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Abstract

In this paper we survey certain important results related to some boundary value problems of
Dirichlet, Neumann and mixed type for the Stokes resolvent system. These properties are obtained
by using the potential theory. We give existence and uniqueness results as well as boundary integral
representations of classical solutions in the case of certain bounded domains.
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1 Introduction

Let n ∈ N, n ≥ 2, and let D′, D1 ⊂ R
n be two bounded domains with connected boundaries Γ′ and

Γ1 of class C1,α (0 < α ≤ 1), such that D1 ⊂ D′. We next consider the bounded domain D given by
D = D′ \D1. Let us assume that the origin of R

n belongs to the set D1. The direction of the unit
normal n to the boundary Γ = Γ′

⋃

Γ1 of D is chosen such that n points outside D.
As it is known, the Stokes resolvent system in D consists of the equations

∇ · u = 0, −∇q + (∇2 − χ2)u = −f in D, (1.1)

where χ2 is a complex number such that χ2 ∈ C \ {z ∈ C : Re z ≤ 0, Im z = 0}, u = (u1, . . . , un) is
an unknown vector function, q is an unknown scalar function, and f = (f1, . . . , fn) is a given vector
function. All occurring functions are complex-valued. Also, ∇ denotes the n-dimensional gradient
operator and ∇2 is the Laplace operator.

2 The potential theory

LetU be a continuous vector function on the boundary Γ of the domain D. Then the interior Dirichlet
problem for the unsteady Stokes system (1.1) in the bounded domain D consists in finding a classical
solution (u, q) of this system, which satisfies the boundary condition

u = U on Γ. (2.1)
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Let us assume that the fields u and q satisfy the system of equations (1.1). Then the stress tensor

field Σ(u) associated with the fields u and q is the second-order tensor field defined by

Σ(u) = −qIn +∇u+ (∇u)T , (2.2)

where In is the n×n identity matrix and (∇u)T means the matrix transposed to∇u = (∂ui/∂xj)i,j=1,...,n.
From the equations (1.1) we deduce that

∂Σij(u)

∂xi
= χ2uj − fj in D, j = 1, . . . , n, (2.3)

where Σij(u) are the components of Σ(u), i, j = 1, . . . , n. In the equations (2.3) we have used the
repeated-index summation convention. From now on, we shall take into account this rule.
Let T be a continuous vector field on Γ. Then the interior Neumann problem for the system (1.1) in
the bounded domain D is the boundary value problem consisting of the system of equations (1.1) and
the boundary condition of the Neumann type

Σ(u) · n = T on Γ. (2.4)

2.1 The unsteady Stokeslet

Let us introduce the free-space Green function or the unsteady Stokeslet Gχ
2

(Gχ
2

ij ) and the pressure

vector Πχ2

(Πχ2

i ) such that

∂Gχ
2

ij (x)

∂xi
= 0, j = 1, . . . , n, (2.5)

−
∂Πχ2

j (x)

∂xk
+ (∇2 − χ2)Gχ

2

kj (x) = −2$nδkjδ(x), j, k = 1, . . . , n, (2.6)

where δkj = 1 for k = j, δkj = 0 for k 6= j, $n is the surface area of the (n − 1)-dimensional unit
sphere in R

n, and δ is the Dirac distribution in R
n (n ≥ 2).

The stress tensor Sχ
2

(Sχ
2

ijk), corresponding to the unsteady Stokeslet Gχ
2

and to the pressure vector

Πχ2

, is the third order tensor defined by the relations

Sχ
2

ijk(x) = −Π
χ2

j (x)δik +
∂Gχ

2

ij (x)

∂xk
+
∂Gχ

2

kj (x)

∂xi
, i, j, k = 1, . . . , n. (2.7)

The system of equations (2.5) and (2.6) can be solved by using the method of Fourier transform. For
details see [8] p. 81-82, for n = 2, 3; [14], [15], [16] in the general case n ≥ 2.
Let Λχ

2

be the pressure tensor associated with the stress tensor Sχ
2

. They determine a fundamental
solution of the Stokes resolvent system, i.e.,

∂Sχ
2

ijk(y − x)

∂xj
= 0 for x 6= y, i, k = 1, . . . , n, (2.8)
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(∇2
x
− χ2)Sχ

2

ijk(y − x) =
∂Λχ

2

ik (x− y)

∂xj
for x 6= y, i, j, k = 1, . . . , n, (2.9)

where Λχ
2

ik , i, k = 1, . . . , n, are the components of the pressure tensor Λχ2

(see [15] p. 61-62 in the
general case n ≥ 2).

