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A weighted Kaczmarz algorithm

in image reconstruction

Andrei Băutu∗♮, Elena Băutu∗∗♮ and Constantin Popa∗∗♮

The reconstruction of images in borehole electromagnetic geotomography gives rise

to large sparse rank-deficient linear least squares problems. From technical reasons, the

underground area scanning process is limited by the positions of electromagnetic wave sources

and receptors in the boreholes made for this. As a consequence, the reconstructed images by

using classical Algebraic Reconstruction Techniques are not always satisfactory because of

“shadows” created by the null space of the system matrix. For overcoming these difficulties,

we propose in this paper a weighted Kaczmarz algorithm. The weights are predefined for

each hyperplane of the system of equations. A convergence analysis of the new method

together with some numerical experiments are also presented.

1. Introduction

For numerical solution of problems arising in image reconstruction from pro-
jections in computerized tomography, a special class of iterative algorithms, called
Algebraic Reconstruction Techniques (ART, for short) has been designed in early
80’s. They are essentially based on the original Kaczmarz’s projection algorithm (see
[4]) and use in an efficient manner the “row-by-row” generation of the reconstruction
matrix. The development of ART has been done in parallel in different directions
(see for an almost complete overview the well known monograph [2]). One of them
is related to the introduction of some parameters in the relaxation process, and al-
though this idea can be already found in the original paper by Kaczmarz [4], we may
consider that the first essential step has been made by Herman, Lent and Lutz in [3].
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In what follows we shall briefly describe their result. Let in this sense A be an m× n

matrix and b ∈ R
m such that the system

Ax = b (1)

is consistent. We shall denote by AT , Ai 6= 0, N(A), R(A), S(A; b) the transpose,
i-th row, null space, range of A and the set of solutions of (1); also 〈·〉, ‖ · ‖ will
denote the euclidean scalar product and norm on some space R

q. Usually in CT
image reconstruction problems the matrix A is also rank-deficient (N(A) 6= 0), thus
S(A; b) contains an infinity of elements among which the (unique) minimal norm one
will be denoted by xLS . Then, Herman, Lent and Lutz (HLL) version of Kaczmarz’s
algorithm can be written as follows:
Algorithm HLL (simplified version): Let x0 ∈ R

n; for k = 0, 1, . . . do

x = xk

for i = 1 : m

x = x − ωi
〈xk,Ai〉−bi

‖Ai‖2 Ai (*)

end for
xk+1 = x

(2)

where ωi > 0 are some fixed weights.

Theorem 1. ([3]) For any x0 ∈ R
n, if the weights ωi satisfy

max
1≤i≤m

|1 − ωi| < 1 ⇔ ωi ∈ (0, 2), ∀i = 1, . . . , m, (3)

then the sequence (xk)k≥0 generated by the HLL algorithm converges to a solution of

(1). If x0 = 0, then limk→∞ xk = xLS.

Remark 1. For ωi = 1, ∀i = 1, . . . , m we get in (2) the original Kaczmarz’s

projections algorithm. In this case, the step (*) in (2) corresponds to the orthogonal

projections of x onto the hyperplane Hi defined by the i-th equation in (1), whereas

the cases ωi < 1 and ωi > 1 are showed in Figure 1.

Fig. 1. Geometric interpretation of step (*) in (2).
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2. The new Weighted Kaczmarz algorithm

If we want to create a new set of weights ωi, i = 1, . . . , m for (2), we have
to follow two steps: first, to find a clear scope of our construction and second to
prove that these weights verify the convergence assumption (3). According to the
first aspect, let i ∈ {1, . . . , m} be fixed and x the current approximation before the
projection onto Hi hyperplane. Let us also suppose that

Si =

m
∑

j=1

aij 6= 0. (4)

If r = Ax − b ∈ R
m is the residual, we construct the new approximation x̄ =

(x̄j)j=1,...,n ∈ R
n by modifying the components xj of x as

x̄j = xj −
ωij

Si

ri, j = 1, . . . , n, (5)

where ωij > 0 and ri is the i-th component of r. In this way, if r̄ = Ax̄− b is the new
residual we get

r̄i = (Ax̄ − b)i =

n
∑

j=1

aij x̄j − bi

=

n
∑

j=1

aijxj − bi −
n

∑

j=1

aij

ωij

Si

ri

= ri



1 − 1

Si

n
∑

j=1

aij ωij



 (6)

The idea of the construction of new weights ω̄i in (2) can then be related to the
reduction of the absolute value of ri, which means

∣

∣

∣

∣

∣

∣

1 − 1

Si

n
∑

j=1

aij ωij

∣

∣

∣

∣

∣

∣

< 1 (7)

or

0 <

n
∑

j=1

aij ωij < 2Si, ∀i = 1, . . . , m. (8)

Remark 2. The smallest value in (7) is obtained when

n
∑

j=1

aij ωij = Si, (9)

for which r̄i = 0.
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Now, let us observe that, if the weights ωij are of the form

ωij = ciaij , ∀j = 1, . . . , n, (10)

for a ci 6= 0, then the transformations (5) can be written as

x̄ = x − ci

Si

Ai(bi − 〈x, Ai〉) = x − ci‖Ai‖2

Si

· 〈x, Ai〉 − bi

‖Ai‖2
Ai (11)

According to the above considerations, the New Weighted Kaczmarz algorithm (NWK)
that we propose in this paper is the following.
Algorithm NWK: Let x0 ∈ R

n; for k = 0, 1, . . . do

x = xk

for i = 1 : m

x = x − ω̃i
〈x,Ai〉−bi

‖Ai‖2 Ai (*)

end for
xk+1 = x

(12)

with

ω̃i =
ci‖Ai‖2

Si

, i = 1, . . . , m (13)

and ci 6= 0 from (10).

