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Algebraic Full Multigrid in Image Reconstruction
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In this paper we propose an algebraic full multigrid algorithm for efficient and robust

numerical solution of arbitrary linear systems of equations arising in image reconstruction

from projections in computerized tomography. Numerical experiments and comparisons with

the classical Kaczmarz algebraic reconstruction technique are presented.

1. Introduction

Tomographic reconstruction is the process of reconstructing an object or its
cross section from several images of its projections. In the 2D case the object is
illuminated by a fan-beam of X-rays, where the signal is attenuated by the object.
Within ART the object is represented as a linear combination of basis functions,
typically pixels, with some unknown coefficients. This leads to a linear system of
equations with a sparse system matrix, because each observation is influenced only
by the pixels on the corresponding beam path. The drawbacks of all ART techniques
are the computational costs of the iterative formula applied to huge data sets (in
practice the reconstruction of a 2563 or 5123 volume and 150 X-ray images of size
10242 is a common situation). Our idea in the present paper was to think of these
iterative methods as smoothers within an Algebraic Full MultiGrid (AFMG) solver
(cf. [5], [6]). From this view point we first tried to adapt the basic steps of a multigrid
procedure – smoothing and correction (see [2]) – to general least squares problems.
We shall essentially refer to Computerized Tomography (CT) image reconstruction
from projections for medical investigations, in which the m × n matrix problem A,
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obtained after the scanning procedure (see Figure 1) is very big, sparse, rank-deficient
and ill-conditioned . As an example, in a 2D experimental situation, if we use e.g. 150
sources and 1024 detectors and a 256 × 256 pixel resolution we get m = 150×1024 =
153600 and n = 256 × 256 = 65656. In the 3D case, these values are amplified to
m = 150 × 10242 = 157286400 and n = 2563 = 16777216. In such cases, the matrix
A cannot be any more stored in the computer memory (not even in a compressed
form!), thus it has to be re-generated (row by row) during each iteration of a solver
as, e.g. Kaczmarz projection algorithm. This bad aspect, together with the slow
convergence of Kaczmarz’s iterations (due to the ill-conditioning of A) can slow very
much the reconstruction procedure, such that it becomes useless from a practical view
point. For overcoming this difficulty in section 2 of the present paper we propose our
AFMG algorithm. It uses in an efficient way the structure of pixels discretization of
the image, together with the row-by-row generation of A. In section 3 we present
numerical experiments and comparisons of our algorithm with the classical Kaczmarz
one on a 2D Shepp-Logan phantom (see [3]). Former results on 3D real medical image
can be found in [4].

2. The algebraic full multigrid algorithm

Let A be the m × n (sparse) matrix and b ∈ R
m the measurements vector

obtained after the CT (medical) scanning procedure (see Figure 1). For simplifying
the exposure, we shall suppose that the algebraic reconstruction system of equations
is consistent and can be written in a classical formulation

Ax = b. (1)

Because the matrix A is rank-deficient, the system (1) has infinitely many solutions,
among which we are usually looking for the (unique) minimal norm one, denoted in
what follows by xLS . In our algebraic reconstruction problem, the dimension n of
A represents the number of pixels (voxels in 3D) used for the discretization of the
(square) scanned area. We shall suppose without restricting the generality that

n = 2q · 2q = 22q, (2)

for some q ≥ 1, i.e. each edge of the square area containing the image is divided into
2q equal parts. This will be the “finest grid” (Ωh) of our multigrid type algorithm.
We then consider a “coarser grid” (denoted by ΩH) formed with 4 times bigger pixels
(see Figure 2.(A) for q = 2).

Then, a schematic presentation of our AFMG algorithm with 2 grids is given in
Figure 3. There, the meaning of the signs and arrows used is the following:

1. : exact solution on the coarse grid ΩH

2. : prolongation of the coarse grid solution from ΩH to Ωh

3. : q relaxation (Kaczmarz) sweeps on Ωh applied to the prolongated solution
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Fig. 1. Setup and construction of projection matrix.

Fig. 2. Relation between fine and coarse grid matrix entries.
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Fig. 3. AFMG algorithm (with 2 grids).

Fig. 4. AFMG algorithm (with 3 grids).

4. : restriction of the Ωh, - residual to ΩH

5. : prolongation of the ΩH , - correction to Ωh and addition to the corre-
sponding previous Ωh-approximation

6. [ ]µh : the corresponding procedure (2 grid, V-cycle) is applied µh times

The construction of the prolongation and restriction operators, Ih
H , RH

h , respec-
tively and the coarse grid matrix AH are presented below, with respect to the no-
tations from Figure 2. For j = 1, . . . n/4, i = 1, . . . , n, S(j) = {j1, j2, j3, j4} we
have

(Ih
H)ij =

{

1 , i ∈ S(j)
0 , i /∈ S(j)

, RH
h = identity : R

m −→ R
m, (3)

AH = A · Ih
H , (AH)ij =

∑

k∈S(j)

Aik, i = 1, . . . , M, j = 1, . . . , n/4. (4)

With these elements our 2-grid AFMG algorithm, from Figure 3 can be written as
follows.
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Step 1. Compute exactly the minimal norm solution of the (possible inconsis-
tent!) coarse grid problem

‖ AH xLS,H − b ‖= min! (5)

as
xLS,H = A+

Hb, (6)

where A+
H is the Moore-Penrose pseudoinverse of AH .

