
,, Caius Iacob” Conference on

Fluid Mechanics&Technical Applications

Bucharest, Romania, November 2005

Stability and Bifurcations in the Electroconvection of Nematic Liquid Crystals

by
Iuliana OPREA 1 and Gerhard DANGELMAYR2

Abstract

Electroconvection in nematic liquid crystals is a paradigm for pattern formation in anisotropic
systems, exhibiting a complex spatiotemporal dynamical structure. We present here the result
of a bifurcation study of the motion of a planar layer of nematic liquid crystals subjected to a
transverse electric field. The linear stability problem is solved analytically for the velocity and elec-
tric potential. Ginzburg Landau type amplitude equations are then used for the weakly nonlinear
analysis near threshold. A rich variety of patterns, like travelling waves and rectangles, standing
rectangles and rolls, alternating waves and more complex spatiotemporal structures, is predicted
at Hopf bifurcation. Eckhaus instability boundaries for these patterns are determined, too.

1 Introduction

Electroconvection(EC) in nematic liquid crystals(NLC) is a pattern forming process related to the
anisotropic properties of the liquid crystal. NLC differ from ordinary, isotropic liquids by the fact
that the molecules they consist of are on average locally oriented along a preferred direction, called
the director. For EC, the NLC is sandwiched between two glass electrode plates and an electric
potential difference is applied across the layer. Above a critical value Vc of the applied ac voltage
an electrohydrodynamic instability may occur as a transition from the uniform state to a variety of
patterns. At onset one typically observes periodic patterns of convection rolls - normal or oblique
rolls, depending on the frequency. With increasing voltage transitions take place either to complex
spatiotemporal states, induced by defects, or to more complicated quasi-periodic patterns (see [11] for
a review).
The traditionally used mathematical model to describe the electrohydrodynamic instability in NLC
is the so-called standard model (SM) [10, 17], that combines the continuum theory of Ericksen and
Leslie with the quasistatic Maxwell equations in the hypothesis that the charge conduction in the
liquid crystal is ohmic. The SM is capable to capture several phenomena observed near threshold
of ac-driven EC in planarly aligned nematics (e.g. normal, oblique and dielectric rolls, the structure
and dynamics of defects), however, it does not exhibit an oscillatory instability which gives rise to
the travelling wave patterns frequently observed near onset. Since experiments have shown that the
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electrical conductivity of NLC is non-ohmic [8], this suggested that the dynamics of ion recombination
and dissociation may play a significant role in this system and led to the development of the weak
electrolyte model (WEM) [14, 13]. The WEM is an extension of the SM, in which a slow dissociation-
recombination of the current-carrying ions is taken into account. This additional process requires to
treat the local conductivity σ as a further dynamic variable, an can lead to a distinctive change of the
threshold behavior of the electrohydrodynamic instability.
In this work we present results of a nonlinear stability and bifurcation analysis of the weak electrolyte
model. The paper is organized as follows. Section 2 describes the basic equations for the rescaled
WEM in the limit of zero charge relaxation and constant external electric field. Section 3 presents
the linear stability analysis. The linear stability problem is solved analytically for the velocity and
electric potential. In Section 4 Ginzburg Landau type amplitude equations are introduced and then
used for the weakly nonlinear bifurcation analysis near threshold. A rich variety of patterns, like
travelling waves and rectangles, standing rectangles and rolls, alternating waves and more complex
spatiotemporal patterns is predicted at Hopf bifurcation. Codimension two bifurcation is found and
analyzed, and bounds for the Eckhaus instability are given. We conclude in Section 5 with a short
discussion on the results of the computations and open problems.

