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Quantum Statisti
al Models 131. Introdu
tion1.1. General frameDuring the last de
ade 
onsiderable progress has been a
hieved in the statisti-
al des
ription of non-equilibrium thermodynami
 pro
esses. While previouswork 
on
entrated and provided a reasonable understanding of situationsnear thermal equilibrium, su
h as stability of equilibrium states (approa
hto equilibrium) or linear response, a 
onsistent mathemati
al framework ini-tiated by Ruelle [16℄, is now available for a

ounting for the installation, atlarge time, of a non-equilibrium stationary state (NESS) even when the ini-tial state of the system is far from equilibrium (see [3℄ for a re
ent review).The typi
al physi
al situation whi
h �ts in this framework is that of severalreservoirs, Ri; i = 1, ..., r, 
oupled to a �nite quantum system, S (sample).One has to give a

ount for the �ow of energy and parti
les through thesample in the large time asymptoti
 regime.The isolated sample S is a usual quantum system with Hilbert spa
e HS,algebra of observables AS equal to the algebra of all bounded operators on
HS , and unitary dynami
s generated by the Hamiltonian HS. The Heisen-berg pi
ture of the evolution is the automorphism group on AS de�ned as
αt

S(A) = exp (itHS)A exp (−itHS). We suppose that the sample is at time
t = 0 in an arbitrary invariant state ω0

S, i.e. the expe
tation of an observable
A ∈ AS is given by a density matrix: ω0

S(A) = tr(ρSA) and [ρS ,HS ] = 0.The des
ription of the reservoirs Ri is somewhat more elaborated. A reser-voir is an in�nite quantum system, whi
h, before the 
oupling to the sampleis swit
hed on, is in a 
ertain equilibrium state. Its des
ription in the initialstate �ts therefore in the well-established algebrai
 formalism of equilibriumquantum statisti
al me
hani
s [4℄. One starts with reservoirs �nitely ex-tended in some regions Λi of spa
e: the pure states are the unit ve
tors in aHilbert spa
e Hi,Λi , the algebra of observables Ai,Λi 
onsists of all boundedoperators on Hi,Λi and the (Heisenberg) dynami
s on Ai,Λi is generated bya self-adjoint Hamiltonian Hi,Λi , αt
i,Λi

(A) = exp (itHi,Λi)A exp (−itHi,Λi); atgiven inverse temperature βi, the �nite reservoir i has one equilibrium state
ωi,βi,Λi

(A) = tr(Aρi,βi,Λi
) given by the Gibbs ansatz for the density matrix

ρi,βi,Λi
= (1/Zi,Λi(βi)) exp (−βiHi,Λi), where the statisti
al sum Zi,Λi(βi) isa normalizing fa
tor. The in�nite reservoir is 
on
eived as an idealizationbehaving like very large reservoirs, i.e., as a limit of the above stru
ture:The algebra of observables Ai is the smallest C∗-algebra 
ontaining Ai,Λifor all �nite regions Λi, the (strongly 
ontinuous) dynami
s αt

i(·) on it is
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i,Λi

(·),and the equilibrium state is a limit point ωi,βi
of ωi,βi,Λi

as Λi in
reasesto the in�nite region Li o

upied by the reservoir Ri. The in�nite reser-voirs in this sense 
an be represented as genuine quantum systems usingthe so-
alled Gelfand-Neumark-Segal (GNS) 
onstru
tion. The latter 
on-sists essentially in the following: a state ω on a C∗-algebra A de�nes asesquilinear form on it by 〈A,B〉 = ω(A∗B); after division by the ideal I ofall I ∈ A su
h that ω(I∗I) = 0, A/I be
omes a pre-Hilbert spa
e, whose
ompletion Hω is the representation spa
e. The representation πω(X) of anelement X ∈ A is the bounded operator whi
h sends the ve
tor Â into theve
tor X̂A; thereby, 1̂ =: Ωω is a 
y
li
 ve
tor for this representation, and
ω(A) = (Ωω, πω(A)Ωω). If, moreover, the state ω is invariant under the auto-morphism group αt (i.e. ω ◦αt = ω), then πω(αt(X)) = Uω(−t)πω(X)Uω(t),where Uω(t) = exp (−itHω) is a unitary group on Hω. The generator Hωof this group, named thermal Hamiltonian, has Ωω as an eigenve
tor witheigenvalue 0.To simplify the notation, we no longer mention the referen
e states ω0

i = ωi,βiof the reservoirs, and simply denote {Hi, πi(·),Ωi,Hi} the GNS des
rip-tion for the reservoir Ri 
orresponding to the equilibrium state ω0
i , i.e.,respe
tively, the Hilbert spa
e, the representation of the observable alge-bra Ai, the 
y
li
 ve
tor and the thermal Hamiltonian generating the uni-tary implementation of the dynami
al automorphism group: πi(α

t
i(A)) =

exp (itHi)A exp (−itHi). Likewise, we denote {HS , πS(·),ΩS ,HS} the GNSrepresentation of the sample asso
iated to the state ω0
S invariant for the group

αt
S .The 
omposite system S+

∑
Ri is in turn an in�nite quantum system, whi
his to be 
onstru
ted as above from a 
ertain referen
e state. The algebra ofobservables is taken as a C∗-tensor produ
t of the algebras Ai of the reservoirsand AS of the sample:
A = AS ⊗ (⊗iAi), (1.1)and the referen
e state is taken as the produ
t of the initial equilibriumstates ω0

i of the reservoirs and the αt
S-invariant state ω0

S(·) = (ΩS , ·ΩS) ofthe sample:
ω0 = ω0

S ⊗ ((⊗iω
0
i ). (1.2)On the algebra A one has the un
oupled dynami
s des
ribed by the auto-morphism group αt = αt

S ⊗ ((⊗iα
t
i), whi
h leaves invariant the state ω0:

ω0(αt(A)) = ω0(A), A ∈ A.At time t = 0, a 
oupling between reservoirs and the sample is swit
hed on,meaning that the dynami
s of the system at positive times is given by another



Quantum Statisti
al Models 15automorphism group of A, τ t. The evolved referen
e state will therefore
hange in time, and be, at time t > 0, the state for whi
h the expe
tation ofan observable equals the ω0-expe
tation of the observable evolved at time ta

ording to the new dynami
s:
ωt(A) = ω0(τ t(A)) = ω0(α−t · τ t(A)), (1.3)where the se
ond equality 
omes from the αt-invarian
e of ω0. Supposea stationary (τ t-invariant) state is approa
hed at large time. This 
an beexpressed as the existen
e of the limit of ωt(A) when t→ +∞ for all A ∈ A.The latter is ensured by the existen
e of the limits

lim
t→+∞

α−t · τ t(A) = Ω+(A), (1.4)i.e. by the existen
e of the Möller endomorphisms of the two groups. Inthis way, the existen
e of (and the 
onvergen
e to) a stationary state 
anbe presented as a s
attering problem for two automorphism groups on a
C∗-algebra. As a rule, τ t is 
onstru
ted as a lo
al perturbation of αt via astrongly 
onvergent Dyson series; more pre
isely, if lim

t→0

1
t (α

t(A)−A) = δ0(A)for A in a dense subalgebra D ⊂ A, one supposes that there exists V ∈ A,su
h that δV (A) := lim
t→0

1
t (τ

t(A) −A) = δ0(A) + i[V,A] for A ∈ D.As a 
onsequen
e of the 
hoi
e (1.2), the 
omposite system 
an be realizedin the tensor produ
t of Hilbert spa
es H = HS ⊗ ((⊗iHi), whi
h 
arries theprodu
t representation of A, so that π(A) is the C∗-tensor produ
t of oper-ator algebras πS(AS) ⊗ ((⊗iπi(Ai)). Thereby, the independent (un
oupled)dynami
s of the reservoirs and of the sample is implemented in H by theunitary group U0(t) = exp (−itH0) = exp (−itHS) ⊗ ((⊗i exp (−itHi)). The
y
li
 ve
tor Ω = ΩS ⊗ ((⊗iΩi) is an eigenve
tor of H0 with eigenvalue 0.Also, the lo
ally perturbed dynami
s is implemented by the unitary group
U(t) = exp (−itH), where

H = H0 + π(V ). (1.5)In this way, the problem 
an be reformulated as a perturbation problem forselfadjoint operators on a Hilbert spa
e in a setting depending on the 
hosenreferen
e state.Of 
ourse, the 
onstru
tion of the perturbed dynami
s and the proof thatthe Möller endomorphisms exist are to be done for the models under 
on-sideration of reservoirs, samples and 
ouplings between them. It happensthat the program outlined before 
an a

ommodate a few reservoir models ofphysi
al interest, su
h as spin models or free parti
le models obeying Fermi
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s, and samples with �nite-dimensional HS . One of the most restri
-tive assumptions is the existen
e of the in�nite-volume dynami
al group ofautomorphisms αt and its assumed strong 
ontinuity. A way out to a morepermissible framework for the reservoirs, Ri, is to 
onstru
t as above thereferen
e states ω0
i as limit points of �nite-volume Gibbs states and furtherwork within the GNS representation asso
iated to it. In parti
ular, a weakly
ontinuous in�nite-volume dynami
s may appear as a limit of the lo
al dy-nami
s αt

Λi
(·) viewed as automorphisms of the weak 
losures of the operatoralgebras πi(Ai) representing Ai, i.e. of the von Neumann algebras πi(Ai)

