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Abstract

The paper presents mathematical models and methods for the optimization of wind propelled
sail profiles. In order to solve limit issues, direct or inverse methods have been used. Both cases
of wind circulation around the sail profile and circulation-free cases have been aproached. For sail
optimization purposes, flaps sails are considered assimilated to a point-vortex.
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1 Introduction

In this paper aerodynamique profiles theory we will use in order to solve and optimization mathe-
matical models for naval sail systems. We consider rigide sails, plates rights or curves and search
optimal shape for maximal propulsion in two limit cases, wind rectangular on the plate and wind
paralel with profile chord. For optimization of performances, we study flaps sail model. These re-
searches have start point theoretical and practical experiments of Naval Academy ”Mircea cel Bătrân”
team and the Reserch Institut for Wind Energy from Braşov. We present now theoretical model
for plate sail used the hidrodynamic potential theory with free surfaces. The stationary potential
plane flow of an inviscid fluid is considered in the absence of mass forces. Relating the velocity field
~v = u~i + v~j, u = u(x, y), v = v(x, y), to the frame in the physical flow domain Dz, z = x + iy, then
within the hypothesis as well as from the continuity equation div~v = 0 and the condition for an
irrotational flow (rot~v = 0) [3] [9],we have

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂y
− ∂v

∂x
= 0 (1)

In this case, ~v = gradϕ(x, y), and the velocity potential ϕ = ϕ(x, y) is a harmonic function, ∆ϕ = 0
in Dz. By introducing the stream function ψ = ψ(x, y), the harmonic conjugate of ϕ in Dz, ∆ψ = 0
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in Dz, the relations (2) are obtained:

u =
∂ϕ

∂x
=
∂ψ

∂y
, v =

∂ϕ

∂y
= −∂ψ

∂x
(2)

Thus, the complex potential of the flow is considered to be f = f(z) and the complex velocityw = w(z):

f(z) = ϕx, y + iφ(x, y), w̄ =
df

dz
= u− iv (3)

In the hodograph plane (V, θ), where V =
√

(u2+v2) is the magnitude of the velocity and θ = argw =
arctg v

u
the complex velocity angle with x′Ox axis, the following relations can be written:

W = V + iθ, u = V cos θ, v = V sin θ, w = V eiθ (4)

With (4), the transition relation f = f(z) is obtained:

dϕ+ idψ = (u− iv)(dx+ idy) (5)

In the case of free surface flow, the domainDz is generally bounded by polygonal rigid walls, curvilinear
obstacles and stream lines detaching from walls or obstacles. Along these free lines the velocity, the
pressure and the density are V 0, p0, ρ = ρ0 = const. Applying Bernoulli’s law for incompressible fluids
(ρ = const) along a streamline [3], [9], ψ = const, we have

1

2
V 2 +

p

ρ
=

1

2
V 02

+
p0

ρ
(6)

In the hypothesis (Hyp), we generally consider the plane parallel to infinity flow of an inviscid fluid
which encounters a curvilinear obstacle lim|z|→∞ ~v = V 0~i. The Ox axis is the symmetry axis. This is
the ”Helmholtz model” of the symmetrical obstacle in unlimited fluid. The repose zone is downstream
and is delimited by obstacle and free lines. In the case of a curvilinear domain Dz it is generally
difficult to obtain directly f = f(z) and w = w(z) by solving the boundary problem, therefore it
should be introduced a canonic auxiliary domain Dζ = ξ+ iη. In this paper, we choose the half-plane
D+
ζ = ξ + iη, η > 0, as canonic domain, we give some theoretic and applied results and we emphasize

the computation techniques for analytic functions or nonlinear operators. We try to determine the
analytic function f = f(ζ) which is the conformal mapping D+

f ←→ D+
ζ , with

f(ζ̄) = 0, ϕξ = ψη, ϕη = −ψξ (7)

In order to obtain the analyticity conditions for the velocityW (V, θ) inD+
ζ , we introduce the Jukovski’s

function ω [6], by considering V = V 0 along the free lines:

ω = t+ iθ, w̄ = V 0e−ω, t = ln
V 0

V
, 0 ≤ V ≤ V 0 (8)

θψ = tϕ, θϕ = −tψ, ϕθ = −ψt, ϕt = ψθ, ωf̄ = 0, fω̄ = 0 (9)

Now, we consider the following theorems.
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Theorem 1 In the hypothesis (Hyp), if there is a conformal mapping

f = f(ζ), fζ̄ = 0, with D+
f ←→ D+

ζ , then z = z(ζ) is analytic with

D+
z ←→ D+

ζ .

