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Mathematical aspects of the study
of the cavitation in liquids

Alina Barbulescu∗ and Cristian Stefan Dumitriu∗∗

In a liquid, an ultrasonic field can carry along small bubbles or can produce cavi-
tation bubbles, whose movements determine drastic effects as: erosion, unpassivation and
emulsification, chemical reactions, sonoluminescence, pressure variation, that have as a effect
oscillations whose frequencies differ from that of the incident ultrasound wave.

We found out that the frequency of these electrical signals, generated by the cavitation

bubbles, at their exterior, corresponds to the frequency of the mechanical waves, generated

by the collapse of the cavitation bubbles. We present the mathematical models for the

voltage induced by the cavitation bubbles in diesel.

1. Experimental set-up

The cavitation is the process of the appearance of one or many gas cavities in
a liquid. An ultrasonic field that goes over a liquid can produce or move cavitation
bubbles.

To make the study of the ultrasonic cavitation in liquids, we used an ultrasound
generator. The frequency of the ultrasound produced by it is constant.

The experimental set-up consists in a core-tank, which contains the studied
liquid. Two metallic electrodes are put in the tank. They are connected with an
acquisition card, that digitizes analog signals and stores the resulting digital pattern
in the on-board memory.

In some papers ([2], [4], [6]) we studied the voltage induced in water by the
cavitation bubbles produced by the ultrasonic generator.

Now we shall make a comparative study of the signals captured in diesel and in
crude petroleum.

∗ “Ovidius” University, Constanţa, Romania e-mail: abarbulescu@univ-ovidius.ro
∗∗ Utilnavorep S.A., Constanţa, Romania.
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2. Definitions

In order to discuss our results we need some notions concerning the time series
analysis.

Definition 1. A discrete time process is a sequence of random variables (Xt; t ∈
Z).

Definition 2. A discrete time process (Xt; t ∈ Z) is called stationary if:

(∀)t ∈ Z, E(X2
t ) <∞,

(∀)t ∈ Z, E(Xt) = µ, (∀)t ∈ Z,

(∀)h ∈ Z, Cov(Xt, Xt+h) = γ(h).

where E(X) is the expectation value of the random variable X and Cov(X,Y ) is the
correlation of the random variables X and Y.

Definition 3. The function defined on Z,by:

ρ(h) =
Cov(Xt, Xt+h)√
σ2(Xt)σ2(Xt+h)

=
γ(h)

γ(0)

is called the autocorrelation function of the process (Xt; t ∈ Z).
σ2(Xt) is the variance of the variable Xt.
The most used estimator of ρ(h) is the empiric autocorrelation function, ACF:

ρ̂(h) =

∑n−|h|
t=1 (xt − x)(xt+|h| − x)∑n

t=1(xt − x)2
,

where xt is a realization ofXt, h is the lag, n is a fixed natural number and x =
∑n

t=1 xt

n
is the arithmetic mean of the values x1, ..., xn.

Definition 4. If (Xt; t ∈ Z) is a stationary process, the function defined by:

τ(h) =
Cov(Xt −X∗

t , Xt−h −X∗
t−h)

D2(Xt −X∗
t )

, h ∈ Z+

is called the partial autocorrelation function, where X∗
t (X∗

t−h) is the affine regression
of Xt (Xt−h ) with respect to Xt−1, ..., Xt−h+1.

The most used estimator of τ(h)τ(h) is the empiric partial autocorrelation func-
tion, PACF.

Definition 5. Consider

B(Xt) = Xt−1

Φ(B) = 1− ϕ1B − ...− ϕpB
p, ϕp 6= 0,

Θ(B) = 1− θ1B − θ2B2 − ...− θpB
q, θp 6= 0,

∆dXt = (1−B)dXt.
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Fig. 1. The voltage induced in diesel.

The process (Xt; t ∈ Z+) is called an autoregressive integrated moving average process
of p, d and q orders, ARIMA (p, d, q), if :

Φ(B)∆dXt = Θ(B)εt,

where the absolute values of the roots of Φ and Θ are greater than 1 and (εt; t ∈ Z)
is a white noise.

If d = 0 = q, the ARIMA(p, d, q) process is an autoregressive of p order, AR(p),
process.

If p = d = 0, the ARIMA(p, d, q) process is an moving average of q order, MA(q)
process.

If d = 0, the ARIMA(p, d, q) process is an autoregressive moving a-verage of p
and q orders, ARMA(p, q) process.

Remarks. The ARMA(p, q) process is stationary.

3. Results

In the Figure 1 we can see the electrical signal induced by the cavitation in diesel
(voltage, function of time), captured by the acquisition card and processed by us.

We made the analysis of this signal. It can be seen that there are some aberrant
values, that must be removed. After this process, the remained values were studied.

First, the autocorrelation function (ACF) of the voltage, at the lags between
1 and 16, was calculated and the confidence interval, at the confidence level 95%,
was determined.
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Fig. 2. The coefficients of the model ARIMA(3, 0, 6).

The values of ACF were outside the confidence interval. The form of the ACF
was an exponential decreasing and that of PACF was of damped sine wave oscillation.
These remarks enable us to think that the process could be of ARIMA type. We also
thought at this type of models because the simple models are not convenient point of
view of the errors. Point of view of physics, the ARIMA models found by us ([2], [4],
[6]) for the signals induced in water satisfy the experimental and theoretical results
known from the literature.

Forty models were analyzed. To chose between them, the Schwarz (SBC) and
Akike (AIC) criteria were used. The preferred values were that of the SBC criterion.
The selected model – ARIMA(3, 0, 6) – had the least SBC value.

The fist step was to test the hypothesis H0: the coefficients of the model are
zero, at the significance level 5%.
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The values of the model coefficients and of the t-ratio are given in the Figure 2.
The values of the t-ratio (the Figure 2, the last nine rows and the column 4)

are greater than the values of the quantila of the Student function with 5 033 liberty
degrees, at the significance level 5%.

Also, the probabilities to accept the hypothesis H0 are practically zero (the last
column of the Figure 2), so H0 is rejected.

In order to prove that the model is a good one, point of view of statistics, the
autocorrelation function and the partial autocorrelation function of the residuals were
calculated. The graphs of these functions can be seen in the Figures 3 and 4 and their
values, in the Tables 1 and 2.

Fig. 3. The ACF of the residuals in the model ARIMA(3, 0, 6).

Fig. 4. The PACF of the residuals in the model ARIMA(3, 0, 6).

In the Figures 3 and 4 we see that the values of the autocorrelation function
and of the partial autocorrelation function of the residuals are inside the confidence
intervals, at 0.95 confidence level.

The following data are provided by the table 1:
– the lags, between 1 and 16 – in the column 1;
– the autocorrelation of the errors – in the column 2;
– in the column 4 – the values of the Box-Ljung statistics, which are in the

interval [0.184, 18.572], so, less than ℵ2(15) ;
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– in the last column: the probability to accept the hypothesis that the residuals
form a white noise, which are between 0.741 and 0.968.

The values of the partial autocorrelation function, at the lags between 1 and
16, are given in the second column of the Table 2. They are very small. Also, the
modulus of the standard errors (Tables 1 and 2) is small (0.014).

So, the hypothesis that the residuals form a white noise can be accepted. There-
fore, the model is well selected.

Table 1

The values of PACF of the residuals

Table 2

The values of ACF of the residuals
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4. Conclusions

In the experiments made we found out that when an ultrasound propagates
through a liquid, a potential difference between two points appears. It has both
harmonic and subharmonic components.

The equation of the voltage induced in diesel, at 80 W is:

Vn − 2.3798Vn−1 + 2.2495Vn−2 − 0.8465Vn−3 = εn − 1.279εn−1+

+0.8222εn−2 + 0.0313εn−3 − 0.1189εn−4 + 0.0998εn−5 − 0.0416εn−6,

where n ∈ N, n ≥ 3 and {εn, n ∈ N} is a white noise.
An analogous study, made for the voltage induced in crude petroleum, in the

same condition as for the diesel (Figure 5), conduced us to an ARIMA(3, 1, 4) model,
without a constant term.

It was expected that the results don’t differ too much, since the chemical com-
positions of the too liquids were not too different.

The two models differs also from that obtained in water:
– at 80 W, which was ([2]) an AR(2), given by:

Vn = 1.5636298Vn−1 − 0.89193194Vn−2 + εn,

where n ∈ N, n ≥ 3 and {εn, n ∈ N} is a white noise.
– at 120 W, which was of ARMA(2,1) type, given by ([6]):

Vn = 1.3006553Vn−1− 0.7035790Vn−2 + εn − 0.6128040εn−1,

where n ∈ N, n ≥ 3 and {εn, n ∈ N} is a white noise.
– at 180 W, which was of ARIMA(2, 1, 0) type, given by ([4]):

(1− 1.2313304B+ 0.84409B2)(1 −B)Vn = εn,

where n ∈ N, n ≥ 3 and {εn, n ∈ N} is a white noise.
So, we proved that the voltage induced by the cavitation bubbles in liquids

depends on the liquids and on the power of the ultrasonic generator.
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Ovidius, Seria Matematica, vol. 10 (2), 2002, pp. 1–7

[3] A. Barbulescu, V. Marza, Some results regarding the ultrasonic cavitation, Acta
Universitatis Apulensis, Mathematics–Informatics, Part B, no. 7/2004, pp. 31–38

[4] A. Barbulescu, V. Marza, Some models for the voltage induced in a liquid by
cavitation, Proceedings of Conference 2004: Dynamical systems and applications,
Antalya, Turkya, 5-10.07.2004, pp. 158–165.



14 alina barbulescu and cristian stefan dumitriu

[5] A. Barbulescu, V. Marza, Electrical phenomena induced by cavitation in oil, Sci-
entific Bulletin of the Politehnica University of Timişoara, Transactions on Me-
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Evolutionary Algorithms in Image Reconstruction
from Limited Data

Andrei Băutu∗♮ , Elena Băutu ∗∗♮ and Constantin Popa∗∗∗♮

We consider in this paper two classes of evolutionary methods for improving the ART

Kaczmarz procedure in case of data limitation: genetic algorithm and particle swarm op-

timization, respectively. They are combined in various ways with the classical Kaczmarz

projection method, in two classes of hybrid algorithms. Experiments ilustrating the effi-

ciency of these new methods are presented for consistent least-squares formulation of some

image reconstruction problems.

1. Limitation of data in practice and theory

In this section we shall analyse from both practical and theoretical viewpoints
the “data limitation” aspect appearing in two very important practical problems:
medical computerized tomography (MCT, for short) and electromagnetic geotomog-
raphy (EGT, for short). The corresponding idealized and simplified (two dimensional)
situations are presented in Figures 1 and 2 below. In Figure 1 we supposed that for
each position of the CT scanner, only one X-ray is emited (SiR, i = 1, 2, . . . ,m). Si

is the source and R is the receptor; the body-section which is analysed is “contained”
in the rectangular region ABCD.

Figure 2 describes an EGT problem; ABCD is the rectangular underground re-
gion which is analysed, AB and CD are holes in which are introduced electromagnetic
waves sources S1, S2, . . . , Sp and receptors R1, R2, . . . , Rq, respectively (see [2]).

In both cases, the rectangular regions ABCD are uniformely discretized in a
number n of pixels, P1, P2, . . . , Pn (see figure 3).

∗ “Mircea cel Bătrân” Naval Academy, Constanţa, Romania, e-mail: abautu@anmb.ro
∗∗ “Ovidius” University, Constanţa, Romania, e-mail: erogojina@univ-ovidius.ro
∗∗∗ “Ovidius” University, Constanţa, Romania, e-mail: cpopa@univ-ovidius.ro

♮ This paper was supported by the PNCDI INFOSOC Grant 131/2004.
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Fig. 1. The MCT problem.

Fig. 2. The EGT problem. Fig. 3. Pixels discretization.

The mathematical model of the reconstruction procedure, for both EGT and
MCT problems is a linear least-squares formulation,

min ‖Ax− b‖ (1)

with A an m × n matrix and b ∈ Rm. The right hand side b is constructed by
measuring the X-rays or electromagnetic waves intensities at sources and receptors
(see [3], [5] for details). Concerning the matrix A, the number n of its columns is
exactly the number of pixels in the discretization from figure 3, whereas the number
m of its rows corresponds to the number of X-rays in the MCT case (SiR denoted
by Ei, i = 1, 2, . . . ,m) or electromagnetic waves source-receptor combinations in the
EGT case (SkRl, k = 1, . . . , p, l = 1, . . . , q denoted by Ei, i = 1, 2, . . . ,m = pq).
The value of the (A)ij component is the length of the segment intersection between
the Ei ray and the pixel Pj (see Figure 4). If such an intersection is empty, the
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Fig. 4. Matrix coefficients.

corresponding (A)ij coefficient is set to 0. Following such a construction, the matrix
A becomes sparse, rank-defficient and ill-conditioned (see [3] for details). Moreover,
because of measurement errors, the right hand side b fails to belong to the range of
A, thus the problem (1) becomes inconsistent. In the present paper we shall consider
only the consistent case of (1) and let the inconsistent one for a future work.

Remark 1. In any of the above mentioned cases, for the discrete reconstruction
problem (1), in practical applications we are looking for its unique minimal norm
solution, denoted in what follows by xLS.

By “data” associated to problem (1) we understand the matrix A and the vector
b. Moreover, because the number n of pixels in the discretization from figure 3 is
imposed by technical reasons, we may consider our “data” as essentially determined
bym, the number of X-rays/electromagnetic waves that are used for scanning ABCD.
From a practical point of view, this number is limited at least by the following two
reasons:

• for MCT – a too big number m of X-rays used for scanning a body can become
dangerous for its health;

• for EGT – in practice, the underground analysed regionABCD is very big, thus
the length of the holes AB and CD is so; then, if we would like a “complete”
scanning of the area we would need a very big number of sources and receptors,
which is not possible from technical reasons.

From a theoretical view point the above described “data limitation” can be in-
terpreted according to some properties of the fundamental vector subspaces associated
to the problem matrix A. In this sense we shall denote by At, N(A), R(A), A+ the
transpose, null space, range and Moore-Penrose pseudoinverse of A and by S(A; b),
the set of all solutions of (1) in the consistent case, in which (1) can be written in the
classical formulation

Ax = b. (2)
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It is well known (see [2]) that

S(A; b) = xLS +N(A), xLS⊥N(A), (3)

where⊥ denotes the orthogonality w.r.t. the euclidean scalar product 〈·, ·〉. According
to (3), “data limitation” in problem (2) would mean that the null space N(A) has an
“enough big” dimension (e.g. a factor c times the total dimension n of the support
space Rn). The above mentioned practical view points about data limitation are
fitting into this considerations because, if the number of rays m is strictly less than
the number of pixels n, then the dimension of N(A) is positive (but we may have
a positive dimension for N(A) also for m > n; see the example from below and the
results in Table 1. As a consequence, because any solution x∗ ∈ S(A; b) is given by

x∗ = xLS + PN(A)(x
∗), (4)

where PS(x) denotes the (euclidean) orthogonal projection onto the subspace S, if
the null space N(A) is “big enough” w.r.t the support space Rn (see the above con-
siderations and the remark 1) and x∗ has a corresponding “big” component, then the
difference

x∗ − xLS = PN(A)(x
∗) (5)

becomes important enough to destroy the accuracy of the reconstructed image. All
these considerations are ilustrated by the following example in which a real image
reconstruction EGT problem is simulated (the same procedure will be used in the
experiments from section 3 of the paper).

Example 1. Our simulation procedure is the following: we consider an image
artifficially created (see Figure 5) as a vector xex ∈ Rn, for a given number n ≥ 2 of
pixels (as in Figure 3). Each component xex

i is a real number in the interval [0, 1] and
corresponds to the grey maping scale from Figure 6. This gives us the grey original
image in Figure 5 (in this case we have n = 144). Then, the original image area was
scanned as in Figure 2, by using p ≥ 1 sources and q ≥ 1 receptors, equally distributed
on AB and CD. In this way we obtained the m × n system matrix A (see Figure 4)
with m = pq.

Table 1

Limited data tests characteristics

Scanning (p = q) m n rank(A) dim(N(A))

6 × 6 36 144 35 109

8 × 8 64 144 61 83

10 × 10 100 144 96 48

12 × 12 144 144 120 24

16 × 16 256 144 131 13

24 × 24 576 144 133 11

36 × 36 1296 144 133 11

48 × 48 2304 144 133 11



image reconstruction 19

Fig. 5. Original image (upper left) and reconstruction results for p sources and p receivers
(where p ∈ {6, 8, 10, 12, 16, 24, 36, 48}).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6. Grey mapping scale
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The right hand side b ∈ Rm was defined by

b = Axex, (6)

such that the problem (1) becomes consistent. For the tests from figure 5 we used
p = q (i.e. m = p2) with p ∈ {6, 8, 10, 12, 16, 24, 36, 48} (for p ∈ {6, 8, 10, 12} we have
m ≤ n, i.e. the “practical” limited data case). The values of the rank(A) and dim(A)
were computed in each case and are presented in Table 1. The original image xex

from Figure 5 has components in N(A), thus (see (5))

xex 6= xLS . (7)

We then applied to (1) the classical Kaczmarz algorithm (KA, for short) with
the initial approximation x0 = 0 (which gives us xLS as the limit of the sequence of
approximations; see e.g. [2], [3], [5]). After 100 iterations for the cases presented in
Table 1 we got the results from Figure 5. We can observe there that in the “practical
limited data” situations (p = q = 6, 8, 10, 12) the reconstructed images (which corre-
sponds to xLS) are far from the original one (the first 5 images following the original
one), whereas for “enough much data” (e.g. p = q = 24, 36, 48) the reconstructed
images are closer to the original, but still not satisfactory (this because also in these
cases – see Table 1 – the null space of A has dimension 11, which is still big w.r.t.
the support space dimension n = 144).

Thus, in order to get a good enough approximation of x∗, with Kaczmarz’s
algorithm used in Example 1, we need to start it with an initial approximation x0 ∈ Rn

such that
PN(A)(x

0) ≈ PN(A)(x
∗). (8)

According to (7) we will then have

lim
h→∞

xh = PN(A)(x
0) + xLS ≈ PN(A)(x

∗) + xLS = x∗, (9)

thus, a much better approximation for x∗. For generating such a “good” initial
approximation x0 as in (8) we decided to use two evolutionary algorithms. They will
be described in the next section, whereas in the last one we shall combine one of them
with the previous Kaczmarz algorithm in our numerical experiments.

2. Evolutionary Algorithms

Evolutionary algorithms, like genetic algorithms (GA) and particle swarm
optimization algorithms (PSO), can be used to solve problems like ((1)) and ((2)).
Evolutionary algorithms are stochastic algorithms that use a set of candidate solutions
(called individuals) which evolve in time towards better solutions. Each individual
is rated by a fitness function. The algorithms presented in this paper use a fitness
function that minimizes the errors defined as

ff (x) =
1

1 + ‖Ax− b‖ , (10)

where x ∈ [0, 1]n is the current image (see Example 1).
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2.1. Genetic Algorithm

The GA, which we tested, is an extension of the unary function optimization GA
described in [4]. In the GA view, a possible solution is an organism that is adapting
to the its environment in order to fit better within it. A GA’s set of possible solutions
is called population. Each solution from the population is called a chromosome.
Data structures that define a chromosome are called genes. Most genetic algorithms
work by evolving their population with the help of three genetic operators: crossover,
mutation, and selection.

Our GA implementation uses a fixed size population of pop−size chromosomes,
each chromosome being a vector with elements from [0, 1] (the chromosome’s genes).
The values of the ith gene represents the absortion value of the ith pixel in the image.

Crossover is a binary operator which combines genes from a two chromosomes
(called parents) to obtain two of new chromosomes (called offsprings), which replace
their parents in the population. Chromosomes are selected for mating with cross−rate
probability. For each pair of chromosomes, a random crossover point is selected and
genes to the left of that point are swapped between chromosomes.

Mutation is a unary operator that affects the genes of a single chromosome.
Each gene suffers mutation with mut−rate probability. It modifies each gene with a
given probability by replacing the old value with a randomly generated new value.

Selection is a population-wide operator that creates a new population based on
the old one. There are many possible selection operators available, but we imple-
mented a classical Monte Carlo selection scheme (called roulette wheel selection).

For our genetic algorithm the values range of the above described parameters are
the following: for pop−size from 10 to 200, mut−rate—1% to 25%, cross−rate—30%
to 70%.

2.2. Particle Swarm Optimization Algorithm

We tested an n-dimensional extension of the PSO algorithm described in [4]. In
the PSO view, a possible solution is an organism that is moving in the search space in
order to find better places than their current location. The set of possible solutions is
called swarm). Each solution from the swarm is called a particle. A particle state
is defined by current position, velocity, memory, and neighbours.

In our implementation, a particle is a vector of n tuples of reals from [0, 1].
The values in the ith tuple represent the current position (i.e. pixel absortion value),
velocity and best so far position of the particle in ith search dimension.

The number of particles is denoted by part−count parameter. Each particle
evolves based on its own memory and its neighbours memory (only one neighbour in
our implementation). On each iteration, velocity and position components of particles
are updated using the formulas:

v′t+1 = vt · inertia+ rand() · cognitive · (bt − pt) + rand() · social · (nt − pt), (11)

vt+1 = min(vmax,max(−vmax, v
′
t+1)), (12)

p′t+1 = pt + vt+1, (13)
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pt+1 = min(1,max(0, p′t+1)). (14)

The values used for the above described parameters are the following: for part−count
from 10 to 100, inertia—1% to 50%, cognitive and social—75% to 200%, vmax—0.1
to 1.0.

2.3. Hybrid Algorithms

As we presented in the experiments section of the paper, the genetic algorithm
performed is quite bad compared to PSO and Kaczmarz algorithms. Hybrid algo-
rithms from Kaczmarz and PSO were created in order to combine the benefits of this
two algorithms.

First hybrid algorithm (FHA) has two stages: during the first stage it runs the
PSO algorithm described earlier; in the second stage, it uses the best solution from
the first stage as the starting approximation for Kaczmarz algorithm.

Second hybrid algorithm (SHA) runs Kaczmarz and PSO algorithms in an al-
ternate manner, by applying for each particle, after each iteration of PSO one step of
the Kaczmarz algorithm.

3. Experiments

We present our results for four image reconstruction experiments. The simu-
lation procedure is the same as in Example 1. The four original images are showed
in Figure 6 and their characteristics in Table 2 (left to right, according to Figure 7).
For each image, we ran all five algorithms with various settings, and we present the
results after 100 iterations with the following parameters:

• KA: no settings required;

• GA: pop−size = 50, mut−rate = 5%, and cross−rate = 70%;

• PSO: part−count = 50, vmax = 1.0, inertia = 0.3, cognitive = 1.2, and
social = 1.2;

• FHA and SHA: same settings as for PSO.

Table 2

Test images properties

Image Size (pixels) Source Unique colors

Test 1 8 × 8 Drawing 9

Test 2 12 × 12 Drawing 8

Test 3 20 × 20 Scanned photo 71

Test 4 40 × 40 Scanned photo 177
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Fig. 7. Test images.

After 100 iterations, GA doesn’t produce a good image (Figure 8). We suspect
that a different encoding scheme or operators should be tried (there are many genetic
operators and they can be combined to form different algorithms).

PSO has some not very satisfactory results for Test 1 and Test 2 (see Figure 9)
and has no valid solution for Test 3 and Test 4 images.

For Test 1 and 2, KA found some images which are affected by noise (see Figure
10), which is common in (classical) Kaczmarz image reconstructions (see [3], [2]).
This noise is making further improvements difficult. For Test 3 and Test 4 it has no
satisfactory results.

FHA performed much better than PSO and a little better than KA (see Figure
11). Reconstructed images are affected by noise of the KA in the second stage of the
algorithm.

SHA found an almost perfect Test 1 and Test 2 solution and it found very
good solutions for Test 3 and Test 4 (see figure 12). It performed much better than
Kaczmarz algorithm alone or the other evolutionary algorithms presented in this
article. It seems that KA drives the reconstruction process towards the “good” image,
while PSO helps filtering the image in order to eliminate the noise.

Fig. 8. GA results after 100 iterations.

4. Conclusions and Future work

The consideration and results from this paper are at a very begining. The first
next step will be to apply them to inconsistent least-squares formulations of the type
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Fig. 9. PSO results after 100 iterations.

Fig. 10. KA results after 100 iterations.

Fig. 11. FHA results after 100 iterations.

Fig. 12. SHA results after 100 iterations.
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(1), whereas a further research will be concerned with a theoretical analysis of the
new obtained image reconstruction methods, together with comparisons with other
new and efficient techniques in the field (see e.g. [3]).
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The Dynamics of Systems Modeling
Acute Inflammation

Cristina Bercia∗

In this paper, we consider three-dimensional non-linear dynamical systems of predator-
prey type with nine parameters, which model the acute inflammation of the human body
due to an infection, defined clinically as sepsis.

We establish the domains in the parameters space where the equilibrium points exist

and the set of conditions for them to be local attractors. We also perform bifurcation analysis

and establish the types of dynamics of the systems. We obtain the global phase portrait

for each type of dynamics by numerical integration. Varying one or two of the parameters,

bifurcation diagrams are presented.

1. Introduction

In this paper we have considered two systems of ordinary differential equations
with 9 parameters which model the acute inflammation and septic shock of the human
body due to an infection or a trauma. The first model is presented in the paper of
Brause [1], the second one in Kumar et al. [2].

The differential systems, having 3 variables u = (u1, u2, u3), are of predator-prey
type

u′ = F (u), F (u) =




α1u1(1− u1)− α2u1u2

−β1u2 + u2(1− u2)(β2u1 + β3u3)
−γ1u3 + γ2h ((u2 − θ) /γ3)



 . (1)

Here u1 and u2 are concentrations, so they have values in [0, 1] and the domain of

system’s variables is D := [0, 1]2× (0,∞). The parameters αi, i = 1, 2, βi, γi, i = 1, 3,
and θ are strictly positive.

∗ Polytechnica University of Bucharest, Department of Mathematics, Romania, e-mail:
c.bercia@math.pub.ro
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Next, we shall study all the possible dynamics of these systems and for these we
need the stability and bifurcation analysis.

2. Brause’s system

In this case u ≡ (P,M,D), where P represents the influence of the pathogen
agent on the organism, M the immunological response which implies the macrophage
cells and D is the cell damage caused by infection. The number of macrophages grows
in the presence of P , while D will also cause M to grow. The amount of additional
damage is indicated by a sigmoid function, h(x) = 1

1+exp(x) , depending on M .

The system (1) has maximum four equilibria:

• E1 (0, 0, D1), where D1 =
γ2

γ1

(
1 + exp

(
− θ

γ3

)) ;

• E2 (0,M2, D2), where D2 =
β1

β3 (1−M2)
and M2 verifies the equation

f1 (M) ≡ γ1β1

(
1 + exp

(
M − θ
γ3

))
− γ2β3 (1−M) = 0 (2)

• E3 (1, 0, D1)
• E4 (P ∗,M∗, D∗) – the single interior equilibrium, where M∗ = α1

α2
(1− P ∗), D∗ =

γ2

γ1

(
1+exp

(
α1(1−P∗)−θα2

α2γ3

)) and P ∗ verifies the equation

g1 (P ) ≡ β2P +
γ2β3

γ1

(
1 + exp

(
α1(1−P )−θα2

α2γ3

)) − α2β1

α2 − α1 (1− P )
= 0 (3)

For the existence of the four equilibria we shall formulate the following two lemmata.

Lemma 1. The equilibrium points E1 and E3 exist in the domain D for every
parameter combinations.

Lemma 2. The equilibrium E2 exists in D iff

β1 ≤
γ2β3

γ1

(
1 + exp

(
− θ

γ3

)) := β
(2)
1 .

Proof. The function f1 in the left hand side of equation (2) is increasing, so
the equation has a single solution M2 ∈ [0, 1] if and only if f1 (0) ≤ 0 and f1 (1) ≥ 0

which are equivalent to β1 ≤ β(2)
1 . �

Lemma 3. a) Assume that α1 < α2. An unique interior equilibrium E4 exists

if and only if β
(1)
1 < β1 < β

(3)
1 , where

β
(1)
1 =

(α2 − α1) γ2β3

α2γ1

(
1 + exp

(
α1−θα2

α2γ3

)) , β
(3)
1 = β2 +

γ2β3

γ1

(
1 + exp

(
− θ

γ3

)) . (4)
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b) If α1 ≥ α2, then E4 exists and is unique if and only if β1 < β
(3)
1 .

Proof. The first component of E4 verifies the equation (3), g1 (P ∗) = 0. But
g′1 (P ) > 0, ∀P ∈ (0, 1), so the equation can have only one solution if and only if
g1 (0) < 0 < g1(1). These inequalities take the form α2β1

α2−α1
> γ2β3

γ1

(
1+exp

(
α1−θα2

α2γ3

)) ⇔

β1 > β
(1)
1 and β2 + γ2β3

γ1

(
1+exp

(
− θ

γ3

)) > β1. Note that M∗ ∈ (0, 1) ⇔
P ∗ > 1 − α2

α1
which is satisfied in case a). For b), the function g1 has the limit −∞

when P decrease to 1− α2

α1
, so we have an unique solution for g1 (P ) = 0⇔ g1 (1) > 0.

�

Remark 1. Always β
(1)
1 < β

(2)
1 < β

(3)
1 . Also, β

(1)
1 ≤ 0 for α1 ≥ α2.

So we proved the following

Proposition 1. i) For α1 < α2, 0 < β1 ≤ β(1)
1 , there are only E1, E2 and E3;

ii) For α1 < α2, β
(1)
1 < β1 ≤ β(2)

1 , or α1 ≥ α2, 0 < β1 ≤ β(2)
1 , there exist all the

four equilibria;

iii) For β
(2)
1 < β1 < β

(3)
1 , there exist only E1, E3 and E4;

iv) For β1 ≥ β(3)
1 , there are E1 and E3, only.

2.1. The stability of the equilibrium points

The Jacobian matrix of the system (1), evaluated at E1 has the eigenvalues
λ1 = α1 > 0, λ2 = −γ1 < 0 and λ3 = β3γ2

γ1

(
1+exp

(
− θ

γ3

)) − β1. So we proved

Lemma 4. The equilibrium E1 is of saddle type, repulsive in the direction OP
and attractive in the direction OD.

Lemma 5. The equilibrium point E2 is asymptotically stable if and only if

β1 < β
(1)
1 , while for β

(1)
1 < β1 < β

(3)
1 , E2 is of saddle type.

Proof. The eigenvalues corresponding to E2 are λ1 = α1 − α2M2 and

λ2 + λ3 = −γ1 −
β1M2

1−M2
< 0, λ2λ3 =

γ1β1M2

1−M2

γ2β3 (γ3 + 1−M2)− γ1β1

γ2γ3β3
.

M2 verifies the equation (2), so the product λ2λ3 ≥ 0. But λ2 + λ3 < 0, hence

Re (λ2,3) ≤ 0. Note that λ2 or λ3 are zero if M2 = 0⇔ β1 = β
(2)
1 .

Hence E2 is asymptotically stable if α1

α2
< M2. Because f1 defined in (2) is

increasing, this inequality is equivalent to f1

(
α1

α2

)
< f1 (M2) = 0 ⇔ β1 < β

(1)
1 . Note

that λ1 = 0 if β1 = β
(1)
1 . �

The Jacobian of the system (1) at E3 has the eigenvalues λ1 = −α1, λ2 = −γ1,

λ3 = β2 − β1 + β3γ2

γ1

(
1+exp

(
− θ

γ3

)) = β
(3)
1 − β1. So, we can formulate
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Lemma 6. The equilibrium point E3 is asymptotically stable if β1 > β
(3)
1 . For

β1 < β
(3)
1 , E3 is of saddle type, attractive in the directions OP and OD.

Lemma 7. If the interior equilibrium E4 exists, it is asymptotically stable.

Proof. The eigenvalues corresponding to E4 verify the characteristic equation

λ3 +A1λ
2 +A2λ+A3 = 0, where A1 = γ1 + α1P

∗ + β1α1(1−P∗)
α2−α1(1−P∗) ,

A2 = β1α1(γ2+α1P∗)(1−P∗)
α2−α1(1−P∗) + α1β2

α2
P ∗ (1− P ∗) (α2 − α1 (1− P ∗))

+α1β3γ2

α2
2γ3

(1− P ∗) (α2 − α1 (1− P ∗))
exp

(
α1(1−P∗)−θα2

α2γ3

)

(
1+exp

(
α1(1−P∗)−θα2

α2γ3

))2 ,

A3 = α1P
∗ (1− P ∗)

(
α1β1γ1

α2−α1(1−P∗) + β2γ1

γ2
(α2 − α1 (1− P ∗))

)

+P ∗ (1− P ∗)
α2

1β3γ2

α2
2γ3

(α2−α1(1−P∗)) exp

(
α1(1−P∗)−θα2

α2γ3

)

(
1+exp

(
α1(1−P∗)−θα2

α2γ3

))2 .

The necessary and sufficient condition for E4 to be asymptotically stable is given by
the Ruth-Hurwitz criterion A1A2 > A3 and A1, A3 > 0. If E4 exists then the last two
inequalities are verified since α2 − α1 (1− P ∗) > 0 (see Lemma 3). Straightforward
computation shows that A1A2 −A3 > 0. �

In consequence, we find the local behavior of the system (1) around the four
equilibrium points, depending on β1.

Proposition 2. i) For α1 < α2 and 0 < β1 < β
(1)
1 , the equilibria are: E2

asymptotically stable and E1, E3 saddle points.

ii) For max
{
0, β

(1)
1

}
< β1 < β

(2)
1 , the existing equilibrium points are: E4 asymp-

totically stable, E1, E2 and E3 saddle points.

iii) For β
(2)
1 < β1 < β

(3)
1 , there exist the equilibrium E4 asymptotically stable,

E1 and E3 saddle points.

iv) For β1 > β
(3)
1 , only E3 is asymptotically stable and E1 is saddle point.

2.2. Bifurcation analysis

We consider β1 as a control parameter, while the other parameters are fixed.
The differential system (1) takes the form u′ = G(u, β1), u = (P,M,D). We plot
in Fig. 1 (left), the static bifurcation diagram which is the projection of the equi-

librium curves G (u, β1) = 0 in the space (P,M, β1) ∈ [0, 1]
2 × (0,∞). Solid and

broken lines correspond to stable, respectively unstable, equilibrium points. Note
that the equilibria exhibit only static bifurcation, since their eigenvalues can’t be on

the imaginary axis. In the diagram, the points of static bifurcation are
(
P2,M2, β

(1)
1

)
,

(
P1,M1, β

(2)
1

)
and

(
P3,M3, β

(3)
1

)
. We took α1 = 0.08, α2 = 0.5, β2 = 0.2, β3 = 0.9,
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Fig. 1. Left – The bifurcation diagram with β1 as control parameter. Right – The static

bifurcation curves β1 = β
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γ1 = 0.05, γ2 = 0.03, γ3 = 0.1, θ = 0.5 and we found the bifurcation parameter values

β
(1)
1 = 0.439, β

(2)
1 = 0.5364, β

(3)
1 = 0.7364.

The points are of transcritical bifurcation type. Indeed, the condition β1 =

β
(1)
1 ⇔ g1 (0) = 0. Note that g1 is increasing, so P ∗ = 0 ⇒ M∗ = α1

α2
, D∗ =

γ2

γ1

(
1+exp

(
α1−θα2

α2γ3

)) . Also β1 = β
(1)
1 ⇔ f1

(
α1

α2

)
= 0, f1 is also increasing so M2 = α1

α2

is the single root for f1 (M) = 0.
Hence D2 = D∗ and we proved that the branches of stationary solutions E2 and

E4 intersect at β1 = β
(1)
1 . Also we proved in Lemma 2 that one eigenvalue at E2 is

zero. For β1 < β
(1)
1 the equilibrium E4 is unphysical.

The condition β1 = β
(2)
1 ⇔ f1 (0) = 0 ⇔ M2 = 0. So, D2 = D1 and the

branches of equilibria E1 and E2 intersect at β1 = β
(2)
1 . From Lemma 5 one eigenvalue

corresponding to E2 is zero. For β1 > β
(2)
1 the equilibrium E2 is unphysical.

Finally, β1 = β
(3)
1 ⇔ g1 (1) = 0 ⇔ P ∗ = 1. So M∗ = 1 and D∗ = D3

= γ2

γ1

(
1+exp

(
− θ

γ3

)) , in consequence E3 and E4 meet at β1 = β
(3)
1 . The equilibrium

E4 is unphysical for β1 > β
(3)
1 . From Lemma 6, we noticed that one eigenvalue

corresponding to E3 is zero at β1 = β
(3)
1 .

Next, we performed numerical integration of the system (1) for β1 corresponding
to the four cases presented in proposition 2, so that we obtained phase portraits
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topologically unequivalent (see fig. 2, fig. 3). Our analytical results are verified
by the numerical simulations. The phase portraits indicate that the asymptotically
stable equilibrium is globally attractive in Int(D).

Then, taking as control parameters α2

α1
and β1, we delimitated four regions

corresponding to different possible dynamics of the system, where the stability or
instability of the equilibria are preserved (see Fig. 1 – right).

The biological significance for these four types of dynamics of the system is:
i) if the mortality rate of the macrophage M is small enough, i.e.

β1 < β
(1)
1 , then the infection will disappear, remaining an inflammation D2;

ii) if β1 ∈
(
β

(1)
1 , β

(2)
1

)
or β1 ∈

(
β

(2)
1 , β

(3)
1

)
, then the infection is defeated by M ,

but it remains chronically causing an inflammation of the cells D∗;

iii) if β1 > β
(3)
1 (which is greater than β2), the infection is generalized and the

immunity goes to zero, practically the organism dies.

3. Kumar’s system

In the second system u ≡ (P,M,L), where P is also the infectious pathogen,M –
the early proinflammatory mediators representing a combined effect of immune cells,
which attempt to destroy the pathogen. M activate later inflammatory mediators
L which have effects of tissue damage and dysfunction and can also excite the early
mediators. The phenomenon of recruitment of the late mediators L byM is modelated
through h(x) = 1

1+exp(−x) .

We consider two natural parameters α = α2

α1
and γ = γ2

γ1
, both of them will

appear in the components and the conditions for the existence of the equilibria. For
the rest of the paper we consider θ = 1.

The system has the following equilibria:

1) E1 (P1,M1, L1) , where P1 = M1 = 0, L1 = γ
(
1 + exp

(
θ
γ3

))−1

;

2) Two possible equilibria Ei
2

(
P i

2,M
i
2, L

i
2

)
, i = 1, 2, where P i

2 = 0,
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Li
2 = β1

β3(1−Mi
2)

and M1
2 ≤M2

2 verify the equation

f2 (M) ≡ β1

(
1 + exp

(
θ −M
γ3

))
− γβ3 (1−M) = 0; (5)

3) E3 (P3,M3, L3) , with P3 = 1,M3 = 0, L3 = L1;
4) An interior equilibrium E4 (P ∗,M∗, L∗), where P ∗ = 1− αM∗,

L∗ = γ
(
1 + exp

(
θ−M∗

γ3

))−1

and M∗ verifies the equation

g2 (M) ≡ γβ3

(
1 + exp

(
θ −M
γ3

))−1

+ β2 (1− αM)− β1

1−M = 0. (6)

Later, we shall formulate conditions for the existence and uniqueness of the interior
equilibrium E4 which is the case with physiological relevance.

Lemma 8. The equilibrium points E1 and E3 exist in the domain D for every
parameter combinations.

Lemma 9. Let M = θ − γ3 ln γβ3γ3

β1
. a) If M ∈ [0, 1] , the equation (5) has

the following number of solutions in the interval [0, 1]: i) one solution if and only if
f2 (0) ≤ 0 or f2

(
M
)

= 0; ii) two solutions if and only if f2 (0) ≥ 0 and f2
(
M
)
< 0;

iii) no solutions if f2
(
M
)
> 0. b) If M /∈ [0, 1], the equation f2 (M) = 0 has: i) one

solution if f2 (0) ≤ 0; ii) no solutions if f2 (0) > 0.

Lemma 10. a) f2 (0) > 0 ⇔ γ < β1

β3

(
1 + exp

(
1
γ3

))
:= γ(3). b) f2

(
M
)
> 0

⇔ γ < β1

β3γ3a0
:= γ(1), where a0 ≈ 0.2784 is the solution for a+ ln a+ 1 = 0.

Proof. a) is obvious. b) f2
(
M
)
> 0 ⇔ β1

(
1 + γβ3γ3

β1

)
− γβ3γ3 ln γβ3γ3

β1
> 0

⇔ 1 + β1

γβ3γ3
+ ln β1

γβ3γ3
> 0. The last inequality holds iff β1

γβ3γ3
> a0. �

From the last two lemmas, we deduce the following two propositions.

Proposition 3. For γ3 <
1

1+a0
, there are two equilibrium points E1

2 and E2
2

in the plane P = 0 if and only if γ(1) < γ < γ(3).

Proof. We observe that M ∈ [0, 1]⇔ β1

β3γ3
≤ γ ≤ β1

β3γ3
exp

(
1
γ3

)
, next f2 (0) ≥ 0

⇔ γ ≤ β1

β3

(
1 + exp

(
1
γ3

))
and f2

(
M
)
< 0⇔ γ > β1

β3γ3a0
. We note that γ3 <

1
1+a0

⇔
1 + exp

(
1
γ3

)
< 1

γ3
exp

(
1
γ3

)
and 1

γ3a0
≤ 1 + exp

(
1
γ3

)
, ∀γ3 > 0. So, β1

β3γ3a0
< γ <

β1

β3

(
1 + exp

(
1
γ3

))
and the proposition is proved. �

Proposition 4. Assume γ3 <
1

1+a0
. The equation (5) has: a) no solutions in

[0, 1] for γ < γ(1); b) only one solution M2
2 ∈ [0, 1] if γ > γ(3).
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Lemma 11. For α > 1, the equation (6) has a unique solution M∗ ∈
(
0, 1

α

)
if

γ(−1) < γ < γ(2) and γ3 >
αβ1

(α−1)(β1+αβ2)
, where γ(−1) = β1−β2

β3

(
1 + exp

(
1
γ3

))
and

γ(2) = αβ1

(α−1)β3

(
1 + exp

(
α−1
αγ3

))
, in the case when γ(−1) < γ(2).

Proof. Due to the condition P ∗ ∈ (0, 1), we need M∗ ∈
(
0, 1

α

)
. Notice that

g2
(

1
α

)
< 0⇔ γ < γ(2) and g2(0) > 0 ⇔ γ > γ(−1). If g2 is decreasing on

(
0, 1

α

)
, then

the equation g2 (M) = 0 has an unique solution on
(
0, 1

α

)
. We remark that the deriva-

tive of g2 is a difference between two positive functions, ψ1 (M) = γβ3

γ3

exp
(

1−M
γ3

)

(
1+exp

(
1−M

γ3

))2

and ψ2 (M) = β2α + β1

(1−M)2
with coefficients totally independent on each other.

The condition ψ1

(
1
α

)
< ψ2(0) ⇔ γ < β1+αβ2

β3

γ3

(
1+exp

(
α−1
αγ3

))2

exp
(

α−1
αγ3

) is sufficient for the

uniqueness of M∗. The condition is γ < γ(2) for γ3 >
αβ1

(α−1)(β1+αβ2)
. �

We have discovered so far four values for the parameter γ, where the number of
fixed points of the system changes. It can be proved the following

Proposition 5. For α > 1 we have: i) γ(1) ≤ γ(2), γ(−1) < γ(3), for any
combination of parameters; ii) γ(2) < γ(3) if γ3 <

α−1
α(1+a0)

; iii) γ(−1) ≤ 0 for β1 ≤ β2.

Proof. a) γ(1) ≤ γ(2) ⇔ α−1
αγ3a0

≤ 1 + exp
(

α−1
αγ3

)
, which holds, with equality for

α−1
αγ3

= 1 + a0. Then γ(2) < γ(3) ⇔ α
α−1

(
1 + exp α−1

αγ3

)
< 1 + exp

(
1
γ3

)
. The function

ϕ (u) = 1
u

(
1 + exp

(
u
γ3

))
− 1 − exp

(
1
γ3

)
has a minimum for u = (1 + a0) γ3 and

ϕ (1) = 0. Hence ϕ (u) < 0 for u > (1 + a0) γ3 and the inequality is proved. The rest
of the statements are obvious. �

Theorem 1. Assume that α > 1, β1 ≤ β2 and αβ1

(α−1)(β1+αβ2) < γ3 <
α−1

α(1+a0)
.

Then a) for γ < γ(1), there are only three equilibrium points E1, E3 and E4; b) for
γ(1) < γ < γ(2), all the five equilibria E1, E

1
2 , E

2
2 , E3 and E4 exist;

c) for γ(2) < γ < γ(3), E1, E
1
2 , E

2
2 and E3 exist; for γ > γ(2) the equilibrium E4

becomes unphysical; d) for γ > γ(3), E1, E
2
2 and E3 still exist.

3.1. The stability of the equilibria and the bifurcation analysis

Proposition 6. The equilibrium point E1 is a saddle-point, always stable in
L-direction and unstable in P -direction.

Proof. The Jacobian matrix of the system (1) evaluated at E1 has the eigenvalues

λ1 = α1, λ2 = −γ1, λ3 = β3γ
(
1 + exp

(
θ
γ3

))−1

− β1. The eigenvectors for λ1 and λ2

are v1 = (1, 0, 0)
T

and, respectively, v2 = (0, 0, 1)
T
. �

Proposition 7. The equilibrium point E3 is saddle for γ > γ(−1) and positive
attractor for γ < γ(−1). The plane M = 0 is always its stable invariant manifold.
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Proof. For E3 the eigenvalues are

λ1 = −α1, λ2 = −γ1, λ3 = β2 − β1 + β3γ

(
1 + exp

(
θ

γ3

))−1

.

E3 ispositive attractor only if λ3 < 0⇔ γ < γ(−1). �

Lemma 12. For the equilibrium points Ei
2, i = 1, 2, the eigenvalues λi

1, λ
i
2, λ

i
3

of the Jacobian of the system, have the following properties: i) λi
1 = α1 − α2M

i
2 are

positive for α ≤ 1 and have variable sign for α > 1; ii) λ1
2λ

1
3 < 0 and Reλ2

2,Re2
3 < 0;

iii) ∃i ∈ {1, 2} such that λi
1 = 0 ⇔ f2

(
1
α

)
= 0 ⇔ γ = γ(2); iv) ∃i ∈ {1, 2} such that

λi
2 = 0 or λi

3 = 0⇔ f2
(
M
)

= 0⇔ γ = γ(1).

Proof. Suppose E1
2 , E2

2 exist. λi
1 = α1 − α2M

i
2 < 0 ⇔ M i

2 <
1
α and we get i).

λi
2 +λi

3 = −γ1− β1Mi
2

1−Mi
2
< 0, λi

2λ
i
3 =

γ1β1Mi
2

γγ3β3

γβ3γ3−β1 exp

(
1−Mi

2
γ3

)

1−Mi
2

> 0 ⇔ M i
2 > M given

by lemma 9. Hence we deduce ii). For iii) we observe that λ1 = 0 ⇔ ∃i = 1, 2 such
that M i

2 = 1
α ⇔ f2

(
1
α

)
= 0. �

Proposition 8. Assume α > 1 and γ3 <
α−1

α(a0+1) . If the equilibria E1
2 and/or

E2
2 exist, then E1

2 is saddle and E2
2 is positive attractor.

Proof. From the Lemma 12, we deduce that E1
2 is a saddle point for α > 1

and both equilibria are saddles for α ≤ 1. We study now only the stability of E2
2 for

α > 1, so it follows λ2
1 < 0 ⇔ M2

2 >
1
α . We notice that the condition M1

2 <
1
α < M2

2

⇔ f2
(

1
α

)
< 0 ⇔ γ > γ(2). Then M2

2 >
1
α ⇔

{
1
α ∈

(
M1

2 ,M
2
2

)
or 1

α < M
}
⇔ γ > γ(2)

or γ < β1

β3γ3
exp

(
α−1
αγ3

)
. Observe that γ(2) < β1

β3γ3
exp

(
α−1
αγ3

)
⇔ γ3 <

α−1
α(a0+1) . In

conclusion, if E2
2 exists (see Proposition 3 and 4) and γ3 < α−1

α(a0+1) , then it is a
positive attractor. �

For the interior equilibrium E4, the eigenvalues of the Jacobian matrix of the
system verify the characteristic equation λ3 +A1λ

2 +A2λ+A3 = 0, where

A1 = α1 − α2M
∗ +

β1M
∗

1−M∗
+ γ1 > 0,

A2 = −γ1M
∗ (1−M∗) (g′2 (M∗) + αβ2) + (α1 − α2M

∗) ·

·
(
γ1 +

β1M
∗

1−M∗
+ αβ2M

∗ (1−M∗)

)
,

A3 = −γ1M
∗ (α1 − α2M

∗) · (1−M∗) g′2 (M∗) > 0

in the conditions of Lemma 11 for the existence of E4. Using Routh-Hurwitz criterion,
E4 is asymptotic stable if and only if A1A2 > A3.

Taking γ as a control parameter of the system, we found three points of static
bifurcation, as follows:



36 cristina bercia

Proposition 9. If a) γ3 <
α−1

α(a0+1) , α > 1, or b) γ3 <
1

a0+1 , α ≤ 1, then E1
2

and E2
2 appear at γ = γ(1) through a saddle-node bifurcation.

Proof. For γ = γ(1) we have f2
(
M
)

= 0 ⇔ M1
2 = M2

2 = M ⇔ M i
2 = 1 +

γ3 ln a0 = 1 − γ3 (a0 + 1), which belongs to (0, 1) in conditions a) and b). Then
P 1

2 = P 2
2 = 0, L1

2 = L2
2 = β1

β3γ3(a0+1) , hence E1
2 = E2

2 for γ = γ(1).

