
+ iπδ(x) and thede�nition (2.13) of the T -matrix. Insertion of this alulation in Eq. (3.13)gives Eq. (3.14). �



34 N. Angelesu et al.We take now into aount the deomposition H(1)
ac (h0) =

⊕
i H

(1)
i . For anenergy x ∈ [emin, emax], we have Kx =

⊕
i Kx,i; thereby, if x 6∈ Ii, Kx,i = {0}.Aordingly, the operators under trKx in Eq. (3.14) have matrix representa-tions. The density ρ0(x) is the diagonal matrix with ρ0(x)i,i = fβi,µi

(x) · 1.Also, (Tx)i,j = 2πi(τ∗i )xReff(x + i0)(τj)x, whih vanishes for x 6∈ Ii ∩ Ij.What onerns a(x), as we are interested in observables assoiated withthe isolated reservoirs, we suppose that its matrix has blok-diagonal form:
a(x)i,j = δi,jai(x). In this ase,

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]} =
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)(Tx)i,i + (T ∗
x )i,iai(x) +

r∑
j=1

(T ∗
x )i,jaj(x)(Tx)j,i}.(3.15)This an be further simpli�ed using the unitarity of the S-matrix:

(Tx)i,i + (T ∗
x )i,i +

r∑

j=1

(Tx)i,j(T
∗
x )j,i = 0and the permutation invariane of the trae, whene

r∑
i=1

fβi,µi
(x)trKx,i{ai(x)(Tx)i,i + (T ∗

x )i,iai(x)}

= −
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)
r∑

j=1
(Tx)i,j(T

∗
x )j,i

= −
r∑

j=1
fβj ,µj

(x)trKx,i{
r∑

j=1
(T ∗

x )i,jaj(x)(Tx)j,i.Hene,Corollary 3.1 For a self-adjoint operator a in H(1)
ac (h0) suh that a(x)i,j =

δi,jai(x),∀x,
J(a) =

r∑

i,j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]trKx,i{ai(x)(Tx)i,j(T

∗
x )j,i}dx. (3.16)Thereby, (Tx)i,j 6= 0 only for x ∈ Ii ∩ Ij.In partiular, de�ning the transmission probability between reservoirs Ri and

Rj as ti,j(x) := trKx,i{(Tx)i,j(T
∗
x )j,i},

Ji,en =
r∑

j=1

∫
[fβi,µi

(x) − fβj ,µj
(x)]xti,j(x),

Ji,part =
r∑

j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]ti,j(x).

(3.17)



Quantum Statistial Models 353.3. Consequenes for the model of Se. 2.3We speialize here to the ase of two reservoirs (r = 2) of free lattie Fermigases desribed in Se. 2.3. and draw a few onlusions about its behavioras a funtion of the dimension of the latties di and of the wire length N .
• The urrents, Eq. (3.17), are a sum of two urrents, eah obtainedwhen one of the two reservoirs is put in turn in the Fok state (or-responding to the density matrix f+∞,−∞(hi) = 0. One may onsidertherefore only the partile urrent

J1,part(β, µ) =

∫
fβ,µ(x)t1,2(x). (3.18)

• The transmission probability
t1,2(x) =

∫

Td(x)
dµx(k)

∫

Td(x)
dµx(k)|T (k, k′)1,2|2has a resonant struture. In view of Eq. (2.33), one has to study theenergy dependene of the matrix element Reff(x+ i0)1,N . By analytiperturbation theory, as hS has simple eigenvalues εm, the eigenvalues

λm(x), m = 1, ..., N of heff(x + i0) are simple for su�iently smalltunneling onstant t. Let ψ(m)(x) be the orresponding eigenvetors;then ψ̄(m)(x) is the dual basis (i.e. (ψ̄(m)(x), ψ(m′)(x)) = δm,m′ . Hene,
Reff(x+ i0)1,N ∼

N∑

m=1

(λm(x) − x)−1ψ
(m)
1 (x)ψ

(m)
N (x).To lowest order in t, λm(x) ∼ εm − 2

N+1 t
2g(x + i0) sin2 qm, wherewe used Eq. (2.28) and the expliit form (2.23) of the eigenvetors

ψ(m) at t = 0, whih puts into evidene "resonanes" at x = εm −
2

N+1t
2ℜg(x+ i0) sin2 qm of "width" 2

N+1t
2ℑg(x+ i0) sin2 qm.