2 The Weak Electrolyte Model for Electroconvection in Nematic

Liquid Crystals

Nematic liquid crystals are charge carrying fluids with long range, uniaxial orientation and molecular
alignment, giving rise to anisotropic macroscopic properties. Local orientation of molecules is macro-
scopically described by the director field n. The external electric field causes the instability of the
equilibrium state, leading to electroconvective motion. The standard situation is a layer of nematic
liquid crystals sandwiched between two horizontal plates with planar alignment of the director. An
applied voltage induces an external alternating electric field in the z–direction. Usually the aspect
ratios are large and can be idealized to be infinite, thus the layer is considered to be infinitely extended
in the (x, y)–directions. In the approximation of a linear recombination term and of zero diffusivity,
the evolution equations of WEM for the local conductivity σ, the internally generated electric poten-
tial Φ, the velocity v, pressure p and the director n (|n| = 1) in dimensionless units are [14, 13]: the
ion dissociation–recombination dynamics

(∂t + v · ∇)σ = −α2π2∇ · (µEρ)− r

2
(σ2 − 1− P1π

2αρ2), (1)

the equation for the director n

(∂t + v · ∇)n = ω × n+ d(λAn− h), (2)

the conservation of charge

P1(∂t + v · ∇)ρ = −∇ · (µEσ), (3)

together with the Poisson’s law for the electric charge density ρ,

ρ = ∇ · (εE), (4)
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and the generalized Navier Stokes equations

P2(∂t + v · ∇)v = −∇p−∇ · (T+Π) + π2ρE, (5)

∇ · v = 0, (6)

where E = (
√
2R/π) cos(ω0t)e3−∇Φ is the electric field, ω = 1/2(∇×v) is the vorticity, and A, with

components Aij = 1
2(vi,j + vj,i), is the strain tensor. We use the scaling introduced in [14] in which

lengths, time, orientational elasticities, viscosities, dielectric permittivities, and voltages are measured
in units of d/π (d: distance between the plates), director relaxation time τd, splay deformation constant
K1, γ1 = α̃3 − α̃2, ε0ε⊥, and Vc, respectively, where

τd =
γ1d

2

K1π2
, Vc =

√
K1π2

ε0ε⊥
,

and ε0ε⊥(δij+εaninj) and α̃j (1 ≤ j ≤ 6) are the unscaled dielectric permittivity tensor and the Leslie
coefficients, respectively. The Prandtl-type number P2 is the ratio P2 = τvisc/τd, where τvisc = d2ρm/γ1
is the viscous relaxation time and ρm is the mass density. The Prandtl-type number P1 is the ratio
of the charge relaxation time and the director relaxation time, P1 = τq/τd, where τq = ε0ε⊥/σ⊥
and σi,j = σ⊥ + σaninj is the conductivity tensor σ. Conductivities are measured in units of the
equilibrium conductivity σeq = (µ+ + µ−)en0, defined in terms of the mobilities µ±, the elementary
charge e and the equilibrium concentration n0 of the ions. The parameters α, r are given by [14]

α =

√
µ+µ−γ1π2

σeqd2
, r =

τd
τrec

,

with the recombination time τrec = (2krn0)
−1, kr being the recombination constant. Both of these

parameters are also Prandtl–type time scale ratios.
The units are normalized such that the height of the layer is π. Using the common planar alignment,
the coordinate system is chosen such that n = (1, 0, 0) at the upper and lower plates located at
z = ±π/2. The ’rigid’ boundary conditions on top and bottom of the layer,

∂σ

∂z
, n2, n3, φ, v = 0 at z = ±π/2, (7)

are deduced from the ideal conducting plates condition, rigid anchoring for the director, and finite
viscosity. The molecular field

h = (
∂f

∂n
−∇ · ∂f

∂∇n)− εaπ
2(n ·E)E,

is derived from the elastic energy density,

2f = K1(∇ · n)2 +K2[n · (∇× n)]2 +K3[n× (∇× n)]2,

due to splay (K1), twist (K2), and bend (K3) deformations – in our scaling the splay deformation
coefficient K1 is normalized to unity. The tensors µ, ε, d, T, Π are the scaled mobility, dielectric,
projection, viscous stress and Erickson stress tensor, with components

µij = δij + σaninj , εij = δij + εaninj , dij = δij − ninj ,
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−Tij = α1ninjnknlAkl + α2njNi + α3niNj + α4Aij + α5njnkAki + α6ninkAkj , Πij =
∂f

∂nk,j
nk,i

where N = d(λAn − h). The scaled Leslie coefficients α1, . . . , α6 (αj = α̃j/γ1) and the Onsager
coefficient λ in (2) satisfy the Onsager relations α1 + α3 = α6 − α5, α3 − α2 = 1, and λ = α5 + α6.
We introduce the independent parameters (Miesowicz coefficients)

