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This paper deals with the flow of a viscous conducting fluid in a pipe with arbitrary cross-
section and arbitrary wall conductivities under the influence of a transverse magnetic field. For
the numerical solution a finite element discretization is considered in the domain corresponding
to the fluid and inside the walls of the pipe. When the outer medium is considered with an
arbitrary conductivity the finite element method is coupled with the boundary element method.
The proposed method is illustrated with numerical example.
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1 Introduction

The flow of an incompressible, viscous, electrically conducting fluid through a cylindrical duct under
the influence of an uniform transverse magnetic field may be accelerated or slowed by changing the
intensity of this field. Also, the presence of the magnetic field give rise of an induction current which
may be captured in exterior. Therefore, the study of the equations that models this phenomenon
is of considerable practical interest having many direct application as power generation, magnetic
propulsion devices, electromagnetic pumps, induction flow meters, electrolysis processes.
This paper deals with a numerical investigation of the influence of conducting wall to the fluid flow.
This problem extends the particular cases of a flow through a pipe having perfectly insulating or
perfectly conducting walls. For these cases the problem is reduced to a system of partial differential
equations in the domain occupied by the fluid. For pipe with circular or rectangular cross-section
analytical solutions are available. A general presentation of the problem may be found in [4]. Numerical
approximations for the equations inside the pipe are presented in [1], [7], [2]. In [1] a numerical
solution based on the boundary element method is considered. A finite element solution is given in [7].
A.J.Meir also presents theoretical results concerning the existence and uniqueness of the weak solution.
Error estimations are also established. A numerical solution based on pseudospectral (PS) collocation
method is proposed in [2]. The same method is used for investigating the influence of the conducting
wall of the pipe over the flow. For tacking into account this influence the Navier-Stokes equations and
the magnetic induction equation were considered inside the pipe and the magnetic induction equation
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in the wall. Proper transmission conditions were also considered along the interface between the fluid
and the wall of the pipe. The application of the PS method was restricted to the case of circular cross-
section. In [3] the problem is further extended to the investigation of the magnetic induction in whole
space. The PS discretisation inside the domains corresponding to the fluid and the walls is coupled
with the boundary element discretisation in the exterior domain. In this article we extend the work
presented in [7] by applying the finite element method to the domain corresponding to the wall of the
pipe. Moreover, we propose a coupled finite element - boundary element method for approximating
the solution of the real problem, that is the exterior medium is considered with a certain conductivity.
The remaining part of the paper is organized as follow. Section 2 presents the problem. In section 3
we present the discretisation by finite element method for the problem of fluid flow through a pipe in
an insulating medium.The numerical results are compared with the solution obtained by PS method.
In section 4 we present the boundary element for discretizing the equation in the exterior medium and
make the coupling with the finite element method for the domains corresponding to the pipe and the
fluid.

2 The statement of the problem

We consider a straight cylindrical duct with constant thickness walls of sufficient length, so that the
end effects may be neglected. We assume that the fluid flowing through is viscous, incompressible
and has electrical permittivity and magnetic permeability close to those of the external space (ε ≈ ε0,
µ ≈ µ0). The relation µ ≈ µ0 is also considered inside the wall of the duct. The non-dimensional
magnetic induction and electric field intensity at infinity, are supposed to be perpendicular to the axis
of the duct. We assume that the Oz -axis is coincident with the duct axis and the Ox - axis is parallel
with the magnetic induction at infinity. We denote by Ω1 the region occupied by the fluid, by Ω2 the
wall region and by Ω3 the outside region. We also denote by Γij = ∂Ωi

⋂

∂Ωj , i 6= j and Ω = Ω1
⋃

Ω2.
The steady magnetofluid dynamics equations in non-dimensional variables are:

• The equation of continuity

divV = 0 (1)

• The Navier - Stokes equations of motion

(V · ∇)V = −grad p+
1

Re
∆V +RhJ×B (2)

• Maxwell’s equations

curl E = 0, div B = 0, curl E = 0, div E = 0 (3)

• Ohm’s law

J = Rm(E + V ×B) (4)
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In the above equations we denoted by B = (Bx, By, Bz) non-dimensional magnetic induction, E =
(Ex, Ey, Ez) non-dimensional electric field intensity, J = (Jx, Jy, Jz) intensity of the electric conduct-
ing current, p non-dimensional pressure, Re Reynolds number, Rh magnetic pressure number, Rm

magnetic Reynolds number and V = (Vx, Vy, Vz) non-dimensional fluid velocity. To these equations
we add the no-slip condition V|Γ12