′′.This allows to de�ne a representation-dependent dynami
s and self-adjointthermal Hamiltonian. Hen
e, the steps leading to a s
attering problem in aHilbert spa
e are to be performed. In parti
ular, this is the 
ase of free-bosonreservoirs, see Se
. 4. below.1.2. Quasi-free modelsIn the paper we shall 
onsider instan
es of 
on
rete realizations, within a
lass of very simple models, of the paradigm outlined above. Essentially, wesuppose that:1. The reservoirs are free quantum identi
al parti
le systems, obeyingFermi-Dira
 or Bose-Einstein statisti
s.2. The perturbed (
oupled) dynami
s is quasi-free.In more detail, point 1 means the following: Before taking the thermody-nami
 limit, i.e. when the reservoir is 
on�ned to a �nite region Λ, theappropriate Fo
k spa
e, whi
h bears the Fo
k representation of the 
anoni-
al (anti)
ommutation relations, 
an be used, whereby the number of parti-
les NΛ = dΓ(1) and Hamiltonian HΛ = dΓ(h0
Λ). A

ording to the grand-
anoni
al pres
ription, HΛ is to be repla
ed by HΛ−µNΛ in the Gibbs ansatzfor the equilibrium density matrix, where the multiplier µ is adjusted to en-sure given parti
le density in the reservoir. In the thermodynami
 limit, the

C∗-algebra of observables should "
ontain" the lo
al operators, i.e. fun
tionsof a♯(f) with f having support in some �nite region. It is therefore naturalto take it as the 
anoni
al (anti)
ommutation relations algebra, CAR(D),respe
tively CCR(D), over a 
ertain subspa
e of the spa
e of reservoir's one-parti
le states, D ⊂ H(1), 
ontaining at least the fun
tions with 
ompa
tsupport. The equilibrium states of the reservoir, i.e. the limit states of the
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al Models 17�nite-volume Gibbs states, are well-known (see e.g. [4℄), and turn out to bequasi-free states (i.e. states in whi
h there are no 
orrelations of order higherthan 2) over these C∗-algebras. D may be extended su
h that the limit statesbe de�ned on the 
orresponding C∗-algebra. In the Fermi 
ase D = H(1).In the Bose 
ase, however, due to the phenomenon of Bose-Einstein 
onden-sation, D 6= H(1); in the paper, in order to avoid the domain problems, wesuppose also that the Bosons live on the latti
e Z
d, leaving the general 
asefor another publi
ation.The point 2 means that the evolution automorphism of the C∗-algebra isgiven by a unitary evolution e−ith inH(1) whi
h leavesD invariant: τ t(a♯(f)) =

a♯(eithf). As a 
onsequen
e, not only the initial (referen
e) state ω0, but alsoall ωt, t > 0 and the stationary state are quasi-free. Thereby, the problemis redu
ed to a s
attering problem for the one-parti
le Hamiltonians, whi
h
an be expli
itly solved.In this respe
t, the quasi-free models are trivial, in parti
ular they allowno intera
tion between parti
les and thus restri
t 
onsideration to simpletunneling jun
tions, but they turn out to be a good laboratory for 
onje
tures
on
erning various phenomena and providing instan
es of interesting physi
albehavior. In parti
ular, the 
oupled dynami
s no longer 
onserves the energyand number of parti
les in the reservoirs, implying that, in the stationarystate, there exist persistent 
urrents of energy and parti
les, depending onthe parameters �xing the initial equilibria of the reservoirs, and also on thegeometry of the sample and its 
oupling to them. In this way various formulaeof transport theory 
an be obtained beyond the linear response regime.1.3. SummaryThere is an extensive literature on quasi-free quantum systems. This workstarted as an attempt to systematize their appli
ation to the problems ofreturn to equilibrium and of approa
h to NESS in a more abstra
t, 
om-prehensive frame, as outlined in the previous subse
tion. In the meantime,we be
ame aware of two re
ent papers with the same purpose in the Fermi
ase [2℄, [12℄, so we limited to the more modest aim of giving a (hopefullymore friendly) presentation of their general result, of indi
ating its extensionto the Bose 
ase and of providing a few examples of 
al
ulation for 
ertaininteresting physi
al quantities.Se
tion 2 is 
on
erned with the spe
tral and s
attering problems for the one-parti
le Hamiltonians, as the same analysis applies to both Fermi and Bose
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s. In order to have as far as possible expli
it expressions, we 
onsider,as an appli
ation, in subse
tions 2.3. and 2.4. the 
ase of two reservoirs, inwhi
h the parti
les live on two d-dimensional latti
es, and those in the sampleon a 
hain ofN ≥ 0 sites; thereby, the 
oupling is a simple tunneling involvingone site of ea
h reservoir.Se
tion 3 is devoted to the Fermi statisti
s 
ase, whi
h is simpler in manyrespe
ts, in parti
ular the C∗-framework is su�
ient, as the in�nite-volumedynami
s is a strongly 
ontinuous group of automorphisms of CAR(H(1)) .A 
omprehensive study of this 
ase has been performed in [2℄, the results ofwhi
h are brie�y presented. We make expli
it their result for the parti
ularsetting in Se
tion 2.3. and point out a few pe
uliarities of the NESS, su
h asthe resonant 
hara
ter of the transport and the plateau e�e
t for the 
arrierdensity.Se
tion 4 is 
on
erned with Bose reservoirs. This brings in several new phe-nomena and 
ompli
ations. First, at high density and low temperature,Bose 
ondensation may appear, implying the spontaneous gauge-symmetrybreaking, i.e. existen
e of several extremal equilibrium states labeled by aphase. Moreover, the in�nite volume dynami
s 
annot be a strongly 
ontinu-ous group of the CCR algebra; fortunately, as quasi-free states are regular, itis 
ontinuous in the GNS representation 
orresponding to equilibrium states.The interesting question here is the dependen
e of the NESS on the parti
ularmixtures of phases 
onstituting the initial equilibria of the reservoirs. Thismay be viewed as a 
ari
ature of the Josephson tunneling of Cooper pairsbetween two super
ondu
tors. The approa
h to equilibrium in the presen
eof a 
ondensate has been analyzed by Merkli [8℄. The problem of approa
hto a NESS, left open there, was 
onsidered by us in [1℄, the result of whi
his presented in the present, slightly more general, setting.2. S
attering for the one-parti
le HamiltoniansThis se
tion is devoted to the spe
tral analysis of the one-parti
le Hamil-tonian h = h0 + v, where h0 is the one-parti
le Hamiltonian of the de
ou-pled system, i.e. the dire
t sum of the one-parti
le Hamiltonians hi (i =
1, ..., r), hS of the isolated reservoirs and sample and v des
ribes the tunnel-ing between them. We make the following assumptions:Assumption 2.1 The one-parti
le Hilbert spa
e is an orthogonal sum

H(1) = H(1)
S ⊕H(1)

R ; H(1)
R = ⊕r

i=1H
(1)
i ,
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al Models 19with dimH(1)
S = N < ∞. Let J : H(1)

R → H(1) and I : H(1)
S → H(1) be thenatural inje
tions:

Jf = 0 ⊕ f If = f ⊕ 0,Assumption 2.2 In the matrix representation asso
iated to this de
omposi-tion, the unperturbed Hamiltonian h0 is blo
k-diagonal:
h0 = hS ⊕ h0

ac; h0
ac = ⊕r

i=1hi,and the perturbation v has the following stru
ture: There exist maps τi :

H(1)
i → H(1)

S , su
h that
v = IτJ∗ + Jτ∗I∗,where

τ : H(1)
R → H(1)

S , τ(⊕r
i=1fi) =

r∑

i=1

τifi.Assumption 2.3 hi, i = 1, ..., r, have absolutely 
ontinuous spe
tra equalto the bounded intervals Ii ⊂ R. Thereby, we suppose that r⋃
i=1

Int(Ii) is aninterval (emin, emax). We denote Ri(z) = (hi − z)−1, (z ∈ C \ Ii) and R0
ac =

(hac −z)−1 = ⊕r
i=1Ri(z). Let pi, πi denote the right, respe
tively left, supportof τi (i.e. the orthogonal proje
tions onto the subspa
es τi(H(1)

i ) ⊂ H(1)
S ,respe
tively τ∗i (H(1)

S ) ⊂ H(1)
i ). For all x ∈ Ii, the limits
lim
ǫց0

πiRi(x+ iǫ)|
πi(H

(1)
i )exist as operators in the 
orresponding subspa
es and are 
ontinuous fun
tionsof x; thereby, for all interior points x of Ii, ,

lim
ǫց0

πiℑRi(x+ iǫ)|
πi(H

(1)
i )

> 0 (i = 1, ..., r).2.1. Resolvent and spe
trum of the perturbed HamiltonianThe spe
tral de
omposition of h = h0 + v is based on �nding a 
onvenientrepresentation of the resolvent operator R(z) = (h − z)−1. We shall use avariant of the Feshba
h method, taking advantage of the fa
t that v has �niterange, what allows summing the perturbation series in 
losed form.We have to solve for fS, fi, i = 1, ..., r, the system of equations




(hi − z)fi + τ∗i fS = gi (i = 1, ...r)
r∑

i=1
τifi +(hS − z)fS = gS ,

(2.1)
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u et al.where g = gS ⊕ (⊕r
i=1gi) ∈ H(1) is arbitrary.If z ∈ C \ [emin, emax], the �rst line in equation (2.1) provide fi in terms of

fS :
fi = Ri(z)(gi − τ∗i fS), (2.2)and the se
ond line be
omes

(heff (z) − z)fS = Q(z)g, (2.3)where heff (z) : H(1)
S → H(1)

