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Discrete Approximation of Nonlinear Diffusion

Equation ♮

Stelian Ion∗, Anca Veronica Ion‡ and Dorin Marinescu∗

The paper deals with the approximation of some nonlinear diffusion equations with
source terms and nonhomogeneous Dirichlet boundary conditions and initial conditions.
The approximation scheme consists in the discretization of space derivative operators while
the time differentiation is kept continous. As result the solution of the partial differential
equations is approximate by the solution of a system of ordinary differential equations. We
provide the bounds for the solutions of the discrete model that are independent of the mesh
size of triangulation.

1. Introduction

In this paper we develop a numerical approximation scheme for a class of
parabolic nonlinear diffusion equations.

The mathematical model is given by






∂b(u)

∂t
− div (κ(u)∇u+ f (u)) = g(t, x, u), t > 0, x ∈ Ω,

u = uD, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,

(1)

where Ω is a domain in R
n, u(t, x) is the scalar unknown function, b and κ are real

constitutive functions, f is a vector function which models the convective flux and g
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is a real function which models the “mass” production. The derivative operators div
and ∇ are taken with with respect to x ∈ R

n.
The mathematical model (1) covers a large field of physical phenomena such

that: heat transfer, infiltration of a fluid through porous media, transport of contam-
inant in porous media, etc.

A particular case of the model problem (1) is the linear caloric equation:

∂u

∂t
= div(κ∇u), (2)

where u models the temperature and κ = const. > 0 represents the thermal conduc-
tivty. Here it is supposed that the caloric flux obeys the Fourier law q = −κ∇T and
the thermal conductivty is independent of temperature. The condition κ > 0 reflects
the fact that heat propagates from high to lower temperature. If the temperature of
the body is high enuogh one must consider the radiation effects and the temperature
dependece of thermal conductivty. For example, if the power radiated by a a body to
environment follows the Stefan-Boltzmann law of the fourth powers of both the body
and the medium temperature the heat equation becomes [6]

∂u

∂t
= div(κ(u)∇u) − kr(u

4 − u4
e). (3)

The unsaturated water flow through porous media is described by the well known
Richards’ equations [3]

∂θ(h)

∂t
− div(K(h)∇h+ e3K(h)) = 0, (4)

where θ represents the relative volumetric water content, h represents the pressure, K
is the hydraulic conductivity and e3 is the upward vertical versor. The function θ(h)
is a continous positive function and it is strictly increasing on the interval (−∞, 0] and
constant on h > 0. Also the hydraulic conductivity is a continous positive function
strictly increasing on (−∞, 0] and a constant function on the set h > 0. The hydraulic
conductivity becomes zero as h approaches −∞.

The transport of contaminant in porous media is governed by an equation of
the form [9], [8]

∂ (C + λCp)

∂t
+ v · ∇C = div(D∇C) + g(x,C), (5)

where C represent the mass concetration of the contaminant, v denotes the velocity
of the fluid flow, supposed to be constant. The term λCp, λ ≥ 0 takes into account
the adsorbtion reaction by means of Freundlich isoterm. The absorbtion reactions is
described by the term g(x,C) that usualy is given by

g = −αCq (6)

with α > 0, q > 0 (the order of the reaction).
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In this paper we deal with a discrete version of the equation (1). To have an
idea of what kind of solution we approximate we think it will be worthy to make few
remarks about the solvabilty of the problem.

Due to the nonlinear parabolic term b(u) and nonlinear diffusion coefficient
κ(u) the problem (1) can be a degenerate problem and consequently there exists no
classical solutions. To have a solvable problem the concept of the strong solution has
been weakned in the sense that a function is a solution if it satisfies the equation
in weak sense. In the new framework one deals with weak soltions, weak entropy

solutions, very weak solutions etc.
The notion of weak solution for the problem of the type (1) was introduced by

Alt and Luckhaus in [1]. By imposing some proper conditions on the constitutive
functions, boundary data and initial conditions, the authors where able to prove the
existence of the weak solution in the case of the parabolic-elliptic degeneration, b(u) is
a constant function on some interval of positive measure and the elliptic term κ > 0.
Also F. Otto in [17] proves the existence of the L1-contraction principle of the weak
solutions.

