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Abstract

This paper deals, in the first part, with the existence of harmonic waves in polynomial third
grade fluids. The main results, based on some older remarks of the author (see Tigoiu [5]), con-
cern the existence / non-existence the propagation of discontinuities, like spherical and cylindrical
acceleration waves, all important cases (referring to the signum of the constitutive coefficient α1 ).
It was proved that, like in the case of linear viscous fluids, acceleration waves (spherical and cylin-
drical) do not propagate for α1 > 0. It is proved also that, these discontinuities can propagate if
the subclass of third grade fluids with α1 < 0 is considered.
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1 Introduction

In this paper we analyze some problems related to wave propagation in non-newtonian third grade
fluids.
It is important to remind that, on a part we expect that harmonic waves will propagate, while ac-
celeration waves do not (like in linear viscous fluids, see Truesdell and Toupin [4] and Dragos [2], for
instance). Older results of Tigoiu [5] give some ideas concerning the subject. On an other part, due
to the presence of higher order time derivatives in flow equations for a third grade fluid, we expect
that, acceleration waves can propagate with finite velocities, at least for some subclasses.
We employ the known constitutive law for third grade fluids (see Fosdick and Rajagopal [7], or Tigoiu
[5], [6]).

T(x, t) = −pI+ µA1 + α1A2 + α2A
2
1) + β1A3+

+β2(A1A2 +A2A1) + β3(trA
2
1)A1,

(1)

in the sense given in [5]. Consequently, the constitutive moduli must obey the following restrictions
(obtained as direct consequences from Clausius-Duhem’s inequality)

β1 < 0, β1 +2(β2 + β3) ≥ 0, µ ≥ 0, α1 + α2 = 0. (2)
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We remark also, concerning third grade fluids, that employing the simplified constitutive equation
obtained in [7], Fosdick and Straugham have proved in [8] that catastrophic instabilities can occur in
flows of such fluids. Recently, Tigoiu [6] proved that for the constitutive equation given in (1) with
constitutive restrictions (2), the rest state is asymptotically stable, for any signum of the constitutive
modulus α1, at least for weakly perturbed flows.
In the present paper we employ the constitutive equations (1) and we write flow equations in the case
of weakly perturbed flows (as it was written in [6], for instance), that is

∂v

∂t
− µdivA1 − α1

∂

∂t
divA1 − β1

∂2

∂t2
divA1 + gradp = ρb,

divv = 0.

(3)

On these basis we analyze below the existence or the non-existence of various types of waves and its
propagation.

2 Harmonic waves

A first question when we study wave propagation in continuum materials is to see if harmonic (smooth)
waves propagate in such a body. For this, we suppose the whole space filled with our fluid and we are
interested to see if harmonic plane waves, with known frequency ω ∈ R+ can propagate.
We consider that the propagation has place in the absence of external forces and than, the linearized
flow equations can be easily obtained from (3)

ρ
∂vi
∂t
− µ

∂2vi
∂xj∂xj

− α1

∂

∂t

∂2vi
∂xj∂xj

− β1

∂2

∂2t

∂2vi
∂xj∂xj

+
∂p

∂xi
= 0,

∂vj
∂xj

= 0, i, j = 1, 3.

(4)

We follow the classic way (see [1], [2]) to obtain the dissipation relation, that is the relation between
the complex wave number k ≡ kr + iki and the frequency ω

k = f(ω) (5)

We suppose that waves propagate in the direction of unitary vector n and are described by

ve = V eexp(i(kn · x− ωt)), p = p0 + pexp(i(kn · x− ωt)). (6)

A straight and simple calculus proves that

(
∂

∂t
,

∂

∂t2
,

∂

∂xj
,

∂

∂x2
j

) −→ (−iω, −ω2, iknj , −k
2). (7)

Finally the system (4) has the form
[

(µ− iα1ω − β1ω
2)k2 − iρω

]

ve + iknep = 0,

ikneve = 0, e = 1, 3.

(8)
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The condition to have effective waves (non-null wave amplitudes) is given by

[

(µ− iα1ω − β1ω
2)k2 − iρω

]2

k2 = 0. (9)

A simple overview on the relation (9) put into evidence two distinct cases
A. k = 0. In this case two situation are to be put into evidence:
A1. ω = 0, that is, the fluid is in a rest state;

or
A2. ve = 0, j = 1, 3 and consequently we cannot propagate waves quad in our fluid, but

p = p0 + p exp(−iωt) (that is, the constant phase velocity is unbounded).