S and Q(z) : H(1) → H(1)
S are de�ned by:

heff (z) = hS −
r∑

i=1
τiRi(z)τ

∗
i = hS − τR0

ac(z)τ
∗,

Q(z) = I∗ − τR0
ac(z)J

∗.
(2.4)Whenever heff(z) − z is invertible, we denote Reff(z) = (heff(z) − z)−1, sothat Eq. (2.3) has the unique solution

fS = Reff(z)Q(z)g, (2.5)With fS given by Eq. (2.5) and fi given in terms of it by Eq. (2.2),
f = fS ⊕ (⊕r

i=1fi) = Q(z̄)∗fS provides the solution to the system (2.1).Therefore, remarking that ∪r
i=1Ii ⊂ σ(h) (by the invarian
e of the essentialspe
trum under 
ompa
t perturbations), the following 
hara
terization hasbeen proved:Lemma 2.1 The resolvent set of h is

ρ(h) = {z ∈ C \ [emin, emax]; ker (heff(z) − z) = {0}}.For all z ∈ ρ(h),
R(z) = JR0

ac(z)J
∗ +Q(z̄)∗Reff(z)Q(z). (2.6)The Kato-Rosenblum s
attering theory [15℄ ensures the existen
e and 
om-pleteness of the wave operators W± : H(1)

R → H(1) for the unitary groups
e−ith, e−ith0

ac , i.e. the existen
e of the strong limits:
W± := (s) lim

t→±∞
eithJe−ith0

ac . (2.7)Hen
e,
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al Models 21Lemma 2.2 h has absolutely 
ontinuous spe
trum σac(h) = [emin, emax] andno singular 
ontinuous spe
trum. The absolutely 
ontinuous part hac of h,i.e. h restri
ted H(1)
ac (h) = W±(H(1)

R ), is unitarily equivalent to h0
ac via theintertwining relations hacW± = W±h

0
ac.Finally, we determine the point spe
trum of h, σp(h).Let z ∈ σp(h), and f = fS ⊕ (⊕r

i=1fi) 6= 0 be an eigenve
tor of h witheigenvalue z. Then f is a solution of Eq. (2.1) for g = 0.If, thereby, τ∗i fS = 0 for all i = 1, ..., r, then (hi − z)fi = 0, ∀i, hen
e fi = 0,be
ause hi have no point spe
trum. If so, the se
ond line in (2.1) shows that
z ∈ σp(hS) and that fS ∈ ker τ∗i is a 
orresponding eigenve
tor. Conversely,if fS ∈ ∩i ker τ

∗
i is an eigenve
tor of hS , then fS ⊕ 0 is an eigenve
tor of hwith the same eigenvalue.Suppose next that τ∗i fS 6= 0 for at least one i. If z 6∈ [emin, emax], Eq. (2.2),whi
h expresses fi in terms of fS , and Eq. (2.3) show that fS 6= 0 is aneigenve
tor of heff(z) with eigenvalue z. Conversely, if ker (heff (z) − z) ∋

fS 6= 0, then z ∈ σp(h) and Q(z̄)∗fS is an eigenve
tor of h with eigenvalue z(in parti
ular, we have that ℑz = 0). Let us 
onsider the family of self-adjointoperators {heff (x); z = x ∈ (−∞, emin)} and let λ1(x) ≤ ... ≤ λN (x) be theeigenvalues of heff (x) and ψ(x)
(1)
S , ..., ψ(x)

(N)
S the 
orresponding eigenve
tors.As remarked before, x ∈ σp(h) if, and only if, x = λk(x) for some k = 1, ...,N .As heff (x) is a de
reasing operator-valued fun
tion of x in the 
onsideredinterval, all its eigenvalues λk(x) are de
reasing fun
tions, hen
e, the equation

x = λk(x) has a simple solution x = e−k if, and only if, lim
xրemin

λk(x) < emin.Then, every eigenve
tor of heff (e−k ) with eigenvalue e−k 
an be 
ompleted toan eigenve
tor of h with this eigenvalue. Likewise, on (emax,∞) the equation
x = λk(x) has a solution e+k if, and only if, lim

xցemax

λk(x) > emax, implying
e+k ∈ σp(h).Next, let fS ⊕f be an eigenve
tor of h 
orresponding to x in (emin, emax) andsu
h that τ∗i fS 6= 0 for some i = 1, ..., r. Let z = x + iy, with ℑz = y > 0.We have, by the �rst line of equations (2.1), fk = Rk(x+iy)(hk −x− iy)fk =
−Rk(x+ iy)τ∗kfS − iyRk(x+ iy)fk, whi
h, plugged into the se
ond equation,implies, in parti
ular, that

(fS , (heff (x+ iy) − x)fS) = iy
r∑

k=1

(τ∗kfS, Rk(x+ iy)fk)

= iy
r∑

k=1

(‖fk‖2 − iy(fk, Rk(x+ iy)fk)).Equating the imaginary parts of this equality, letting y ց 0 and using
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‖Rk(x+ iy)‖ = 1/y, we arrive at

ℑ(fS , τkRk(x+ i0)τ∗kfS) = 0, ∀k,whi
h 
ontradi
ts assumption 2.3.In summary:Lemma 2.3 The point spe
trum of h in R \ {emin, emax} 
onsists, besidesthe possible eigenvalues of hS possessing eigenve
tors fS ∈
r⋂

i=1
ker τ∗i , of thesolutions e−k ∈ (−∞, emin) and e+k ∈ (emax,∞) of the equations λk(x) = x.The latter exist if, and only if, λk(emin − 0) < emin and λk(emax + 0) > emax,respe
tively.The values emin or emax may be eigenvalues of h, either if they are eigenvaluesof hS with eigenve
tor fS ∈

r⋂
i=1

ker τ∗i , or if λk(x) = x and the 
orrespondingeigenve
tor ψ(x)(k) ful�lls lim
x′→x

‖Ri(x
′)τ∗i ψ(x′)(k)‖ < ∞, ∀i. The latter 
on-dition, being dependent on the stru
ture of h0 and τi, is to be 
he
ked forea
h 
on
rete model.2.2. Wave operators and s
attering matrixIn this subse
tion we derive the expressions of the wave operators and S-matrix using the formalism of stationary s
attering theory [15℄, [17℄. Namely,with the spe
tral representation of the unitary groups e−ith =

∫
e−itxdE(x),

e−ithi =
∫

e−itxdEi(x), we 
an express the wave operators in terms of theresolvent R(z) of h. We have
W+ = (s) lim

ǫց0
ǫ
∫ ∞
0 e−tǫ exp (ith)J exp (−ith0)dt

= (s) lim
ǫց0

ǫ
∫

dE(x′)
∫
JdE0

ac(x)
∫ ∞
0 dteit(x′−x+iǫ)

= (s) lim
ǫց0

(iǫ)
∫
R(x− iǫ)JdE0

ac(x).

(2.8)where we denoted E0
ac(x) = ⊕r

i=1Ei(x). Similar 
al
ulations are valid forW−.Using Eq. (2.6) for R(z), taking into a

ount that ∓iǫR0
ac(x± iǫ)dE0

ac(x) =
dE0

ac(x) and Assumption 2.2, the following representation is obtained:
W± = J − (s) lim

ǫց0

∫
Q(x± iǫ)∗Reff(x∓ iǫ)τdE0

ac(x). (2.9)
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W ∗

± = J∗ − (s) lim
ǫ′ց0

∫
dE0

ac(x
′)τ∗Reff(x′ ± iǫ′)Q(x′ ± iǫ′). (2.10)Eqs. (2.9), (2.10) give for the S-matrix:

S = W ∗
+W− = 1 −J∗

∫
Q(x− i0)∗Reff(x+ i0)τdE0

ac(x)

−
∫

dE0
ac(x

′)τ∗Reff(x′ + i0)Q(x′ + i0)J

+ lim
ǫ′ց0

{lim
ǫց0

∫
dE0

ac(x
′)τ∗Reff(x′ + iǫ′)Q(x′ + iǫ′)

×
∫
Q(x− iǫ)∗Reff(x+ iǫ)τdE0

ac(x)}.

(2.11)We 
al
ulate the last term using the resolvent equation, whi
h implies
Q(x′ + iǫ′)Q(x− iǫ)∗ = 1 + τR0

ac(x
′ + iǫ′)R0

ac(x+ iǫ)τ∗

= 1 + (x′ − x+ i(ǫ′ − ǫ))−1τ [R0
ac(x

′ + iǫ′) −R0
ac(x+ iǫ)]τ∗

= (x′ − x+ i(ǫ′ − ǫ))−1[(heff (x+ iǫ) − x− iǫ) − (heff (x′ + iǫ′) − x′ − iǫ′)].Ea
h term of the latter expression, when plugged into Eq. (2.11), is sand-wi
hed between Reff , what, after making the obvious simpli�
ation, allowsone of the integrals to be performed (e.g. ∫
dE0

ac(x
′)(x′−x+i(ǫ′− ǫ))−1τ∗ =

R0
ac(x− i(ǫ′−ǫ))τ∗ = J∗Q(x− i(ǫ−ǫ′))∗). Therefore, after taking the iteratedlimit, the last term of Eq. (2.11) equals

∫
J∗Q(x+ i0)∗Reff(x+ i0)τdE0

ac(x) +

∫
dE0

ac(x
′)τ∗Reff(x′ + i0)Q(x′ + i0)J.As Q(z)J = −τR0

ac(z), one obtains �nally
S = 1 + 2i

∫
ℑ(R0

ac(x+ i0))τ∗Reff(x+ i0)τdE0
ac(x). (2.12)Remark 2.1 It is sometimes useful to represent the Hilbert spa
e Hac(h

0) asa dire
t integral over energy of Hilbert "eigenspa
es" Kx, i.e. there exists aunitary U : Hac(h
0) →

∫ ⊕
[emin,emax] Kydy =: K, su
h that UE0

ac(Λ)U∗ = χΛ(·)(the operator of multipli
ation with the indi
ator of the measurable set Λ). Itis 
lear that, for ψ(·) ∈
∫ ⊕
[emin,emax] Kydy, (UR0(z)U∗ψ)(y) = (y − z)−1ψ(y).Also, τU∗ψ =

∫
[emin,emax] τy(ψ(y))dy, where τy : Ky → H(1)

S . Eq. (2.12)shows that, in this representation, the S-matrix is diagonal, i.e. USU∗ =∫ ⊕
[emin,emax] Sxdx, where Sx : Kx → Kx equals

Sx = 1 + 2πiτ∗xReff(x+ i0)τx =: 1 + Tx. (2.13)
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Tx is 
alled the on-shell T -matrix.Cal
ulating, for f ∈ H(1)

ac , separately the 
omponent I∗W±f ∈ H(1)
S and

J∗W±f ∈ H(1)
ac of Eq. (2.9), one obtains

I∗W±f = −
∫
Reff(x∓ i0)τx(Uf)(x)dx,

[UJ∗W±f ] (x) = (Uf)(x)+
+

∫
1

x−x′∓i0τ
∗
xReff(x′ ∓ i0)τx′(Uf)(x′)dx′.