Carrillo [5] extrapolates the concept of entropy solution introduced by Kruzhkov
in theory of hyperbolic PDE [12]. The new concept weak entropy solutions answers
to the question of the solvabilty of the problem, with homogeneous boundary data
uD = 0, in the case of parabolic-hyperbolic degeneration.

In the case of nonhomogeneous Dirichlet conditions one supplementary difficulty
is to give a sense to boundary conditions. The main problem is that the region
of parabolicity and hyperbolicity are glued together in a way that depends on the
solution itself [14], [15] . We present here the framework introduced by C. Mascia, A.
Porreta and A. Terracina in the paper [14]. Let us introduce the notations:

K(u) =

u∫

0

κ(s)ds,

E(u, v) = ∇|K(u) −K(v)| + sgn(u− v)(f(u) − f(v)),

B(u, v, w) = E(u, v) + E(u,w) − E(v, w).

Regarding the domain Ω we suppose that there exists a C2–covering of ∂Ω,
A = {Ui}i=1,m made of open sets such that ∂Ω ⊂ ∩U i and , in some local coordinates
x = (x′, xn), there exists a C2 function xn = αi(x

′) such that Ui∪∂Ω = {xn = αi(x
′)},

Ui ∪ Ω = {xn < αi(x
′}.

Definition 1. Boundary layer sequence. A sequence {ϑδ} of the C2(Ω)
⋂
C0(Ω)

functions is named a boundary layer sequence if

lim
δ→0+

ϑδ = 1, pointwise in Ω, 0 ≤ ϑδ ≤ 1, ϑδ = 0 on ∂Ω.

Definition 2. Weak Entropy Solutions. Nonhomogeneous case(Mascia
et al.) A function u ∈ L∞((0, T ) × Ω) is an entropy solution of (1) if
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(1) (regularity) there holds:

K(u) ∈ L2((0, T ) : W 1,2(Ω))

and for any U ∈ A, and any positive ψ ∈ C∞
0 (U) we have

(
− |u− uD|ψ, E(u, uD)ψ

)
∈ DM(Q)2

where DM(Q)2 is the set of divergence-measure vector fields in Q.

(2) (entropy condition in interior of QT )

∫

QT

{
|b(u) − b(s)|

∂v

∂t
− E(u, s)∇v + gv

}
dxdt ≥ 0

for any v ∈W
1,2
0 (QT ) and v ≥ 0 and s ∈ R.

(3) (initial condition)

lim
t→0+

∫

Ω

|u(t, x) − u0(x)| dx = 0.

(4) (boundary conditions) in sense of trace in L2((0, T ) : W 1,2(Ω)) we have

K(u) = K(uD) t > 0, x ∈ ∂Ω,

and for any boundary layer sequence ϑδ, and for any U ∈ A, and any positive ψ ∈
C∞

0 (U) we have

lim inf
δ→0

∫

QT

B(u, s, uD)∇ϑδξψdxdt ≥ 0, ∀s ∈ R,

for any ξ ∈ L2((0, T ) : W 1,2(Ω)), ξ ≥ 0.

In the next section we introduce our discretization scheme of the problem (1).
The main thing in building up the discrete form is the monotonocity of the approxi-
mations of the diffusion coeficient and convective flux, respectively.

We assume the following hypotheses:
Assumptions on constitutive functions:

A1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

b : R → R, is a continous and nondecreasing function,
κ : R → R+, is a positive, continous and nondecreasing function,
f : R → R

n, is a local Lipschitz vector function,
g : R+ × Ω × R → R, is a Caratheodory function.

Assumptions on boundary data and initial conditions:

A2

∣∣∣∣

∣∣∣∣
uD ∈ L2((0, T ) : W 1,2(Ω)) ∩ L∞((0, T ) × Ω),
u0 ∈ L∞(Ω).

Assumptions on the domain Ω:
A3

∣∣∣∣ Ω ∈ R
n, is an open, bounded and connected set.
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Fig. 1. Triangulation of polygonal domain in R
2.

2. Discrete Approximation

By the method of lines (MOL), one can associate an ordinary differential system
of equations (ODE) to a parabolic partial differential equation. The MOL consists in
the discretization of the space variable using one of the standard methods as finite
element, finite differences or finite-volume method (FVM). The FVM fits very well to
conservative equations and there exist a large literature devoted to the method, we
recall here the papers that deal with Dirichlet problem, [7] for hyperbolic PDE, [10],
[11], [15] for nonlinear parabolic PDE.