= 0 and jump conditions

[E]Γ12
· s = 0, [B]Γ12

· s = 0, [B]Γ12
· n = 0, [J]Γ12

· n = 0 (5)

[E]Γ23
· s = 0, [B]Γ23

· s = 0, [B]Γ23
· n = 0, [J]Γ23

· n = 0 (6)

where n and n are the normal and tangential vectors to the corresponding interfaces. Assuming that
the fluid motion is due to a pressure gradient along the pipe we may write

∂

∂z
(V,B) = 0,

∂p

∂z
= −

1

Re
(7)

In addition we assume that the velocity field has only a z component, that is

V = (0, 0, Vz) (8)

and this is consistent with the continuity equation.
These assumptions allow us to reduce the problem to the following system of equations

1

Re
∆V +Rh(B · ∇)B = P (9)

∆B +Rm(B · ∇)V = 0 (10)

where P = p + Rh
B

2

2 is the total pressure. Equation (9) is considered in Ω1 while (10) is valid for
whole space with V equal to zero for the domains Ω2 and Ω3. In [4] is shown the way to find Bx

and By independently of Vz and Bz. For the unknown components (Vz and Bz) the index z will be
omitted and we note that they are functions of x and y only. We will also use the same notation
for the projection of the domain Ωi, i = 1, 2, 3 onto xOy plane. We now have to solve the following
system of partial differential equations

∆V (x, y) +ReRh
∂B1

∂x
= −1 (x, y) ∈ Ω1 (11)

∆B1(x, y) +Rm1

∂V

∂x
= 0 (x, y) ∈ Ω1 (12)

∆B2(x, y) = 0 (x, y) ∈ Ω2 (13)

∆B3(x, y) = 0 (x, y) ∈ Ω3 (14)

with conditions

V (x, y) = 0 (x, y) ∈ Γ12 (15)

B1(x, y) = B2(x, y) (x, y) ∈ Γ12 (16)
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1

Rm1

∂B1

∂n1
(x, y) = −

1

Rm2

∂B2

∂n2
(x, y) (x, y) ∈ Γ12 (17)

B2(x, y) = B3(x, y) (x, y) ∈ Γ23 (18)

1

Rm2

∂B2

∂n2
(x, y) = −

1

Rm3

∂B3

∂n3
(x, y) (x, y) ∈ Γ23 (19)

lim
x2+y2

→∞

B3(x, y) = 0 (20)

where ni is the unit outward normal vector with respect to ∂Ωi. For details about the way to obtain
the system and conditions the reader may consult [4] and [2].

3 Domain Decomposition Finite Element Discretisation

Let us now consider the case of a pipe with an arbitrary conductivity in a perfectly insulating envi-
ronment, which implies that B3 = 0. Now, our model problem consists of equations (11), (12), (13)
aside the interface conditions (16), (17) and boundary conditions (15) and B2(x, y) = 0, (x, y) ∈ Γ23.
So we can split the reduced problem in two subproblems. First we have to solve the Dirichlet problem
Find V such that :

{

− 1
ReRh

∆V (x, y) = ∂B1

∂x (x, y) + 1
ReRh

(x, y) ∈ Ω1

V (x, y) = 0 (x, y) ∈ Γ12
(21)

and a domain decomposition problem:
Find B1 and B2 such that































− 1
Rm1

∆B1(x, y) =
∂V
∂x (x, y) (x, y) ∈ Ω1

− 1
Rm2

∆B2(x, y) = 0 (x, y) ∈ Ω2

B1(x, y) = B2(x, y) (x, y) ∈ Γ12

B2(x, y) = 0 (x, y) ∈ Γ23
1

Rm1

∂B1

∂n1
(x, y) + 1

Rm2

∂B2

∂n2
(x, y) = 0 (x, y) ∈ Γ12

(22)

Using a standard nonoverlaping domain decomposition argument problem (22) is equivalent in the
weak sense to (see [9] [10])

{

β(x, y)∆B(x, y) = g(V, x, y) (x, y) ∈ Ω
B(x, y) = 0 (x, y) ∈ ∂Ω

(23)

where

g(V, x) =

{

∂V
∂x (x, y) for (x, y) ∈ Ω1

0 for (x, y) ∈ Ω2
, (24)

β is a piecewise constant function β(x, y) = 1
Rmi

for (x, y) ∈ Ωi and B|Ωi
= Bi for i=1,2.

