,, Caius Iacob" Conference on
Fluid Mechanics\&Technical Applications
Bucharest, Romania, November 2005

Matlab Evaluation of the $\Omega_{j, k}^{m, n}(x)$ Large Coefficients for PDE Solving by Wavelet -Galerkin Approximation
 by
 CONSTANTIN I. POPOVICI ${ }^{1}$

Abstract

This paper is one of a set of articles dealing with solutions to PDEs or ODEs using the wavelet - Galerkin method. In order to approximate the solution, a couple of families of coefficients are need; they occur in wavelet series and the are involved in discretizing differential equations that represent mathematical-mechanical models. Following some earlier ideas (see Reference list), we have achieved several algorithms and MATLAB - based programs allowing to obtain high precision results for the necessary functionals. Here it is described the MATLAB evaluation of the integral

$$
\Omega_{j, k}^{m, n}(x)=\int_{0}^{x} \Phi(y) \Phi^{(m)}(y-j) \Phi^{(n)}(y-k) d y
$$

1 Introduction

Using some results due to Prof. Ingrid Daubechies (Princeton University, USA) regarding the determination of an orthonormal basis of functions with compact support on $L^{2}(\mathbb{R})$ [1], the team led by Prof. Chen (National Cheng Kung University of Taiwan) has proposed in [2] some algorithms for calculating seven functionals that occur in wavelet - Galerkin discretization of differential equations. In our paper we present the algorithms and programs needed for the calculation of one of these functionals, namely

$$
\begin{equation*}
\Omega_{j, k}^{m, n}(x)=\int_{0}^{x} \Phi(y) \Phi^{(m)}(y-j) \Phi^{(n)}(y-k) d y . \tag{1}
\end{equation*}
$$

using the programming environment MATLAB. In expression (1), $j, k \in \mathbb{Z}, m, n \in \mathbb{N}^{*}$ and $\Phi^{(n)}(u)$ denotes the n-order derivative of function Φ. We will calculate the coefficients $\Omega_{j, k}^{m, n}(5)$.

2 Calculation of coefficients $\Omega_{j, k}^{m, n}$

Each member of the family of wavelets built by Daubechies is governed by a set of L (an integer number) coefficients $\left\{p_{k}: k=0,1, \ldots, L-1\right\}$ and two functions $\Phi(x)$ and $\Psi(x)$.

[^0]The function $\Phi(x)$, called the scalar or waveleted function is defined on $[0, L-1]$ and it has the expression

$$
\Phi(x)=\sum_{j=0}^{L-1} p_{j} \Phi(2 x-j)
$$

The function $\Psi(x)$, called wavelet-mother, is defined on $[1-L / 2, L / 2]$ and its expression is

$$
\Psi(x)=\sum_{j=2-L}^{1}(-1)^{j} p_{1-j} \Phi(2 x-j)
$$

The Daubechies filtration coefficients $p_{k}, k=\overline{0, L-1}$ for $L=6$ are the following:

$$
\begin{array}{cc}
p_{0}=\frac{1+\sqrt{10}+\sqrt{5+2 \sqrt{10}}}{16}, & p_{1}=\frac{1+\sqrt{10}+3 \sqrt{5-2 \sqrt{10}}}{16} \\
p_{2}=\frac{10-2 \sqrt{10}+2 \sqrt{5+2 \sqrt{10}}}{16}, & p_{3}=\frac{10-2 \sqrt{10}-2 \sqrt{5+2 \sqrt{10}}}{16} \\
p_{4}=\frac{5+\sqrt{10}-3 \sqrt{5+2 \sqrt{10}}}{16}, & p_{5}=\frac{1+\sqrt{10}-\sqrt{5+2 \sqrt{10}}}{16}
\end{array}
$$