The FVM deals with a decomposition of the domain Ω into a small polygonal
domains ωi and a net of inner knots xi. The assembly {ωi, xi} defines a triangulation
of the domain and it is an admissible meshe if it satisfies the following conditions, [11]

Definition 3. Admissible meshes. The triangulation T = {(ωi, xi)}i∈I is

called an admissible meshes if it satisfies:

A4

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

ωi is an open poligonal set ⊆ Ω, xi ∈ ωi, ∀i ∈ I

(1) ∪i∈Iωi = Ω
(2) ∀i 6= j ∈ I and ωi ∩ ωj 6= Φ, either Hn−1(ωi ∩ ωj) = 0 or

σij := ωi ∩ ωj is a common (n− 1) − face of ωi and ωj

(∀σij , [xi, xj ] ⊥ σij

Here Hn−1 is the (n − 1) - dimensional Hausdorff measure. For each volume
ωi that has a common (n − 1) - face with the boundary ∂Ω one defines an external
volume ωib

∈ CΩ by the reflection of the ωi with respect to the face σib
= ωi ∩ ∂Ω.

Let us define the discrete values uib

uib
=

1

m(σib
)

∫

σi
b

uDda. (7)

Denotes by T b the collection of all external volumes {(ωib
, xib

)} and by Ib the set
of their indices. Let T e = T ∪ T b and IE = I ∪ Ib. We say that the volumes ωi,
ωj ∈ T e are neighbors if they share a common n− 1–face and we denote by ni,j the
unit normal vector to the face σij that point to ωj .

The space discretizated equations are derived from the integral form of (1) for
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each control volume ωi

∫

ωi

∂b(u)

∂t
dx−

∫

∂ωi

(κ(u)∇u+ f (u)) · nda =

∫

ωi

g(t, x, u)dx, ∀i ∈ I. (8)

We introduce a numerical diffusion coefficient κ̃ : R × R → R+ by

κ̃(u, v) = max(κ(u), κ(v)). (9)

It is easy to show that numerical diffusion coefficient satisfies

A5

∣∣∣∣∣∣

∣∣∣∣∣∣

κ̃(u, v) = κ̃(v, u), symmetry,
(κ̃(u1, v) − κ̃(u2, v))(u1 − u2) > 0, monotonicity,
κ̃(u, u) = κ(u), consistency.

Corresponding to each face σij we introduce a numerical flux function f̃ : R ×
R → R with the following properties [7]

A6

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

f̃i,j(u, v) = −f̃j,i(v, u), conservation,

(f̃i,j(u1, v) − f̃i,j(u2, v))(u1 − u2) ≤ 0, monotonicity,

(f̃i,j(u, v1) − f̃i,j(u, v2))(v1 − v2) ≥ 0.

f̃i,j(u, u) = f(u) · ni,j , consistency.
The space discrete finite volume approximation of the problem (1) is defined from

the above numerical diffusion coefficient function and the numerical flux functions by
the following system of differential equations:





db(ui)

dt
=

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij

+ f̃i,j(ui, uj)

]
+ gi(t, ui)

ui|t=0 = u0i,

(10)

for t > 0 and for any i ∈ I. N (i) denotes all neighbours in T e of ωi, m(ωi) represent
the volume of polyhedron ωi and m(σij) represent the n− 1-dimensional measure of
the face σij .

The source terms gi(t, u) are defined by

gi(t, u) =
1

m(ωi)

∫

ωi

g(t, x, u)dx, (11)

and the initial datum u0i are given by

u0i =
1

m(ωi)

∫

ωi

u0(x)dx, (12)

for all polyhedra ωi. Let us introduce the numerical global flux functions

Fi(u; uD) =
∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(ui, uj)

uj − ui

dij

+ f̃i,j(ui, uj)

]
. (13)
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Then the ODE approximation read as

db(ui)

dt
= Fi(u; uD) + gi(t, ui). (14)

The boundary conditions are taken into account by the volume elements next
to boundary ∂Ω. For such element the contribution of the boundary values to the Fi

is given by
m(σib

)

m(ωi)

[
κ̃(uib

, uj)
uib

− ui

dib

+ f̃i,ib
(ui, uib

)

]

For shortness denotes by ue = (u|uD)

Lemma 1. Assume A5 and A6. Then

a)

Fi(u
e) = 0 (15)

for any constant state ui = u, ∀i ∈ Ie.

b) F verifies Kamke conditions, that is

Fi(v
e) ≥ Fi(w

e), ∀i ∈ I (16)

for any two vectors that satisfy vk ≥ wk, ∀k ∈ Ie and vi = wi.