2.2 Properties of unsteady hydrodynamic potentials

Let g = (g1, . . . , gn) and h = (h1, . . . , hn) be two mappings such that g,h ∈ C0(Γ). Recall that all
occurring functions are complex-valued.
The unsteady hydrodynamic single-layer potential with density g is the vector function Vχ2,n(·,g)
given by

Vχ2,n(x,g) =

∫

Γ

Gχ
2

(x− y) · g(y)dΓ(y), x ∈ R
n \ Γ, (2.10)

where Gχ
2

is the unsteady Stokeslet.
The unsteady hydrodynamic double-layer potential with density h is the vector function Wχ2,n(·,h)
whose j-th component is given by

(Wχ2,n)j(x,h) =

∫

Γ

hi(y)S
χ2

ijk(y − x)nk(y)dΓ(y), x ∈ R
n \ Γ, (2.11)

j = 1, . . . , n, where Sχ
2

is the stress tensor associated with the unsteady Stokeslet and n is the unit
normal to Γ pointing outside D.
Let P s

χ2,n
(·,g) and P d

χ2,n
(·,h) be the functions given by

P s
χ2,n(x,g) =

∫

Γ

Πχ2

i (x− y)gi(y)dΓ(y), x ∈ R
n \ Γ, (2.12)

P d
χ2,n(x,h) =

∫

Γ

hi(y)Λ
χ2

ik (x− y)nk(y)dΓ(y), x ∈ R
n \ Γ, (2.13)

where Πχ2

is the pressure vector and Λχ
2

is the pressure tensor corresponding to the unsteady
Stokeslet.
According to the equations (2.5), (2.6), (2.8) and (2.9), we deduce that each of the pairs
(Vχ2,n(·,g), P

s
χ2,n

(·,g)) and (Wχ2,n(·,h), P
d
χ2,n

(·,h)) is a classical solution to the homogeneous Stokes

resolvent system in both regions D and R
n \D.

For further arguments we need the stress tensor Σ(Vχ2,n(·,g)) associated with the single-layer poten-
tial Vχ2,n(·,g) and defined by the relations

Σjk(Vχ2,n(x,g)) =

∫

Γ

Sχ
2

jik(x− y)gi(y)dΓ(y), x ∈ R
n \ Γ. (2.14)

Let us now consider a (scalar, vector, or tensor) field w defined in a domain containing Γ. We use the
notations w−(x0) and w+(x0) for the limiting values of w at x0 ∈ Γ, evaluated from D and R

n \ D

3
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respectively. In particular, we use the notations H+

χ2,n
(·,g) and H−

χ2,n
(·,g) for the limiting values of

the normal stress due to the single layer potential Vχ2,n(·,g) on each side of Γ. Therefore, we have

(Hχ2,n)
±

j (x,g) = Σ±jk(Vχ2,n(x,g))nk(x), x ∈ Γ. (2.15)

Theorem 2.1 (see [15] p.66; [8] p. 201) Let D ⊂ R
n (n ≥ 2) be a bounded domain with boundary Γ

of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Re z ≤ 0, Im z = 0}. Also, let g and h be two

vector densities such that g,h ∈ C0(Γ), and let Vχ2,n(·,g), Wχ2,n(·,h) and H±
χ2,n

(·,g) be the vector

functions given by the relations (2.10), (2.11) and (2.15). Then for x0 ∈ Γ we have

V+

χ2,n
(x0,g) = V

−

χ2,n
(x0,g) = Vχ2,n(x0,g), (2.16)

W+

χ2,n
(x0,h)−W

∗

χ2,n(x0,h) = $nh(x0) =W
∗

χ2,n(x0,h)−W
−

χ2,n
(x0,h), (2.17)

H+

χ2,n
(x0,g)−H

∗

χ2,n(x0,g) = −$ng(x0) = H
∗

χ2,n(x0,g)−H
−

χ2,n
(x0,g), (2.18)

where

(W∗

χ2,n
)j(x0,h) =

∫ PV

Γ

hi(y)S
χ2

ijk(y − x0)nk(y)dΓ(y)

(H∗
χ2,n

)j(x0,g) =

∫ PV

Γ

gi(y)S
χ2

jik(x0 − y)nk(x)dΓ(y)

(2.19)

and the symbol PV means the principal value.