B.

(

(µ − iα1ω − β1ω
2)k2 − iρω

)

= 0 and k 6= 0. In this case, from (8) we have p = p0 and

v · n = 0. Consequently there are transverse waves to the n direction propagating in our fluid. More,
the dissipation relation (5) becomes

k2

[

(µ− β1ω
2 − iα1ω)

]

= iρ ω. (10)

This relation leads to a propagation velocity of the constant phase of transverse waves given by

c ≡
ω

kr
= ±

√

√

√

√

√

2

[

α1ω +
√

α2
1ω

2 + (µ− β1ω2)2
][

α2
1ω

2 + (µ− β1ω2)2
]

ω

ρ(µ− β1ω2)

(11)

The relation (11) clearly proves that the absolute value of the velocity c is an increasing function of
the frequency and the dependence is of the order O(ω3/2).

3 Propagation of singularity surfaces. Acceleration waves.

It is well known that flow equations for a linear viscous fluid have a parabolic character and conse-
quently singular (discontinuity) surfaces propagate with an infinite velocity (which is not a correct
response from a physical point of view). Due to the presence in the constitutive law (1) of the second
time derivative, we hoped that some discontinuities can propagate in such a fluid. The analysis be-
low (considering the cases of spherical and cylindrical acceleration waves) will prove that these waves
have the speed of propagation exponentially increasing in time, which is a similar result with the one
obtained for the linear viscous fluid.
The present result is based on the restriction due to the employment of Clausius - Duhem’s inequality
( β1 < 0 ). In our case a similar result is obtained if we employ Müler’s modified Clausius - Duhem
inequality.

3.1 Spherical waves

In this chapter we suppose that we have a weak perturbation of the rest state and consequently we
will consider the linearized form for the constitutive law as well as for flow equations (see (3)). We
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analysis if through a fluid described by (31) can propagate third order acceleration waves. We suppose
that we have a regular surface S(x, t) = 0 such as across this one, the velocity field as well as its
first and second order derivatives are continuous functions and third and forth order derivatives of
the velocity field have discontinuities. The domain Ω occupied by the fluid is divided by the surface S
into two region denoted with: Ω+ and Ω−. We employ classical notations for the jump of a function
f across a surface S:

[f(x, t)] = f+x, t) + f−x, t). (12)

We employ also the known geometric and kinematic compatibility relations for the jumps of first and
second order derivatives (see [3] and [4]) in order to right down

[

∂f

∂xi

]

= Ani

[

∂2f

∂xi∂xj

]

= Āninj + nixj|
αA|α + njxi|

αA|α − xi|
αxj|

βbαβA

(13)

and respectively

[

∂f

∂t

]

= −uA

[

∂2f

∂t∂xi

]

= (−uĀ) +
δA

δt
ni − aαβxi|α(uA)|β

[

∂2f

∂t2

]

= u2Ā− 2u
δA

δy
−A

δu

δt
,

(14)

where we have employed the following notation (in this chapter i, j = 1, 3 and α, β = 1, 2)

A ≡

[

∂f

∂xi
ni

]

, Ā ≡

[

∂2f

∂xi∂xj
ninj

]

,
δ

δt
[f ] ≡

[

∂f

∂t
+ u

∂f

∂xi
ni
]

(15)

In the above formulas xi, xi are components of the vector x in the local basis ei, or in its reciprocal
basis ei, ”(·)|” is the covariant derivative, ( aαβ ) represents the surface metric, ( bαβ ) is the second
fundamental form and u is the propagation velocity, given by

u =
∂xi

∂t
ni. (16)

The equation of the surface S is given (in spherical coordinates) by

x(t) = R(t)[cosθ cosφ i1 + sinθ sinφ i2 + sinφ i3. (17)
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Space metric, surface metric and the second fundamental form are simply computed as

gij = δij [δi1 + δi2R
2(t)cos2φ+ δi3R

t],

aαβ = δαβ(δα1

1

R2(t)cos2φ
+ δα2

1

R2(t)
),

bαβ = δαβ(−δα1R(t)cos
2φ− δα2R(t)).