η0 = α1 + α4 + α5 + α6, η1 = (−α2 + α4 + α5)/2, η2 = (α3 + α4 + α6)/2, η3 = α4/2,

and use the Onsager relations to express λ, α1, . . . , α6 in terms of the four independent Miesowicz
coefficients η0, η1, η2, η3. as

λ = η1 − η2, α1 = η0 − 2η1 − 2η2 + 2η3 + 1, α2 = −(1 + λ)/2, α3 = (1− λ)/2,

α4 = 2η3, α5 = 2η1 − 2η3 − (1 + λ)/2, α6 = 2η2 − 2η3 − (1− λ)/2.

The system (1)–(7) depends on the main bifurcation parameters R and ω0 (amplitude and frequency
of the external field), four Prandtl–type time scale ratios P1, P2, (viscous and charge relaxation time
to director relaxation time), α (mobility parameter) and r (recombination parameter), dielectric and
conductivity anisotropy coefficients εa and σa, and the material parameters K2,K3, η0, η1, η2, η3. The
system (1)–(7) has reflectional

(x, n2, n3, v1) → (−x,−n2,−n3,−v1)
(y, n2, v2) → (−y,−n2,−v2)

(z, n3, v3,Φ) → (−z,−n3,−v3,−Φ)

and translational
(x, y)→ (x+ ξ, y + η)

symmetries (fields that preserve their signs are suppressed) due to the assumption of an infinitely
extended layer in x and y, but there are no rotational symmetries due to the anisotropy of the system.
The resulting symmetry group is E1 × E1 × Z2 and the compactified symmetry group, in case of
periodic boundary conditions in (x, y), is O(2)×O(2)× Z2.
The equations (1)–(7) are extremely complicated, and full 3-d simulations for large aspect ratios are
still beyond the scope of present day’s supercomputers. Thus a weakly nonlinear analysis near onset
is particularly useful, and is appreciated by experimentalists.
Typically the Prandtl numbers P1, P2 are very small compared to the other parameters, at least in
the conduction range, thus one can take the limit P2 = 0 (zero viscous relaxation time) and P1 = 0
(zero charge relaxation time). Partial results of a weakly nonlinear analysis of the WEM in this
approximation, in which the z-dependence of the velocity was approximated by two Chandrasekhar
modes and only three Fourier modes have been taken into account, have been presented in [13] for
the case of a Hopf bifurcation with only two minima of the neutral stability surface (see Section 4.2).
The theoretical results were in good agreement with some experiments [8, 9], but still more accurate
numerical computations as well as computations for other parameters and other types of instabilities
are necessary to test the validity of the WEM.
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3 Linear stability analysis

We consider the WEM equations (1)–(7) in the limit of zero viscous and charge relaxation time
P1 = P2 = 0 and we assume a constant external electric field in the z-direction (ω0 = 0). In this limit
the equations (1)–(6) split into the evolution equations for the variables σ and n

(∂t + v · ∇)σ = −α2π2∇ · (µEρ)− r

2
(σ2 − 1), (8)

(∂t + v · ∇)n = ω × n+ d(λAn− h), (9)

and the equations for v, p and Φ

−∇p−∇ · (T+Π) + π2ρE = 0, ∇ · v = 0, (10)

−∇ · (µEσ) = 0, (11)

with

ρ = ∇ · (εE), E = (
√
2R/π)e3 −∇Φ. (12)

The remaining parameters are the material and WEM parameters K2,K3, η0, η1, η2, η3, α, r, εa, σa,
and the bifurcation parameter R measuring the external electric field strength. Substituting (12) into
(8)–(11) leads to a system of equations for the ’dynamical variables’ σ, n2, n3 (|n| = 1) and for the
’slave variables’ Φ and v = (v1, v2, v3).
The basic state of (1)–(7) is given by σ = 1, v = 0, Φ = 0, n = (1, 0, 0), p = const. The stability of this
state is governed by linearized equations for perturbational fields δσ, δn2, δn3, δφ, δvj , j = 1, . . . 3,
δp. Owing to the translation invariance w.r.t. (x, y), the perturbational fields are represented by
horizontal Fourier modes,