It can be seen that the equation $\sum_{k=0}^{5} p_{k}=2$ is satisfied. We are going to calculated $\Omega_{j, k}^{m, n}(x)$ for $x=5$, $L=6, m=0, n=1$ and $-4 \leq j, k \leq 4 . \Omega_{j, k}^{m, n}(x)$ plays an important role in the numerical solution of nonlinear differential equations by the wavelet - Galerkin method, according to the assertion and the example given by A. Latto and E. Tenenbaum, "Les ondelettes a support compact et la solution numerique de l'equation de Burgers", C. R. Acad. Sci. Paris, 311, 903-909 (1990). In the paper "The evaluation of connection coefficients of compactly supported wavelets" authored by A. Latto, H. L. Resnikoff and E. Tenenbaum and published in Proc. French - USA Workshop on wavelets and Turbulence, Y. Maday (ed.), the coefficient $\Omega_{j, k}^{m, n}(x)$ is called the third coefficient of wavelets connection.
The coefficients $\Omega_{j, k}^{m, n}(x)$ have the following properties:

$$
\begin{align*}
& \Omega_{j, k}^{m, n}(x)=0 \quad \text { for } \quad|j|,|k|, \text { or }|j-k| \geq L-1 \tag{2}\\
& \Omega_{j, k}^{m, n}(x)=0 \quad \text { for } \quad x-j, x-k, \text { or } x \leq 0 \tag{3}\\
& \Omega_{j, k}^{m, n}(x)=\Omega_{j, k}^{m, n}(L-1) \quad \text { for } \quad x-j, x-k, \text { or } x \geq L-1 \tag{4}
\end{align*}
$$

In equation (113) of [2] we will take $-4 \leq j, k \leq 4$ and, taking into account formulas (2) - (4) we will obtain a homogeneous system in the unknowns $\Omega_{j, k}^{m, n}(x)$ with $m=0$ and $n=1$. Equation (113) of [2] has the forms

$$
\begin{equation*}
\Omega_{j, k}^{m, n}(x)=2^{m+n-1} \sum_{i_{a}=0}^{L-1} \sum_{i_{b}=0}^{L-1} \sum_{i_{c}=0}^{L-1} p_{i_{a}} p_{i_{b}} p_{i_{c}} \Omega_{2 j+i_{b}-i_{a}, 2 k+i_{c}-i_{a}}^{m, n}\left(2 x-i_{a}\right) . \tag{5}
\end{equation*}
$$

We have a system with $3 L^{2}-9 L+7$ unknowns $\Omega_{j, k}^{m, n}(L-1)$. We obtain, from equation (5) a homogeneous system of the form

$$
\begin{equation*}
v=2^{1-m-n} S v \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
v & =\left[v_{2-L}, v_{3-L}, \ldots, v_{L-2}\right]^{T} \tag{7}\\
v_{j} & =\left[\Omega_{j, \alpha}^{m, n}(L-1), \Omega_{j, \alpha+1}^{m, n}(L-1), \ldots, \Omega_{j, \beta}^{m, n}(L-1)\right] \tag{8}
\end{align*}
$$

$\alpha=\max (j+2-L, 2-L), \beta=\min (j+L-2, L-2)$, and the entries of matrix S are sums of products of the form $p_{i_{a}} p_{i_{b}} p_{i_{c}}$. Since $x=5, m=0$ and $n=1$, we denote the unknown by $\Omega_{j, k}$.
The unknowns of system are: $\Omega_{-4,-4} ; \Omega_{-4,-3} ; \Omega_{-4,-2} ; \Omega_{-4,-1} ; \Omega_{-4,0} ; \Omega_{-3,-4} ; \Omega_{-3,-3} ; \Omega_{-3,-2} ; \Omega_{-3,-1}$; $\Omega_{-3,0} ; \Omega_{-3,1} ; \Omega_{-2,-4} ; \Omega_{-2,-3} ; \Omega_{-2,-2} ; \Omega_{-2,-1} ; \Omega_{-2,0} ; \Omega_{-2,1} ; \Omega_{-2,2} ; \Omega_{-1,-4} ; \Omega_{-1,-3} ; \Omega_{-1,-2} ; \Omega_{-1,-1} ;$ $\Omega_{-1,0} ; \Omega_{-1,1} ; \Omega_{-1,2} ; \Omega_{-1,3} ; \Omega_{0,-4} ; \Omega_{0,-3} ; \Omega_{0,-2} ; \Omega_{0,-1} ; \Omega_{0,0} ; \Omega_{0,1} ; \Omega_{0,2} ; \Omega_{0,3} ; \Omega_{0,4} ; \Omega_{1,-3} ; \Omega_{1,-2} ; \Omega_{1,-1} ;$ $\Omega_{1,0} ; \Omega_{1,1} ; \Omega_{1,2} ; \Omega_{1,3} ; \Omega_{1,4} ; \Omega_{2,-2} ; \Omega_{2,-1} ; \Omega_{2,-0} ; \Omega_{2,1} ; \Omega_{2,2} ; \Omega_{2,3} ; \Omega_{2,4} ; \Omega_{3,-1} ; \Omega_{3,0} ; \Omega_{3,1} ; \Omega_{3,2} ; \Omega_{3,3} ;$ $\Omega_{3,4} ; \Omega_{4,0} ; \Omega_{4,1} ; \Omega_{4,2} ; \Omega_{4,3} ; \Omega_{4,4}$.
Taking $j=-4$ and $k=-4$ in equation (5) and taking into account (2) - (4) we obtain

