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Algebraic Reconstruction Technique versus

Conjugate Gradient in Image Reconstruction

from Projections
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and Constantin Popa∗∗♮

In this paper we consider three iterative algorithms for inconsistent linear least squares

problems arising in image reconstruction from projections in Computerized Tomography:

Kaczmarz Extended projection algorithm, conjugate gradient iteration and a hybrid method

combining them. All these methods use in each iteration both rows and columns of the

problem matrix. For this, we propose an efficient algorithm for constructing and storing it.

Moreover, the implemented software allows graphical visualization and editing of the way

that the scanning occurs, and making different reconstructions tests. Numerical experiments

are presented for some real images from medical applications.

1. Image reconstruction from projections – scanning pro-

cedure and least squares formulation

The Image Reconstruction from Projections technique (IRP, for short) is essen-
tially based on the research and results due to A. M. Cormack and G. Hounsfield
in early 50’s, which combined their efforts in the construction of the first computer
tomograph (1972). And, although its first and main applications are related to the
medical investigation context (see for details [3]), the IRP technique also found other
important fields in which it was successfully applied (as e.g. geotomography). The
first and very important step in the practical applications of the IRP technique is the
“scanning” or “data acquisition” procedure. In medical Computerized Tomography
(CT) investigations the most used scanning method is the “fan-beam” procedure. In

∗ Route 66, Braşov, Romania, e-mail: tiberius d@hotmail.com
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this case, as we can see from Figure 1 the X-rays source S moves on a circle around
the scanned area ABCD, between positions αinitial and αfinal. From each position
Si, i = 1, . . . , p, of the source, a fan-beam of X-rays is emitted, their number being
equal with the number of detectors Dj , j = 1, . . . , q, on a screen that moves in the
same time with Si. The total number of X-rays, M = pq, will give the number of
rows in the problem matrix A, whereas the resolution N (number of pixels) of the
scanned area ABCD, gives the number of its columns. The construction of the matrix
and right hand side coefficients, Aij and b0

i , respectively is sketched in Figure 2.

Fig. 1. Fan beam scanning.

Fig. 2. Construction of A and b.

There Aij represents the length of the in-
tersection between the i-th X-ray and the j-th
pixel, whereas b0

i is a function of the inten-
sities Iimput and Ioutput of the corresponding
X-ray (see for details [3]) For a good recon-
struction we need both, an accurate scanning
of the region ABCD and a good resolution of
it, which grows the dimensions M and N of
A. The sparsity of A is determined by the
fact that, e.g. in the case from Figure 2, if
N = n2, then we cannot have more than 2n−1
nonzero elements on a row of A. Concerning
the right hand side b0 = (b0

1, . . . , b
0
M ) ∈ R

M ,
the measurement errors modify it by a pertur-
bation term, pert ∈ R

M such that b = b0+pert
doesn’t anymore belong to the range of A and instead of a consistent reconstruction
system

Ax = b0 (1)

we have to consider an inconsistent least squares formulation

‖ Ax − b ‖= min! (2)



Image reconstruction 69

If the perturbation vector pert is “not too big”, then the minimal norm solution of
(1), xLS can be an enough good approximation of the corresponding one from (1),
x0

LS , whereas in the opposite case, we need to regularize (1) as

‖ Ax − b ‖2 +δ2 ‖ Lx ‖2= min! ⇐⇒‖
[

A
δL

]

x −
[

b
0

]

‖2= min! (3)

with L an N ×N matrix. In this case, the minimal norm solution of (2), xLS(δ) will
be an enough good approximation of x0

LS , provided δ and L are well chosen (see for
details [2]). But, in both the above formulations (1) or (2) the problem is inconsistent,
thus appropriate solvers must be used. In this respect, in section 2 of the paper we
shall present three such algorithms: Kaczmarz Extended with Relaxation Parameters
(KERP), Conjugate Gradient for Normal Equation (CGNE) and a hybrid Kaczmarz
Extended-Conjugate Gradient algorithm denoted by KECG. All of them use, not
only the matrix A, but also its transpose AT. This aspect is analyzed in section 3,
in which an efficient algorithm for saving in a compressed form both matrices A and
AmT , during the row-by-row generation of A in the scanning process is presented.
This procedure, together with the above mentioned iterative solvers were successfully
implemented in an IRP software package, which is described in the second part of
section 3. In the last section of the paper we present numerical experiments with this
package on real 2D medical images.

2. The iterative solvers

Let Ai, A
j be the i-th row and j-th column of A, respectively.