(δσ, δn2, δn3, δφ, δvj , δp) = ei(px+qy)(Σ, N2, N3,Φ, Vj ,P),

where Σ, N2 etc. depend on (t, z, p, q) and the parameters. The velocities Vj are represented by
poloidal and toroidal stream functions F and G leaving us with a system of linear equations for
(Σ, N2, N3,Φ, F,G). With the notations D = (Σ, N2, N3), S = (Φ, F,G) the linearized WEM equa-
tions can be written symbolically as

Dt = LD(D,S) ≡ LDD(p, q, R)D + LDS(p, q, R)S (13)

0 = LS(D,S) ≡ LSD(p, q, R)D + LSS(p, q, R)S (14)

where LD = (LΣ,LN2
,LN3

), LS = (LΦ,LF ,LG) are linear differential operators w.r.t. z. The ex-
pressions of LD,LS and the other operators in (13), (14) are given in the Appendix. The boundary
conditions (7) in the new variables read as

Σ,3 = N2 = N3 = 0, F = F,3 = G = 0 at z = ±π/2. (15)

Formally, (13)-(14) form a linear dynamical system for D,

Dt = L(D|p, q, R), (16)
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obtained by solving (14) for S(D|p, q, R) = −L−1SSLSDD and substituting this into (13). Since the
solution S(D|p, q, R) with the given boundary conditions is represented by an integral operator, L =
(LDD − LDSL−1SSLSD) is an integro–differential operator with respect to z. The solution of (14) is
facilitated by the fact that the Φ–component does not depend on the velocity.
Neutral stability of the basic state occurs on a neutral stability surface in (p, q, R)–space on which
L has either a zero eigenvalue (stationary neutral stability surface SNSS) giving rise to a stationary
bifurcation, or a purely imaginary eigenvalue (oscillatory neutral stability surface ONSS) giving rise
to a Hopf bifurcation. The transition to instability occurs at minimum (pc, qc, Rc) of lower neutral
stability surface.
To obtain a Galerkin approximation of L w.r.t. D we use natural, adapted to the boundary conditions,
sine- and cosine vertical modes. Due to the z-reflectional symmetry L has odd and even invariant
subspaces spanned by modes of the form Dm = (a1 sin(2m− 1)z, a2 sin 2mz, a3 cos(2m− 1)z), m ≥ 1
odd, and Em = (a1 cos 2mz, a2 cos(2m+1)z, a3 sin 2mz), m ≥ 0 even, respectively. For the parameter
range considered here the instability occurs in the odd subspace. In this subspace L is represented by
an infinite matrix M composed of 3× 3 blocks M(m,n) defined by

Mij(m,n) = (2/π)

∫ π/2

−π/2
L(Dmi) ·Dnjdz, 1 ≤ i, j,≤ 3, (17)

where Dmi is the Dm mode with aj = δij . To find these matrices, for any mode Dm we obtain the
exact solution Sm = S(Dm|p, q, R) of the nonhomogeneous equations (14) subjected to corresponding
boundary conditions and then evaluate the resulting integral (17) analytically. The solution of the
Φ–equation is straightforward and preserves the chosen modes. In contrast, the solution of the F and
G–equations involves hyperbolic functions leading to a transcendental dependence of theMij on (p, q).
We note that, due to the anisotropy and the rigid boundary conditions, these analytical computations
are not trivial.
To compute the critical data (pc, qc, Rc) numerically we used a 3N×3N truncation ofM by restricting
(m,n) to 1 ≤ m,n ≤ N . We move progressively to higher values of N , using the previously computed
values as starting values for the numerical search. The task of determining the local form of the critical
eigenvalue near the minimum of the ONSS involves a three parameter Hopf computation. For N = 1,
the analytically derived equations for an imaginary eigenvalue of a 3× 3 matrix and for a minimum of
R are solved numerically and the results are used as a starting value for the calculations with N > 1,
for which the ONSS is computed with the Werner’s augmented system [16] and minimized using a
Nelder–Mead method [1]. We have first reproduced the calculations done by [14] for the qc = 0-case.
Numerical convergence with an accuracy up to five significant figures was usually observed for N ≥ 9.
We computed the neutral stability surface for values of parameters corresponding to two nematics
MBBA and I52 [4] and we found steady as well as Hopf bifurcation with qc 6= 0, which complements
the results of [14] and explain the oblique rolls observed experimentally.
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4 Weakly nonlinear analysis