The eigenvalues for the linearized system u′ = DuF (E1
2 , γ

(1))u are

λ1 = α1 (1− α+ αγ3 (a0 + 1)) =

{
< 0, in case a)
> 0, in case b)

, λ2 = 0,

λ3 = −γ1 + β1

(
1− 1

γ3 (a0 + 1)

)
< 0.

So,
(SN1): DuF

(
E1

2 , γ
(1)
)

has k eigenvalues with negative real parts and a single
eigenvalue 0, with right eigenvector

v =

(
0, γ2

3 (a0 + 1)
2
,
β1

β3

)T

and left eigenvector

w =

( −β2

α1 − α2 (1− γ3 (a0 + 1))
,

1

γ3 (a0 + 1) (1− γ3 (a0 + 1))
,
β2

β1

)
;

(SN2): w · ∂F
∂γ

(
E1

2 , γ
(1)
)

=
β3a0

a0 + 1
> 0;

(SN3): w ·
(
DxxF

(
E1

2 , γ
(1)
)
(v, v)

)
= −w3

γ1β1 (a0 − 1)

γ2
3β3 (a0 + 1)

3 v
2
2 < 0.

Accordingly to a theorem due to Sotomayor [4], the conditions (SN1–SN3) are
sufficient for a static bifurcation point to be of saddle node type. The stability of the
bifurcate branches was analysed in proposition 9. �

Proposition 10. i) For α > 1 under the the hypothesis of Theorem 1, at
γ = γ(2), the equilibria E1

2 and E4 meet through a transcritical bifurcation.
ii) At γ = γ(3), the equilibrium points E1

2 and E1 coincide through a transcritical,
assuming the hypotheses of Proposition 9.

Proof. i). For γ = γ(2), f2
(

1
α

)
= 0 ⇒ M1

2 = 1
α . Note that M2

2 > 1
α if

γ3 <
α−1

α(a0+1) (see the proof of Proposition 9). Also γ = γ(2) ⇒ g2
(

1
α

)
= 0⇒M∗ = 1

α ,

since g2 (M) = 0 has a single solution. We have L1
2 = L∗ = β1α

β3(α−1) and P 1
2 = P ∗.

So, E1
2 coincides with E4 at γ = γ(2), when one eigenvalue corresponding to these

equilibria is zero (see Lemma 12.) ii). For γ = γ(3), f2 (0) = 0 ⇒ M1
2 = 0 ⇒

L1
2 = L1, hence E1

2 ≡ E1. From proposition 6, we deduce that only one eigenvalue
corresponding to E1 is zero for γ = γ(3).
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The system has to be reduced to the central manifold in the neighborhood of
each bifurcation point and we obtain transcritical bifurcations. �

The equilibrium point E4 is the only one that can experience Hopf bifurcation.
We shall investigate this numerically.

3.2. Bifurcation diagram and numerical results

We use γ as a control parameter and the fixed parameters respect the conditions
of Theorem 1. Then we plot the bifurcation diagram for the system (1) and make its
projection into the plane (γ,M), where γ ∈ (0,∞) and M ∈ [0, 1].

The bifurcation diagram contains the branches of fixed points and also the de-
tection of the Hopf bifurcation point for E4 (see Fig. 4–left).

The necessary condition for equilibrium point E4 to have a Hopf bifurcation is:
∃λ1,2 = ±iω, ω > 0, solution of the characteristic equation, which is equivalent to
A2 > 0 and A1A2 = A3. So we find a Hopf bifurcation point for γ = γH at the
intersection of the curve A1A2 = A3 (where Ai are functions of γ and M) with the
branch E4, when it exists, i.e. for 0 < γ < γ(2). Moreover the condition A1A2 > A3

is fulfilled for γ < γH , so that E4 is a stable equilibrium for γ < γH .
In the diagram, solid and broken lines correspond to the stable and unstable (or

unphysical) equilibria, respectively. For the numerical simulations we took as fixed
parameters α1 = 3, α = 10, β1 = 0.8, β2 = 5, β3 = γ1 = 1, γ3 = 0.25. We obtained
γH = 29.8707. The Hopf bifurcation is subcritical, since we found an unstable limit-
cycle emerging from E4 for γ < γH (see Fig. 4–right and Fig. 5–left). Trajectories
within the limit-cycle spiral into E4 which is a focus. In consequence, there exists an
interval

(
γ(1), γH

)
where two stable branches of solutions coexist (E2

2 and E4). This

is an interval of bistability (see Fig. 4–left). For γ < γ(1), we found that E4 is a global
attractor (Fig. 5-right).
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Fig. 4. The bifurcation diagram for α > 1 and γ as a control parameter (left). The phase

portrait for γ = 29 ∈
(
γ(1), γH

)
. Trajectories which tend to E2

2 where P → 0, but M and

L remain elevated, are interpreted as persistent non-infectious inflammation (right).

In conclusion, we have examined the behavior of the system (1) by varying one
parameter γ and we obtained the picture of the global dynamics of the system which
captures the important clinically scenarios presented in [2], for β1 ≤ β2 and α > 1.
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Fig. 5. One trajectory which spiral outside the unstable limit-cycle, zoom on Fig. 4–right.
During the oscillations, P falls below a threshold. The trajectory is interpreted as healthy
response (left). The phase portrait for γ = 11 < γ(1), showing that E4 is a focus. Trajectories

which tend to E4, are interpreted as recurrent infection (right).
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Self-Propulsion of an Oscillatory Wing Including
Ground Effects

Adrian Carabineanu∗†

In the framework of the small perturbations theory, we study the motion of an uniform

stream past an oscillating thin wing including ground effects. Using the theory of distribu-

tions we deduce the integral equation for the jump of the pressure past the wing. We solve

the integral equation numerically and we calculate the average drag coefficient. We find that

for some kind of wings there appears a propulsive force and this force increases when the

wing is close to the ground.

1. Introduction

The problem of the oscillatory wings in subsonic flow (and implicitly in incom-
pressible flow) was studied, among others by Watkins, Runyan and Woolston [14],
Laschka [12], and Landahl [11]. In their theory the integral equation, originally per-
formed by Küssner [10], is obtained by determining the acceleration potential due to
a continuous distribution of doublets on the wing.

Latter, L. Dragoş [4] studied the problem of oscillating thick wings by means of
the fundamental solutions method.

D. Homentcovschi [8] utilized the Fourier transform for obtaining the fundamen-
tal solutions of the linear Euler system and then the general integral equation relating
the jump of the pressure and the downwash distributions for the unsteady flow past a
lifting surface, moving over an abstract fixed cylindrical surface. From this equation
it was deduced the integral equation for the oscillating wing.

In our paper we employ the theory of distributions in order to deduce the integral
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equation of the oscillating thin wing. For taking into account the ground effect we
utilize the image method, i.e. we consider that another oscillatory wing, symmetrical
with the original one with respect to the plane z = −d is immersed into the fluid.

Many numerical methods were developed for solving the integral equation of
steady or oscillatory lifting surface equation. Among them we mention the methods
considered by A. Ichikawa [9], Ueda and Dowell [13], Eversman and Pitt [6], etc.

The great number of papers devoted to the numerical methods used for inte-
grating the lifting surface integral equation is justified by the difficulties caused by
the singularities of the kernel.

In our paper, in order to discretize the integral equation, we split the kernel of
the equation into several kernels for which we provide appropriate quadrature formulas
depending on the type of singularity of the kernel. By solving the discretized integral
equation we calculate the jump of the presure over the delta wing.

After obtaining the pressure field we calculate, by performing a numerical in-
tegration the average drag. We study an example of oscillatory motion of the delta
wing and we notice that if the frequency surpasses a critical value, the drag becomes
negative, i.e. it appears a propulsive force. We also notice that the propulsive force
increases when the wing is situated closer to the ground.

2. The integral equation of the problem

We consider the continuity and Euler equations for incompressible flow in a fixed
Cartesian frame of reference Oxyz,

div v = 0,v = (u, v, w) ,
∂v

∂t
+ (v · grad)v +

1

ρ0
gradp = 0,

(1)

The wing and its symmetric with respect to z = −d plane have the equations:

S : F (x, y, z, t) = z − h (x, y, t) , (x, y) ∈ D (t) ,
S′ : F ′ (x, y, z, t) = z + h (x, y, t)− 2d, (x, y) ∈ D (t) .

We assume that the wing is thin, i.e. there is a small parameter 0 < ε << 1 such
that

|h| < ε,

∣∣∣∣
∂h

∂x

∣∣∣∣ < ε,

∣∣∣∣
∂h

∂y

∣∣∣∣ < ε.

The coordinates of the normal at the wing surface S are:

n = (nx, ny, nz, nt) =

(
−∂h
∂x
,−∂h

∂y
, 1,−∂h

∂t

)
. (2)

We linearize the equations around the rest state (neglecting the products of the
perturbation quantities) and we write them into distributions:

∂u

∂t
+

1

ρ0

∂p

∂x
=

(
[u]S nt +

1

ρ0
[p]S nx

)
δS∪S′ = 0, (3)
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∂v

∂t
+

1

ρ0

∂p

∂y
=

(
[v]S nt +

1

ρ0
[p]S ny

)
δS∪S′ = 0, (4)

∂w

∂t
+

1

ρ0

∂p

∂z
=

(
[w]S nt +

1

ρ0
[p]S nz

)
δS∪S′ = fδD − fδD′ , f =

[p]S
ρ0

, (5)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ([u]S nx + [v]S ny + [w]S nz) δS∪S′ = 0, (6)

where µδS represents the simple layer distribution with density µ and [·]S is the jump
over the surface S.

From (3)–(6) we get

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
p =

∂

∂z
(ρ0fδD − ρ0fδD′) . (7)

Since
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
− δ (t)

4π |x|

)
= δ (x, y, z) δ (t) , |x| =

√
x2 + y2 + z2, (8)

we get

p = −ρ0
δ (t)

4π

∂

∂z

1

|x| ∗ (fδD − fδD′), (9)

whence, taking into account (3), we deduce

∂w

∂t
=
δ (t)

4π

∂

∂z2

1

|x| ∗ (fδD − fδD′) + fδD. (10)

From (9)–(10) we have, denoting by H (t) Heaviside’s function,

w (x, y, z, t) = −H (t)

4π

(
∂2

∂x2
+

∂2

∂y2

)
1

|x| ∗ (fδD − fδD′) =

= − 1

4π

∫ ∞

−∞

H (t− t′) dt′
∫ ∫

D(t′)∪D′(t′)

(
∂2

∂x2
+

∂2

∂y2

)
f (x′.t)

|x− x′|dx
′dy′ =

z 6=0
=

1

4π

∫ t

−∞

∫ ∫

D(t′)

∂2

∂z2

[
f (x′.t)

|x− x′| −
f (x′.t)

|x− x′ + 2dk|

]
dx′dy′dt′. (11)

In the sequel we shall introduce a new system of coordinates O(1)x(1)y(1)z(1), related
to the lifting surface. We have the relations

x(1) = x+ V0t, y
(1) = 1, z(1) = z,

x′(1) = x′ + V0t
′, u(1) = x(1) − x′(1) − V0 (t− t′) . (12)

In the new coordinates, the integral representation (11) becomes, for z(1) 6= 0,
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w
(
x(1), t

)
=

1

4πV0

∫ x(1)−x′(1)

−∞

du(1)

∫

D(1)

∂2

∂z(1)2


 f

(
x′(1).t

)
√
u(1)2 +

(
y(1) − y′(1)

)2
+ z(1)2

− f
(
x′(1).t

)
√
u(1)2 +

(
y(1) − y′(1)

)2
+
(
z(1) + 2d

)2



dx′(1)dy′(1), (13)

where D(1), the projection of the lifting surface onto the O(1)x(1)y(1)-plane, is a fixed
surface.

Considering the lifting surface subjected to harmonic oscillations, we set

w
(
x(1), t

)
= d(1)

(
x(1)

)
exp (iωt) , f

(
x(1), y(1), t

)
= f

(
x(1), y(1)

)
exp (iωt) , (14)

whence it follows

∫ ∫

D(1)

dx′(1)dy′(1)
∫ x(1)−x′(1)

−∞

f
(
x′(1), y′(1)

)
exp

(
−i

ω

V0

(
x(1) − x′(1) − u(1)

))
·

· ∂2

∂z(1)2


 1√

u(1)2 +
(
y(1) − y′(1)

)2
+ z(1)2

−

− 1√
u(1)2 +

(
y(1) − y′(1)

)2
+
(
z(1) + 2d

)2



 du(1) = 4πV0d
(1)
(
x(1)

)
. (15)

Denoting by a the length of the wing and by 2b the chord, we introduce the
dimensionless coordinates

(x, y, z, u, ξ, η) =

(
x(1)

a
,
y(1)

b
,
z(1)

a
,
u(1)

a
,
x′(1)

a
,
y(1)

b

)
. (16)

For the sake of simplicity we use again the notation (x, y, z) which must not be
confounded with the notations for the variables of the fixed system Oxyz. Denoting

D =
{

(x, y) ; (ax, by) ∈ D(1)
}

and passing to limit for z → 0 we get from (15):

ab

4πV0

∫ ∫ ∗

D

f(aξ, bη) exp

(
−i

ω

V0
a(x− ξ)

)[∫ a(x−ξ)

−∞

exp(i
ω

V0
u)...

(
1

(u2 + b2(y − η)2)3/2
+

8d2 − u2 − b2(y − η)2
(u2 + b2(y − η)2 + 4d2)5/2

)]
dudξdη = −d (x, y) . (17)
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In the framework of the linearized theory,

d(x, y) exp(iωt) = w(x(1), y(1), t), (18)

where w is the projection of the velocity on the Oz(1)-axis.
The velocity field is

V = V0i + v, v = ui + vj + wk,

where v is the perturbation velocity of the fluid.
For calculating the downwash distribution, we employ the slipping condition

V · n |D(1)= −
∂F
∂t

| gradF | (19)

with

n =
gradF

| gradF | = −∂h
(1)

∂x(1)
exp(iωt)i − ∂h(1)

∂y(1)
exp(iωt)j + k. (20)

Since
∂F

∂t
= −iωh(1)(x(1), y(1)) exp(iωt), (21)

from (19)–(20) we obtain the linearized condition

w =

(
V0
∂h(1)

∂x(1)
+ iωh(1)

)
exp(iωt). (22)

Denoting

h(x, y) =
h(1)(x(1), y(1))

a
, ω̃ =

ωa

V0
,

from (18) and (22) it follows

d(x, y) = V0

(
∂h(x, y)

∂x
+ iω̃h(x, y)

)
. (23)

Introducing the dimensionless functions and variables

d̃ =
d

V0
, f̃(x, y) =

f(ax, by)

V 2
0

, x0 = x− ξ, y0 = y − η,

eq. (17) becomes
̟

4π

∫ ∫ ∗

D

f̃(ξ, η) exp(−iω̃x0)·
[∫ x0

−∞

exp(iω̃u)

(
1

(u2 +̟2y2
0)

3/2
+

8d2 − u2 −̟2y2
0

(u2 +̟2y2
0 + 4d2)5/2

)
du

]
dξdη =

=
∂h(x, y)

∂x
+ iω̃h(x, y). (24)

where (x, y) ∈ D if and only if (x(1), y(1)) ∈ D(1).
The star indicates the finite part in the Hadamard sense of the integral, ̟ is

the aspect ratio and ω̃ is the reduced frequency.
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3. The discretization of the integral equation for the sym-
metrical oscillating delta flat plate

We consider the oscillating delta wing. The equations of the leading edge of
D(1) are

y
(1)
± (x(1)) = ± b

a
(x(1)); x(1) ∈ [0, a] (25)

and the equations of the leading edge of D are

y±(x) = ±x; x ∈ [0, 1]. (26)

For solving numerically the integral equation , we have to discretize the left hand
member in order to obtain an algebraic system of equations. To this aim we split,
like in [2], the kernel

K (x, y; ξ, η) =

∫ x0

−∞

exp(iω̃u)

(
1

(u2 +̟2y2
0)

3/2
+

8d2 − u2 −̟2y2
0

(u2 +̟2y2
0 + 4d2)5/2

)
du

into several kernels in order to put into evidence the kind of singularities we are
dealing with and to find afterwards the most convenient quadrature formulas.

We have step by step:
∫ x0

−∞

exp(iω̃u)

(u2 +̟2y2
0)

3/2
du =

∫ x0

−∞

exp(iω̃u)− 1

(u2 +̟2y2
0)

3/2
du+

+
1

̟2y2
0

(
1 +

x0

|x0|

)
+

1

̟2y2
0

(
x0√

x2
0 +̟2y2

0

− x0

|x0|

)
, (27)

∫ x0

−∞

exp(iω̃u)− 1

(u2 +̟2y2
0)

3/2
du =

∫ x0

0

exp(iω̃u)− 1

(u2 +̟2y2
0)

3/2
du+

∫ ∞

0

exp(−iω̃u)− 1

(u2 +̟2y2
0)

3/2
du, (28)

∫ ∞

0

exp(−iω̃u)− 1

(u2 +̟2y2
0)

3/2
du =

= − 1

̟2y2
0

+

∫ ∞

0

cos ω̃u

(u2 +̟2y2
0)

3/2
du− i

∫ ∞

0

sin ω̃u

(u2 +̟2y2
0)

3/2
du. (29)

The integrals from the right hand part of (29) represent the sine and cosine Fourier
transforms of (u2 +̟2y2

0)
−3/2 and in [3] one shows that

∫ ∞

0

cos ω̃u

(u2 +̟2y2
0)

3/2
du =

ω̃

̟ |y0|
K1 (ω̟̃ |y0|) , (30)

∫ ∞

0

sin ω̃u

(u2 +̟2y2
0)

3/2
du =

π

2

ω̃

̟ |y0|
(L−1 (ω̟̃ |y0|)− I1 (ω̟̃ |y0|)) , (31)

where L−1 is a Strouve function and I1,K1 are Bessel functions and their series
expansions are

I1(x) =

∞∑

k=0

(x/2)2k+1

k!(k + 1)!
, (32)
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K1(x) = I1(x) ln
x

2
+

1

x
−

∞∑

k=0

(x/2)2k+1

k! (k + 1)!
(ψ(k + 1) + ψ(k + 2)), (33)

L−1(x) =

∞∑

k=0

(x/2)2k

Γ(k + 3
2 )Γ(k + 1

2 )
. (34)

where ψ represents the logarithmic derivative of Euler’s Γ function.
We also have

∫ x0

0

exp(iω̃u)− 1

(u2 +̟2y2
0)

3/2
du =

∫ x0

0

exp(iω̃u)− 1− iω̃u+ ω̃2u2/2

(u2 +̟2y2
0)

3/2
du−

− iω̃

(x0
2 +̟2y2

0)
1/2

+
iω̃

|y0|
+

ω̃2x0

2(x0
2 +̟2y2

0)
1/2
−

− ω̃
2

2
ln

(
x0 +

√
(x0

2 +̟2y2
0)

)
, (35)

∫ x0

−∞

exp(iω̃u)
8d2 − u2 −̟2y2

0

(u2 +̟2y2
0 + 4d2)5/2

du =

=

∫ x0

0

exp(iω̃u)
8d2 − u2 −̟2y2

0

(u2 +̟2y2
0 + 4d2)5/2

du+

+12d2

∫ ∞

0

cos(ω̃u)

(u2 +̟2y2
0 + 4d2)5/2

du− 12id2

∫ ∞

0

sin(ω̃u)

(u2 +̟2y2
0 + 4d2)5/2

du−

−
∫ ∞

0

cos(ω̃u)

(u2 +̟2y2
0 + 4d2)3/2

du+ i

∫ ∞

0

sin(ω̃u)

(u2 +̟2y2
0 + 4d2)3/2

du,

∫ ∞

0

cos(ω̃u)

(u2 +̟2y2
0 + 4d2)3/2

du =
ω̃√

̟2y2
0 + 4d2

K1

(
ω̃
√
̟2y2

0 + 4d2

)
,

∫ ∞

0

cos(ω̃u)

(u2 +̟2y2
0 + 4d2)5/2

du =
2ω̃

3
√
̟2y2

0 + 4d2
K2

(
ω̃
√
̟2y2

0 + 4d2

)
,

∫ ∞

0

sin(ω̃u)

(u2 +̟2y2
0 + 4d2)3/2

du =

=
ω̃π

2
√
̟2y2

0 + 4d2

[
L−1

(
ω̃
√
̟2y2

0 + 4d2

)
− I1

(
ω̃
√
̟2y2

0 + 4d2

)]
,

∫ ∞

0

sin(ω̃u)

(u2 +̟2y2
0 + 4d2)5/2

du =

=
ω̃2π

6 (̟2y2
0 + 4d2)

[
I2

(
ω̃
√
̟2y2

0 + 4d2

)
− L−2

(
ω̃
√
̟2y2

0 + 4d2

)]
,
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I2(x) =

∞∑

k=0

(x/2)2k+2

k!(k + 2)!
, (36)

K2(x) = −I2(x) ln
x

2
+

2

x2
− 1

2
+

(−1)
n

2

∞∑

k=0

(x/2)2k+2

k! (k + 2)!
(ψ(k + 1) + ψ(k + 3)), (37)

L−2(x) =
∞∑

k=0

(x/2)2k−1

Γ(k + 3
2 )Γ

(
k − 1

2

) , (38)

Γ

(
k +

3

2

)
=

√
π (2k + 1)!

22k+1 · k! , Γ

(
k − 1

2

)
=

√
π (2k − 2)!

22k−2 · (k − 1)!
.

Hence

K (x, y; ξ, η) = K1 (x, y; ξ, η) + ...+K14 (x, y; ξ, η)

and the integral equation becomes

̟

4π

14∑

i=1

∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)Ki (x, y; ξ, η) dξdη = (39)

= −
(
∂h(x, y)

∂x
+ iω̃h(x, y)

)
exp(iω̃x).

In the sequel we shall provide adequate quadrature formulas for the integrals from
the left hand part of the equation (39) in order to discretize it. Let

K1 (x, y; ξ, η) =
1

̟2y2
0

(
x0√

x2
0 +̟2y2

0

− x0

|x0|

)
,

K2 (x, y; ξ, η) =
1

̟2y2
0

(
1 +

x0

|x0|

)
,

K3 (x, y; ξ, η) =
−iω̃√

x2
0 +̟2y2

0

,

K4 (x, y; ξ, η) = − ω̃
2

2

x0

|x0|
ln

(
|x0|+

√
x2

0 +̟2y2
0

)
,

K5 (x, y; ξ, η) =
ω̃2

2
ln (̟ |y0|)

(
1 +

x0

|x0|

)
,

K6 (x, y; ξ, η) =
ω̃2x0√

x2
0 +̟2y2

0

,

K7 (x, y; ξ, η) =
ω̃

̟ |y0|
K1 (ω̟̃ |y0|)−

1

̟2y2
0

− ω̃2

2
ln
ω̟̃ |y0|

2
+
ω̃2

2
ln
̟

2
,
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K8 (x, y; ξ, η) =

∫ x0

0

exp(iω̃u)− 1− iω̃u+ ω̃2u2/2

(u2 +̟2y2
0)

3/2
du,

K9 (x, y; ξ, η) =

∫ x0

0

exp(iω̃u)
8d2 − u2 −̟2y2

0

(u2 +̟2y2
0 + 4d2)5/2

du,

K10 (x, y; ξ, η) = − ω̃√
̟2y2

0 + 4d2
K1

(
ω̃
√
̟2y2

0 + 4d2

)
,

K11 (x, y; ξ, η) =
6ω̃d2

√
̟2y2

0 + 4d2
K2

(
ω̃
√
̟2y2

0 + 4d2

)
,

K12 =
ω̃πi

2
√
̟2y2

0 + 4d2

[
L−1

(
ω̃
√
̟2y2

0 + 4d2

)
− I1

(
ω̃
√
̟2y2

0 + 4d2

)]
,

K13 =
3ω̃2πid2

2 (̟2y2
0 + 4d2)

[
L−2

(
ω̃
√
̟2y2

0 + 4d2

)
− I2

(
ω̃
√
̟2y2

0 + 4d2

)]
,

K14 (x, y; ξ, η) =
iπω̃2

2̟ |y0|

(
I1 (ω̟̃ |y0|)− L−1 (ω̟̃ |y0|) +

2

π

)
.

The analytical results from [1] suggest us to presume the following behaviour of the
unknown function

f̃(ξ, η) =
g(ξ, η)√
ξ2 − η2

,

whence we have ∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)K1 (x, y; ξ, η) dξdη =

=
1

̟2
FP

∫ 1

−1

1

y2
0

(∫ 1

|η|

g(ξ, η)√
ξ2 − η2

exp(iω̃ξ)

(
x0√

x2
0 +̟2y2

0

− x0

|x0|

)
dξ

)
dη, (40)

where FP stands for the finite part of the hypersingular integral as it is introduced by
Ch. Fox in [7]. Taking into account that x (1) = x (−1) = 1 we assume the following
behaviour ∫ 1

|η|

g(ξ, η)√
ξ2 − η2

exp(iω̃ξ)

(
x0√

x2
0 +̟2y2

0

− x0

|x0|

)
dξ =

=
√

1− η2G (x, y; η) , (41)

where G (x, y; η) is finite in η = ±1. We consider on D a net consisting of the nodes

(grid points, controll points)
(
xi, yj

)
=

(
i

n
,
2j + 1

2n

)
, i = 1, ..., n, j = −i,−i +

1, ..., i− 1. For the hypersingular integral occuring in (40) we may use the quadrature
formula for equidistant controll points given by Dumitrescu [5]

FP

∫ 1

−1

√
1− η2G (xk, yl; η)

(yl − η)2
dη =

n−1∑

j=−n

G
(
xk, yl; yj

)
Alj , (42)
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Alj = − arccos(yj) + arccos(yj+1) +

√
1− y2

j

yj − yl

−

−

√
1− y2

j+1

yj+1 − yl

− yl√
1− y2

l

ln

∣∣∣∣
Cl(j+1)

Clj

∣∣∣∣ (43)

with

Clj =

√
1− yj ·

√
1 + yl −

√
1 + yj ·

√
1− yl√

1− yj ·
√

1 + yl +
√

1 + yj ·
√

1− yl

. (44)

We have the quadrature formula

G
(
xk, yl; yj

)
=

n∑

i=j

gijBijkl (45)

with

gij = g
(
xij , yj

)
,

xij =





xi −
1

2n
, −i < j < i− 1,

xi −
1

4n
, j ∈ {−i, i− 1} ,

x̃ij =





xi −
1

n
, −i < j < i− 1,

xi −
1

2n
, j ∈ {−i, i− 1} ,

(46)

Bijk =
EijDijkl√

1− y2
j

, (47)

Eij = exp(iω̃xij)

[
ln

(
xi +

√
x2

i − y2
j

)
− ln

(
xij +

√
x̃2

ij − y2
j

)]
, (48)

Dijkl =


 xk − xij√

(xk − xij)
2 +̟2

(
yl − yj

)2 −
xk − xij

|xk − xij |


 ,−i < j < i− 1. (49)

Finally we deduce

∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)K1 (xk, yl; ξ, η) dξdη =
n∑

i=1

i−1∑

j=−i

gijK
(1)
ijkl, (50)

where

K
(1)
ijkl =

AljBijkl

̟2
. (51)

Let

K2 (x, y; ξ, η) =
1

̟2y2
0

(
1 +

x0

|x0|

)
. (52)
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We have ∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)K2 (x, y; ξ, η) dξdη =

=
2

̟2
FP

∫ x

−x

1

y2
0

(∫ x

|η|

g(ξ, η) exp(iω̃ξ)√
ξ2 − η2

dξ

)
dη. (53)

Assuming the behaviour

∫ xk

|η|

g(ξ, η) exp(iω̃ξ)√
ξ2 − η2

dξ =
√
x2

k − η2G(k) (xk; η) , (54)

we have ∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)K2 (xk, yl; ξ, η) dξdη =

=
2

̟2
FP

∫ xk

−xk

√
x2

k − η2G(k) (xk; η)

(yl − η)2
dη =

2

̟2

k−1∑

j=−k

G(k)
(
xk; yj

)
A

(k)
lj , (55)

where

A
(k)
lj = − arccos

(
yj

xk

)
+ arccos

(
yj+1

xk

)
+

+

√
x2

k − y2
j

yj − yl

−

√
x2

k − y2
j+1

yj+1 − yl

− yl√
x2

k − y2
l

ln

∣∣∣∣∣∣

C
(k)
l(j+1)

C
(k)
lj

∣∣∣∣∣∣
(56)

with

C
(k)
lj =

√
xk − yj ·

√
xk + yl −

√
xk + yj ·

√
xk − yl√

xk − yj ·
√
xk + yl +

√
xk + yj ·

√
xk − yl

. (57)

For calculating G(k)
(
xk; yj

)
we employ the quadrature formula

G(k)
(
xk; yj

)
=

1√
x2

k − y2
j

∫ xk

|yj|
g(ξ, yj) exp(iω̃ξ)
√
ξ2 − y2

j

dξ =
k∑

i=|j|

gij
Eij√
x2

k − y2
l

. (58)

At last we find

∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)K2 (xk, yl; ξ, η) dξdη =

n∑

i=1

i−1∑

j=−i

gijK
(2)
ijkl (59)

with

K
(2)
ijkl =





2

̟2
A

(k)
lj

Eij√
x2

k − y2
l

; i ≤ k,

0; i > k.

(60)
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The kernels K3 and K4 are singular. We divide and multiply them by y2
0 for

obtaining quadrature formulas similar to the formulas for K1. We get

∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ) [K3 (xk, yl; ξ, η) +K4 (xk, yl; ξ, η)] dξdη =

=

n∑

i=1

i−1∑

j=−i

gijK
(3,4)
ijkl (61)

with

K
(3,4)
ijkl =





Alj

(
yl − yj

)2
√

1− y2
j

[
K3

(
xk, yl;xij , yj

)
+K4

(
xk, yl;xij , yj

)]
Eij ; i 6= j

0; i = j.
(62)

Although it may happen that y0 = 0, the kernels K5,K6,K7 and K8 have
integrable singularities and the kernelsK9,K10,K11,K12,K13 andK14 are continuous
and we utilize the quadrature formulas

∫ ∫ ∗

D

f̃(ξ, η) exp(iω̃ξ)Kp (xk, yl; ξ, η) dξdη =
n∑

i=1

i−1∑

j=−i

gijK
(p)
ijkl, p = 5, ..., 14

where

K
(5)
ijkl =

{
ω̃2B

(k)
jl Eij , i ≤ k

0, i > k,
(63)

B
(k)
jl = (yj+1 − yl) ln |yj+1 − yl| − (yj − yl) ln |yj − yl| , (64)

K
(p)
ijkl = EijKp

(
xk, yl;xij , yj

)
/n, p = 6, ..., 14. (65)

For calculating K7 (xk, yl;xij , yl) we use the series expansions of the Bessel and
Strouve functions and we take into account that

K7 (xk, yl;xij , yl) = − ω̃
2 (ψ(1) + ψ(2))

4
+
πiω̃

4
,

ψ(1) = −0.5772, ψ(2) = 0.4228. (66)

The kernels K8

(
xk, yl;xij , yj

)
and K9

(
xk, yl;xij , yj

)
are integrals which are

evaluated numerically with the trapezoidal rule.
For calculating the Bessel (MacDonald) functions K1 and K2 we may utilize the

series expansions (33) and (37). We may also utilize the libraries offered by MATLAB.
For calculating the kernels K12

(
xk, yl;xij , yj

)
and K14

(
xk, yl;xij , yj

)
we use

the integral representations

Iν (x) =
(x/2)

ν

√
πΓ (ν + 1/2)

∫ 1

−1

coshxs
(
1− s2

)ν−1/2
ds =
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=
(x/2)

ν

√
πΓ (ν + 1/2)

∫ π/2

0

(exp (x cos t) + exp (−x cos t)) sinν tdt, ν > −1/2, (67)

Lν (x) =
(x/2)

ν

√
πΓ (ν + 1/2)

∫ π/2

0

(exp (x cos t)− exp (−x cos t)) sinν tdt. (68)

From (34), (38) and (68) we deduce

L−1 (x) =
2

π
− x

π

∫ π/2

0

(exp (−x cos t)− exp (x cos t)) sin2 tdt,

L−2 (x) = − 2

πx
+

2x

3π
− x2

3π

∫ π/2

0

(exp (−x cos t)− exp (x cos t)) sin4 tdt,

whence, taking into account (67) it follows

L−1 − I1 =
2 exp (−x)

π
+

2x

π

∫ π/2

0

exp (−x cos t)
(
sin t− sin2 t

)
dt, (69)

L−2 − I2 = − 2

πx
+

2x exp (−x)
3π

+
2x2

3π

∫ π/2

0

exp (−x cos t)
(
sin t− sin4 t

)
dt, (70)

and the integrals are evaluated numerically with the trapezoidal rule.
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Fig. 1. Pressure coefficient field for d = 10.

Denoting

Kijkl = K
(1)
ijkl +K

(2)
ijkl +K

(3,4)
ijkl +K

(5)
ijkl + ...+K

(14)
ijkl ,
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we obtain, discretizing the two-dimensional integral ecuation (24):

̟

4π

n∑

i=1

i−1∑

j=−i

gijKijkl = −
(
∂h(xk, yl)

∂x
+ iω̃h(xk, yl)

)
exp(iω̃xk). (71)

After solving this equation we may obtain

f̃(xk, yl) =
gij√
x2

k − y2
l

.

4. The average drag coefficient and the propulsive force.
Numerical results

In the sequel we shall deal with the pressure coefficient

Cp(x
(1), y(1), t) = Re[f̃(x, y) exp(iωt)]. (72)

Among the aerodynamic characteristics of the wing, in this paper we are inter-
ested in the drag coefficient

CD(t) = −2

∫ ∫

D

nxCp(ax, by, t)dxdy. (73)
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Fig. 2. Pressure coefficient field for d = 1.

We consider the oscillating delta wing whose equation is

0 = z(1) − α exp(iω1x
(1) + iωt); (x(1), y(1)) ∈ D(1) (74)



self-propulsion of an oscillatory wing 53

whence
h(x, y) = α exp(iω̃1x), ω̃1 = aω1; (x, y) ∈ D. (75)

We have therefore
nx = −αω̃1Re

[
exp(iω1x

(1) + iωt)
]
,

whence

CD(t) = 2αω̃1

∫ ∫

D

Re
[
exp(iω1x

(1) + iωt)
]
Re[f̃(x, y) exp(iωt)]dxdy.

Denoting

T =
2π

ω
,

the average drag coefficient is

C̃D =
1

T

∫ T

0

CD (t) dt = αω̃1

∫ ∫

D

Im[f̃(x, y) exp(−iω̃1x)]dxdy.
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Fig. 3. Average drag coefficient versus frequency.

In Fig. 1 and Fig. 2 we present the pressure coefficient fields (divided by α/2)
for t ∈ {1, 2, 3, 4} . In fig. 1 we considered d = 10 and in fig. 2 we took d = 1. We also
present the wings translated along the Oz-axis with ∆z = −1. We may notice that
the two pressure coefficients fields are very close but not identical. In fig. 3 we present
the average drag coefficient (divided by α2) against the frequency. For ω > 1.1 the
average drag coefficient is negative, i.e. it appears a propulsive force and we notice
that the propulsive force is biger for d = 1 (dash-dot line) than for the case d = 10
(continuous line) i.e. it is bigger when the oscillatory wing is closer to the ground.
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Thermal Coupling Numerical Models for Boundary
Layer Flows over a Finite Thickness Plate Exposed

to a Time-Dependent Temperature

Emilia Mladin Cerna∗† and Dorin Stanciu∗

The present study treats the case of a finite thickness planar plate of known material

and dimensions, exposed to a ramp change in the temperature imposed at the plate back

surface. The flow was considered laminar and of constant velocity. The temperature tem-

poral variation was modeled as a ramp-up, a smooth function that realistically replaces the

theoretical step change. The initial system state is of thermal equilibrium. Two numerical

approaches have been used to model the heat transfer performance between the fluid and

the plate: the Karman-Pohlhausen integral method and the finite-volume modeling built

in the commercial FLUENT code. The surface heat flux was found sensitive to the plate

thickness and material, as well as to the imposed temperature ramp duration and amplitude.

Although a multitude of fluid-solid combinations may be considered in the analysis, a water

flow over a steel plate was analysed here. Results are expressed in terms of a correction

factor defined as the ratio between the surface heat flux associated with the finite thickness

plate of specified material and the surface heat flux associated with the zero thickness plate.

The model was validated against differential method and integral method results reported in

the literature for the zero thickness plate and stationary regimes, the maximum error being

about 6.5%.

1. Introduction

Most of the previous works on heat convection in parallel flows over bodies
use various boundary conditions at the contact surface. In all such cases, the plate
thermal resistance is not encountered in calculus, although heat transfer may be

∗ “Politehnica” University, Mechanical Engineering Department, Bucharest, Romania.
† e-mail: mladin@yahoo.com
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highly influenced by the impact body geometry and material. In practical applications
however, it is most probably that the boundary conditions are known at the accessible
surfaces, i.e. the ones that are not in contact with the flow. Use of common measuring
instruments at the contact surface between the fluid and the body would clearly
disturb the boundary layers and thus the measurements will be erroneous.

In the present paper, the authors aim to study the dynamics of the heat transfer
in a parallel steady laminar flow over a finite thickness plate. The transient regime
results from a ramp change in the temperature imposed at the bottom plate sur-
face (the one that is not in contact with the fluid). Two mathematical approaches
have been used for this purpose. One relies on a previously developed model [1, 2],
based on the Karman-Pohlhausen integral methodology to formulate ordinary differ-
ential governing equations. The model was however modified to include a forcing
function for the time-dependent boundary condition. The second approach uses the
built-in finite volume conservation equations of the FLUENT code that is based on
the Patankar algorithms for incompressible flows [3]. Due to paper length restric-
tions, numerical solutions are reported for a water flow over a steel plate of specified
thickness. However, the two models may be equally used for other combinations of
fluids and solids, as long as the fluid Prandtl numbers are greater than 0.7. Figure 1
schematically presents the physical system. The incompressible fluid flow is station-
ary and laminar and has a constant temperature T∞. Its velocity U∞ is constant as
no pressure gradients are assumed. The flow is parallel with a plate of thickness E,
which is much smaller than its length. The plate bottom surface temperature has
an imposed temporal variation. The initial state is of thermal equilibrium in the
entire system. Therefore, when the plate bottom surface temperature changes, the
generated heat flux penetrates the plate and gives rise to a thermal boundary layer
developing in the fluid. While the hydrodynamic boundary layer thickness δ (x) and
velocity profile u (x, y) are constant in time, the thermal boundary layer thickness
δt (x, t) and temperature profile T (x, y, t) are time-dependent as long as the tran-
sients last. The instantaneous temperature distribution within the plate Tp (x, y, t) is
distinctively illustrated in Fig. 1 for both the penetration phase and after penetration
phase.

2. Description of the models and solution methodologies

Exact analytical solutions are often impossible to find when dealing with tran-
sient phenomena. On the other hand, where transient effects can be incorporated
with similarity methods for example, the resulting solutions may impose particular
relationships between variables. For these reasons, the authors chose to use two dif-
ferent approaches: (i) a semi-analytical methodology, based on the integral method
of Karman-Pohlhausen; (ii) a numerical method based on finite volumes, built-in
the FLUENT code. The first one, although approximate to some extent, has the
advantage of providing ordinary differential equations that governs the system behav-
ior. Such ODE’s can then be easily integrated to study nonlinear dynamics effects
associated with transients and embedded nonlinearities in the governing equations.
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Fig. 1. Description of the physical system.

The second approach is more accurate but the use of FLUENT code does not allow
enough flexibility and hides the governing equations, making thus the embedded non-
linearities invisible. For example, energy equation is linear in temperature but highly
nonlinear in the thermal boundary layer thickness [1, 4], which is not a variable in
the finite-volume approach.

Momentum and energy conservation equations within the fluid and the plate,
as well as the energy conservation equation at the interface are used in both ap-
proaches. The basic assumptions considered here for the heat transfer modeling are:
(i) incompressible fluid with constant thermo-physical properties; (ii) negligible vis-
cous dissipation; (iii) δt ≤ δ, (Pr ≥ 0.7); (iv) constant plate thermal conductivity; (v)
one-dimensional conduction and no heat sources within the plate.

2.1. Integral method

Equations for momentum and energy conservation in their integral and differ-
ential forms were used with temporally adaptive profiles for fluid and temperature
to obtain governing equations for the thermal boundary layer response [1, 2, and 5].
The integral equations were solved together with proposed velocity and temperature
profiles for the fluid and plate material. The profiles were modeled as high order
polynomials, according to the Karman-Pohlhausen methodology. The time depen-
dent polynomial coefficients allow the instantaneous adaptation of the profiles to the
transient boundary conditions. In dimensionless format and in connection to the
boundary conditions, the fourth-order polynomials for the fluid profiles are [1, 5].

u∗ = 2η − 2η3 + η4, η =
y

δ
, (1)

θ = θs −
(

2θs +
1

3
ω

)
β + ω β2 + (2θs − ω) β3 +

(
−θs +

1

3
ω

)
β4, (2)
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where

ω ≡ x∗ Pr∆2

2

∂θs

∂τ
, β =

y

δt
.

In the impact plate case, two distinct temporal phases were considered sepa-
rately: (i) the initial phase of plate penetration, treated as conduction through a semi-
infinite body with imposed thermal condition at y = −E, and (ii) after-penetration
phase, associated with the thermal boundary layer development within the fluid (see
Fig. 1). In the first phase, the instantaneous penetration depth is e (t) ≤ E and the
boundary conditions allow the plate temperature profile modeling as a third polyno-
mial [6]. After the heat flux reaches the front plate surface (Fig. 1), the boundary
conditions at y = 0, θp = θs, lead to a different temperature profile inside the plate
[2]. The resulting polynomials are presented below:

θi
p = θ0 −

(
3

2
θ0 +

1

2
ωe

)
· y + E

e
+ ωe ·

(
y + E

e

)2

+
1

2
(θ0 − ωe) ·

(
y + E

e

)3

(3)

with ωe ≡
e2∗A Pr

2

∂θ0
∂τ

and −E ≤ y ≤ −E + e (t).

θp = θs+

(
θs +

2

3
ωp +

PrAE2
∗

6
θ′0 − θ0

)
y

E
+ωp

( y
E

)2

+
2ωp − PrAE2

∗ · θ′0
6

( y
E

)3

(4)

with ωp ≡
E2

∗A Pr

2

∂θs

∂τ
and −E ≤ y ≤ 0 .

Temperature polynomial profiles are illustrated in Figure 2, next to those ob-
tained with the aid of FLUENT code.

The penetration time is calculated with the differential equation governing the
instantaneous penetration depth e and corresponds to the condition e = E. This
equation has been derived by using the temperature profile (4) in the plate energy
conservation integral equation [1],

∂

∂τ

(
e∗
E∗

)(
6θ0 −

e2∗
E2

∗

PrAE2
∗

∂θ0
∂τ

)
=

24 θ0
PrAE∗e∗

− 2 e∗
E∗

∂θ0
∂τ

+
PrAE2

∗

3

(
e∗
E∗

)3
∂2θ0
∂τ2

.

(5)
The use of polynomial (7) in the fluid momentum integral equations lead to the

hydrodynamic boundary layer thickness:

δ = 5, 83
√
ν · x∗/U∞ = C

√
x∗. (6)

For the energy conservation equations within the fluid and at the interface, two
more assumptions have been made in addition to the temperature profile (2) [5]:

(i) The thermal boundary layer thickness varies with the spatial coordinate x
in a similar way as the hydrodynamic boundary layer thickness; it results that their
ratio is x-independent, ∆ (τ) ≡ δt (x, τ) /δ (x, τ);

(ii) The temperature distribution within the fluid may be expressed as a product
between the steady-state solution and a transient correction factor, by using the
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variable separation, θs (x, t) = θss
s (x) · θt

s (t). In this way, the spatial coordinate x is
treated as a parameter and the resulting governing equations (7) and (8) for the fluid
are ordinary differential equations with respect to time only.

∂∆

∂τ

(
3

10
θs −

1

40
x∗ Pr

∂θs

∂τ
∆2

)
=
θs

x∗

[
2

Pr

1

∆
− 5,832

2 ( 2− θss
s ) ∆ · ϕ1

]
(7)

+

[
5.832

4
Pr ( 4− θss

s ) ∆3ϕ2 −
2

15
∆

]
∂θs

∂τ
+
x∗ Pr

120
∆3 · ∂

2θs

∂τ2
,

where ϕ1 = 2/15 ·∆− 3/140 ·∆3 + ∆4/180 and ϕ2 = ∆/90−∆3/420 + ∆4/1512.

dθs

dτ

(
2 +

∆
√
x∗Λ

AE∗

)
=

6

PrAE2
∗

[(
θ0 −

1

6
PrAE2

∗ ·
dθ0
dτ

)
− θs

(
2Λ ·E∗

∆ · x∗
+ 1

)]
. (8)

It is remarkable that the governing equations (7) and (8) are coupled and highly
nonlinear. However, they can be integrated by numerical techniques that are com-
monly used for ordinary differential equations. The steady-state forms and solutions
are readily obtained by cancelling the time-derivatives.

The laminar flow condition imposes a Reynolds number less than the critical
value Rex,cr = 5 · 105, which also limits the spatial coordinate at a maximum value
of x∗ = 14 700.

The transient solutions were obtained by integrating the ordinary differential
equations by Runge-Kutta algorithms of fourth and fifth order. The integration was
performed with different time steps, depending on the variable time responses. Most
commonly, very small time steps were used at the beginning, due to the rapid increase
of the thermal boundary layer thickness. The subsequent system dynamics allowed for
larger time steps and thus for reasonable computational durations. The singularities
present at τ = 0 were avoided by considering limiting values for ∆ and θs.

2.2. Finite-volume approach

For this second method, numerical solutions were obtained with the commercial
code FLUENT 6.0. It is based on the finite control volume formulation of Navier-
Stokes equations on an unstructured grid. For incompressible flows, the code uses
the segregated technique that consists in sequentially and iteratively solving the mo-
mentum, pressure correction and energy equations. This solver code provides many
spatial and temporal discretization procedures, which can be selected according to the
particular case under consideration. Thus, there were employed here the second order
upwind scheme for the spatial discretization of momentum and energy equations, and
the PISO algorithm with neighbour correction for the pressure correction equation.
The temporal discretization was performed with Euler second order implicit scheme.

The full fluid Navier-Stokes system was solved within a rectangle computation
domain, whose horizontal boundary (containing the upper plate surface) was extended
with half plate length at both the leading edge and trailing edge. The vertical bound-
ary was about one hundred times greater than the hydrodynamic boundary layer
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a) finite-volume method b) FLUENT code

Fig. 2. Temperature profiles.

thickness. The plate computational domain coincided with its real geometry and was
used to solve the solid energy conservation equation. The two domains were meshed
with 2D quadrilateral cells having a variable density in the x and y directions around
the fluid-solid interface.

The initial solution was obtained by a steady state calculation for an isothermal
boundary layer flow developed on the finite thickness flat plate. Once the time-
dependent thermal boundary condition T0 (t) was set at the plate bottom surface
(y = −E in Fig. 1), the unsteady calculation was performed and transient solutions
resulted. For the particular case of a step change in the surface temperature, the grid
independency on the numerical solution was obtained through the grid adaptation
technique of the initial mesh at the solid-fluid boundary interface. Then, the same
mesh was used for all other calculations.

The Figure 2 illustrates the temperature profiles within the fluid as well as
within the plate, as obtained with the finite-volume approach and FLUENT code.

3. Heat transfer performance

This study analyzes the transient heat transfer performances in parallel flows
over a flat plate. Most of the correlations reported in the literature do not consider
the conduction through the plate, or, otherwise said, consider the plate of zero thick-
ness and impose a condition (e.g. temperature or heat flux) at the contact surface.
However, real situations deal with finite thickness plates: E 6= 0. Then, the surface
temperature varies along the plate and the local Nusselt number (≡ hx/λ) used to
compute the local heat transfer coefficient h, becomes insufficient for using the New-
ton’s law of cooling: qs (x) = h (x) [Ts (x) − T∞]. In order to point out the impact
plate influence on the heat transfer, a correction factor is defined as the ratio between
the instantaneous heat flux associated with a finite thickness plate and the instan-
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taneous heat flux associated with a zero thickness plate, both at the same spatial
location. The surface heat flux is easily obtained from the Fourier’s law and the tem-
perature profile within the thermal boundary layer. The integral method provides
the following expression based on Eq. (2):

CF ≡ qs (E 6= 0)

qs (E = 0)
=
(
θs +

ω

6

) ∆(E = 0)

∆ (E 6= 0)
. (9)

For a finite thickness plate, the interface temperature θs is always inferior to
unity. As time goes to infinity, the correction factor reaches its steady-state value
(ω = 0), which is also inferior to unity:

CF ss = θss
s

∆ss (E = 0)

∆ss (E 6= 0)
< 1. (10)

Knowledge of the steady-state correction factor would allow the use of the
present correlations derived for a zero thickness and isothermal impact plate.

4. Selected forcing function and system parameters

In the present study, the temperature imposed at the plate bottom surface will
follow a temporal ramp variation of finite duration. The step change may be viewed
as a limiting case, i.e., a ramp of zero duration. This type of forcing function has
been chosen as it models the real variations which are never totally abrupt. However,
the developed models can be used with any other temporal variation of the imposed
boundary condition so long as the variations are piece-wise smooth.

The ramp function is characterized by its durationD. In dimensionless variables,
it starts from an initial value of zero, corresponding to thermal equilibrium, and a
final value of unity associated with the steady-state conditions [1].