3 The interior Dirichlet problem

Let D = D′ \D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary Γ of class C1,α (0 < α ≤ 1) and

let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}. Also, let U ∈ C0(Γ) be a vector function which satisfies
the condition

∫

Γ

U · ndΓ = 0, (3.1)

and let f ∈ Cλ(D) be a Hölder continuous vector function in D with Hölder exponent λ ∈ (0, 1]. Then
the interior Dirichlet problem

∇ · u = 0, −∇q + (∇2 − χ2)u = −f in D (3.2)

u = U on Γ (3.3)

has at most one classical solution (u, q) (see e.g. [8] Chapter 1).
Next, we try to obtain a classical solution to the boundary value problem (3.2)-(3.3) in the form

u(x) =Wχ2,n

(

x,
1

2$n

h

)

+
1

2$n

∫

D

Gχ
2

(x− y) · f(y)dy (3.4)

q(x) = P d
χ2,n

(

x,
1

2$n

h

)

+
1

2$n

∫

D

Πχ2

(x− y) · f(y)dy (3.5)

4
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for x ∈ D, where h ∈ C0(Γ) is an unknown vector density, and dy = dy1 · · · dyn.
The fields u and q satisfy the equations (3.2). Applying the boundary condition (3.3) to the integral
representation (3.4) and using the jump formulas (2.17), we obtain the Fredholm integral equation of
the second kind with unknown h ∈ C0(Γ)

−
1

2
h(x0) + (Kχ2,nh)(x0) = U(x0)−

1

2$n

∫

D

Gχ
2

(x0 − y) · f(y)dy, x0 ∈ Γ. (3.6)

In order to prove the existence of solutions to the equation (3.6), we consider the homogeneous equation

(

−
1

2
In +Kχ2,n

)

h0 = 0 on Γ, (3.7)

which is the adjoint of the equation

(

−
1

2
In +Hχ2,n

)

Ψ = 0 on Γ (3.8)

with respect to the inner product 〈·, ·〉 : C0(Γ)× C0(Γ)→ C given by

〈g,h〉 ≡

∫

Γ

g · hdΓ =

∫

Γ

gihidΓ, g,h ∈ C0(Γ). (3.9)

Theorem 3.1 The null spaces of the operators

−
1

2
In +Kχ2,n : C0(Γ)→ C0(Γ), −

1

2
In +Hχ2,n : C0(Γ)→ C0(Γ) (3.10)

are one-dimensional. In particular, the null space of the operator −
1

2
In +Hχ2,n is given by

N ≡ N

(

−
1

2
In +Hχ2,n

)

=

{

Ψ ∈ C0(Γ) : −
1

2
Ψ +Hχ2,nΨ = 0 on Γ

}

= {γn : γ ∈ C}. (3.11)

Proof. First, we show that n ∈ N . For this purpose, we take into account the properties

Vχ2,n

(

x,
1

2$n

n

)

= 0, x ∈ R
n (3.12)

Pχ2,n

(

x,
1

2$n

n

)

=

{

−1 if x ∈ D
0 if x ∈ R

n \D,
(3.13)

in view of which we find that

H+

χ2,n

(

x0,
1

2$n

n

)

= 0, H−
χ2,n

(

x0,
1

2$n

n

)

= n(x0), x0 ∈ Γ. (3.14)

5
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On the other hand, from the jump formulas (2.18) and the relations (3.14), we obtain that

−
1

2
n+Hχ2,nn = 0 on Γ, (3.15)

i.e., n ∈ N .
Next, we prove that for each function Ψ in the set N there exists a constant γ ∈ C such that Ψ = γn.
To this end, we consider the fields u0 and q0 given by

u0 = Vχ2,n

(

·,
1

2$n

Ψ

)

, q0 = P s
χ2,n

(

·,
1

2$n

Ψ

)

in R
n \ Γ. (3.16)

Since Ψ ∈ N it follows that

H+

χ2,n

(

x0,
1

2$n

Ψ

)

= −
1

2
Ψ(x0) +Hχ2,nΨ(x0) = 0, x0 ∈ Γ. (3.17)

Consequently, the pair (u0, q0) solves the following boundary value problem:

∇ · u0 = 0, −∇q0 + (∇2 − χ2)u0 = 0 in R
n \D′

Σ+(u0) · n = 0 on Γ′

(|u0||∇u0|)(x) = o(|x|1−n) as |x| → ∞
(|u0||q0|)(x) = o(|x|1−n) as |x| → ∞,

(3.18)

as well as the boundary value problems

∇ · u0 = 0, −∇q0 + (∇2 − χ2)u0 = 0 in D1

Σ+(u0) · n = 0 on Γ1.
(3.19)

Recall that the superscript plus applies in (3.18) and (3.19) for the external side of Γ′ = ∂D′ and for
the internal side of Γ1.
In view of the uniqueness of solutions to the boundary value problems (3.18) and (3.19), we deduce
that

u0 = 0, q0 = 0 in R
n \D. (3.20)

In addition, the continuity property of the single-layer potential u0 across Γ yields that the pair (u0, q0)
is a solution to the interior Dirichlet problem

∇ · u0 = 0, −∇q0 + (∇2 − χ2)u0 = 0 in D, (3.21)

and hence there exists a constant γ ∈ C such that

u0 = 0, q0 = −γ in D. (3.22)

Consequently, we have Σ−(u0) · n = γn on Γ, i.e.,

H−
χ2,n

(

x0,
1

2$n

Ψ

)

= γn(x0), x0 ∈ Γ. (3.23)

6
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Now, using the jump formulas (2.18) and the properties (3.17) and (3.23), we find that Ψ = γn. In
view of this result and from the fact that n ∈ N it follows the property (3.11), which shows that the
dimension of the space N is equal to one.
Finally, it remains only to apply Fredholm’s alternative (see [9]) to deduce that the null spaces of the
adjoint operators from (3.10) have the same dimension. This completes the proof of Theorem 3.1. ¤
Now, using the equation (2.5) and the condition (3.1), we obtain the following result (see [16] in the
case of a domain with connected boundary):

Theorem 3.2 Let D = D′ \ D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary Γ of class C1,α

(0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}. Also, let f ∈ Cλ(D) be a Hölder

continuous vector function in D (0 < λ ≤ 1) and let U ∈ C0(Γ) be a given vector function that

satisfies the condition (3.1). Then the interior Dirichlet problem (3.2)-(3.3) has a unique classical

solution (u, q), given by the boundary integral representations (3.4) and (3.5) in which the density

h ∈ C0(Γ) satisfies the Fredholm integral equation of the second kind (3.6).

4 The interior Neumann problem

Let T ∈ C0(Γ) be a given vector function. We next consider the interior Neumann problem

∇ · u = 0, −∇q + (∇2 − χ2)u = 0 in D (4.1)

Σ(u) · n = T on Γ, (4.2)

where n is the unit normal to Γ pointing outside D.
The Neumann problem (4.1)-(4.2) has at most one classical solution (u, q) (see e.g. [8] Chapter 1).
In order to prove the existence of the solution to this problem, we consider the following boundary
integral representations:

u(x) = Vχ2,n

(

x,
1

2$n

Ψ

)

, q(x) = P s
χ2,n

(

x,
1

2$n

Ψ

)

, x ∈ D, (4.3)

where Ψ ∈ C0(Γ) is an unknown vector density. Applying the boundary condition (4.2) to these
boundary integral representations and using the jump formulas (2.18), we obtain the Fredholm integral
equation of the second kind with unknown Ψ

(

1

2
In +Hχ2,n

)

Ψ = T on Γ. (4.4)

We have the following result:

Lemma 4.1 (see [6]) Let D = D′ \D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary Γ = Γ′ ∪Γ1

of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}. Then the null spaces of the

operators
1

2
In +Hχ2,n : C0(Γ)→ C0(Γ),

1

2
In +Kχ2,n : C0(Γ)→ C0(Γ) (4.5)

7
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are one-dimensional. Moreover, a basis of the space

N

(

1

2
In +Hχ2,n

)

=

{

Ψ0 ∈ C
0(Γ) :

(

1

2
In +Hχ2,n

)

Ψ0 = 0 on Γ

}

,

is the set {N1}, where

N1(x) =

{

n(x) if x ∈ Γ1
0 if x ∈ Γ′,

(4.6)

and n is the unit normal to Γ pointing outside D.