$$
\Omega_{-4,-4}=\left(p_{0} p_{4} p_{4}+p_{1} p_{5} p_{5}\right) \Omega_{-4,-4}+p_{0} p_{4} p_{5} \Omega_{-4,-3}+p_{0} p_{5} p_{4} \Omega_{-3,-4}+p_{0} p_{5} p_{5} \Omega_{-3,-3}
$$

It follows that

$$
s_{11}=p_{0} p_{4} p_{4}+p_{1} p_{5} p_{5}, \quad s_{12}=p_{0} p_{4} p_{5}, \quad s_{13}=p_{0} p_{5} p_{4}, \quad s_{14}=p_{0} p_{5} p_{5}
$$

the remaining entries on the first row being equal to zero.
Similarly, if we consider $j=-4$ and $k=-3$ in formula (5) we have

$$
\begin{aligned}
\Omega_{-4,-3} & =\left(p_{0} p_{4} p_{2}+p_{1} p_{5} p_{3}\right) \Omega_{-4,-4}+\left(p_{1} p_{5} p_{4}+p_{0} p_{4} p_{3}\right) \Omega_{-4,-3}+ \\
& +\left(p_{0} p_{4} p_{4}+p_{1} p_{5} p_{5}\right) \Omega_{-4,-2}+p_{0} p_{4} p_{5} \Omega_{-4,-1}+p_{0} p_{5} p_{2} \Omega_{-3,-4}+ \\
& +p_{0} p_{5} p_{3} \Omega_{-3,-3}+p_{0} p_{5} p_{4} \Omega_{-3,-2}+p_{0} p_{5} p_{5} \Omega_{-3,-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& s_{21}=p_{0} p_{4} p_{2}+p_{1} p_{5} p_{3}, \quad s_{22}=p_{1} p_{5} p_{4}+p_{0} p_{4} p_{3} \\
& s_{23}=p_{0} p_{4} p_{4}+p_{1} p_{5} p_{5}, \quad s_{24}=p_{0} p_{4} p_{5}, \quad s_{25}=0 \\
& s_{26}=p_{0} p_{5} p_{2}, \quad s_{27}=p_{0} p_{5} p_{3}, \quad s_{28}=p_{0} p_{5} p_{4}, \quad s_{29}=p_{0} p_{5} p_{5}
\end{aligned}
$$

the remaining entries in the second row are $=0$. Following this procedure, the matrix S is generated:

```
% The generate matrix omega
clc
p1=0.47046720778416;
p2=1.14111691583144;
p3=0.65036500052623;
```

```
p4=-0.19093441556833;
p5=-0.12083220831040;
p6=-0.04981749973688;
a=[[-4 -4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -2 -2 -1 
-1 -1 -1 -1 -1 -1 -1 0 0 0 00 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 ...
2 2 2 2 3 3 3 3 3 3 4 4 4 4 4];
b}=[\begin{array}{llllllllllllllllllllllllll}{-4}&{-3}&{-2}&{-1}&{0}&{-4}&{-3}&{-2}&{-1}&{0}&{1}&{-4}&{-3}&{-2}&{-1}&{0}&{1}&{2}&{-4}&{-3}&{-2}&{\ldots}
-1 0
1 2 3 4 -1 0 1 2 3 4 0 1 2 3 4];
L=6;
s=zeros(61);
for r=1:61
        j=a(r);
        k=b(r);
        for ia=1:L
            for ib=1:L
                for ic=1:L
                    jj=2*j+ib-ia;
                kk=2*k+ic-ia;
                for t=1:61
                        if ((jj==a(t))&(kk==b(t))
                                    q=t;
                                    s(r,q)=s(r,q)+p(ia)*p(ib)*p(ic);
                                    break
                        end
                end
            end
            end
        end
end
[vp,dp]=eig(s)
```