(18)

In formulas (18) the summation index convention has been not employed. We remind that the position
vector of a point is given by x(t) = R(t)e1 =

= R(t)e1 and its derivatives are xi|
β = aαβ

∂

∂yα
(gijx

j). These formulas and (17) lead to: x2|1 =

R(t)cos2φ, x3|2 = R2(t), x1|1 = x1|2 = x3|1 = x2|2 = 0.
To give a complete explanation for kinematic jump relations (14), we remark that the velocity is
a vector field and consequently scalar amplitudes A and Ā must be replaced with some vectorial
amplitudes. This last ones are constructed as follows: we introduce, for simplicity, the vector field

f(x, t) ≡
∂2v

∂xi∂xj
(19)

and then we define the vector amplitudes A, Ā by

A ≡

[

∂f

∂xi
ni
]

≡ [(gradf)n], Ā ≡

[

∂2f

∂xi∂xj
ninj

]

. (20)

Having in mind that f is a continuous field and employing also the previous results we obtain simply

[(gradf)n] = [fk; 1]ek =

[

∂fk

∂x1

]

ek. Some straight calculi give:

[(grad2f(n))n] = [gkt(
∂2f t

∂x4∂x4
+ 2

∂f q

∂x1

Γtq1 −
∂f t

∂xp
Γp11)]e

k. As Γ2
21 = Γ3

31 = 1/R and all other are null

we obtain finally for the representation of Ā

Ā =

([

∂2f1

∂x1∂x1

]

,

[

∂2f2

∂x1∂x1

]

+
2

R

[

∂f2

∂x1

]

,

[

∂2f3

∂x1∂x1

]

+
2

R

[

∂f3

∂x1

])

. (21)

After some long but straightforward calculi we obtain for the second term from (14)3

δA

δt
=

([

∂2f1

∂x1∂x1

]

,

[

∂2f2

∂x1∂x1

]

+
1

R

[

∂f2

∂t

]

+
u

R

[

∂f2

∂x1

]

,

[

∂2f3

∂x1∂x1

]

+

+
1

R

[

∂f3

∂t

]

+
u

R

[

∂f3

∂x1

])

+ uĀ.

(22)

We employ now the flow equations and the definition of the propagation velocity u =
∂x1

∂t
and after

a long calculus we obtain the system of equation which gives the propagation condition
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(α1u+ u̇β1)

[

∂f1

∂x1

]

+ β1u
2

[

∂2f1

∂x1∂x1

]

+ 2β1u

[

∂2f1

∂x1∂t

]

= 0,

(α1u+ 2β1

u2

R
+ u̇β1)

[

∂f2

∂x1

]

+ β1u
2

[

∂2f2

∂x1∂x1

]

+ 2β1u

[

∂2f2

∂x1∂t

]

= 0,

(α1u+ 2β1

u2

R
+ u̇β1)

[

∂f3

∂x1

]

+ β1u
2

[

∂2f3

∂x1∂x1

]

+ 2β1u

[

∂2f3

∂x1∂t

]

= 0.

(23)

We simply remark that if

[

∂fk

∂x1

]

= 0 then from (13), (14)1 and the remark concerning [(gradf)n]

it results that a third order derivatives jumps of v are null and the problem degenerates. System
(23) has three equations and nine unknowns. Consequently for the determination of the propagation
velocity we may have one of the following two equations:

α1u+ β1u̇ = 0,

β1u̇+ 2β1

u2

R
+ α1u = 0.

(24)

A. The first one of equations (24) leads to a propagation velocity given by

u(t) = u0 exp(−
α1

β1

t) (25)

and consequently as from constitutive restrictions β1 < 0, we have the following cases:
A1: if α1 < 0, (which is the case for some fluids - see [9]) the propagation velocity vanishes when the
time tends to infinity.
A2: if α1 > 0, it results that the wave velocity is an increasing and unbounded function of time,
which is a result similar to those for the linear viscous fluid, mentioned above.
B. The second of equations (24) leads to a propagation velocity given by

u(t) =
3 c exp(−α1

β1
t)

3

√

c′ − 3 c β1

α1
exp(−α1

β1
t)
, (26)

where c, c’ have to be obtained from initial data.
Let us remark that in this case the propagation velocity behaves like exp(− α1

2β1
t) when t tends to

infinity and consequently there are also two possibilities:
B1: if α1 < 0, the propagation velocity vanishes when the time tends to infinity.
B2: if α1 > 0, it results that the wave velocity is an increasing and unbounded function of time.

