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Abstract

The aim of this paper is to introduce the dual primal boundary element tearing and interconnect-
ing (BETI-DP) method with Dirichlet and hypersingular boundary integral operator precondition-
ers. In previous articles BETI and coupled FETI/BETI methods were introduced. As a natural
continuation we present here the BETI-DP method and discuss few general choices of the dual
spaces for the three dimensional case. We show that the condition number of the system matrix
equiped with the Dirichlet and with the hypersingular boundary integral operator preconditioner
in the FETI-DP method.

Key words and phrases: FETI-DP, BETI-DP, Steklov-Poincaré operator, Schur complement,
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1 Introduction

The classical finite element tearing and interconnecting (FETI) and its boundary element counter-
part boundary element tearing and interconnecting (BETI) methods are domain decomposition meth-
ods of iterative substructuring type. The local finite and boundary element spaces are given on each
substructure separately. The global continuity is enforced by using Lagrange multipliers, resulting a
saddle point problem which can be solved iteratively via its dual problem using a special type of precon-
ditioned conjugate gradient method. The dual primal finite element tearing interconnecting method
(FETI-DP) was introduced by Farhat, Lesoinne, Le Tallec, Pierson and Rixen [2]. The term dual-
primal refers to the idea of enforcing some continuity constraints across the interface between the sub-
domains as in a primal method, while all the other constraints are enforced using Lagrange multipliers
as in the dual methods. The tearing part is identical for FETI and BETI as well as for FETI-DP
and BETI-DP, the major differences appear in the interconnecting part. An important contribution
in the analysis of the two dimensional case of second and fourth order elliptic problems was brought
by Mandel and Tezaur [8] and also by Brenner [1]. In the three dimensional case we mention here the
works of Farhat, Lesoinne and Pierson [3] and Klawonn, Widlund and Dryja [4]. Recently, Mandel
and Tezaur have given a pure algebraic formulation of FETI-DP which is independent of the studied
problem [9].
In [5] and [6] the BETI and coupled FETI/BETI methods were introduced. These results are based on
the fact that the finite element Schur complement as well as the discrete boundary element Steklov-Poincaré
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operator are both discrete versions of the same Dirichlet-Neumann map. Spectral equivalence inequal-
ities were given, which ensure the spectral equivalence between the finite element Schur complement
matrix, the discrete boundary element Steklov-Poincaré matrix and the discrete hypersingular integral
operator matrix. Note that all constants are independent of the discretisation. With the help of this
result (Lemma 3.1 in [5]) the hypersingular boundary integral operator preconditioner was introduced
and all the convergence results were transfered to the BETI and coupled FETI/BETI methods.
Following those ideas and adapting them for the dual-primal case we introduce in this paper the
BETI-DP concept.
The rest of this paper is organized as follows: in the next section we present the BETI-DP formulation.
Section 3 is dedicated to the presentation of the preconditioners. In Section 4 a brief analysis of the
introduced preconditioners is given. Section 5 presents some numerical results and finally we sketch
some conclusions in Section 6.

2 BETI-DP formulation

2.1 Model Problem - Boundary Element Formulation

Let Ω ⊂ R2 be a bounded domain with the boundary Γ = ∂Ω which is assumed to be polygonal . We
consider the Dirichlet boundary value problem

−div[α(x)∇u(x)] = 0 for x ∈ Ω, u(x) = g for x ∈ Γ. (1)

Let us assume that there is given a nonoverlapping decomposition of Ω satisfying

Ω =
p
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Γi = ∂Ωi, Γij = Γi ∩ Γj , ΓS =
p
⋃

i=1

Γi.

In what follows we assume that the coefficient function α is piecewise constant, i.e.,

α(x) = αi > 0 for x ∈ Ωi, i = 1, . . . , p.