4.1 Ginzburg Landau Formalism for two-dimensional anisotropic systems.

Instabilities of homogeneous states in spatially extended systems are usually described by envelope
or modulation equations of the Ginzburg Landau type. Like normal forms for ODEs and maps, the
form of these equations is mainly determined by the symmetries of the governing PDEs and the type
of instability (see [2, 7, 6]). We refer to this approach to studying instabilities in extended systems in
terms of canonical envelope equations as ‘Ginzburg Landau formalism’.
The weak electrolyte model is a particular case of an axially anisotropic, dissipative systems with two
extended dimensions (x, y). In such systems, the axial anisotropy induces reflection and translation
invariancy in both extended directions, thus the underlying symmetry group is E(1) × E(1) which
compactifies to O(2) × O(2) if periodic boundary conditions are imposed. The standard situation is
that a homogeneous basic solution of a system of PDE’s for physical variables u = (u1, u2, . . .) becomes
unstable if a bifurcation parameter R exceeds a threshold Rc. Typically, Rc = R(pc, qc) is the minimum
of a neutral stability surface (NSS) R(p, q), on which the basic state is marginally stable against
plane wave perturbations with wave numbers (p, q). The NSS is derived from µr(p, q, R) = 0, where
µ(p, q, R) = µr(p, q, R) + iω(p, q, R) is the critical eigenvalue of the linearized system. The threshold
values (pc, qc) and ωc = ω(pc, qc, Rc) are referred to as the critical wave numbers and frequency,
respectively. By means of a multiple scale expansion one can derive a system of evolution equations
(Ginzburg Landau equations) for slowly varying envelopes that modulate the dynamics of bifurcated
solutions of the linearized problem near onset.
In the next section we will introduce the systems of Ginzburg Landau equations for two-dimensional
anisotropic systems in the case of four minima of the neutral stability surface, used in the weakly
nonlinear analysis of the WEM.

4.2 Globally Coupled Ginzburg Landau Equations

In the following we focus on the Hopf bifurcation in anisotropic systems with four minima of the
neutral stability surface, and hence four critical wave numbers (±pc,±qc). These wave numbers define
two oblique (‘zig’ and ‘zag’) directions for two pairs of counterpropagating travelling waves of the
linearized equations at onset. The solution of the underlying PDE system near onset, here (8)–(11),
is represented by a superposition of the two pairs of waves in the form

u(t, x, y, z) = (A1ei(pcx+qcy)U1(t, z) +A2ei(−pcx+qcy)U2(t, z) +A3ei(−pcx−qcy)U3(t, z)

+A4ei(pcx−qcy)U4(t, z))e
iωct + cc + h.o.t., (18)

(cc = complex conjugate) where the Aj , j = 1 . . . n are small, slowly varying envelopes, and h.o.t.
refers to terms of higher order in R − Rc and the Aj and their derivatives. The Uj(t, z) are the
(symmetry related) critical modes which are Te–periodic in case of periodic systems, and, if present
in the original PDE, may depend on a further, bounded space variable z.
By means of a formal expansion in the Aj and their derivatives, as well as symmetry considerations,
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one can derive a system of modulation equations or the envelopes[3]. The equation for A1 reads,

A1t + vxA1x + vyA1y = [a0(R−Rc) + D̃(∂x, ∂y) +
4∑

j=1

aj |Aj |2]A1 + a5A2Ā3A4 + h.o.t., (19)

where (vx, vy) = ∇ω|c are the critical group velocities, a0, a1, . . . , a5 are complex coefficients, and D̃ is
a complex second order differential operator in (∂x, ∂y) with elliptic real part. The linear coefficients
(vx, vy, a0, and coefficients of D̃) in (19) are determined by the first and second order expansion
coefficients of the critical eigenvalue µ about criticality, and the nonlinear coefficients aj , 1 ≤ j ≤ 5,
are determined by the quadratic and cubic terms of the given PDE system. The h.o.t. in (19) refers
to higher order terms which do not contribute at leading order when (19) is rescaled and expanded in
powers of ε =

