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Abstract

The aim of this paper is to study the asymptotic behavior of the solution of a nonlinear problem
arising in the modeling of chemical reactive flows through periodically perforated domains. The
asymptotic behavior of the solution of such a problem is governed by a new elliptic boundary-value
problem with an extra zero-order term that captures the effect of the chemical reactions.
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1 Introduction

The aim of this paper is to study the asymptotic behavior of the solution of a nonlinear problem
arising in the modelling of chemical reactive flows through periodically perforated domains. More
precisely, we shall focus on the so-called Langmuir model (see [5]-[6] and the references therein). Let
Ω be an open bounded set in R

n and let us perforate it by holes. As a result, we obtain an open set
Ωε which will be referred to as being the perforated domain ; ε represents a small parameter related
to the characteristic size of the perforations. We shall deal with the case in which the perforations are
identical and periodically distributed and their size is of the order of ε. In these perforations we shall
introduce a set of reactive solid grains (reactive obstacles).
The nonlinear problem studied in this paper concerns the stationary reactive flow of a fluid confined
in Ωε, of concentration uε, reacting on the boundary of the perforations:





−Df∆u
ε + β(uε) = f in Ωε,

−Df
∂uε

∂ν
= aεg(uε) on Sε,

uε = 0 on ∂Ω.

(1)
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Here, ν is the exterior unit normal to Ωε, a > 0, f ∈ L2(Ω), Sε is the boundary of the obstacles
and ∂Ω is the fixed external boundary of Ω. Moreover, the fluid is assumed to be homogeneous and
isotropic, with a constant diffusion coefficient Df > 0.
We shall consider that the functions β and g in (1) are continuously differentiable functions, monotonously
non-decreasing and such that β(0) = 0, g(0) = 0. This general situation is well illustrated by the fol-
lowing important practical examples, arising in the so-called Langmuir model:

β(v) =
λv

1 + µv
, λ, µ > 0

and

g(v) =
δv

1 + γv
, δ, γ > 0.

The existence and uniqueness of a weak solution of (1) can be settled by using the classical theory of
semilinear monotone problems (see, for instance, [1] and [7]). As a result, we know that there exists
a unique weak solution uε ∈ V ε

⋂
H2(Ωε), where

V ε = {v ∈ H1(Ωε) | v = 0 on ∂Ω}.

From a geometrical point of view, we shall just consider periodic structures obtained by removing
periodically from Ω, with period εY (where Y is a given hyper-rectangle in R

n), an elementary hole
T which has been appropriated rescaled and which is strictly included in Y , i.e. T ⊂ Y .
As usual in homogenization, we shall be interested in obtaining a suitable description of the asymptotic
behavior, as ε tends to zero, of the solution uε in such domains.
We shall see that the solution uε, properly extended to the whole of Ω, converges weakly in H1

0 (Ω) to
the unique solution of the following homogenized problem:





n∑

i,j=1

qij
∂2u

∂xi∂xj
+ a

|∂T |∣∣∣Y \ T
∣∣∣
g(u) + β(u) = f in Ω,

u = 0 on ∂Ω.

(2)

Here, Q = ((qij)) is the classical homogenized matrix, whose entries are defined as follows:

qij = Df


δij +

1

|Y \ T |

∫

Y \T

∂χj
∂yi

dy


 (3)

in terms of the functions χ
i
, i = 1, ..., n, solutions of the so-called cell problems





−∆χ
i
= 0 in Y \ T ,

∂(χi + yi)

∂ν
= 0 on ∂T,

χi Y − periodic.

(4)
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The approach we used is the so-called energy method introduced by L. Tartar [8] for studying homog-
enization problems. The structure of our paper is as follows: first, let us mention that we shall just
focus on the case n ≥ 3, which will be treated explicitly. The case n = 2 is much simpler and we shall
omit to treat it here. In Chapter 2 we introduce some useful notations and assumptions and we give
the main result. In Chapter 3 we give the proof of the main convergence result of this paper.

2 Preliminaries and the Main Result

Let Ω be a smooth bounded connected open subset of R
n (n ≥ 3) and let Y = [0, l1[×...[0, ln[ be the

representative cell in R
n. Denote by T an open subset of Y with smooth boundary ∂T such that

T ⊂ Y . We shall refer to T as being the elementary hole.
Let ε be a real parameter taking values in a sequence of positive numbers converging to zero. For each ε
and for any integer vector k ∈ Z

n, set T ε
k the translated image of εT by the vector kl = (k1l1, ..., knln) :

T ε
k = ε(kl + T ).

The set T ε
k represents the holes in R

n. Also, let us denote by T ε the set of all the holes contained in
Ω, i.e.

T ε =
⋃ {

T ε
k | T ε

k⊂Ω, k ∈ Z
n
}
.