θ0 =

{ 1

2

[
1 + sin

(π · τ
D
− π

2

)]
, 0 ≤ τ < D

1, τ ≥ D
(11)

The ramp profile is presented in Figure 1, in the bottom panels.
Solutions were obtained for various system parameters but will be reported here

only for an illustrative case: water flow over a steel plate. The considered mean
thermophysical properties are presented in Table 1. En extended paper may cover
multiple other combinations. Table 2 presents the conversion of a few non-dimensional
values into the physical values considered in this study, fact that will enable the
interpretation of results in section 6. The flow velocity was chosen U∞ =1 m/s.

5. Model validation

Under steady-state conditions, the integral method provided the following ex-
pression for the Nusselt, as derived from its definition:
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Table 1

water Steel

k [W / mK] 0.59 14.7

α [m2 / s] 0.142·10−6 4·10−6

Pr 7.0 –

Table 2

C = 5, 83
√

ν/U∞ = 0,00583

τ ≡ t · ν/C4 = 104 t= 11.5 sec

E∗ ≡ E/C2 = 100 E= 3.4 mm

x∗ ≡ x/C2 = 7000 x= 238 mm

Nux ≡
hx

k
= 0, 343Re1/2

x

1

∆ss
, (12)

where h ≡ −k (∂T/∂y)y=0 / (Ts − T∞).
On the other hand, the FLUENT code provided values for the same Nusselt

numbers. All values were validated against other solutions previously reported for
steady-state conditions and a zero thickness plate. Particular values and associated
errors are shown in Table 3 for water flows, location x∗ = 7 000, Rex = 237 922 and
the system parameters specified in Tables 1 and 2.

Table 3

Correlation
Value and relative
error

Exact solution (Succec 1985):

Nux ≡ hx
k

= 0, 332Re
1/2
x Pr1/3 309.774 (0%)

Integral solution (Padet 1998):

Nux ≡ hx
k

= 0, 343Re
1/2
x Pr1/3 320.038 (3.3%)

Equation (12),
E∗ = 0, ∆ss = 0.5076 for Pr = 7.

329.600 (6.4%)

Fluent code 311.013 (0.4%)

The assumption that the boundary layer thickness ratio ∆ is not a function of
x∗ in Eq. (7) was checked for x∗=1000 – 13000 and a plate thickness E∗ = 100. The
steady-state values ∆ss ranged from 0.4576 to 0.4875, which leads to an interval error
of 6.2%.

The error levels of less than 6.5% rend the methodologies used here appropriate
for engineering applications. The steady-state error analysis confers credibility to
the transient solutions used further to characterize the instantaneous heat transfer
performance and which cannot be compared to other previously reported results.

6. Results

First, the two methodologies were compared under steady-state conditions. The
figure 3 presents the local temperature at the contact surface (y = 0 in Fig. 1). It is
obvious that the differences are so very small that they hardly can be noticed. This
result gives credit to the approximate integral method, which in turn can provide
analytical expressions for heat transfer system performances. The thermal boundary
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layer thicknesses were not compared because the full Navier-Stokes solutions, obtained
with FLUENT, do not imply the use of this variable. Under transient conditions,

Fig. 3. Steady-state local surface temperature.

Figure 4 illustrates the surface temperature dynamics for different ramp durations
and for both methods. It appears that the major differences occur in the penetration
times, they being much smaller when calculated with FLUENT solver. This result
may be attributed to the 3rd polynomial profile imposed for the plate temperature
during the penetration time, as well as to singularities encountered in the governing
differential equations (7) and (8) when the thermal boundary layer starts developing.

Fig. 4. Surface temperature dynamics for two ramp durations and three x-locations.

The influence of the impact plate on the heat transfer performance represents
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the most significant aspect of the problem. As stated earlier, results were expressed
as a correction factor CF defined in Eq. (9). In this way, the influence of thermal
coupling is indicated by the difference between the CF value and unity. The plate
material and thickness, as well as the type of fluid, have a major influence on the
heat transfer rates, facts that were reported in a previous publication [1,2, and 5].
The purpose of this paper is to compare the approximate integral method with the
finite-volume numerical method which is built-in the widely used commercial code
FLUENT. The comparison of the two types of solutions is shown in Figure 5 for
different ramp durations in the forcing function of T0 and for the location x∗ = 7000.

It is obvious that all the CF-values are inferior to unity even under steady-state
conditions. However, the FLUENT code provided a value (CF = 0.9228) that is 4.7%
higher that that obtained with the integral method (CF = 0.8791).

The maximum zones (bumps) indicated at the end of transients derive from
the fact that during the penetration times, there is a heat flux to the fluid for the
zero-thickness plate but no heat transfer for the finite-thickness plate. Equation (9)
indicates that CF depends on the ratio of the boundary layer thicknesses associated
with E = 0 and E 6= 0, respectively. This ratio is obviously higher than unity during
the penetration times and induces also higher values afterwards. The “bumps” are
shown to decrease as the ramp duration increases and have lower values at more
remote locations from the plate leading edge.

Under transient conditions, the instantaneous differences are significant, espe-
cially due to the high penetration times related to the integral approach. However,
even shifted in time, the CF-growths deduced from this method are more abrupt,
rapidly approaching the steady-state values. Table 4 presents the time-averages of
the correction factor for the curves of Figure 5. Transient time was defined as the
time needed to reach 95% of the steady-state value.

Table 4

D = 0 D = 1000 D = 2000 D = 3000

Integral method 0.8226 0.7064 0.6617 0.6011

FLUENT 0.8425 0.7057 0.6741 0.5855

Results indicate that the time-average differences between the two approaches
range from −2.4% for the step change in T0 (D = 0) to 2.6% for a ramp change
of duration D = 3 000. If the transient time is redefined, i.e. the time needed to
reach 90% or 99% of the steady-state value, the time-averages diminish or increase
accordingly.

7. Conclusion

The study aimed to characterize the heat transfer performance in the case of
a parallel laminar and stationary flow over a finite thickness plate. Two methodolo-
gies were applied: a semi-analytical one based on the integral approach of Karman-
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Fig. 5. Correction factor CF for the different ramp durations and x∗ = 7000.

Pohlhausen, and a numerical simulation using the finite-volume discretization of the
system domain with the aid of the FLUENT commercial solver. Both methods were
validated against results previously reported for a zero-thickness plate and stationary
conditions. The paper presents an illustrative case of a water flow of 1 m/s incident
velocity over a steel plate, 0.4 m long and 3.4 mm thick. The forcing function was
chosen to be a ramp change in the temperature imposed at the plate surface, that is
not in contact with the fluid.

The interface temperature was shown to significantly vary with the spatial co-
ordinate parallel to the plate, fact that does not allow anymore the simple use of a
Nusselt number correlation for the heat transfer rate calculus. For this reason, the
heat transfer results were reported as a correction factor defined as the ratio of the
heat flux associated with the finite thickness plate and the heat flux associated with
the zero thickness plate. In this way, two aspects are addressed: first, the departure
of the correction factor from unity indicates the plate influence on the heat transfer
performances; second, the current correlations derived for a zero thickness plate can
still be used and then corrected with the correction factor as indicated here. Re-
sults related to the correction factor dynamics indicated that the two methods agree
within 5% under steady-state conditions and within 2.6% for the transients, with
higher differences for ramps of higher durations.

The numerical solutions indicated the magnitude of the impact plate influence on
the heat transfer performances as compared to the zero thickness plate. For example,
for a ramp change ofD = 3 000 (3 s), the correction factor had a time-average of about
0.59, meaning 41% less heat transferred to the fluid during the transient regime. This
result suggests that for frequent changes (on-off regimes) in the applied temperature,
or for longer ramps, the neglecting of the plate influence could lead to great errors in
the engineering application design or operation.

Despite the fact that the two solution methods used here lead to similar results,
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it is obvious that the integral method is more suitable for dynamical analysis, while
the FLUENT code should be preferred for more precise engineering calculations.

LIST OF SYMBOLS

A = a/ap – ratio of fluid and plate diffusivities
C – proportionality factor [eq. (6)] [m1/2]
E – plate thickness [m]
E∗ = E

/
C2 – dimensionless plate thickness

CF = qs (E 6= 0) /qs (E = 0) – correction factor
D – ramp duration [eq. (11)]
h – convective heat transfer coefficient [W/mK]
k – thermal conductivity [W/mK]
Nux = hx/k – local Nusselt number
qs – contact surface heat flux (y = 0) [W/m2]
T – fluid temperature in the boundary layer [K]
Tp – plate temperature [K]
T∞ – freestream fluid temperature [K]
T0 – bottom plate surface temperature [K]
u∗ = u/U∞ – dimensionless fluid velocity
U∞ – freestream fluid velocity [m/s]
x∗ = x

/
C2, dimensionless coordinate

y∗ = y/E, dimensionless coordinate
Greek symbols:
β = y/δt – dimensionless coordinate [eq. (2)]
δ – velocity boundary layer thickness [m]
δt – thermal boundary layer thickness [m]
η = y/δ – dimensionless coordinate [eq. (7)]
∆ = δt / δ – ratio of boundary layers thicknesses
θ = (T − T∞) / (T ss

0 − T∞) – non-dimensional temperature in the thermal bound-
ary layer

θ0 = (T − T∞) / (T ss
0 − T∞) – instantaneous plate temperature at its bottom

surface (y = −E)
θs = (Ts − T∞) / (T ss

0 − T∞) – dimensionless temperature at the interface (y =
0)

θp = (Tp − T∞) / (T ss
0 − T∞) – dimensionless plate temperature

Λ = k /kp – ratio of fluid and plate thermal conductivities
τ = t · ν/C4 – dimensionless time
τf1 – plate penetration dimensionless time
Indices:
ss – steady state
p – relative to plate
s – relative to the contact surface (y = 0)
i – relative to the plate penetration time
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Mathematical Modeling
of the Dynamic Crack Propagation

in a Double Cantilever Beam

Eduard-Marius Craciun∗†, Tudor Udrescu∗, George Cı̂rlig∗

We consider a rapid crack propagation along its line in an elastic body subject to a

plane strain loading with constant velocity. We present the path independence of the J-

integral in the dynamic case. The velocity and acceleration of a crack in a double cantilevers

beam (DCB) are studied using analytical and numerical methods.

1. Introduction

Basic solutions of the elastodynamic crack fields are presented in the second
section. For a rapid crack propagation in an elastic body subjected to a plane strain
loading we obtain the representation of the stress and displacement fields in terms of
two displacement potentials. Using the polar coordinates we obtain for the Mode I of
classical fracture crack the tip stress fields.

In the third Section we present the energetical aspects of dynamic crack propa-
gation.

In the last part of the paper we study the behavior of the velocity and accel-
eration of a right crack in a DCB made by a non-linear material and we show the
representation of the velocities and of the accelerations, versus the ratio of initial and
current lengths crack and versus the coefficient β of exponent of the strain from the
stress-strain relation of two nonlinear material.

∗ “Ovidius” University of Constanţa, Romania.
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X1 x1
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Γ
A

C

Fig. 1. Coordinate axes for a rapidly crack propagation. The X1X2-axes are fixed in space
and x1x2 axes are attached to the crack tip.

2. Basic solutions of the elastodynamic crack fields

In the dynamic problems, the equation of equilibrium are replaced by the equa-
tion of motion. In the absence of body forces we have

σij,j − ρüi = 0, i, j = 1, 3, (1)

where σij and ui are the components of stress and displacement tensor, xj represents
the moving rectangular coordinates and dot indicates a time derivative.

For a linear elastic material we have the following equation in terms of displace-
ments and elastic constants:

µ
∂2ui

∂x2
j

+ (λ+ µ)
∂2uj

∂xi∂xj
= ρüi, (2)

where µ and λ are Lamé constants.
We consider a rapid crack propagation in a body subjected to a plane strain

loading, with constant velocity V in the X1 direction as in Figure 1.
We have

x1 = X1 − a(t), x2 = X2, a(t) = V t. (3)

Introducing two displacement potentials Ψ1 and Ψ2 defined by

u1 =
∂Ψ1

∂ X1
+

∂Ψ2

∂ X2
, u2 =

∂Ψ1

∂ X2
− ∂Ψ2

∂ X1
(4)
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and introducing in Eq. (2) we get

∂2Ψ1

∂ X2
1

+
∂2Ψ1

∂ X2
2

=
1

c21
Ψ̈1,

∂2Ψ2

∂ X2
1

+
∂2Ψ2

∂ X2
2

=
1

c22
Ψ̈2. (5)

The wave speeds, for plane strain, are given by

c21 =
λ+ µ

ρ
, c2 =

µ

ρ
. (6)

We have the following representation of the stress field in terms of displacement
potentials (see [1]):

σX1X1 + σX2X2 = 2(λ+ µ)

(
∂2Ψ1

∂X2
1

+
∂2Ψ1

∂X2
2

)
,

σX1X1 − σX2X2 = 2µ

(
∂2Ψ1

∂X2
1

− ∂Ψ1

∂X2
2

+ 2
∂2Ψ2

∂X1∂X2

)
,

σX1X2 = µ

(
∂2Ψ2

∂X2
2

− ∂2Ψ2

∂X2
1

+ 2
∂2Ψ1

∂X1∂X2

)
. (7)

Taking into account (3) the rate of change of each wave potential can be written
as:

dΨ1

dt
=
∂Ψ1

∂t
− V ∂Ψ1

∂x1
, i = 1, 2. (8)

Differentiating Eq. (8) and introducing the second order derivatives of Ψ̈i, i =
1, 2 in Eqs. (5) we get the following governing equations:

β2
1

∂2Ψ1

∂ x2
1

+
∂2Ψ1

∂ x2
2

= 0,

β2
∂2Ψ2

∂ x2
1

+
∂2Ψ2

∂ x2
2

= 0, (9)

where

β2
1 = 1−

(
V

c1

)2

, β2
2 = 1−

(
V

c2

)2

. (10)

We try to determine the wave potentials as real and respectively imaginary parts
of two unknown complex functions F (z1) and, respectively, G(z2),

z1 = x1 + ix1
2, z2 = x1 + ix2

2. (11)

Expressing the boundary conditions for a stationary crack in mode I of classical
fracture σx2x2 = σx1x2 = 0, in terms of second derivatives of the unknown functions
F and G for x2 = 0 and x1 < 0 we have
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(1 + β2
2)
[
(F ′′(x)+ + (F ′′(x)−

]
+ 2β2

[
(G′′(x)+ + (G′′(x)−

]
= 0,

2β1

[
(F ′′(x)+ − (F ′′(x)−

]
+ (1 + β2

1)
[
(G′′(x)+ − (G′′(x)−

]
= 0, (12)

where + and − correspond to upper and lower faces of the crack, respectively.
Adding and substracting Eqs. (12) we obtain two Riemann-Hilbert problems

(see [1], [2]), with the solutions:

F ′′(z1) =
C√
z1
G′′(z2) =

−2β2C

(1 + β2
2)
√
z2
, (13)

where C is a constant.
Making the substitution z1 = r1e

iθ1 , z2 = r2e
iθ2 we obtain the following expres-

sion for the Mode I crack tip stress fields:

σx1x1 =
K1(t)√

2πr

1 + β2
2

D(t)

[
(1 + 2β2

1 − β2
2)

√
r

r1
cos

θ1
2
− 4β1β2

1 + β2
2

√
r

r2
cos

θ2
2

]
,

σx2x2 =
K1(t)√

2πr

1 + β2
2

D(t)

[
−(1 + β2

2)

√
r

r1
cos

θ1
2

+
4β1β2

1 + β2
2

√
r

r2
cos

θ2
2

]
,

σx1x2 =
K1(t)√

2πr

2β1

(
1 + β2

1

)

D(t)

[√
r

r1
sin

θ1
2
−
√

r

r2
sin

θ2
2

]
, (14)

where

D(t) = 4β1β2 −
(
1 + β2

2

)2
.

3. Crack tip energy release rate

We consider the case of a crack in a two-dimensional body where the crack is
propagating along the x1-axis and the origin is attached to the crack tip (see Figure
1). Let us consider a contour C that contains the propagating crack and bounds an
area A. The crack tip is surrounded by a small contour, Γ, that is fixed in size and
moves with the crack.

From the equation of motion (1) making the inner product of both sides with
displacement rate, u̇i, we obtain (see [3])

∂(σij u̇i)

∂xj
= ρüi + σji

∂u̇i

∂xj
= Ṫ + ω̇, (15)

where T is kinetic energy and ω represents stress work density and are given by

T =
1

2
ρ
∂ui

∂t

∂ui

∂t
, w =

∫ εij

0

σijdεij . (16)
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Integrating the general balance law (15) over an arbitrary area A and applying
the convergence Green theorem we get the following balance law:

∫

C

σijnju̇ids =
d

dt

∫ ∫

A

ρEdA+
1

2

d

dt

∫ ∫

Γ

ρu̇iu̇idA+ V G (17)

with n the outward unit normal vector of curve C and G having the following form
(see [13])

G =

∫

C

(
ω +

1

2
ρV 2 ∂ui

∂xi

∂ui

∂xi

)
dx2 −

∫

C

Ti
∂ui

∂xi
ds. (18)

The first term in Eq. (17) represents the work traction across C; the first and
second terms from the right side are the rate of increase of internal and kinetic energies
stored inside the region A and the third term represent the energy dissipated by the
moving crack.

Taking into account that the displacement rate can be written as

u̇i = −V ∂ui

∂x1
+
∂ui

∂t

and under steady state condition the second term in above equation vanishes. Close
to the crack tip, we have in a small contour Γ, for the energy release rate defined as

J =
G

V
(20)

the following expression

J = lim
Γ→0

∫

Γ

[
(ω + T ) dx2 − σijnj

∂ui

∂xi
dΓ

]
(21)

known in the literature as J -integral for the dynamic case. For the quasi-static case
Rice [4] showed that the corresponding J -integral is path independent. In dynamic
case when the crack propagation is steady-state, i.e. ∂ui

∂t = 0, Eq. (21) is also path
independent.

4. Crack velocity and acceleration in a DCB

We consider a double cantilever beam (DCB) of height 2h with a crack of length
a, as in Figure 2, made by a nonlinear material characterized by the equation

σ = αε
β+1
2 ,

where α measures the stiffness of material (see [3], [5]). The DCB is subjected to an
end load P , that remains constant during rapid crack propagation. Let a0 denote the
initial crack length and Pc the load at crack propagation.
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P

P
a b

2h

B

Fig. 2. A double cantilever beam subjected to a load P .

The energy balance equation during crack propagation takes the form

Pc(u− uc) = U(a)− U(a0) +K + γ(a− a0). (22)

The left side of Eq. (22) represents the work supplied to the system during the growth
of the crack from its initial length a0 to the length a. The right side is composed by
the change of strain energy U(a)−U(a0), kinetic energy K and the change of surface
energy γ(a− a0).

From the beam theory we have for the stress σ, strain ε and deflection x2 =
x2(x1) at position x1 of DCB the following expressions:

σ =
Px1x2

I

(
x2

2

) β−1
2 , ε = x2

(
αI

Px1

)− 1
β

, (23)

x2 (x1) =
β + 1

β

(
Pc

αI

) 1
β
[

2β

β + 1
x

2β+1
β

1 − a β+1
β x1 +

β + 1

2β + 1
a

2β+1
β

]
, (24)

where

I = 2

∫ h
2

0

xβ+1
2 dx2. (25)

The strain energy of the beam is given by

U(a) =

∫

V

(∫ ε

0

σ dε

)
dV. (26)
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Using the values of σ, ε and U = x2(0) from Eqs. (23)–(24) we get

U(a) =
Pcu

β + 1
. (27)

Taking into account Eq. (24) in the expression of the kinetic energy

K =
1

2

∫ a

0

ρh

(
dx2

dt

)
dx1, (28)

we obtain

K =
1

6
ρh

(
Pc

αI

)2β

a
2+3β

β V 2, (29)

with V = da
dt representing crack velocity. Taking into account Eqs. (24), (27) and (29)

from the energy balance equation we obtain for crack speed during crack propagation

V 2 =
6β2

(2β + 1)(β + 1)

(αI)
1
β

ρh
P

β−1
β

c a−
β+1

β

[
1−

(a0

a

) 2β+1
β − n

(
1− a0

a

)(a0

a

) β+1
β

]

(30)
and by differentiation of Eq. (30) with respect to time we obtain the crack acceleration
ac = dV

dt ,

ac =
3β2

(2β + 1)(β + 1)

(αI)
1
β

ρh
P

β−1
β

c a−
2β+1

β [(1− n)
3β + 2

β

(a0

a

) 2β+1
β

+

+
β + 1

β

[
2n
(a0

a

) β+1
β − 1

]
, (31)

where

na
β+1

β

0 =
(β + 1)(2β + 1)

β2
γ (αI)

1
β (Pc)

− 1+β
β . (32)

The initial acceleration of the crack ac = ac(a0) is positive and we obtain the
following restriction between n and β:

n <
2β + 1

β
. (33)

Numerical results using Mathematica for a0

a ∈ [0, 1], β ∈ [0, 1] and n = n1
2β+1

β
with n1 = 0.9 are presented in Figure 3, for the variation of normalized crack speed
vn,

vn =

√
ρh

(αI)
1
2β

a
β+1
2β

0 P
1−β
2β

c v =

=
6β2

(2β + 1)(β + 1)

(a0

a

)β+1
2β

[
1−

(a0

a

) 2β+1
β − n

(
1− a0

a

)(a0

a

) β+1
β

]
. (34)

We conclude that crack speed increases during the crack propagation from zero at
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Fig. 3. 3D Plot for n1 = 0.9.

a0

a = 1, and reaches a maximum for a0

a > 0.5.
In Figure 4, we present the variation of normalized crack acceleration an,

an =

√
ρh

(αI)
1
2β

a
2β+1

β

0 P
1−β

β
c ac =

3β2

(2β + 1)(β + 1)

(a0

a

) 2β+1
β ·

·
{

(1− n)

(
3β + 2

β

)(a0

a

) 2β+1
β

+
β + 1

β

[
2n
(a0

a

)β+1
β − 1

]}
. (35)

The crack first accelerates from zero at a0

a = 1, reaches a maximum for a0

a ∈ (0.8, 0.9),
then decelerates before coming to a complete stop at a0

a → 0.
We conclude that the crack propagation is slowing as β decreases, i.e. the

material becomes stiffer with decreasing β.

5. Final remarks

In this paper we studied the dynamic crack propagation of an elastic body
subjected to a constant velocity. Basic solution of elastodynamic crack fields are pre-
sented. Mode I stress fields in a neighborhood of the crack tip and path independence
of J-integral in the dynamic case were obtained.

Analytical results were obtained for velocity and acceleration of the crack tip
with particular case of a DCB made by nonlinear material.
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Fig. 4. 3D Plot of acceleration for n1 = 0.9.

Numerical representation using Mathematica for different ratios of the initial
and current velocities and for different values of the coefficient β from the exponent
of the stress from stress-strain relation allowed us to make an image of the crack tip.
We obtained that the crack speed and acceleration increase during crack growth to a
maximum value and then decrease before reaching a complete stop.
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Constanţa, Romania, September, 2005, pp. 79–87

Noise prediction model for wind turbines

Alexandru Dumitrache∗†♮ and Horia Dumitrescu∗♮

Aerodynamic noise is generated when the rotor encounters smooth flow. It contains

airfoil self-noise and turbulence inflow noise. The present semiempirical model is coupled

with CFD and aerodynamic calculation so as to improve the accuracy of the prediction

model. By doing CFD computations, boundary layer parameters for some relevant airfoil

profiles are stored as a database which is used directly for the noise prediction model. The

total noise spectrum for a given wind turbine is compared with experiment and encouraging

result is obtained.

1. Introduction

The future of using wind energy is so exciting that it has many advantages
such as: no air pollution, no need of any fossil or nuclear resources during opera-
tion. But with the fast increase of wind energy development, it also gives rise to
the problems concerning public acceptance of wind energy. The noise and visual im-
pact are the main drawbacks. The noise from wind turbines may annoy people who
live around. Therefore it’s necessary to estimate the noise level in the field where
the wind turbines are installed. Generally, the noise from wind turbine is composed
with mechanical noise and aerodynamic noise. The mechanical noise is caused by
the different operating machine elements which can be reduced efficiently by many
engineering methods and will certainly not reduce the power output. However, the
way to reduce aerodynamic noise from wind turbines should be studied together with
power efficiency. A fully established method to predict the wind turbine noise is still
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limited. For engineering purpose of use, several semi-experimental noise prediction
models are available. Some of the models are originally developed for application on
helicopter and aircraft wings. One of the first model was carried out by Grosveld [1]
in 1985. In 1981, Viterna [2] applied a method to the low-frequency noise estimation
from a wind turbine. Brooks, Pope and Marcolini [3] performed a set of experiments
for NACA0012 airfoil sections. However, the aerodynamic and acoustic measure-
ments were only based on NACA0012 airfoil which may not be suitable for other
airfoil profiles. Therefore, the boundary layer parameters at trailing edge should be
calculated instead of using experimental data from NACA0012 airfoil. Unweighted,
or linear-weighting, was used in the presentation of data, while the standard regula-
tions, typically used in measuring the acoustic emissing from wind turbines, specify
A-weighting, which de-emphasizes frequencies below 1 000 Hz and correlates extremely
well with human subjective response.

2. Noise mechanisms of wind turbines

Nowadays, the size of wind turbine and the capacity of wind farms are becoming
larger. The noise generated from wind turbines is considerably higher than before. A
large amount of effort has to be gone into reducing noise emission from wind turbines
to make wind energy the really green energy.

The noise is generated from the wind turbine blades, gearbox and generator.
There are two potential types of noise from wind turbines mechanical and aerodynamic
noise. Mechanical noise comes from the metal components moving or knocking against
each other. Aerodynamic noise is caused by the blade passing through air.

The noises caused by wind turbine mechanical components are of tonal property,
e.g. noise from the meshing gears. Due to the better engineering practices, mechanical
noise of modern wind turbine has been dropped to a very low level and is not the
main problem any longer.

2.1. Aerodynamic noise

The causes of aerodynamic noise are mainly divided into three types:
– Low-frequency noise,
– Turbulent inflow noise,
– Airfoil self-noise [10].
Low-frequency noise from wind turbine is originated by the changes of the

wind speed experienced by the blades due to the presence of the tower and the wind
shear. It may excite vibrations for buildings around the wind turbines.

Turbulent inflow noise. The broadband noise from wind turbines also de-
pends on the turbulent inflow characteristics, especially in the case of large wind
turbines. The inflow turbulence creates broadband noise which are perceived by the
observers as swishing noise.

Turbulent boundary layer trailing edge (TBL-TE) noise. Trailing edge
noise has been long recognized as another major source of airfoil self-noise. It is
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generated as the blade-attached turbulent boundary layer converts into the wake at
the airfoil trailing edge. The noises on suction side and on pressure side are major
noise source at low angle of attacks. However, at high angle of attacks the boundary
layer separation occurs which generates separated-flow-noise.

The trailing edge noise is also broadband.
Laminar boundary layer vortex shedding (LBL-VS) noise. A wind

turbine can be operated under a Reynolds range from 105 to 106 because of the
changes of relative wind speed and the chord length at different blade radius [14].
Therefore, the flow conditions on each blade sections are different from each other. If
the laminar boundary layer exist on one or both sides of the airfoil and cover the most
of the airfoil surface, a resonant interaction between the unsteady laminar-turbulent
transition with the trailing-edge noise will occur. This is termed as laminar boundary
layer vortex shedding noise.

It is a tonal noise that can be significant at certain operating conditions for
modern wind turbines which have low angular speed and large blade radius.

Tip vortex formation noise. Evidence exists that the flow around the tip is
three dimensional, thus the pressure difference between the suction and the pressure
sides result in a rotational flow region over the airfoil. This flow is described as a vortex
with a thick viscous turbulent core. The interaction between the tip vortex and the
trailing edge has the same manner as the interaction between turbulent boundary
layer and the trailing edge. Tip noise level strongly depends on the geometry details
of the blade tip.

Trailing edge bluntness vortex shedding (TEB-VS) noise. The TEB-VS
noise results by the vortex shedding from the blunted trailing edges. The noise level
varies with the bluntness thicknesses at each blade sections especially near the tip of
the blade.

3. Noise prediction model for wind turbines

Numerical simulation of far-field sound on a large computational domain is ex-
pensive and very difficult even for simple flow conditions. Some features of wind
turbine noise are of considerable importance in subjective response for wind turbine
noise. Therefore available theories require reinterpretation for application to predict
wind turbine noise. The well-know Lighthill’s acoustic theory is the theoretical basis
for most of the prediction models. The self-noise prediction model introduced in this
section is based on the experimental work of Brooks, Pope, and Marcolini [3]. The
turbulent-inflow noise model is based on Amiet [7].

Turbulence characteristic. Prediction of the turbulence characteristic is cru-
cial to predict the noise. The turbulence intensity and the length scale are depended
on the evaluate height above the ground and also the meteorological conditions at
the given site. The height of the wind turbine above the ground is fixed, thus the
turbulence might be considered isotropic which indicates that the fluctuations are
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approximately the same in all directions. The mathematical description is given as:

w = w̄eiωz(t−z/V0), (1)

where w is the turbulence velocity, z is the down-stream direction, ωz is the longi-
tudinal frequency and V0 is the mean free stream wind velocity. This simplification
is valid for horizontal axis wind turbines. The longitudinal turbulence is the most
important component and it is assumed to be a horizontal sinusoidal gust of the form
as equation 1. The mean square turbulence fluctuation at the height h is given by [8].

A method of computing the intensity is introduced here which is used in the
present noise prediction model. The mean wind speed varies with height and it’s
often described with the power law relationship

Vz = Vref (Z/Zref )γ , (2)

where γ is the power law factor which gives the amount of the shear:

γ = 0.24 + 0.096 log10 z0 + 0.016(log10 z0)
2, (3)

Turbulence intensity can be found using the relationship:

w̄/V̄ = γ[ln(30/z0)]/[ln(z/z0)], (4)

To characterize the turbulence of wind, the turbulence length scales also play an
important role. The turbulence length scale is the measurement of averaged size of a
gust in a certain directions which is used to determine how rapidly the gust properties
vary in space. The turbulence length scale, given by ESDU [25], is formulated as
following:

LESDU = 25z0.35z−0.063
0 . (5)

Inflow noise prediction. The adopted prediction model for turbulence inflow-
noise in this paper is based on the model on Amiet [7]. A semi-empirical model was
given which was valid against wind tunnel measurements with a single airfoil section
under turbulent inflow. For case of rotating wind turbines, a corrected model was
given by Lowson [10]. The model from Amiet can be used for each blade segments
along the blade span. For both high and low frequency regions, Lowson shown a
model with smooth transition between the two regions:

Lp,INF = LH
p,INF + 10 log10(Kc/(1 +Kc)), (6)

where LH
p,INF is the sound pressure level for high frequency region:

LH
p,INF = 10 log10[ρ

2
0c

2
0l(△L/r2M3I2k̂3)(1 + k̂2)−7/3] + 58.4, (7)

where l denotes the turbulence length scale and I denotes the turbulence intensity.
△L is the blade segment semi-span. The low frequency correction Kc in equation (6)

is given asKc = 10S2Mk̂2/β2 , where S is a function which denote the compressibility
of the flow. The formula is suggested by Amiet:

S2 = (2πk̂/β2 + (1 + 2.4k̂/β2)−1)−1,where β2 = 1−M2. (8)
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The wave number is given by Lowson which is corrected from Amiet: k̂ = πfc/Vrel .
Prediction model for TBL-TE noise and separation-stall noise. The

scaling laws for self-noise mechanisms are based on the results of Ffowcs-Williams
and Hall [5] which has been mentioned in section 2. The scaling law applied for the
TBL-TE noise is basically described by:

p2 ∝ ρ2
0w̄

2(U3
c /c0)(D̄△Lℓ/r2), (9)

where p2 is the mean square sound pressure at distance r from the trailing edge, D̄
is the directivity parameter with the value equals 1 if the observer is normal to the
trailing edge surface. ℓ is the correlation factor for the turbulence. It is approximated
by [3] that ℓ ∝ δ∗ or δ.

From this scaling law the total TBL-TE noise together with separation/stall
noise spectrum in 1/3-octave band is predicted by [3].

Prediction model for LBL-VS noise. The scaling method for LBL-VS noise
is similar with that used for TBL-TE noise. The scaling parameters are boundary
layer parameters, Mach number, angle of attack and Reynolds number. The boundary
layer thickness at trailing edge is used for LBL-VS noise prediction instead of using
boundary layer displacement thickness.

Prediction model for tip vortex formation noise. The flow around the tip
is highly turbulent and the tip noise is generated due to the passage of this turbulence
over the TE edge into the wake. The TIP noise model is developed by Brooks, Pope
and Marcolini [3].

SPLTIP = 10log(M2M3
maxl

′2D̄h/r
2)− 30.5(log(St” + 0.3))2 + 126, (10)

where l′ is the spanwise extent of tip vortex at trailing edge.
Prediction model for TEB-VS noise. The TEB-VS noise is scaled using the

method as TBL-TE noise and LBLVS noise. The sound pressure level frequency and
the spectral shapes are modelled as function of angle of attack and the airfoil trailing
edge parameters. The model is based on the measurement of airfoil NACA0012.

The noise spectrum are predicted as:

SPLBlunt = 10log(M5.5△LD̄h/r
2) +G4(h/δ

∗
arg,Ψ) +G5(h/δ

∗
arg,Ψ, St

′′′

/St
′′′

peak)
(11)

where h is the bluntness thickness, used for calculating the Strouhal number instead
of using boundary layer thickness parameter, St

′′′

= fh/U , G4 is the peak level
spectrum and G5 is modified as the shape of the spectrum.

Boundary layer thickness calculations. For each airfoil, the boundary layer
displacement thicknesses are calculated at both pressure side and suction side for
Reynolds number range 106 ∼ 2 × 106 and for the attack angle range −5o ∼ 25o,
by using the 2D airfoil code XFOIL [11]. To model the transition conditions, the eN

method is used in XFOIL. ncrit = 9 corresponds to the standard situation which is
assumed to be the untripped case. Calculation of ncrit = 4 is also performed which
represent the tripped case. Therefore there is a trigger in the noise prediction code
to specify whether the flow is tripped or untripped.
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Sound directivity. The sound directivity at both high and low frequencies are
based on the research of Amiet [7]. It can be normalized by the trailing edge noise
emitted at the position of Θ = 90o and Φ = 90o . Therefore, at this position the
sound directivity reaches the maximum value of 1 (valid at low frequencies). The low
frequency directivity is applied in case of separation stall noise. The reason is that
the turbulence eddies are comparable in size with the airfoil chord length and the
eddy convection speeds are low.

The low frequency directivity is applied in case of separation stall noise. The
reason is that the turbulence eddies are comparable in size with the airfoil chord
length and the eddy convection speeds are low.

4. Analysis of the noise prediction model

In our present work, the aerodynamic code BEM [12] is coupled with the aero-
dynamic noise prediction model. The induced velocities are computed by BEM code
using a new tip correction method [12]. Also, for wind turbines operating at cer-
tain yaw angle or/and tilt angle, the velocity field is accurately computed using the
coordinate transformation matrix.

In this section some results are illustrated using different input parameters (un-
fortunately, not all figures shown here due to lack of space). Therefore, the model is
validated against measurements and also some principle trends are studied. All the
analysis are based on the Bonus Combi 300 kW wind turbine since some measurements
have already been performed [13].

The effect by different airfoil contours. The first calculation is based on
the original experimental data from NACA0012 airfoil by Brooks, Pope and Marcolini
[3]. The result in general fits the measured curve. In another case, when NACA634xx
series airfoils are used instead of the original NACA0012 airfoil, the predicted result
agree with measurement data well at low and high frequency range.

The boundary layer parameters at trailing edge play an important role of the
total noise radiation level. In general, the prediction for untripped curve has better
result at high frequency range and the tripped curve fits well with experiment curve
at low frequency range. The measured overall sound power level at wind speed 8 m/s
is 99.1 dB(A). The predicted overall sound power level for NACA634xx are: 97.02
dB(A) (untripped boundary layer) and 96.81 dB(A) (tripped boundary layer).

Effect of the tip pitch angle. It should be mentioned here that the pitch
angle of Bonus Combi 300 kW wind turbine is fixed. The motivation of changing the
pitch setting is only from an analysis point of view. The sound power level decreases
by increasing the tip pitch angle. The differences between these curves are mainly
observed in the intermediate frequency range. The reason is that the effect is only
due to the changes of trailing edge noise and the separation-stall noise.

After doing the aerodynamic and noise calculation together, it can be seen in
this case that for the present wind turbine the optimized pitch setting is around 0 to
−1 degree which produce low noise and normal energy output.

Effect of sound directivity. It is known that sound pressure level changes
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Fig. 1. Noise spectrums from all source mechanisms.

with the observer positions by effect of the sound directivity. For a single wind
turbine case, we can conclude that the noise radiation property behaves like a dipole
sound source. Since the blades are twisted, there are also nonsymmetrical properties.
Therefore, there is no doubt that the best location for the residents is in tangential
direction of the rotor plane.

Noise from all sources are plotted together in figure 2. The result curves are
obtained using noise prediction model together with BEM code. In general the larger
the Mach number, the louder the noise radiates from wind turbine. Therefore, the
noise level is very sensitive with the rotating speed and the size of the wind turbine.

5. Conclusion

In the present prediction model, the mechanical noise from the wind turbine is
neglected. The unsteadiness includes turbulence inflow which is time depended, wind
shear, pitching and yawing blades and wake dynamics. Boundary layer on every airfoil
section is controlled by different Mach number and Reynolds number. The surface
roughness of the airfoil could also change the flow condition on the airfoil surface. In
general, the laminar boundary layer vortex shedding noise is not included for wind
turbines with high tip speed ratio.

In general, the larger the Mach number, the louder the noise radiates from wind
turbine. The noise level is very sensitive with the rotating speed and the size of
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the wind turbine. Boundary layer thickness is required as the basic input for all the
self-noise prediction laws. For the wind turbine designer, the noise prediction model
should be always coupled together with a comprehensive aerodynamic computation to
make sure that the electric power efficiency is not change too much. For wind turbines
to be sited, the prediction model can be helpful to avoid non-necessary annoyance for
the inhabitants.
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Quasimonotone ODE Approximation
of Nonlinear Diffusion Process

Stelian Ion∗♮

The paper deal with the numerical approximation of a class of nonlinear diffusion pro-

cess that includes the water flow through porous media. The ordinary differential equations

used as approximation of the diffusion equation is obtained applying the finite volume scheme

for space derivatives discretization and keeping the continuum time derivative. We prove

that in certain conditions concerning the diffusion flux, its numerical approximation and the

mesh size one obtains a quasimonotone ODE system. Using the quasimonotone property we

investigate some theoretical properties of the approximative solution in the case of Richards’

equation.

1. Introduction

In this paper we develop a numerical approximation scheme for a class of
parabolic nonlinear diffusion equation and we prove a comparison theorem for the
approximation models. The mathematical model is given by






∂b(u)

∂t
− diva(b(u),∇u) = 0, t > 0, x ∈ Ω,

u = uD, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,

(1)

where Ω is a domain in Rd; div and ∇ are with x ∈ Rd; and u(t, x) is the scalar
unknown function. Such models are widely used in soil science, heat transfer theory,
Stephen problems, etc. In the heat transfer theory one has b(s) = s,a(u,∇u) =
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k(u)∇u so that evolution of the temperature is governed by the equation

∂u

∂t
− div (k(u)∇u) = 0. (2)

The unsaturated water flow through porous media is described by the well known
Richards’ equations [3]

∂θ(h)

∂t
− div(K(θ)∇h+ e3K(θ)) = 0, (3)

where θ represents the relative volumetric water content, h represents the pressure,
K is the hydraulic conductivity and e3 is the upward vertical versor. In this paper we
consider that the equation of the mathematical model (1) takes only one of the form
(2) or (3). For more different examples of diffusion-convections operator, containing
many other references see Diaz [5].

Let us present the sufficient conditions for the existence of the weak solutions
and the comparison principle. We essentially adopt the frame of Alt and Luckhaus
in [1].

Assumptions on constitutive functions, boundary data, initial data and geometry
of domain Ω:
A1 b : R→ R is a continuous and nondecreasing function.

The empirical models of soil sciences use the functions θ(h) that are monotone
and bounded,

0 ≤ θ(h) ≤ 1.

The diffusion flux a satisfies:

A2

∣∣∣∣∣∣

∣∣∣∣∣∣

(1)a : R× Rd is a continous function in (u, ξ)
(2) |a(b(u), ξ)| ≤ C

(
1 +B(u)(p−1)/p + |ξ|p−1

)
, ∀u, ∀ξ,

(3)
(
a(u, ξ)− a(u, ξ∗)

)
· (ξ − ξ∗) > c|ξ − ξ∗|p, ∀ξ 6= ξ∗ ∈ Rd

with 1 < p <∞ and

B(z) = b(z) · z −
z∫

0

b(s)ds.

In the Richards’ equation model the growth condition (2) is ready satisfied, the hy-
draulic function used in the soil sciences are upper bounded, but the uniform elliptic
conditions (3) is not satisfied by all hydraulic models since the hydraulic conductivity
becomes zero as water content approach the residual values, see [3]. Also the conti-
nuity condition (1) is satisfied for homogeneous soil but it is not satisfied for layered
soils.

A3 uD ∈ Lp((0, T ) : W 1,p(Ω)) ∩ L∞((0, T )× Ω),
∂uD

∂t
∈ L1((0, T ) : L∞(Ω).

A4 B(u0) ∈ L1(Ω).
A5 Ω ∈ Rd is open, bounded, and connected with Lipschitz boundary.

The existence of weak solutions [1].
If the data satisfy A1–A5, then there exists a weak solution of the Cauchy

problem (1). A function u(t, x) is a weak solution if the following properties are
fulfilled:
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1) u− uD ∈ Lp((0, T ) : W 1,p(Ω)),

2) b(u) ∈ L∞(0, T : L1(Ω)) and
∂b(u)

∂t
∈ Lq(0, T : W−1,q(Ω)) with initial values

b(u0), that is,

T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

(b(u)− b(u0))
∂v

∂t
dxdt = 0 (4)

for every v ∈ Lp(0, T : W 1,p
0 (Ω)) ∩W 1,1(0, T : L1(Ω)), v(T, ·) ≡ 0.

3) a(u,∇u) ∈ Lq((0, T )× Ω) and u satisfies the differential equations, that is,

T∫

0

〈
∂b(u)

∂t
, v

〉
dt+

T∫

0

∫

Ω

a(u,∇u) · ∇vdxdt = 0 (5)

for every test function v ∈ Lp(0, T : W 1,p
0 (Ω)).

Pointwise comparison principle
We present here a comparison result concerning the infiltration problem, the

result is a variant of the comparison results obtained in [1] and [5]. The infiltration
problem read as





∂θ(h)

∂t
− div(κ(h)∇h+ e3κ(h)) = 0, t > 0, x ∈ Ω,

h = hD, t > 0, x ∈ ∂Ω,
h(0, x) = h0(x), x ∈ Ω.

(6)

Assume that: the boundary data, initial data and the domain Ω satisfy the
conditions A3, A4 and A5, respectively, the function θ(h) satisfies the conditions
A1 and the hydraulic conductivity function satisfies:

A2′

∣∣∣∣∣

∣∣∣∣∣
(1)κ : R→ R+, κ(h) ≥ η,
(2) |κ(h1)− κ(h2)| < C|h1 − h2|γ , γ ≥

1

2
, ∀h1, h2 ∈ R.

Theorem 1 (Comparison Theorem). Let (hD, h0), (ĥD, ĥ0) be such that

hD ≤ ĥD, h0 ≤ ĥ0. Let (h, ĥ) be two bounded weak solutions of infiltration problem

(6) associated to (hD, h0) and (ĥD, ĥ0), respectively. Assume, in addition, that

θ(h)t, θ(ĥ)t ∈ L1((0, T )× Ω).

Then

a) θ(h) ≤ θ(ĥ).
If in addition θ(h) and κ(h) satisfy

A2′′ for any z1, z2 such that θ(z1) = θ(z2) results κ(z1) = κ(z2)

then we have

b) h ≤ h̃ on (0, T )× Ω.
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Proof. In view of the comparison theorem in the paper [1] the result prove true if
one observes that the solution h corresponding to the datum (hD, h0) is a subsolution

of the infiltration problem associate to the datum (ĥD, ĥ0). A direct proof is as follow.

For any δ > 0 let Ψδ(α) = min(1,max(0, α/δ)). The function w = Ψδ(h − ĥ)
belongs to L2(0, T : W 1,2

0 (Ω)) and its gradient is given by

∇w =

{
1

δ

(
∇h−∇ĥ

)
, if 0 < h− ĥ < δ,

0, otherwise.

Set w as test function in (5). Then

t∫

0

∫

Ω

(
θ(h)t − θ(ĥ)t

)
wdxdt+

+
1

δ

t∫

0

∫

Ωδ

[
κ(h)∇h− κ(ĥ)∇ĥ+

(
κ(h)− κ(ĥ)

)
e3

]
· ∇(h− ĥ)dxdt

︸ ︷︷ ︸
I

= 0,
(7)

where Ωδ := {x|0 < h− ĥ < δ}. The integral I can be rewritten as

I =

t∫

0

∫

Ωδ

κ(h)||∇(h− ĥ)||2dxdt+

T∫

0

∫

Ωδ

(κ(h)− κ(ĥ))(∇h̃+ e3) · ∇(h− ĥ)dxdt.

Using Young inequality, ab ≤ C(ǫ)p−1ap + ǫq−1bq and A2′-(1) we obtain

I ≥
(
η − ǫ

2

) t∫

0

∫

Ωδ

||∇(h− ĥ)||2dxdt− C(ǫ)

2

t∫

0

∫

Ωδ

(κ(h)− κ(ĥ))2||∇h̃+ e3||2dxdt.

Taking ǫ < 2η and using A2′-(2) we have

t∫

0

∫

Ω

(
θ(h)t − θ(ĥ)t

)
wdxdt+

c

δ

t∫

0

∫

Ωδ

||∇(h−ĥ)||2dxdt ≤ Cδ2γ−1

t∫

0

∫

Ωδ

||∇h̃+e3||2dxdt.

The term on the right tends to zero as δ → 0, and the first integral on the left
converges to

t∫

0

∫

h>ĥ

(
θ(h)− θ(ĥ)

)

t
dxdt =

t∫

0

∫

Ω

∂tmax
(
0, θ(h)− θ(ĥ)

)
dxdt

so, we have ∫

Ω

max
(
0, θ(h)− θ(ĥ)

)
(t, x)dx ≤ 0,



quasimonotone ode approximation 91

Ω

ω i

ωj

x i
xj

σij

σk

xk
xk ω i

σi
a

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Ω

Fig. 1. Triangulation of polygonal domain in R2.

that led to θ(h) ≤ θ(h̃).
From the A1 and A2′′ we see that θ(h) = θ(h̃) and κ(h) = κ(h̃) in the set

{0 < h− h̃} so that the equality (7) is reducing to

t∫

0

∫

Ωδ

||∇(h− ĥ)||2dxdt = 0,

which lead to ∇(h − h̃) = 0 in {0 < h − h̃}. Boundary conditions, the continuity of

the solutions with respect with space variable and ∇(h− h̃) = 0 in {0 < h− h̃} imply

h ≤ h̃. This end the proof of the comparison theorem.
By considering that for many interesting PDE we known only approximative

solutions it is desirable to set up a numerical algorithm which preserves some relevant
properties of exact models. The comparison principle is not only useful to demonstrate
the uniqueness of the solution but it is also physical relevant. In the next we build
up a numerical scheme that preserves this principle.

2. Quasimonotone ODE Approximation. Method of Line

By the method of lines, one can associate an ordinary differential system of
equations (ODE) to a parabolic partial differential equation. The MOL consists in
the discretization of the space variable using one of the standard methods as finite
element, finite differences or finite-volume method (FVM).

Using the FVM, one introduce a net of the inner knots xi and a set of the control
volumes ωi.

Definition 1 (Admissible meshes). The triangulation T = {(ωi, xi)}i∈I is
calling an admissible meshes if it satisfies:

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

ωi is open poligonal set ⊆ Ω, xi ∈ ωi

(1) ∪i∈Iωi = Ω
(2) ∀i 6= j ∈ I and ωi ∩ ωj 6= Φ, either HN−1(ωi ∩ ωj) = 0 or

σij := ωi ∩ ωj is (N − 1)− side of ωi and ωj

(3) ∀σij , [xi, xj ] ⊥ σij

(4) [xi∂ , xi] ⊥ σ∂i := ωi ∩ ∂Ω.
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The space discretizated equations are derived from the integral form of (1) for
each control volume ωi (see Fig. 1),

∫

ωi

∂b(u)

∂t
dx−

∫

∂ωi

a(u,∇u) · nda = 0, ∀i ∈ I.

Consider the infiltration problem (6). By a proper approximations of the volume
integral and line integral one obtains





m(ωi)
dθ(hi)

dt
−
∑

j∈N (i)

[
Kijm(σij)

(
hj − hi

dij
+ e3 · nij

)]
= 0,

hi|t=0 = h0i,

(8)

for t > 0 and for any i ∈ I. N (i) denotes all neighbours of ωi. For those ωi whose
boundary σa

i lay on boundary ∂Ω the corresponding term in the sum is given by

K(hi, hDi)m(σa
i )

(
hDi − hi

d∂i
+ e3 · nij

)
. (9)

Let

fi(h; hD) =
∑

j∈N (i)

[
K(hi, hj)m(σij)

(
hj − hi

dij
+ e3 · nij

)]
,

then the discrete infiltration problem read as

m(ωi)
dθ(hi)

dt
= fi(h; hD), hi|t=0 = h0i. (10)

We will show that, for a suitable definition of the numerical hydraulic conductiv-
ity, K(·, ·), and by imposing an upper bound on the mesh size, the function f (·,hD)
verifies Kamke conditions. Then using this conditions we will prove that there exists
a discrete comparison result.