Remark 3. If

ci =
Si

‖Ai‖2
, i = 1, . . . , m (14)

we get ω̃i = 1, i.e. the classical Kaczmarz’s algorithm (see [4]). This corresponds to

the choice ωij =
aijSi

‖Ai‖2 , j = 1, . . . , n for which the “ideal” case (9) holds (which is well

known for the Kaczmarz’s iteration in which, by projecting onto the i-th hyperplane

Hi the i-th equation in (1) is satisfied, thus the residual is reduced to zero).

For the convergence analysis of the algorithm NWK we shall restrict ourselves
to the case of electromagnetic geotomography (EG, for short; see [8]). In this context
the matrix coefficients satisfy

0 ≤ aij ≤
√

2, (15)

(see Figure 2; the pixels are considered squares with unitary edges) and for any
i ∈ {1, . . . , m} the i-th ray will intersect at least one pixel Pj , i.e. aij 6= 0 which gives
us Si 6= 0, that is the weights ω̃i in (13) are always well defined. Moreover, for the
sum Si we have (for n = q2)

q = Smin ≤ Si ≤ Smax =
√

q2 + (q − 1)2 < q
√

2 (16)

Now we are able to prove the convergence result for the algorithm NWK.
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Fig. 2. Scanning process in EG.

Theorem 2. Let x0 ∈ R
n be the initial approximation. There exists two values

ǫ1, ǫ2 ∈ (0, 1) such that, if the constants ci in (13) satisfy

1 − ǫ2
Si

‖Ai‖2
< ci < 1 + ǫ1

Si

‖Ai‖2
, i = 1, . . . , m, (17)

then the sequence (xk)k≥0 generated by the NWK algorithm converges to a solutions

of (1). Moreover, if (17) holds and x0 = 0, then limk→∞ xk = xLS.

Proof. Step 1. Let i ∈ {1, . . . , m} be arbitrary fixed and B−(i), B+(i) ⊂
{1, . . . , n}, the sets of indices defined by (see (15))

B−(i) = {j, 0 ≤ aij < 1} , B+(i) = {j, 1 ≤ aij ≤
√

2}. (18)

Then, we get

q ≤ ‖Ai‖2 =

n
∑

j=1

a2
ij ≤ M, (19)

where
q < M = card(B−(i)) + 2 card(B+(i)) < 2q. (20)

From (16) and (19)–(20) we then get

−1 + ǫ1 ≤ 1 − ‖Ai‖
Si

≤ 1 − ǫ2, (21)

where

ǫ2 =
q

√

q2 + (q − 1)2
∈

(

1

2
, 1

)

; ǫ1 = 2
M

q
∈ (0, 1) . (22)

Step 2. According to Theorem 1, the convergence condition for the NWK algorithm
will be

|1 − ω̃i| < 1 ⇔ −1 < 1 − ci‖Ai‖2

Si

< 1, ∀i = 1, . . . , m. (23)
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But using (21) we obtain

−1 + ǫ1 +
‖Ai‖2

Si

(1 − ci) ≤ 1 − ci‖Ai‖2

Si

≤ 1 − ǫ2 +
‖Ai‖2

Si

(1 − ci). (24)

Then, according to (23) we may ask that

1 − ǫ2 +
‖Ai‖2

Si

(1 − ci) < 1 (25)

and

−1 < −1 + ǫ1 +
‖Ai‖2

Si

(1 − ci). (26)

But, if ci (i = 1, . . . , m) are as (17), the previous two inequalities hold and the proof
is complete.

3. The constrained version

Although the components of the original image xex satisfy

0 ≤ xex
i ≤ 1, ∀i = 1, . . . , n, (27)

during the computations with NWK algorithm (12) and because of the structure
of N(A) (see [6]), it may happen that components outside [0, 1] can appear in the
solution xLS . For eliminating this unpleasant aspect, which can generate “shadows”
in the reconstructed image, in [7] was proposed a constraining strategy. According
to this, after each iteration of (12) we must “force” the components of the current
approximation xk to remain in [0, 1]. By adapting these ideas to our NWK algorithm
we get the following “constrained” version of if.
Algorithm CNWK: Let x0 ∈ R

n; for k = 0, 1, . . . do

x = xk

for i = 1 : m

x = x − ω̃i
〈x,Ai〉−bi

‖Ai‖2 Ai

end for
for i = 1 : m

xk+1
i = min(1, max(0, xi))

end for

(28)

The formulation of the CNWK algorithm (28) tells us that Theorem 3 in [7] directly
applies in the consistent case of (1) and we get the following convergence result.

Theorem 3. If ω̃i are as in (13) and ci satisfy (17), then the sequence (xk)k≥0

generated with the algorithm (28) converges to a solution of (1). Moreover, for x0 = 0
we have limk→∞ xk = xLS.
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Fig. 3. Original image 1 and NWK and CNWK reconstructions.

Fig. 4. Original image 2 and NWK and CNWK reconstructions.

Fig. 5. Original image 3 and NWK and CNWK reconstructions.

Fig. 6. Original image 4 and NWK and CNWK reconstructions.

4. Numerical experiments

In order to test NWK and CNWK algorithms, we selected a set of four images
with various resolution and complexity (as in the numerical experiments from [7]).
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The first three images have few unique colors, but their complexity increases because
the resolution and/or the content complexity grows (8 × 8, 12 × 12, and 12 × 12
pixels). The complexity of the fourth image is much larger because of a greater
resolution (40 × 40 pixels), color depth (64 unique colors), and complexity. The
numbers of iterations used in these experiments for NWK and CNWK algorithms
where respectively 50, 100, 100, and 200. All the experiments from below show the
good behaviour of our NWK and CNWK algorithms.
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