Let us now consider that we have a quasi-uniform triangulations Th on Ω and Ti,h on Ωi in such a way
that Th = T1,h ∪ T2,h.
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Let
S1
h(Ω) = span{φ1k}

N̄
k=1 ⊂ H1

0 (Ω)

be the global finite element spaces of piecewise linear and continuous basis functions φ1k which vanish
on the domain boundary ∂Ω,

S1
h(Ωi) = span{φ1k,i}

M̄i

k=1 ⊂ H1
0 (Ωi)

for i=1,2 be the local finite element spaces of piecewise linear and continuous basis functions φ1
k,i which

vanish on the subdomains boundary ∂Ωi and

S1
h(Γ12) = span{ϕ1

k}
M
k=1 ⊂ S1

h(Ω)

be a conformal finite dimensional trial space of piecewise linear continuous basis functions ϕ1
k generated

by the discretisation of the internal boundary. We observe that

S1
h(Ω) = S1

h(Ω1)⊕ S1
h(Ω2)⊕ S1

h(Γ12) (25)

The Galerkin discretisation of our problem leads to the algebraic system











1
ReRh

K1
II DII 0 DIΓ

DII
1

Rm1
K1
II 0 1

Rm1
K1
IΓ

0 0 1
Rm2

K2
II

1
Rm2

K2
IΓ

DΓI
1

Rm1
K1
IΓ>

1
Rm2

K2
IΓ> KΓΓ





















V

BI,1

BI,2

BΓ











=











f

0
0
0











(26)

with block matrices defined by

Ki
II [m,n] :=

∫

Ωi

∇φ1n,i(x, y)∇φ
1
m,i(x, y)dxdy (27)

Ki
IΓ[m, k] :=

∫

Ωi

∇ϕ1
k,i(x, y)∇φ

1
m,i(x, y)dxdy (28)

Ki
ΓΓ[l, k] :=

∫

Ωi

1

Rmi

∇ϕ1
k,i(x, y)∇ϕ

1
l,i(x, y)dxdy (29)

KΓΓ = K1
ΓΓ +K2

ΓΓ (30)

for all k, l = 1 ,. . . , M and m,n = 1 ,. . . , M̄i, i=1,2. The matrices DII , DΓI and DIΓ are defined as
follows:

DII [n,m] =

∫

Ω1

∂φ1m,1

∂x
(x, y)φ1n,1(x, y)dxdy (31)

DΓI [k,m] :=

∫

Ωi

∂φ1m,1(x, y)

∂x
ϕ1
k(x, y)dxdy (32)

DIΓ[m, k] :=

∫

Ωi

∂ϕ1
k(x, y)

∂x
φ1m,1(x, y)dxdy (33)
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for all k = 1 ,. . . , M and m,n = 1 ,. . . , M̄1. For simplicity we denoted by Γ = Γ12. The right hand
side is defined by

f(m) :=
1

ReRh

∫

Ω1

φ1m,1(x, y)dxdy (34)

In the system (26) the first row corresponds to the finite element discretisation of the problem (21)
and the next three rows correspond to the discretisation of the problem (23).
Example: We consider the domains Ω1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, Ω2 = {(x, y) ∈ R2 : 1 ≤
x2 + y2 ≤ 2.25} and take the parameters of the problem as follow Re = 1, Rh = 10, Rm1

= 10 and
Rm2

= 1. Figures (1), (2) show the approximate Vz and Bz respectively. Table 1 shows a comparison
between the F.E. and P.S. approximated solutions of Bz in a set of points along the semi-axis Ox.