The matrix S has the eigenvalues $2^{1-k}, k=0,1, \ldots, L-2$ with the multiplicity order $k+1$.
It can be seen from (6) that v is an eigenvector corresponding to the eigenvalue 2^{m+n-1}. In our case v is the solution corresponding to the eigenvalue 1 with the multiplicity order two. It follows that we cannot determine a unique solution from (6).
In order to determine a solution to system (6) we attach the equations resulting from the equation of
moments (formulas (117) and (118) of [2]), namely

$$
\begin{array}{ll}
-4 \Omega_{-4,-4}-3 \Omega_{-4,-3}-2 \Omega_{-4,-2}-1 \cdot \Omega_{-4,-1}+0 \cdot \Omega_{-4,0} & =\Gamma_{-4}^{0} \\
-4 \Omega_{-3,-4}-3 \Omega_{-3,-3}-2 \Omega_{-3,-2}-1 \cdot \Omega_{-3,-1}+0 \cdot \Omega_{-3,0}+1 \cdot \Omega_{-3,1} & =\Gamma_{-3}^{0} \\
-4 \Omega_{-2,-4}-3 \Omega_{-2,-3}-2 \Omega_{-2,-2}-1 \cdot \Omega_{-2,-1}+0 \cdot \Omega_{-2,0}+1 \cdot \Omega_{-2,1}+ & \\
+2 \Omega_{-2,2} & =\Gamma_{-2}^{0} \\
-4 \Omega_{-1,-4}-3 \Omega_{-1,-3}-2 \Omega_{-1,-2}-1 \cdot \Omega_{-1,-1}+0 \cdot \Omega_{-1,0}+1 \cdot \Omega_{-1,1}+ & \\
+2 \Omega_{-1,2}+3 \Omega_{-1,3} & =\Gamma_{-1}^{0} \\
-4 \Omega_{0,-4}-3 \Omega_{0,-3}-2 \Omega_{0,-2}-1 \cdot \Omega_{0,-1}+0 \cdot \Omega_{0,0}+1 \cdot \Omega_{0,1}+2 \Omega_{0,2}+ & \\
+3 \Omega_{0,3}+4 \Omega_{0,4} & =\Gamma_{0}^{0} \\
-3 \Omega_{1,-3}-2 \Omega_{1,-2}-1 \cdot \Omega_{1,-1}+0 \cdot \Omega_{1,0}+1 \cdot \Omega_{1,1}+2 \Omega_{1,2}+3 \Omega_{1,3}+ & \\
+4 \Omega_{1,4} & =\Gamma_{1}^{0} \\
-2 \Omega_{2,-2}-1 \cdot \Omega_{2,-1}+0 \cdot \Omega_{2,0}+1 \cdot \Omega_{2,1}+2 \Omega_{2,2}+3 \Omega_{2,3}+4 \Omega_{2,4} & =\Gamma_{2}^{0} \\
-1 \cdot \Omega_{3,-1}+0 \cdot \Omega_{3,0}+1 \cdot \Omega_{3,1}+2 \Omega_{3,2}+3 \Omega_{3,3}+4 \Omega_{3,4} & =\Gamma_{3}^{0} \\
0 \cdot \Omega_{4,0}+1 \cdot \Omega_{4,1}+2 \Omega_{4,2}+3 \Omega_{4,3}+4 \Omega_{4,4} & =\Gamma_{4}^{0} \\
\Omega_{-4,-4}+\Omega_{-3,-4}+\Omega_{-2,-4}+\Omega_{-1,-4}+\Omega_{0,-4} & =\Gamma_{-4}^{1} \\
\Omega_{-4,-3}+\Omega_{-3,-3}+\Omega_{-2,-3}+\Omega_{-1,-3}+\Omega_{0,-3}+\Omega_{1,-3} & =\Gamma_{-3}^{1} \\
\Omega_{-4,-2}+\Omega_{-3,-2}+\Omega_{-2,-2}+\Omega_{-1,-2}+\Omega_{0,-2}+\Omega_{1,-2}+\Omega_{2,-2} & =\Gamma_{-2}^{1} \\
\Omega_{-4,-1}+\Omega_{-3,-1}+\Omega_{-2,-1}+\Omega_{-1,-1}+\Omega_{0,-1}+\Omega_{1,-1}+\Omega_{2,-1}+\Omega_{3,-1} & =\Gamma_{-1}^{1} \\
\Omega_{-4,0}+\Omega_{-3,0}+\Omega_{-2,0}+\Omega_{-1,0}+\Omega_{0,0}+\Omega_{1,0}+\Omega_{2,0}+\Omega_{3,0}+\Omega_{4,0} & =\Gamma_{0}^{1} \\
\Omega_{-3,1}+\Omega_{-2,1}+\Omega_{-1,1}+\Omega_{0,1}+\Omega_{1,1}+\Omega_{2,1}+\Omega_{3,1}+\Omega_{4,1} & =\Gamma_{1}^{1} \\
\Omega_{-2,2}+\Omega_{-1,2}+\Omega_{0,2}+\Omega_{1,2}+\Omega_{2,2}+\Omega_{3,2}+\Omega_{4,2} & =\Gamma_{2}^{1} \\
\Omega_{-1,3}+\Omega_{0,3}+\Omega_{1,3}+\Omega_{2,3}+\Omega_{3,3}+\Omega_{4,3} & =\Gamma_{3}^{1} \\
\Omega_{0,4}+\Omega_{1,4}+\Omega_{2,4}+\Omega_{3,4}+\Omega_{4,4} & =\Gamma_{4}^{1}
\end{array}
$$