Proof of Lemma 1. To prove (15) we have

Fi(u
e) =

∑

j∈N (i)

m(σij)

m(ωi)
f(u) · nij = 0

To prove the Kamke conditions we have

Fi(v
e) −Fi(w

e) =

∑

j∈N (i)

m(σij)

m(ωi)

[
κ̃(u, vj)

vj − u

dij

+ f̃i,j(u, vj) − κ̃(u,wj)
wj − u

dij

− f̃i,j(u,wj)

]

and from (9) and the monotonicity property of A6 the affirmation results.
We want to prove that the solutions of ODE (14) are bounded with bounds

independent of the mesh size. For that we need the supplementary conditions on
source term g and accumulation function b.

Supplementary assumptions on constitutive functions:

A1′

There exists some real numbers α < α < β < β such that

(1)b ∈ C1((α, β)) and b′ > 0 on (α, β)
There exists two Lipschitz functions g, g : R+ × R → R such that

(2) g(t, u) ≤ g(t, x, u) ≤ g(t, u), ∀u ∈ (α, β)
(3) g(t, α) ≤ 0, g(t, β ≥ 0
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Theorem 1 (Boundedness of discrete solutions). Consider the Cauchy problem

(10). Assume A1, A1′, A2, A5, A6. We suppose also that initial conditions and

boundary data satisfy

α ≤ u0(x) ≤ β, a.e x ∈ Ω, α ≤ uD(t, x) ≤ β, a.e (t, x) ∈ (0, T )× Ω. (17)

Let u(t) be the solution of the problem





∂b(u)

∂t
= g(t, u),

u|t=0 = α,

(18)

and u(t) be the solution of the problem






∂b(u)

∂t
= g(t, u),

u|t=0 = β

(19)

on the interval (0, T ), [2], [4]. Let Tsup = inf{sup{t|u(t) > α, u(t) < β}, T }.
Then the solution u(t) of the Cauchy problem is bounded by u and u on the

interval [0, Tsup] i.e.

u(t) ≤ ui(t) ≤ u(t)∀i ∈ I, ∀t ∈ [0, Tsup] (20)

Proof of theorem. The essential tool in the proof is the Nickel’ theorem that pro-
vides the monotony of the solution of the quasimonotone ODE. The Kamke condition
assures us that we deal with quassimonoton system.

Observe that the conditions A1′–3 guaranty that

α ≤ u(t) ≤ α, β ≤ u(t) ≤ β. (21)

Define
F i(u) = Fi(u; u),F i(u) = Fi(u; u).

From (7), (11), (16), (21) and the conditions A1′–2 one obtains

F i(u) + g(t, u) ≤ Fi(u; uD) + gi(t, u) ≤ F i(u) + g(t, u)

Since usup
i (t) = u(t), ∀i ∈ I is a solution of the problem

{
db(ui)

dt
= F i(u) + g(t, ui),

ui|t=0 = β,
(22)

u
inf
i (t) = u(t), ∀i ∈ I is a solution of the problem

{
db(ui)

dt
= F i(u) + g(t, ui),

ui|t=0 = α,
(23)
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and α ≤ u0i < β one can applies the Nickel’s theorem and one obtains

u
inf
i (t) ≤ ui(t) ≤ u

sup
i (t),

which is (20).

Infiltration model
In the case of Richards’ equations one can defines the numeric flux functions by

f̃i,j(u, v) =
1

2
(e3 · ni,j + |e3 · ni,j |)K(v) +

1

2
(e3 · ni,j − |e3 · ni,j |)K(u). (24)

Appendix 1. Nickel’s Theorem [13], [16]. Assume that g,g,g are quasi-

monotone g ≤ g ≤ g and u0 ≤ u0 ≤ u0. Let be

u the solution of v̇ = g(v), v(0) = u0,

u the solution of v̇ = g(v), v(0) = u0,

u the solution of v̇ = g(v), v(0) = u0,

(25)

then u ≤ u ≤ u.
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