√
R−Rc. The equations for A2,A3,A4 follow from (19) through appropriate reflection

operations.
The system (19) is still in unscaled form. The usual scaling R − Rc = ε2, T = ε2t, Aj(t, x, y) =
εAj(T, εx, εy), would lead to a system of four locally coupled Ginzburg Landau equations, provided
the group velocities are small (order O(ε)). In the generic case in which vx, vy are of order 1, one has
to resort to four slow wave variables ξ± = ε(x± vxt), η± = ε(y± vyt), adapted to the first order wave
operator on the left hand side of (19). It can be shown [3] that a consistent expansion Aj = εAj+O(ε2)
requires that A1, A2, A3, A4 depend on T and (ξ+, η+), (ξ−, η+), (ξ−, η−), (ξ+, η−), respectively, and
that the Aj satisfy a system of four globally coupled Ginzburg Landau equations. The equation for
A1 is given by

A1T = {a0 +D(∂ξ+ , ∂η+) + a1|A1|2 + a2 < |A2(s, η+)|2 >
+a3 < |A3(ξ+ + s, η+ + s)|2 > +a4 < |A4(ξ+, s)|2 >}A1
+a5 < A2(ξ+ + s, η+)Ā3(ξ+ + s, η+ + s)A4(ξ+, η+ + s) > , (20)

where D is a rescaled version of D̃, and the brackets denote averages over s. The equations for
A2, A3, A4 follow again from (20) through appropriate reflection operations. The meaning of the global
coupling terms is that fast energy transport due to finite group velocities causes wave interactions to
occur on average rather than locally in space.

4.3 Solutions of the Globally Coupled Ginzburg Landau Equations

If spatial variations are ignored, the globally coupled system for the Aj reduces to the normal form
for a Hopf bifurcation with O(2)×O(2) symmetry,

dA1
dT

= (a0 +
4∑

j=1

aj |Aj |2)A1 + a5A2Ā3A4. (21)

with the equations for A2, A3, A4 following by applying the permutations (2, 1, 4, 3), (3, 1, 4, 2),
(4, 3, 2, 1) to the indices of the Aj in (21) [12, 15]. The normal form (21) has six basic solutions
corresponding to six basic wave patterns shown by u(t, x, y, z) when represented by (18): travel-
ling and standing waves (TW and SW), two types of travelling rectangles (TR), standing rectangles

8
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Figure 1: An Eckhaus stability boundary for TW.

(SR), and alternating waves (AW), which alternate periodically between differently oriented stand-
ing waves. The dynamical repertoire of (21) is rich and not yet fully explored, but several facts are
known. First, several (up to three) basic wave patterns can be simultaneously stable. Second, there
are eight four–dimensional invariant subspaces and in one of them we can find quasiperiodic solutions.
Third, several heteroclinic cycles connecting different basic periodic solutions can occur as attractors
in certain parameter regimes.
The basic periodic solutions of (21) that reside in two–dimensional fixed point subspaces induce wave
solutions of the original system with critical wave numbers (pc, qc). The globally coupled system of
complex Ginzburg Landau equations (20) allows to extend these solutions to families of wave solutions
with nearby critical wave numbers (pc+εp, qc+εq). If a basic wave pattern appears stably as solution
of (21), the Eckhaus stability boundary (ESB) for fixed R > Rc is a closed curve in the (p, q) plane
that separates stable (interior of ESB) and unstable solutions of the family.
In [5] we have analysed the ESB’s for travelling waves. The analysis for all the six wave patterns
is algebraically very complicated due to the fact that the ESB of a particular wave pattern depends
on all six coefficients of the differential operator D as well as on certain combinations of the aj . Our
preliminary results show that in certain parameter regimes finite wavelength instabilities are dominant.
For example, in Figure 1(a) we display a possible form of the TW–ESB. In this figure, wave vectors
(p, q) in the interior of the ESB–curve give rise to Eckhaus stable TW’s. On the solid part of the
ESB–curve we find long wavelength instabilities, and on the dotted part the TW is neutrally stable
against wave vectors (r, s) located on the figure 8 curve shown in Figure 1(b). For other parameters
either the solid or the dotted part disappears.