• The density pro�le
n(r) = ω+(a∗(δr)a(δr)) =

∑
(Peδr, ρ

0Peδr)+(W ∗
−δr, ρ

0W ∗
−δr) (3.19)is a sum over reservoirs of density pro�les orresponding to the otherreservoir put in its Fok state (due to the blok struture of ρ0 =∑L

i ρi). We alulate the seond term of (3.19) with ρ2 = 0. We need



36 N. Angelesu et al.therefore P1W
∗
−δr, where P1 is the projetion onto H(1)

1 . In view ofEq. (2.15), we have
(UP1W

∗
−δr)(x) = −tψ1(k)α1Reff(x− i0)1,r,if r ∈ {1, ..., N},

(UP1W
∗
−δr)(x) = ψ1(k)r + t2ψ1(k)α1Reff(x− i0)1,1R1(x+ i0)α1,rif r ∈ L1, and

(UP1W
∗
−δr)(x) = t2ψ1(k)α1Reff(x− i0)1,NR2(x+ i0)α2,r,if r ∈ L2.In partiular, the density pro�le inside R2 (the initially void reservoir),is given by

t4
∫

dkfβ1,µ1(ω1(k))|ψ1(k)α1Reff(ω1(k)− i0)1,N |2|R2(ω1(k) + i0)α2,r|2.It is to be remarked that, if d2 = 1 (whih is the model of in�nite leadsused in [6℄), the density of transmitted partiles has a nonzero limitas r → ∞; this seems improper for a reservoir, whih is expeted tokeep unhanged its "onserved harges" even after oupling it to otherreservoirs. For d2 > 1, the density deays like |r|−1 irrespetive of d2[14℄.4. Quasi-free Boson models4.1. The algebra of observables and the referene stateThe kinematial C∗-algebra of the model is the anonial ommutation rela-tion algebra CCR(D) over a suitable subspae D ⊂ H(1), whih is left invari-ant by the one-partile evolution groups: exp (ith0)D = D, exp (ith)D = D.
CCR(D) is generated by the Weyl operators {W(f); f ∈ D}, satisfying

W(f)W(g) = e− i
2
ℑ(f,g)W(f + g). (4.1)The de�ning equation (4.1) implies that W(0) = 1 and W(f) are unitaries(W(f)∗W(f) = 1). Aording to a theorem by Slawny, suh a C∗-algebra



Quantum Statistial Models 37is unique up to an isomorphism; in partiular, it an be shown (using thewell-known Fok representation) that ‖W(f) − 1‖ ≥
√

2 for f 6= 0, implyingthat the appliation f 7→ W(f) annot be norm-ontinuous [13℄.To any state ω on CCR(D) a funtion E : D → C is assoiated by
E(f) = ω(W(f)), (4.2)named its generating funtional. E satis�es: (i) normalization: E(0) = 1,(ii) unitarity: E(f) = E(−f), and (iii) positivity:

n∑

i,j=1

ziE(fi − fj)e− i
2
ℑ(fi,fj)z̄j ≥ 0, ∀n,∀zi ∈ C, fi ∈ D (i = 1, ..., n).Conversely, any E with these properties de�nes a unique state by Eq. (4.2).Therefore, in desribing the initial and evolved states of our model, it will besu�ient to speify the orresponding generating funtionals.A state ω is quasi-free if, and only if, E has the partiular form

E(f) = exp (i
√

2ℜ〈l, f〉 − 1

4
Q(f, f)), (4.3)where l ∈ D′ is a linear form and Q(·, ·) ≥ 1 a quadrati form on D × D.Quasi-free states ω are regular, i.e. in the assoiated GNS representation πω,for any f ∈ D, the unitary group R ∋ t 7→ πω(W(tf)) is weakly ontinuous.Hene, ∀f ∈ D, there exist self-adjoint operators ϕ(f) � "�eld operators",suh that πω(W(tf)) = exp (itϕ(f)). The �elds ϕ(f) are real-linear funtionsof f . In terms of the �elds ϕ(f) one an de�ne reation and annihilationoperators by a∗(f) = 2−1/2(ϕ(f) − iϕ(if)), a(f) = 2−1/2(ϕ(f) + iϕ(if)).Then, denoting Ωω the yli vetor of π, one has the followingProposition 4.1 In a quasi-free state with generating funtional (4.3), Ωωis in the domain of all powers of a♯(f), f ∈ D, and the following relationshold:

(Ωω, a
∗(f)Ωω) = (Ωω, a(f)Ωω) = 〈l, f〉,

(Ωω, a
∗(g)a(f)Ωω) − (Ωω, a

∗(g)Ωω)(Ωω, a(f)Ωω) = Q(f, g);

(4.4)all other trunated expetations vanish.The time evolutions αt, τ t, for the unoupled, respetively, oupled reservoirsand sample are the groups of Bogoliubov automorphisms on CCR(D) de�ned



38 N. Angelesu et al.by their ation on W(f):
αt(W(f)) = W(eih0tf),

τ t(W(f)) = W(eihtf).

(4.5)In view of the anonial ommutation relations (4.1), Eq. (4.5) is su�ient touniquely de�ne the ation of τ t on all elements of CCR(D). By the remarkabove, the two automorphism groups are not strongly ontinuous. However,in a quasi-free representation they are implemented by weakly ontinuousunitary groups. Moreover, the evolution of a quasi-free initial state undera dynamis of the form (4.5) is likewise quasi-free. This means that theevolved state at time t > 0 of Boson systems, whih, at t = 0, were in aquasi-free state, is uniquely determined by the evolved one-point and two-point funtions, i.e. by 〈lt, f〉 = 〈l, eihtf〉 and Qt(f, g) = Q(eihtf, eihtg). Inthis respet, their study parallels the study of Fermi systems in the previ-ous setion and the ounterpart of proposition 3.1 holds true. There appear,however, subtleties related to the hoie of the initial (referene) state; in par-tiular, unlike in the Fermi ase, the domain D (i.e. the kinematial algebra
CCR(D)) depends on the referene state. In order to keep the exposition ata reasonable level of omplexity, we shall explain them only for the model inSe. 2.4., i.e. diret tunneling between reservoirs on Z

d with no intermediatesample. The onsideration of the general frame (given by assumptions 2.1�2.3, supplemented with speial requirements about the existene of a densityof energy levels in the in�nite volume limit) is left for another publiation.The equilibrium states of a free Bose gas are quasi-free; they have been stud-ied in detail in the literature [4℄. The peuliarity of the free Bose gas is that,under ertain onditions, it shows a phase transition at low temperatureand high density. It happens that, in the multi-phase region, the anoni-al and grand-anonial are inequivalent. As we are interested in partile�ows between reservoirs, it is natural to use the anonial desription for thereservoirs.We remind below the expressions of the generating funtionals for the anon-ial equilibrium states for our model of reservoir, obtained by an easy adap-tation of the derivation by Cannon [4℄, [11℄ for the ontinuum Bose gas.We start by desribing one reservoir R, onsisting of a free lattie Bose gasliving on Z
d.Let β, ρ be �xed positive numbers and de�ne:

ρcr(β) = (2π)−d

∫

T
d
1

1eβω(k) − 1
ddk ≤ +∞, (4.6)



Quantum Statistial Models 39where ω(k) is the dispersion law Eq. (2.20). As ω(k) ≈ 1
2 |k|2 around itsminimum at k = 0, one has that ρcr(β) is �nite for d ≥ 3 and is in�nite for

d = 1, 2.For ρ < ρcr(β), the fugaity z is de�ned to be the unique solution z(β, ρ) ofthe equation
ρ = (2π)−d

∫

Td

zeβω(k) − z
ddk,while, for ρ ≥ ρcr(β), put z(β, ρ) = 1. The momentum distribution for k 6= 0at the given β, ρ is proportional to

nβ,ρ(k) =
z(β, ρ)eβω(k) − z(β, ρ)

, (4.7)while the ondensate density is given by
ρ0 = max{0, ρ − ρcr(β)}. (4.8)Then, the generating funtional of the anonial equilibrium state at β, ρ isgiven by the formula

Eβ,ρ(f) = exp

{
−‖f‖2

4
− 1

2
(uf, nβ,ρ uf)