Theorem 2 In the hypothesis (Hyp), if the function f is analytic in ζ and realizes a conformal

mapping D+
f ←→ D+

ζ , then ω = ω(ζ) is analytic and it is the conformal mapping D+
ω ←→ D+

ζ .

Writing the relation (5) along a stream line ψ = const and using Theorem 1 one obtains the equations
of this stream line (obstacle, free lines) and with η = 0 ∂ϕ

∂η
|η=0 = 0, we have

x(ξ) =

∫ ξ

ξ0

ϕξ
cos θ

V
dξ + x0, y(ξ) =

∫ ξ

ξ0

ϕξ
cos θ

V
dξ + y0 (10)

In order to obtain the functions V = V (ξ) and θ = θ(ξ), we carry out Theorem 2 and solve a mixed
Riemann-Hilbert or Volterra problem for ω = ω(ζ), [2], [9]. By (8), we then obtain w = w(ζ). Thus,
the movement f = f(z), w = w(z) (or parametric f = f(ζ), w = w(ζ)) is obtained by the composition
D+
f , D

+
z , D

+
ω ←→ D+

ζ . Next we realize Theorems 1 and 2 for the ”Helmholtz model” obtaining the
integral singular equations for direct and inverse problems too. So, in the conditions stated above,
we consider the plane flow of an unlimited fluid, moving infinitely upstream in an uniform translation
movement of velocity ~V 0 = V 0~i. The fluid hits a symmetrical curvilinear obstacle (BOB ′) and in
the points B and B′, the free streamlines (BC) and (B ′C ′) of V 0 velocity are detached. The x′Ox

axis is the symmetry axis A0O. The point A0 is at infinity upstream, ~V (A0) = V 0~i. The free lines

are asymptotically parallels to x′Ox axis, ~V (C) = ~V (C ′) = V 0~i. (CBOB′C ′) will be the repose zone

behind the obstacle and ~V (O) = 0 We consider the correspondence between the domains D+
z , D

+
f , D

+
w

with the half-plane D+
ζ , η > 0, so that the boundary (A0OBC) will be replaced by the η = 0 axis,

ξ ∈ (−∞,∞) : A0(−∞), O(−1).B(1), C(+∞) (Fig.2). So, the obstacle (OB) is the segment (−1, 1)
and, in the physical plane Dz, the length of (OB) is L.

2 The deduction of the integral equations for plate sails with rect-

angular wind on plate

In order to determine the complex potential f = ϕ+ iψ in the half-plane D+
ζ , η > 0, we have to solve

the following Dirichlet problem: find an analytic function f(ζ) = ϕ+ iψ in η > 0 such that ψ = 0 on
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η = 0, ξ ∈ (−∞,∞). The solution of this problem is:

f(ζ) = Aζ,A > 0,
∂ϕ

∂ξ
|η=0 = A ,

∂ϕ

∂η
|η=0 = 0 (11)

We determine ω = ω(ζ) in two manners. We have to find the analytic function ω = ω(ζ = t + iθ

in η > 0 knowing the following values on the boundary η = 0 : θ = 0, ξ ∈ (−∞,−1), θ = θ(ξ)
or t = t(ξ), ξ ∈ (−1, 1); t = 0, ξ ∈ (1,∞). These are mixed problems and we transform them into
Dirichlet problems for the analytic functions S1, S2 in η > 0:

S1(ζ) = R1 + iI1 =
ω(ζ)

√

(ζ + 1)
:

R1 = 0, ξ ∈ (−∞,−1) ∪ (1,+∞);R1 =
t(ξ)√
ξ + 1

, ξ ∈ (−1, 1)

S2(ζ) = R2 + iI2 =
ω(ζ)

√

(ζ − 1)
:

R1 = 0, ξ ∈ (−∞,−1) ∪ (1,+∞);R1 =
t(ξ)√
1− ξ , ξ ∈ (−1, 1)