4.4 Numerical computation of the coefficients a1, . . . , a5 for the weak electrolyte

model and numerical results

We analyze the wave patterns shown by (20) and their stability in the case of the weak electrolyte
model in order to predict stable electroconvective wave patterns near onset. The computation of the
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nonlinear coefficients aj in the globally coupled Ginzburg Landau equations (20) or (21) proceeds
by numerically evaluating their analytical representation in terms of the bilinear and cubic terms of
the WEM equations (13)-(14) with an adjoint critical mode. This involves solving a hierarchy of
nonhomogeneous linear equations, where at each stage the (14)–equations are inverted numerically
using the Green’s matrix.
The WEM equations depend on the bifurcation parameter R and the ten (dimension less) material
and WEM parameters (K2,K3, εa, σa, η0, η1, η2, η3, r, α). We are looking for parameter regimes where
the first instability when R increases is a Hopf bifurcation at R = Rc, with nonzero critical wave
numbers (pc, qc), the case of interest for experimentalists. In our numerical investigation we varied
K2,K3 (ratios of the twist and bend distortion coefficients to the splay distortion coefficient), and
kept the remaining eight material parameters fixed. The SM–parameters (εa, σa, η0, η1, η2, η3) have
been matched to measured values of the materials I52 and MBBA at room temperature, as in [14].
The values of the WEM–specific parameters r and α have been chosen such that a Hopf bifurcation
with qc 6= 0 occurs. Figure 2 summarizes the results of the weakly nonlinear analysis in the form of a
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Figure 2: Stable wave patterns for the WEM predicted by (21).

stability diagram in the (K1,K2)–plane (I:I52, II:MBBA). For a given value of K2, we first computed
a value K3 = K3d(K2) such that for K3 above K3 the transverse critical wave number qc is zero, and
below it is nonzero. The points K3 = K3d(K2) define the locus of a codimension two bifurcation for
which the two NSS minima on the p–axis degenerate in the q–direction. For K3 < K3d(K2) we find
different basic wave patterns occurring stably as solutions of (21) in different regions as marked in
the diagrams. Note that for both parameter sets there is a certain range where TW and AW are
simultaneously stable. Moreover, the parameter scans indicate the presence of a codimension three
point that organizes transitions between TW and AW as well as the disappearance of stable basic
patterns for small values of K3. While in this range for set I the basic periodic solutions TW and
AW are replaced by temporally quasiperiodic solutions (QP ) residing in four dimensional invariant
subspaces, the dynamics for small K3 in case of set II has not yet been identified. We assume that
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here the attractors of (21) are heteroclinic cycles or higher dimensional tori.

5 Conclusions

In this paper we have analyzed stable wave patterns predicted by a Hopf bifurcation with four critical
wave numbers (±pc,±qc), each corresponding to an oblique travelling roll solution of the linearized
WEM equations at onset. The method we developed provides a systematic analysis of the bifurcated
solutions and their stability. In this investigation we varied (K2,K3) and kept the other material
parameters fixed. Our numerical findings suggest that travelling rolls and alternating waves play a
dominant role. We have considered the case of a constant electric field. If the external field is time-
periodic (ac-field), the governing equations represent a parametrically forced nonautonomous system,
and averaging methods must be used prior to a bifurcation analysis. Results of a similar analysis with
nonzero driving frequency ω0 of the external field will presented in a future work.

6 Appendix

The linearized WEM equations depend on several anisotropic horizontal differential operators which
become polynomials in (p, q) after Fourier transformation. To obtain a compact representation of
these polynomials we introduce basic polynomials of the form k2j = cpp

2 + cqq
2 (0 ≤ j ≤ 12) in Table

1. The parameters a, b, c, η occurring in this table are defined by

a = η0, b =
1

4
[2(η1 + η2)− (η1 − η2)

2 − 1], c = η3, η = η2 − η1.