}
J0(

√
2(2π)dρ0 |(uf)(0)|), (4.9)where u is the Fourier transform and J0 is the Bessel funtion.For ρ ≤ ρcr(β), the anonial state de�ned by Eq. (4.9) is extremal, however,if ρcr(β) <∞ and ρ > ρcr(β), it has a nontrivial deomposition into extremalstates indexed by a phase eiθ:

Eβ,ρ(f) = (2π)−1

∫ 2π

0
Eθ

β,ρ(f)dθ, (4.10)where
Eθ

β,ρ(f) = exp

{
−‖f‖2

4
− (uf, nβ,ρ uf)

2
− i

√
2ρ0

(2π)d/2
ℜ(e−iθ(uf)(0))

}
. (4.11)Thereby, the test funtion spae D should be hosen suh that the funtion-als (4.11) are well de�ned for f ∈ D, e.g. taking D = l1(Zd) would su�e.Indeed, with this hoie uf is ontinuous on T

d, ensuring both the integra-bility of nβ,ρ|uf |2 and the existene of (uf)(0). We shall impose, howevera stronger ondition ensuring that uf is Hölder-ontinuous, and take D as



40 N. Angelesu et al.the spae l1(Zd; |x|ǫ) for some ǫ > 0, onsisting of funtions f : Z
d → C forwhih ‖f‖D :=

∑
x∈Zd

|x|ǫ|fx| <∞.Using the matrix notation assoiated with the diret sum H(1) = H(1)
1 ⊕H(1)

2 ,we take f = f1 ⊕ f2 ∈ D1 ⊕ D2 (where Di are opies of D) and the initialstate ω0 as a produt of anonial equilibrium states of Ri at temperatures
βi and densities ρi (i = 1, 2), respetively:

ω0(W(f)) = E0(f) = Eβ1,ρ1(f1)Eβ2,ρ2(f2), (4.12)where Eβi,ρi
(fi) are arbitrary mixtures (with probability measures dµ1,2(θ1,2))of the extremal state generating funtionals (4.11). Denoting ρ0,i the on-densate densities in Ri and

ñ0 =

(
nβ1,ρ1 0

0 nβ2,ρ2

)
, ρ̃0(θ1, θ2) =

(√
2ρ0,1e−iθ1

√
2ρ0,2e−iθ2

)
, (4.13)we have

E0(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
0 (f), (4.14)where

Eθ1,θ2
0 (f) = exp

{
−‖f‖2

4
− (uf, ñ0 uf)

2
− i

(2π)d/2
ℜ(ρ̃0(θ1, θ2)(uf)(0))

}
.(4.15)In partiular, the anonial states (4.9) are obtained for dµi(θ) = (2π)−1dθ.4.2. The approah to, and properties of, the NESSWe are interested in the time evolution of an initial state ω0 as de�ned byEq. (4.14) (whih is αt-invariant) under the oupled dynamis τ t, Eq. (4.5).We have

ωt(W(f)) = ω0(W(exp (ith)f) = ω0(W(exp (−ith0) exp (ith)f). (4.16)Using the analysis done in Se. 2.4., we obtain the following onvergeneresult, whih de�nes the stationary state.Proposition 4.2 Under the ondition above, the following limit exists andde�nes a quasi-free invariant state ωstat: ∀f ∈ D,
lim

T→∞

1

T

T∫

0

ωt(W(f))dt = Estat(f). (4.17)



Quantum Statistial Models 41Corresponding to the deomposition (4.14) of the initial state,
Estat(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
stat (f), (4.18)where

Eθ1,θ2
stat (f) = Eθ1,θ2

0 (W ∗
−Pacf)Eθ1,θ2

(p) (Ppf). (4.19)Thereby, the limit in mean is neessary only for the ontribution of thepoint spetrum, i.e. for f = Pacf , the limit lim
t→∞

ωt(W(f)) exists and equals
∫

dµ1(θ1)dµ2(θ2)E
θ1,θ2
0 (W ∗

−Pacf).Proof. We isolate, in the quadrati and linear forms appearing at the expo-nent in Eθ1,θ2
0 (eihtf), the terms whih do not depend on Pacf , i.e. Tp(t) :=