KERP algorithm: let x0 ∈ R
n; y0 = b; for k = 0, 1, . . . do

yk+1 = (ϕ1 ◦ . . . ◦ ϕN )(α; yk),

bk+1 = b − yk+1, (4)

xk+1 = (f1 ◦ . . . ◦ fM )(ω; bk+1; xk),

where

ϕj(α; y) = y − α ·
〈

y, Aj
〉

‖Aj‖2
Aj , fi(ω; β; x) = x − ω · 〈x, Ai〉 − βi

‖Ai‖2
Ai. (5)

Theorem 1. ([6]) If Ai 6= 0, Aj 6= 0, i = 1, . . . , M, j = 1, . . . , N , for x0 = 0 and

any α, ω ∈ (0, 2) the sequence (xk)k≥0 generated with the KERP algorithm converges

to the minimal norm solution of a least squares problem as (1).

CGNE algorithm: let x0 ∈ R
N , r0 = b − Ax0; for k = 0, 1, . . . do

k = k + 1
if k = 1
p1 = ATr0

else
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βk = (ATrk−1)T(ATrk−1)/(ATrk−2)T(ATrk−2)
pk = ATrk−1 + βkpk−1

endif
αk = (ATrk−1)T(ATrk−1)/(Apk)T(Apk)
xk = xk−1 + αkpk

rk = rk−1 − αkApk

Theorem 2. ([4]) If x0 = 0 then, the sequence (xk)k≥0 generated with the

CGNE algorithm converges to the minimal norm solution of a least squares problem

as (1).

One iteration of the algorithm CGNE will be denoted by xk+1 = CGNE(A; b; xk),
∀k ≥ 0.
KECG algorithm: let x0 ∈ RN , y0 = b, R0 = −ATy0; for k = 0, 1, . . . do

yk+1 = CGNE(AT; 0; yk), (6)

bk+1 = b − yk+1, (7)

xk+1 = (f1 ◦ . . . ◦ fM )(ω; bk+1; xk). (8)

Note. The above step (6) means the CGNE algorithm applied to the (consistent)
problem

ATy = 0 ⇐⇒ AATy = 0, (9)

with y0 = b.

Theorem 3. ([7]) If Ai 6= 0, i = 1, . . . , M , for x0 = 0 and any ω ∈ (0, 2) the

sequence (xk)k≥0 generated with the KECG algorithm converges to the minimal norm

solution of a least squares problem as (1).

3. Computational software package. Storage of A and A
T

The software is an application written in C++ programming language. It con-
tains the implementation of several algorithms in order to create and store A and
AT matrix. It also contains implementation of the image reconstruction algorithms
and of the regularization matrixes. The access to this algorithms is made through
a graphical interface written with GTK+ and GTKMM library. It allows loading
of images from BMP files, converting them to gray scale with values between 0 and
255. It contains a free implementation of Mersenne-Twister pseudorandom number
generator that is used when applying perturbation.

3.1. Algorithms
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Fig. 3. Compressed row storage.

Storage of sparse matrixes. The
A matrix is a sparse matrix, every row
may contain up two w + h − 1 non-zero
entries ( where N = w × h is the resolu-
tion of the discretisation ). As every row
stands for the length of the segments ob-
tained by the intersection of X-ray with
the grid, and all reconstructions algorithms use rows of A, the best method to store
this matrix in a compressed row storage. This means that for every row only non-zero
elements are stored with an additional information about their column.

Construction of A. Construction of A is made by rows. Every ray is intersected
first with vertical lines of the grid and the array of intersection points is stored. Then
the intersections with horizontal lines are computed. The points in that two arrays are
ordered by the distance to the ray source. So a merging of them is possible to obtained
all the intersections points between the ray and the grid. Actually, not the array with
intersection points is needed, but the length of the segments. So merging algorithm is
applied, but instead of keeping the merged points, the length of the segments and the
corresponding pixels are saved. It can be easily seen that the algorithm has a linear
complexity ( O((w + h)M) ).

One observation is that a ray may cross a grid through a pixel corner. In this
case the intersection point will appear also in horizontal intersections array and also
in vertical intersections array. In merging phase, only one of this point is used, the
other one being ignored. Another observation is that there can be intersections points
between the ray and horizontal lines or vertical lines that do not belong to the grid.
This points are eliminated during the intersections computing.