From the Cisotti formula we have

ω(ζ) =

√
ζ + 1

πi

∫ 1

−1

t(s)√
s+ 1

ds

s− ζ + C1i, ζ ∈ D+
ζ (12)

or

ω(ζ) =

√
ζ − 1

πi

∫ 1

−1

θ(s)√
1− s

ds

s− ζ + C2i, ζ ∈ D+
ζ (13)

with the constants C1 = 0, C2 = 0 if V (ξ = −1) = 0 and t(ξ = −1) = +∞. Applying the Sohotski-
Plemelj formula [2],[3] to the Cauchy integrals (12), (13) when ζ = ξ, η = 0+ for ξ ∈ (−1, 1) we
obtain

θ(ξ) =

√
ζ + 1

π

∫ 1

−1

t(s)√
s+ 1

ds

s− ζ ζ ∈ (−1, 1) (14)

t(ξ) =

√
ζ − 1

π

∫ 1

−1

θ(s)√
1− s

ds

s− ζ , ζ ∈ (−1, 1) (15)

The singular integrals are taken in the sense of Cauchy’s principal value. By (5), the arc element on
(OB) is

dS = ϕξ
dξ

V (ξ)
, S =

∫ ξ

−1
A

dξ

V (ξ)
, ξ ∈ (−1, 1) (16)

and from (16) and (8) the length (OB) is

L = A

∫ 1

−1

dξ

V (ξ)
=

A

V 0

∫ 1

−1
et(s)ds. (17)
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If the length L and the distribution of the velocity along (OB) are given, then the parameter A can
be found. With these results we can emphasize the inverse problems for the ”Helmholtz model” with
curvilinear obstacle. If the distribution of the velocity V = V (θ), i.e. t = t(θ(ξ)), or the pressure
p = p(θ) on the profile (OB) are given, then (15) is a singular integral equation with the unknown
function θ = θ(ξ). Next, the functions ω = ω(ζ), w = w(ζ) may be deduced (see (12), (13)). The

relations (10) give us the equation of the profile (OB): z = z(ξ) =
∫ ξ
ξ0
ϕξ

eiθ

V
dξ + z0. We remark that

the relations (14), (15) are inversion formulae for θ(ξ)←→ t(ξ), ξ ∈ (−1, 1).

2.1 The problem of the normal plate in unlimited flow

Let us consider in the same hypothesis the plane flow of an unlimited fluid, moving infinitely upstream
in an uniform translation movement of velocity ~V 0 = V 0~i which encounters the symmetric plate
(BOB′). Similarly, the free streamlines (BC) and (B ′C ′) are detached in the points B and B ′. This
is the Helmholtz’s problem. We will solve this direct problem by means of the results of Sections
2 and 3 prescribing along the plate θ(ξ) = π

2 , ξ ∈ (−1, 1). Due to the symmetry, we consider the
physical half-plane D+

z , y > 0, delimited by (A0OBC) with the same correspondence in the half-plane
D+
ζ , η > 0. Thus, replacing θ(ξ) = π

2 in (15) we get the distribution of the velocity on the plate (OB)

t(ξ) =
1

2
ln

√
2 +
√
1− ξ√

2−
√
1− ξ

, V (ξ) = V 0

(√
2−
√
1− ξ√

2 +
√
1− ξ

)
1
2

, ξ ∈ (−1, 1) (18)

It’s clear that V (O) = V (ξ = −1) = 0 and V (B) = V (ξ = 1) = V 0. Computing length of the plate

(BOB′) and using the relations (18), (17) we have L = A
V 0

π+4
2 , A = 2LV 0

π+4 . Knowing F and V 0one
determines the parameter A. To compute the distribution of the velocity along (A0O) with θ = 0, we
remake the computations of Section 3 with distribution (18) and we get

t(ξ) =

√
−1− ξ
π

∫ 1

−1

t(s)√
1 + s

ds

s− ξ =
1

2
ln

√
1− ξ +

√
2√

1− ξ −
√
2
, ξ ∈ (−∞,−1) (19)

V = V 0

(√
1− ξ −

√
2√

1− ξ +
√
2

)
1
2

, ξ ∈ (−∞,−1) (20)

P =
ρV 02

2

∫ 1

−1

[

1−
(

V

V 0

)2
]

A

V (ξ)
dξ =

ρV 02

2
A

∫ 1

−1

√

1− ξ
1 + ξ

dξ = πA
ρV 02

2
(21)

Then using (19), the drag coefficient is given by

CPx =
2π

π + 4
∼= 0, 87980 (22)