Thus, instead of the global boundary value problem (1) we have to solve now the local boundary value
problems

−αi∆ui(x) = 0 for x ∈ Ωi, ui(x) = g(x) for x ∈ Γi ∩ Γ, (2)

along with the transmission conditions on the internal coupling boundaries

ui(x) = uj(x), αi
∂

∂ni
ui(x) + αj

∂

∂nj
uj(x) = 0 for x ∈ Γij , (3)

where ni is the unit outward normal vector with respect to Γi.
The solutions of the local problems (2) can be written by using the representation formulae (see [10])

ui(x) =

∫

Γi

U∗(x, y)
∂

∂ni
ui(y)dsy −

∫

Γi

∂

∂ni(y)
U∗(x, y)ui(y)dsy for x ∈ Ωi, (4)
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where U∗(x, y) is the fundamental solution of the Laplace operator:

U∗(x, y) = − 1
2π log(|x− y|). (5)

On the boundary Γi the solution verifies the Cauchy-Calderon equation

(

ui
ti

)

=

(

1
2I −Ki Vi
Di

1
2I +K ′

i

)(

ui
ti

)

(6)

where ti =
∂
∂ni

ui is the normal derivative on Γi, and the boundary integral operators are given as, the
single layer potential (Viti)(x),the double layer potential (Kiui)(x), the adjoint double layer potential
(K ′

iti)(x) and the the hypersingular boundary integral operator (Diui)(x)
The properties of all boundary integral operators are wellknown (see for example [10]). In particular,
the local single layer potential Vi is positive definite in the two dimensional case when we assume
diam(Ωi) < 1.
From (6) we obtain the local Dirichlet-Neumann map

ti(x) := [Di + (
1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)]ui(x) =: (Siui)(x) for x ∈ Γi, (7)

where Si : H
1/2(Γi) −→ H−1/2(Γi) denotes the local Steklov-Poincaré operator.

2.2 Tearing

Let us consider the trace space H1/2(ΓS) := {u|Γs : u ∈ H1(Ω)} on the skeleton ΓS and its subspace

H
1/2
0 (ΓS ,Γ) := {v ∈ H

1/2(ΓS) : v(x) = 0 for x ∈ Γ}.

Let ĝ ∈ H1/2(ΓS) be an arbitrary but fixed extension of the given Dirichlet datum g ∈ H1/2(Γ).
Now we consider the transmission conditions of the functions ui and of the conormal derivate αiti
along Γi. One possibility is to find a global function û ∈ H

1/2
0 (ΓS ,Γ) such that ui := û+ ĝ on Γi and

αi(Siui)(x) + αj(Sjuj)(x) = 0 for x ∈ Γij (8)

are satisfied on all local coupling boundaries Γij . This leads us to the variational problem: Find

û ∈ H
1/2
0 (Γs,Γ) such that

p
∑

i=1

∫

Γi

αi(Siû)(x)v(x)dsx = −
p
∑

i=1

∫

Γi

αi(Siĝ)(x)v(x)dsx (9)

for all v ∈ H
1/2
0 (ΓS ,Γ). Due to the implicit definition of the local Dirichlet-Neumann map (7) it is

in general not possible to discretize the variational problem (9) in an exact manner. Thus we have
to approximate the local Dirichlet boundary value problems which occur in the definition of the local
Dirichlet-Neumann map.
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For vi ∈ H
1/2(Γi) the application of Si is given by

(Sivi)(x) = (Divi)(x) + (
1

2
I +K ′

i)wi(x) for x ∈ Γi, (10)

where wi ∈ H
−1/2(Γi) is the solution of the variational problem

〈Viwi, τi〉Γi = 〈(
1

2
I +Ki)vi, τi〉Γi for all τi ∈ H

−1/2(Γi). (11)

Let Zi,h = span{ψik}k=1,Ni
⊂ H−1/2(Γi) be a conformal trial space, for example the space of piecewise

constant functions with respect to a local quasi uniform and regular boundary mesh with average
mesh size hi. The Galerkin variational problem of (11) is to find wi,h ∈ Zi,h such that

〈Viwi,h, τi,h〉Γi = 〈(
1

2
I +Ki)vi, τi,h〉Γi for all τi,h ∈ Zi,h. (12)

Hence we can define an approximate Steklov-Poincaré operator as

(S̃ivi)(x) = (Divi)(x) + (
1

2
I +K ′

i)wi,h(x) for x ∈ Γi. (13)

Now the perturbed variational problem is to find û ∈ H
1/2
0 (Γ,Γs) such that

p
∑

i=1

∫

Γi

αi(S̃iû)(x)v(x)dsx +
p
∑

i=1

∫

Γi

αi(S̃iĝ)(x)v(x)dsx = 0 (14)

for all v ∈ H
1/2
0 (ΓS ,Γ). Let Wh be a boundary element subspace of H

1/2
0 (Γ,ΓS), e.g.