Construction of AT. Construction of AT is tied to the construction of A. During
the construction of A, we may easily count how many rays intersects a pixel. Knowing
this in advance, give us information about how many non-zero elements every row of
AT contains. This allow a more efficient way to allocate memory for storing of AT.
The algorithm of transposing the matrix has an O((w +h)M) complexity. Even if M
is very large, computing AT is fast because the matrix is very sparse. Moreover, AT

is computed only one time, then it is stored. The above algorithms first allocate the
necessary amount of memory needed to store the whole matrix. Then the arrays of
pointers to the beginning of the row is initialized because we already know how many
elements each row of AT has. Then for every row and for every element in the row,
the value is copied in AT.

3.2. Software design and implementation

Below is the class diagram of the software. All iterative solvers are inherited
from the abstract class Algorithm. They implement Iterate method and they use
an abstract Matrix class which offers only GetRow methods. Some algorithms, like
Kaczmarz Extended use TransposeMatrix class. Storage of a matrix is made by Ma-
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trixCRS class. MatrixCRS Compact class is used when the memory block where the
matrix is stored is compact ( this is the case of transpose matrix ). TransposeMa-
trix groups together a matrix and its transpose. Construction of every matrix row is
handled through the implementation of the abstract method CreateRow of Scanning-
Procedure. It uses methods from Geometry class to perform get the intersections.
RegularizationMatrix represent a matrix used for regularization. RegularizedMatrix
groups a Matrix and a RegularizationMatrix to provide to the algorithms in a trans-
parent way, a regularized matrix.

Fig. 4. Class diagram.

4. Numerical experiments

For the 256 × 256 resolution exact images in figures 5 and 6, we constructed the
scanning matrix A as in figures 1 and 2, with 210 sources, 512 detectors, αinitial =
0o, αfinal = 210o and a fan-beam angle of 30o. This gave us the dimensions of A as
M = 210 × 512 = 107520 and N = 256 × 256 = 65536. Then, for each of the two
exact images, xex from figures 5 and 6 we constructed a consistent system of the form
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Fig. 5. Original image O1. Fig. 6. Original image O2.

Fig. 7. Kaczmarz for O1. Fig. 8. Kaczmarz for O2.

(1), with b0 defined as b0 = Axex. Then b0 was perturbed as (see section 1)

b = b0 + pert, pert = 5%· ‖ b0 ‖ ·rand, (10)

with rand a randomly generated vector with unitary norm. The inconsistent least
squares problem (1) was solved by applying 20 iterations with the classical Kaczmarz’s
algorithm (see [1], [6]) and the three methods from section 2. The results for classical
Kaczmarz are presented in figures 7 and 8, whereas for the other three algorithms in
table 2. We can see that the classical Kaczmarz algorithm doesn’t give anymore a
good approximation for x0

LS . Then, we regularized the problem (1) as in (2), with
the matrix L constructed in the following two different ways. First, we used L = I,
where I is the identity matrix N × N . Second, we used L constructed as follows: for
each i ∈ 1 . . . n, let Hi be the set of horizontally neighbour pixels of i, Vi the set of
vertically neighbour pixels and Di the set of diagonally neighbour pixels of i.
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Table 1. Regularization using L = I and α = 30

Time= 8.2sec Error= 30.3878 Time= 8.8sec Error= 76.2955
K

E

Time= 5.5sec Error= 11.9268 Time= 5.5sec Error= 26.0962

C
G

Time= 11.9sec Error= 10.9268 Time= 11.9sec Error= 23.7918

K
E

C
G

Table 2. No regularization
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Time= 9sec Error= 7.2383 Time= 8.97sec Error= 38.5579

K
E

Time= 6sec Error= 4.9046 Time= 6.02sec Error= 34.9836

C
G

Time= 13sec Error= 4.9041 Time= 13sec Error= 34.9828

K
E

C
G
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Table 3. Regularization using L from (11) and α = 20

Time= 9.5sec Error= 4.6128 Time= 9.5sec Error= 26.6141
K

E

Time= 6.4sec Error= 3.8161 Time= 6.4sec Error= 23.7096

C
G

Time= 13.7sec Error= 3.8097 Time= 13.7sec Error= 23.8274

K
E

C
G
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For each j ∈ 1 . . . n

(L)ij =























(L)ij = wh, if j ∈ Hi

(L)ij = wv, if j ∈ Vi

(L)ij = wd, if j ∈ Di
∑n

k=1
|(L)ik|, if j = i and k 6= i

0, otherwise

(11)

In our experiments we used wh = −1, wv = −1, wd = −1/
√

2. The results are
presented in tables 2 and 3.
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