(2.14)Also, the a
tion of W ∗
± on f ∈ H(1) is given by

(UW ∗
±f)(x) = (UJ∗f)(x)−

−
∫

1
x−x′±i0τ

∗
xReff(x± i0)τx′(UJ∗f)(x′)dx′−

−τ∗xReff(x± i0)I∗f.

(2.15)2.3. An example: two half-in�nite latti
e reservoirs 
oupledby a wireIn this subse
tion we des
ribe, as an illustration of the more general settingof the model, a parti
ular geometry and dynami
s: the system 
onsisting oftwo parti
le reservoirs, R1, R2, 
onne
ted by a one-dimensional wire, S.The reservoirs, Ri, i = 1, 2, are taken as in�nitely extended latti
e quantumgases. The parti
les in the reservoirs live, respe
tively, on the two (left,respe
tively, right) half-in�nite latti
es,
Li = Z

d
i =

{
r = (r′, rd); r′ ∈ Z

d−1, (−1)ird = 1, 2, ...
}
. (2.16)The Hilbert spa
e of one-parti
le states in Ri is therefore

H(1)
i = l2(Li) =



f = (fr)r∈Li ; ‖f‖2 =

∑

r∈Li

|fr|2 <∞



 . (2.17)The kineti
 energy operator of one parti
le in Ri is 1/2 times the latti
eLapla
e operator with free boundary 
onditions, i.e.

(hif)r = dfr −
1

2

∑

q∈Li,|q−r|=1

fq. (2.18)A 
omplete set of generalized eigenve
tors of hi are ψi(k) ∈ l∞(Li), k ∈ T
d
i ,where the index sets T

d
i = {k = (k′, kd); k′ ∈ [0, 2π)d−1, kd ∈ (0, π)} are
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al (the subs
ript i has the only role to make the di�eren
e betweenthe two reservoirs, e.g. by T
d
1 ∪ T

d
2 we mean the disjoint union of two 
opiesthis set), and

ψi(k)r = 2(2π)−d/2 exp (ik′r′) sin (kd|rd|). (2.19)
ψi(k) 
orresponds to the generalized eigenvalue

ωi(k) = 2
d∑

α=1

sin2 (kα/2). (2.20)Again, though the two dispersion laws (2.20) are identi
al, we keep the label
i to mark the reservoir they 
orrespond to. Therefore the spe
tra of hi areabsolutely 
ontinuous and 
oin
ide with the intervals I1, I2 ⊂ R (both equalto [0, 2d]). In fa
t, we de�ne the unitary operators ui : H(1)

i → L2(T
d
i ) by

uif = (ψi(·), f); (2.21)then, uihiu
∗
i is the operator of multipli
ation with the fun
tion ωi(k) on

L2(T
d
i ).The sample S, providing our model of a nanowire, is a free quantum gas inwhi
h parti
les live on the �nite set of sites {1, 2, ...,N}. The states withone parti
le are ve
tors f = (f1, ..., fN ) ∈ H(1)

S = l2({1, 2, ...,N}) ≡ C
N andtheir evolution is 
ontrolled by the Hamiltonian

(hSf)i = (1+eg)fi−1/2(fi−1 +fi+1), i = 1, ...,N (f0 = fN+1 = 0), (2.22)where the parameter eg plays the role of an adjustable gate potential. Theeigenvalues of hS are εm = eg + 2 sin2 (qm/2);m = 1, ...,N , where qm =
mπ/(N + 1), with eigenve
tors ψ(m):

ψ
(m)
i =

√
2

N + 1
sin (qmi). (2.23)The one-parti
le Hilbert spa
e for the entire system, S +R1 +R2 is

H(1) = H(1)
S ⊕H(1)

1 ⊕H(1)
2 = l2(L), where L = {1, 2, ...,N}∪L1 ∪L2. (2.24)The evolution of the one-parti
le states for the un
oupled system is given bythe one-parti
le Hamiltonian

h0 = hS ⊕ h1 ⊕ h2 (2.25)
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tions are turned on between the reservoirs and theends of the wire through the pairs of sites (α1 = (0′,−1), {1}) and (α2 =
(0′, 1), {N}), N > 0. On H(1), this is given by the one-parti
le operator vde�ned by the matrix

vr,s =

{
t, if either {r, s} = {α1, 1} or {α2,N}
0, otherwise,

(2.26)Thus, the evolution of the one-parti
le states in the 
oupled system is gen-erated by the Hamiltonian:
h = h0 + v. (2.27)Proposition 2.1 The model de�ned above ful�lls the assumptions 2.1�2.3.Thereby, h has no eigenvalue embedded in (0, 2d).Proof. Assumptions 2.1 and 2.2 are obvious, with r = 2 and τ1, τ2 having allmatrix elements equal to 0, but for (τ1)1,α1 = (τ2)N,α2 = t. We have that

(τ1R1(z)τ
∗
1 )i,j = t2δi,1δj,1g(z), (2.28)where

g(z) = 4(2π)−d
∫

Td sin2 (kd)(ω1(k) − z)−1dk

= 4(2π)−d
2d∫
0

(y − z)−1dy
∫

Td(y)

sin2 (kd)dµy(k),
(2.29)where dµy(k) = |∇ω(k)|−1dσy(k) is the Gelfand-Leray measure on the levelset T

d(y) = {k ∈ T
d; ω(k) = y} (where dσy(k) is the area measure on thissurfa
e). Using the Sokhotski formula (x− i0)−1 = P( 1

x ) + iπδ(x) (where Pdenotes the prin
ipal part), we have
lim
yց0

ℑg(x+ iy) = 4(2π)−d

∫

Td(x)

sin2 (kd)dµx(k) > 0, ∀x ∈ (0, 2d). (2.30)Finally, the eigenfun
tions (2.23) of hS ful�ll ψ(m)
1 =

√
2

N+1 sin (qm) 6=
0,∀m = 1, ..., N , implying that there are no eigenvalues embedded in (0, 2d).
�For this model one may de�ne the unitary U of Remark 2.1 as the 
ompo-sition the unitary u1 ⊕ u2 : Hac(H

0) → ⊕2
i=1L2(T

d
i ) (where ui are de�nedin Eq. (2.21)), with the unitary v1 ⊕ v2 : ⊕2

i=1L2(T
d
i ) →

∫ 2d
0

⊕Kxdx, with
Kx = ⊕2

i=1L2(T
d
i (x),dµi,x(k)), where (vifi)(x) is the restri
tion of fi to the
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d
i (x) and dµi,x is the Gelfand-Leray measure on the latter.Then, τf =

∫ 2d
0 dxτx(Uf(x)), where τx : Kx → H(1)

S is given by:
(τxφ)m = δm,1t

∫
T

d
1(x) ψ

1(k)α1φ1(k)dµ1,x(k)+

+δm,N t
∫

T
d
2(x) ψ

2(k)α2φ2(k)dµ2,x(k),
(2.31)and (Uτ∗f)(x) = τ∗xf , where τ∗x : H(1)

S → Kx is given by
(τ∗xf)(k) = tψ1(k)α1f1 ⊕ tψ2(k)α2fN . (2.32)We remind that ψi(k)αi = 2(2π)−d/2 sin (kd), see Eq. (2.19).Upon insertion of Eqs. (2.31), (2.32), the equations of the previous remarkare made expli
it. For instan
e, the T -matrix Tx : Kx → Kx appearing inEq. (2.13) is an integral operator with matrix kernel:

Tx(k, k′)i,j =
4i

(2π)d−1
sin (kd)Reff(x+ i0)si,sj sin (k′

d
), (2.33)where s1 = 1, s2 = N.2.4. An example of dire
t tunneling between reservoirsThe 
ase when the reservoirs are dire
tly 
oupled through a tunneling jun
-tion without any intermediate sample is spe
ial. Indeed, e.g. for two reser-voirs, H(1) = Hac(h

0) = H(1)
1 ⊕H(1)

2 .In view of the appli
ation to Bose gases, where the surfa
e e�e
ts may bedrasti
, we 
onsider now the translation invariant 
ase of latti
e reservoirs,i.e. we suppose that parti
les live on Li = Z
d, i = 1, 2. The one-parti
leHilbert spa
es H(1)

i and reservoir Hamiltonians hi are de�ned by Eqs.(2.17),(2.18), respe
tively. Then, the generalized eigenfun
tions of hi are planewaves
ψi(k)r = (2π)−d/2 exp (ikr), k ∈ T

d = [0, 2π)d, (2.34)with generalized eigenvalues ω(k), Eq. (2.20), and the unitaries ui are simplythe Fourier transform.The tunneling is between the origins of Li, i.e. we take αi = 0 ∈ Z
d. Let