Propulsion force will be equal with CP
x · S, where S is plate aria.
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2.2 The problem of the curve plate in unlimited flow

Let us consider that the unlimited fluid encounters the symmetrical, curvilinear, upstream convex
obstacle (BOB′). The free lines (BC), (B′C ′) are detached in the points B,B′ and will be infinitely
downstream parallel to the Ox axis. Our purpose is to find the shape of the obstacle with maximal
drag. The length of the curve (B ′OB) is given and is equal to 2L. These profiles of maximal drag are
called ”deflectors” or ”impermeable parachutes” , and they still correspond to the ”Helmholtz model”.
They are very important in relation with applications to the thrust reversal devices or the direction
control of the reactive vehicles. We notice also other applications to the slowing by fluid jets or to the
jet flaps systems from the airplanes wings. Within the hypothesis of Section 3 and V 0, L being given
we ask the condition of maximum P in (26) and we want to determine the distribution of the velocity
on the profile (OB), i.e. V = V (ξ) or t = t(ξ), ξ ∈ (−1, 1). The resultant P [3] is,

P =
iρV 02

L

2

∮

Kζ
eω(ζ)dζ

∫ 1
−1 e

t(s)ds
=
ρV 02

L

2π

(

∫ 1
−1

t(s)√
1+s

ds
)2

∫ 1
−1 e

t(s)ds
(23)

We write: P = ρV 02L
2 J [t] where the nonlinear functional

J [t] =

(

∫ 1
−1

t(s)√
1+s

ds
)2

∫ 1
−1 e

t(s)ds
(24)

must be maximized. To assure the convergence of the integrals and using (17) and V (ξ = −1) = 0

we put V (ξ) = (1+ξ)α

2 g(ξ) with 0 < α < 1 and g(−1) 6= 0. Without losing the generality, we choose

α = 1
2 . From t(ξ) = ln V 0

V (ξ) we have

t(ξ) = G(ξ) + ln

√

2

1 + ξ
, ξ ∈ (−1, 1), (25)

where the term G(ξ) is generated by g(ξ). Introducing (25) in (24) we get

J [G] =

[

∫ 1
−1

G(s)√
1+s

ds+ 2
√
2
]2

√
2
∫ 1
−1

eG(s)√
1+s

ds
(26)

In order to find G(ξ), the functional J [G] is maximized to a functional H[G](J [G] ≤ H[G]) whose
maximum point may be easily computed and where the two functionals have the same value. The
Jensen’s inequality [7] is: if f(x) ≥ 0, g(x) are integrable functions on [a, b], then

∫ b

a
f(x)eg(x)dx ≥

(

∫ b

a
f(x)dx

)

e

∫ b

a
f(x)g(x)dx
∫ b

a
f(x)dx

(27)

where the equality case holds if and only if g(x) is a constant function. Applying the Jensen’s inequality
for (26) we have

J [G] ≤ 2(U + 1)2

eU
≡ H[U(G)], U(G) ≡

√
2

4

∫ 1

−1

G(s)√
1 + s

ds. (28)

6
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In (28), the equality holds if and only if G(ξ) ≡ G0 = const. The functional H[U ] has a maximum
point in U0 ≡ 1, obtained by differentiation and Hmax = H[U0 = 1] = 8

e
. For G(ξ) ≡ G0 = 1 in (28)

we have equality and then Jmax = J [G0 = 1] = 8
e
. Using (25) we obtaine:

t(ξ) = 1 + ln

√

2

1 + ξ
, V (ξ) =

V 0

e

√

1 + ξ

2
, ξ ∈ (−1, 1) (29)

The result will be Pmax = ρV 02L
2π Jmax = 4ρV 02L

πe
. The maximal drag coefficient will be CII

x = 2P

ρv0
2
L
, i.e.

CIIx =
8

πe
= 0, 936797. (30)

This result is in agreement with that obtained in [6] by Maklakov using the Levi-Civita method.