−1
4‖Ppf‖2 − 1

2(ueihtPpf, ñ0 ue
ihtPpf) − i(2π)−3/2ℜ(ρ̃0(θ1, θ2)(ue

ihtPpf)(0)).The t-dependene of Tp(t) omes from exponentials of the form eie0t, ei(2d−e0)tand ei2(d−e0)t, where e0, 2d − e0 are the two eigenvalues of h. Therefore,
eTp(t) is an almost-periodi funtion, what ensures that lim

T→∞

1
T

T∫
0

eTp(t)dt =:

Eθ1,θ2

(p) (Ppf) exists. Remark that (Ppf)r deays exponentially as r → ∞,therefore, if f ∈ D, Pacf ∈ D as well. Hene, ∫
Td(x)(uPacf)(k)dµx(k) isHölder ontinuous of x, therefore, by the Privalov theorem [7℄,

(uW ∗
−Pacf)(k) = (uPacf)(k)−

− t
(2π)d (σ1 + tg̃(ω(k) − i0)σ0)

−1
∫

Td
(uPacf)(k′)dk′

ω(k′)−ω(k)+i0

(4.20)is likewise Hölder ontinuous of ω(k) and, as suh, belongs to the domain of
Eθ1,θ2

0 . By an analysis like that in the proof of Proposition 3.1, the remainingterms have (usual) limits as t→ ∞, whih proves the assertion. �In view of the expliit forms (4.15) of the funtionals Eθ1,θ2
0 , Proposition 4.2provides a detailed desription of the stationary state and allows the alu-lation of various quantities of physial interest.We report below the analyti results for the energy and partile urrents.We point out that, like in the Fermi ase, the point spetrum of h gives noontribution to the urrents and the ontribution of the absolutely ontinu-ous spetrum may be expressed in terms of the S-matrix alone (Landauer-Büttiker-like formula). We shall not repeat here the proof of the latter,but perform the diret alulation based on Eq. (4.19). Thereby, if d ≥ 3,



42 N. Angelesu et al.we suppose, for simpliity, that we are in the weak oupling regime, where
σp(h) = ∅.In alulating the urrents between pure phases of the reservoirs, we take ad-vantage that the initial state, being a produt of extremal equilibrium states,an be approximated by �nite-volume states (possibly with weak symmetry-breaking perturbations), what allows to substantiate expressions (of the ur-rents from a reservoir in an extremal state) similar to those in the Fermi ase[1℄. As a preparation, we alulate, using Eq. (4.20), W ∗

−f for a few loalfuntions f appearing in these expressions:
• For (δ10)r = δ0,r

(
1
0

) and δ20 de�ned analogously for the seond reservoir,
(uPjW

∗
−δ

i
0)(k) =

1

(2π)d/2

{
δi,j − tg̃(ω(k) − i0)[(σ1 + tg̃(ω(k) − i0))−1]j,i

}
,where Pj projets onto the reservoir j and we used the de�nition (2.37) of g̃;

• For (h1
0)r = (dδx,0 − 1

2δ|x|,1)

(
1
0

),
(uPjW

∗
−h

1
0)(k) = 1

(2π)d/2 {ω(k)δj,1−
−t[(σ1 + tg̃(ω(k) − i0))−1]j,1[1 + ω(k)g̃(ω(k) − i0)]

}
.Proposition 4.3 In the diret tunneling model of Setion 2.4, the urrents�owing from R1 in the stationary state ωθ1,θ2

stat arising from extremal initialstates are given by:1. The partile urrent:
J1

part(θ1, θ2) = 2tℑωθ1,θ2
0 (a∗0(W

∗
−(δ10))a0(W

∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2|2d
3k

+
2t

(2π)d

√
ρ01ρ02

1 − g̃(0)2
sin(θ2 − θ1)2. The energy urrent:

J1
en(θ1, θ2) = 2tℑωθ1,θ2

0 (a∗0(W
∗
−(h1

0))a0(W
∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ω(k)ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2
|2d3k.Several remarks are in order:



Quantum Statistial Models 43If both reservoirs are ondensed, i.e. ρ0,1, and ρ0,2 are both di�erent fromzero, the partile urrent shows a peuliar dependene on the phase di�erene.This is not true for the energy urrent, where the seond term, oming fromthe expetations of the reation/annihilation operators does not ontribute(as expeted, as the k = 0 states arry no energy). Also, if ρ0,1ρ0,2 6= 0 and
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