Set

Ωε = Ω \ T ε.

Hence, Ωε is a periodically perforated domain with holes of size of the same order as the period.
Remark that the holes do not intersect the boundary ∂Ω.
Let

Sε = ∪{∂T ε
k | T

ε
k⊂Ω, k ∈ Z

n}.

So

∂Ωε = ∂Ω ∪ Sε.

We shall also use the following notations:

|ω| = the Lebesgue measure of any measurable subset ω of R
n,

χ
ω
= the characteristic function of the set ω,

Y ∗ = Y \ T ,

and

ρ =
|Y ∗|

|Y |
. (5)
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2.1 Setting of the problem

As already mentioned, we are interested in studying the behavior of the solution, in such a perforated
domain, of the following problem:





−Df∆u
ε + β(uε) = f in Ωε,

−Df
∂uε

∂ν
= aεg(uε) on Sε,

uε = 0 on ∂Ω.

(6)

Here, ν is the exterior unit normal to Ωε, a > 0, f ∈ L2(Ω), Sε is the boundary of the obstacles
and ∂Ω is the fixed external boundary of Ω. Moreover, the fluid is assumed to be homogeneous and
isotropic, with a constant diffusion coefficient Df > 0.
We shall consider that the functions β and g in (6) are continuously differentiable functions, monotonously
non-decreasing and such that β(0) = 0, g(0) = 0. We shall also suppose that there exist a positive
constant C and an exponent q, with 0 ≤ q < n/(n− 2), such that

|
d β

dv
|≤ C(1 + |v|q)

and

|
d g

dv
|≤ C(1 + |v|q).

This general situation is well illustrated by the above mentioned important practical examples (Lang-
muir model).
Let us introduce the functional space

V ε = {v ∈ H1(Ωε) | v = 0 on ∂Ω},

with the norm
‖v‖V ε = ‖∇v‖L2(Ωε).

The weak formulation of problem (6) is:




Find uε ∈ V ε such that

Df

∫

Ωε

∇uε · ∇ϕdx+ aε

∫

Sε

g(uε)ϕdσ+

+
∫

Ωε

β(uε)ϕdx =
∫

Ωε

fϕdx ∀ϕ ∈ V ε.

(7)

By classical existence results (see [1]), there exists a unique weak solution uε ∈ V ε∩H2(Ωε) of problem
(7).
The solution uε of problem (7) being defined only on Ωε, we need to extend it to the whole of Ω to
be able to state the convergence result. In order to do that, let us recall the following well-known
extension result (see [4]):

4
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Lemma 1 There exists a linear continuous extension operator P ε ∈ L(L2(Ωε);
L2(Ω)) ∩ L(V ε;H1

0 (Ω)) and a positive constant C, independent of ε, such that

‖P εv‖L2(Ω) ≤ C ‖v‖L2(Ωε)

and
‖∇P εv‖L2(Ω) ≤ C ‖∇v‖L2(Ωε) ,

for any v ∈ V ε.

An immediate consequence of the previous lemma is the following Poincaré’s inequality in V ε :

Lemma 2 There exists a positive constant C, independent of ε, such that

‖v‖L2(Ωε) ≤ C ‖∇v‖L2(Ωε) ,

for any v ∈ V ε.

2.2 The main result

The main result of this paper is the following one:

Theorem 1 One can construct an extension P εuε of the solution uε of the variational problem (7)
such that

P εuε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of




−
n∑

i,j=1

qij
∂2u

∂xi∂xj
+ a

|∂T |

|Y ∗|
g(u) + β(u) = f in Ω,

u = 0 on ∂Ω.

(8)

Here, Q = ((qij)) is the classical homogenized matrix, whose entries are defined as follows:

qij = Df (δij +
1

|Y ∗|

∫

Y ∗

∂χj
∂yi

dy), (9)

in terms of the functions χ
i
, i = 1, ..., n, solutions of the so-called cell problems





−∆χ
i
= 0 in Y ∗,

∂(χi + yi)

∂ν
= 0 on ∂T,

χi Y − periodic.

(10)

The constant matrix Q is symmetric and positive-definite.
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3 Proof of the main result

Proof of Theorem 1. We divide the proof into three steps.

First step. Let uε ∈ V ε be the solution of the variational problem (7) and let P εuε be the extension
of uε inside the obstacles given by Lemma 1. Taking ϕ = uε as a test function in (7), we easily get

‖P εuε‖H1

0
(Ω) ≤ C.