With this notation the linearized equations for Σ, N2, N3 take the form (prime denotes ∂z)

∂tΣ = −rΣ− 2ipα2εaRN
′

3 + α2π
√
2R(∂2z − k26)Φ

′, (A.1)

∂tN2 = 2(K3∂
2
z − k22)N2 − 2iq(K3 − 1)N ′

3 − (i/2)L2(V), (A.2)

∂tN3 = 2(1−K3)iqN
′

2 + 2(∂2z + εaR− k23)N3 (A.3)

−εaπ
√
2RipΦ− (1/2)L3(V),

where
L2(V) = (1 + η)qV1 − (1− η)pV2, L3(V) = (1 + η)V ′1 − (1− η)ipV3,

and the Vj are expressed through F,G as

V1 = iqG+ cipF ′, V2 = −ipG+ biqF ′, V3 = k20F. (A.4)

Note that (A.4) differs slightly from the commonly used representation of velocities in terms of stream
functions. The chosen form turns out to be particularly useful when solving the nonhomogeneous
velocity equations.
The linearized equation for the potential reads

(∂2z − k27)Φ− (
√
2R/π)(σaipN3 +Σ′) = 0, (A.5)

11
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and the equations for the stream functions are given by

(k40k
2
1 −B∂2z + bck20∂

4
z )F − sp3qG′ + π

√
2R(k29∂

2
z − k28k

2
0)Φ + LF (N2, N3) = 0, (A.6)

(A− k20∂
2
z )G+ sp3qF ′ + εaπ

√
R/2(1 + η)pqΦ′ + LG(N2, N3) = 0, (A.7)

where s = ac−2bc−b2+c2, A = bp4+(a−2b+2c)p2q2+bq4, B = c2(a−2b+2c)p4+b(b2+3c2)p2q2+
2cb2q4, and

LF (N2, N3) = pq{[(1 + η)c− (1− η)K3b]∂
2
z − k210}N ′

2

−ip{c(1 + η)∂4z − [k212 − (1 + η)cεaR]∂
2
z

+[(1− η)k23 + (1 + η)εaR]k
2
0}N3,

LG(N2, N3) = (k22k
2
4 − k25∂

2
z )N2 + iq[(1 + η)(∂2z + εaR)− k211]N

′

3.

k20 k21 k22 k23 k24 k25 k26 k27 k28
cp c b K2 K2 1− η (1− η)K3 1 + εa 1 + σa 1 + (1 + η) εa

2

cq b c 1 K3 1 + η 1 + η 1 1 1

k29 k210 k211 k212

cp c−(1+η) cεa

2

(1 + η)cK2 + (1 −
η)(c− bK2 − cK3)

(1 + η)K2 +
(1−η)(1−K3)

(1 + η)cK2 +
(1− η)c

cq b (1+η)c−(1−η)bK3 1 + η (1 + η)c+ (1− η)bK3

Table 1: Coefficients cp, cq in k2j = cpp
2 + cqq

2.

References

[1] E. Allgower and K. Georg and I. Oprea and G. Dangelmayr, Matrix-Free Numerical Computa-
tion of Instabilities of Periodic Patterns, in Dynamics and Bifurcation of Patterns in Dissipative

Systems, World Scientific Series on Nonlinear Sciences, Series B, 20-38,2004

[2] M. Cross and P. Hohenberg, Pattern Formation outside Equilibrium, Rev. Mod. Phys., 65, 851-
1123, 1993

[3] G. Dangelmayr and M. Wegelin,Hopf bifurcations in anisotropic systems,in Pattern Formation in

Continuous and Coupled Systems, (M. Golubitsky and D. Luss and S. Strogatz eds.), Springer,
IMA Vol. in Math. and Appl.115, 33-48, 1999

[4] G. Dangelmayr and I. Oprea, A Bifurcation Study of Wave Patterns for Electroconvection in
Nematic Liquid Crystals, Mollec. Cryst. Liq. Cryst, 413 , 305-320, 2004

12



CIC–F.Mech.&Tech.Appl., Bucharest, November, 2005

[5] G. Dangelmayr and I. Oprea, Eckhaus Stability Boundaries for Waves in Anisotropic Systems,
In Preparation, 2005

[6] G. Dangelmayr and L. Kramer, Mathematical tools for pattern formation, in Evolution of Spon-

taneous Structures in Dissipative Continuous Systems, (F. Busse and S.C. Müller eds.), Springer,
1-85, 1998
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