π0 = π1 ⊕π2 : H(1) → C
2 denote the restri
tion to the pair α1, α2 of 
oupledsites:
π0(f1 ⊕ f2) = (f1)0 ⊕ (f2)0,
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σ0 =

(
1 0
0 1

) be the unit matrix in C
2 and σ1 =

(
0 1
1 0

) be the �rstPauli matrix (inter
hange of 1 and 2). The intera
tion 
an be represented as
v = tπ∗0σ1π0 (2.35)One 
an simplify signi�
antly the expressions of R(z), Ω±, S by using theFourier representation (2.21) on both spa
es: u = u1 ⊕ u2 : ⊕2

i=1H
(1)
i →

⊕2
i=1L2(T

d
i ). The resolvent equation (h − z)f = g redu
es in π0H(1) to theequation (σ0 + tπ0R

0(z)π∗0σ1)(π0f) = π0R
0(z)g, whi
h amounts to invertinga 2 × 2 matrix. Thereby,

π0R
0(z)π∗0 = g̃(z)σ0, (2.36)with g̃(z) given by

g̃(z) = (2π)−d

∫

Td

dk

ω(k) − z
. (2.37)It should be remarked that ℑg̃(x+ i0) > 0 for all x ∈ (0, 2d) (and is, as amatter of fa
t, π times the density of states of the latti
e Lapla
eian (2.18))and, for d ≥ 3, goes to 0 at the spe
trum ends x = 0, 2d.We obtain �nally:Lemma 2.4 In the dire
t-
oupling model des
ribed above1. The resolvent of h = h0 + v has the representation:

R(z) = R0(z) − tR0(z)π
∗
0(σ1 + tg̃(z)σ0)

−1π0R0(z),

(z ∈ C \ [0, 2d], t2g̃(z)2 6= 1).
(2.38)2. σac(h) = [0, 2d].3. If lim

xր0
g̃(x) > 1/t, the equation t2g̃(z)2 = 1 has two real solutions e0 < 0and 2d− e0, whi
h are simple eigenvalues of h; otherwise, σp(h) = ∅.Using this representation in Eq. (2.8) (in this 
ase, J = 1), one �nds thatthe wave operators have the form W± = 1 −K±, where uK±u

∗ are integraloperators in L2(T
d) ⊕ L2(T

d) with 2 × 2-matrix kernels
K±(k, k′) =

t(2π)−d

ω(k) − ω(k′) ± i0
(σ1 + tg̃(ω(k′) ∓ i0)σ0)

−1. (2.39)The S-matrix a
quires the form S = 1+T with uTu∗ having the generalizedkernel
t(k, k′) =

iδ(ω(k) − ω(k′))

(2π)d−1
(σ1 + tg̃(ω(k′) + i0)σ0)

−1. (2.40)
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al Models 293. Quasi-free Fermion models3.1. The algebra of observables, the C∗-dynami
s and thereferen
e stateWe 
onsider the physi
al situation des
ribed in the Introdu
tion, with rreservoirs of free Fermi gases at equilibrium, 
oupled via a tunneling jun
tionwith a sample 
onsisting of free Fermi parti
les with a �nite-dimensional one-parti
le state spa
e. The dynami
s is supposed quasi-free, spe
i�ed by theone-parti
le Hamiltonian h = h0 + v, ful�lling the assumptions of Se
. 2.This subse
tion is devoted to a pre
ise de�nition of the quantum systemunder 
onsideration. We use the notation of subse
tions 2.1., 2.2..We start with de�ning the C∗-dynami
al system:Let F(H(1)) be the antisymmetri
 Fo
k spa
e over the one-parti
le spa
eof Assumption 2.1, and denote a∗(f)/a(f) the usual 
reation/annihilationoperators of one parti
le in the state f ∈ H(1); a∗(f) is linear and a(f)is antilinear with respe
t with f ∈ H(1). The following anti
ommutationrelations hold: for f, g ∈ H(1),
{a(f), a(g)} = {a∗(f), a∗(g)} = 0, {a(f), a∗(g)} = (f, g). (3.1)It follows that ‖a(f)‖ = ‖a∗(f)‖ = ‖f‖. The norm-
losed operator algebragenerated by them, denoted CAR(H(1)) (
alled the the algebra of 
anoni
alanti
ommutation relations), is taken as the algebra of lo
al observables of thesystem. As an instan
e, we shall 
onsider elements in CAR(H(1)) whi
h arethe se
ond quantization of one-parti
le operators: for a tra
e-
lass operator

a a
ting in H(1) with 
anoni
al form a =
∑
sk(fk, ·)gk (where sk are thesingular values of a), dΓ(a) =

∑
ska

∗(gk)a(fk) ∈ CAR(H(1)).The one-parti
le Hamiltonians h0 and h de�ne two (strongly 
ontinuous)groups of automorphisms of CAR(H(1)) (
orresponding to the un
oupledand 
oupled dynami
s, respe
tively) by
αt(a♯(f)) = a♯(eih0tf), τ t(a♯(f)) = a♯(eihtf). (3.2)Also, let φθ denote the gauge automorphism group of CAR(H(1)), i.e.

φθ(a♯(f)) = a♯(eiθf). (3.3)Corresponding to the de
omposition H(1) = H(1)
S ⊕ (⊕r

i=1H
(1)
i ), one 
an de-�ne gauge automorphisms φi (i = 1, ..., r), φS of the kinemati
al algebras

CAR(H(1)
i ) (i = 1, ..., r), CAR(H(1)

S ) of the reservoirs and of the sample.
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tionals ω : CAR(H(1)) → Cof norm ‖ω‖ = ω(1) = 1. A state ω is gauge invariant (i.e. ω ◦ φθ = ω) if,and only if, ω(
n∏

i=1
a∗(gi)

m∏
i=1

a(fi)) = 0, ∀n 6= m. For any state ω, the formula
ω(a∗(g)a(f)) = (g, ρωf) (3.4)de�nes a self-adjoint operator 0 ≤ ρω ≤ 1 onH(1), 
alled its density operator.Given ρ self-adjoint with 0 ≤ ρ ≤ 1, there exists a unique quasi-free, gauge-invariant state ωρ with density operator ρ. The higher order expe
tationsare expressed in this state ωρ by

ωρ(a
∗(gm)...a∗(g1)a(f1)...a(fn)) = δm,n det {(fi, ρgj)}. (3.5)If the initial state ω0 of our system is quasi-free and αt-invariant, what hap-pens if its density operator ρ0 
ommutes with h0, its evolution ωt under theperturbed dynami
s τ t is likewise a quasi-free state with density operator:

ρt = [e−ith0
eith]∗ρ0e−ith0

eith; (3.6)indeed, using the α0-invarian
e of ω0,
ωt(a∗(g)a(f)) := ω0(τ t(a∗(g)a(f))) = ω0(α−t ◦ τ t(a∗(g)a(f))) =

= ω0(a∗(e−ith0
eithg)a(e−ith0

eithf)) = (e−ith0
eithg, ρ0e−ith0

eithf).The initial state is taken as a produ
t state ω0 = ωS ⊗(⊗r
i=1ωi), where ωi arethe equilibrium states of two latti
e free Fermi gases with one-parti
le statespa
es H(1)

i and one-parti
le Hamiltonians hi and ωS is an invariant state ofthe isolated sample.It is well-known [4℄ that, at given values of the temperature β−1 ≥ 0 and
hemi
al potential µ ∈ R, a free Fermi gas has a unique equilibrium state: itis the gauge-invariant quasi-free state with density operator fβ,µ(h), where
h is the one-parti
le Hamiltonian, and fβ,µ is the Fermi-Dira
 fun
tion:

fβ,µ(x) =
1

1 + eβ(x−µ)
(3.7)This de�nes in parti
ular the initial states of the reservoirs ωi.3.2. Convergen
e to the NESS and 
urrentsWe present here the main results of [2℄ within the framework de�ned byAssumptions 2.1�2.3. As with our assumptions no regularization is ne
essary,
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al Models 31the proof 
an be made 
onsiderably more transparent, so we shall sket
h theargument for reader's 
onvenien
e.As all states involved are quasi-free and gauge-invariant, it is su�
ient, inview of Eq. (3.5), to establish the 
onvergen
e of the state on elements ofthe form a(g)a∗(f). This means to 
al
ulate the limit density operator as aweak limit of the density operators ρt.As shown in Se
. 2, H(1) = Hac(h) ⊕Hp(h), with Hp(h) �nite-dimensional.Let Pac, Pp denote the 
orresponding orthogonal proje
tions. We 
al
ulatethe density operator:
ρ+ = (w) lim

T→+∞
(1/T )

∫ T

0
ρtdt. (3.8)For f ∈ Hac(h), we have, in view of Eq. (3.6),

lim
t→+∞

ρtf = W−ρ
0W ∗

−fbe
ause lim
t→+∞

e−ith0eithf = W ∗
−f exists. On the other hand, if f ∈ Hp(h),it is a �nite 
ombination of eigenve
tors, so, we 
an suppose that f is aneigenve
tor of h with eigenvalue e,

(w) lim
t→+∞

Pace−ithρ0eithf = (w) lim
t→+∞

Pace−it(h−e)(ρ0f) = 0by the Riemann-Lebesgue lemma, while, for any eigenve
tor g of h witheigenvalue e′,
lim

T→+∞
(1/T )

∫ T

0
(g, ρtf)dt = lim

T→+∞
(1/T )

∫ T

0
eit(e−e′)(g, ρ0f)dt = δe,e′(g, ρ

0f).In summary,Proposition 3.1 The following limit exists for A ∈ CAR(H(1))

lim
T→+∞

(1/T )

∫ T

0
ωt(A)dt = ω+(A) (3.9)and is the quasi-free gauge invariant state of density operator

ρ+ = W−ρ
0W ∗

− +
∑

e∈σp(h)