Consequently, by passing to a subsequence, still denoted by P εuε, we can assume that there exists
u ∈ H1

0 (Ω) such that

P εuε ⇀ u weakly in H1
0 (Ω). (11)

It remains to identify the limit equation satisfied by u.
Second step. For getting the effective behavior of our solution we have to pass to the limit in (7). In
order to do this, following [3] and [6], let us introduce, for any h ∈ Lp(∂T ), 1 ≤ p ≤ ∞, the linear
form µεh on W 1,s

0 (Ω) defined by

〈µεh, ϕ〉 = ε

∫

Sε

h(
x

ε
)ϕdσ ∀ϕ ∈W 1,s

0 (Ω),

with 1/s+ 1/p = 1. From [3] we know that

µεh → µh strongly in (W 1,s
0 (Ω))′, (12)

where

〈µh, ϕ〉 = µh

∫

Ω

ϕdx,

with

µh =
1

|Y |

∫

∂T

h(y)dσ.

Moreover, if h is constant, we have

µεh → µh strongly in W−1,∞(Ω) (13)

and we shall denote µε the above introduced measure in the particular case in which h = 1. Notice

that in this case µh becomes µ1 =
|∂T |

|Y |
.

On the other hand, let us notice that, exactly like in [6], one can easily prove that for any ϕ ∈ C∞
0 (Ω)

and for any zε ⇀ z weakly in H1
0 (Ω), we get

ϕg(zε)⇀ ϕg(z) weakly in W 1,q
0 (Ω) (14)

and

ϕβ(zε)⇀ ϕβ(z) weakly in W 1,q
0 (Ω), (15)
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where

q =
2n

q(n− 2) + n
.

Now, from (13) (with h = 1) and (14) written for zε = P εuε, we obtain

〈µε, ϕg(P εuε)〉 →
|∂T |

|Y |

∫

Ω

ϕg(u)dx ∀ϕ ∈ C∞
0 (Ω). (16)

Third step. Let ξε be the gradient of uε in Ωε and let us denote by ξ̃ε its extension with zero to the
whole of Ω, i.e.

ξ̃ε =

{
ξε in Ωε,
0 in Ω \ Ωε.

Obviously, ξ̃ε is bounded in (L2(Ω))n and hence there exists ξ ∈ (L2(Ω))n such that

ξ̃ε ⇀ ξ weakly in (L2(Ω))n. (17)

Let us see now which is the equation satisfied by ξ. Take ϕ ∈ C∞
0 (Ω). From (7) we get

Df

∫

Ω

ξ̃ε · ∇ϕdx+ aε

∫

Sε

g(uε)ϕdσ+

+

∫

Ω

χ
Ωε
β(P εuε)ϕdx =

∫

Ω

χ
Ωε
fϕdx. (18)

Now, we can pass to the limit, with ε→ 0, in all the terms of (18). For the first one, we have

Df lim
ε→0

∫

Ω

ξ̃ε · ∇ϕdx = Df

∫

Ω

ξ · ∇ϕdx. (19)

For the second term, using (16), we get

lim
ε→0

aε

∫

Sε

g(uε)ϕdσ = a
|∂T |

|Y |

∫

Ω

g(u)ϕdx. (20)

On the other hand, we know that χ
Ωε

⇀
|Y ∗|

|Y |
weakly in any Lσ(Ω), with σ ≥ 1. In particular, defining

q∗ such that
1

q
+

1

q∗
= 1,

we see that q∗ ≥ 1 and, consequently,

χ
Ωε

⇀
|Y ∗|

|Y |
, weakly in Lq

∗

(Ω).

7
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Hence, we obtain

lim
ε→0

∫

Ω

χ
Ωε
β(uε)ϕdx =

|Y ∗|

|Y |

∫

Ω

β(u)ϕdx. (21)

It is not difficult to pass to the limit in the right-hand side of (18). Indeed, we obtain

lim
ε→0

∫

Ω

χ
Ωε
fϕdx =

|Y ∗|

|Y |

∫

Ω

fϕdx. (22)

Putting together (19)-(22), we have

Df

∫

Ω

ξ · ∇ϕdx+ a
|∂T |

|Y |

∫

Ω

g(u)ϕdx+

+
|Y ∗|

|Y |

∫

Ω

β(u)ϕdx =
|Y ∗|

|Y |

∫

Ω

fϕdx, ∀ϕ ∈ D(Ω).

Hence ξ verifies

−Dfdiv ξ + a
|∂T |

|Y |
g(u) +

|Y ∗|

|Y |
β(u) =

|Y ∗|

|Y |
f in Ω. (23)

It remains now to identify ξ. Introducing the auxiliary periodic problem (10) and following a standard
procedure (see, for instance, [6]), one easily gets

Dfdiv ξ =
|Y ∗|

|Y |

n∑

i,j=1

qij
∂2u

∂xi∂xj
.

Hence, we get exactly the limit equation (8). Since u ∈ H1
0 (Ω) (i.e. u = 0 on ∂Ω) and u is uniquely

determined, the whole sequence P εuε converges to u and Theorem 1 is proved.
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