2.3 The deduction of the plate sail for maxim lift in a wind parallel with profil

chord

We consider a simmetrical curve plate (AB) axa x’x on profile chord and O in the midle of the chord
and the wind is paralel with the chord. Let be L(AB) length of (AB) and l length of chord knowns
again A0A,BB0 free lines with A0AMBB0 stream line ψ = 0. We denote by k = L−l

l
and we will must

to determine optimal geometrical shape for maximum lift P(rectangular on chord)[6]. We consider
T1,T2 theorems with integral equations (14),(15) and we will determine potential function f = f(ζ)
and ω̄ = ω̄(ξ) in the upper half plane, η ≥ 0; the plate (AB) being lateral acting of wind with the
speed V 0~i. Let be f(ζ) complex potential and ω̄ = df

dz
= df

dζ
dζ
dz
,

f(ζ) = AV 0ζ; dz = ϕξeiθdξ, ψ = 0, η = 0 (31)

z(ξ) =

∫ ξ

−1
ϕξ

eiθ

V (ξ)
dξ, dS = ϕξ

dξ

V (ξ)
(32)

L = AV 0
∫ 1

−1

dξ

V (ξ)
= A

∫ 1

1
et(S)dS. (33)

The resultant of presures is

X + iY = iρV 02
A

∮

eω(ζ)dζ (34)

and because the simetry, X = 0, Y = ρV 02
A
∫ 1
−1 t(S)dS.

The lift will be:

Y = ρV 02
LJ(t); J(t) =

2
∫ 1
−1 t(S)dS

∫ 1
−1 e

t(S)dS
(35)

Applying the Jensen’s inequality at denominator of J ≤ I, we search the velocity distribution on (AB)

so that the functional J(t) to be maximum; if we note H =
∫ 1
−1 t(S)dS we will obtain J ≤ I = He−

H
2

in the case equal the functional is Imax.

7
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For the maximum, the derived I ′(H) = 0, with H Â 0, I ′ = e−
H
2

(

1− H
2

)

. For H = 2, Imax = 2
e
and

t(ξ) = 1.With (14),(12) we obtain

A =
L

2e
, V =

V 0

e
, θ(ξ) = −

√
ξ + 1

π

∫ ξ

−1

dS√
S + 1(S − 1)

=

=
1

π
ln

√
2 +
√
1 + ξ√

2−
√
1 + ξ

, ξ ∈ (−1, 1)

and with l
L

=
∫ 1
−1 cos θ(ξ)dξ = 2e

e2−1
, k = sh(e− 1) [6].

From Y with Imax we obtain the lift coefficient Cy = Y

ρV 02L
≤ Cymax, Cymax = 2

e
(1 + k). The optimal

lift for plate will be
Pmax = Cymax · S, k = 0, 175, Cymax ≈ 0, 876.

Wu and Whitney have study this problem [6] with application at the flight of ”para-slope”.Also,
Maklakov [6]has find this solution .

3 The problem of sail with flaps assimilated to a point-vortex

We consider the sail with an airfoil kind shape, having one third of the extrados toward the one flap
attack board. Between the sail and the flap there is a breach through which a part of the air flow
is passing. Since the breach is narrow the air flow speed through it is greater than the speed of the
incidental flow on the sail and according to Bernoulli’s relationship, the pressure is dropping on the
extrados and a certain raise of the sail lift appear.
We are considering the circulation movement around the sail and around the flap. This flap can be
simulated by a vortex placed in the vicinity of the attack board toward the extrados. If the Jukovski
transformation is applied, the profile becomes a circle in the (Z) plane and we have a translation
potential f1(Z); hence the vortex potential is f2(Z) = I0

2πi ln(Z−Z∗) ,in the presence of the circle. We
obtain, with the help of Caius Iacob [1], [3] extended circle theorem, for sources and vortexes, the full
potential of the incompressible fluid movement in the presence of the circle. By applying the Jukovski
theory stating that in the stagnation points on the circle we must have zero speed, we obtain the
flow’s value on the profile and the hydrodynamic resultant. [1], [2], [3]. We consider the sail profile in
a form of a thin ellipse.
We use the conformal representation principle to determine the complex potential of the fluid’s move-
ment which, at great distances, has the speed V0e

−iα, in the presence of an obstacle with the exterior
that we know to represent conformal on a circle exterior. In the obstacle vicinity in the second quarter
there is a vortex having the intensity I, placed in a point z1; the obstacle can have an angular point
at the run board. The conformal transformation Z = Z(z) , according to the known theory, fulfils the
conditions Z(∞) =∞, Z ′(∞) = λ [1].
We consider the translation movement having the potential f1(Z) = V0e

−iαZ and the vortex with
f2(Z) = I

2πi ln(Z − Z1), Z1 exterior to the circle C. Given f0(Z) = f1(Z) + f2(Z) + f3(Z), where
f3(Z) = Γ

2πi lnZ, Γ being the flow on the circle |z| = R.