Peρ
0Pe, (3.10)where Pe is the proje
tion onto the eigenspa
e of h 
orresponding to the eigen-value e. Thereby, the restri
tion of ω+ to CAR(Hac(h)) is the quasi-free stateof density W−ρ

0W ∗
−, and we have
lim

t→+∞
ωt(A) = ω+(A), A ∈ CAR(Hac(h)). (3.11)
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ular, for any tra
e-
lass operator
a on H(1), d

dtω+(τ t(dΓ(a))) = 0, implying that tr(ρ+[h, a]) = 0. However,if a is not a tra
e-
lass operator (but ρ+[h, a] is tra
e-
lass), it may happenthat tr(ρ+[h, a]) 6= 0. This is the 
ase for the extensive 
onserved 
harges ofthe isolated reservoirs, and it expresses the existen
e of the steady 
urrentsin the NESS ω+ 
onstru
ted above.Ea
h of the reservoirs Ri has two 
onserved quantities, the energy and theparti
le number, whi
h 
orrespond formally to dΓ(h0Pi) and dΓ(Pi), where Piis the proje
tion ofH(1) ontoH(1)
i . This is expressed by the invarian
e of theirequilibrium states ωi under the dynami
al and gauge automorphism groups,

αt
i and φθ

i , of the isolated reservoirs. The energy and parti
le 
urrents fromthe reservoirs Ri is 
al
ulated as the ω+-expe
tation of the 
orresponding�uxes Ii,en = dΓ(−i[h, h0Pi]) = dΓ(−i[v, h0Pi]) and Ii,part = dΓ(−i[h, Pi]) =
dΓ(−i[v, Pi]), respe
tively. Remark that, be
ause v is a �nite range operator,the 
ommutators are tra
e-
lass in H(1), so the proposition 3.1 applies. As
Peh = hPe = ePe, the sum over the point spe
trum in Eq. (3.10) does not
ontribute to any of the two 
urrents J = ω+(I). Hen
e,Proposition 3.2 The energy and parti
le 
urrents from the reservoirs Riare 
al
ulated a

ording to the formulas

Ji,en = −tr(ρ+i[v, h0Pi]) = −tr(W−ρ
0W ∗

−i[v, h0Pi]),

Ji,part = −tr(ρ+i[v, Pi]) = −tr(W−ρ
0W ∗

−i[v, Pi]).
(3.12)We shall next bring formulas (3.12) to a form, known as Landauer-Büttikerformulas, whi
h make 
lear that the 
urrents depend in fa
t only on the on-shell T -matrix Tx. We start with a statement [2℄ relative to a larger 
lass of
onserved reservoir observables.Proposition 3.3 Let a be a bounded self-adjoint operator in H(1)

ac (h0) 
om-muting with h0, so that, in the representation of Remark 2.1, UaU∗ =∫ ⊕
a(x)dx, with a(x) bounded self-adjoint operators in Kx. We denote â =

JaJ∗ its 
ounterpart in H(1). Let
J(a) := ω+(dΓ(−i[h, â])) = −trHac(h)(W−ρ

0W ∗
−i[h, â]) (3.13)be the "
urrent" asso
iated to a. Then,

J(a) = −
∫

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]}dx

2π
. (3.14)
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al Models 33Proof. The equality in Eq. (3.13), meaning that the sum over the pointspe
trum of h in Eq. (3.10) vanishes, is shown in the same way as for Eq.(3.12).As, by Assumption 2.2, v = Jτ∗I∗ + IτJ∗, the 
ommutator in the r.h.s. of(3.13) equals [h, â] = [v, â] = IτaJ∗ − Jaτ∗I∗, whi
h has �nite-range. Usingthe permutation invarian
e of the tra
e,
trHac(h)(W−ρ

0W ∗
−[v, â]) = trK(Uρ0W ∗

−[v, â]W−U
∗).We show that the operator under tra
e is an integral operator on K, i.e. ofthe form Kψ(x) =

∫
dyk(x, y)ψ(y), where k(x, y) : Ky → Kx are 
ontinuous,tra
e-
lass-operator valued fun
tions. Therefore, the tra
e 
an be 
al
ulatedas ∫

dxtrKxk(x, x).To this aim, we fa
torize the two terms of the 
ommutator as
UW ∗

−[v, â]W−U
∗ = (UW ∗

−IτU
∗)(UaU∗)(UJ∗W−U

∗)
−(UW ∗

−JU
∗)(UaU∗)(Uτ∗I∗W−U

∗).Remembering the representation of τ, τ∗ in Remark 2.1 and the expressions(2.14), (2.15) of W−,W
∗
−, the generalized kernels of the operators in bra
ketsare

(UW ∗
−JU

∗)(x, y) = δ(x− y) + (y − x+ i0)−1τ∗xReff(x− i0)τy;

(UJ∗W−U
∗)(x, y) = δ(x − y) + (x− y − i0)−1τ∗xReff(y + i0)τy ;

(UW ∗
−IτU

∗)(x, y) = −τ∗xReff(x− i0)τy;

(Uτ∗I∗W−U
∗)(x, y) = −τ∗xReff(y + i0)τy .The kernel k(x, y) is obtained as the 
omposition of the kernels of the fa
tors.The 
ontinuity with respe
t with x, y is a 
onsequen
e of Assumption 2.2.The diagonal k(x, x) equals

−τ∗xReff(x− i0)τxa(x) + a(x)τ∗xReff(x− i0)τx−

−
∫

dx′τ∗xReff(x− i0)τ ′xa(x
′)τ∗x′Reff(x+ i0)τx×

×[(x′ − x− i0)−1 − (x′ − x+ i0)−1]

= 1
2πi [T

∗
xa(x) + a(x)Tx + T ∗

xa(x)Tx],where we used the Sokhotski formula (x − i0)−1 = P
(

1
x

)
+ iπδ(x) and thede�nition (2.13) of the T -matrix. Insertion of this 
al
ulation in Eq. (3.13)gives Eq. (3.14). �



34 N. Angeles
u et al.We take now into a

ount the de
omposition H(1)
ac (h0) =

⊕
i H

(1)
i . For anenergy x ∈ [emin, emax], we have Kx =

⊕
i Kx,i; thereby, if x 6∈ Ii, Kx,i = {0}.A

ordingly, the operators under trKx in Eq. (3.14) have matrix representa-tions. The density ρ0(x) is the diagonal matrix with ρ0(x)i,i = fβi,µi

(x) · 1.Also, (Tx)i,j = 2πi(τ∗i )xReff(x + i0)(τj)x, whi
h vanishes for x 6∈ Ii ∩ Ij.What 
on
erns a(x), as we are interested in observables asso
iated withthe isolated reservoirs, we suppose that its matrix has blo
k-diagonal form:
a(x)i,j = δi,jai(x). In this 
ase,

trKx{ρ0(x)[a(x)Tx + T ∗
xa(x) + T ∗

xa(x)Tx]} =
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)(Tx)i,i + (T ∗
x )i,iai(x) +

r∑
j=1

(T ∗
x )i,jaj(x)(Tx)j,i}.(3.15)This 
an be further simpli�ed using the unitarity of the S-matrix:

(Tx)i,i + (T ∗
x )i,i +

r∑

j=1

(Tx)i,j(T
∗
x )j,i = 0and the permutation invarian
e of the tra
e, when
e

r∑
i=1

fβi,µi
(x)trKx,i{ai(x)(Tx)i,i + (T ∗

x )i,iai(x)}

= −
r∑

i=1
fβi,µi

(x)trKx,i{ai(x)
r∑

j=1
(Tx)i,j(T

∗
x )j,i

= −
r∑

j=1
fβj ,µj

(x)trKx,i{
r∑

j=1
(T ∗

x )i,jaj(x)(Tx)j,i.Hen
e,Corollary 3.1 For a self-adjoint operator a in H(1)
ac (h0) su
h that a(x)i,j =

δi,jai(x),∀x,
J(a) =

r∑

i,j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]trKx,i{ai(x)(Tx)i,j(T

∗
x )j,i}dx. (3.16)Thereby, (Tx)i,j 6= 0 only for x ∈ Ii ∩ Ij.In parti
ular, de�ning the transmission probability between reservoirs Ri and

Rj as ti,j(x) := trKx,i{(Tx)i,j(T
∗
x )j,i},

Ji,en =
r∑

j=1

∫
[fβi,µi

(x) − fβj ,µj
(x)]xti,j(x),

Ji,part =
r∑

j=1

∫
[fβi,µi

(x) − fβj,µj
(x)]ti,j(x).

(3.17)
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al Models 353.3. Consequen
es for the model of Se
. 2.3We spe
ialize here to the 
ase of two reservoirs (r = 2) of free latti
e Fermigases des
ribed in Se
. 2.3. and draw a few 
on
lusions about its behavioras a fun
tion of the dimension of the latti
es di and of the wire length N .
• The 
urrents, Eq. (3.17), are a sum of two 
urrents, ea
h obtainedwhen one of the two reservoirs is put in turn in the Fo
k state (
or-responding to the density matrix f+∞,−∞(hi) = 0. One may 
onsidertherefore only the parti
le 
urrent

J1,part(β, µ) =

∫
fβ,µ(x)t1,2(x). (3.18)

• The transmission probability
t1,2(x) =

∫

Td(x)
dµx(k)

∫

Td(x)
dµx(k)|T (k, k′)1,2|2has a resonant stru
ture. In view of Eq. (2.33), one has to study theenergy dependen
e of the matrix element Reff(x+ i0)1,N . By analyti
perturbation theory, as hS has simple eigenvalues εm, the eigenvalues

λm(x), m = 1, ..., N of heff(x + i0) are simple for su�
iently smalltunneling 
onstant t. Let ψ(m)(x) be the 
orresponding eigenve
tors;then ψ̄(m)(x) is the dual basis (i.e. (ψ̄(m)(x), ψ(m′)(x)) = δm,m′ . Hen
e,
Reff(x+ i0)1,N ∼

N∑

m=1

(λm(x) − x)−1ψ
(m)
1 (x)ψ

(m)
N (x).To lowest order in t, λm(x) ∼ εm − 2

N+1 t
2g(x + i0) sin2 qm, wherewe used Eq. (2.28) and the expli
it form (2.23) of the eigenve
tors

ψ(m) at t = 0, whi
h puts into eviden
e "resonan
es" at x = εm −
2

N+1t
2ℜg(x+ i0) sin2 qm of "width" 2

N+1t
2ℑg(x+ i0) sin2 qm.