Wh = span{ϕn}
M
n=1 ⊂ H

1/2
0 (Γ,ΓS)

of piecewise linear basis functions with respect to a quasi uniform and regular mesh with mesh size
hS .
The spaceWi,h = span{ϕin}

Mi
n=1 denotes the restriction ofWh to Γi. The resulting Galerkin variational

formulation of (14) is to find uh ∈Wh such that

p
∑

i=1

∫

Γi

αi(S̃iuh)(x)v(x)dsx +
p
∑

i=1

∫

Γi

αi(S̃iĝ)(x)v(x)dsx = 0 (15)

for all v ∈Wh. This equation has a unique solution in Wh.
The corresponding algebraic system of the Galerkin variational problem (15) is

p
∑

i=1

αiA
>
i S̃i,hAiu =

p
∑

i=1

A>
i f i (16)

where we used the isomorphism v ∈ RM ←→ vh =
∑M

j=1 vjϕj ∈ Wh. Ai denote the connectivity
matrices that map the vectors v originating from the global discretization on ΓS into their local
components vi corresponding to the local discretization on Γi.

4



CIC–F.Mech.&Tech.Appl., Bucharest, November, 2005

In (16) the discrete approximate Steklov-Poincaré operator is

S̃i,h = Di,h + (
1

2
MT

i,h +KT
i,h)V

−1
i,h (

1

2
Mi,h +Ki,h) (17)

with the boundary element matrices

Vi,h[l, k] = 〈Viψ
i
k, ψ

i
l〉Γi ,

Di,h[m,n] = 〈Diϕ
i
n, ϕ

i
m〉Γi ,

Ki,h[m, k] = 〈Kiϕ
i
k, ψ

i
m〉Γi ,

Mi,h[m, k] = 〈ϕik, ψ
i
m〉Γi ,

(18)

for k, l = 1, ...,Mi and m,n = 1, ..., Ni. The linear system (16) is equivalent to the solution of the
minimisation problem

J̃(u) = min
v∈R

M
J̃(v) (19)

where the linear functional is given by

J̃(v) :=
p
∑

i=1

[

1

2
(αiS̃i,hAiv,Aiv)− (fi, Aiv)

]

. (20)

By introducting the local vectors vi = Aiv we obtain

J̄(v1, ..., vp) :=
p
∑

i=1

[

1

2
(αiS̃i,hvi, vi)− (f

i
, vi)

]

(21)

to be minimised subject to the continuity constraints across the interface. Let us denote W = Πp
i=1Wi

and S = diag(αiS̃i,h)i=1...p . Then we have to find the minimum of

J(w) :=
1

2
(Sw,w)− (f, w) −→ min where w :=







v1
...
vp






∈W (22)

subject to same continuity constraints across the interface.

2.3 Interconnecting

It remains to impose the constraints that correspond to the continuity across the interface, i.e. ui(x) =
uj(x) for x ∈ Γij .
Every vertex (i.e. the endpoints of each edge of Γs) is called corner point. The basic idea of BETI-DP
is to consider the degrees of freedom corresponding to the corners as global degrees of freedom. Let

uc =







u1c
...

uMc
c






(23)
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be the vector of the degrees of freedom corresponding to the corner points, where Mc is the total
number of the corner points.
Let us consider W c the space of the corners degrees of freedom.
Let Ri

c :W
c −→Wi be the matrix operator between the euclidian spacesWc andWi in such a way that

Ri
cuc = uc,i. Subscript ”c” designates the degrees of freedom on ∂Ωi corresponding to the corners.

Subscript ”r” designates the degrees of freedom on ∂Ωi others than the corners: the remainders.
After reordering he have

ui =

[

ur,i
uc,i

]

(24)

Now the continuity conditions have to be enforced only on the remainder degrees of freedom We do
that with the help of Br matrix. The matrix Br = [B1r , . . . , B

p
r ] is constructed with {−1, 0, 1} as

entries. Each row of the matrix Br is connected with a pair of matching remainder nodes across the
interface. The entries of such a matrix are 1 and -1 for the indices corresponding to the matching
nodes and 0 elsewhere. So we have

Brur = 0 ,

where

ur =







ur,1
...
ur,p






(25)

is the vector of the remainder degrees of freedom.
We have to solve the following constrained minimisation problem :
Find u ∈W such that :

{

J(u) = 1
2〈Su, u〉 − 〈f̃ , u〉 −→ min

Brur = 0 and Ri
cuc = uc,i for i = 1, p

. (26)