For that, define

K(u, v) = max(κ(u), κ(v), η0), (11)

and assume that the step size of the mesh, △ := max(dij), and hydraulic conductivity,
κ, satisfy

A2′′′

∣∣∣∣

∣∣∣∣
(1)κ : R→ R+, bounded and nondecreasing
(2) η0|h1 − h2| > △|κ(h1)− κ(h2)|, ∀h1, h2 ∈ R.

We note that the second requirement implies that κ is a Lipschitz function
which is a stronger condition than A2′-(2). The threshold η0 in (11) is necessary if
the function κ do not satisfy the second condition A2′-(1).

Also we suppose that in addition to A1 the water content function is a differ-
entiable function on (−∞, 0) and θ(h) = 1 on (0,∞),

A1′ dθ

dh
> 0 on (−∞, 0).
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Proposition 1 (Quassimonotony). Let T be an admissible mesh and let
K(·, ·) be given by (11). Assume A2′′′. Then the following statements hold:

(a) If v < w then K(u,w)(w − u)−K(u, v)(v − u) > η(w − v).
(b) If ĥD ≥ hD then

fi(h, ĥD) ≥ fi(h,hD).

(c) Kamke condition. If ĥ ≥ h and ĥi = hi then

fi(ĥ,hD) ≥ fi(h,hD).

Proof. The statement (a) is a simply consequence of A2′′′-(1) and the definition
(11). The statement (b) results from (9).
(c) We have

fi(ĥ,hD)− fi(h,hD) =
∑

j∈N (i)

m(σij)Γi,j(ĥ,h)

with

Γi,j = K(hi, ĥj)
ĥj − hi

dij
−K(hi, hj)

hj − hi

dij
+ (K(hi, ĥj)−K(hi, hj))e3 · nij .

Using (a) one obtains

Γi,j ≥ η
ĥj − hj

△ − (K(hi, ĥj)−K(hi, hj)) ≥ η
ĥj − hj

△ − (κ(ĥj)− κ(hj)).

From the condition A2′′′-(2) we see that Γi,j ≥ 0. Hence, (c) prove true.
The results presented in the proposition improve our previous results [7] in

sense that f verifies the Kamke condition in less restrictive conditions on hydraulic
conductivity function than those imposed there.

Theorem 2 (Comparison theorem. Discrete case). Assume the hypoth-

esis of the proposition and A1′. Let h(t) and ĥ(t), t ∈ (0, T ), be the solutions of the

problem (10) associated to (hD,h0) and (ĥD, ĥ0), respectively. Suppose that

hD ≤ ĥD < 0, h0 ≤ ĥ0 < 0.

Then
h ≤ ĥ on (0, T ).

Proof. Let α < 0 be an upper bound for boundary data and initial data, that is

ĥDi ≤ α, ĥ0i ≤ α

and let T1 be such that the solutions h(t) and ĥ(t) stay less than 0 on the interval
(0, T1) [2], [4]. As θ′(h) > 0 on (0, T1) one can apply Nickel’s theorem ([8], [9]) and
one obtains that

h(t) ≤ ĥ(t) on (0, T1).
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Moreover, observe that the solution hα(t) associate to the boundary data hDi = α
and initial data h0i = α is a constant solution h(t)i = α (fi(α;α) = 0!). Using the
inequality (b) of the proposition we have

h(t) ≤ ĥ(t) ≤ α on (0, T1).

The inequality show that T = T1.
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Minimum Free Energy Configuration of the Planar
Lipidic Bilayer. Analytical Solutions

Stelian Ion∗†♮ and Dumitru Popescu∗♮

The paper deal with the calculus of the shape of the monolayers, which constitute

the two leaflets of the planar lipidic bilayer (BLM), that undergo external constrains. The

deformed configuration minimises the free energy of the BLM and it is determined as the

solution of a forth order elliptic equation subject to certain boundary conditions. For planar

radial symmetrical problems the general solutions of elliptic equation are obtained as a power

series expansion and it is shown they belong to the family of the Bessel functions.

1. Introduction

The main point of the paper is to obtain the solutions of the linear elliptic
equation of the forth order

△2u− 2ξ△u+ u = 0, (1)

where ξ is a real positive constant and △ represents the differential Laplace operator.
The equations like (1) are frequently used to study the space configuration of

the planar lipid bilayer and its free energy response to the deformation ([6], [5], [7]).
Briefly, the bilayer lipidic membranes (BLM) is a biological sheet like structure that
consists in two lipidic monolayer combined tail to tail. The monolayers can be slightly
stretched or compressed and undergo curvature deformations and there exists a free
energy response to these deformations. The mechanical properties of BLM are specific
to smectic liquid crystal of A type ([4], [6] and [2], [3] for more general theory of liquid
crystal).
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Fig. 1. The unperturbed (dashed line) and perturbed (solid line) position of the two mono-
layer. The bilayer is 2h width in the initial state and it is infinite spread in the x, y directions

in the both states. The vector n represents the normal to the deformed surface.

Let us consider the planar structure given by the plane surface z = ±h as
unperturbed position of the BLM (see fig. 1). We suppose that the two surfaces
z = ±h undergo a displacement with same distance u but in opposite directions.
Then deformation free energy density of unit unperturbed area can be written as [6]

ρ (x, y) = hB
(u
h

)2

+ hK1 (△u)2 + γ|∇u|2, (2)

where: h is the monolayer equilibrium thickness, B is the compression-extension
modulus constant, K1 is splay modulus constant and γ represents the interfacial
tension constant.

The deformation free energy associated to a domain D, F(D), is defined as the
surface integral

F(D) =

∫

D

ρ(x, y)dσ. (3)

Passing to the dimensionless variable u = hu∗, x = Lx∗, y = Ly∗ and choosing the
characteristic length L such that L2 = h

√
K1/B the relation (2) becomes

ρ = hB
(
(△∗u∗)

2 + 2ξ (∇∗u∗)
2 + u2

∗

)
, (4)

where 2ξ = γ/
√
K1B. The ∗ subscript denote the dimensionless quantity and it will

be suppressed in the sequel.
Let us define the bilinear form a(u, v), the linear operator L[u] by

a(u, v) =△u△v + 2ξ∇u · ∇v + uv,

L[u] =△2u− 2ξ△u+ u,

and the dimensionless energy J(D,u) by

J(D,u) =
1

2

∫

D

a(u, u)dσ.
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The deformation free energy F(D) can be expressed as

F(D,u) = 2h2
√
K1BJ(D,u).

Performing some calculus we obtain

J(D, v)− J(D,u) =

∫

D

L[u](v − u)dσ +

+

∫

∂D

(
△u∂(v − u)

∂n
− (v − u)∂△u

∂n
+ 2ξ(v − u)∂u

∂n

)
ds (5)

+ J(D, v − u) .

This identity shows that the solution of the equation L[u] = 0 that satisfies the
boundary conditions 




u|∂D = u0,

∂u

∂n

∣∣∣∣
∂D

= u1

(6)

minimises the free energy J in the class of the functions that satisfy same boundary
conditions.

2. Analytical solutions

We shall consider the radial symmetric function defined in the whole plane. As
in [1] we search for a real power series solution of the equation (1),

Φ(r) =

∞∑

m=0

cmr
α+m,

where the exponent α is a real number and c0 6= 0. Taking into account that in polar
coordinate the Laplace operator △ is given by

△ =
1

r

∂

∂r

(
r
∂

∂r

)
,

one obtains

r4L[Φ] = α2(α− 2)2c0r
α + (α+ 1)2(α− 1)2c1r

α+1+
+ α2

[
(α+ 2)2c2 − 2ξc0

]
rα+2 + (α+ 1)2

[
(α + 3)2c3 − 2ξc1

]
rα+3+

+
∞∑

m=0

{
(α+m+ 2)2

[
(α+m+ 4)2cm+4 − 2ξcm+2

]
+ cm

}
rα+m+4.
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The exponent α and coefficients cm will be determined equating the coefficients
of rα+m,m = 0, 1, · · · to zero.

One obtains a recurrence relation for the coefficients cm,

(α+m+ 4)2(α+m+ 2)2cm+4 − 2ξ(α+m+ 2)2cm+2 + cm = 0 (m = 0, 1, . . .) (7)

and four equation for α, c0, c1, c2, c3.
Let us firstly study the solutions of the recurrence relation.
We choose c1 = c3 = 0 and it follows that c2m+1 = 0,m = 2, 3, . . . successively.
To find the even rank terms c2m we introduce another sequence {bm}m=0,∞ and

write c2m as

c0 = b0,

c2m =
bm

(α+ 2)2 · · · (α+ 2m)2
(m = 1, 2, . . .).

Substituting this expression into recurrence relation (7) we find that the terms bm
verify a linear recurrence relation

bm+2 − 2ξbm+1 + bm = 0 (m = 0, 1, . . .). (8)

We note that there always exist two real solutions of this recurrence relation and we
postpone to write their explicit solutions.

It follows that the power series Φ has the form

Φ(α, r) = rα

(
b0 +

∑

m=1

r2m bm
(α+ 2)2 · · · (α+ 2m)2

)

and satisfies

r4L[Φ(α, r)] = rαα2
[
(α− 2)2c0 +

(
(α+ 2)2c2 − 2ξc0)

)
r2
]
.

One observes that α = 0 is a double root of the polynomial on right hand side.
The solutions that we are looking for can be obtained as in the following propo-

sition

Proposition 1. If the sequence {bm}m=0,∞ satisfies the recurrence relation
(8), then the functions I(r;b), K(r;b) given by

I(r;b) ≡ Φ(0, r) =
∑

m=0

(r
2

)2m bm
(m!)2

, (9)

K(r;b) ≡ ∂Φ

∂α

∣∣∣∣
α=0

= ln(r)I(r;b) −
∑

m=1

( r
2

)2m bmH(m)

(m!)2
, (10)

represent the solutions of the equations (1).
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The function H(m) is given by H(m) = 1 + 1
2 + · · ·+ 1

m .
To obtain the general solution bm of the recurrence relation (8) we consider the

characteristic equation
t2 − 2ξt+ 1 = 0.

Depending on the ξ this equation can have real or complex solutions.
a) Case ξ > 1
There exists two real positive solutions

λ =

√
ξ −

√
ξ2 − 1, β =

√
ξ +

√
ξ2 − 1

and the general solution of recurrence equation is given by

bm = C1λ
2m + C2β

2m.

Consequently, we obtain that the functions I(r,b) are nothing but the Bessel functions
with imaginary argument of order zero I0 [9],

I0(λr) = I(r, λ) =
∑

m=0

(
rλ

2

)2m
1

(m!)2
,

I0(βr) = I(r, β).

(11)

One can obtain another two independent solutions by linear combination of the func-
tion I and K. Among all linear combination there exist one that led to the Bessel
function K0 which is given by

K0(λr) = −K(r;λ) + ln(λ/2)I(r;λ) − γI(r;λ)

= −ln(λr/2)I0(λr) +
∑

m=0

(
λr

2

)2m
ψ(m+ 1)

(m!)2
,

K0(βr) = · · ·,
(12)

where ψ(m+ 1) = H(m)− γ, ψ(1) = −γ, and γ is Euler’s constant.
b) Case 0 < ξ < 1
There exists two complex solutions and the general solution of recurrence rela-

tion is given by
bm = Acos(mθ) +Bsin(mθ),

where the angle θ is given by
cos(θ) = ξ.

In this case the functions I(r,b) become

Ber(r; θ) =
∑

m=0

(r
2

)2m cos(mθ)

(m!)
2 ,

Bei(r; θ) =
∑

m=1

(r
2

)2m sin(mθ)

(m!)
2 .

(13)
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z

1

Fig. 2. Perforation problem. The two monolayers of the bilayer have a contact point
and at great distance the monolayers rest unperturbed.

As in the first case, by linear combination, we can also obtain the following solutions

Ker(r; θ) =−ln
r

2
Ber(·; ·) + θ/2Bei(·; ·) + Rc(·; ·) ,

Kei(r; θ) =−ln
r

2
Bei(·; ·)− θ/2Ber(·; ·) + Rs(·; ·) .

(14)

The series Rs(·; ·) and Rc(·; ·) are given by

R
c

s
(r; θ) =

∑

m=0

(r
2

)2m
cos(mθ)
sin(mθ)

(m!)
2 ψ(m+ 1)

The real functions (13) verify the relation

Ber(r; θ) + iBei(r; θ) = I0

(
eiθ/2r

)
(15)

and the real functions (14) verify the relation

Ker(r; θ) + iKei(r; θ) = K0

(
eiθ/2r

)
. (16)

For θ = π/4 they are known as Thomson’s function and Rusell’s function, re-
spectively [9].

3. Perforation of the planar bilayer problem

As an application of the previous results formulae we present here the solution
of the perforation bilayer problem (see fig. 2). The perforation of the BLM can be
generated by the thermal fluctuations of its compounds and in certain circumstances
the perforation produce a pore in the BLM [8].
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Fig. 3. The solutions of the perforation problem (17) for two values
of the parameter ξ a) and detail b).

Mathematically, the perforation problem can be formulate as follows. Find
u : R2 − {0, 0} → R such that:






L[u] = 0, inR2 − (0, 0),
u|r=0 = 1, u|r=∞ = 0,
∂u

∂r

∣∣∣∣
r=0

= 0,
∂u

∂r

∣∣∣∣
r=∞

= 0,
(17)

Depending of the parameters ξ we find out that the solution of the problem is

Case ξ > 1 : u(r) = (K0(λr) −K0(βr)) / (lnβ − lnλ) ,

Case ξ < 1 : u(r) = −2

θ
Kei(r; θ).

Free energy of the perforated BLM is given by

J(u) = π r

(
△u∂u

∂r
− u∂△u

∂r
+ 2ξu

∂u

∂r

)∣∣∣∣
∞

0

= π r
∂△u
∂r

∣∣∣∣
r=0

.

Then we have

J(u) =





π

√
ξ2 − 1

ln
(
ξ +

√
ξ2 − 1

) , ξ > 1,

2π

√
1− ξ2

arccosξ
, ξ < 1.

For the following parameters of the BLM [8]: γ ≈ 15 × 10−4 Nm−1, K1 ≈ 0.93 ×
10−11 N, B ≈ 5.36 × 107 Nm−2, h ≈ 11.3 × 10−10 m and ξ =

γ

2
√
K1B

≈ 3.4 × 10−2
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one obtain J(u) ≈ 4 and then

F/kT = 2h2
√
K1BJ(u)/kT ≈ 50.
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A Numerical Study of Axisymmetric Slow Viscous
Flow Past Two Spheres

Gheorghe Juncu∗

This paper presents a computational study of the axisymmetric, slow, viscous flow

(Stokes flow) around two spheres placed parallel to their line of centers. The fourth-order

stream function equation in bispherical coordinates, was split into its coupled form, by

defining the fluid vorticity. The central, second order accurate, finite difference scheme

was used to discretize the model equations. Two numerical algorithms were employed to

solve the discrete equations: multigrid (MG) and preconditioned conjugate gradient squared

(PCGS). The preconditioners tested are approximations (ILU and multigrid iterations) of

the symmetric part of the discrete Stokes operator in bispherical coordinates. The mesh

behaviour of the convergence rate of MG and PGCG was analysed for different values of the

model parameters.

1. Introduction

The hydrodynamic interaction of two spherical particles moving slowly in a vis-
cous fluid is of fundamental importance to meteorology, colloid chemistry, flow of
suspensions and other fields from nuclear and chemical engineering, environmental
sciences, etc. The solution to the problem of two spheres rotating with constant an-
gular velocities around their line of centres was obtained first by Jeffery [1], assuming
negligible inertial effects (Stokes flow). The first solution of the associated axisym-
metrical problem when the spheres translate with the same velocity along their line
of centres in Stokes flow was obtained by Stimson and Jeffery [2]. Stimson and Jef-
fery [2] considered only the case of equal-sized spheres in non-contact. Starting from
these two classical articles, other creeping flow solutions were developed by Goldman
et al. [3], Wakyia [4], Cooley and O’Neill [5], Davis [6], O’Neill and Majumdar [7],

∗ “Politehnica” University of Bucharest, Polizu 1, 78126 Bucharest, Romania, e-mail:
juncugh@netscape.net, juncu@easynet.ro
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Fig. 1. Schematic of the problem.

Rushton and Davies [8], Haber et al. [9], Hetsroni and Haber [10] and Zinchenko [11].
A detailed account of the work done on the problem of two spheres external to each
other is given by Happel and Brenner [12] and Kim and Karrila [13]. We restricted
our citation only to problems similar to that solved in this work. For this reason,
related problems as electrophoretic or thermocapillary migration of two spheres are
not mentioned here.

In [1–9, 11], the momentum balance equations (the Stokes and continuity equa-
tions) were solved analytically in general orthogonal curvilinear coordinate systems
(bispherical coordinate system, [1–4], [6–9], [11] and tangent-sphere coordinate system
[5]). The suitable analytical solutions in terms of these coordinates have been shown
to be infinite series. The method of reflection was used in [10]. The application of
the boundary integral methods to Stokes flow was discussed by Roumeliotis [14]. For
a pair of equal spheres in tandem, the Navier-Stokes equations were solved numeri-
cally in bispherical coordinate system at Re = 40 by Tal et al. [15]. The aim of this
work is to solve numerically the Stokes flow equations for two spheres in-line. The
vorticity–stream function formulation of the flow equations in bispherical coordinates
was chosen. The central, second order accurate, finite difference scheme was used
to discretize the model equations. Two numerical algorithms were tested: multigrid
(MG) and preconditioned conjugate gradient squared (PCGS). The convergence rate
of MG and PGCG was analysed for different spheres spacing and sizes.

2. Statement of the problem

We suppose that a homogeneous viscous fluid of constant density and viscosity
flows past two rigid spheres of diameters di, i = 1,2, as illustrated in figure 1. The
diameters of the spheres are assumed considerably higher than the molecular mean
free path of the surrounding fluid. Oscillations and rotation of the spheres do not
occur during the flow. The flow is considered steady, laminar and axisymmetric. Also,
the inertial effects are negligible in comparison with the viscous forces (creeping or
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Fig. 2. Cylindrical coordinates (r, z) versus bispherical coordinates (η, ξ); d1 = d2 = d.

Stokes flow).
Let a system of cylindrical coordinates (r, z) be chosen so that the centres of the

spheres lie along the z-axis (see figure 1). In order to facilitate the numerical solution
of this problem, we introduce the bispherical coordinates (η, ξ) defined by (see also
figure 2)

r =
c sin ξ

cosh η − cos ξ
; z =

c sinh η

cosh η − cos ξ
,

where c > 0 is a characteristic length. This transformation maps the right half of
the rz-plane (from which the surface occupied by the spheres is excluded) into the
rectangle η1 ≤ η ≤ η2, 0 ≤ ξ ≤ π, η1 < 0, η2 > 0. The surfaces of the spheres are
located at η = η1 and η = η2. The relations between ηi, the diameters of the spheres
di and the distances Li of their centers from the origin of the coordinates system are:

di

2
=

c

sinh | ηi|
; Li = c coth | ηi| , i = 1, 2.

The following scaling is chosen: the radius of the up-stream sphere d1/2 for length
and 4/U∞d

2
1 for stream function (U∞ being the free stream velocity).

In terms of dimensionless stream function, ψ, the partial differential equation of
incompressible viscous hydrodynamics in the time–independent Stokes approximation
is

E4ψ = 0. (1)

The boundary conditions considered are:
– spheres surfaces (η = ηi, i = 1, 2)

ψ = 0; (2)

– free stream (η → 0, ξ → 0)

ψ → 1

2

sin2 ξ

A2
; (3)
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– symmetry axis (ξ = 0 and η 6= 0, ξ = π)

ψ = 0, (4)

where

A =
cosh η − cos ξ

c̄
, c̄ =

2 c

d1
.

The operator E2 assumes the following form in axisymmetric bispherical coor-
dinates:

E2 = A2 ∂2

∂ η2
+
A sinh η

c̄

∂

∂ η
+ A2 ∂2

∂ ξ2
+
A ( 1 − cosh η cos ξ)

c̄ sin ξ

∂

∂ ξ
. (5)

3. Numerical methods

The fourth-order stream function equation (1) was split into its coupled form

E2ψ = ω, (6)

E2ω = 0 (7)

by defining the fluid vorticity ω. Note that the vorticity defined previously is not
identical to the exact fluid vorticity (i.e. is the curl of the velocity). The relation
between these two quantities is ω = h3 , where h3 is the metric coefficient,

h3 = c
sin ξ

cosh η − cos ξ
.

It is convenient numerically to work with the deviation from the uniform flow
ψ∗,

ψ∗ = ψ − 1

2

sin2 ξ

A2
.

After ψ∗ is substituted for ψ in (4a), the final form of the mathematical model
is:

E2ψ∗ = ω, (8)

E2ω = 0 (9)

with the boundary conditions:
– spheres surfaces (η = ηi, i = 1,2)

ψ∗ = −1

2

sin2 ξ

A
; (10)

– free stream (η → 0, ξ → 0)

ψ → 0, ω → 0; (11)
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– symmetry axis (ξ = 0 and η 6= 0, ξ = π)

ψ∗ = ω = 0. (12)

The two-dimensional region (η1, η2)×(0, π) was transformed into the unit square
by well known elementary relations. Equations (5) were discretized with the central
second order accurate finite difference scheme on uniform meshes with N ×N points
and h = (N – 1)−1, N = 5, 9, 17, 33, 65 and 129. Two algorithms were employed
to solve the discrete equations: (1o) the preconditioned conjugate gradient squared
(PCGS) [16] and (2o) multigrid (MG).

The preconditioners used are the incomplete LU factorisation (with two extra
diagonals; algorithm IC (1, 3) from [17]) and the multigrid approximation (two multi-
grid cycles) of the symmetric part of the discrete operator E2. These preconditioners
are similar with those analysed theoretically in [18–20] and tested experimentally in
[21–25]. The structure of the MG cycle used in preconditioning is: (1.) cycle of type
V; (2.) smoothing by point Gauss-Seidel; one smoothing step is performed before the
coarse grid correction and one after in the opposite direction; (3.) prolongation by
bilinear interpolation; (4.) restriction by full weighting; (5.) the coarse grid has 5× 5
points. The stopping criterion used for PCGS is

‖ ri‖
‖r0‖

≤ 10−6,

where ri is the residual after i iterations and ‖ ‖ the discrete Euclidean norm. The
maximum number of iterations allowed is 5 000.

The MG algorithm used is the nested FAS technique, [26], [27]. The struc-
ture of the MG cycle is: 1) cycle of type V; 2) smoothing by point Gauss-Seidel;
two smoothing steps are performed before the coarse grid correction and one after;
3) prolongation by bilinear interpolation for corrections and cubic interpolation for
solution; 4) restriction of residuals by full weighting. Three levels were used in the
numerical experiments.

The convergence rate of PCGS is monitored by the cumulative number of multi-
plications per grid point and iteration step. The following convention was adopted in
the calculation of this quantity: the number of multiplications of non-preconditioned
CGS was considered as the measure unit. The numerical performances of MG are
expressed by two quantities: (1) the average reduction factor, ρ, and (2) the efficiency,
τ . The average reduction factor and the efficiency are given by

ρ = (‖ri+j‖ / ‖ri‖)1/j , τ = −W/ ln ρ,

where ri is the residual after i iterations, ‖ ‖ the discrete Euclidean norm and W the
number of multiplications per grid point and iteration step. The efficiency is also
used for the comparison between PCGS and MG.

The computations were made using double-precision Fortran on a PC computer
(COMPAQ – Presario 5358 Series, Pentium-Celeron processor).
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Fig. 3. Mesh behaviour of the convergence rate of PCGS for d1 = d2 = d;
(a) ILU preconditioning; (b) MG preconditioning.

4. Numerical experiments

Two geometrical quantities were considered significant for the present problem:
(i) the distance between the spheres (expressed by mean of 2Li/di) and (ii) the di-
ameters of the spheres. First, we will consider the case of equal-sized spheres, e.g.
d1 = d2 = d. For this case, the influence of the spheres spacing on the convergence
rate is analysed. Secondly, for a given value of 2L1/d1, the influence of d1/d2 on the
convergence rate of the numerical algorithms will be investigated. For the ratio d1/d2

two values different from 1 were considered: 0.5 and 2.
The first task in any numerical work is to validate the code’s ability to reproduce

published results accurately. For the problem studied in this work, one of the most
important characteristic quantities is the force Fi acting on either sphere [2],

Fi = µπ U∞
d1

2

∫

γ

r3
∂

∂ n

(
E2 ψ

r2

)
d γ,

where µ is the dynamic viscosity of the fluid, ∂/∂n is the normal derivative and
the integral is taken around any meridian γ of the sphere in a sense which is right–
handedly related to the outward drawn normal n to the sphere. A comparison of the
present results with published solutions [6] shows a good agreement.

Figures 3 show the convergence behaviour of PCGS (figure 3a for ILU precon-
ditioning and figure 3b for MG preconditioning) for d1 = d2 = d. We must mention
that CGS (i.e. the non-preconditioned algorithm) converges only on N = 5 and N
= 9 meshes. Also, PCGS preconditioned with MG does not converge for 2L/d = 11
on the N = 129 mesh. Based on extensive numerical experiments and on the results
plotted in figures 3, we can note the following facts:

• The influence of the spheres spacing on the convergence rate of PCGS is
significant;

• Both preconditionings improve the robustness of the algorithm;
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Fig. 4. Mesh behaviour of the convergence rate of PCGS for different spheres spacing
and sizes; ILU preconditioning.

• Preconditioning by incomplete factorisation performs better for small values
of 2L/d;

• PCGS preconditioned by MG(2) works very well for 2L/d = 2.
The influence of the spheres sizes on the PCGS convergence rate is plotted in

figures 4 and 5. From the data depicted in these figures it is difficult to draw a general
conclusion concerning the influence of the diameters ratio on the convergence rate of
PCGS. Figures 4 and 5 show that:

• for ILU preconditioning, the ratio d1/d2 does not influence significantly the
convergence rate at small spheres spacing (i.e. 2L1/d1 = 1.10);

• for values of d1 / d2 greater than one and 2L1/d1 ≥ 2.0, the convergence rate
of ILU preconditioning decreases;

• for MG preconditioning, we can note the decrease in the convergence rate for
2L1/d1 = 2.0 and d1/d2 = 0.5 and the increase in the convergence rate for 2L1/d1 =
5.0 and d1/d2 = 0.5.

Numerical experiments with MG were made considering for the finest mesh N
= 65, 129 and 257. The influence of the spheres spacing and sizes on the convergence
rate of the MG algorithm is not significant. The values obtained for the average
reduction factor fall inside the interval [0.8, 0.87]. Note that the average reduction
factor for Gauss-Seidel iteration is greater than 0.990. The values computed for the
efficiency vary between 255.0 and 410.0. It must be mentioned that for 2L1/d1 = 5.0,
MG does not converge on the finest mesh with N = 257.

For the comparison between PCGS and MG we consider that the solution is
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Fig. 5. Mesh behaviour of the convergence rate of PCGS for different spheres spacing and
sizes; MG preconditioning.

desired on the N = 129 mesh. Function of the values of 2L1/d1, d1/d2 and the type
of preconditioner, the efficiency of PCGS for N = 129 is comprised between 180.2 and
14 000. The MG efficiency is that presented previously. Thus, for N = 129, PCGS is
a competitor for MG only for 2L1/d1 = 2.0, d1/d2 ≥ 1 and MG (2) preconditioning.
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Approach to nonstationary (transient) Birth-Death
Processes

Alexei Leahu∗♮

In this paper we show how, in certain cases, nonstationary (transient) Birth-Death

Processes (BDP) may be best approximated by their finite projection, which are stationary

(recurrent positive) BDP. To illustrate, we consider nonstationary M/M/c Queueing Systems.

1. Introduction

Many mathematical models in Life Sciences, Physics, Computer Sciences, etc.
are described by means of nonstationary BDP. Such processes are more difficult to
approach than stationary BDP. Our aim is to find stationary BDP nearest (in certain
sense) to the initial BDP.

2. Solution of the Problem

Let’s consider BDPX = (X(t))t∈[0,+∞) defined on the probability space (Ω,F ,P)
with Birth intensities (λn)n≥0 and Death intensities (µn)n≥0. The set of states being
E = {0, 1, 2, ...}, we suppose that P(X(0) = 0) = 1.

In order to achieve our aim, we observe that, according to the terminology
of the book [1], BDP X may be interpreted as regenerative process with renewal
cycles (Yn)n≥0 (or embedded renewal process (Sn)n≥0) as the sequence of consecutive
intervals Yn between the moments S0, S1, S2, ... when BDP X falls into the state

0, i.e., S0 = Y0 = 0, Sn =
n∑

k=0

Yk and (Yn)n≥1 are nonnegative, independents,

identically distributed random variables with distribution function F (y) = P(Yn <

∗ “Ovidius” University of Constanţa, Romania, e-mail: alexeleahu@univ-ovidius.ro
♮ Partially supported by Romanian Academy Grant 410/216, 2005.
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y) = P(Y1 < y), n ≥ 1. According to the same terminology, in the case then P(Yn <
+∞) = 1, n ≥ 1, the processes X and S are recurrent regenerative and renewal
processes respectively. From the point of view of real applications it is normally
to consider that P(Yn = 0) 6= 1, i.e. X is a regular BDP. Because we deals with
nonstationary BDP, in fact what means that S is a stopped (transient) renewal process,
i.e. P(Yn < +∞) = lim

yր+∞
F (y) = F (+∞) < 1, n ≥ 1. Then the corresponding

process X will be called stopped (transient or nonstationary) regenerative process
(BDP) and according to the [2] X(t) may be transcribed in this way: X(t) = X(t−
SN(t)), where N(t) = max{n : Sn ≤ t} is a counting renewal process corresponding
to the process X .

Now we may construct finite projection X∗ of the BDP X according to the
definition of finite projection of regenerative processes [2], i.e., the process X∗ =

(X∗(t))t∈[0,+∞), such that X∗(t) = X(t− S∗
N∗(t)), where S∗

0 = Y ∗
0 = 0, S∗

n =
n∑

k=0

Y ∗
k

and (Y ∗
n )n≥1 are nonnegative, independents, identically distributed random variables

with distribution function

F ∗(y) = P(Y ∗
n < y) = P(Yn < y)/P(Yn < +∞) =

P(Y1 < y)/P(Y1 < +∞), n ≥ 1.

So, X∗ is regenerative process too and, more than as, it is recurrent process because

F ∗(+∞) = lim
yր+∞

F ∗(y) = P(Y ∗
n < +∞) = P(Yn < +∞)/P(Yn < +∞) = 1.

Remark 1. The above mentioned definition of finite projection was constructive
variant of definition, but we may use too the descriptive variant of the same definition
[3] based on the

Proposition 1. Does exists unique probabilistic measure P∗ defined on the
measurable space (Ω,F) such that transient regenerative process X considered as a
process defined on the probability space (Ω,F ,P∗) become a recurrent regenerative
process.

Proof. Indeed, as a consequence of the Ionescu-Tulcea’s Theorem [4], it is suffi-
cient to consider the family of finite dimensional distributions

{P∗(X(t1) ∈ B1, ..., X(tk) ∈ Bk, Sn ≤ t1 < ... < tk ≤ Sn+1)}

for any borelian sets Bi ∈ B(R), ti ∈ [0,+∞), i = 1, k, t1 < ... < tk , k ≥ 1, n ≥ 0,
where

P∗(X(t1) ∈B1, ..., X(tk) ∈ Bk, Sn ≤ t1 < ... < tk ≤ Sn+1) =

= P(X(t1) ∈B1, ..., X(tk) ∈ Bk, Sn ≤ t1 < ... < tk ≤ Sn+1/Sn+1 < +∞). �

Descriptive definition of finite projection. Probability P∗ determined by
Proposition 1 will be called finite projection of probability P with respect to the regen-
erative process X and stochastic process X∗ defined by probability distribution P∗will
be called finite projection of regenerative process X .
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So, trajectories of the finite projectionX∗ are the trajectories of the regenerative
process X observed under condition that corresponding renewal moments S1, S2,...
(or renewal intervals Y1, Y2,...) are finite. This justify the name “finite projection”
as a generic name for a special class of conditioned processes.

The following Theorem show us that in fact finite projection X∗ of BDP is BDP
too.

Theorem 1 [3]. Finite projection X∗ of transient BDP X with Birth intensities
(λn)n≥0 and Death intensities (µn)n≥0 is BDP with Birth intensities (λ∗n)n≥0 and
Death intensities (µ∗

n)n≥0, where λ∗0 = λ0, λ
∗
n = λnρn+1 and µ∗

n = µn/ρn, n ≥ 1 and

ρn = P{Sojourn time of the process X in the set of states {n, n+ 1, . . .} is finite}
may be calculated as continued fraction

ρn =
µn

µn + λn−
λnµn+1

µn+1 + λn+1−
λn+1µn+2

µn+2 + λn+2−
. . . , n ≥ 1. (1)

Remark 2. Finite projection X∗ of transient BDP X , being BDP too, is
recurrent BDP. Counterexample given in the paper[3] confirms that above formulated
Theorem does not guarantee that finite projection X∗ is always recurrent positive
(ergodic or stationary) BDP. So, we need to know the conditions of stationarity for
BDP X∗. Such conditions are given in the above mentioned paper by the following

Proposition 2. For finite projection X∗ of transient (nonstationary) BDP X
with Birth intensities (λn)n≥0 and Death intensities (µn)n≥0 to be recurrent posi-
tive (ergodic or stationary) BDP it is sufficient to be satisfied one of the following
conditions:

a) sup
n
ρn 6= 1 and inf

n
λn 6= 0;

b) sup
n
ρn 6= 1 and inf

n
µn 6= 0;

c)
∞∑

n=1

(λn − λnρn)−1 < +∞;

d)
∞∑

n=2
(µn − µnρn−1)

−1 < +∞,

where ρn, n ≥ 1 are determined by formula (1).
Now, let’s introduce and comment the main mathematical objects to make un-

derstandable the meaning of the words “Transient (nonstationary) BDP X may best
approximated by its finite projection X∗”. First of all, let’s denote by F(n) the σ-
algebra generated by transient BDP X until the moment Sn, n ≥ 1, and P = { Q |
Q is a probability defined on the measurable space (Ω,F) }. Evidently, function

d : P × P 7→ R+, d(P1,P2) =
∞∑

n=1

sup
A∈F(n)

|P1(A)−P2(A)| /n!

posses all properties of distance between probability measures P1,P2 ∈ P . That
means (P , d) is a metric space.

In add, let’s introduce subfamily

PR = {Q ∈ P | Q(Sn < +∞) = 1, n ≥ 1}.
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So, PR consists of all probability measures Q, including finite projection P∗ of
probability P, such that BDP X became recurrent BDP with respect to them.

Theorem 2. Finite projection P∗ of probability P is one of the best approxi-
mation for probability distribution P of transient BDP X by means of elements from
PR in sense that

min
Q∈PR

d(P,Q) = d(P,P∗) = e− ρ
1
eρ

1 ,

where
ρ

1
= P(S1 < +∞) = P(Y1 < +∞) =

P{Sojourn time of the process X in the set of states {1, 2, . . .} is finite}
and may be calculate by formula (1).

Proof. Let’s consider Q ∈ PR and An = {Sn =∞} ∈ F(n), n ≥ 1, then

d(P,Q) =

∞∑

n=1

sup
A∈F(n)

|P(A)−Q(A)| /n! ≥

≥
∞∑

n=1

|P(An)−Q(An)| /n! =
∞∑

n=1

P(An)/n! =

=

∞∑

n=1

(1−P(Sn <∞))/n! =

∞∑

n=1

(1− ρn
1
)/n! = e− ρ

1
eρ

1 ,

because Sn =
n∑

k=0

Yk and the fact that (Yn)n≥1 are nonnegative, independents, iden-

tically distributed random variables with distribution function

F (y) = P(Yn < y) = P(Y1 < y)

imply
{Sn <∞} ⇐⇒ {Y1 <∞, ..., Yn <∞},

i.e.,
P(Sn <∞) = P(Y1 <∞, ..., Yn <∞) = ρn

1
,

where
ρ

1
= P(S1 < +∞) = P(Y1 < +∞) =

= P{Sojourn time of the process X in the set of states {1, 2, . . .} is finite}
and may be calculated by formula ρ

1
= P(S1 < +∞) = P(Y1 < +∞) = (1).

On the other hand, P∗ ∈ PR and for A ∈ F(n)

|P(A)−P∗(A)| =

= |P(Sn <∞)P{A/Sn <∞}+ P(Sn =∞)P{A/Sn =∞}−P∗(A)| =
= P(Sn =∞) |P{A/Sn =∞}−P∗(A)| ≤ P(Sn =∞) = 1− ρn

1
.
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So, d(P,P∗) ≤ e− ρ
1
eρ

1 and finally

min
Q∈PR

d(P,Q) = d(P,P∗) = e− ρ
1
eρ

1 . �

Corollary. d(P,P∗)→ 0, when ρ
1
→ 1.

Example. To illustrate our theoretical considerations let’s take, as example,
nonstationary M/M/c Queueing Systems widely applied in Computer Science. That
means flow of the arrivals is Poissonian with parameter λ > 0 (“parameter of Birth”),
service time of each customer on the each of c servers is exponentially distributed
random variable with parameter µ > 0 (“parameter of Death”). So, interpreting
X(t) as the total number of customers in the system at the moment t, our system
my be described by nonstationary BDP X = (X(t))t∈[0,+∞) with Birth intensities
(λn)n≥0 and Death intensities (µn)n≥0, where λn = λ, ∀n ≥ 0, and

µn =

{
nµ, if 1 ≤ n ≤ c,
cµ, if n > c.

According to the Theorem 2, the best approximation for M/M/c Queueing Sys-
tem described by nonstationary BDPX is the (M/M/c)∗ Queueing Systems described
by finite projection X∗ of process X . By definition (M/M/c)∗ will be called finite
projection of the M/M/c Queueing System.

On the base of Theorem 1 and Proposition 2 we deduce the following
Proposition 3. Finite projection of nonstationary M/M/c Queueing System is

a stationary (M/M/c)∗ Queueing System described by BDP X∗ defined by parameters

λ∗n =





λ, if n = 0,
λρn+1, if 1 ≤ n < c− 1,
cµ, if n ≥ c− 1,

µn =

{
nµ/ρn, if 1 ≤ n < c,
λ, if n ≥ c,

where

ρn =

{
ηn(1 + ηn)−1, if 1 ≤ n < c,
cµ/λ, if n ≥ c,

and

ηn =
c−1∑

i=n

i!

(n− 1)!
(
µ

λ
)i−n+1 +

c!

(n− 1)!
(
µ

λ
)c−n+1 1

1− nµ/λ.

In conclusion, research of the nonstationaryM/M/c Queueing Systems being difficult,
may be reduced to the research of stationary (M/M/c)∗ Queueing Systems which are
more simple to investigate due to their stationarity. Quality of this approximation
depends of parameter ρ1 an it is increasing with increasing ρ1 ր 1.
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Statistical simulation and analysis of some software
reliability models

Alexei Leahu∗†♮ and Elena Carmen Lungu∗♮

In our work we develop statistical simulation and analysis of some software reliability

models in the case when initial number of errors is constant or random number. Some

theoretical and practical aspects of the problems will be discussed.

1. Introduction

The computer revolution is fueled by an ever more rapid technological advance-
ment. Today, computer hardware and software permeates our modern society. Com-
puters are embedded in telephones, home appliances, buildings, automobiles and air-
craft. Science and technology demand high-performance hardware and high-quality
software for making improvements and breakthroughs. Software reliability is generally
accepted as the key factor in software quality since it quantifies software failure–which
can make a powerful system inoperative or, even, deadly.

Concerning software reliability, basically, the approach is to apply mathematics
and statistics to model past failure data to predict future behavior of a component
or system. Our aim is to illustrate power of the statistical simulation method in
the comparative analysis of some software reliability mathematical models and veri-
fication of maximum likelihood procedure of statistical estimation. Of course, other
estimation procedures are also applicable (e.g., method-of-moments, method-of-least-
squares), but in this work we’ll concentrate on maximum likelihood estimates because
their many desirable properties (e.g., asymptotic normality, asymptotic efficiency and
invariance).
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2. Solution of the Problem

In our work we take, as example, some variants of Jelinski-Moranda (JM) mod-
els. More exactly, we propose to analyze the software reliability models based on the
following hypotheses:

1. The total number N of errors existing initially in the software is a constant
(unknown) number or variant

1′. The total number N of errors existing initially in the software is a Poisson
distributed random variable (r.v.) with parameter a > 0, i.e., P (N = n) = an

n! e
−a,

∀n = 0, 1, 2, ...;
2. Each error is eliminated with probability p = 1, independently of the past

trials, repair of the error being snapshot and without introduction of the new errors
or variant

2′. Each error is eliminated with probability p, 0 < p < 1, independently of the
past trials, repair of the error being snapshot and without introduction of the new
errors;

3. The time intervals between two successive failures of the software are inde-
pendent exponentially distributed random variables with parameter µ > 0 or variant

3′. The time intervals between two successive failures of the software are inde-
pendent Erlang distributed random variables with parameters r and µ > 0;

4. Distribution’s parameter of the interval between two successive failures of the
software, i.e. rate or intensity of the failures is directly proportional with the number
of non eliminated errors in the software a the begin of this interval.

So, we have (JM)1 model if the hypotheses 1, 2, 3, 4 are valid [1], (JM)2 model
if the hypotheses 1, 2′, 3, 4 are valid [1], (JM)3 model if the hypotheses 1, 2′, 3′, 4 are
valid and (JM)4 model if the hypotheses 1′, 2′, 3′, 4 are valid.

For beginning we present some results of Monte-Carlo simulations in order to es-
timate probability distribution of the number Sn(t)of non eliminated errors at the mo-
ment t, t ≥ 0, by means of relative frequencies fm(SN (t) = k) , k = 0, 1, 2, ....

CASE I. Model (JM)4

Table 1

a = 1, µ = 2, p = 0.5, t = 1
r k 0 1 2 3 4

1 fm(SN (t) = k) 0, 692 0, 255 0, 047 0, 006 5, 58 · 10−4

2 fm(SN (t) = k) 0, 82 0, 173 0, 007 1, 22 · 10−4 4, 00 · 10−6

3 fm(SN (t) = k) 0, 93 0, 067 3, 38 · 10−4 0 0

4 fm(SN (t) = k) 0, 982 0, 018 8, 00 · 10−6 0 0

Table 2

a = 1, µ = 2 · r, p = 0.5, t = 1
r k 0 1 2 3 4

1 fm(SN (t) = k) 0, 692 0, 255 0, 047 0, 0058 5, 58 · 10−4

2 fm(SN (t) = k) 0, 897 0, 101 0, 0024 1, 80 · 10−5 0

3 fm(SN (t) = k) 0, 97 0, 03 5, 40 · 10−5 0 0

4 fm(SN (t) = k) 0, 993 0, 007 2, 00 · 10−6 0 0
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Remark 1. Table 1 show us how look the probabilities P(SN (t) = k) (or rela-
tive frequencies fm(SN (t) = k),k = 0, 1, 2, ...) depending of r = 1, 4 , i.e., when mean
value of interval between two successive excluded errors, being equal with r/µ = r/2,
increases. In the same way, table 2 show us the behavior of probabilities P(SN (t) = k)
(or relative frequencies fm(SN (t) = k), k = 0, 1, 2, ...) depending of r = 1, 4, i.e., when
mean value of interval between two successive excluded errors, being equal with r/µ,
remain the same: r/µ = r/2r = 1/2. Remark 1 include also the Case II and in the
both cases we have number of trials m = 500 000 (Error±10−2 with level of confidence
0.99).

CASE II. Model (JM)3

Table 1

µ = 2, p = 0.5, t = 1, N = 5
r k 0 1 2 3 4 5

1 fm(SN (t) = k) 0, 101 0, 294 0, 342 0, 199 0, 058 0, 007

2 fm(SN (t) = k) 8 · 10−4 0, 0422 0, 217 0, 398 0, 277 0, 065

3 fm(SN (t) = k) 6 · 10−6 0, 00235 0, 065 0, 328 0, 444 0, 164

4 fm(SN (t) = k) 0 8, 2 · 10−5 0, 013 0, 204 0, 514 0, 27

Table 2

µ = 2 · r, p = 0.5, t = 1, N = 5
r k 0 1 2 3 4 5

1 fm(SN(t) = k) 0, 101 0, 294 0, 342 0, 199 0, 058 0, 007

2 fm(SN (t) = k) 0, 056 0, 306 0, 393 0, 199 0, 044 0, 003

3 fm(SN(t) = k) 0, 038 0, 31 0, 415 0, 196 0, 039 0, 003

4 fm(SN (t) = k) 0, 03 0, 311 0, 426 0, 194 0, 036 0, 002

In order to verify experimentally maximum likelihood procedure of statistical
estimation let us remember that in our algorithm of Monte-Carlo simulation we use
fundamentally the following proposition proved in the paper [2].

Proposition 1. If (Xk)k≥1 are i.i.d.r.v. such that Xk ∼ exp(µ), µ > 0,
k = 1, 2, ... and K is a r.v geometrically distributed with parameter p, 0 < p ≤ 1,
independently of (Xk)k≥1, then X1 +X2 +...+XK ∼ exp(µ · p), i.e., is exponentially
distributed r.v. with parameter µ · p.

Let’s us consider that during the time interval T , T > 0, of error detections and
their eliminations we observes intervals of length t1, t2, ..., tn, where n is the total
number of eliminated errors until the moment T . In this case, as a consequence of
above formulated Proposition 1 we have the following

Proposition 2. The likelihood function L(t1, t2, ..., tn;µ0, N) for (JM)2 model
is the same as the likelihood function for (JM)1 model with the parameter µ0, where
µ0 = µ · p.

That means likelihood equations to be solve in the model (JM)2 for prediction
of initial number of errors N (remainder number of errors N − SN (T )) are the same
as for model (JM)1, i.e. (see [1]),
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



∂ lnL
∂N =

n∑
i=1

1
N−i+1 − µ0

n∑
i=1

ti = 0,

∂ ln L
∂µ0

= n
µ0
−

n∑
i=1

ti(N − i+ 1) = 0.
(1)

Below, in the Case III, we present some results of simulations which reflects
possibility of prediction for parameters µ0, N .

CASE III. Model (JM)2

µ0 = µ · p = 2, T = 3

Table 1 Table 2 Table 3

p = 1 p = 1/2 p = 1/4

N
∧
µ0

∧

N

2 4.51 2.79
3 1.23 3.30
4 2.03 3.85
5 2.77 4.68
6 1.45 5.56
7 1.97 7.60
8 1.42 8.02
9 1.91 8.50
10 2.65 9.32

N
∧
µ0

∧

N

2 1.06 2.11
3 .07 2.59
4 1.2 4.34
5 0.85 5.28
6 1.42 6.12
7 0.92 6.94
8 1.27 8.01
9 0.82 8.69
10 0.99 10.27

N
∧
µ0

∧

N

2 ∅ ∅
3 0.50 3.48
4 0.56 3.61
5 0.65 5.36
6 0.69 6.57
7 0.53 7.35
8 0.67 8.27
9 0.72 9.17
10 0.8 10.54

3. Conclusions

Likelihood equations (1) give as sufficiently good estimator for prediction of ini-
tial number of errors N (or remaining number of errors) but estimations of parameter
µ0 = µ · p is not acceptable, i.e., in order to estimate µ0 we need to change design of
the experiment.
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A Mathematical Model Describing the
Vulnerability to Pollution of Groundwater in the

Proximity of Slatina Town

Anca Marina Marinov∗ and Victor Moldoveanu∗∗

This work deals with groundwater quality forecasting in the proximity of Olt River

(pumping system for the town “Slatina” water supply). Using geomorphologic data and

measured levels in the wells from the region, we predict the vulnerability of groundwater

to pollution. We calculate the discharge lost by drainage between the two layers existing

in this area, the influence of pumped discharges on the direction of the flow and on the

increase vulnerability to pollution. Our work is based on a mathematical model describing

the water advance in a saturated porous soil. For a two-dimensional system a steady flow

in a homogeneous and isotropic porous layer with constant thickness is considered for two

cases: a confined aquifer and an unconfined one. The flow system includes a lateral flow

from the natural limit of the aquifers, the Olt River and the pumped wells existing in the

proximity of the river. The path lines for individual fluid particles through the flow system

provide the points of emergence at outflow boundaries are determined by the path function.

The stream function gives the flux rate at the outflow boundary as well as throughout the

entire flow system. Our results give important information regarding the vulnerability of

groundwater to pollution in the vicinity of Olt River.

1. Introduction

Groundwater constitutes an important component of many water resource sys-
tems. Due to good purification properties of the soil, groundwater is generally a very
good source of drinking water.

∗ “Politehnica” University of Bucharest; “Gheorghe Mihoc–Caius Iacob” Institute of
Mathematical Statistics and Applied Mathematics.
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The quantity and quality problems cannot be separated. The drinking water
for Slatina town is pumped from the groundwater. A big number of drinking wells
pump the water from the phreatic aquifer and from the confined aquifer. The wells
are disposed in lines on the two borders of the river Olt.

The natural river Olt has been modified and as a result, near Slatina town, the
river became the lakes Arcesti and Slatina-Slatioara. The two lakes are connected to
the groundwater.

Water is pumped from well lines displayed in Table 1 which contains the total
number of wells in use and the pumped discharges in each well line. The wells are
drilled in the two aquifers existing around the river Olt.