• The density pro�le
n(r) = ω+(a∗(δr)a(δr)) =

∑
(Peδr, ρ

0Peδr)+(W ∗
−δr, ρ

0W ∗
−δr) (3.19)is a sum over reservoirs of density pro�les 
orresponding to the otherreservoir put in its Fo
k state (due to the blo
k stru
ture of ρ0 =∑L

i ρi). We 
al
ulate the se
ond term of (3.19) with ρ2 = 0. We need
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∗
−δr, where P1 is the proje
tion onto H(1)

1 . In view ofEq. (2.15), we have
(UP1W

∗
−δr)(x) = −tψ1(k)α1Reff(x− i0)1,r,if r ∈ {1, ..., N},

(UP1W
∗
−δr)(x) = ψ1(k)r + t2ψ1(k)α1Reff(x− i0)1,1R1(x+ i0)α1,rif r ∈ L1, and

(UP1W
∗
−δr)(x) = t2ψ1(k)α1Reff(x− i0)1,NR2(x+ i0)α2,r,if r ∈ L2.In parti
ular, the density pro�le inside R2 (the initially void reservoir),is given by

t4
∫

dkfβ1,µ1(ω1(k))|ψ1(k)α1Reff(ω1(k)− i0)1,N |2|R2(ω1(k) + i0)α2,r|2.It is to be remarked that, if d2 = 1 (whi
h is the model of in�nite leadsused in [6℄), the density of transmitted parti
les has a nonzero limitas r → ∞; this seems improper for a reservoir, whi
h is expe
ted tokeep un
hanged its "
onserved 
harges" even after 
oupling it to otherreservoirs. For d2 > 1, the density de
ays like |r|−1 irrespe
tive of d2[14℄.4. Quasi-free Boson models4.1. The algebra of observables and the referen
e stateThe kinemati
al C∗-algebra of the model is the 
anoni
al 
ommutation rela-tion algebra CCR(D) over a suitable subspa
e D ⊂ H(1), whi
h is left invari-ant by the one-parti
le evolution groups: exp (ith0)D = D, exp (ith)D = D.
CCR(D) is generated by the Weyl operators {W(f); f ∈ D}, satisfying

W(f)W(g) = e− i
2
ℑ(f,g)W(f + g). (4.1)The de�ning equation (4.1) implies that W(0) = 1 and W(f) are unitaries(W(f)∗W(f) = 1). A

ording to a theorem by Slawny, su
h a C∗-algebra
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al Models 37is unique up to an isomorphism; in parti
ular, it 
an be shown (using thewell-known Fo
k representation) that ‖W(f) − 1‖ ≥
√

2 for f 6= 0, implyingthat the appli
ation f 7→ W(f) 
annot be norm-
ontinuous [13℄.To any state ω on CCR(D) a fun
tion E : D → C is asso
iated by
E(f) = ω(W(f)), (4.2)named its generating fun
tional. E satis�es: (i) normalization: E(0) = 1,(ii) unitarity: E(f) = E(−f), and (iii) positivity:

n∑

i,j=1

ziE(fi − fj)e− i
2
ℑ(fi,fj)z̄j ≥ 0, ∀n,∀zi ∈ C, fi ∈ D (i = 1, ..., n).Conversely, any E with these properties de�nes a unique state by Eq. (4.2).Therefore, in des
ribing the initial and evolved states of our model, it will besu�
ient to spe
ify the 
orresponding generating fun
tionals.A state ω is quasi-free if, and only if, E has the parti
ular form

E(f) = exp (i
√

2ℜ〈l, f〉 − 1

4
Q(f, f)), (4.3)where l ∈ D′ is a linear form and Q(·, ·) ≥ 1 a quadrati
 form on D × D.Quasi-free states ω are regular, i.e. in the asso
iated GNS representation πω,for any f ∈ D, the unitary group R ∋ t 7→ πω(W(tf)) is weakly 
ontinuous.Hen
e, ∀f ∈ D, there exist self-adjoint operators ϕ(f) � "�eld operators",su
h that πω(W(tf)) = exp (itϕ(f)). The �elds ϕ(f) are real-linear fun
tionsof f . In terms of the �elds ϕ(f) one 
an de�ne 
reation and annihilationoperators by a∗(f) = 2−1/2(ϕ(f) − iϕ(if)), a(f) = 2−1/2(ϕ(f) + iϕ(if)).Then, denoting Ωω the 
y
li
 ve
tor of π, one has the followingProposition 4.1 In a quasi-free state with generating fun
tional (4.3), Ωωis in the domain of all powers of a♯(f), f ∈ D, and the following relationshold:

(Ωω, a
∗(f)Ωω) = (Ωω, a(f)Ωω) = 〈l, f〉,

(Ωω, a
∗(g)a(f)Ωω) − (Ωω, a

∗(g)Ωω)(Ωω, a(f)Ωω) = Q(f, g);

(4.4)all other trun
ated expe
tations vanish.The time evolutions αt, τ t, for the un
oupled, respe
tively, 
oupled reservoirsand sample are the groups of Bogoliubov automorphisms on CCR(D) de�ned
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tion on W(f):
αt(W(f)) = W(eih0tf),

τ t(W(f)) = W(eihtf).

(4.5)In view of the 
anoni
al 
ommutation relations (4.1), Eq. (4.5) is su�
ient touniquely de�ne the a
tion of τ t on all elements of CCR(D). By the remarkabove, the two automorphism groups are not strongly 
ontinuous. However,in a quasi-free representation they are implemented by weakly 
ontinuousunitary groups. Moreover, the evolution of a quasi-free initial state undera dynami
s of the form (4.5) is likewise quasi-free. This means that theevolved state at time t > 0 of Boson systems, whi
h, at t = 0, were in aquasi-free state, is uniquely determined by the evolved one-point and two-point fun
tions, i.e. by 〈lt, f〉 = 〈l, eihtf〉 and Qt(f, g) = Q(eihtf, eihtg). Inthis respe
t, their study parallels the study of Fermi systems in the previ-ous se
tion and the 
ounterpart of proposition 3.1 holds true. There appear,however, subtleties related to the 
hoi
e of the initial (referen
e) state; in par-ti
ular, unlike in the Fermi 
ase, the domain D (i.e. the kinemati
al algebra
CCR(D)) depends on the referen
e state. In order to keep the exposition ata reasonable level of 
omplexity, we shall explain them only for the model inSe
. 2.4., i.e. dire
t tunneling between reservoirs on Z

d with no intermediatesample. The 
onsideration of the general frame (given by assumptions 2.1�2.3, supplemented with spe
ial requirements about the existen
e of a densityof energy levels in the in�nite volume limit) is left for another publi
ation.The equilibrium states of a free Bose gas are quasi-free; they have been stud-ied in detail in the literature [4℄. The pe
uliarity of the free Bose gas is that,under 
ertain 
onditions, it shows a phase transition at low temperatureand high density. It happens that, in the multi-phase region, the 
anoni-
al and grand-
anoni
al are inequivalent. As we are interested in parti
le�ows between reservoirs, it is natural to use the 
anoni
al des
ription for thereservoirs.We remind below the expressions of the generating fun
tionals for the 
anon-i
al equilibrium states for our model of reservoir, obtained by an easy adap-tation of the derivation by Cannon [4℄, [11℄ for the 
ontinuum Bose gas.We start by des
ribing one reservoir R, 
onsisting of a free latti
e Bose gasliving on Z
d.Let β, ρ be �xed positive numbers and de�ne:

ρcr(β) = (2π)−d

∫

T
d
1

1eβω(k) − 1
ddk ≤ +∞, (4.6)
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al Models 39where ω(k) is the dispersion law Eq. (2.20). As ω(k) ≈ 1
2 |k|2 around itsminimum at k = 0, one has that ρcr(β) is �nite for d ≥ 3 and is in�nite for

d = 1, 2.For ρ < ρcr(β), the fuga
ity z is de�ned to be the unique solution z(β, ρ) ofthe equation
ρ = (2π)−d

∫

Td

zeβω(k) − z
ddk,while, for ρ ≥ ρcr(β), put z(β, ρ) = 1. The momentum distribution for k 6= 0at the given β, ρ is proportional to

nβ,ρ(k) =
z(β, ρ)eβω(k) − z(β, ρ)

, (4.7)while the 
ondensate density is given by
ρ0 = max{0, ρ − ρcr(β)}. (4.8)Then, the generating fun
tional of the 
anoni
al equilibrium state at β, ρ isgiven by the formula

Eβ,ρ(f) = exp

{
−‖f‖2

4
− 1

2
(uf, nβ,ρ uf)

}
J0(

√
2(2π)dρ0 |(uf)(0)|), (4.9)where u is the Fourier transform and J0 is the Bessel fun
tion.For ρ ≤ ρcr(β), the 
anoni
al state de�ned by Eq. (4.9) is extremal, however,if ρcr(β) <∞ and ρ > ρcr(β), it has a nontrivial de
omposition into extremalstates indexed by a phase eiθ:

Eβ,ρ(f) = (2π)−1

∫ 2π

0
Eθ

β,ρ(f)dθ, (4.10)where
Eθ

β,ρ(f) = exp

{
−‖f‖2

4
− (uf, nβ,ρ uf)

2
− i

√
2ρ0

(2π)d/2
ℜ(e−iθ(uf)(0))

}
. (4.11)Thereby, the test fun
tion spa
e D should be 
hosen su
h that the fun
tion-als (4.11) are well de�ned for f ∈ D, e.g. taking D = l1(Zd) would su�
e.Indeed, with this 
hoi
e uf is 
ontinuous on T

d, ensuring both the integra-bility of nβ,ρ|uf |2 and the existen
e of (uf)(0). We shall impose, howevera stronger 
ondition ensuring that uf is Hölder-
ontinuous, and take D as
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e l1(Zd; |x|ǫ) for some ǫ > 0, 
onsisting of fun
tions f : Z
d → C forwhi
h ‖f‖D :=

∑
x∈Zd

|x|ǫ|fx| <∞.Using the matrix notation asso
iated with the dire
t sum H(1) = H(1)
1 ⊕H(1)

2 ,we take f = f1 ⊕ f2 ∈ D1 ⊕ D2 (where Di are 
opies of D) and the initialstate ω0 as a produ
t of 
anoni
al equilibrium states of Ri at temperatures
βi and densities ρi (i = 1, 2), respe
tively:

ω0(W(f)) = E0(f) = Eβ1,ρ1(f1)Eβ2,ρ2(f2), (4.12)where Eβi,ρi
(fi) are arbitrary mixtures (with probability measures dµ1,2(θ1,2))of the extremal state generating fun
tionals (4.11). Denoting ρ0,i the 
on-densate densities in Ri and

ñ0 =

(
nβ1,ρ1 0

0 nβ2,ρ2

)
, ρ̃0(θ1, θ2) =

(√
2ρ0,1e−iθ1

√
2ρ0,2e−iθ2

)
, (4.13)we have

E0(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
0 (f), (4.14)where

Eθ1,θ2
0 (f) = exp

{
−‖f‖2

4
− (uf, ñ0 uf)

2
− i

(2π)d/2
ℜ(ρ̃0(θ1, θ2)(uf)(0))

}
.(4.15)In parti
ular, the 
anoni
al states (4.9) are obtained for dµi(θ) = (2π)−1dθ.4.2. The approa
h to, and properties of, the NESSWe are interested in the time evolution of an initial state ω0 as de�ned byEq. (4.14) (whi
h is αt-invariant) under the 
oupled dynami
s τ t, Eq. (4.5).We have

ωt(W(f)) = ω0(W(exp (ith)f) = ω0(W(exp (−ith0) exp (ith)f). (4.16)Using the analysis done in Se
. 2.4., we obtain the following 
onvergen
eresult, whi
h de�nes the stationary state.Proposition 4.2 Under the 
ondition above, the following limit exists andde�nes a quasi-free invariant state ωstat: ∀f ∈ D,
lim

T→∞

1

T

T∫

0

ωt(W(f))dt = Estat(f). (4.17)
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al Models 41Corresponding to the de
omposition (4.14) of the initial state,
Estat(f) =

∫
dµ1(θ1)dµ2(θ2)E

θ1,θ2
stat (f), (4.18)where

Eθ1,θ2
stat (f) = Eθ1,θ2

0 (W ∗
−Pacf)Eθ1,θ2

(p) (Ppf). (4.19)Thereby, the limit in mean is ne
essary only for the 
ontribution of thepoint spe
trum, i.e. for f = Pacf , the limit lim
t→∞

ωt(W(f)) exists and equals
∫

dµ1(θ1)dµ2(θ2)E
θ1,θ2
0 (W ∗

−Pacf).Proof. We isolate, in the quadrati
 and linear forms appearing at the expo-nent in Eθ1,θ2
0 (eihtf), the terms whi
h do not depend on Pacf , i.e. Tp(t) :=

−1
4‖Ppf‖2 − 1

2(ueihtPpf, ñ0 ue
ihtPpf) − i(2π)−3/2ℜ(ρ̃0(θ1, θ2)(ue

ihtPpf)(0)).The t-dependen
e of Tp(t) 
omes from exponentials of the form eie0t, ei(2d−e0)tand ei2(d−e0)t, where e0, 2d − e0 are the two eigenvalues of h. Therefore,
eTp(t) is an almost-periodi
 fun
tion, what ensures that lim

T→∞

1
T

T∫
0

eTp(t)dt =:

Eθ1,θ2

(p) (Ppf) exists. Remark that (Ppf)r de
ays exponentially as r → ∞,therefore, if f ∈ D, Pacf ∈ D as well. Hen
e, ∫
Td(x)(uPacf)(k)dµx(k) isHölder 
ontinuous of x, therefore, by the Privalov theorem [7℄,

(uW ∗
−Pacf)(k) = (uPacf)(k)−

− t
(2π)d (σ1 + tg̃(ω(k) − i0)σ0)

−1
∫

Td
(uPacf)(k′)dk′

ω(k′)−ω(k)+i0

(4.20)is likewise Hölder 
ontinuous of ω(k) and, as su
h, belongs to the domain of
Eθ1,θ2

0 . By an analysis like that in the proof of Proposition 3.1, the remainingterms have (usual) limits as t→ ∞, whi
h proves the assertion. �In view of the expli
it forms (4.15) of the fun
tionals Eθ1,θ2
0 , Proposition 4.2provides a detailed des
ription of the stationary state and allows the 
al
u-lation of various quantities of physi
al interest.We report below the analyti
 results for the energy and parti
le 
urrents.We point out that, like in the Fermi 
ase, the point spe
trum of h gives no
ontribution to the 
urrents and the 
ontribution of the absolutely 
ontinu-ous spe
trum may be expressed in terms of the S-matrix alone (Landauer-Büttiker-like formula). We shall not repeat here the proof of the latter,but perform the dire
t 
al
ulation based on Eq. (4.19). Thereby, if d ≥ 3,
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ity, that we are in the weak 
oupling regime, where
σp(h) = ∅.In 
al
ulating the 
urrents between pure phases of the reservoirs, we take ad-vantage that the initial state, being a produ
t of extremal equilibrium states,
an be approximated by �nite-volume states (possibly with weak symmetry-breaking perturbations), what allows to substantiate expressions (of the 
ur-rents from a reservoir in an extremal state) similar to those in the Fermi 
ase[1℄. As a preparation, we 
al
ulate, using Eq. (4.20), W ∗

−f for a few lo
alfun
tions f appearing in these expressions:
• For (δ10)r = δ0,r

(
1
0

) and δ20 de�ned analogously for the se
ond reservoir,
(uPjW

∗
−δ

i
0)(k) =

1

(2π)d/2

{
δi,j − tg̃(ω(k) − i0)[(σ1 + tg̃(ω(k) − i0))−1]j,i

}
,where Pj proje
ts onto the reservoir j and we used the de�nition (2.37) of g̃;

• For (h1
0)r = (dδx,0 − 1

2δ|x|,1)

(
1
0

),
(uPjW

∗
−h

1
0)(k) = 1

(2π)d/2 {ω(k)δj,1−
−t[(σ1 + tg̃(ω(k) − i0))−1]j,1[1 + ω(k)g̃(ω(k) − i0)]

}
.Proposition 4.3 In the dire
t tunneling model of Se
tion 2.4, the 
urrents�owing from R1 in the stationary state ωθ1,θ2

stat arising from extremal initialstates are given by:1. The parti
le 
urrent:
J1

part(θ1, θ2) = 2tℑωθ1,θ2
0 (a∗0(W

∗
−(δ10))a0(W

∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2|2d
3k

+
2t

(2π)d

√
ρ01ρ02

1 − g̃(0)2
sin(θ2 − θ1)2. The energy 
urrent:

J1
en(θ1, θ2) = 2tℑωθ1,θ2

0 (a∗0(W
∗
−(h1

0))a0(W
∗
−(δ20)))

=
2t

(2π)d

∫
(n1(k) − n2(k))

ω(k)ℑg̃(ω(k) − i0))

|1 − t2g̃(ω(k) − i0))2
|2d3k.Several remarks are in order:
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al Models 43If both reservoirs are 
ondensed, i.e. ρ0,1, and ρ0,2 are both di�erent fromzero, the parti
le 
urrent shows a pe
uliar dependen
e on the phase di�eren
e.This is not true for the energy 
urrent, where the se
ond term, 
oming fromthe expe
tations of the 
reation/annihilation operators does not 
ontribute(as expe
ted, as the k = 0 states 
arry no energy). Also, if ρ0,1ρ0,2 6= 0 and
β1 = β2, then n1(k) = n2(k), in whi
h 
ase the integral terms in the 
urrents,representing the 
ontribution of the ex
ited states, vanish, therefore parti
lesare ex
hanged only between the k = 0 states, and there is no energy �ow.In order to obtain the 
urrents in the 
anoni
al state, we have still to integratethe expressions of the 
urrents over the phases θi of the two 
ondensates.This has the e�e
t that the parti
le 
urrents between the k = 0 states areaveraged out, and only the �rst term in the expression of the parti
le 
urrentsurvives. In parti
ular, there is no 
urrent if the temperatures are equal andeither ρ1 = ρ2 ≤ ρcr(β), or both densities are over
riti
al (irrespe
tive oftheir values).As a matter of fa
t, Proposition 4.3 implies that the presen
e of the 
on-densates in the reservoirs has little in�uen
e on the 
urrents, as long as one
onsiders non-symmetry-breaking states. We 
onje
ture that this holds truefor more general jun
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