We denote now by ŴΠ the subspace of W spanned by the vectors which are 1 in each corner point
and 0 in rest. This will be called the primal space and is the subspace generated by the degrees of
freedom which correspond to the corner points. We denote by W̃∆ the subspace of W generated by
the vectors which vanish in all the points corresponding to the corner points.
This is called the dual space and is the subspace generated by the degrees of freedom which correspond
to the remainder points. By W̃∆,i we denote the subspace generated by the remainder degrees of

freedom of Ωi. Now we introduce the subspace W̃ = W̃∆ ⊕ ŴΠ which is exactly the space where we
are looking for the solution of problem (26) after we impose the corner points constraints. That means
we have to solve now :
Find u ∈ W̃ such that :

{

J(u) = 1
2〈Su, u〉 − 〈f̃ , u〉 −→ min

Brur = 0
. (27)
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The resulting algebraic system after introducing the Lagrange multiplier dual variables looks:









S1

rr S1

rcR
1

c B1

r
T

.
.
.

.

.

.

.

.

.

S
p
rr S

p
rcR

p
c B

p
r

T

R1

c
T
S1

rc
T

. . . R
p
c

T S
p
rc

T
∑

p

s=1
Rs

c
T Ss

ccR
s
c 0

B1

r . . . B
p
r 0 0

















u
r,1

.

.

.

u
r,p

u
c

λ̃









=











f̃
r,1

.

.

.

f̃
r,p

∑

p

i=1
Ri

c
T
f̃

c,i

0











. (28)

Or in a compact form :






Srr SrcRc B>
r

(SrcRc)
> Sc 0

Br 0 0













ur
uc
λ






=







f
r
f
c
0






, (29)

where

αiS̃i,h =

(

Sirr Sirc

Sirc
T

Sicc

)

, f
i
=

(

f̃
r,i

f̃
c,i

)

. (30)

After eliminating the primal variables ur and uc the following system has to be solved:

Fλ = g (31)

where
F = BrS̃

−1BT
r (32)

and
S̃ = Srr − (SrcRc)(Scc)

−1(SrcRc)
T . (33)

F is a symmetric and positive definite (s.p.d.) matrix. Hence we can solve the system Fλ = g by
using a preconditioned conjugate gradient method.

3 Preconditioning

As in the previous FETI-DP articles [2],[4] we introduce the Dirichlet Preconditioner:

M =
p
∑

j=1

D
j
∆B

j
rS

j
rr(B

j
r)
T (Dj

∆)
T (34)

Using the ideas and the spectral equivalences demonstrated in [6] we introduce the Hypersingular

Preconditioner :

M =
p
∑

j=1

D
j
∆B

j
rD

j
rr(B

j
r)
T (Dj

∆)
T (35)

where

αiDi,h =

(

Di
rr Di

rc

Di
rc
T

Di
cc

)

(36)

is the boundary element matrix of the discrete local hypersingular boundary integral operator and
D
j
∆ are diagonal scaling matrices as defined in [4].
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4 Analysis

Let us generate a quasi-regular finite element mesh in every subdomain Ωi starting from the
subdomain boundary mesh. This is always possible since we assumed the boundary subdomain mesh
quasi-regular as well with the discretisation parameter hi. We assume a triangular mesh. Let us denote
each subdomain finite element stiffness matrix by KFEM

i,h . Numbering the unknowns corresponding

to the boundary Γi first, then K
FEM
i,h has the following blockstructure:

KFEM
i,h =

(

KΓΓ,i KΓI,i
KIΓ,i KII,i

)

(37)

where the indices Γ and I denote the subdomain boundary and interior unknowns, respectively. The
finite element Schur complement matrix arrising from the elimination of interior unknowns can be
represented in the following form:

SFEMi,h = KΓΓ,i −KΓI,iK
−1
II,iKIΓ,i (38)

Lemma 1 The local boundary element Schur complement matrix SBEMi,h = S̃i,h and the local finite

element Schur complement matrix SFEMi,h are spectrally equivalent to the exact Galerkin matrix Si,h of
the Steklov-Poincaré operator Si and to the boundary element matrix Di,h of the local hypersingular
boundary integral operator Di, i.e.,

SBEMi,h ' SFEMi,h ' Si,h ' Di,h

for all i=1, . . . , p, where A ' B means that the matrices A and B are spectrally equivalent (with
spectral constants which are independent of discretization constants).