Table 1

Pumped discharges for Slatina town

Pumping line Execution year Total num-
ber of wells
(in use)

Discharge
[l/s]

Salcia–Slătioara 1977–1978, 1987, 1990 39(25) 113

Noua 1981–1982 13(12) 50

,,B” 1987–1988 32(22) 75

Zăvoi 1986 4(3) 15

,,D” 1987 4(3) 16

Curtişoara - phreatic 1974–1975 44(34) 118

Curtişoara - confined
aquifer

1974–1975 24(18) 74

Total 160(117) 460

2. Hydrogeological Conditions

A cross section through the two aquifers is presented in Fig. 1 [3].
The first layer-the phreatic aquifer – with a 5–12 m depth, with alluvium ma-

terials (coarse sand and gravel) – is in connection to the lakes. The transmisivity has
values between 50 and 1 000 m2/day. The wells are drilled in the phreatic aquifer in
Curtişoara-Teslui area.

The confined aquifer is made up of several layers whose heights are of 5–11m,
having average hydraulic transmisivity T = 350 m2/day and the hydraulic gradient
I = 1.2–10 [3].

The confined aquifer storages water under pressure (Fig. 1) in the Cândeşti layers
(15–160m). Between the phreatic and the confined aquifer there is an aquitard with
low hydraulic conductivity values and 2–25 m thickness values. The hydraulic vertical
conductivity of the aquitard is approximately K ′ = 2.5–3.0× 10−4 m/day with some
local values of 5 × 10−2 m/day. The aquitard drainage parameter is K ′/M ′ = 1.5–
3.0× 10−5 day−1.

The well lines are made up of small depth wells, of 10–15 m (Curtişoara line),
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Fig. 1. Hydrogeological section showing local groundwater flow system
in Slătioara-Salcia area.

average depth wells of 50–120 m (Curtişoara-Teslui, Salcia-Slătioara), as well as great
depth ones.

Geo-morphologically, the pumping area is characterised by the presence of river
Olt meadow and terraces.

The hydropower planning of the downstream area of river Olt has imposed the
formation of Străjeşti, Arceşti, and Slatina lakes. Their presence has altered the
natural groundwater flow. The phreatic aquifer is hydraulically connected to the
hydrographic net elements in the area. The water supply of the phreatic aquifer is
mainly achieved by means of rainfall and the discharge from the hydrographic net
components whose breath surfaces are situated at higher quotas than the water table
of the aquifer.

In the dam walls there are some impervious less spaces allowing water to flow
from the lake to the groundwater and vice versa.

3. Mathematical Modeling of Groundwater Flow in the
Slatina Area

The objectives of modeling this area are:
• understanding the effect of pumping on the hydrologic flow regime;
• assessing the feasibility of increased pumping in time, especially in terms of

water quality.
The groundwater flow simulation consists of the prediction of quantities of in-

terest based upon an equation or series of equations that describe system behaviour
under a set of assumed simplifications. A numerical method that approximates the
governing PDE using the finite element code is considered.

The aims of our study are:
• Investigating and explaining the flow patterns at different layers;
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Fig. 2. The measured equipotential lines in hydrologic watersheds: Slatina and Caracal.
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Fig. 3. The measured equipotential lines (constant head) for the confined aquifer Slatina,
and wells’ location: 1= Area ,,B”; 2= Salcia-Slătioara; 3= Curtişoara – average depth wells;

4= Area ,,D”; 5= Area ,,Noua”,Area ,,Zvoi”.
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• Analyzing how the flow pattern differs with discharges in wells;
• Analyzing where the groundwater discharges into the river;
• Identifying the flux coming in/out of the river or of the boundaries;
• Identifying the flux coming in/out of the phreatic aquifer to the confined

aquifer or vice versa.
The groundwater flow can be described by combining two equations. By intro-

ducing into the continuity equation the velocity given by Darcy’s law we obtain the
equation of diffusivity [2]

div
(
Tgradh

)
= S

∂h

∂t
+Q. (1)

T [L2T−1] is the transmisivity tensor defined by

T =

a∫

b

Kdz, (2)

componentwise:

Txx =

a∫

b

Kxxdz, Tyy =

a∫

b

Kyydz, Tzz =

a∫

b

Kzzdz, (3)

where a, b [L] are the layer’s limits; Kxx,Kyy,Kzz [LT−1] are the hydraulic conduc-
tivity in directions x, y and z.

S [L3/ L3] is the storage coefficient or storativity (equal to the effective porosity
for the phreatic aquifer);

S =

a∫

b

Ssdz, (4)

h [L] is the hydraulic head (piezometric head), h = p
ρ·g + z;

Q [LT−1] is the discharge incoming into an elementary volume on the unit
surface;

Ss [1/L] is the specific storage of a saturated aquifer (the volume that a unit
volume of aquifer released from storage for a unit decline in head).

For a homogeneous and isotropic confined aquifer the diffusivity equation be-
comes:

div(gradh) =
S

T
· ∂h
∂t

+
Q

T
(5)

or
∂2h

∂x2
+
∂2h

∂y2
+
∂2h

∂z2
=
S

T
· ∂h
∂t

+
Q

T
. (6)

The ratio T
S is called the aquifer’s diffusivity.

For the phreatic aquifers the storage is primarily done by filling up and draining
of pores. The storage coefficient is therefore equivalent to the storage effective porosity
nc and thus the diffusivity equation becomes:
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∂

∂x

(
K(h− hs)

∂h

∂x

)
+

∂

∂y

(
K(h− hs)

∂h

∂y

)
= nc

∂h

∂t
+Q. (7)

h(x, y, t) [L] is the groundwater surface level, hs(x, y) [L] is the level of the
aquitard, K(x, y) [L/T] is the hydraulic conductivity, nc(x, y) is the storage-effective
porosity and Q(x, y, t) is the source term.

We consider separately the phreatic aquifer (Fig. 3) and the confined one (Fig. 2).
The steady flow is considered.

For the confined aquifer, the diffusivity equation (6) is integrated using the
boundary conditions which characterise the flow in Slatina watershed. Fig. 2 contains
equipotential lines drawn using measured levels in the observation wells. This figure
gives us the boundary conditions for our problem. Similarly, for the phreatic aquifer
the diffusivity equation, (7) is integrated using the boundary conditions from Fig. 3.

For the equation integration, an executable code is used. The code is based on
the finite element method and is used separately for the phreatic aquifer on the one
hand and for the confined one on the other.

In the pre-processing stage the necessary data is introduced into the program:
the flow type (steady or unsteady); the aquifer type (phreatic or confined); the do-
main’s dimensions; pumping wells’ position; discharge in each well; network step
dimension (triangles); finite elements network generation.

Using the hydro-geological description in Fig. 1 we can choose the following
attributes of

- elements: transmisivity, ratio between secondary and main direction of trans-
misivity, storage coefficient;

- nodes: initial head, aquifer thickness.
The boundary conditions can be: “imposed head” or “imposed discharge”.
After the integration, the post-processing stage allows the drawing of equal

piezometric head lines in the aquifer, the streamlines, the velocity vectors (module
and direction). For the steady flow, the streamlines coincide with the pathlines. On
each streamline the values of travel time is plotted.

Using the real boundary conditions we change the pumped discharges in the
wells to obtain the piezometric head lines with the same aspect as the real ones.
The difference between the real pumped discharge and the calculated one is the lost
discharge from an aquifer to the other. The flow between the aquifers is possible by
draining through the aquitard when the piezometric head is different in the phreatic
and the confined aquifer.

4. Flow Analysis in the Confined Aquifer

Using the measured data in the observation wells the equal-piezometric head
lines are plotted for the confined aquifer. From these equal head lines we have chosen
the boundary conditions for the aquifer.

The analyzed area has: the length L = 21000 m, the width l = 21 000 m, the
thickness M = 10 m, the hydraulic conductivity K = 30 m/day, the transmisivity T
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Fig. 4. The measured equipotential lines for the phreatic aquifer, in Slatina area.
(The river flow direction is N-S).
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= 300 m2/day, the effective porosity n = 0.2, the storage coefficient S = 0.009. With
these data we have obtained the flow pattern presented in Fig. 4.

The flow pattern obtained by using the real pumped discharges (Fig. 4) looks
very similar to the real one (Fig. 2).

This pattern can be used to calculate the velocity at each point in the aquifer,
the direction of the flow, as well as the discharge at the boundaries. The piezometric
level varies within a minimum value of 97.67 m (in the Noua and Zăvoi areas) and a
maximum of 117.5 m (on the chosen boundaries). The vertical distance between the
piezometric lines is 1 m.

If we are to change the pumped values of discharges, the flow net will obviously
be different. In order to obtain the real one we have to know the real pumped
discharges. In the Northern part of the domain the flow has a N-S direction. In the
Eastern part, the flow direction is from the Eastern boundary towards the West (the
left hand of Olt well lines pump all the water coming from the East boundary). On
the right-hand bank of Olt the flow direction is from the West boundary towards the
East.

The piezometric surface levels in the confined aquifer have smaller values than
those of the free surface of the phreatic aquifer existing above it. A flow between
the two layers therefore continually tries to equalise the piezometric levels and the
free surface levels. That flow’s direction is from the phreatic to the confined aquifer,
through the aquitard. The values of that discharge can be calculated analysing the
flow pattern of the phreatic aquifer.

The phreatic aquifer is exposed to pollution, on account of its being at a small
depth under the soil surface. Due to the above-explained connection between the two
layers the confined aquifer runs the risk of pollution. The Olt river (the lakes Arcesti
and Slatina) has the free surface at higher levels than the phreatic aquifer’s. Hence
a flow from the Olt river to the phreatic is very likely to occur. The concentration of
pollutants in the water of Olt thus determines the groundwater quality.

5. Analysis in the Unconfined Aquifer in Slatina Area

The analyzed area has: the length L = 21 000 m, the width l = 21 000 m, the
thickness M = 10 m, the hydraulic conductivity K = 35 m/day, the transmisivity
T = 350 m2/day, the effective porosity n = 0.2. With this data we have obtained the
flow pattern presented in Fig. 5 (the right hand of the river Olt). Fig. 4 shows the
equal level lines of water-table in the phreatic aquifer, measured in observation wells.

The phreatic aquifer is divided into two areas: one to the right of the Olt river
and the other to its left (Fig. 4). Each area is separately considered. The boundary
conditions take into account the impervious-less spaces in the dam walls (Q 6= 0), the
impervious ones (Q = 0), and the values of the hydraulic head (free surface levels)
from the measured levels map (Fig. 4). For the phreatic aquifer the procedure is
identical to the one for the confined aquifer (only the diffusivity equation is different).

The phreatic aquifer is less pumped than the confined one. On the right hand
domain there are only domestic wells which don’t modify the flow net of groundwater.
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Fig. 5. Equal head lines (the equal level of groundwater table) in the phreatic-(right side of
Olt) (hmax=120 m, hmin=100 m, dist=1 m), in the case without pumping wells.

To the left, in Curtişoara area, the water is pumped from an important well line. The
pumped discharges in this area influence the aspect of the flow net and determine
the groundwater pollution in case the Olt water is polluted. So, the best method
to understand the vulnerability to pollution in Curtisoara area is to calculate the
discharge values from the Olt to the groundwater, using the flow net obtained with
the above-presented code.

The level of phreatic free surface varies between 120 m (in the N) and 100 m
(in the S). The phreatic is in direct connection with the lake so the lake’s level is a
boundary condition for the aquifer.

For the right hand phreatic of Olt, using the boundary conditions from Fig. 3
(imposed head conditions) in the numerical code, we have obtained the equipotential
lines (different from the measured ones). To obtain a flow net similar to the real one
we have inserted in the domain a number of fictious pumping wells. We have changed
the position and the discharges in the wells in order to obtain the same equipotential
lines as in the Fig. 3 (the right hand of Olt). We have thus obtained approximately,
the discharges drained from the phreatic to the confined aquifer. This drainage is
produced by the decrease of the piezometric level in the confined aquifer during the
pumping process from that aquifer.

In Fig. 6 the equipotential lines (equal level of water table) are plotted in the
phreatic aquifer. In the Curtişoara wells we have considered pumping discharges
greater than the real ones (the values in m3/day: 2 000, 2 000, 5 000, 5 000, 5 000,
3 000, 1 500), to obtain the measured values of the water table (Fig. 4). The pumped
discharge in Curtişoara wells is Q = 118l/s = 10195.2m3/day and the discharge used
in the model is Qp = 23 500 m3/day. The difference Qp−Q = 13304.8 m3/day is lost
by drainage in the confined aquifer (depressurized by pumping).
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The velocity field in Curtişoara area shows the flow direction from the river Olt
into the well lines. So, the river quality influences the pumped water quality. We have
proved that a quantity of water is drained toward the confined aquifer. The quality
of that one is also influenced by the Olt water.

Fig. 6. Equal head lines (the equal level of groundwater table) in the phreatic-(left side of
Olt) (hmax = 120 m, hmin = 100 m, distance between head lines =1 m), in the case with

pumping wells.

Fig. 7. Equal head lines (the equal level of groundwater table) and the velocity field in the
phreatic-(right side of Olt) (hmax = 120 m, hmin = 100 m, distance between head lines =1

m), in the case with pumping wells in Curtişoara area.
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6. Conclusions

The groundwater quality in Slatina area is influenced by the water quality of
river Olt, especially in Curtişoara area. If the phreatic aquifer is affected by certain
surface pollution sources, then the confined aquifer will as a rule be affected as well.

A similar study could be carried out if we had a better hydrogeological descrip-
tion of aquifers. The code also allows for the study of the anisotropic case and it is
to be expected that the results will be closer to the real ones.
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Analysis of a Preconditioned CG method for an
Inverse Bioelectric Field Problem

Marcus Mohr∗, Constantin Popa∗∗ and Ulrich Rüde∗∗∗

This paper is a continuation of our previous analysis from [4] related to the electrocar-

diographic (ECG) inverse problem. In that paper we formulated the inverse ECG problem as

a differential inverse problem and derived an appropriate simulation procedure. As numeri-

cal solver we employed the Conjugate Gradient algorithm for the normal equations (CGNE)

together with a stopping test constructed following the discrepancy principle by Morozov.

In the current paper we consider a preconditioned version of the CGNE algorithm. The

preconditioner is constructed using the Cholesky factors of the discrete Laplacian which

forms a block of the original system matrix. We derive some theoretical results concerning

the efficiency and also the limitations of the preconditioner. Numerical experiments and

comparisons are presented for the cases analysed in [4].

1. Introduction

This paper is a continuation of our previous analysis from [4] related to the
inverse problem of electrocardiography (ECG). We will therefore only briefly replay
the formulation of the problem and refer the reader to [4, 5] for further details. In
the inverse ECG problem one attempts to determine from voltage measurements on
a person’s torso the underlying electric behaviour of the heart, see e.g. [6]. One
approach is the so called cardiac imaging where one tries to re-construct from the
measurements the electric potential on the epicardium, the outer surface of the heart.
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In [4] we formulated a simplified 2D version of this problem in the following form:
find a function u : Ω̄→ R such that

∆u = 0, in Ω,

∂u

∂n
= 0, on Γ \ Γ1,

u = d, on some Γ2 ( Γ.

(1)

Here Ω := (0, 1)× (0, 1), Γ is the boundary of Ω, Γ1 ∪ Γ2 ⊂ Γ with Γ2 ∩ Γ1 = ∅ and
d is a given function on Γ2. In this paper we assume the configuration is as given
in Figure 1. Applying a standard discretisation of the differential parts of problem
(1) by Finite Differences on a regular grid of mesh-width h = 1/n we arrive at an
over-determined linear system

Ax = b , (2)

where A is an M ×N matrix of the form

A =

[
∆h E
S 0

]
(3)

with M = (n− 1)2 + (n− 1) and N = (n− 1)2 + (n− 3). The sub-matrices of A are
given by

E =




0
−1

. . .

−1
0



∈ R(n−1)2×(n−3) (4)

and

S =




1 0 · · · 0
1 0 · · · 0

. . .
...

1 0 · · · 0


 ∈ R(n−1)×(n−1)2 . (5)

The matrix ∆h finally is simply the well-known 5-point discretisation of the 2D Lapla-
cian (we assume here that both ∆h and E include a scaling by the factor h2). The
right-hand side of the system is given by

b = (0, · · · , 0, d1, · · · , dn−1)
t,

where dk denotes evaluation of the prescribed function d at a given node of the
discrete grid, see also Figure 2. In this setup the problem (2) is consistent. In the
real application, however, the measurements d will contain noise and we will consider
instead, the least-squares formulation

‖ Ax− b ‖2= min! (6)
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Fig. 1. Domain of the continous
problem.
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Fig. 2. Pattern of discrete grid: • represent
Neumann, Neuman + Dirichet boundary

conditions and ◦ points on Γ1.

2. The preconditioned CG algorithm

In [4] we investigated the solution of the linear system (2) by means of the CG
algorithm applied to the normal equations AtAx = Atb. We employed the CGNE
algorithm in the following form (see [1])

d0 = b− Ax0 , p0 = Atd0

αi =
‖ Atdi ‖22
‖ Api ‖22

xi+1 = xi + αipi

di+1 = b−Axi+1 = di − αiApi

βi =
‖ Atdi+1 ‖22
‖ Atdi ‖22

pi+1 = Atdi+1 + βipi






for i = 0, 1, . . .

(7)

While the results obtained in [4] were satisfying with respect to the reconstruction of
the “shape” of the exact solution, the high number of CGNE iterations was not. This
aspect is directly related to the ill-conditioning of A from (3). In order to eliminate
the latter aspect we investigate here a special form of (right-)preconditioning of the
problem (2). Instead of the least-squares formulation (6) of (2) we consider the
minimization problem

‖ Bz − b ‖2= min!, (8)

where

B = AP−1 and P−1z = x⇐⇒ Px = z, (9)
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with a square and invertible matrix P . With this the preconditioned version of the
CGNE algorithm (7) can be written as (see e.g. [1])

d̄0 = b−Bz0 = b−AP−1z0

p̄0 = Btd̄0 = P−t(Atd̄0)

ᾱi =
‖ Btd̄i ‖22
‖ Bp̄i ‖22

=
‖ Btd̄i ‖22
‖ AP−1p̄i ‖22

zi+1 = zi + ᾱip̄i

d̄i+1 = d̄i − ᾱiBp̄i

β̄i =
‖ Btd̄i+1 ‖22
‖ Btd̄i ‖22

=
‖ P−t(Atd̄i+1) ‖22
‖ Btd̄i ‖22

p̄i+1 = Btd̄i+1 + β̄ip̄i






for i = 0, 1, . . . , ifinal

(10)

and then put
xifinal

= P−1zifinal
. (11)

Remark 1. If we restrict ourselves to symmetric matrices P then we must solve
two systems of the form Pv = w in each iteration step of algorithm (10). Another
such system must be solved once for computing the final approximate xifinal

.

It is well known, see e.g. [3], that the error reduction formula for the algorithm
(7) is of the form

‖ xi − uLS ‖226
C(x0)

λmin(AtA)

(
λmax(A

tA)− λmin(A
tA)

λmax(AtA) + λmin(AtA)

)2i

, (12)

where C(x0) > 0 is a constant depending on the initial approximation x0 and λmin(A
tA),

λmax(A
tA) are the minimal and maximal nonzero eigenvalues of AtA, respectively. Let

us denote in the following by Ik the identity matrix from Rk×k. Using this notation
we can write AtA for our matrix A from (3) as

AtA =

[
∆2

h + Ĩ1 C
Ct I(n−3),

]
(13)

where I(n−3) = EtE, the square matrix Ĩ1 is given by

Ĩ1 = StS =

[
I(n−1) 0

0 0

]
∈ R(n−1)2×(n−1)2

and C is the (n− 1)2 × (n− 3) matrix defined as

C = ∆hE . (14)

A (classical) good preconditioning of the form (9) for A will be one which improves
the condition number of the upper-left block ∆2

h + Ĩ1. Thus, if we denote by ∆̃2
h this

matrix, i.e.
∆̃2

h := ∆2
h + Ĩ1 , (15)
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an “almost the best” choice for P in (9) will be

P =

[
∆̃h 0
0 I(n−3)

]
. (16)

In this case we have

B = A

[
∆̃−1

h 0
0 I(n−3)

]
(17)

and

BtB =



I(n−1)2 ∆̃−1

h C

Ct∆̃−1
h I(n−3)


 . (18)

If we denote by T the matrix
T = ∆̃−1

h C (19)

the following result holds.

Proposition 1. With the above definitions and notations we have the equiva-
lence

{λ ∈ σ(BtB)} ⇐⇒
{λ = 1 or λ = 1 +

√
µ or λ = 1−√µ > 0, µ ∈ σ(T tT )}. (20)

Proof. A simple computation (for the case λ 6= 1) gives us the following sequence
of equivalences

λ ∈ σ(BtB)

⇐⇒ λ ∈ σ
([
I(n−1)2 T
T t I(n−3)

])

⇐⇒ 0 = det

([
I(n−1)2 T
T t I(n−3)

]
− λ

[
I(n−1)2 0

0 I(n−3)

])

⇐⇒ 0 = det

([
(1 − λ)I(n−1)2 T

T t (1− λ)I(n−3)

])

⇐⇒ 0 = det

([
(1 − λ)I(n−1)2 0

T t (1− λ)I(n−3)

]
·
[I(n−1)2

1
1−λT

0 I(n−3) − 1
(1−λ)2 T

tT

])

⇐⇒ 0 = det

(
I(n−3) −

1

(1− λ)2 T
tT

)

⇐⇒ 0 = det
(
T tT − (1− λ)2I(n−3)

)

⇐⇒ (1− λ)2 ∈ σ(T tT )

⇐⇒ 1− λ = ±√µ with µ ∈ σ(T tT )

this, together with that fact that σ(BtB) ⊂ (0,∞), proves (20).
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Remark 2. From the definitions of C, ∆̃2
h and T in (14), (15) and (19) we

obtain

T tT =Et∆h(∆2
h + Ĩ1)

−1∆hE =

=Et[I(n−1)2 + ∆−1
h Ĩ1∆h

−1]−1E = Et(I(n−1)2 + ∆1)
−1E, (21)

where we denoted by ∆1 the symmetric non-negative definite matrix

∆1 = ∆−1
h Ĩ1∆

−1
h . (22)

Because of the special structure of E, see (4) we obtain from (18) that the matrix
T tT is singular. Thus, for 0 = µ ∈ σ(T tT ) we get one more time λ = 1 in (20). Let
now µ 6= 0 be another eigenvalue of T tT corresponding to an eigenvector v 6= 0, i.e.

(T tT )v = µv. (23)

Because µ 6= 0 we have
w := Ev 6= 0 . (24)

Thus

〈(T tT )v, v〉
〈w,w〉 =

〈(I(n−1)2 + ∆1)
−1w,w〉

〈w,w〉 =
µ〈v, v〉
〈EtEv, v〉 =

µ〈v, v〉
〈In−3v, v〉

= µ

and

µ =
〈(I(n−1)2 + ∆1)

−1w,w〉
〈w,w〉 .

Since (I(n−1)2 + ∆1)
−1 is a symmetric and positive definite matrix we obtain that

λmin[(I(n−1)2 + ∆1)
−1] 6 µ 6 λmax[(I(n−1)2 + ∆1)

−1] (25)

or
1

1 + λmax(∆1)
6 µ 6

1

1 + λmin(∆1)
. (26)

Thus, if µ is “close” to the right bound in (26) i.e. (for a small ε > 0)

µ =
1− ε

1 + λmin(∆1)
, (27)

then from (20) we can have

λ = 1−√µ = 1−
√

1− ε√
1 + λmin(∆1)

=

=
λmin(∆1) + ε√

1 + λmin(∆1)(
√

1 + λmin(∆1) +
√

1− ε )
. (28)

If ε is of order λmin(∆1) and if λmin(∆1) is small, which we expect from (21) for
large values of n, then λ will be as small as λmin(∆1), i.e. no essential improvement
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Table 1

Spectral properties of the matrix A and the matrix B preconditioned as in (17)

n zmax(A) zmax(B) zmin(A) zmin(B) k(A) k(B)

8 7.63 1.41 1.87 ·10−05 1.3 ·10−05 ≈ 1005 ≈ 1005

16 7.81 1.41 5.21 ·10−12 3.7 ·10−12 ≈ 1012 ≈ 1012

24 7.96 1.41 9.00 ·10−17 3.9 ·10−17 ≈ 1017 ≈ 1017

32 7.97 1.41 1.40 ·10−19 2.8 ·10−18 ≈ 1020 ≈ 1018

(“compression”) of σ(AtA) will be obtained by the preconditioning (16)–(17). Some
results in this sense are presented in table 1. We denoted by zmax(A), zmax(B) and
zmin(A), zmin(B) the largest and smallest singular value of A and B respectively. The
numbers k(A), k(B) are defined by

k(x) =
zmax(x)

zmin(x)
. (29)

Remark 3. Concerning the preconditioning (17) we want to point out the fol-
lowing:

(i) It is not important that in (16) we used the identity matrix In−3. This choice
was made only to simplify the theoretical considerations that followed. For
different choices we got results similar to those in Table 1.

(ii) Unfortunately, from a practical point of view, the computation of ∆̃−1
h in (17)

can be very expensive. A “less costly” choice is

P =

[
∆h 0
0 I(n−3)

]
. (30)

In this case, at least up to some point, a theoretical analysis as in the above
Remark 2 can be made, with similar conclusions with respect to σ(BtB). We
restrict ourselves here to present in Table 2 some numerical results regarding
σ(BtB) for the choice (30).

Table 2

Spectral properties of the matrix A and the matrix B preconditioned as in (30)

n zmax(A) zmax(B) zmin(A) zmin(B) k(A) k(B)

8 7.63 13.37 1.87 ·10−05 1.30 ·10−05 ≈ 1005 ≈ 1005

16 7.81 36.15 5.21 ·10−12 3.00 ·10−12 ≈ 1012 ≈ 1013

24 7.96 66.50 9.00 ·10−17 2.00 ·10−17 ≈ 1017 ≈ 1018

32 7.97 102.69 1.40 ·10−19 3.46 ·10−19 ≈ 1020 ≈ 1021
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Table 3

CG versus preconditioned CG using stopping test (31)

prescribed shape shape approx. by CG shape approx. by PCG
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Table 4

CG versus preconditioned CG using stopping test (32)

prescribed shape shape approx. by CG shape approx. by PCG
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Remark 4. There is also a “good” aspect concerning the above precondition-
ings with respect to our problem (6). Indeed, after the transformation (17) with P
from (16) or (30), a “large” part of the eigenvalues of BtB will be 1. Typically only
up to 2n eigenvalues will be different from 1 and of those only up to (n − 3) will
have values in the interval (0, 1), see Propositon 1 in this respect. Thus, following
the theoretical considerations from [2], the “filter factors” associated with the eigen-
values of BtB greater or equal to 1 will become very small in only “few” iterations
of the preconditioned CG algorithm. Thus, we will obtain an approximation of xLS,
i.e. the minimal norm solution of (6), in significantly fewer iterations than with the
non-preconditioned algorithm and this approximation will have the same quality of
reconstruction.

We can see this improvement in the following tests. We use the verification
procedure detailed in [4, 5], i.e. we prescribe Dirichlet values along the boundary Γ1

and solve the forward problem associated with (1) to obtain “measurement” values
d. In order to simulate noise we add a random vector xp ∈ R(n−1) to d,

dp
i = di + εxp

i , i = 1, . . . , n− 1 .

We then solve (6) with b derived from dp using CG and CG preconditioned with
P according to (30). For the experiments we use ε = 0.01 and test both stopping
rules from [4]. The results for the first stopping rule are given in Table 3. Here we
terminated the iterations once

‖ r(k) ‖2 +N · ‖ r(k) ‖2 ·sstop 6 neps, (31)

where r(k) is the residual of the current approximation, neps = ε ‖ xp ‖2≈ 0.03 and

sstop =‖ cu(k) − cuex ‖∞ .

Here cuex denotes the values of the least-squares solution of the inverse problem
for the unperturbed data d along Γ1, while cu(k) denotes the values of the current
approximate solution on Γ1. Since cuex is not available in practice we devised a
second stopping test that is only based on computable values, namely

‖ r(k) ‖2 +N · ‖ r(k) ‖2 · ‖ cu(k) ‖∞6 neps . (32)

The results for this second rule are given in Table 4. Both experiments demonstrate
that the preconditioning yields a significant reduction in the number of iterations
(nits), while retaining the quality of the reconstructed shape.
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2004; Editura Academiei Române, Bucureşti 2004, 189–204.
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Dosimetric Estimates in Biological Tissue Exposed
to Microwave Radiation in the Near Field of an

Antenna

Mihaela Morega∗, Alina Machedon∗ and Marius Neagu∗

Human exposure to electromagnetic field (including the microwave radiation range) is

limited by international safety guidelines, based on health considerations. Thermal health

effects are commonly considered for the radiofrequency range; in particular, for microwave

exposure, the absorbed energy that produces heat is quantified by the specific energy ab-

sorption rate, as dosimetric reference. Induced electric and magnetic field strengths are

also restricted by the exposure guidelines. We report here a numerical study of the elec-

tromagnetic field induced in several biological models by a common microwave applicator.

The sensitivity of dosimetric parameters and the compliance with exposure guidelines are

evaluated. We have examined the influence of dielectric properties dispersion on dosimetric

quantities, useful in the design and validation of experimental settings and numerical models.

1. Introduction

A wide debate developed over the last two decades, both in scientific and social
forums, on the possible health effects of human exposure to non-ionizing electromag-
netic fields continues to concentrate attention without concluding results. Research
activity was therefore developed by the international scientific community aimed at
evaluating the risk associated with exposure to this type of radiation. At the same
time, various international authorities began to issue recommendations on exposure
limits valid for workers and for the population in the frequency range 0 Hz÷300 GHz.
The limits specified by the guidelines are settled both at workplaces and in the liv-
ing environment. The specified accepted limits are intended to be used as a basis
for planning work procedures, and designing protective facilities, as much as in the

∗ “Politehnica” University of Bucharest, Romania.
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assessment of the efficacy of protective measures and practices, or in the guidance on
health surveillance.

The most known and accepted are the guidelines developed by the International
Commission on Non-Ionizing Radiation Protection (ICNIRP) [1]. Other internation-
ally recognized documents, such as those developed by the Institute of Electrical
and Electronics Engineers (IEEE) and American National Standardization Institute
(ANSI) [2] in the USA, by the Australian Radiation Protection and Nuclear Safety
Agency (ARPANSA) [3], or by the National Radiological Protection Board (NRPB)
in the UK adopt the same basic approach of ICNIRP, although some differences exist
in numerical values, and they will be discussed in this paper. In 1999 the Council of
the European Union has issued a Recommendation to Member States [4] to adopt a
common frame of norms on exposure of the general public to electromagnetic fields
that made precisely the indications supplied by ICNIRP for the protection of the pop-
ulation. Presently, about 30 countries have adopted ICNIRP guidelines as national
regulations.

The market of wireless devices is presently highly dynamic and competitive.
Producers have to find new and commercial solutions, as an optimum of cost, perfor-
mance, modern design, miniaturization and multifunctionality. The compliance with
the safety guidelines is also a restriction, and the manufacturer is required to include
the SAR limit in the technical specification of each product. This value is then com-
pared by the consumer safety authorities with the limits stated by standards. Also
that seems to be a simple and non-controversial process, our study investigates the so
called “technical accuracy” of safety and performance parameters assessment, based
on valid standards.

2. Basic restrictions and reference levels presently stated
by standards

The ICNIRP guidelines [1], as well as the other international standards [3–
5], are based on a two-level structure. Basic restrictions are defined in terms of
“dosimetric quantities” that are directly related to biological effects; these quantities
are: the current density (J) for low-frequency electric and magnetic fields, and the
specific energy absorption rate (SAR) and the power density (PD) for high-frequency
electromagnetic fields (including microwaves). The limits are defined for exposure
of all, or only a part, of the human body. For practical reasons, reference levels
are derived from basic restrictions, through appropriate dosimetric models (simplified
computational and experimental models). Reference levels are expressed in terms
of physical quantities (electric field strength, magnetic field strength, and equivalent
plane wave power density) that can be directly measured outside the exposed body
and inside experimental phantoms.

Given the conservative hypotheses assumed in dosimetric models, exposures to
fields that are below the reference levels necessarily comply with basic restrictions,
but the vice-versa is not true. Even when the reference levels are exceeded, the
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standard may be complied with, provided it can be proved that basic restrictions are
not exceeded under the specific exposure conditions.

We are interested here by the high-frequency electromagnetic field, the mi-
crowave range with applications in wireless communications technologies, 0.5–3 GHz.
The basic restriction for localized exposure (head and trunk) in this frequency range
is the specific energy absorption rate (SAR) which is set in terms of maximum mass-
normalized quantity, as follows:

• 2 W/kg for “any 10 g of contiguous tissue” in the ICNIRP guidelines [1] and
the European recommendation [4], while “any 10 g of contiguous tissue in the shape
of a cube” in the Australian standard [3];

• 1.6 W/kg for “1 g of tissue in the shape of a cube” in the ANSI/IEEE stan-
dard [2].

Basic references [1], [2] and [4] are issued in the same period of time, 1998-1999,
are based on the research and documentation literature available at the time and
are still valid. At the first glance the specifications do not seem to be contradictory;
however, we found some important differences in their practical use, that we attempt
to emphasize on a case study presented further.

3. Physical properties of the model and general assump-
tions

The work presented here examines the electromagnetic field penetration in hu-
man tissue considering several conditions and particularities related to wireless com-
munications in the microwave frequency range [7–9]:

(1) An antenna is the electromagnetic radiation source in our study. The electro-
magnetic field produced by an antenna can be described as having several components;
only one of these actually propagates through space, and this component is called the
radiated field or the far field. The strength of the radiated field does decrease with
distance, since the energy must spread as it travels. The other components of the
electromagnetic field remain near the antenna and do not propagate. There are gener-
ally two other components: the static field and the induction field, and their strength
decreases very rapidly with distance. The entire field (all of the components) near
the antenna is called the near field. In this region, approximately one wavelength
in extent, the electric field strength can be relatively high and pose a hazard to the
human body. The dipole configuration is the most common and conventional type
for near field human exposure related to wireless personal communication systems in
the GSM frequency range (0.5 to 3 GHz); the harmonic waveform is considered in our
study. In numerical and experimental models, the length of the antenna is usually
adjusted at the half wavelength, both because of modeling reasons (like symmetry
conditions) and to maximize the efficiency of the emission.

(2) The exposed body is represented by a layered biological structure, with an
idealized shape, inspired by the human anatomy (head or trunk); the electromagnetic
field penetration depth in dispersive dielectrics, like animal tissue, depends on the ex-
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ternal shape of the body, on the electric conductivities and dimensions of tissue layers;
the skin and fat peripheral layers present screening effect for the electric component
of the incident field.

(3) Biological tissues are nonmagnetic and dispersive dielectric materials; for the
purpose of this study, they are considered linear, isotropic and homogeneous materials;
dielectric properties are expressed in the form of the complex permittivity ε = ε−iσ/ω,
or the complex conductivity σ = σ + iωε, where ε is the dielectric permittivity, σ is
the electric conductivity and ω = 2πf is the angular frequency of the electromagnetic
field. The specific values for σ and εg considered in our study correspond to data in
literature [6]. For illustration, Fig. 1 shows the frequency dependence of the electric
conductivity gσ and relative dielectric permittivity εsg or several anatomical tissues
involved in the human body exposure to electromagnetic field (skin, fat, bone, dura,
cerebro-spinal-fluid, brain and muscle); the microwave frequency range used by the
GSM communication system is considered.

Fig. 1. Frequency dependence of the conductivity and the permittivity of several tissues, in
the GSM frequency range.

Our research is focused on the study of two idealized anatomic structures:
– model A 6 – a human (adult) head with external ellipsoidal shape, composed

by six tissue layers (skin, fat, bone, dura, csf and brain) [8, 9], and
– model B 4 – a planar layered structure representing the human trunk, com-

posed by four tissue layers (skin, fat, muscle and bone).
(4) The electromagnetic coupling between the antenna and the exposed body

is quantified by the so called power transfer factor, defined as the ratio between
the emitted and the absorbed time averaged active powers; this factor depends on:
the antenna type, the shape and structure of the body and the distance between
the antenna and the body. We adopted for this study a constant emitted power of
1 W, regardless the type of the antenna, and for a more realistic evaluation we have
expressed the dosimetric quantities in rated (scaled) values, as it is seen in the results
section.

(5) Our purpose is to determine some quantitative and qualitative information
on dosimetric parameters inside the body exposed to electromagnetic radiation and to
relate them to prescriptions stated in human exposure guidelines and standards. Also
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the configuration of the human body in the vicinity of the antenna does not present
any obvious and accurate symmetry, we speculate a reduction of the 3D problem,
to a 2D idealized model, based on axial symmetry around the antenna longitudinal
axis [8, 9]. This approximation proves to be satisfactory for global estimates, like
specific energy absorption rate, or power deposition in a tissue layer, both rated
to the total power absorbed by the body, or to the power emitted by the antenna.
The approximation is also favored by the fact that the penetration depth of the
electromagnetic radiation in biological tissue at microwave frequencies is small (<
30 mm) and the electromagnetic phenomena are superficial. In order to compare the
quantitative results obtained with the simplified 2D models with the more realistic
ones obtained with 3D models one have to take into account the power transfer factor
(defined above), whose value is one for the 2D models (due to the axial symmetry)
and smaller than one for the realistic 3D models (generally dependent of the distance
between the antenna and the body).

4. Electromagnetic problem formulation

The numerical computation used for the 2D FEM model is based on the FEM-
LAB software [10], the Electromagnetics Module, in the axisymmetric transversal mag-
netic (TM) waves application mode, time-harmonic submode. The wave equations
are applied for dispersive media, characterized by the complex electric permittivity ε

∇×
(

1

µ0
∇×E

)
− ω2εE = 0, ∇×

(
1

ε
∇×H

)
− ω2µ0H = 0, (1)

where the unknown field variables, in the cylindrical coordinate system and in complex
form are the electric and the magnetic field strengths:

H (r, z, t) = Hϕ (r, z) eϕeiωt, E (r, z, t) = (Er (r, z) er + Ez (r, z) ez) eiωt (2)

The computational domain (Fig. 2) is limited with low-reflecting boundary con-
ditions

n×
(
ε

µ0

)1/2

E−Hϕ = −2Hϕ0,whereHϕ0 = 0, (3)

and the boundary on the (Oz ) axis satisfies axial symmetry conditions

Er = 0,
∂Ez

∂r
= 0,

∂Hϕ

∂r
= 0. (4)

The radiation source is introduced through a nonhomogeneous magnetic field
boundary condition, simulating the antenna. The magnetic field condition is adjusted
for each model, so that the emitted power is constant (1 W) in all studied cases. The
FEMLAB linear stationary solver is based on Gaussian elimination. The FEM mesh is
composed of triangular elements (Delaunay mesh with Lagrange quadratic elements),
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Fig. 2. The general structure of the computational domain based
on axial symmetry.

and two accuracy tests were performed to settle its parameters: the constant radiated
power and an energetic balance (the radiated power compared with the sum of the
power absorbed in the body and the power radiated in the antenna far field). The
optimal mesh in our examples is settled to approx. 150 000 elements.

5. Equivalent dielectric properties

The anatomical structures presented above are further reduced to more sim-
plified models, having the same external shape and dimensions and an inner homo-
geneous structure. The electric properties of the reduced model (σequiv respectively
εequiv) are computed with the 2D FEM model described earlier, by energy based
equivalence, considering that the total absorbed power and total electric energy have
the same values in the heterogeneous (composed by i different subdomaines) and
equivalent homogeneous models [9]:

∫

i

σi (Ei)
2
dv = σequiv

∫

i

(Ei)
2
dv, (5)

∫

i

1

2
εi (Ei)

2 dv =
1

2
εequiv

∫

i

(Ei)
2 dv. (6)

The method presented above is applied to compute the equivalent dielectric
properties of the following reduced models, derived from model A 6 and model
B 4 presented above:
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Fig. 3. Frequency dependence of the equivalent dielectric properties (conductivity
and relative permittivity), in the GSM frequency range.

– model A 2 – reduced heterogeneous head model with two subdomaines : equiv-
alent skull (skin+fat+bone) and equivalent brain (dura+csf+brain);

– model A 1 – reduced homogeneous head model : equivalent head tissue;
– model B 2 – reduced heterogeneous trunk model : skin (same properties and

thickness as in model B) and equivalent body tissue (fat+muscle+bone).
– model B 1 – reduced homogeneous trunk model : equivalent body tissue.
Fig. 3 presents the frequency dependence of the mentioned equivalent dielectric

properties computed in the GSM frequency range.
The equivalent properties are useful in the design of experimental mannequins.

Tissue equivalent “phantoms” are used instead of real bodies in the experimental
dosimetry [7]. Miniature isotropic E-field sensors are commonly used as implantable
probes. The sensor is immersed into tissue equivalent liquid, and the internal electric
field in the phantom is measured; the SAR is then calculated from internal E-field.
A typical phantom designed for the certification of communication equipment is de-
scribed in [7] (i.e., the Specific Anthropomorphic Mannequin – SAM) and it consists
of a 2 mm polyurethane shell (σshell = 0.0012 S/m respectively εshell = 5), filled with
simulant tissue solution (σsimulant = 0.7 S/m, εsimulant = 48, at 0.835 GHz and
σsimulant = 1.7 S/m, εsimulant = 41 at 1.9 GHz). As one could see, the mentioned
values of the simulant tissue solution are comparable to the equivalent brain in
Fig. 3.

6. Electric field strength and penetration depth in the ex-
posed body

We computed the E-field strength (rms-values) distribution inside the two ana-
tomical structures exposed in the near field of the antenna at different frequencies;
the antenna is placed at 0.01 m distance from the body surface. In the case of the
head (models of type A) the antenna is a center fed, half wavelength dipole and in
the case of the trunk (models of type B) the antenna is a lower end fed, quarter
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a) at 0.9 GHz b) at 1.8 GHz

c) at 2.5 GHz

Fig. 4. E distribution (rms values) versus distance r, measured from the
surface of the skin – head models.

wavelength monopole. The antenna emitted power is set at 1 W in all cases in order
to express the E-field as rated (per power) values, giving the possibility to better
analyze them and to scale them for any other value of the emitted power. Electric
field penetration in the exposed head (the models of type A) is presented in Fig. 4, at
the main frequencies in the MW considered range (0.9 GHz, 1.8 GHz and 2.5 GHz).
The presented distributions of the electric field strength are computed on the axes of
maximal values.

In a 3D numerical model, the degree of heterogeneity is significant for the com-
plexity of the model and computational resources; thin layers (like skin, fat, dura and
csf) should be covered with a very dense FEM mesh. Consequently, any possibility
to simplify the structure is appreciated. The results presented in Fig. 4 support the
good agreement among equivalent models. This is a good reason to use the values
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determined for equivalent dielectric properties in the design of 3D FEM models or in
experimental phantoms for the human body.

The reduced heterogeneous structures (models A 2 and B 2) prove to achieve
the most desirable compromise between the accuracy of anatomical representation and
the economy of computational resources. The E-field penetration depth was estimated
in the GSM frequency range for the presented models. Figures 5 and 6 show that the
frequency dependence of the penetration depth for the heterogeneous models (A 6
and A 2, respectively B 4 and B 2) is very similar, while the same function for the
homogeneous model (A 1, respectively B 1) has a noticeable different distribution.

Fig. 5. Frequency dependence of the pene-
tration depth, for type A (head) models.

Fig. 6. Frequency dependence of the pene-
tration depth, for type B (trunk) models.

In the heterogeneous models, the presence of the superficial layers (skin fat and
bone) has a screening effect for the electric field. The skin has a relatively high
permittivity and concentrates the electric field and the absorbed power at the surface
of the body; one could see in figure 4 the high initial E values. The fat and the
bone, with their lower permittivities act like a barrier for E-field penetration. These
observations support the lower level of the penetration depth for heterogeneous models
and the almost constant value regardless the frequency.

7. SAR evaluation

We mentioned in Section 2 that the main dosimetric quantity in microwave
exposure of living bodies is the specific energy absorption rate (SAR), considered
as the basic restriction by the most referred standards. It is defined as the absorbed
power per unit mass at infinitesimal volume of tissue (SAR = σE2/ρ [W/kg]sg, where
E is the rms value of the electric field strength, σ is the electric conductivity and
ρ is the mass density of the tissue). SAR distribution depends on several factors:
the incident field parameters (near or far field), geometric parameters (shape and
structure) of the exposed body, physical properties of the tissues (as lossy dielectrics),
ground/screen/reflector effects of other objects in the field near the body.
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a) at 0.9 GHz.

b) at 1.8 GHz.

c) at 2.5 GHz.

Fig. 7. SAR estimates for the type A
(head) models (at 1 W emitted power).

a) at 0.9 GHz.

b) at 1.8 GHz.

c) at 2.5 GHz.

Fig. 8. SAR estimates for the type B
(trunk) models (at 1W emitted power).

In this section we discuss the significance of the mass-normalized SAR over
1 g versus 10 g of tissue, which represents, for an average biological tissue with the
mass density of 1 kg/m3, a volume associated to a cube with the edge of 0.01 m,
respectively 0.022 m. The standards suggest that the cube volume should include the
maximal local SAR values in the exposed area. Because the SAR, like the E-field in
the exposed region is maximal at the surface of the body, the volume is selected with
one face on the body surface (in practical cases the curvature could be neglected).
Figures 7 and 8 display, for three significant frequencies and for the models presented
in this case study, the following SAR quantities: the local maximal SAR (SARmax)
and the averaged SAR values for 1 g and 10 g of tissue (SAR1 g, SAR10 g). The
emitted radiation power is 1 W in all studied cases and the exposed body is placed
at the same distance (0.01 m) of the antenna.

One could observe several characteristics:
SARmax is highly dependent on the model heterogeneity; the layered models
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a) at 0.9 GHz.

b) at 1.8 GHz.

c) at 2.5 GHz.

Fig. 9. Antenna emitted power to produce
SAR 1 g and SAR 10 g admitted values in

the type A (head) models.

a) at 0.9 GHz

b) at 1.8 GHz

c) at 2.5 GHz

Fig. 10. Antenna emitted power to produce
SAR 1 g and SAR 10 g admitted values in

the type B (trunk) models.

A 6 and B 4 concentrate a large amount of the total absorbed power at the surface
of the body because the skin (the peripheral layer which is very thin) has a higher
dielectric permittivity than fat and bone; however, in all models, SAR distribution is
highly focused in the area proximal to the antenna, and decreases rapidly inside the
body (as the penetration depth and electric field distribution show).

On the contrary, the averaged values, both for 1 g and 10 g of tissue, are similar
for all the compared models; they are insignificantly affected by the heterogeneity.
This is because the volume of integration is not negligible in size and its characteristic
dimension is larger than the thickness of the tissue layers.

For the same exposure conditions, SAR10 g is considerably smaller than SAR1 g
because SAR distribution is highly nonuniform and decreases rapidly with the distance
from the peak. Following the restrictions stated by the exposure standards, one could
see the opposite relation: the limit imposed by ICNIRP for 10 g (2 W/kg) is more
permissive (higher) than the limit imposed by IEEE/ANSI for 1 g (1.6 W/kg).
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A more confusing situation appears when we try to solve the “inverse problem”,
that is to estimate the admissible power of the radiation source, that produces the
SAR1g, respectively the SAR10 g permitted by the standards. Figures 9 and 10
present the values of the emitted power able to produce SAR1g = 1.6 W/kg and
SAR10 g = 2 W/kg, for each of the models considered in our case study.

The three compared models give similar values for the maximal admitted an-
tenna power, because the heterogeneity of the model significantly affects local SAR
values, but seems to be less important for spatial averaged values, especially at higher
frequencies (the depth of penetration decreases with the frequency rise). However,
the controversy between the two referred standards is evident and confirmed in all
considered examples: the limit values derived from the ICNIRP guidelines [1] are
twice more permissive than the ANSI/IEEE standard [2].

8. Conclusions

The construction of the simplified 2D models used in this study arises from
the necessity to evaluate dosimetric parameters in layered structures like anatomical
tissues when exposed to microwave radiation in wireless communications. Compared
with more sophisticated models, the 2D models demonstrate advantages in economy
of resources, accessibility and rapidity, while the results are sufficiently accurate for
global estimates and for comparison with experimental SAR and E distributions from
measurements on phantom human models. The method of equivalence between the
heterogeneous anatomical structures and the homogeneous equivalent domains could
be applied in different configurations. The results are useful for the optimal design of
3D models. This work presents the electric field distribution inside models represen-
tative for parts of the human body (head and trunk) in different exposure conditions.
The penetration depth and the specific energy absorption rate are also computed.
A critical study for the evaluation of SAR shows some controversies produced by
important differences between the most known and referred human exposure interna-
tional standards; this situation is quite confusing for manufacturers and for end-users
of wireless devices. The normalization method for SAR limit evaluation should be
reconsidered and made more appropriate to the structure of the exposed body; we
consider that the characteristic dimension of the integration volume should be made
smaller for a more accurate estimate both in numerical and experimental models.
Besides, the averaged value on a volume in the shape of a cube, over tissues with
different physical properties seems to have a poor physical significance. A more lo-
calized SAR evaluation could be important both for the assessment of thermal and
non-thermal biological effects.

It is the role of international standardization authorities, International Electri-
cal Commission (IEC), European Committee for Standardization in Electrotechnic
(CENELEC), The Institute of Electrical and Electronic Engineers (IEEE) to synthe-
size reliable research and to edit technical standards for the design, manufacture and
conditions of use of the electric and electronic equipment.
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Lower bounds on the weak solution of a
moving-boundary problem describing the

carbonation penetration in concrete

Adrian Muntean∗♮ and Michael Böhm

In this note, we discuss a 1D partly dissipative moving sharp-interface reaction-diffusion

system modeling concrete carbonation. We point out a way to obtain non-trivial lower

bounds on the concentrations of the chemically active species. A FEM approximation of the

solution illustrates numerically the behavior of the concentration profiles and interface posi-

tion. The lower bounds of Ca(OH)2(aq) concentration obtained numerically are compared

with the theoretical lower bounds.