Figure 1: Vz

x Bz (FEM) Bz (PS) x Bz (FEM) Bz (PS)

0.07473 -0.00674 -0.00673 1.07322 -0.0162 -0.01624
0.36534 -0.03269 -0.03265 1.1365 -0.01332 -0.01333
0.62349 -0.05358 -0.05344 1.21089 -0.01019 -0.0102
0.82624 -0.05958 -0.0592 1.28911 -0.00715 -0.00717
0.95557 -0.03803 -0.03888 1.3635 -0.00449 -0.0045

1 -0.0199 -0.01996 1.42678 -0.00235 -0.00236
1.00308 -0.01975 -0.0198 1.47275 -0.00087 -0.00086
1.02725 -0.0185 -0.01853 1.49692 -0.00009 -0.0001

Table 1: Approximated Bz solution along the semi-axis Ox
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Figure 2: Bz

4 FEM-BEM Coupling

Let us now come back to the original problem (11)-(20). Since Bi satisfy Laplace equation on Ωi, i =
2, 3 and because of (20) they can be written by using the representation formulae (see [8])

Bi(P ) =

∫

∂Ωi

U∗(P,Q)
∂

∂ni
Bi(Q)dsQ −

∫

∂Ωi

∂

∂ni(Q)
U∗(P,Q)Bi(Q)dsQ (35)

for P (x, y) ∈ Ωi. Here U∗(P,Q) is the fundamental solution of the Laplace operator:

U∗(P,Q) = − 1
2π log(|

−−→
PQ|) = − 1

2π log(
√

(x− ξ)2 + (y − η)2) . (36)

with P = P (x, y) and Q = Q(ξ, η). On the boundary ∂Ωi, i=2,3 the solution verifies the Cauchy-
Calderon equation

(

Bi

ti

)

=

(

1
2I −Ki Vi
Di

1
2I +K ′

i

)(

Bi

ti

)

(37)

where ti =
∂
∂ni

Bi is the normal derivative on ∂Ωi, and the boundary integral operators are given as,
the single layer potential

(Viti)(P ) :=

∫

∂Ωi

U∗(P,Q)ti(Q)dsQ, P ∈ ∂Ωi,

the double layer potential

(KiBi)(P ) :=

∫

∂Ωi

∂

∂ni(Q)
U∗(P,Q)Bi(Q)dsQ, P ∈ ∂Ωi,
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the adjoint double layer potential

(K ′

iti)(P ) :=

∫

∂Ωi

∂

∂ni(P )
U∗(P,Q)ti(Q)dsQ, P ∈ ∂Ωi,

and the hypersingular boundary integral operator

(DiBi)(P ) := −
∂

∂ni(P )

∫

∂Ωi

∂

∂ni(Q)
U∗(P,Q)Bi(Q)dsQ, P ∈ ∂Ωi.

The properties of all boundary integral operators are wellknown (see for example [8]). In particular,
the local single layer potential Vi is positive definite in the two dimensional case when we assume
diam(Ωi) < 1.
From (37) we obtain the local Dirichlet-Neumann map

ti(P ) := [Di + (
1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)]Bi(P ) =: (SiBi)(P ) for P ∈ ∂Ωi, (38)

where Si : H
1/2(∂Ωi) −→ H−1/2(∂Ωi) denotes the local Steklov-Poincaré operator.

Now we consider the transmission conditions of the functions Bi and of the conormal derivate αiti
along Γ23.

1

Rm2

(S2B2)(P ) +
1

Rm3

(S3B3)(P ) = 0 for P ∈ Γ23 (39)

The variational problem is to find B ∈ H1/2(Γ2,3) such that

3
∑

i=2

∫

Γ2,3

1

Rmi

(S̃iu)(Q)v(Q)dsQ = 0 (40)

for all v ∈ H
1/2
0 (Γ23).

The Galerkin discretization of the problem (40) with boundary elements in Ω3 and finite elements in
Ω2 yields to the linear system

SFEM2,h BΓ23
+ SBEM3,h BΓ23

= 0, (41)

The matrices S
FEM/BEM
i,h are nothing else than the discretized version of the Steklov-Poincaré operator

by FEM or BEM. For the implementation of discretized matrices of the Steklov-Poincaré operator see
[5] and [6].

5 Conclusions

We proposed a numerical solution based on domain decomposition techniques. We used finite element
discretisations on the internal subdomains and boundary element on the external subdomain. The
coupling was realised using the discrete approximations of the local Steklov-Poincaré operators. We
observe that our solution was very close to the solution computed with PS in ([2]). The proposed
method is preferred if we consider a more general choice of the pipe cross-section.
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