It is useful to remark and easy at hand to prove that if we have A and B two s.p.d. spectral equivalent
matrices, block partitioned (with the same dimension blocks) with c1 and c2 the spectral equivalence
constants,

A =

(

A11 A12
A21 A22

)

and B =

(

B11 B12
B21 B22

)

, (39)

c1(Bv, v) ≤ (Av, v) ≤ c2(Bv, v)

then SA11 ∼ S
B
11 with the same constants c1 and c2, where

SA11 = A11 − A12(A22)
−1A21 is the Schur’s complement matrix of A that corresponds to A11 and

analogue we define SB11 .
Now if we take a look to the system (28) and to the original FETI-DP system (13) in Mandel & Tezaur [8]
we observe that we have two algebraic systems block constructed with parts from Steklov-Poincaré
BEM matrices (BETI-DP system) which is spectral equivalent with discrete Steklov-Poincaré FEM
matrix (FETI-DP system). The connectivity matrices and B are identical in both methods.
For the two dimensional elliptic problem solved with FETI-DP method it was proven in [8] that the
condition number of the system matrix (32) equiped with the Dirichlet preconditioner has the following
upper boundary:

8
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Theorem 1 For d=2 it holds that:

λmax(MF )

λmin(MF )
≤ C

(

1 + log
H

h

)2

, (40)

where C is a constant not dependent of H and h.

Using the above remarks and the spectral equivalence Lemma 1 it is obvious that the condition number
of the BETI-DP dual system matrix (32) equiped with Dirichlet as well as with the hypersingular
preconditioner has the same upper bound as the condition number of the FETI-DP dual system
matrix equiped with Dirichlet preconditioner.

5 Numerical Results

For numerical results let us consider that the squared domain Ω = [0, 1]2 divided in 9 square subdo-
mains as we can see in Fig.1. For this example we solve the problem

−div[α(x)∇u(x)] = 0 for x ∈ Ω, u(x) = g for x ∈ Γ, (41)

where g(x) = x1 + x2. We see that we have a floating subdomain and 4 corner points.

Figure 1: Model problem.

The local single layer potentials Vi, h were inverted by using direct solvers. In the tests, we used the
Dirichlet preconditioner (DP) and the hypersingular preconditioner (HP). The bold numbers appearing
in the first row of each table represent the number of discretization nodes on the boundary of each
subdomain. As a stopping criteria we used ε = 10−7.

No Jumps 40 60 80 104

HP 12 12 13 13
BETI-DP DP 8 8 9 9

Table 1: The number of iterations steps for no jumps, α =1 everywhere.
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Small Jumps 40 60 80 104

BETI-DP SDP 14 15 16 16
SHP 17 17 18 19

Table 2: The number of iterations steps for small jumps, α5 = 10−1 (in middle) and αi=1 elsewhere.

Large Jumps 40 60 80 104

BETI-DP DP 18 18 19 21
HP 21 21 22 23

Table 3: The number of iterations steps for large jumps, α5 = 10−3 in (in middle) and αi=1 elsewhere.

6 Conclusions

The benefits of BETI-DP method are mainly the same as for the FETI-DP method, but of course we
add those comming from using the boundary element method, namely :

• Parallelizable method.

• We have to deal only with invertible local subproblems.

• No need of characterization of the nullspaces of the local subproblems.

• It uses standard preconditioned conjugate gradient methods instead of projected preconditioned
conjugate gradient method like in standard FETI(BETI).

• We may use the sparse representation for the boundary element matrices.

• It has the benefit of using the Hypersingular Preconditioner which involves only matrix by vector
multiplication, less expensive than computing of the local solvers for the Dirichlet Preconditioner.

• One level FETI may be seen the light of the dual-primal spaces definitions as a degenerated
FETI-DP method with a null primal space.

As maybe the reader already observed from the previous BETI and coupled FETI/BETI papers, the
method formulation is strictly analytical involving Dirichlet-Neumann mappings. In the recent works
of Mandel and Tezaur [9] the FETI and FETI-DP methods were given a strictly algebraic formulation
totally independent of the solved problem. The advantage of BETI(BETI-DP) is that once we have
proven the spectral equivalence between FEM and BEM matrices we can transport all the FETI-DP
results to BETI-DP. Intuitively this spectral equivalence is valid due to the fact that both FEM and
BEM matrices are discretisations of the same operator. This leads us to the further use of coupled
FETI/BETI-DP as well as using of the Hypersingular Preconditioner for the FE domains also method
already used with good numerical results for one level FETI/BETI as can be seen in [7].
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