1. Introduction

This research is motivated by the macroscopic modeling of the concrete carbon-
ation process by moving the interface where the carbonation reaction

CO2(g→ aq) + Ca(OH)2(s→ aq)
H2O−→ CaCO3(aq→ s) + H2O (1)

is localized. The interface, which we denote by Γ(t), advances from the outside
boundary inwards the material. It separates the region Ω1(t), in which all available
Ca(OH)2(aq) has been depleted, from the yet unreacted part Ω2(t). In front of the ad-
vancing interface the concentration of freely diffusing CO2 molecules is zero. Figure 1
illustrates the situation. The understanding of the process and the ability to calculate,
and therefore, to predict the penetration of aggressive carbon dioxide from air inward
through the unsaturated porous concrete matrix towards the steel reinforcement is
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essential to forecast the penetration of a complex spectrum of really corrosive species
like chlorides or sulfates. We present in Section 2 a coupled PDE-ODE model for the
simultaneous determination of concentration profiles of the active species and of the
position of the carbonation interface. Section 3 contains the weak formulation of the
problem and the main results. In Section 4, we point out a way to obtain non-trivial
lower bounds for Ca(OH)2(aq) concentration. We use a FEM approximation of the
solution to illustrate numerically the behavior of the concentration profiles and inter-
face position. Finally, we compare the numerical lower bounds of Ca(OH)2(aq) with
the theoretical estimates. We report on these aspects in Section 5.

2. The Sharp-Interface Carbonation Model PΓ

The evolution of the interface between carbonated and uncarbonated parts in
concrete materials can be modeled (cf. [1, 5, 7]) by the following 1D moving-boundary
problem: Determine the concentrations1 ūi(x, t), i ∈ I and the interface position s(t)
which satisfy for all t ∈ ST the equations:





(φφwūi),t + (−Diνi2φφwūi,x)x = +fi,Henry, x ∈ Ω1(t), i ∈ {1, 2},
(φφwū3),t + (−D3φφwū3,x)x = +fDiss, x ∈ Ω2(t),

(φφwū4),t = +fPrec + fReacΓ, x ∈ Γ(t),

(φū5),t + (−D5φū5,x)x = +fReacΓ, x ∈ Ω1(t),

(φū6),t + (−D6φū6,x)x = 0, x ∈ Ω2(t).

(2)

The initial and boundary conditions are φφwνi2ūi(x, 0) = ûi0, i ∈ I, x ∈ Ω(0),
φφwνi2ūi(0, t) = λi, i ∈ I1, ūi,x(L, t) = 0, i ∈ I2, x ∈ Ω2(t), where t ∈ ST . Specific
to our problem, we impose the following interface conditions





[j1 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφwū1]Γ(t),

[ji · n]Γ(t) = s′(t)[φφwνi2ūi]Γ(t), i ∈ {2, 5, 6},
[j3 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφwū3]Γ(t),

(3)

s′(t) = α
η̃Γ(s(t), t)

φφwū3(s(t), t)
, s(0) = s0, (4)

where νi2 := 1 (i ∈ I − {2}), ν22 := φa

φw
, ji := −Diνiℓφφwūi (i, ℓ ∈ I1 ∪ I2) are the

corresponding diffusive fluxes, and α > 0. Here Di, L, and s0 are strictly positive
constants, λi are prescribed in agreement with the environmental conditions to which

1We involve the following mass concentrations: ū1 := [CO2(aq)], ū2 := [CO2(g)], ū4 :=
[CaCO3(aq)], and ū5 := [H2O] for the species present in the region Ω1(t) := [0, s(t)]; ū3 :=
[Ca(OH)2(aq)] and ū6 := [H2O] for those in Ω2(t) := [s(t), L]. Here t ∈ ST :=]0, T [,
T ∈]0,∞[. We use the set of indices I := I1 ∪ {4} ∪ I2. I1 := {1, 2, 5} points out the active
concentrations in Ω1(t), and I2 := {3, 6} refers to the active concentrations present in Ω2(t).
We assume that CaCO3(aq) is not transported in Ω := Ω1(t) ∪ Γ(t) ∪ Ω2(t), therefore the
only partly dissipative character of the model.
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(a) (b)

(c)

Fig. 1. (a) Basic geometry for PΓ model. (b) Schematic 1D geometry. (c) Definition
of the reaction interface, see also Figure 1 in [3].

Ω is exposed [2]. The initial conditions ûi0 > 0 are determined by the chemistry of the
cement. The hardened mixture of aggregate, cement, and water (i.e. the concrete)
imposes ranges for the porosity φ > 0 and also for the water and air fractions, φw > 0
and φa > 0, [2]. For a derivation of (4), see [1, 7]. The terms fi represent (see
Section 3) the r.h.s. of the ith equation in (2), where fi,Henry, fDiss, fPrec, and
fReacΓ are sources or sinks by Henry-like interfacial transfer mechanisms, dissolution,
precipitation, and carbonation reactions. Typical examples are (cf. [1, 7, 4, 8]):

{
fi,Henry := (−1)iPi(φφwū1 −Qiφφaū2) (Pi > 0, Qi > 0), i ∈ {1, 2},
fDiss := S3,diss(u3,eq − φφwū3), S3,diss > 0, fPrec := 0, fReacΓ := η̃Γ.

(5)

Let ū denote the vector of concentrations (ū1, . . . , ū6)
t and MΛ be the set of pa-

rameters Λ := (Λ1, . . . ,Λm)t that are needed to describe the reaction rate. For our
purposes, it suffices to assume that MΛ is a non-empty compact subset of Rm

+ . We
introduce the function

η̄Γ : R6 ×MΛ → R+ by η̄Γ(ū(x, t),Λ) := kφφwū
p̄
1(x, t))ū

q̄
3(x, t), x = s(t). (6)

Herem := 3 and Λ := {p̄, q̄, kφφw} ∈ R3
+. We define the rate of reaction (1) η̃Γ(s(t), t),

which arises in (3) and (4), by

η̃Γ(s(t), t) := η̄Γ(ū(s(t), t),Λ). (7)
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Equations (2)–(7) define the model PΓ.

3. Notation. Weak Formulation. Main Results

For each i ∈ I1 ∪ I2, we denote Hi := L2(a, b), where we set [a, b] := [0, 1] for
i ∈ I1 and [a, b] := [1, 2] for i ∈ I2. Moreover, H :=

∏
i∈I1∪I2

Hi, Vi = {u ∈ H1(a, b) :

ui(a) = 0}, i ∈ I1, Vi := H1(a, b), i ∈ I2, and V =
∏

i∈I1∪I2
Vi, [7]. In addition,

| · | := || · ||L2(a,b) and || · || := || · ||H1(a,b). If (Xi : i ∈ I) is a sequence of given sets Xi,

then X |I1∪I2| denotes the product
∏

i∈I1∪I2
Xi := X1 ×X2 ×X3 ×X5 ×X6. Note

that sometimes u(1) and u,y(1) replace u(1, t) and u,y(1, t).
We re-formulate the model PΓ in terms of macroscopic quantities by performing

the transformation of all concentrations into volume-based concentrations via ûi :=
φφwūi, i ∈ {1, 3, 4}, û2 := φφaū2, ûi := φūi, i ∈ {5, 6}. We employ the Landau
transformations (x, t) ∈ [0, s(t)] × S̄T 7−→ (y, τ) ∈ [a, b]× S̄T , y = x

s(t) and τ = t, for

i ∈ I1, (x, t) ∈ [s(t), L]×S̄T 7−→ (y, τ) ∈ [a, b]×S̄T , y = a+ x−s(t)
L−s(t) and τ = t, for i ∈ I2

to map (PΓ) onto a region with fixed boundaries. We re-label τ by t and introduce the
new concentrations, which act in the auxiliary y-t plane, by ui(y, t) := ûi(x, t)−λi(t)
for all y ∈ [a, b] and t ∈ ST . Thus, the model equations are reduced to

(ui + λi),t −
1

s2(t)
(Diui,y),y = fi(u + λ) + y

s′(t)

s(t)
ui,y, i ∈ I1, (8)

(ui + λi),t −
1

(L − s(t))2 (Diui,y),y = fi(u+ λ) + (2 − y) s′(t)

L− s(t)ui,y, i ∈ I2,

where u is the vectors of concentrations (u1, u2, u3, u5, u6)
t and λ:=(λ1,λ2,λ3, λ5,λ6)

t

represents the boundary data. The transformed initial, boundary, and interface con-
ditions are

ui(y, 0) = 0, i ∈ I1 ∪ I2, ui(a, t) = 0, i ∈ I1, ui,y(b, t) = 0, i ∈ I2, (9)

−1

s(t)
D1u1,y(1) = ηΓ(1, t) + s′(t)(u1(1) + λ1),

−1

s(t)
D2u2,y(1) = s′(t)(u2(1) + λ2),

−1

L− s(t)D3u3,y(1) = ηΓ(1, t)− s′(t)(u3(1) + λ3), (10)

1

s(t)
D5u5,y(1)− 1

L− s(t)D6u6,y(1) = s′(t)(u5(1) + λ5 − u6(1)− λ6), (11)

where ηΓ(1, t) represents the reaction rate that acts in the y-t plane. This is defined
by

ηΓ(1, t) := η̄Γ(ū(ys(t), t) + λ(t),Λ) (12)

for a given Λ ∈MΛ. Finally, two ODE’s

s′(t) = ηΓ(1, t) and û′4(s(t), t) = f4(û(s(t), t)) a.e. t ∈ ST , (13)
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complete the model formulation, where û := (û1, û2, û3,û5, û6)
t. We also assume

s(0) = s0 > 0, û4(s0, 0) = û40 ≥ 0. (14)

(8)–(14) are the transformed equations of (PΓ). Note that the model cannot be
complete without the law defining s′, see [7]. Let ϕ := (ϕ1, ϕ2, ϕ3, ϕ5, ϕ6)

t ∈ V be an
arbitrary test function, and take t ∈ ST . In order to write the weak formulation of
(8)–(14) in a compact form, we introduce the auxiliary notation:





a(s, u, ϕ) := 1
s2

∑
i∈I1

(Diui,y, ϕi,y) + 1
(L−s)2

∑
i∈I2

(Diui,y, ϕi,y),

bf (u, ϕ) :=
∑

i∈I(fi(u), ϕi),
e(s, s′, u, ϕ) := 1

s

∑
i∈I1

gi(s, s
′, u(1))ϕi(1) + 1

L−s

∑
i∈I2

gi(s, s
′, u(1))ϕi(1),

h(s, s′, u,y, ϕ) := s′

s

∑
i∈I1

(yui,y, ϕi) + s′

L−s

∑
i∈I2

((2 − y)ui,y, ϕi),

for any u ∈ V and λ ∈ W 1,2(ST )|I1∪I2|. Moreover, v4(t) := û4(s(t), t) for t ∈ ST .
For our concrete application (see (5) and (6)), the interface terms gi(i ∈ I1 ∪ I2) are
given by

{
g1(s, s

′, u) := ηΓ(1, t) + s′(t)u1(1), g3(s, s
′, u) :=−ηΓ(1, t) + s′(t)u3(1),

g2(s, s
′, u) := s′(t)u2(1), g5(s, s

′, u) := g6(s, s
′, u) = 0,

(15)

whereas the volume terms fi (i ∈ I) are defined as





f1(u) := P1(Q1u2 − u1), f4(û) := +η̃Γ(s(t), t),
f2(u) :=−P2(Q2u2 − u1), f5(u+ λ) := +ηΓ(1, t),
f3(u) := S3,diss(u3 − u3,eq), f6(u) := 0.

(16)

Set MηΓ := supu(y,t)∈K{ηΓ(1, t) : y ∈ [a, b], t ∈ ST } (K := [0, k1]× [0, k3]), where





ki := max{ui0(y) + λi(t), λi(t) : y ∈ [a, b], t ∈ S̄T }, i = 1, 2, 3,
k4 := max{û40(x) +MηΓT : x ∈ [0, s(t)], t ∈ S̄T },
kj := max{uj0(y) + λj(t) +MηΓT : y ∈ [a, b], t ∈ S̄T }, j = 5, 6.

(17)

Definition 1 (Local Weak Solution). We call the triple (u, v4, s) a local
weak solution to problem (PΓ) if there is a Sδ :=]0, δ[ with δ ∈]0, T ] such that

v4 ∈ W 1,4(Sδ), s ∈ W 1,4(Sδ), (18)

u ∈W 1
2 (Sδ; V,H) ∩ [S̄δ 7→ L∞(a, b)]|I1∪I2| ∩ L∞(Sδ;C

0, 1
2−([a, b]|I1∪I2|)), (19)

and 




(u′(t), ϕ) + a(s, u, ϕ) + e(s, s′, u, ϕ) = bf (u(t) + λ(t), ϕ)+
+h(s, s′, u,y, ϕ)− (λ′(t), ϕ) for all ϕ ∈ V, a.e. t ∈ Sδ,
s′(t) = ηΓ(1, t), û′4(s(t), t) = f4(û(s(t), t)) a.e. t ∈ Sδ,

u(0) = u0 ∈ H, s(0) = s0, û4(s(0), 0) = û40.

(20)
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The only assumptions that we need for the structure of the reaction rate and
the model parameters are the following:
(A1) There exists a positive constant Cη = Cη(Λ, u0, u, λ, T ) such that

η̄Γ(ū(s(t), t),Λ) ≤ Cηū(s(t), t) for all t ∈ ST .

(A2) There exists a constant cg = cg(s, s
′, Cη) such that

|e(s, s′, u, ϕ)| ≤ cg(u(1), ϕ(1)) for all ϕ ∈ V.

(B) The reaction rate ηΓ (defined by (12)) is locally Lipschitz with respect to all

variables. More precisely, let (u(i), û
(i)
4 , s(i)), where i ∈ {1, 2}, be two solutions cor-

responding to the sets of data Di := (u
(i)
0 , λ(i), . . . ,Λ(i))t. Set ∆u := u(2) − u(1)

and ∆Λ := Λ(2) − Λ(1). The Lipschitz condition on ∆ηΓ := ∆η̄Γ = η̄Γ(ū(2),Λ(2)) −
η̄Γ(ū(1),Λ(1)) reads: There exists a positive constant cL = cL(D1,D2) such that the
inequality |∆ηΓ| ≤ cL(|∆u| + |∆Λ|) holds pointwise. For a special choice of η̄Γ, Λ,
and hence cL, see (6).
(C1) k3 ≤ min[1,2]×S̄T

{|u3,eq(y, t)| : y ∈ [1, 2], t ∈ ST };
(C2) P1Q1k2 ≤ P1k1 ≤ P2Q2k2;
(C3) Q2 > Q1.

Theorem 1 (Local Existence and Uniqueness, [7]). Assume the hypothe-
ses (A1)–(C2) and let the following conditions (21)–(25) be satisfied:

λ ∈ W 1,2(ST )|I1∪I2|, λ(t) ≥ 0 a.e. t ∈ S̄T , (21)

u0 ∈ L∞(a, b)|I1∪I2|, u0(y) + λ(0) ≥ 0 a.e. y ∈ [a, b], (22)

û40 ∈ L∞(0, s0), û4(x, 0) ≥ 0 a.e. x ∈ [0, s0], (23)

min{ min
[1,2]×ST

{u3,eq(y, t)}, S3,diss, P1, Q1, P2, Q2} > 0, (24)

0 < s0 ≤ s(t) ≤ L0 < L for all t ∈ S̄T . (25)

Then the following assertions hold:
(a) There exists a δ ∈]0, T [ such that the problem (PΓ) admits a unique local solution
on Sδ in the sense of Definition 1;
(b) 0 ≤ ui(y, t) + λi(t) ≤ ki a.e. y ∈ [a, b], i ∈ I1 ∪ I2 for all t ∈ Sδ, and 0 ≤
û4(x, t) ≤ k4 a.e. x ∈ [0, s(t)] for all t ∈ Sδ;
(c) v4, s ∈ W 1,∞(Sδ).

The main result of this note is:

Theorem 2 (Strict Lower Bounds). Assume that the hypotheses of Theo-
rem 1 hold. Additionally, if (C3) holds and the initial and boundary data are strictly
positive, then there exists a range of parameters such that the positivity estimates
stated in Theorem 1 (b) are strict for all times.
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4. Sketch of the Proof of Theorem 2

Within this section, we sketch the basic ideas on which the proof of Theorem 2
relies. For the complete proof, we refer to [7]. The main ingredients are the positivity
and maximum estimates provided by Theorem 1. The idea of the proof is a refined
version of the arguments used in [7] to show the positivity of concentrations. We focus
on getting lower bounds for the Ca(OH)2(aq) concentration and only tersely suggest
how the lower bounds for the other concentrations are obtained: We choose in the
weak formulation (20) the test function

ϕi =

{
− [u3 − u∗3γ3(t)]

−
, for i = 3

0, otherwise
∈ Vi for all i ∈ I. (26)

In (26) the function γ3 ∈ C1(S̄δ) has to be determined such that γ′3(t) ≤ 0 for all
t ∈ Sδ and γ3(0) = 1. On this way, we obtain the following identity

((u3 + λ3),t, ϕ3) +
D3

(L− s)2 ||ϕ3||2 =
1

L− s (−ηΓ(u(1) + λ), ϕ3(1)) +

+ s′(u3(1) + λ3, ϕ3(1)) + S3,diss(u3 + λ3 − u3,eq, ϕ3) +

+
s′

L− s ((2− y)ϕ3,y, ϕ3). (27)

We collect some of the terms in (27), add the positive term −(ζu∗3γ3(t)− θu∗3, ϕ3) to
its right-hand side, and select u∗3 in the interval ]0,min̄̄Sδ

λ3(t)[. The constants ζ > 0
and θ > 0 are chosen such that

ζγ3(t)− θ > 0 for all t ∈ [0,∞[ and lim
t→∞

(ζγ3(t)− θ) > 0. (28)

It yields the inequality

1

2

d

dt
|ϕ3|2 +

D3

(L− s)2 ||ϕ3||2 ≤
1

L− s (−ηΓ(u(1) + λ)+

+ s′(u3(1) + λ3, ϕ3(1)) + S3,diss|ϕ3|2 + S3,diss(λ3 − u3,eq + u∗3γ3(t), ϕ3)−

−(u∗3γ
′
3(t) + λ′3, ϕ3)− (ζu∗3γ3(t)− θu∗3, ϕ3) +

s′

L− s ((2 − y)ϕ3,y, ϕ3). (29)

We state the following auxiliary result:

Lemma 1. Let λ3 ∈ W 1,2(Sδ) (together with the respective zero extension to
]0,∞[) and set σ := −S3,diss + ζ, ρ := 1

u∗

3
(λ′3 − S3,dissλ3 +S3,dissu3,eq), χ := ρ − θ,

where ζ and θ are constants satisfying the restrictions (28). The following statements
hold:
(i) If λ3 = const., and if

ζ ∈
]
max{S3,diss,

σθ

θ − ρ},+∞
[

and θ ∈]ρ, σ + ρ[, (30)
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(a) (b)
(c)

Fig. 2. (a)+(b) CO2(aq) and Ca(OH)2(aq) profiles vs. space. Each
curve refers to time t = i years, i ∈ {1, . . . , 18}. (c): Interface position
against the exp. points “ ◦ ” (see [2]) after 18 years of exposure to

CO2 attack.

then the function

γ3(t) = −χ
σ

+
σ + χ

σ
e−σt for all t ∈ [0,∞[ (31)

is the unique positive solution of the problem

γ′3(t) + σγ3(t) + χ(t) = 0, γ′3(t) < 0 for all t ∈]0,∞[ provided γ3(0) = 1. (32)

(ii) If λ3 6= const., ρ(t) > 0 for all t ∈]0,∞[, ζ as it is given in (28), and

σ − σ
∫ t

0

χ(τ)eστ dτ + χ(t)eσt > 0 for all t ∈ [0,∞[, (33)

then

γ3(t) =

(
1−

∫ t

0

χ(τ)eστ dτ

)
e−σt for all t ∈ Sδ (34)

is the unique positive solution of (32).

Proof of Lemma 1. It is important to note that our choice of (31) (or (34))
relies on ρ > 0, σ > 0, χ < 0, (28), (30), and (33). These estimates provide a strictly
positive and bounded function γ3. The statements (i) and (ii) follow by straightforward
verification. 2

Now, with γ3(t) as in Lemma 1 we force the fourth, fifth and sixth term from the
right-hand side of (29) to vanish. Combining Young’s inequality and the interpolation
inequality (i.e. |ϕ3|∞ ≤ ĉ|ϕ3|1−θ||ϕ3||θ ≤ ĉ(ξ||ϕ3|| + cξ|ϕ3|), where ĉ = ĉ(θ) > 0
with θ ∈

[
1
2 , 1
[
, and ξ, cξ belong to a compact subset of R+) we obtain: 1

2
d
dt |ϕ3|2 +

D3

(L−s)2 ||ϕ3||2 ≤ s′

L−s((2−y)ϕ3,y, ϕ3) ≤ ξ
2

||ϕ3||
2

(L−s)2 +
cξ

2 ĉ
2

1−θ |s′| 1
1−θ (L−s) 2θ−1

1−θ |ϕ3|2, where
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we select ξ ∈]0, 2D3]. Since ϕ3(0) = 0, we can use Gronwall’s inequality to conclude
that u3 ≥ u∗3γ3(t) for all t ∈ Sδ.

Making use of test functions similar to that in (26), we can can find non-trivial
lower bounds for all active concentrations, see [7] for details. 2

5. Numerical Illustration

We focus on the typical behavior of concentrations and interface penetration in
a real-world situation, namely a 18 years old concrete wall made of the cement PZ35F
is exposed to CO2 attack, see Table 3.1 in [2]. The weak formulation (20) allows us

(a) (b) (c)

Fig. 3. (a) CaCO3(aq) profiles vs. space. Each curve refers to time
t = i years, i ∈ {1, . . . , 18}. (b)+(c) CO2(aq) and Ca(OH)2(aq) vs.

time and space.

to approximate the underlying moving-boundary problem by using the finite element
method. The examples shown in Figures 2–4 are obtained with a uniform 1D Galerkin
scheme. Extensive numerical simulations of carbonation scenarios and details on the
numerical scheme can be found in [1, 5, 7]. Observe that steep concentration gradients
arise near Γ(t) and the calculated interface location is in the experimental range.
Figure 4 shows a typical example in which numerical and theoretical lower bounds of
Ca(OH)2(aq) concentration are compared. For the chosen parameter set (in which we
set u∗3 = 1

100 and γ3(t) cf. (31)), the theoretical bounds underestimate the numerical
prediction.
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Discretization Techniques and Numerical Treatment
For First Kind Integral Equations

Elena Pelican∗♮ and Elena Băutu∗♮

Many real-world problems are modeled by first kind integral equations (e.g., back-

wards heat equation, inverse scattering problems, the hanging cable, geological prospecting,

computerized tomography, electric potential problems, diffusion and biochemical reactions,

etc). In this paper we realize a comparative study for solving this type of equations, with

continuous kernels. As discretization techniques, we use the collocation method (the classical

version, and the extended one, proposed by one of the authors in a previous paper) and the

quadrature method. We use Kovarik-like algorithms as numerical solvers for the associated

linear systems; the experiments present systematic tests. We compare the above mentioned

methods for certain types of such equations.

1. Introduction

Let K : L2([0, 1]) −→ L2([0, 1]) be the integral operator

Kx(t) =

∫ 1

0

k(t, s)x(s)ds, (1)

with continuous kernel k : [0, 1] × [0, 1] −→ R. An inverse problem for first kind
integral equation (denoted from now on by FKIE) is: for a given right hand side
y ∈ L2([0, 1]), find x ∈ L2([0, 1]) such that

Kx(t) = y(t), ∀ t ∈ [0, 1]. (2)

The drawback of the problem (2) is its ill-posed nature. Even if we know or can
prove that (2) has solution, this one is not stable (with respect to small changes in y ).
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And it is the stability issue that is of main concern because y is often a measured
quantity and therefore subject to errors. As in most cases y /∈ R(K) (where by
R(K) we denoted the range of K), the equation (2) has no longer solution. Thus,
if in addition, we suppose that y ∈ D(K+), where by D(K+) = R(K) ⊕ R(K)⊥

we denoted the domain for the Moore-Penrose pseudoinverse of the linear compact
operatorK from (2) (see e.g. [1]), we can reformulate (2) as the least-squares problem:
find x̄ ∈ L2([0, 1]) such that

‖ Kx̄− y ‖L2([0,1])= min!, (3)

where ‖ f ‖L2([0,1])= (
∫ 1

0
(f(t))2dt)

1
2 . It is well known that, if (3) holds, then the

problem (4) has a minimal norm solution, xLS , given by

xLS = K+y. (4)

This solution also satisfies (in classical sense) the associated normal equationK∗Kx =

K∗y, where K∗ is the adjoint of K defined by K∗z(τ) =
∫ 1

0 k(s, τ)z(s)ds, τ ∈ [0, 1].
In what follows, we shall shortly present some methods for approximating xLS given
by (5).

2. Discretization Techniques

In this section we shall present the following discretization techniques for FKIE:
the collocation method, Nystrom’s quadrature formula, and Landweber-Friedman’s
iterations.

2.1. Collocation Method

For n ≥ 2 arbitrary fixed and Tn = {t1, . . . , tn} the set of (collocation) points
in [0, 1] (0 ≤ t1 < t2 < . . . < tn ≤ 1), we consider the collocation discretization of (2):
find x ∈ L2([0, 1]) such that

Kx(ti) = y(ti), ∀ i = 1, . . . , n. (5)

If ti ∈ Tn we define kti
: [0, 1] −→ R and ỹi by kti

(s) = k(ti, s), ∀ s ∈ [0, 1], ỹi =
y(ti), i = 1, . . . , n. Then, the equation (7) can be written as

Cnx = ỹ, (6)

where ỹ ∈ Rn and Cn : L2 −→ Rn are defined by Cnz = (〈kt1 , z〉, . . . , 〈ktn
, z〉)t,

ỹ = (ỹ1, . . . , ỹn)t. If
y ∈ R(K), (7)

let xLS be the minimal norm least-squares solution of (2) and xLS
n the similar one for

(7) (or (9)), given by
xLS = K+y, xLS

n = C+
n ỹ. (8)
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Assumption CW. It exists a sequence of positive integers 0 < n1 < n2 <
. . . < np < np+1 < . . . such that dim(Ynp

) < dim(Ynp+1), ∀ p ≥ 1, with Yn =
span{kt, t ∈ Tn}.

Remark 1. The above assumption CW tells us that the number of linearly
independent functions kt in the subspaces Yn tends to infinity together with n, but not
all the functions in each Yn are linearly independent, as in the original assumption
(see [4]).

Let ∆n be defined ∆n = sup
t∈[0,1]

(
inf

ti∈Tn

|t− ti|
)
. The following result is proved in [5]

(Theorem 4).
Theorem 1. Under the above assumption CW, if (7) holds, and lim

n−→∞
∆n = 0,

then
lim

n−→∞
‖ xLS

n − xLS ‖= 0. (9)

In [5] it is proven that xLS
n can be computed as

xLS
n (t) =

n∑

j=1

αjk(sj , t), t ∈ [0, 1], (10)

where α = (α1, α2, . . . , αn) is the minimal norm solution of the system

Anα = bn (11)

and the entries for matrix An and vector bn are given by

(An)ij =

∫ 1

0

k(si, t)k(sj , t)dt, (bn)i = y(si), i, j = 1, . . . , n.

For the case y ∈ R(K) ⊕ R(K)⊥, it is considered instead of (2), its normal
equation

Q̃x = w, (12)

where Q̃ = K∗K, w = K∗y. Because of the equality (see [1]) Q̃+w = K+y, it results
that the equations (2) and (20) have the same minimal norm solution xLS given by
(12). Then, we replace (4) by the problem: find x ∈ L2([0, 1]) such that

n∑

i=1

(
Q̃x(ti)− w(ti)

)2

= min! (13)

In this case, under a similar assumption as CW, Theorem 1 still holds (see [5]),
where xLS

n is the minimal norm solution for (20).
Also, xLS

n can be computed as

xLS
n (t) =

n∑

j=1

αjQ̃(sj , t), t ∈ [0, 1], (14)
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where α = (α1, α2, . . . , αn) is the minimal norm solution of the (consistent) system
Qnα = w̃ and, in this case, the entries for matrix Qn and vector w̃ are given by

(Qn)ij =

∫ 1

0

Q̃(si, t)Q̃(sj , t)dt, w̃ = (w(t1), . . . , w(tn)), i, j = 1, . . . , n.

2.2. Nystrom’s Quadrature Formula

The idea of this method is to approximate the integral operator from (1)
with the sequence of integral operators as follows

(Knx)(s) :=

n∑

k=1

α
(n)
k k(s, t

(n)
k )x(t

(n)
k ), s ∈ [0, 1]. (15)

The solution for (1) will be approximated by the sequence of solutions for

Knxn = y. (16)

The main results for this method are the following two theorems (for proof, see [4]).

Theorem 2. Let xn be the solution for
n∑

k=1

αkk(s, tk)xn(tk) = y(s), with

s ∈ [0, 1]. Then the values x
(n)
j = xn(tj), j = 1, . . . , n, verify the linear system

n∑

k=1

αkk(tj , tk)x
(n)
k = y(tj), j = 1, 2, . . . n. (17)

Theorem 3. The sequence {Kn}n≥1 is pointwise convergent, Knx → Kx, as
n→∞ for any x ∈ C([0, 1]), but does not converge in norm.

Remark 2. In practice, we shall approximate the solution for (2) with the
solution for the system

Knxn = yn, (18)

where
(Kn)ij = αkk(tj , tk), (xn)k = xn(t

(n)
k ), (yn)j = y(tnj ). (19)

If the problem (2) is not consistent, then instead of (18), we consider a least-squares
formulation ‖Knxn − yn‖ = min!

2.3. Landweber-Friedman’s iterations

The Landweber-Friedman method is an iterative scheme for approxima-
ting the solution for a FKIE. It is define as: for x0 ∈ L2([0, 1]), and k = 0, 1, . . .

xk = xk−1 + ωK∗(y −Kxk−1), 0 < ω < 2/ ‖K∗K‖ . (20)

In 1951, Landweber proved that xk → K+y, k →∞, for y ∈ R(K). But ‖xk‖ → ∞
for y /∈ R(K). Thus, the area of application for this method is resctricted to consistent
equations of the form (2).

In practice, this method can be applied by approximating the integrals from
(20) using a quadrature formula (e.g., the Simpson composite rule).
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3. Kovarik-like Algorithms for Symmetric Matrices

With well-posed problems, better results are obtained as we refine the discretiza-
tion. However, for a FKIE, refining the discretization causes the discrete problem to
more mirror the ill-posed nature of continuous problem. In fact, MATLAB computa-
tions of the condition number of the matrices for the linear systems obtained using the
types of discretization from the previous section are confirming this. All the above
mentioned matrices are rank-defficient, very ill-conditioned, and symmetric. Thus,
using a classical direct or iterative method to solve these systems is not a good idea.

A class of iterative solvers for relatively dense symmetric linear systems are the
Kovarik-like approximative orthogonalization algorithms (see [3]). We shall briefly
describe them in what follows.

Algorithm KOBS. Let A0 = A a symmetric matrix. For k = 0, 1, . . . do:
Kk = (I −Ak)(I +Ak)−1, Ak+1 = (I +Kk)Ak.

Theorem 4. If none of the eigenvalues of A is in the set

E =

{
− 1

αj
, j ∈ IN | α0 = 1, αj+1 = 2αj + 1

}
,

then the sequence (Ak)k≥0 generated as above is well defined, convergent, and
lim

k→∞
Ak = A+A.

Remark 3. Actually, this algorithm acts as a preconditioner for the matrix A.
So, it can be combined with any other solver.

In order to avoid the computation of the inverse at each step of the previous
algorithm, we shall use a modified version of that one. The inverse (I + Ak)−1

will be approximated by (q ≥ 1 arbitrary fixed) S(Ak; q) =
∑q

i=0 ai(−Ak)i, with

a0 = 0, aj+1 = 2j+1
2j+2 · aj , j > 0 (see [3]).

Algorithm MKOBS. Let A0 = A a symmetric matrix with σ(A) ⊂ [0, 1]. We
construct the sequence (Ak)k≥0, (Kk)k≥0 via:

Kk = (I −Ak)S(Ak;nk); Ak+1 = (I +Kk)Ak. (21)

Remark 4. In order to minimize the computational effort per iteration, in
applications we choose nk = 1, ∀k ≥ 1. The algorithm becomes

Kk = (I −Ak)

(
I − 1

2
Ak

)
; Ak+1 = (I +Kk)Ak. (22)

For solving the linear least-squares problem of the form

‖Ax− b‖ = min! (23)

the following right hand side (rhs, for short) version of algorithm MKOBS was
proposed in [3].

Algorithm MKOBS-rhs. Let A0 = A, b0 = b; for k = 0, 1, . . . do

Kk = (I −Ak)S(Ak;nk), Ak+1 = (I +Kk)Ak, bk+1 = (I +Kk)bk. (24)
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In [3] are proved the following results.
Theorem 5. (i) If the problem (2) is consistent, then the sequence (bk)k≥0 is

convergent and

lim
k→∞

bk = A+b = xLS . (25)

(ii) If the problem (2) is not consistent, then the sequence (Akb
k)k≥0 is convergent

and

lim
k→∞

Akb
k = A+b = xLS . (26)

In this case, lim
k→∞

∥∥bk
∥∥ =∞.

Remark 5. The last relationship can generate problems. That’s why, in prac-
tice, it is used a modified version of MKOBS-rhs algorithm.

Algorithm MKOBS-rhs-1.

Kk = (I −Kk)(I − 1

2
Ak), Ak+1 = (I +Kk)Ak, α(k+1) = (I +Kk)2α(k). (27)

Remark 6. The above algorithm MKOBS-rhs-1 has the same convergence
behaviour as described in Theorem 5.

4. Numerical Experiments

The experiments were ran with different settings and convergence results are
presented in Table 1. The convergence speed with respect to the number of iterations
is very high (around 16 iterations), although it does not improve significantly with
the increase in the number of collocation points. The tests were conducted on two
directions; first, we tested the algorithms presented earlier on a problem with a known
solution, and second, on a problem where we do not know of the existence of a solution,
moreover the problem may be inconsistent.

4.1. Numerical experiments – The problem

Consider the FKIE (1)–(2) with the kernel

k(s, t) =
1√

(1 + (s− t)2)3
, s, t ∈ [0, 1].

The problem is a simplified version of a problem arising from the field of electrical
potential generated by a known electic field. It was specifically chosen as a model
problem to test the algorithms presented, since it is a symmetric function, thus being
appropriate to all three discretization methods described.

For y(s) = sin(arctan(1−s))−sin(arctan(−s)), a solution is x(t) = 1 (y ∈ R(K))
– denote this case as problem (Pa).
For y(s) = s, there is no known solution for the equation, thus the problem may be
inconsistent – denote this case as problem (Pb). The solution for (Pa) with KOBS
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Table 1

Pa: KOBS and MKOBS maximum admissible error 10−6

Collocation points KOBS iterations MKOBS iterations

10 18 18

50 16 16

100 16 16

200 15 15

and MKOBS are very similar (see Figure 1) and at the same time very close to the
known solution x(t) = 1. The kernel is symmetric, so Nystrom method can be used
for discretization; the solution found in 21 iterations with a maximum allowed error
of 10−3 is presented in Figure 2. If MKOBS is left to run more than 21 iterations in
order to obtain a smaller residual, the effect is quite opposite: the error grows rapidly
and the algorithm diverges. The solution found by the Landweber Friedman iterative
method yields a good result in maximum 50 iterations, although it’s shape doesn’t
resemble that of the solutions found with (M)KOBS. Also, for a greater number of
iterations the method diverges.

a) KOBS and MKOBS solutions b) Residual norm for MKOBS-rhs

Fig. 1. Pa: KOBS and MKOBS with collocation discretization with 10 points.

With respect to problem (Pb), the same tests were ran. Both collocation method
and Nystrom discretization techniques yielded similar results in terms of the shape of
the solution. The residual norm of the solution found, when collocation discretization
was used, was 103 times bigger than the residual norm of the solution following Nys-
trom quadrature method as a discretization technique. Landweber Friedman iterative
method does not reach a satisfactory result, thus confirming what has been proven in
theory that it is only suited for the consistent case.
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a) MKOBS with Nystrom method b) Residual norm for MKOBS-rhs

Fig. 2. Pa: MKOBS with Nystrom method, 21 iterations, residual 10−3.

a) Landweber-Friedman solution b) Rezidual norm for LF

Fig. 3. Pa: Landweber-Friedman in 50 iterations.
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a) KOBS and MKOBS solutions b) Residual norm for MKOBS-rhs

Fig. 4. Pb: KOBS and MKOBS using collocation discretization (100 points).

a) Landweber-Fridman solutions b) Residual norm for LF

Fig. 5. Pb: Landweber-Fridman solutions.
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A fast approximation for discrete Laplacian

Constantin Popa∗♮ and Tudor Udrescu∗♮

The discrete Laplacian is used as preconditioner in many partial differential equations

modelling real world problems. Consequently, a fast approximation for the discrete Laplacian

is essential. According to this, in the present paper we describe two multigrid approaches

based on the original formulation by Braess [1]. The first one deals with Braess’ original

method, whereas the second algorithm is an adaptation of the full multigrid method (see e.g.

[2]). Numerical experiments presented for 2D Poisson equation, illustrate the robustness and

the efficiency of our approaches compared to classical solvers.

1. Fast approximation of the discrete Laplacian

Many important classes of partial differential equations (PDEs, for short) give
rise, after finite element or finite differences approximations to big, sparse, ill-condi-
tioned (possible non-symmetric) linear systems of equations of the form

Ax = b. (1)

Among the most important and efficient solvers for (1) are the Conjugate Gradient
algorithms (CG, for short, see [5]), which for non-symmetric matrices A becomes
the CGN method, i.e. the CG algorithm applied to the normal equation of (1),
AtAx = Atb. The CGN method has an “error reduction factor” of the form (see [5])

‖ b−Auk ‖≤ 2

(
k2(A)− 1

k2(A) + 1

)k

‖ b−Au0 ‖, (2)

where k2(A) is the spectral condition number of A. The bigger the value of k2(A),
closer to 1 will be the error reduction factor in (2) and the convergence of the CGN

∗ “Ovidius” University of Constanţa, Faculty of Mathematics and Computer Science,
Romania, e-mail: cpopa@univ-ovidius.ro and tudrescu@univ-ovidius.ro

♮ Supported from PNCDI INFOSOC Grant 131/2004.
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method will slow down. In order to eliminate this bad aspect, we can perform a
preconditioning to the initial system (1). One possibility in this sense is to use a
symmetric and positive definite matrix (SPD, for short) P with a decomposition of
the form (e.g. Cholesky)

P = CCt. (3)

The preconditioned version of (1) can be written as (see e.g. [7], [8])

(C−1AC−t)(Ctx) = C−1b⇔ Âx̂ = b̂, (4)

with
Â = C−1AC−t, x̂ = Ctx, b̂ = C−1b. (5)

Then, the Preconditioned CGN algorithm (PCGN, for short), i.e. CGN applied to
the preconditioned system (4)–(5) (see [5] for details) has a similar error reduction
formula with (2) holds, but with k2(Â) instead of k2(A). If k2(Â)≪ k2(A), (e.g. for
“mesh independent” preconditioning) then the convergence of PCGN is much faster
than that of CGN, but, it requires in each iteration two inversions of the matrix P .
If this is not done in an efficient way the “much better” behaviour of PCGN remains
only at a theoretical level and the method is useless in practice.

Remark 1. Even though a Cholesky-like decomposition of P as in (3) is avail-
able, for big dimensions of (1) the forward and backward substitutions required by
P−1 = C−tC−1 can be too costly.

This is the reason for which we must look for much faster algorithms. In this
paper we shall present two of them for the case P = ∆h, with ∆h the 5-point stencil
discretization of the 2D Laplacian, i.e.

∆h =




−1
−1 4−1
−1




h

. (6)

There are many important cases in which the theory behind preconditioning (4)–
(5) suggests the use of ∆h; for example, if we consider the 2D convection-diffusion
problem {−∆u+ α · ∂u

∂x + β · ∂u
∂y = f, in Ω ⊂ R2

u = g, on ∂Ω
(7)

discretized with centered finite differences, then the symmetric part of the discretiza-
tion matrix A,

M =
1

2
(A+At), (8)

recommended as a preconditioner in [4], is exactly ∆h from (6). Another example
is when we use the variational finite element algorithm (VFEM, for short). If we
suppose that Ω is a polygonal domain with a triangulation as in Figure 1 then, the
classical VFEM with piecewise liniar basis functions in H1

0 (Ω) gives us that the Gram
matrix associated to this basis in the H1

0 -norm is exactly ∆h from (6). This Gram
matrix is recommended as an efficient preconditioner in (4) in the papers [7], [8] (see
also the references therein).



a fast approximation for discrete laplacian 183

Fig. 1. Triangulation of a polygonal domain.

2. Braess multigrid algorithm

D. Braess proposed in [1] an interesting and efficient multigrid algorithm (MG,
for short), based on the “red-black” version of the classical Gauss-Seidel iteration
(RBGS, for short), which we shall briefly describe in what follows. By again refering
to Figure 1, the points marked with • will be the “black” ones (B), the other “red”
(R). With respect to this triangulation for Ω, we consider the Poisson equation

{
−∆u = f, in Ω = (0, 1)2

u = 0, on ∂Ω
(9)

With picewise linear basis functions VFEM we obtain the associated linear system (h
is the mesh size).

Ahxh = bh, (10)

where

(Ah)ij =





1, if i = j
− 1

4 , if i 6= j and pi, pj are adjacent in Ωh,
0, otherwise

(11)

i.e exactly ∆h from (6), up to a multiplicative factor. If ΩH denotes the set of all
black points, then the RGBS iteration can be splitted into 2 “disjoint” steps as follows
(see [1])

(GI
hx

h)i =

{
xh

i , pi ∈ ΩH
1
4

∑
j x

h
j + bhi , pi /∈ ΩH

(12)

(GII
h xh)i =

{
1
4

∑
j x

h
j + bhi , pi ∈ ΩH

xh
i , pi /∈ ΩH

(13)

Remark 2. We have to observe that, if N is the total number of points in
Ωh (i.e. the dimension of Ah), then each step of the RGBS from (12)–(13) requires
approximately 5·N

2 flops (because of the 5-diagonal structure of Ah in (11). This
computational effort fits well into the general theory about efficient MG algorithm
(see [2]).
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The 2-grid algorithm proposed by Braess in [1] can be written as follows:

Step1 xh,k,1 = (GII
h ◦GI

h)(xh,k,0)

Step2 xh,k,2 = GI
h(xh,k,0)

Step3 compute the residual dh = bh −Ah · xh,k,2

restrict dh to ΩH and solve the coarse grid equation{
yi = 1

4

∑
jH
yj + di, i ∈ ΩH

yi = 0, i ∈ Ωh \ ΩH
(14)

Step4 correction xh,k,3 = xh,k,2 + y

Step5 xh,k,4 = GI
h(xh,k,3) and set xh,k+1,0 = xh,k,4

Remark 3. We have to observe that, without the coarse grid solution in Step
3, the other steps of (14) are just the two parts of RGBS (12), (13), which gives a
O(N) computational effort.

Starting from (14), in the same paper, Braess describes the general multigrid
algorithm (more than two levels, denoted by BMG). Thus, if q = 0, 1, . . . , qmax are
succesive discretization levels as in Figure 1, Ωq, A

qxq = bq, the corresponding grid
and discrete systems, respectively, and

hq−1 =
√

2hq, (15)

the associated mesh sizes, the (q + 1)-grid BMG algorithm can be written as follows:

Step1 xq,k,1 = (GII
q ◦GI

q)(x
q,k,0)

xq,k,2 = GI
qx

q,k,1 (16)

Step2 compute dq = bq −Aqxq,k,2;

let yq−1 be the solution of

Aq−1yq−1 = dq−1 (∗)
1. if q = 1 then (∗) is solved exactly;

2. if q > 1 then µ iterations (µ = 1, 2, 3) of the q − 1 algorithm are performed for
(∗) with yq−1,0,0 = 0.

For µ = 1 in (17) we get the V-cycle MG algorithm shown in Figure 2, for qmax = 3.
For µ = 2 and 3 we get the W-cycle type algorithm described in Figure 3 and Figure
4 (also for qmax = 3). The following convergence result is proved in [1].

Theorem 1. The error reduction factor per iteration in the (q + 1)-grid BMG
algorithm (17) and with respect to the energy norm, i.e.

‖ xq,k+1,0 − xq ‖Aq≤ δq ‖ xq,k,0 − xq ‖Aq , (17)

is given by the recursion

δ0 = 0, δq =
1

2
(1 + δµ

q−1), q = 1, . . . , qmax. (18)
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Fig. 2. V-cycle MG algorithm with µ = 1.

Fig. 3. W-cycle MG algorithm with µ = 2.

Fig. 4. W-cycle MG algorithm with µ = 3.

Remark 4. Some values of δqmax for different combinations (µ, qmax) are de-
scribed in Table 1 below.

Table 1

Error reduction factors δqmax

qmax

0 1 2 3 4 5 6 7 8

1 0 0.5 0.750 0.875 0.938 0.969 0.985 ≈ 1 ≈ 1
µ 2 0 0.5 0.625 0.696 0.742 0.776 0.801 0.821 0.837

3 0 0.5 0.563 0.589 0.602 0.610 0.614 0.616 0.617
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3. The Full Multigrid Algorithm

The Full Multigrid Algorithm (FMG, for short) was first proposed by A. Brandt
in [2]. We shall briefly describe it’s main ideas by using the particular case with 3
grids presented in Figure 5 below. The algorithms in the square brackets are classical

Fig. 5. The Full Multigrid Algorithm.

V-cycle MG methods. We start with an approximation x0 of the solution on the
coarsest grid Ωh0 ; we interpolate x0 to x̃1 on Ωh1 ; then we perform an (h1, h0) V-
cycle µ1-times on x̃1 and get x1; we interpolate x1 to x̃2 on Ωh2 (the finest level in our
case); then we perform an (h2, h1, h0) V-cycle µ2-times on x̃2 and get x2. According to
Brandt, if the interpolation of the coarse grid solution to finer ones and the numbers
of V-cycle sweeps µ1 and µ2 are chosen in an appropiate way we get for x2 the same
order of approximation as the order of truncation error given by the discretization
scheme used, i.e. (in our case see [3])

‖ x2 − u2 ‖= O(h2
2), (19)

for an approximate norm ‖ · ‖ (where u2 is the exact discrete solution on Ωh2).
Starting from the above mentioned basic ideas of the FMG algorithm, we constructed
the following one which uses the elements from Section 2. For this, let h0, h1, . . . , hq

(hq−1 =
√

2hq) be (q + 1)-grids, Ωq as in Section 2; Ak and bk, k = 0, . . . , q will be
the matrices and right hand side of the associated linear systems on Ωhk

.

Note 1. The matrices Ak have the same elements as in (11) (thus we don’t need to
construct them), only their structure is determined by the connections between the
Ωhk

points.

Note 2. The right hand sides bk can be easily obtained from bqmax by using the
connections of the finite element basis functions between two succesive levels.

Note 3. For interpolating a solution xq−1 = (xq−1
i )i from Ωhq−1 to xq from Ωhq

we
do the following two steps.

IS1. Compute (x̃q
i )i on Ωhq

by

x̃q
i =

{
xq−1

i , i ∈ Ωhq−1

0, i ∈ Ωhq
\ Ωhq−1

(20)
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IS2. Compute xq on Ωhq
by

xq = GI
q(x̃

q), (21)

with GI as in (12). Ωh = Ωq and ΩH = Ωq−1.

Now we can describe the FMG version of Braess BMG algorithm (BFMG, for short).

Step 1 Solve (exactly) A0x0 = b0 for x0 on Ωh0 ; Set k = 0;

Step 2 (i) if k = q then GO TO Step 3

(ii) if k < qmax then

1. interpolate xk to xk+1 as in (20)-(21)

2. set x̃k+1 = xk+1

3. perform µk+1 sweeps of a V-cycle on x̃k+1 according to the grids
h0, . . . , hk+1 and get xk+1

4. set k = k + 1 and GO TO (i)

Step 3 The approximate solution is xq .

Note. In each of the above V-cycles the system on the coarsest grid Ωh0 is
solved exactly.