3.2 Cylindrical waves

In this section we investigate the case of a cylindrical discontinuity surface given by

x(t) = R(t) cosθ i1 +R(t) sinθi2 + zi3 = 0 (27)
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In the local basis ei, i = 1, 3 and in the corresponding surface basis, the coordinates are given by
x1 = R(t), x2 = θ, x3 = z and respectively by y1 = θ, y2 = z. In the same time the space and
surface metrics and the second fundamental form are obtained as in formulas (28)

gij = δij(δi1 +R2δi2 + δi3), aαβ = δαβ(δα1R
2 + δα2),

bαβ = δαβ(−δα1R).
(28)

A simple calculus gives, for the surface gradient components: x2|1 = R(t),
x3|2 = 1, x1|1 = x1|2 = x3|1 = x2|2 = 0. In order to obtain the right hand side of jump relations

(14) we remark that Γ2
12 = Γ2

21 = 1/R and then we must compute Ā,
δA

δt
and

δu

δt
. After some

straightforward calculi we obtain a formula similar to those performed in the case of spherical waves:

[(grad2f(n))n] = [gkt(
∂2f t

∂x4∂x4
+ 2

∂f q

∂x1

Γtq1 −
∂f t

∂xp
Γp11)]e

k and the representation, in the local basis, of

Ā is

Ā =

([

∂2f1

∂x1∂x1

]

,

[

∂2f2

∂x1∂x1

]

+
2

R

[

∂f2

∂x1

]

,

[

∂2f3

∂x1∂x1

])

. (29)

For the second term from (14)3, we obtain

δA

δt
=

([

∂2f1

∂x1∂x1

]

,

[

∂2f2

∂x1∂x1

]

,

[

∂2f3

∂x1∂x1

]

+ uĀ

)

. (30)

Like in the case of the spherical surface, the definition of the propagation velocity leads to u(t) = Ṙ(t)
and consequently the compatibility kinematic relations for second order derivatives will be

[

∂2f

∂t2

]

=

(

−u2

[

∂2f1

∂x1∂x1

]

− 2u

[

∂2f1

∂t∂x1

]

− u̇

[

∂f1

∂x1

]

,

−u2

[

∂2f2

∂x1∂x1

]

−
2u

R

[

∂f2

∂x1

]

− 2u

[

∂2f2

∂t∂x1

]

− u̇

[

∂f2

∂x1

]

,

−u2

[

∂2f3

∂x1∂x1

]

− 2u

[

∂2f3

∂t∂x1

]

− u̇

[

∂f3

∂x1

])

(31)

in the local basis ei, i = 1, 3. Some long calculi lead to the system of equation which give the
propagation conditions, which are in strong similarity with equations (23) for spherical waves

(α1u+ u̇β1)

[

∂f1

∂x1

]

+ β1u
2

[

∂2f1

∂x1∂x1

]

+ 2β1u

[

∂2f1

∂x1∂t

]

= 0,

(α1u+ 2β1

u2

R
+ u̇β1)

[

∂f2

∂x1

]

+ β1u
2

[

∂2f2

∂x1∂x1

]

+ 2β1u

[

∂2f2

∂x1∂t

]

= 0,

(α1u+ u̇β1)

[

∂f3

∂x1

]

+ β1u
2

[

∂2f3

∂x1∂x1

]

+ 2β1u

[

∂2f3

∂x1∂t

]

= 0.

(32)
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Consequently is not surprising that for the determination of the propagation velocity we will obtain
the same two differential equations as in the case of spherical waves (24):

α1u+ β1u̇ = 0,

β1u̇+ 2β1

u2

R
+ α1u = 0.

(33)

Finally, the conclusions are similar with those discussed in cases A and B in the analysis of the
propagation of spherical waves.

4 Conclusions

In conclusion we remark that on a part, in a third grade fluid is generally possible to propagate
harmonic waves.
Considering the propagation of singular surfaces, on the other part, we remind that it was proved (see
for instance [4], or any classical book referring to the propagation of singularities in viscous fluids)
that, due to the parabolic behaviour of flow equations, these surfaces do not propagate in linear
viscous fluids. A similar result was obtained here for the subclass of third grade fluids characterized
by β1 < 0, α1 > 0. The last result, in the previous section, put into evidence an other subclass of
these fluids, namely: β1 < 0, α1 < 0, for which at least spherical and cylindrical accelerations waves
can propagate with finite velocities.
Acknowledgements: The author acknowledges partial support from the Romanian Ministry of
Education and Research through CERES program, contract C4-187/2004 and partial support from
the CNCSIS Grant No.33379/217, 2005.
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