The numbers $\Gamma_{-4}^{0}, \Gamma_{-3}^{0}, \Gamma_{-2}^{0}, \ldots, \Gamma_{4}^{1}$ are known.
The attachment of these equations to system (6) is accomplished after the elimination of the rows corresponding to the unknowns $\Omega_{-4,0}, \Omega_{-3,0}$ and $\Omega_{0,0}$. The replacement of the rather difficult; the obtained solution must satisfy the conditions (117) and (118) of [2].

```
% Program for determinate solution
for i=1:61
    for j=1:61
        if i==j
            s(i,j)=-1+s(i,j)
        end
    end
end
s(5,1:4)=[\begin{array}{llll}{-4}&{-3}&{-2}&{-1}\end{array}]; s(5,5:61)=0;
```

```
s(10,1:5)=0; s(10,6:11)=[-4 -3 -2 -1 0 1]; s(10,12:61)=0;
% s(31,1:11)=0; s(31,12:18)=[-4 -3 -2 0 1 2]; s(31,20:61)=0;
rang=rank(s)
dets=det(s);
d=zeros(61,1);
d(5,1)=-0.34246575e-3;
d(10,1)=-0.14611872e-1;
% d(31,1)=0.14520548;
format long
sol=s\d
```

The solution thus obtained has a higher accuracy than the one of [2]

References

[1] Daubechies, I., Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math., 41, 909-996, 1988.
[2] Chen, M. Q., Hwang C., Shih Y. P., The computation of wavelet - Galerkin approximation on a bounded interval, International Journal for Numerical Methods in Engineering, vol, 39, 2921-2944, (1996).
[3] Daubechies, I., Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992.
[4] Bultheel, A., Learning to swim in a sea of wavelets, Bull. Belg. Math. Soc. 2 (1995), 1-44.
[5] Filipescu C., Popovici C. I., Matlab evaluation of the $\Gamma_{k}^{n}(x)$ coefficients for PDE solving by wavelets - Galerkin approximation, Proc. Congresul al XXX-lea, A.R.A., Chisinau, 5-10 iulie 2005, 42-45.

[^0]: ${ }^{1}$ Technical University "Gh. Asachi", Iassy, Department of Mathematics
 E-mail: constantin.popovici@rdslink.ro