8
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Knowing I, Γ can be determine from the study of the speed on the circle in the points correspond-
ing to the stagnation points z∗ on the profile [1], [3]. Hence, determining the complex potential

F = F (Z) and the speed W = dF
dZ

dZ
dz
,Wp = Wc

(

dz
dZ

)−1
, where Wp(z

∗) = 0 the flow Γ can be obtain

by placing the condition dz
dZ
|C = 0 [3]. If we assume that the circle C has the center in the origin

,f1(Z) = V0e
−iαZ and F0(Z) = Γ

2πi lnZ + I
2πi ln(Z −Z1), then the complex potential F (Z) which has

the same singularities as F0 and f1, with =F (z) |C = 0, is [3]

F (Z) = f1(Z) + f1

(

R2

Z̄

)

+ F0(Z) + F0

(

R2

Z̄

)

− Γ

2πi
ln
Z

R
+ C,C ∈ R (36)

F (Z) = V0e
−iαZ +

V0e
iα

Z
+

Γ + I

2πi
lnZ +

I

2πi
ln
Z − Z1

Z − Z ′

1

+ C1 (37)

dF

dZ
= V0

(

e−iα − eiα

Z2

)

+
Γ + I

2πi

1

Z
+

I

2πi

(

1

Z − Z1
− 1

Z − Z ′

1

)

(38)

The stagnation points can be obtained from a forth degree equation. For the ellipse Z = z+
√
z2−c2
a+b

having the plate b = 0.

4 A numerical method to determine the propulsion force obtained

from wind energy by a rigid sail with aerodynamic profile

We suppose that the lift and drag coefficients for aerodynamic profile of sail are known functions of
incidence angle,CL(i), CD(i), respective.
We consider that the motion direction of ship is reference axis and the position of sail and wind
direction in relation with that are known by the angles β andγ∞. In sail’s neighborhood wind velocity
is smaller than at the great distance, U ≺ V∞. We apply the current tubes method for to calculate
U on the all sail’s height [9]. We divide the sail in elements with the length ∆h . We suppose
rectangular form for the current tube with sizes ∆h and Ck sin(γ∞ − β), where Ck is chord’s length
of sail aerodynamic profile for k element. If the ship’s velocity is ~Vn then the relative velocity of wind
is the result of ~U and −~Vn, ~Ur = ~U − ~Vn. The incidence angle and Ur are:

≺ i = arcctg
U cos γ∞ + Vn

U sin γ∞
− β (39)

Ur =
√

U2 + V 2
n + 2UVn cos γ∞ (40)

The aerodynamic forces what operate in a current tube and on the sail’s element are: ~L (lift), ~D
(drag), ~Ft (drive force), ~F∞ (element’s force on air in tube). The expresion of those forces are:

L =
1

2
ρCk∆hCLU

2
r ;D =

1

2
Ck∆hCDU

2
r ;

Ft = L cosx+D sinx;F∞ = L cos(γ∞ − x)−D sin)γ∞ − x)

9
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where x = −arctgU cos γ∞+Vn
U sin γ∞

. The Force of air current in tube on sail’s element is: Fa = ρCk sin(γ∞−
β)∆hU(V∞ − u). From equality of F∞ and Fa the relation for the velocity in current tube result:

2 sin(γ∞ − β)
U

V∞

(

1− U

V∞

)

=

[

(

U

V∞

)2

+

(

Vn

V∞

)2

+ 2
UVn

V 2∞
cos γ∞

]

·

· [CL cos(γ∞ − x)− CD sin(γ∞ − x)] (41)

The equation (41) is nonlinear for U
V∞

. We apply an iterative method for solving it. We consider a new

variable, a = 1 − U
V∞

in (41)and from the obtained relation separate ”a” of the rest: a = f(a). The

relation of iteration ”n” and ”n+1” is: A(n+1) = f
(

a(n)
)

, a(1) = 0. If
∣

∣

∣a(N+1) − a(N)
∣

∣

∣ ≤ ε (given) then

a ≈ a(N+1). We calculate now U, x, i, L,D and Ft for k element. The drive force on the all element is:
F =

∑N1
k=1 (Ft)k
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