Proposition 1. Let k ∈ {1, . . . , q} arbitrary fixed, hk−1, hk two consecutive
levels, xk−1 the exact solution of Ak−1xk−1 = bk−1 and xk on level hk obtained as in
(20)–(21). Then,

max
pi∈Ωk

|xk
i − uk

i | = O(h2
k−1). (22)

Proof. Because xk−1 is the exact solution on Ωk−1 we have

xk−1
i = uk−1

i , ∀pi ∈ Ωk−1. (23)

Let now uex : Ω → R be the exact (unique) solution of our continuous problem (9).
From the theory of the approximation error in FEM method (see e.g. [3]) we get

uex
i = uk−1

i + ck−1
i · h2

k−1 = uk
i + cki · h2

k, (24)

where ck−1
i and cki are uniformly bounded independently on h and i, i.e

m ≤ ck−1
i ≤M ; m ≤ cki ≤M, ∀i, k. (25)

Moreover, from the definition of the exact solution uk on Ωk, and the construction of
xk in (20)-(21) we have that (by also using (23))

xk
i = bki +

1

4

∑

j∈N(i)

xk
j = bki +

1

4

∑

j∈N(i)

xk−1
j =

= bki +
1

4

∑

j∈N(i)

uk−1
j , pi ∈ Ωk \ Ωk−1, (26)
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uk
i = bki +

1

4

∑

j∈N(i)

uk
j , pi ∈ Ωk−1. (27)

Then, from (24)–(27) we get, for any pi ∈ Ωk \ Ωk−1,

uk
i − xk

i =
1

4

∑

j∈N(i)

(uk
j − uk−1

j ) = O(h2
k−1), (28)

which gives us (22) and completes the proof. 2

We are now able to prove the approximation property of the above described
BFMG algorithm. For this, let’s suppose we have a sequence of consecutive grids
q = 0, 1, . . . , qmax as in Figure 5 satisfying (15). We consider a BFMG algorithm as
described before, in which we solve exactly the systems on the coarser grid q = 0 and
perform µq ≥ 1 iterations of the corresponding V-cycles algorithms q = 1, . . . , qmax

(i.e. µ1 ≥ 1 iterations for the V-cycle with the grids (h0, h1); µ2 ≥ 1 iterations for the
V-cycle with the grids (h0, h1, h2), . . ., µqmax ≥ 1 iterations with the final complete
V-cycle, i.e. with all the grids (h0, h1, . . . , hqmax)).

Theorem 2. Let xqmax be the final vector on Ωqmax generated with the above
described BFMG algorithm. Then there exists integers

µ1 ≥ 1, µ2 ≥ 1, . . . , µqmax ≥ 1 (29)

such that
max

pi∈Ωqmax

|xqmax

i − uqmax

i | = O(h2
qmax

), (30)

where uqmax is the exact discrete solution on Ωqmax .

Proof. The proof is almost obvious according to Proposition 1. Indeed, for two
consecutive grids (hq−1, hq), q = 1, . . . , qmax if the solutionon grid Ωhq−1 , x

q−1 satisfy

max
pi∈Ωq−1

|xq−1
i − uq−1

i | = O(h2
q−1) (31)

it results from Proposition 1 that for the approximation xq on Ωhq
we have

max
pi∈Ωq

|xq
i − uq

i | = O(h2
q−1) = 2O(h2

q) (32)

Thus, what we need is to eliminate the factor 2 from (32) with µq V-cycles on the
grids (h0, . . . , hq). Theoretically this number depends on the number of levels (see
Table 1), but it exists and it can be theoretically determined according to (18) and
Table 1. This completes the proof. 2

Remark 5. Although in theory the above values µq can be big (for a big number
of levels), in practical applications only some of them must be taken equal with 2, the
other ones being 1 (see Section 4 of the paper). This confirms the considerations made
by Brandt in [2].
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4. Numerical experiments

We considered in our experiments the 2D Poisson equation

{
−∆u = f, in Ω = (0, 1)2

u = 0, on ∂Ω
(33)

with the exact solution uex
h = exy sin(πx) sin(πy). We applied the BMG algorithm

described in Section 2 on a workstation equipped with an Intel Pentium 4 Processor
with a clock speed of 3 Ghz and 1 GB RAM of DDR memory. The application was
coded in the Java language, and we used the Java Runtime Environment Version 5.0
to run all tests. The results obtained for different levels of grid coarseness and µ
iterations of the BMG algorithm are shown in Table 2. In comparison, performing
the same test using only Gauss-Seidel iterations, takes 1 840 seconds on the same
platform! Additionally, we present in Table 3 the results obtained with the BFMG

Table 2

Computational times for BMG
(n = 128)

Time [s]
Algorithm
type

µ = 1 µ = 2 µ = 3

5-Grid 13.88 11.49 17.78

6-Grid 52.51 10.09 18.66

7-Grid 50.84 10.50 23.29

8-Grid ∞ 10.69 30.47

9-Grid ∞ 11.52 40.07

Table 3

Computational times for BFMG

Time [s]
Algorithm
type

n = 32 n = 64 n = 128

2-Grid 1.36 - -

3-Grid 0.42 10.245 -

4-Grid 0.29 2.293 -

5-Grid 0.23 1.202 13.81

6-Grid 0.22 0.971 5.61

7-Grid 0.21 0.951 4.48

8-Grid 0.21 0.912 4.32

9-Grid 0.20 0.911 4.43

algorithm on grids with different number of levels and using three mesh sizes (32,
64 and 128). If the number of levels is relatively small, the computational effort is
large, due to the cost of solving directly the system on the coarsest grid. In our
experiments we have used for µi, i = 0, . . . , qmax the value 1, with one exception in
each case – µqmax−1 = 2. For assesment of the performance of the BMG algorithm,
we also present the 3D plot of the relative errors between the solution computed at
each iteration of the algorithm and the solution computed directly by solving the
system Ahudirect = bh. Figures 6, 7, 8, 9, 10 and 11 illustrate the the relative errors
for the case of the 5-grid BMG algorithm with a mesh size of 32 and µ = 2. The
numerical experiments presented clearly illustrate the robustness and efficiency of our
approaches compared to classical solvers.
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Fig. 6. First iteration. Fig. 7. Second iteration. Fig. 8. Third iteration.

Fig. 9. Fourth iteration. Fig. 10. Fifth iteration. Fig. 11. Sixth iteration.
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Gibbs regularized tomographic image
reconstruction with DW algorithm based on

generalized oblique projections

Constantin Popa∗ and Rafal Zdunek∗∗

In our previous paper [4] we considered the Diagonal Weighting algorithm (DW) for

consistent linear least-squares formulations coming from the field of image reconstruction

and processing. There, we proposed a new construction for the Sparsity Pattern Oriented

(SPO) family of matrices in the case of Component Averaging (CAV) version of the DW

method. This new choice was compared with the classical one proposed in the paper by

Censor and Byrne for some image reconstruction model problems from borehole tomography.

But, unfortunately in practical applications the corresponding mathematical least-squares

formulation is inconsistent and ill-conditioned. In order to cover also this general case, in the

present paper we propose a Tikhonov-like regularization for this inconsistent case together

with a regularized version of the CAV method. The regularization method is based on

the Gibbs prior from statistical image reconstruction with Green and Gaussian potential

functions. Numerical experiments are also presented for geophysical imaging in borehole

tomography.

1. The classical CAV algorithm

In this section we shall very briefly replay the constructions and considerations
from [4]. Let A be an m × n (sparse) real matrix, b ∈ Rm, ai = (ai1, .., ain)t ∈ Rn
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the i-th row of A and bi ∈ R the i-th component of b. We shall denote by 〈·, ·〉 and
‖ · ‖ the Euclidean scalar product and the associated norm, respectively. With these
notations we shall define the hyperplane Hi = {x ∈ Rn, 〈x, ai〉 = bi} and subspace
Si = {x ∈ Rn, 〈x, ai〉 = 0} associated to the i-th equation of the linear system

Ax = b. (1)

If G is a diagonal positive semi-definite n × n matrix G = diag(g1, g2, . . . , gn),
gj ≥ 0, ∀ j = 1, . . . , n we shall denote by G−1 its Moore-Penrose pseudoinverse

(G−1)ij =

{ 1
gj
, if i = j, gj 6= 0

0, else
(2)

and by 〈·, ·〉G, ‖ · ‖G the scalar semi-product and the associated semi-norm defined
by

〈x, y〉G =

n∑

j=1

gjxjyj, ‖ x ‖2G= 〈x, x〉G, ∀ x, y ∈ Rn. (3)

With these notations we can define the generalized oblique projection of a point
x ∈ Rn onto Hi or Si with respect to G by

PG
Hi

(x) = x+
bi − 〈x, ai〉
〈ai, ai〉G−1

G−1ai, PG
Si

(x) = x− 〈x, ai〉
〈ai, ai〉G−1

G−1ai. (4)

A family {Gi}i=1,...,m of real diagonal n× n matrices such that

Gi = diag(gi1, gi2, . . . , gin), gij ≥ 0,

m∑

i=1

Gi = I (5)

(with I the unit matrix) will be called sparsity pattern oriented (SPO, for short)
with respect to the matrix A if, for every i = 1, . . . ,m, j = 1, . . . , n, we have gij = 0 if
and only if aij = 0. Then, the Diagonal Weighting algorithm (DW) for the system
(1) can be written as: let x0 ∈ Rn be the initial approximation and for k = 0, 1, . . .
do

xk+1 = xk + λk

m∑

i=1

Gi(P
Gi

Hi
(xk)− xk), (6)

where λk ∈ (0, 2) are relaxation parameters. If for j = 1, . . . , n the numbers sj ∈
{0, 1, . . . ,m} are defined by

sj = card({i ∈ {1, . . . ,m}, aij 6= 0}) (7)

and the elements of Gi by

gij =

{ 1
sj
, if aij 6= 0

0, if aij = 0
(8)
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then the method (7) will be called the Component Averaging algorithm (CAV,
for short; see [2]). In [4] we proposed the following different construction for the above
SPO family:

gij =
|aij |∑n

k=1 |akj |
. (9)

Remark 1. In [2] it is proved that, for consistent systems as (1) and λk = 1,
∀ k ≥ 0, then for x0 = 0 the sequence (xk)k≥0 generated with the DW algorithm (6)
converges to the minimal norm solution xLS of (1).

2. The regularized formulation

As we have already mentioned before, in practical applications the problem (1)
becomes inconsistent and has to be reformulated in the least-squares sense

‖ Ax∗ − b ‖= min! (10)

Keeping the notation xLS for its minimal norm solution, because of the ill-conditioning
of A this can be much different than the exact image xEX . In order to eliminate this
difficulties we consider the regularized weighted least-squares version of the problem
(10): find x∗ ∈ Rn such that

min Ψ(x∗) = min
x∈RN

Ψ(x), Ψ(x) = ||Ax − b||2Σ−1 + βR(x), (11)

where Σ is a symmetric and positive definite m×m matrix which attributes weights
to data, β is a regularization parameter, and R(x) is functional that measures the
roughness in the image. For constructing R we start from observations (according to
Gaussian distribution)

p(b|x) =
1√

(2π)m|Σ|
exp

(
−1

2
‖ Ax− b ‖2Σ−1

)
(12)

and combine them with the image (w.r.t Gibbs prior from statistical image recon-
struction)

p(x) =
1

Z
exp


β

n∑

j=1

∑

k∈Nj

wjkV (xj − xk, δ)


 , (13)

where Z – the partition function – is supposed to be constant. Then, following the
Bayes theorem (see [1]) we get

max
x

(
p(b|x) =

p(b|x)p(x)
p(b)

)
= min

x
(−2 log p(x|b)). (14)

In this way the above regularized formulation (11) becomes

min Ψ(x∗) = min
x∈Rn
{Ψ(x) = −2 log p(x|b)}, (15)
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with

Ψ(x) = ||Ax− b||2Σ−1 + β

n∑

j=1

∑

k∈Nj

wjkV (xj − xk, δ). (16)

As potential function V in (16) we consider the following two variants (see [5] for
more variants):
Green

V (Green)(xj − xk, δ) = δ log

[
cosh

(
xj − xk

δ

)]
(17)

Gaussian

V (Gaussian)(xj − xk, δ) =

(
xj − xk

δ

)2

. (18)

If we define by U(x) the function

U(x) =

n∑

j=1

∑

k∈Nj

wjkV (xj − xk, δ), (19)

then the regularized version of CAV that we proposed, RCAV for short (also according
to the arguments in [3]), is the following

xk+1 = xk + λk

m∑

i=1

Gi

(
PGi

Hi
(xk)− xk

)
− 2β∇U(xk). (20)

Remark 2. In the Gaussian approach (17), the expression of U(x) becomes

U(x) =
1

δ2
xT

(
I − W

4

)
x, (21)

where I ∈ Rn×n is a unit matrix, and

W = (wjk), wjk =

{
1, for k ∈ {N,E,W, S}j
0, else

(22)

Remark 3. The Hessian of the minimization functional Ψ(x) from (16), for the
Gaussian potential function (18) is given by H = ∇2Ψ(x) = ATΣ−1A+ 2β

δ2

(
I − W

4

)
.

By construction the matrix I − W
4 is symmetric and irreducible diagonally dominant,

thus invertible. From its symmetry and Gershgorin’s theorem it then result that it is
also positive definite. This fact, together with the positive definiteness of the matrix Σ
tells us that the Hessian H is symmetric and positive definite, thus the functional Ψ
is strictly convex. This means that the regularized problem (15)–(16) has a uniques-
olution which satisfies the “normal equation” ∇Ψ = 0. This is an argument for
considering the regularized CAV step as in (20) (see some details in [3]).
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Fig. 1. Original image (left); minimal-norm least-squares solution (right).

3. Numerical Results

The proposed method is tested on the data from borehole tomography. In this
application, the system of linear equations (1) is inconsistent and rank-deficient. Thus,
the minimal-norm least-squares solution is in a certain distance to the true solution.
This is shown in Fig. 1, where the left image presents the true solution (xEX), and
the right one xLS . In the tests, we use the noise-free and noisy data generated from
the true image. The noisy data were perturbed with a zero-mean Gaussian noise
with SNR = 30 dB. The images reconstructed with the CAV, Gaussian regularized
CAV, and Gibbs regularized CAV are illustrated in Figs. 2–6. The distance and
relative errors between the current reconstruction x(k) and the true image xEX are
presented in Figs. 7–10.

4. Conclusions

Fig. 2 shows that the reconstruction with CAV for noise-free data is convergent
to xLS , whereas for noisy data the best results are obtained for 50 iterations, and
more iterations gradually degrades the image. This is also well visible in Figs. 7–
10. The proposed regularization robustly stabilizes the reconstruction (see Figs. 3–6).
Carefully adjusted regularization parameter assures the monotonic convergence, which
is shown in Figs. 7–10 (parameter β or γ). The use of the Green function in (16)
gives better results than the Gaussian function (see Figs. 3–10) but this is achieved
with higher complexity. For the Gaussian function the total energy function can be
expressed in a very simplified form (see (21)).

Summing up, the Gibbs regularized CAV is a very robust algorithm especially
in application to noisy data in borehole tomography. The use of the Green function
to penalize the reconstruction gives slightly better results than the typical Gaussian
function, but this entails an increase in an overall computational cost.
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Fig. 2. Images reconstructed from noise-free (upper) and noisy (bottom) data with CAV at
50, 150 and 250 iterations, respectively.
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Fig. 3. Images reconstructed from noise-free data with Gaussian regularized CAV for
γ = 0.01 (upper), γ = 0.1 (bottom), at 50, 150 and 250 iterations, respectively.
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Fig. 4. Images reconstructed from noisy data with Gaussian regularized CAV for γ = 0.01
(upper), γ = 0.1 (bottom), at 50, 150 and 250 iterations, respectively.
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Fig. 5. Images reconstructed from noise-free data with Green regularized CAV for β = 10−3

(upper), β = 5 × 10−4 (bottom), at 50, 150 and 250 iterations, respectively.
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Fig. 6. Images reconstructed from noisy data with Green regularized CAV for β = 10−3

(upper), β = 5 × 10−4 (bottom), at 50, 150 and 250 iterations, respectively.
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Post–Synaptic Nicotinic Currents Triggered by the
Acetylcholine Distribution within the Synaptic Cleft

Anca Popescu∗ and Alexandru Morega∗∗

A mathematical model that describes the postsynaptic nicotinic currents out of the

acetylcholine distributions within the synaptic cleft is proposed. The model describes the

most important steps of synaptic transmission: neurotransmitter release from presynap-

tic vesicles, its diffusion in the synaptic cleft, receptor-neurotransmitter coupling, and the

induced post-synaptic current inflow. Relying on previous results on acetylcholine distri-

bution in the synaptic space, the current work is concerned with the postsynaptic currents

that convect through open nicotinic acetylcholine receptors, which act as ionic channels.

The nicotinic currents are the outcome of a deterministic model that is based on the intra-

synaptic cleft acetylcholine space-time distribution, and on the nicotinic receptors opening

dynamics. The mathematical model is solved numerically, using the FEMLAB 3.1 software

package by a Galerkin finite element method.

1. Intoduction

Synaptic transmission, or the transmission of the information between neurons
in the nervous system, occurs through several mechanisms: neurotransmitter release
from the presynaptic neuron, as a result of neurotransmitter binding to the receptor,
and inward ionic current flow through open receptors leading to postsynaptic mem-
brane depolarization [1], [2], [4], [5]. In order to model synaptic transmission, all
these important steps have to be considered. Previous models focus either on neuro-
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Bucharest, Romania and Department of Biophysics, “Carol Davilla” University of Medicine
and Pharmacy Bucharest, Romania.

∗∗ Department of Bioengineering and Biotechnology, Department of Electrical Engineer-
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Statistical Mathematics and Applied Mathematics, Romanian Academy.
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transmitter release and diffusion [9], [11], [12], or on electrical phenomena occurring
at postsynaptic level [9], [8]. The model proposed in this paper is concerned with
computing postsynaptic currents out of neurotransmitter distribution in the synap-
tic cleft, in the particular case of a nicotinic synapse, where the neurotransmitter is
acetylcholine (ACh) that acts on a specific class of ACh receptors: nicotinic, ionotropic
receptors, which – as a result of their stimulation – open ionic channels.

Fig. 1. The nicotinic synapse.

Since nicotinic synapses are widely distributed in the human nervous system
(both in central nervous system and at the neuromuscular junction) and since there
are several debilitating diseases affecting the nicotinic synapse, a global model of
this type of synapse is necessary in order to better understand particular synaptic
physiology and pathology. Further more, such a model would offer the possibility of
pre-clinical testing the effects produced by drugs that act on the nicotinic synapses.

By adjusting the numerical parameters that occur in the model, the model can
be easily modified for any type of chemical synapse (involving ionotropic postsynaptic
receptors).

2. Physical and Mathematical Models

The neuro-muscular junction is a particular type of synapse using acetylcholine
(ACh) as neurotransmitter, which binds to specific receptors called nicotinic receptors
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[4], [5]. Figure 1 shows a sketch of the synaptic domain and of the processes involved
in neurotransmission, that our model accounts for.

2.1. ACH Release and Diffusion

ACh concentration diffusion is modeled on a 2D geometry that assumes Carte-
sian symmetry for the synaptic space (Fig. 2). The hatched squares in the synaptic
space sketch correspond to the enzyme ACh-esterase.
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Fig. 2. 2D synaptic geometry used for modeling ACh concentration diffusion. The overall
width of the synapse is 30 × 50 nm [1], [4], [5].

Our model accounts for the degradation of ACh by the ACh-esterase enzyme
(the hatched squares in the synaptic sketch, Fig. 2). The concentration of ACh is
given by [9], [11], [12]

dC

dt
= ∇ · (D∇C) , (1)

where C is the ACh concentration and D is the diffusivity of ACh - in this specific
environment, D = 4 · 10−4µm2/µs, C(0) = 0.

The boundary conditions [9], [11], [12] are given by

n · (D∇C) = Q(t), (2)

on the ACh release ports
n· (D∇C) = −kC, (3)

on the ACh-esterase ports
n · (D∇C) = 0,

elsewhere.
Here k = 2 ·10−3µm/µs is the activity constant of the ACh-esterase enzyme [11]

and Q(t) is the ACh flux through the release ports [9]

Q(t) =
S0C0

lτ
(
1− e

−4τ
T

)e
−t
τ , (4)
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where S0 = 65 nm2 is the average, maximum (initial) cross-section area of the pre-

synaptic vesicle, C0 = 0.3 molecule/nm3 is the initial ACh concentration, l = 18 nm
is the diameter of the release port, and T = 6.25µs is the characteristic time of the
diffusion process. For τ (the characteristic time of the ACh release process) we use
here τ ≈ T (the values should vary according to different ACh release kinetics).

The total amount of ACh in the synaptic place is computed by

CA (t) =

∫

synapse

C (t) dS, (5)

where CA is the total number of ACh molecules in the synaptic space, d is the depth
of the synaptic space, d = 10 µm, and nx = 30 is the average number of geometric
periods in our simplified model of the synaptic space.

The mathematical model was solved numerically by the finite element method
using FEMLAB 3.1i [3].

2.2. Receptor dynamics

ACh receptors present two binding sites for ACh molecules. Only the double-
ligated receptor opens, permitting the inward current flow. There are several interme-
diate states of the receptor between the non-ligated-closed-receptor and the double-
ligated-open-receptor [5], [6]. The transition rates between intermediate states depend
on the available amount of ACh. Our model is based on a simplifying hypothesis :
it considers only two different states of the receptor – open and closed (Fig. 3). The
transition rates between these two states are chosen such as to account for the inter-
mediate steps: k+ (transition closed-open receptor) = 0.04 ms−1, and k− (transition
open-closed) = 0.02 ms−1 [6].

k

k

+

−
R R*

Fig. 3. Receptor dynamics – simplified model. R–closed
nicotinic receptors, R∗ – open nicotinic receptors.

The mathematical model is made of the following Cauchy-type problem

d∗R∗ (t)

dt
= k+R (t)− k−R∗ (t) , R∗ (0) = 0, (6)

where
R∗ (t) +R (t) = Rtotal (t) , (7)

R∗ (t) is the number of open synaptic receptors,R (t) is the number of closed receptors,
and Rtotal = 105 is the total number of postsynaptic receptors. All these processes
occur only if there is enough free ACh in the synaptic space. Considering that the
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amount of free ACh equals the difference between the amount of total synaptic ACh
and the amount of bound (to receptors) ACh, and the every open receptor is bound
to 2 ACh molecules, this condition can be written as

CA (t)− 2R∗ (t) > 0, (8)

Non-dimensional equations

Considering the following changes of variables

N =
Rtot −R
Rtot

, τ =
t

T
, (9)

where

T =
1

k+ − k−
, (10)

the non-dimensional form of problem (6) is

dN

dτ
+N =

k+

k+ + k−
, N(0) = 0. (11)

The solution to this problem poses no difficulties: it was computed numerically by
a finite differences backward Euler technique using a constant time-step algorithm
implemented in MATLAB [7]. Accuracy test consisted of using several values for the
time step and checking that the results do not change.

2.3. The Postsynaptic Voltage

The postsynaptic voltage was computed based on a equivalent electrical circuit
of the membrane shown in Fig. 4 [9], [10].

R

R

ex

in

E
Ug

ACh

cm

Fig. 4. Equivalent electrical circuit of the membrane. E – membrane-specific equivalent
e.m.f. (due to ionic pumps in the membrane); Rex – resistance of the extra-cellular space;
Rin – resistance of the intracellular space, Cm – membrane capacity; gACh – membrane

conductance (due to open nicotinic receptors), U – postsynaptic voltage.

The postsynaptic voltage is obtained by solving, again, a Cauchy-type problem
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Cm
dU

dt
+ U

[
gACh (t) +

1

Rex

]
=

E

Rx
, U (0) = E, (12)

where

gACh (t) = γR∗ (t) , (13)

where E = −70 mV is membrane-specific equivalent e.m.f., Rex = 5·104 Ω is the resis-
tance of the extra-cellular space, Rin (approx. 0) is the resistance of the intracellular
space, Cm = 4 ·10−12 F is the membrane capacity, gACh is the membrane conductance
(due to open nicotinic receptors), γ = 20 pS is the single-channel conductance (for 1
single nicotinic channel), and U is the postsynaptic voltage.

The non-dimensional form of problem (12) is

dU

dτ
+ Ũ [γRexRtotN (τ) + 1] = 1, Ũ (0) = 1, (14)

with

Ũ =
U

E
, τ =

t

T
, and T =

1

RexCm
. (15)

In this case too, the solution poses no difficulties: it was computed numerically
by the same finite differences backward Euler technique using a constant time-step
algorithm implemented in MATLAB [7]. The same type of accuracy test with respect
to the time step was performed.

3. Results

The number of ACh molecules in the synaptic space during the first 6.25 µs(
T̃ = 1

)
and 62.5 µs

(
T̃ = 10

)
is shown in Fig. 5.

Fig. 5. ACh diffusion dynamics.

Figure 6 presents the receptor opening dynamics.
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Fig. 6. Receptor dynamics.

We also investigated how the opening kinetics of the postsynaptic receptors influ-
ences the triggering profiles: Figure 7 shows the results, for different opening/closing
rates.

Fig. 7. Receptors triggering profiles for different opening kinetics.
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While ACh concentration rapidly reaches high values, only a small number of
receptors open in the same period of time (6.25µs from the moment t = 0). Figure 8
compares the ACh and receptor profiles in the first 6.25µs after the initiation of the
ACh release process.

Depolarization of the membrane occurs rapidly after the first receptor channels
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Fig. 8. ACh vs receptor dynamics.

open, and reaches a positive value. Either different opening kinetics for the receptors
or different values from the extra-cellular resistance or single-channel conductance
slightly modify the plateau. Figure 9 shows the postsynaptic membrane voltage com-

puted from our model, for
k+

k+ + k−
=

2

3
and the values for the extra-cellular resistance

and single-channel conductance mentioned in the text above.

Fig. 9. Postsynaptic membrane voltage.
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4. Discussion and Conclusions

Apparently, cholinergic synaptic transmission involves 3 important processes,
each with its own time constant:

• TACh = 6.25 µs – for ACh diffusion;

• Tr = 16.5 ms – for receptor opening;

• Tm = 0.25 µs – for membrane depolarization.

Although the fastest process is depolarization of the membrane, the leading
process (i.e. triggers all the other processes) is the ACh release and diffusion. The
receptors need a longer time to reach a plateau. In our model, the full saturation of
receptors (100% of the receptors open) cannot be achieved, because of the opening

kinetics of the receptors

(
k+

k+ + k−
=

2

3

)
. In a model that considers k− = 0 (Fig. 7

the third curve from the top), saturation is achieved after approximately 80 ms. The
first two curves in the same figure are merely theoretical – they suppose a negative
value for k− , which is not possible from a biological point of view.

The concentration vs open-receptor profiles show that is enough ACh to open the
postsynaptic receptors in the first phase: ACh concentration grows much faster than
the number of open receptors. The influence of the ACh concentration on receptor
kinetics becomes important after a much longer time (not in the time-domain of our
simulation). Depolarization of the membrane occurs rapidly after receptor-opening.
The characteristic peak of postsynaptic membrane depolarization is not explained in
our model because of several aspects that our model does not account for: different
release kinetics for ACh (simulating trains of impulses, which covers better for the
physiological situation), the “refractory period” of the receptors - receptors close after
a certain time, and enter a refractory state, where they stay closed, independently
from the ACh molecules still existing in the cleft; the propagation of depolarization on
the postsynaptic membrane. Further simulations should also consider the influence of
ACh on the receptor opening profiles – k+ and k− should vary with the concentration,
but effect of a burst of impulses arriving at pre-synaptic level, the saturation of
receptors.
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Effect of tricyclic antidepressants
on the frog epithelium

Corina Prica∗†, Emil Neaga∗, Beatrice Macri∗, Dumitru
Popescu∗♮ and Maria Luiza Flonta∗

Our study was undertaken with the aim of testing the action of tricyclic antidepres-

sants, amitryptiline (AMT) imipramine (IMI) and desipramine (DES) on the epithelium

sodium channel (ENaC) using the voltage-clamp technique on the frog epithelium (Rana

ridibunda). The epithelium sodium channel belongs to Deg/ENaC family, like ASICs and

many other putative members in the brain. We have studied the effect of amitryptiline,

imipramine and his metabolite desipramine on the short-circuit current (Isc) and transmem-

brane conductance (Gt) on the range of concentration of 1 µM to 200 M. We observed that

all three antidepressant have a dual effect on short-circuit current Isc, and on the conduc-

tance, increasing these two parameters on the range of concentration 1-50 µM and reducing

them at the concentration 100-200 µM. These results suggest once again, multiple effects

of tricylic antidepressant on different ionic channels and receptor: blocks sodium current

sensitive at TTX from neurons DRG and cardiac muscle, interact with the channels and

carriers of K+ and act on the cholinergic receptors, inhibits the recapture of serotonin and

norepinephrine. All these effects of tricyclic antidepressants could be utilized to explain the

effect of antidepressive and all secondary effects witch appear during the treatment.

1. Introduction

Amiloride sensitive Na+ channels are essential control elements for the regulation
of Na+ transport into cells and across epithelia.
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Sodium is the most abundant ion in the extracellular fluid and total body sodium
is an important determinant for the regulation of the extracellular fluid volume. The
kidney of land vertebrates possesses mechanism that regulate salt balance with the
tendency to retain salt and water in the body in order to preserve the volume of the
extra cellular fluid and to maintain adequate blood circulation. The epithelial sodium
channel (ENaC) in the renal distal part of the nephron is an important component in
the control of sodium balance. ENaC is located in the apical or the outward-facing
membrane of many other salt-reabsorbing epithelia and facilitates Na+ movement
across this membrane as a first step in the process of Na+ transport.

Epithelial tissues play a critical role in controlling the whole body internal envi-
ronment, by providing gas exchange, solute and water uptake and contain the routes
for secretion and excretion. Typically, they are arranged in sheets consisting of one
or more layers of communicating cells that realize the transport function.

A characteristic of all epithelial is their polarity: the apical (luminal) membrane
is morphologically and functionally distinct from the basal and lateral membrane.

Specialized junctions that connect the cells to each other make up the transition
between the apical and lateral membrane at the luminal border. The apical border
can be exposed to air (epidermis, tracheal and corneal epithelium) or it can face the
lumen of the cavity of the organ that contains solutions with an ionic and solute
composition that differs strongly from the body fluids (gut, blandder, small intestine
and kidney tubule). The basal and lateral sides called the basolateral domains have
specialized regions for cell-cell adhesions and for signal transduction.

According to the permeability properties of the tight junctions, epithelia are
classified in tight and leaky.

Leaky epithelia (small intestine, gall blander and proximal kidney tubule) are
characterized by a high permeability of the paracellular pathway. Their apical mem-
branes mainly posses co-transporter systems, such as Na+/glucose and Na+/ Po3−

4

and antiporter systems as, for instance, Na+/H+ that provide Na+ uptake.
Na+ movement across the tight epithelia such as urinary bladder, distal kidney

tubule and large intestine the paracellular pathway has a low permeability. Apical
Na+ uptake occurs through Na+ selective channels. The two steps involved in Na+

transport across tight epithelia are illustrated in Fig. 2.
ENaC is involved in regulation of Na+ uptake by facelifting the entry of ENaC

ions into the cell driven by an electrochemical gradient. This gradient is generated
by Na+/K +–ATPase. Which extrudes tree Na+ ions from the cell in the exchange
for two K+ ions and thus maintaining cell concentration of Na+ low and K+ high.
The electrochemical K+ gradient across the Na+/K+–ATPase are responsible for
maintaining the intracellular negative potential that facilitates Na+ uptake at the
apical border. It is generally accepted that under most circumstances that Na+/K+–
ATPase only works at about one-third of this maximal capacity. However, the uptake
of Na+ is the rate-limiting step for the Na+ reabsorption and the represents the
principal target of transport regulation.
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Fig. 1. Na+ transport across leaky epithelia. Fig. 2. Na+ transport across tight epithelia.

2. Aims

It is generally accepted that there is a relationship between chronic pain and
depression [8]. In this sense, it is known that serotonin, noradrenaline [1] and opi-
oids [5] are involved in both nociceptive and depressive disorders, as well as in the
mechanism of action underlying the antinociceptive [13, 14] and antidepressive ef-
fects of antidepressants [2]. In clinical practice, antidepressants – usually tricyclics –
are widely used in several painful conditions, as well as opioids and other analgesics
and have been proven to be effective in the management of pain of diverse aetiology
[15, 7, 10]. On the other hand, it has been previously reported that opiate analgesics
with monoaminergic reuptake inhibitory properties may induce an antidepressant-like
effect in mice [11] accounting for the interrelationship between these two entities.

In spite of the wide use of antidepressants in painful disorders, the nature of
antidepressant-induced analgesia remains to be elucidated. It has been suggested
that antidepressant drugs have specific analgesic properties, and a body of clinical
[8, 9] and experimental [ 12, 14, 4] types of evidence together seems to demonstrate
that the analgesic may be independent of the antidepressant effects.

However, the relationships between antidepressive and analgesic effects of these
drugs have not yet been fully elucidated [6].

The analgesic mechanism of amitriptyline, imipramine and desipramine is un-
clear. One explanation is that it blocks Na channels, reducing in this way spontaneous
activity in nerve fibres, which cause pain. A new class of ion channels known as the
Deg/ENaC (degenerins-epithelial Na channel) family which includes ASIC, DRASIC
mediate pain induced by acidosis in damaged or inflamed tissue. The same family
includes also EnaC, which can be easily studied in the amphibian epithelial model.

This study was undertaken with the aim of testing the actions of amitriptyline,
imipramine and desipramine on native epithelial Na channels from frog skin. We as-
sumed that, having a common protein structure, characterization of the amitriptyline-
ENaC interaction could help to elucidate the analgesic mechanism of this antidepres-
sant.
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3. Materials and Methods

3.1. Mounting of the epithelium

Preparation of the frog skin. Frog (Rana ridibunda), weighting around 50 g,
were kept at 17o C with free access to tap water. The abdominal skin of doubly pithed
frog was dissected and mounted in an Ussing-type Lucite chamber. The chamber
ensured negligible edge damage and allowed continuos perfusion with fresh solutions
of both the mucosal and serosal sides of the epithelium, at a rate of 5 mL min –1.
The tissue area in contact with the bathing media was 1 cm2.

In order to perform measurements of the transepithelial current and voltage
under many different circumstances, i.e with varying solutions on the outer and inner
side of the tissue, we mounted the preparation in a chamber. The tissue was placed as
a flat sheet between two fluids filled compartments. This technique is often attributed
to H.H. Ussing (1949). The “Ussing chamber” we used is shown in Fig. 3.

Fig. 3. The “Ussing chamber”. Fig. 4. Design of Ussing chamber.

These compartments were filled with Ringer solution to equal levels, this main-
taining the pressure difference across the tissue equal to zero. When the two chamber
halves were put together with screws, the edges of the tissue became compressed be-
tween the rim (R) on the left and the right compartment. The pressure that was
then extending on the tissue’s edge could be adjusted by changing the thickness of
the gasket, which was put between the two chamber halves. In this way edge damage
of the tissue was minimized. A thin film of the silicon vacuum grease on the rim of
each chamber half was used to seal the chamber and also the further reduce edges
damage. The skin area are exposed to the bathing solution was 0,5 cm2. Both cham-
ber compartments were continuously perfused during the experiment with a solution
flow of 4–6 ml/min. The incoming fluid next to directed towards the tissue face. In
this way a layer of stagnant fluid next to the tissue was prevented. The design of the
chamber allowed for rapid change of solution without of voltage clamping, Fig. 4.

Each chamber halve had its own reservoir, which consisted of the beaker filled
with a Ringer solution, was placed on the higher level than the chamber, so that the
solution flow was maintained by gravity.
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Fig. 5. The voltage clamp circuit.

One end of the tubing was connected with a metal tube that was placed into the
beaker. The other end of the tubing was connected with the chamber. The solution
could easily be changed by moving the metal end of the tubing from one reservoir
into another. The fluid left the chamber via the upper side, through spillways that
contained paper strips. In this way the compartments always remained filled with
solution, also when the (by accident) one of the reservoirs became empty. The paper
strips allowed the fluid to leave the chamber continuously. Via the strips the fluid
was collected in the glass beakers. It could be used again by emptying the beakers in
the reservoirs.

3.2. The voltage clamp

The purpose of noise analysis is the study of the fluctuation in conductance
of an ionic pathway in a cell membrane. This conductance fluctuation (G) are di-
rectly proportional to the fluctuation in current (I) measured under voltage clamp
conditions.

So, one can record current fluctuation in order to obtain information about the
conductance fluctuation. Indeed, the shape of their spectra will be identical. On the
other hand, the relation between conductance fluctuation and fluctuation in voltage
measured under current clamp conditions is more complicated.The relation between
the power spectral density of the voltage and conductance fluctuation will depend on
the frequency dependence of the impedance of the membrane.

For this reason, we performed the experiments under voltage clamp conditions.
This yields information about the number of channels, the single channel current and
the probability that the channel is in a specific state. Prerequisite for the measure-
ments of the membrane noise is a low-noise measuring circuit. A schematic plot of the
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voltage clamp circuit we used is shown in Fig. 5. The voltage clamp is a feedback cir-
cuit that keeps the voltage across the epithelium constant by varying the current flow
through the epithelium. In order to avoid large junction potentials, the connection
between the voltage input and current output of the clamp was made by two current
(I) and two-voltage (V) electrodes, figure 5. They consisted of Ag/AgCl/3M KCl
electrodes which were in contact with the solutions in the “Ussing chamber” through
agar bridges ( 3 gr agar per 100 ml 1M KCl ). The two voltage electrodes placed to
each side of the epithelium allow the recording of the transepithelial potential (PD)
and two current electrodes allow injection of the clamp current. Voltage clamp of PD
to zero allows to assess IscNa transport (INa) was defined as the amiloride-sensitive
component of Isc. An automatic electronic circuit clamps the spontaneous potential
difference across the epithelium to aero ( voltage clamping to short-circuit state). The
voltage clamp is an automatic fed-back device intended to impose a constant voltage
across the epithelium. The input stage of the clamp consisted of the low-noise differ-
ential amplifier ( DA ) with a gain of 100x. The feedback ampifier (FBA) converts
the voltage offset at the input to current. Moreover, the FBA is made as summing
amplifier so that a clamp potential between –100 to + 100 mV can be imposed to
the epithelium. Via an external input (Vcom) this potential could be varied under
computer control to record current-voltage relations.

The epithelium can be represented as a RC-network. The impedance of this
circuit varies among the different tissues. This RC circuit influence the frequency
characteristics of the voltage clamp. The frequency response of the voltage clamp
circuit could be varied by changing the capacitance in the FBA and by varying the
resistance of the potentiometer ( R ) which was installed in the feedback circuit. When
the feedback loop was closed this resistance was 470 Ω . Concomitantly the resistance
was gradually decreased to make the response of the voltage clamp faster. An optimal
adjustment of the feedback capacitance and of R was obtained by inspection of the
transepithelial current and the voltage response to train of square wave pulses with a
frequency of 200 Hz which was applied at Vcom. The feedback current was measured
with a current to voltage converter. The output signal of this amplifier was connected
to three different setups.

1. The transepithelial current was continuously recorded on a XT-recorder. The
transepithelial conductance was obtained from the current deflections caused by the
application of 10 mV transepithelial potential pulses at Vcom.

2. After inversion (I), the signal was displayed on the liquid-crystal display and
could be sampled under computer control.

3. The output signal was connected via a high pass filter ( HPF ) with adjustable
cut-off frequency to a voltage amplifier with a total gain of 1000. The output of this
amplifier ( In) was sent to a computer for analysis.

3.3. Noise system

With noise analysis, we intend to analyse the random fluctuation in current asso-
ciated with ionic movement through biological membranes. The thermal or Brownian
movement to which the charge carriers are subjected produces what is called ther-
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mal or Johnson-Nyquist noise. In non-equilibrium conditions (net ionic current flow),
other contributions besides the thermal noise exist, together denoted as excess noise.
In the accessible ms to s time range, distinctive features (e.g. Lorentzian) in the spec-
tral analysis (power spectrum) of the current fluctuation originate from stochastic
changes in the conductive pathways for ion movements through the membrane. The
underlying processes for this “ Lorentzian noise “ are though to consist of probabilistic
opening and closing events of ion channels. When recorded, in conditions where the
voltage across the membrane is maintained constant, the fluctuation in current is di-
rectly proportional to the conductance fluctuation. Information about the number of
channels in the ensemble and about the single channel current can be obtained from
the analysis of the noise caused by random blockage of ion channels by reversible
blockers. Fluctuation of current caused by random interaction of the blocker with
the channel give rise to Lorentzian noise. Its relaxation time varies with blocker con-
centration which enables the calculation of the rate constants of the blocker and the
single channel parameters.

The power density spectrum of fluctuations in current that passes through gated
channels has a Lorentzian shape. To resolve the entire frequency range, we measured
current fluctuations in a frequency range between 0,2 Hz and 1 kHz. To guarantee a
sufficiently fine spectral resolution, and to keep the measuring time short, we analyzed
the current-noise signal in two different frequency ranges: a low and a high frequency
range. The 1000x amplified fluctuations in current ( In from clamp ) were sent to two
separate modules (designated HS and LS in Fig. 12) each consisting of a pre-filter
and an anti-aliasing filter. The fundamental frequency was fixed in most experiments
to 0.5 Hz.

The output of the pre-filter and the anti-aliasing filter was amplified (1-20×)
to optimize the analog-to- digital conversion in the computer. The low and the high
signal were sampled consecutively by a multiplexer and sent via a sample and hold
system (S&H) to an A/D converter. After digitising, data were converted from the
time to the frequency domain using an FFT (Fast Fourier Transform) software rou-
tine and a double logarithmic plot of the power density S(f) as the function of the
frequency (f) was displayed on the computer’s monitor. An individual spectrum was
obtained from a series of 50 periods of data acquisition (sweeps). Each sweep con-
sisted of a sequential digitization of the low (4096 points/2 sec) and then the high
(4096 points/0.25 sec) analog signals. The duration of the sweep was therefore 2.25
sec and approximately 3 minutes were required to obtain and process the 50 sweep for
a single spectrum which was displayed immediately on the computer’s monitor. The
FFT output frequencies for the LS ranged from 0.5 to 256 Hz and for the HS from 4
to 2048 Hz. In order to obtain spectra that can easily be analyzed by a computer, the
number of frequency points was reduced. Each octave was divided in 8 intervals and
the average value of LS and HS frequency was calculated for each interval. This re-
sulted in 8 values per octave that yielded 74 spectral data points in the power density
spectrum. The data were saved on disk for further analysis.
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4. Fitting procedure

Theoretical calculations on the stochastic conductance ( or current ) fluctuation
between multiple conductance states of an ionic channel predict PDS that contain a
number of Lorentzian curves equal to the number of conductance states minus one.
The Lorentzian function :

S(f) =
So

1 +
(

f
fc

)2

is characterized by two parameters: the plateau value S0 represents the noise power
at zero Hz and the corner frequency fc is the frequency where the noise power has
dropped to its half-maximal value ( So/2).

In the fitting procedure of 1/f excess noise of the preparation must be taken into
account. Instrumental noise becomes dominant at higher frequencies and is excluded
from the fit by selecting a suitable frequency range.

5. Three state model

In the presence of the blocker the channels are distributed among three states:

closed
φ←→
α

open
Kon[B]←→
Koff

blocked

P c P o P b

Where α and β are the rates of the open-close reaction. The parameters Kon

and Koff are association and the dissociation rates of the blocker, respectively. The
probability of the channel of being closed is Pc, whereas of the blocked state is Pb. In
the absence of the blocker (B) the open probability is :

Po =
α

α+ β
.

The power density is now equal to the sum of two Lorentzian functions:

S (f) =
S

(1)
o

1 +
[

f
f(1)

]2 +
S

(2)
o

1 +
[

f
f(2)

]2 .

Thus is the case of three states “open”, “closed” or “blocked” the power density
spectrum of the fluctuation in current is the sun of two Lorentzian functions. The
corner frequency and plateau value of the Lorentzian components will depend on the
concentration of the blocker. Patch clamp experiments univocally indicate that ENaC
fluctuates between open and closed times with long mean open and closed times and
would give rise to a Lorentzian with a corner frequency smallere than or in the range
of 0.1 Hz. Therefore, in the frequency range of our analysis, expose of the ephitelium
to a blocker, give rise to a single Lorentzian in the PDS. From the blocker-induced
noise, we determined Po and No.



effect of tricyclic antidepressants on the frog epithelium 219

Imipramine Amitryptiline Desipramine

Fig. 6. The effect of imipramine, amittryptiline and desipramine on short-circuit current Isc

in Ringer Cl solution.

Imipramine Amitryptiline Desipramine

Fig. 7. The effect of imipramine, amittryptiline and desipramine on short-circuit current Isc

in Ringer SO4 solution.

The two Lorentzian parameters, the low-frequency plateau (So) and the corner
frequency (fc) were determined by non-linear curve fiting of the spectra presuming
a first order interaction between channel and blocker. The on- (Kon) and off (Koff)
rate constant of the blocking reaction were calculated from:

2πfc = Kon[B] +Koff ,

where [B] is the blocker concentration. Using the values of the Na current and the
Lorentzian parameters (fc and So) obtained from noise analysis, we estimated iNa si
No.

iNa =
So (2πfc)

2

4INaK01 [B]
, N0 =

INa

iNa
.

6. Results

This study is a continuation of a research started with amitryptiline. We ef-
fectuated a curve dose-effect (1–200 µM) and we have found out that the tricyclic
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antidepressants have the higher effect at a concentration of 10 µM. We used two dif-
ferent solution of Ringer; Ringer Cl− and Ringer SO4 to see if exist a different effect
of chlorine ions.

Graph 1 to 11, represent the effect of short-circuit current Isc when we applied
the antidepressants on the apical membrane of the epithelium. The current increase
progressive until a concentration of 50 µM and at higher concentration appears an
inhibitory effect. The effect is similar in Ringer Cl or Ringer SO solutions, which
exclude a specific effect of tricyclic antidepressant on chlorine ions conductance, which
demonstrate that the flow of sodium is modulate by tricyclic antidepressant.

We observed that all three antidepressant have a dual effect on short-circuit
current Isc, and on the conductance, increasing these two parameters on the range of
concentration 1–50 µM and reducing them at the concentration 100–200 µM. The in-
hibitory effect of tricyclic antidepressants on sodium ions flow at higher concentration
can be explain by phenomenon of feed-back inhibition of ENaC at higher concentra-
tion on Na intracellular. These results suggest once again, multiple effects of tricylic
antidepressant on different ionic channels and receptor: blocks sodium current sen-
sitive at TTX from neurons DRG and cardiac muscle, interact with the channels
and carriers of K+ and. act on the cholinergic receptors., inhibits the recapture of
serotonin si norepinephrine

All these effects of tricyclic antidepressant could be utilized to explain the ef-
fect of antidepressive and analgesic and all secondary effects witch appear during the
treatment. But we must mentions that in our experimental studies the concentration
that we used is higher that plasmatic concentration which is 1 µM. This suggests ex-
istence receptors with higher affinity responsible for the therapeutic effects of tricyclic
antidepressants.

We also observed that at a concentration of 10 µM the amitryptiline has a higher
effect comparative with imipramine and desipramine (graph 12).
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On the Solvability of Navier-Stokes Equations

Cristina Sburlan∗

In this paper we investigate the solvability of Navier-Stokes system, in case of an

incompressible dynamical viscous fluid. The system can be reduced to an evolution problem

in which are involved a linear monotone operator and a compact nonlinear one. We will use

functional and topological methods to study the problem, such as Fourier method and the

topological degree.

1. Introduction

The solvability of the Navier-Stokes system represents an actual problem.
We consider the steady state flow equation as a bifurcation problem with re-

spect to the dynamical viscosity, and this approach permits us to use the powerful
topological degree methods to study this problem.

Then, in the next section, we consider the linearized Navier-Stokes system
(Stokes equation) for the flow of incompressible fluids and we succeed to find the
weak solution of this evolution problem as a Fourier series.

2. Coincidence Degree for Steady State Flow of Incom-
pressible Fluids

First we present the theoretical approach to the coincidence degree, and then
we apply this theory to the steady state flow of incompressible fluids. Let H be a
real Hilbert space and consider L : D(L) ⊆ H → H a linear and maximal monotone
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operator and N : D(N ) ⊆ H → H a (nonlinear) compact one. We can write

λL+N = I + λL − I +N = (I + λL)(I − (I + λL)−1(I −N )),

so we have the equivalence

λLy +N (y) = 0⇔ y − (I + λL)−1(I −N )(y) = 0 (1)

Denote byM(λ) the compact operator (I+λL)−1(I−N ). For D ⊂ H open bounded
set such that λLy +N (y) 6= 0, ∀y ∈ ∂D, we define the coincidence degree of (L,N )
relatively to D by

dλ((L,N ), D) := dLS(I −M(λ), D, 0), (2)

(dLS stands for Leray-Schauder degree). This coincidence degree has all the proper-
ties of Leray-Schauder degree, such that
(P1) (The solution property). If dλ((L,N ), D) 6= 0, then equation (1) has at least
one solution in D.
(P2) (The homotopy invariance). Let (λt)t∈[0,1] ⊂ (0,+∞) be a continuous deforma-
tion such that equation λtLy +N (y) = 0 has no solutions y ∈ ∂D for all t ∈ [0, 1].
Then dλt

((L,N ), D) is independent of t ∈ [0, 1].
Denote by C(L) the set of all characteristic values of L. We have the following

theorem (see [3] and [5]).

Theorem 1. Suppose that there exists k > 0 such that

‖N (y)‖ ≤ k ‖y‖ , y ∈ H.

If λ0 ∈ C(L) is such that dist(λ0, C(L)\{λ0}) > 2k, then equation (1) has at least
one bifurcation point with λ ∈ (λ0 − k, λ0 + k).

We set S = {(λ, u) ∈ Λ×H |λLu+N (u) = 0} and S′ = S ∪ {C(L)×{0}}. Due
to classical bifurcation Rabinowitz theorem we state:

Theorem 2. Under the hypotheses of Theorem 1, the maximal connected set
Sλ0 ⊂ S′ intersecting (λ0−k, λ0 +k)×H is either unbounded in Λ×H or it contains
a finite number of points (λj , 0) with λj ∈ Λ. Moreover, the number of these points
having odd algebraic multiplicity – including (λ0, 0) – is even.

Remark 1. The above results remain true if, instead the condition from Theo-
rem 1, N satisfies the following condition

∃k > 0 such that ‖N (y)‖ ≤ k ‖y‖2 , y ∈ H.

Let now Ω ⊆ RN , (N = 2 or 3), be a domain with smooth boundary ∂Ω and
denote by Q := Ω× (0,+∞) and by Σ := ∂Ω× (0,+∞).