Step 2. Interpolate xLS,H to Ωh as

xh = Ih
HxLS,H . (7)

Step 3. Relax xh, µh ≥ 1 times on Ωh

xh = Kaczmarz(µh)(xh). (8)

Step 4. Solve on ΩH the least squares problem with the right hand side given
by the residual dh = bh − Ahxh (see (3)),

‖ AH vH − dh ‖= min! (9)

for vH , (formally) given by
vH = A+

Hdh. (10)

Step 5. Interpolate vH to Ωh and correct xh by

xh = xh + Ih
Hvh. (11)

Step 6. Relax xh, µh times on Ωh

xh = Kaczmarz(µh)(xh). (12)

Remark 1. If we use more than 2 consecutive (pixels) discretization levels,
the above algorithm can be easily extended (see Figure 4 for 3 consecutive grids:
Ωh, Ω2h, Ω4h).

The fact that, for the 2-grid AFMG algorithm in Figure 3, the exact coarse grid
solution on ΩH interpolated to Ωh can be a better approximation than the (usual)
null one, as starting point for the µh sweeps of the 2-grid V cycle on ΩH and Ωh, is
described in the following result.

Proposition 1. Let x1
h = 0, x2

h = Ih
H xLS,H and suppose that

(Ih
H)TATb 6= 0. (13)

Then, the corresponding residuals on Ωh

ri
h = Axi

h − b, i = 1, 2 (14)

satisfy
‖ r2

h ‖ < ‖ r1
h ‖ . (15)
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Proof. Because x1
h = 0 we get

r1
h = Ax1

h − b = −b. (16)

For r2
h, using (5) and the definition of AH in (3) we successively get

r2
h = Ax2

h − b = AIh
HA+

Hb − b = AHA+
Hb − b =

PR(AH )b − b = −(I − PR(AH ))b = −PN(AT

H
)b,

where PSx denotes the orthogonal projection of x onto a vector subspace S ⊂ R
m.

Then, because of the orthogonal decomposition R
m = N(AT

H) ⊕ R(AH) (see [1]) we
obtain

‖ r1
h ‖2 = ‖ b ‖2 = ‖ PN(AT

H
)b + PR(AH )b ‖2 =

‖ PN(AT

H
)b ‖2 + ‖ PR(AH )b ‖

2 > ‖ PN(AT

H
)b ‖2 = ‖ r2

h ‖2,

in which the last inequality is strict because of the assumption (15). This completes
the proof.

Remark 2. If (15) doesn’t hold, then the normal equation associated to the
coarse grid problem (4) becomes

(Ih
H)TATA Ih

H xLS,H = (Ih
H)TATb = 0

giving us xLS,H = 0, which is not the case in real practical applications.

3. Numerical experiments

For the numerical results in 2D we have implemented the setup of the projection
matrix and the solution of the least squares problem in Matlab. In the 3D case we
used a C++ implementation and some results were communicated in [4]. Figure 5
shows the original image (size 2562), a Shepp-Logan phantom available in Matlab and
the corresponding sinogram (see [3]), computed by the Matlab routine fanbeam. For
our experiments we resized the image to n = 242 = 576 and used m = 39×72 = 2808
rays, i.e. 39 rays for each of the 72 positions of the source (see Figure 1). The structure
of the projection matrix A ∈ R

2808×576 (that has full column rank for this setup) is
shown in Figure 6. The results in Figure 7 show that the full algebraic multigrid
method is able to reduce both the error (the euclidean norm of the difference between
original image xex and the reconstructed one xk) and the residual (the euclidean
norm of b − Axk), during 10 iterations of the classical Kaczmarz ART method and
our AFMG(2,0) algorithm (i.e. µh = 10 in Figure 3). The right hand side b in (1)
was defined as b = Axex, where xex is the resized Shepp-Logan phantom (24 × 24).
However, we can not expect the usual multigrid convergence rates for elliptic PDEs.
In the medical application it is sufficient to use only a few Kaczmarz steps to get
acceptable results. Due to the huge size of the real problems even only one Kaczmarz
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Fig. 5. Modified Shepp-Logan phantom (left) and sinogram (right).
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Fig. 6. Structure of projection matrix.

step on the finest level can take several minutes and therefore the computational time
can be reduced drastically by saving one or more sweeps on the finest level.

Conclusions. We presented an algebraic full multigrid algorithm for efficient
and robust numerical solution of arbitrary linear systems of equations arising in image
reconstruction from projections in computerized tomography. Numerical experiments
and comparisons with the classical Kaczmarz ART method show that our AFMG
algorithm method can reduce the computational effort substantially.
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Fig. 7. Comparison of errors (top) and residuals (bottom) for AFMG(2,0)-cycles using only
1 level (Kaczmarz) and using 2 levels with a direct solver on the coarse grid.
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