We will study the case of the steady state flow

ut = 0⇔ u = const. (in t) = u0(x)
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regarding the flow equation as the eigenvalue equation

(u · ∇)u(x, t)− ν∆u(x, t) +∇p(x, t) = f(x, t) (3)

with respect to the eigenvalue parameter ν – the dynamical viscosity, and the bound-
ary conditions are given by

u = 0 on Σ. (4)

If Ω is unbounded, we consider moreover that

u→ 0 for |x| → +∞.

We study the incompressible fluids, so we also have the condition

∇ · u = 0. (5)

Suppose that Ω is pathwise connected. The space (Lp(Ω))N can be decomposed as
follows

(Lp(Ω))N = Hp(Ω)⊕ {∇g|g ∈ W 1,p(Ω)}, 1 < p < +∞,

where X = Hp(Ω) := {u ∈ (C∞
0 (Ω))N |∇ · u = 0}‖·‖Lp(Ω) .

Hence each u ∈ (Lp(Ω))N can be uniquely represented as

u = u1 + u2, u1 ∈ Hp(Ω), u2 ∈ {∇g|g ∈W 1,p(Ω)}.

Denote by Pu = u1 the projection from (Lp(Ω))N onto its divergence free part
Hp(Ω), called the Helmholtz projection. It is a bounded linear operator and it pre-
serves the regularity, i.e., P ((Wm,p(Ω))N ) ⊂ (Wm,p(Ω))N with continuous embed-
ding. Moreover, Hp(Ω) = P ((Lp(Ω))N ) is a reflexive, separable Banach space (see
[10]).

Because P∇p = 0, applying P to the steady state flow equation we obtain

P (u · ∇)u− νP∆u = Pf, P (∇ · u) = 0. (6)

Let E := {y ∈ Hp(Ω)|y ∈ (W 1,p
0 (Ω))N} be a subspace of Hp(Ω). Denote by

A ∈ L(E,E∗) the Stokes operator

< Ay,w >:=

N∑

i=1

∫

Ω

∇yi · ∇widx, ∀y, ∀w ∈ E

and define the threelinear form

b(y, z, w) :=

N∑

i,j=1

∫

Ω

yiDizjwjdx, ∀y, ∀z, ∀w ∈ E

which determines the nonlinear operator C : E → E∗

< C(y), w >:= b(y, y, w), ∀y, ∀w ∈ E.
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Then we can reformulate (6) as the eigenvalue problem

νAy + C(y) = Pf, (7)

where A is symmetric, i.e. < Ay,w >=< y,Aw >, and strictly monotone because

< Ay, y >=

N∑

i=1

∫

Ω

∇yi · ∇yidx =

∫

Ω

|∇y|2 dx > 0, ∀y ∈ E.

Since b is threelinear on E we have that there exists c > 0 such that

‖C(y)‖ ≤ c ‖y‖2 , ∀y ∈ E, (8)

and we deduce that there exists k > 0 such that

‖(C − Pf)(y)‖ ≤ k ‖y‖2 , y ∈ E.

If Ω is a bounded set, for p = 2 we have that E and X are Hilbert spaces and
the embedding E →֒X is compact (2 ≤ N ≤ 3) (from Sobolev-Kondrashov theorem).

Then the operator C̃ : E ⊂ X → X, C̃ = I ◦(C−Pf), is compact (as the composition

of a compact operator with a continuous one). Similarly, the operator Ã = I ◦ A is
compact, too. Equation (7) becomes

νÃy + C̃(y) = 0

and we can apply to this equation the above theory.
If Ω is a complementary set (therefore unbounded) of a compact domain P ,

i.e., Ω = RN − P , the operators A and C are not compact because the Sobolev-
Kondrashov theorem does not work in this case. We solve this problem using the
following theorem (see [4]):

Theorem 3 (Browder-Ton). Let X be a reflexive separable Banach space
and S ⊂ X be a countable set. Then there exist a separable Hilbert space W and a
compact one-to-one linear operator ψ : W → X such that S ⊂ ψ(W ) and ψ(W ) is
dense in X.

When X is the reflexive separable Banach space Hp(Ω), let ψ : W → X be the
above compact one-to-one linear operator and ϕ : X∗ → W be the adjoint operator
defined by

(ϕ(v), w) =< v, ψ(w) >, v ∈ X∗, w ∈ W,
where (·, ·) is the scalar product in W .

Then, denoting by L := ϕAψ : W →W (linear, maximal monotone and compact
operator) and N := ϕ(C − Pf)ψ : W → W (nonlinear compact operator), problem
(7) is equivalent with

νLy +N (y) = 0, y ∈W. (9)

Now the above theory is applicable to this equation, so writing it as a eigenvalue
problem and using the coincidence degree we obtain the bifurcation points.
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3. Fourier Method for Stokes equation

In this section we try to find the weak solution of the linearized Navier-Stokes
system as a Fourier series.

Consider the Navier-Stokes system, for the flow of an incompressible fluid:

(∇ · u)(x, t) = 0 (10)

ut(x, t) + (u · ∇)(x, t) − ν∆u(x, t) +∇p(x, t) = f(x, t), (x, t) ∈ Q (11)

u = 0 on Σ, (12)

where Ω ⊆ RN , N = 2 or 3, is a bounded domain with smooth boundary ∂Ω and
Q := Ω× (0,+∞), Σ := ∂Ω× (0,+∞).

Suppose that the body forces are of potential type, i.e.

f(x, t) = ∇xV (x, t)

and denote by q := V − p, where p is the (unknown) pressure in fluid. Then we can
write (11) under the form:

ut(x, t) + (u · ∇)u(x, t)− ν∆u(x, t) = ∇q(x, t).

We study the case of a dynamical viscous fluid, with big ν. In this case we have

ν∆u (x, t)≫ (u · ∇) u (x, t)

and we can approximate the above equation with:

ut − ν∆u (x, t) = ∇q (x, t) . (13)

Let X := {y ∈
(
L2 (Ω)

)N
;∇ · y = 0, y · n = 0 on ∂Ω} be the Hilbert space of

“incompressible fluids”, E := {y ∈
(
H1

0 (Ω)
)N

;∇ · y = 0} be subspace of X and let

P :
(
L2 (Ω)

)N → X be Leray projector.
Denote again by A ∈ L (E,E) the Stokes operator:

(Ay,w) =

N∑

i=1

∫

Ω

∇yi · ∇widx, ∀ y, w ∈ E.

Then we can reformulate problem (13) as an evolution equation

dy

dt
+ νAy = P (q),

whereA is symmetric, i.e. (Ay,w) = (y,Aw), and strongly monotone, because (Ay, y) ≥
‖y‖2 .
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For solving this problem, we will apply the Fourier method developed in [6].
Here, E is a Hilbert space with respect to the energetic inner product:

(y, w)E := (Ay,w) , ∀ y, w ∈ E,

and the embedding E →֒ X is compact. Identifying X with its dual X∗, we have

E →֒ X →֒ E∗.

Consider the duality map J : E → E∗,

< Jy, w >:= (y, w)E , ∀y, w ∈ E

which is a linear homeomorphism with ‖Jy‖E∗ = ‖y‖E , ∀y ∈ E (see [11]), and it
is an extension of A, i.e. Jy = Ay, ∀y ∈ E. Now consider the Friedrichs extension
B : D (B) ⊆ X → X of the operator A,

By := Jy, ∀y ∈ D (B) ,

where D (B) := {y ∈ E | Jy ∈ X}. The Friedrichs extension is maximal monotone
(D (B) is dense in X), B is closed, self-adjoint and strongly monotone, i.e. (By, y) ≥
c ‖y‖2 , ∀y ∈ D (B) , and the inverse operator B−1 : X → X is linear, continuous,
self-adjoint and compact. Because the embedding E →֒ X is compact, we have the
following result (see [4]).

Theorem 4. There exist the sequences {en} ⊂ E and {λn} ⊂ (0,+∞) that are
eigensolutions of B, i.e.,

(Ben, w) = λn (en, w) , ∀w ∈ X,n ∈ N

such that
1◦. {en} is an orthonormal basis in E;
2◦.
{√

λnen

}
is an orthonormal basis in X ;

3◦. {λnen} is an orthonormal basis in E∗;
4◦. {λn} is a divergent sequence increasing to +∞.

Consider the Cauchy problem in X :
{
y

′

(t) +By (t) = P (q) (t) , t ∈ (0, T )
y (0) = y0,

(14)

where 0 < T <∞, and y0 ∈ X. We have also P (q) ∈ L2 ((0, T );X) .
We will find the solution y (t) as a Fourier series in X of the form

y (t) =
∑

n≥1

bn (t) en. (15)

Formally, we arrive to the scalar Cauchy problem:
{
b
′

n (t) + λnbn (t) = Pq,n (t)
bn (0) = y0n,

(16)
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where y0n and Pq,n (t) are the Fourier coefficients y0n := 〈y0, en〉E = λn (y0, en),
Pq,n (t) := 〈P (q) (t) , en〉E = λn (P (q) (t) , en) , a.a. t ∈ (0, T ). After solving (16) we
obtain

bn (t) = y0ne−νλnt +

∫ t

0

Pq,n (s) eνλn(s−t)ds (17)

and it is true the result

Proposition 1. The function y(t) given by (15) and (17) belongs to the space
C((0, T );E) ∩ H1((0, T );E∗) and it is the unique weak solution of problem (14),
namely:

y (0) = y0 and

(y′ (t) , w) + (By (t) , w) = (P (q) (t) , w) , ∀w ∈ E.
Furthermore, if P (q) ∈ H1((0, T );X), then y ∈ C((0, T );E) ∩ C1((0, T );X) and this
is the classical solution of problem (14).

Sketch of proof. We have that:

b
′

n (t) = −νλny0ne−νλnt + Pq,n (t) + νλn

∫ t

0

P ′
q,n (s) eνλn(s−t)ds

and we prove the estimations:

|bn (t)|2 ≤ 2(y2
0ne−2νλnt +

(∫ t

0

∣∣∣Pq,n (s) eνλn(s−t)
∣∣∣ds
)2

) ≤

≤ 2

(
y2
0n + T

∫ T

0

|Pq,n (s)|2 ds

)
,

∣∣∣b′n (t)
∣∣∣
2

λ2
n

≤ 3

(
ν2y2

0n +
|Pq,n (t)|2

λ2
n

+
ν2T

λ2
1

∫ T

0

∣∣P ′
q,n (t)

∣∣2 ds

)
.

One can show the convergence of the corresponding Fourier series by using the
Cauchy’s uniformly convergence criteria. 2

Remark 2. With slight modifications, these results are also true in the case
when Ω is the complementary set of a compact one in RN .

4. Conclusions

We have developed a mathematical theory writing the steady state flow of in-
compressible fluids as an eigenvalue problem in abstract spaces, and we deduce not
only the existence of solutions, but also the branch structure of solutions and the
bifurcation points, which is perfectly concordant with the physical meaning of the
problem. Also, using Fourier method for Stokes equation we deduce not only the ex-
istence and uniqueness of the weak solution, but we determine explicitly this solution
and its properties.
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[1] P. Constantin, C. Foiaş, Navier-Stokes Equations, Chicago Lectures in Mathemat-
ics series, 1988.

[2] D. Fujiwara, H. Morimoto, An Lr-theorem of the Helmholtz decomposition vector
fields, J. Fac. Sci. Univ. Tokio, Sect. IA Math., (24) (1977), pp. 685–700.

[3] C. Mortici, S. Sburlan, A Coincidence Degree for Bifurcation Problems, Nonlinear
Analysis (53), 2003, pp. 715–721.
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The Influence of Initial Fields on the Propagation of
Attenuated Waves along an Edge of a Cubic Crystal

Olivian Simionescu-Panait∗

This paper investigates the conditions of propagation of attenuated waves in cubic

crystals subject to initial deformation and electric fields. The analysis is extended to all

symmetry classes belonging to the cubic system, exhibiting, or not, the piezoelectric effect.

We derive the velocities of propagation and the attenuation coefficients in closed-form, and we

analyze the influence of the initial fields on the wave polarization in the case of propagation

along a cube edge. In this particular case, for special choices of the initial electric field,

we derive approximate expressions for the solutions. We perform a parametric study on

the influence of the initial mechanical and electric fields on wave velocities and attenuation

coefficients.

1. Introduction

Last years, problems related to electroelastic materials subject to incremental
fields superposed on initial mechanical and electric fields have attracted considerable
attention, due their complexity and to multiple applications (see, for example, [2] and
[18]). The basic equations of the theory of piezoelectric bodies subject to infinitesimal
deformations and fields superposed on initial mechanical and electric fields, were
established by Eringen and Maugin in the well-known monograph [4]. In [17] E. Soós
obtained the governing equations in an alternate and simpler way.

In paper [1] the fundamental equations for piezoelectric crystals subject to ini-
tial fields have been established and important results concerning the dynamic and
static local stability conditions of such media were obtained. In particular, the prob-
lem of plane wave propagation in piezoelectric crystals subject to initial fields was

∗ “Gheorghe Mihoc–Caius Iacob” Institute of Mathematical Statistics and Applied
Mathematics of the Romanian Academy, Calea 13 Septembrie, No. 13, 050711 Bucharest,
Romania, e-mail: o simionescu@yahoo.com
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considered. In order to clarify the complicated aspects regarding the influence of
the initial fields on plane wave propagation in piezoelectric crystals, for various sym-
metry classes, Soós and Simionescu studied in [15] the case of 6-mm type crystals.
This case is important, due to its complexity from theoretical point of view, and its
practical applications. In [8, 9] we obtained for 6-mm type crystals the plane wave
velocities in closed form, analyzed the directions of polarization, defined new electro-
mechanical coupling coefficients, and demonstrated the influence of initial fields on
the shape of slowness surfaces. In [10] we studied the electrostrictive effect on plane
wave propagation in isotropic solids subject to initial fields. In [11] we investigated
the conditions of propagation of plane waves in cubic crystals subject to initial defor-
mations and electric fields. We developed the previous results studying the problem
of attenuated wave propagation in isotropic solids and cubic crystals subject to ini-
tial electro-mechanical fields (see [12, 13, 14]). Our results generalize, in a significant
manner, those presented in classical works such as [5, 7, 16].

In this paper we investigate the conditions for attenuated wave propagation in
cubic crystals subject to initial deformation and electric fields. The crystal is supposed
to be a linear elastic dielectric, the analysis being extended to all the symmetry
classes belonging to the cubic system, with or without the piezoelectric effect. We
derive the velocities of propagation and the coefficients of attenuation in closed-form,
and analyze the influence of the initial fields on the wave polarization in the case of
propagation along a cube edge. In this particular case, supposing special forms of
the initial electric field, we obtain approximate expressions of the obtained solutions
in order to compare them with classical solutions. Finally, we perform a parametric
study on the influence of the initial mechanical and electric fields on wave velocities
and attenuation coefficients.

2. Fundamental equations

The basic equations of piezoelectric bodies for infinitesimal deformations and
fields superposed on initial deformations and electric fields were given by Eringen
and Maugin in their monograph [4]. An alternate derivation of these equations was
obtained by Baesu, Fortuné and Soós in [1].

We assume the material to be an elastic dielectric, which is nonmagnetizable
and conducts neither heat, nor electricity. We shall use the quasi-electrostatic ap-
proximation of the equations of balance. Furthermore, we assume that the elastic
dielectric is linear and homogeneous, that the initial homogeneous deformations are
infinitesimal and that the initial homogeneous electric field has small intensity. To
describe this situation we use three different configurations : the reference configu-
ration BR in which at time t = 0 the body is undeformed and free of all fields; the

initial configuration
◦
B in which the body is deformed statically and carries the ini-

tial fields; the present (current) configuration Bt obtained from
◦
B by applying time

dependent incremental deformations and fields. In what follows, all the fields related

to the initial configuration
◦
B will be denoted by a superposed “◦”.
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In this case the homogeneous field equations take the following form:

◦
ρ ü = div Σ, div ∆ = 0,

rot e = 0 ⇔ e = −grad ϕ,

(1)

where
◦
ρ is the mass density, u is the incremental displacement from

◦
B to Bt, Σ

is the incremental mechanical nominal stress tensor, ∆ is the incremental electric
displacement vector, e is the incremental electric field and ϕ is the incremental electric
potential. All incremental fields involved into the above equations depend on the
spatial variable x and on the time t.

We have the following incremental constitutive equations:

Σkl =
◦
Ωklmn um,n+

◦
Λmkl ϕ, m + dklmnu̇m,n,

∆k =
◦
Λkmn un,m+

◦
ǫkl el =

◦
Λkmn un,m− ◦

ǫkl ϕ, l.

(2)

In these equations
◦
Ωklmn are the components of the instantaneous elasticity

tensor, dklmn are the components of attenuation (damping) tensor,
◦
Λkmn are the

components of the instantaneous coupling tensor and
◦
ǫkl are the components of the

instantaneous dielectric tensor. The instantaneous coefficients can be expressed in
terms of the classical moduli of the material and on the initial applied fields as follows:

◦
Ωklmn=

◦
Ωnmlk= cklmn+

◦
Skn δlm − ekmn

◦
El −enkl

◦
Em −ηkn

◦
El

◦
Em,

◦
Λmkl= emkl + ηmk

◦
El,

◦
ǫkl=

◦
ǫlk= ǫkl = δkl + ηkl,

(3)

where cklmn are the components of the constant elasticity tensor, ekmn are the com-
ponents of the constant piezoelectric tensor, ǫkl are the components of the constant

dielectric tensor,
◦
Ei are the components of the initial applied electric field and

◦
Skn

are the components of the initial applied symmetric (Cauchy) stress tensor.
It is important to observe that the previous material moduli have the following

symmetry properties:

cklmn = clkmn = cklnm = cmnkl, emkl = emlk,

dklmn = dlkmn = dklnm = dmnkl, ǫkl = ǫlk.

Hence, in general there are 21 independent elastic coefficients cklmn, as well as 21
independent attenuation components dklmn, 18 independent piezoelectric coefficients
eklm and 6 independent dielectric coefficients ǫkl. From the relations (3) we see

that
◦

Ωklmn is not symmetric in indices (k, l) and (m,n) and
◦

Λmkl is not symmetric
in indices (k, l). It follows that, generally, there are 45 independent instantaneous
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elastic moduli
◦
Ωklmn, 27 independent instantaneous coupling moduli

◦
Λmkl and 6

independent instantaneous dielectric moduli
◦
ǫkl.

The main goal of this work is to study the conditions for propagation of in-
cremental mechanical attenuated waves in an unbounded three dimensional material
described by the previous constitutive equations. Therefore, we suppose that the
displacement vector and the electric potential have the following form:

u(x, t) = a exp(−α · x)exp[i(ωt− p · x)],

ϕ(x, t) = a exp[i(ωt− p · x)].
(4)

Here a and a are constants, characterizing the amplitude of the wave, p = p n

(with n2 = 1) is a constant vector, p representing the wave number and n denoting
the direction of propagation of the wave, α = α n (with α defining the attenuation
coefficient). Here ω is the frequency of the wave. The velocity of propagation of the
wave is defined by v = ω/p. The validity of the hypothesis saying that the direction
of propagation coincides with the direction of attenuation was analyzed in monograph
[6].

Introducing these forms of u and ϕ into the field equations (1) and taking into
account the constitutive equations (2), (3) we obtain the condition of propagation of
attenuated waves:

◦
Q a =

◦
ρ ω2a (5)

with the components of the instantaneous acoustic tensor
◦
Q having the following

form:

◦
Qlm=

◦
Ωklmn (pk − iαk)(pn − iαn) +

(
◦
Λuvl pupv)[

◦
Λrsm (pr − iαr)(ps − iαs)]

◦
ǫij pipj

+

+iωdklmn(pk − iαk)(pn − iαn).

(6)

It is evident, that for the problem of attenuated wave propagation these com-

ponents are complex numbers and that the tensor
◦
Q is not symmetric. Consequently,

the arguments used in [1] and [3] to derive the condition of propagation, supposing
the symmetry and the positive definiteness of the acoustic tensor, are no longer valid
here, for the general formulation.

In this paper we deal with the problem of propagation of attenuated waves along
an edge of a cubic crystal subject to initial electro-mechanical fields. For particular
directions of propagation and attenuation we shall obtain the phase velocities, the
attenuation coefficients and we shall study the corresponding polarization.
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3. Attenuated wave propagation along an edge of a cubic
crystal subject to initial electro-mechanical fields

It is known that, in the case of a cubic crystal, the elasticity tensor contains
three independent constants (see [16], or [7]). Using Voigt’s convention we have:

c =




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44



. (7)

Among the five symmetry classes belonging to the cubic system, only 43m and 23
classes exhibit the piezoelectric effect, for the others (i.e. m3m, 432,m3) the piezo-
electric effect is absent.

Similarly, the attenuation tensor possesses three independent coefficients:

d =




d11 d12 d12 0 0 0
d12 d11 d12 0 0 0
d12 d12 d11 0 0 0
0 0 0 d44 0 0
0 0 0 0 d44 0
0 0 0 0 0 d44



. (8)

In case of symmetry classes 43m and 23, the piezoelectric tensor contains one
constant:

e =




0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14



 , (9)

while the dielectric tensor has one constant, for all five symmetry classes:

η =



η 0 0
0 η 0
0 0 η


 . (10)

To study the attenuated wave propagation along the [001] axis, we shall assume
that the direction of propagation coincides with x3 axis (i.e. n3 = 1, n1 = n2 = 0).

It follows that the acoustic tensor
◦
Q has the following components:

◦
Qlm= [

◦
Ω3lm3 +

◦
Λ33l

◦
Λ33m

◦
ǫ33

+ iωd3lm3](p− iα)2 =
◦

Q′
lm (p− iα)2. (11)

If we denote by V =

◦
ρ ω2

(p− iα)2
, the condition of propagation (5) will take the

form of an eigenvector problem:
◦

Q′ a = V a, (12)



236 olivian simionescu-panait

or:

(
◦

Q′
lm −V δlm)am = 0, l = 1, 3. (13)

This problem is usually associated to the following eigenvalue problem (characteristic
equation):

det(
◦

Q′
lm −V δlm) = 0. (14)

Note that, for this particular direction of propagation the acoustic tensor becomes

symmetric,
◦

Q′
lm=

◦

Q′
ml.

Thus we obtain the components of the tensor
◦

Q′ in the form:

◦

Q′
11= a = c44 + iωd44+

◦
S33 −

η

1 + η

◦

E2
1 ,

◦

Q′
12=

◦

Q′
21= b = − η

1 + η

◦
E1

◦
E2,

◦

Q′
13=

◦

Q′
31= c = − η

1 + η

◦
E1

◦
E3,

◦

Q′
22= d = c44 + iωd44+

◦
S33 −

η

1 + η

◦

E2
2 ,

◦

Q′
23=

◦

Q′
32= e = − η

1 + η

◦
E2

◦
E3,

◦

Q′
33= f = c11 + iωd11+

◦
S33 −

η

1 + η

◦

E2
3 .

(15)

From the analysis of the form of the previous coefficients, we can easily observe that
the piezoelectric effect is absent, for this direction of propagation, even if the crystal
is piezoelectric active.

With this notation, the condition of propagation (13) becomes:




a a1 + b a2 + c a3 = V a1

b a1 + d a2 + e a3 = V a2

c a1 + e a2 + f a3 = V a3,

(16)

while, the characteristic equation (14) has the form:

F (V ) =

∣∣∣∣∣∣

a− V b c
b d− V e
c e f − V

∣∣∣∣∣∣
= 0. (17)

4. Analysis of particular cases

In order to obtain the phase velocities and the attenuation coefficients in closed
form, in what follows we shall present two important particular cases:

4.1. Longitudinal initial electric field (
◦

E1=
◦

E2= 0,
◦

E3 6= 0)

This case can be defined as an electro-acoustic Pockels effect (see [4] for the
analogous electro-optical effect). Here, the expressions b, c, e being zero, the charac-
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teristic equation (17) has the following roots:

V1 = V2 = c44 + iωd44+
◦
S33,

V3 = c11 + iωd11+
◦
S33 −

η

1 + η

◦

E2
3 .

(18)

As regards the polarization of the obtained waves, using the condition of propa-
gation (16) in this particular case, we can easily see that V3 corresponds to a longitu-
dinal wave with electrostrictive effect, while V1 = V2 are linked to transverse waves,
arbitrarily polarized.

To find the phase velocities and attenuation coefficients related to the previous
roots, we shall denote by:

V3 = AL + iBL =

◦
ρ ω2

(pL − iαL)2
,

AL = c11+
◦
S33 −

η

1 + η

◦

E2
3 , BL = ωd11.

(19)

It yields a phase velocity vL, in the form:

v2
L =

ω2

p2
L

=
2(A2

L +B2
L)

◦
ρ (
√
A2

L +B2
L +AL)

, (20)

and an attenuation coefficient αL, given by the relation:

α2
L =

◦
ρ ω2

2
·
√
A2

L +B2
L −AL

A2
L +B2

L

. (21)

We can conclude that the displacement vector, in this particular case, has the
form uL = (0, 0, uL

3 ), with:

uL
3 (x3, t) = a3exp(−αLx3)exp

[
iω(t− x3

vL
)

]
. (22)

We easily observe that the attenuation affects the phase velocity vL (by ω), and the
amplitude of the longitudinal wave (by αL). Moreover, the electrostrictive effect is

represented by the term − η

1 + η

◦

E2
3 .

To obtain an approximate solution of this problem, we shall denote by ǫ =
ωd11/c11 a non-dimensional number. Supposing that ǫ≪ 1, we shall approximate the
expression (20) and (21) for phase velocity and attenuation coefficient, to first order
in ǫ.

Neglecting the terms containing powers of order greater than ǫ, we derive the
approximate form of the phase velocity:

vL ≃ v∗L
√

1 + ψ, v∗L =

√
c11/

◦
ρ, ψ =

◦
S33 −

η

1 + η

◦

E2
3

c11
. (23)
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Here v∗L is the longitudinal velocity in the classical case, without initial fields, and ψ
is a non-dimensional number describing the influence of the initial fields.

In a similar way, we can derive an approximate form of the attenuation coeffi-
cient:

αL ≃ α∗
L ·

1

(1 + ψ)3/2
, α∗

L =
τω2

2v∗L
, τ = d11/c11. (24)

Here α∗
L is the attenuation coefficient in the case without initial fields, as defined in

[7].
Applying the same procedure, as in the case of the longitudinal wave, we find

the phase velocity and attenuation coefficients for the transverse waves. So, using the
notation:

V1 = V2 = AT + iBT =

◦
ρ ω2

(pT − iαT )2
,

AT = c44+
◦
S33, BT = ωd44,

(25)

we obtain the phase velocity vT in the form:

v2
T =

ω2

p2
T

=
2(A2

T +B2
T )

◦
ρ (
√
A2

T +B2
T +AT )

, (26)

and the attenuation coefficient αT , as:

α2
T =

◦
ρ ω2

2
·
√
A2

T +B2
T −AT

A2
T +B2

T

. (27)

We can conclude that the displacement vector, in this case, has the form uT =
(uT

1 , u
T
2 , 0), with:

uT
k (x3, t) = akexp(−αTx3)exp

[
iω(t− x3

vT
)

]
, k = 1; 2. (28)

We observe that the phase velocity vT depends on ω and the amplitude is affected by
αT . Similar approximate forms for the phase velocity and attenuation coefficient can
be obtained in this case, too.

4.2. Transverse initial electric field (
◦

E1 6= 0,
◦

E2 6= 0,
◦

E3= 0)

This case can be defined as an electro-acoustic Kerr effect (see [4] for the anal-
ogous electro-optical effect).

In this case, the coefficients c and e being zero, the characteristic equation (17)
has the following three roots:

V ′
1 = c44+

◦
S33 +iωd44, V

′
2 = c44+

◦
S33 +iωd44 −

η

1 + η
(

◦

E2
1 +

◦

E2
2),

V ′
3 = c11+

◦
S33 +iωd11.

(29)
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As regards the polarization of the obtained waves, using the condition of prop-
agation (16) in this particular case, we can easily see that V ′

3 corresponds to a longi-
tudinal wave, while V ′

1 is linked to a transverse wave, whose polarization direction is
fixed by the initial electric field. Indeed, in this case, the system (16) reduces to the

equation
◦
E1 a1+

◦
E2 a2 = 0.

V ′
2 corresponds to a transverse wave, with a direction of polarization fixed by

the initial electric field, given by the equation
◦
E2 a1−

◦
E1 a2 = 0, normal to the

preceding direction.
To find the phase velocities and attenuation coefficients related to the previous

roots, we shall proceed as in the case with longitudinal initial electric field. So, using
the notation:

V ′
3 = A′

L + iB′
L =

◦
ρ ω2

(pL − iαL)2
, A′

L = c11+
◦
S33, B

′
L = ωd11, (30)

we obtain a phase velocity vL in the form:

v2
L =

ω2

p2
L

=
2(A′

L
2
+B′

L
2
)

◦
ρ (
√
A′

L
2 +B′

L
2 +A′

L)
, (31)

and an attenuation coefficient αL:

α2
L =

◦
ρ ω2

2
·

√
A′

L
2 +B′

L
2 −A′

L

A′
L

2 +B′
L

2 . (32)

We conclude that the displacement vector, in this case, has the form uL =
(0, 0, uL

3 ), with:

uL
3 (x3, t) = a3exp(−αLx3)exp

[
iω(t− x3

vL
)

]
. (33)

We observe that the attenuation affects the phase velocity vL (by ω), and the am-
plitude of the longitudinal wave (by αL). In this case, the electrostrictive effect is
absent.

Applying the same procedure, we find the phase velocity and attenuation coef-
ficient for the transverse waves. So, letting:

V ′
1 = AT1 + iBT1 =

◦
ρ ω2

(pT1 − iαT1)
2
, AT1 = c44+

◦
S33, BT1 = ωd44, (34)

we obtain the phase velocity vT1 in the form:

v2
T1

=
ω2

p2
T1

=
2(A2

T1
+B2

T1
)

◦
ρ (
√
A2

T1
+B2

T1
+AT1 )

, (35)



240 olivian simionescu-panait

and attenuation coefficient αT1 :

α2
T1

=

◦
ρ ω2

2
·

√
A2

T1
+B2

T1
−AT1

A2
T1

+B2
T1

. (36)

We can see that the displacement vector, in this case, has the form uT1 =
(uT1

1 , uT1
2 , 0), where:

uT1

k (x3, t) = akexp(−αT1x3)exp

[
iω(t− x3

vT1

)

]
, k = 1; 2. (37)

Similar approximate forms for the phase velocity and attenuation coefficient can be
obtained in this case. This transverse wave is attenuated, has the polarization fixed
by the initial electric field, and is not affected by the electrostrictive effect.

Finally, on letting:

V ′
2 = AT2 + iBT2 =

◦
ρ ω2

(pT2 − iαT2)
2
,

AT2 = c44+
◦
S33 −

η

1 + η
(

◦

E2
1 +

◦

E2
2), BT2 = ωd44,

(38)

we obtain the phase velocity vT2 in the form:

v2
T2

=
ω2

p2
T2

=
2(A2

T2
+B2

T2
)

◦
ρ (
√
A2

T2
+B2

T2
+AT2)

, (39)

and an attenuation coefficient αT2 :

α2
T2

=

◦
ρ ω2

2
·

√
A2

T2
+B2

T2
−AT2

A2
T2

+B2
T2

. (40)

We conclude that the displacement vector, in this case, has the form uT2 = (uT2
1 , uT2

2 , 0),
with:

uT2

k (x3, t) = akexp(−αT2x3)exp

[
iω(t− x3

vT2

)

]
, k = 1; 2. (41)

Similar approximate forms for the phase velocity and attenuation coefficient can be
obtained in this case. This transverse wave is attenuated, has the polarization fixed
by the initial electric field, and is affected by the electrostrictive effect.

4.3. Parametric study

Here we analyze the influence of the initial mechanical and electric fields on wave
velocities and attenuation coefficients, corresponding to a longitudinal initial electric
field.
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In Table 1 we compute the rapport between longitudinal wave velocities in the
case without initial fields, and with initial strain fields of order 1%, 2% and 5%,
resp. of attenuation coefficients (see formulae (23) and (24)). The influence of initial
electric field on wave velocities and attenuation coefficients is very weak, even if its

intensity is important:
◦
E1= 103

√
Pa = 108 V/m. The superior value corresponds to

a traction stress
◦
S11, while the inferior value is related to a compression stress

◦
S11,

that generate the initial strain fields. One can observe important differences between
these values, due to the initial strain fields.

Table 1

The influence of initial strain fields on wave velocities and atten-
uation coefficients for longitudinal initial electric field

0% initial strain field 1% 2% 5%

vL/v∗
L 1 1.005/0.995 1.010/0.990 1.025/0.975

αL/α∗
L 1 0.985/1.015 0.971/1.031 0.929/1.080
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We present here a model that describes the radiation-induced defect formation during

prolonged irradiation of nuclear materials using molecular dynamics simulation methods.

The purpose of the simulation is to study the formation of vacancies and interstitial defects

in the face centered cubic metals and to set the ground for comparing and contrasting the

localization of the heat spikes and of the resulting molten region in metallic targets. The

interactions between the high energy ion and the atoms in the target are modelled by the

Ziegler-Biersack-Littmark potential, which gives a good fit to reasonably accurate quantum

calculations of interatomic potentials in the repulsive region, while the equilibration within

the system can be described by means of the Morse potential. The energetic ion (with initial

kinetic energy lower than 5 keV) impinging on a dense solid produces a sequence of atomic

collisions that cause structural defects and can even lead to a local melting of the crystal,

followed by quenching into a strongly disordered phase.

1. Introduction

The degradation of the physical properties of the metal alloys used in pressure
vessels in nuclear power plants as well as in metal coatings for fusion-based alternative
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energy sources can be modeled at the shortest length and time scales (nanometers and
picoseconds) using molecular dynamics simulations [15]. The energetic ion impinging
on a dense solid produces a sequence of atomic collisions that cause structural defects,
such as vacancies and interstitial defects and can even lead to a local melting of the
crystal, followed by quenching into a strongly disordered phase [2].

The study of the formation of such defects in the low energy range (namely below
about 5 keV), where elastic collisions dominate the slowing-down process, computer
simulation methods have been commonly used [2]. Binary collision approximation
methods provide a fairly efficient means for calculating ion ranges, but molecular
dynamics (MD) methods, although require larger computational efforts in terms of
memory and computer time, describe the interactions involved in radiation damage
much more realistically [15].

The slowing down of ions in solid materials is conventionally interpreted to be
due to two separate processes, electronic and nuclear slowing down (stopping) [21].
Defining the stopping power as the energy loss per unit distance, it was shown [21]
that electronic slowing down dominates the stopping of the impinging ion at high ion
energies (higher than roughly 1 keV/amu). However, when the ion has slowed down
sufficiently, nuclear slowing down will always sooner or later becomes significant. The
maximum of the nuclear stopping curve typically occurs at energies around 1 keV/amu
while the minimum at about 100 keV/amu. (It should be noted, however, that for very
light ions slowing down in heavy materials, the nuclear stopping is weaker than the
electronic at all energies.) Therefore, at keV energies the electronic slowing down does
not significantly contribute to the production of lattice defects. Defect production is
chiefly caused by nuclear stopping, i.e. elastic collisions between a recoiling ion and
atoms in the medium.

When an energetic projectile ion collides with a target atom in a crystal lattice
and gives enough energy to it, the lattice atom will collide with other lattice atoms,
resulting in a large number of successive collisions. All such atomic collision processes
initiated by a single ion are called a collision cascade. A collision cascade is a complex
process that can be divided into three phases [5]. The initial stage, during which
atoms collide strongly, is called the collisional phase, and typically lasts about 0.1–1
ps. In the second phase, the high kinetic energy of the atoms affected by the collision
processes decreases by dissipation in the crystal by means of heat conduction. This
phase is called the thermal spike, and lasts roughly 1 ns. During the last phase,
after the cooling down, the crystal is usually left with a large quantity of defects.
The defects can vary from vacancies and interstitial atoms to complex interstitial-
dislocation loops and volume defects [11, 16]. If the lattice temperature is high enough,
many of these defects will relax by thermally activated migration [9]. This is the so
called relaxation phase of the collision cascade.

The type of damage produced during ion irradiation may be very complex and
varies a great deal for different ion types, sample materials and implantation con-
ditions. However, some general characteristics can be identified for irradiation of
metals. For instance, at a certain irradiation intensity (roughly 1014 ions/cm2 for
some metals) the sample may become amorphous [16].
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2. Model

In molecular dynamics simulations the time evolution of a system of atoms is
calculated by solving the equations of motion numerically [1, 10]. Since the move-
ment of each individual atom involved in a collisions cascade can be followed in MD
simulations, they offer the most realistic way of examining defect formation during
ion implantation. One of the very first uses of molecular dynamics methods was in
fact simulation of collision sequences in metals [6, 8]; since then MD simulations have
been used to study a large variety of phenomena in collision cascades [16].

The molecular dynamics simulation process starts by calculating the force acting
on each atom in the system. The equations of motion for the system are solved using
some suitable algorithm [3, 17]. The solution yields the change in the atom positions,
velocities and accelerations over a finite time step ∆t. After the atoms have been
moved the simulation continues by recalculating the forces in the new positions. The
atoms that are included in the calculation are usually placed in an face-centered cubic
lattice within an orthogonal simulation cell.

The forces governing the simulation can be obtained from classical or quan-
tum mechanical calculations. Although promising advances have recently been made
using tight-binding molecular dynamics methods, quantum molecular dynamics meth-
ods are still far too time-consuming to allow simulation of full collision cascades [7].
Therefore classical MD simulations have to be used in the foreseeable future for de-
scriptions of energetic collision cascades.

In classical MD simulations the interaction between atoms in the sample are
described with an interatomic potential V (r), generally assumed to depend only on
the distance r between two atoms. Probably the most common choices for the in-
teratomic potential are the Lennard-Jones [12] and Morse [14] potentials, the former
more suitable for closed shell systems such as the noble gases while the latter more
appropriate for metals. The expressions for these potentials are:

VLJ(r) = 4ε
[(σ
r

)12

−
(σ
r

)6]
(1)

and

VM (r) = Dea(1−r/re)
(
1− ea(1−r/re)

)
(2)

for the Lennard-Jones and Morse cases, respectively. In these equations r is the
distance between the atoms. Also, σ and ε are the characteristic length and energy
scales of the Lennard-Jones interaction, while re is the equilibrium bond distance, D
is the depth of the potential energy well function, and a controls the width of the
potential.

The type of interaction occurring between the projectile ion and the neutral
atoms in the target depends on the energy of the incoming ion. At energies larger
than 1 keV the slowing down is mostly due to electrons, while at lower energies the
slowing down is mostly nuclear. Consequently, the interactions have to be considered
carefully. Collisions of the impinging particle with the recoil atoms can be described
by repulsive interactions, which at small distances can be regarded as essentially
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Coulombic. At greater distances, the electron clouds screen the nuclei from each
other and the repulsive potential can be described by multiplying the Coulombic
repulsion between nuclei with a screening function,

VZBL(r) =
1

4πε0

Z1Z2

r
ϕ(r), (3)

where ϕ(r) goes to unity as the distance r between the nuclei vanishes, and Z1 and
Z2 are the charges of the interacting nuclei.

A large number of different repulsive potentials and screening functions have
been proposed over the years, some determined semi-empirically, others from the-
oretical calculations. A much used repulsive potential is the one given by Ziegler,
Biersack and Littmark (ZBL) [21]. It has been constructed by fitting a universal
screening function to theoretically obtained potentials calculated for a large variety
of atom pairs. The ZBL screening function has the form

ϕ(r) = 0.1818e−3.2r/r̄+0.5099e−0.9423r/r̄+0.2802e−0.4029r/r̄+0.02817e−0.2016r/r̄, (4)

where

r̄ =
0.8854

Z0.23
1 + Z0.23

2

aB (5)

(aB being the Bohr atomic radius, equal to 0.529 Å). It can be verified that at small
distances ϕ(r) goes to unity, while as the distance increases the screening is more
effective and ϕ(r) vanishes.

3. Simulation-algorithm, parameters and initial state prepa-
ration

In molecular dynamic simulations the time evolution of a system of atoms is cal-
culated by solving the equations of motion numerically. In the Newtonian formalism
the force acting on an atom is calculated based on the sum of the contributions of
all other particles, taking into account the gradient of the interatomic potential [1].
After the force calculation, the equations of motion for the system are solved using
an integration algorithm, to provide the new positions and velocities for each particle
at the next moment. The time step, ∆t, is appropriately chosen to optimize a com-
promise between accuracy and duration of the simulation. The process is repeated by
calculating the forces in the new positions and integrating to find the new positions
and velocities.

Our simulation algorithm is based on Newtons classical laws of motion. The
equations of motion for the typical equilibrium simulation, performed at constant
energy (in the microcanonical ensemble), are given simply by Newtons second law.
The most common integration algorithm is the so called velocity Verlet algorithm
[19], whose defining relations are:

r(t+ ∆t) = r(t) + v(t)∆t + a(t)(∆t)2/2, (6)

v(t + ∆t) = v(t) + [a(t) + a(t+ ∆t)](∆t)/2. (7)
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The positions and velocities at a given moment are determined based on the positions
and velocities at the previous moment and the accelerations at both the previous and
the present time.

In more sophisticated simulations at constant temperature and pressure, the
equations of motion are more complicated, originating, however, from the same New-
tons law. The temperature and the pressure of the system are kept constant for
instance by scaling the velocities and positions of all the particles, respectively, fol-
lowing a certain equilibration time frame. A typical approach is the one proposed by
Berendsen [4], which introduces the scaling factors

λ =

√
1 +

∆t

τT

(Td

T
− 1
)

(8)

and

µ = 3

√
1− β∆t

τP

(
Pd − P

)
, (9)

where the temperature and pressure equilibration times (τT and τP , respectively) are
usually > 100∆t. Here, Td and Pd are the desired temperature and pressure, while β
is the isothermal compressibility (inverse bulk modulus).

The infinite range of the potential implies that every particle interacts with all
the other particles. As the simulated systems grow larger and larger the number
of force computations grows with the square of the number of particles, leading to
long computer times for each run. A partial solution to this problem is the potential
truncation, suggested by the rapid decrease of the strength of the interaction at large
distances [1]. Typical cutoff radii are rc = 2.5σ for the Lennard-Jones, rc = 1.8re,
about 5 Å for the Morse, and around 3 Å for the ZBL potential.

A second step in reducing computational time is the use of a neighbor list [18].
The neighbor list keeps track of the particles located just outside the cutoff radius
of a certain particle, to minimize the search for interaction candidates. Given the
small number of particles used in this work the use of neighbor lists is not justified.
However, for future simulations, with larger number of particles the use of a neighbor
list is likely to reduce significantly the computation time.

The most important criterion for selecting the minimum size of the simulation
cell during a recoil event calculation is that all atoms within the cutoff distance of the
recoil atom must be present at all times during the simulation. Therefore, a simulation
cell with a side length of 10–15 Å is large enough to contain all atoms that, at a given
moment, interact with the recoil atom. This typically amounts to a cell containing
50–100 atoms. A length of 10–15 Å, however, cannot contain the entire path of an
implanted ion in the keV energy range, as it may move several hundreds or thousands
of angstroms in the implanted sample. Therefore, a mechanism for ensuring that the
recoil atom is always surrounded by lattice atoms is needed. We investigate here
collision cascades of low energy ions (lower than 1 keV), and we used a lattice of 1 000
such atoms.

As the number of particles used in the simulations is relatively small a real
system can be simulated only using periodic boundary conditions [1]. The boundary
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conditions apply only along the two transverse directions with respect to the incoming
ion and insure that i) once a particle escapes through a wall it has to enter the system
from the opposite side, and ii) when distances between particles are evaluated, one
has to choose between the particle or its image in the adjacent box to determine the
total force on the respective particle. To prevent unphysical double counting (of both
the particle and its image) one has to impose the condition that the size of the box is
larger than twice the cutoff distance, rc. One possible drawback of using conventional
periodic boundary conditions is the risk for the recoil atom to move in a simulation
cell damaged by its own previous motion. This is another reason to choose a larger
system.

The time step ∆t is usually fixed in simulations of systems in thermal equi-
librium. In collision cascade calculations the initial time step must be very short.
Therefore, using a fixed time throughout the simulation is very ineffective. Instead,
we choose the length of the time step dynamically to allow a good compromise be-
tween the speed and the accuracy of the simulation. The time step is made inversely
proportional to the velocity of the fasted moving atom. Thus, the time step becomes
longer as the recoil atom slows down, significantly reducing the calculation time. After
the collisional phase the time step is held constant again, equal to 2 fs.

4. Results and discussion

The simulations were performed on a personal computer with an Intel Celeron
processor running at 2.4 GHz clock speed, using an in house program written in C
based on the MDRANGE program [13].

The equilibrium state of the system is prepared by equilibrating 1 000 copper
atoms located on a fcc crystalline lattice. In the initial displacement calculation, pe-
riodic boundary conditions and a constant time step of 2 fs are used. The atoms are
given initial velocities in random directions following a Maxwell distribution corre-
sponding to a given initial temperature. The final (desired) temperature is set for
300 K. The simulation is carried out until the average temperature averaged over
the last 2 000 time steps yields the desired temperature T (within the error bounds).
Figure 1 shows the time evolution of the system temperature during the equilibra-
tion stage, starting from 450 K and ending with fluctuations around 300 K. The
characteristic temperature equilibration time was τT = 100∆t = 200 fs.

During the preparation of the equilibrium state the pressure of the system is also
monitored (see Fig. 2). The cell size is scaled such that the system returns to atmo-
spheric pressure, as during the first steps of the equilibration process it departs from
the initial value of atmospheric pressure. The characteristic pressure equilibration
time was τP = 100∆t = 200 fs.

The time evolution of order parameter of the fcc lattice is shown in Fig. 3. As
the initial positions of all atoms where on a perfect lattice, the order parameter starts
as unity and decreases due to displacements from the lattice values.

The initial state for the collision simulations is shown in Fig. 4 (left). The system
is made up of one incoming copper ion of various kinetic energies, initially located at
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Fig. 1. Temperature versus
time during the preparation
of the initial state for the

collision simulation.

Fig. 2. Pressure versus time
during the preparation of
the initial state for the col-

lision simulation.

Fig. 3. Order parame-
ter versus time during the
preparation of the initial
state for the collision sim-

ulation.

10 Å away from the target, impinging centrally, at normal incidence, on 1 000 copper
atoms. The target was previously equilibrated for 5 000 fs (2 500 simulation steps).
The grayscale coding shown in Fig. 4, ranging from high energies (black and dark
grey) to room temperature kinetic energies (light grey), is valid for all figures in this
work.

Fig. 4. The initial state of the collision simulation (left), the result of the collision with
a 500 eV particle, after 140 fs from the contact (right), and the grayscale energy coding
(bottom): 1) > 25 eV, 2) 25–5 eV, 3) 5–1.2 eV, 4) 1.2–0.7 eV, 5) 0.7–0.5 eV, 6) 0.5–0.35
eV, 7) 0.35–0.2 eV, 8) 0.2–0.14 eV, 9) 0.14–0.1 eV, 10) 0.1–0.06 eV, 11) 0.06–0.03 eV, 12)

0.03–0.005 eV, 13) < 0.005 eV. This color coding is valid for all figures in this work.

Simulations were performed at various initial energies of the incoming particle:
10, 20, 50, 100, 200, 500, and 1 000 eV. We show here details of our simulations for
two of the most interesting cases, namely at 50 eV (Fig. 5) and 500 eV (Fig. 6).

Displayed in Fig. 5 are two-dimensional images of the system at various times
during the collision process. It can be seen that the projectile particle is rapidly
slowed down in the target and that the damage is limited in the system. The collision
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Fig. 5. Two dimensional images of the collision processes at various times in the case
of an 50 eV incoming particle.

phase lasts less than 200 fs, being followed by a thermal spike during which the heat
is dissipated in roughly 1 000 fs. The relaxation phase lasts more than 2 000 fs, the
defects, not very numerous, migrating through the lattice.

In the case of a 500 eV projectile, the damaging effects of the collision are
more spectacular. As shown in Fig. 6, the collision phase lasts less than 200 fs. The
energy of the incoming particle is transferred to the target atoms causing major defect
formation. The thermal spike allows the heat dissipation in roughly 1 000 fs. Again,
the relaxation phase lasts more than 2 000 fs, the defects, much more numerous this
time, migrating through the lattice. It can be seen that the left part of the system was
melted during the collision, being left in an roughly amorphous state, while the right
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Fig. 6. Two dimensional images of the collision processes at various times in the case
of an 500 eV incoming particle.

part was less affected and preserved its crystallinity. The displacements caused by
the recoil atom lead to various defects, most often, Frenkel pairs (an interstitial atom,
leaving behind a vacant lattice site). The number of defects increases, as expected
with the kinetic energy of the incoming particle. For energies of 1000 eV the particles
breaks through the target, which clearly shows that a larger simulation cell with a
larger number of atoms is needed to describe the collision properly.

The number of Frankel pairs varies strongly between individual recoil events,
which suggests that if one wishes to make quantitative conclusions on defect pro-
duction from MD simulations of collision cascades, it is essential to simulate a large
number of events in order to obtain a statistically significant average of the number
of defects produced.
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5. Conclusions

We reported studies of the interaction involving low energy ions impinging on
fcc metal surfaces aimed at revealing the damage caused by the recoil events. We used
molecular dynamics simulations to describe the radiation-induced defect formation in
copper. We found that, as expected, the number of defects increases with the kinetic
energy of the incoming particle, for energies larger that 1 000 eV the simulation cell
being insufficient. We found that to study quantitatively the defect production, it is
imperative that a large number of collision events are simulated for a proper averaging
of the results.
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