The proof of Lemma 4.1 can be obtained by using similar arguments to those in the proof of Theorem
3.1. For details see [6].
Now, using again Fredholm’s alternative, we deduce that the Fredholm integral equation of the second
kind (4.4) has a solution Ψ ∈ C0(Γ) if and only if

∫

Γ

T ·Φ0dΓ = 0 (4.7)

for all Φ0 ∈ N

(

1

2
In +Kχ2,n

)

. This condition is satisfied only in certain particular cases. In order

to eliminate this inconvenience, we should complete the integral representations (4.3).

Let {Φ1} be a basis of the null space N

(

1

2
In +Kχ2,n

)

. Then {Φ1} is a basis of the null space

N

(

1

2
In +Kχ2,n

)

. Also, let u1 and q1 be the fields given by

u1 =Wχ2,n

(

·,
1

2$n

Φ1

)

, q1(x) = P s
χ2,n

(

·,
1

2$n

Φ1

)

(4.8)

for x ∈ R
n \ Γ.

Straightforward computation yields the identity (see [8] Chapter 3):

∫

D

(χ2|u1|
2 + 2Eij(u1)Eij(u1))dx =

∫

Γ

{Σ−(u1) · n} · u
−

1 dΓ. (4.9)

Since Φ1 ∈ N

(

1

2
In +Kχ2,n

)

it follows that u+1 = 0 on Γ, and thus, in view of the jump formulas

(2.17), we deduce that u−1 = −Φ1 on Γ. Therefore, the formula (4.9) becomes

∫

D

(χ2|u1|
2 + 2Eij(u1)Eij(u1))dx = −

∫

Γ

{Σ−(u1) · n} ·Φ1dΓ. (4.10)

On the other hand, from the identity

−
1

2
Φ1 = Kχ2,nΦ1 on Γ

8
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and the regularizing properties of the unsteady double-layer integral operator Kχ2,n : C0(Γ)→ C0(Γ),
we find that (see e.g. [10] in the case χ = 0)

Φ1 ∈ C
1,α(Γ).

Hence the normal stress due to the double-layer potential u1 has equal limiting values on both sides
of Γ (see [8] Theorem 3.4.1, in the case n = 3, χ = 0), i.e.,

Σ−
(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n = Σ+

(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n on Γ. (4.11)

Further, integrating the equation

∇ ·Wχ2,n

(

·,
1

2$n

Φ1

)

= 0 in D

over the domain D, and using the divergence theorem as well as the boundary condition

W−

χ2,n

(

·,
1

2$n

Φ1

)

= −Φ1 on Γ,

we obtain the relation
∫

Γ

Φ1 · ndΓ = 0, (4.12)

which yields that (see e.g. [8])

Wχ2,n

(

x,
1

2$n

Φ1

)

= O(|x|−n) as |x| → ∞. (4.13)

This result is sufficient to show that the fields u1 and q1 satisfy the far field conditions

(|u1||∇u1|)(x) = o(|x|1−n) as |x| → ∞

(|u1||q1|)(x) = o(|x|1−n) as |x| → ∞.
(4.14)

In addition, these fields satisfy the system of equations

∇ · u1 = 0, −∇q1 + (∇2 − χ2)u1 = 0 in CD′,

as well as the property

u+1 =W+

χ2,n

(

·,
1

2$n

Φ1

)

= 0 on Γ′.

In view of the uniqueness of the solution to the exterior Dirichlet problem, we thus deduce that

u1 = 0, q1 = 0 in CD′ (4.15)

9
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and hence

Σ−
(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n = Σ+

(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n = 0 on Γ′. (4.16)

Also, the relationW+

χ2,n

(

·,
1

2$n

Φ1

)

= 0 on Γ1 (note that the plus sign applies here for the internal

side of Γ1) together with the uniqueness result of the solution to the interior Dirichlet problem (see
[8] Chapter 1) lead to

Wχ2,n

(

·,
1

2$n

Φ1

)

= 0, P d
χ2,n

(

·,
1

2$n

Φ1

)

= c1 in D1, (4.17)

and hence

Σ−
(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n = Σ+

(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n

= −c1n on Γ1, (4.18)

where c1 ∈ C.
Now, in view of (4.8), (4.16) and (4.18), the formula (4.10) becomes

∫

D

(χ2|u1|
2 + 2Eij(u1)Eij(u1))dx

= −

∫

Γ

{

Σ−
(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n

}

·Φ1dΓ = c1

∫

Γ1

Φ1 · ndΓ1. (4.19)

If
∫

D

(χ2|u1|
2 + 2Eij(u1)Eij(u1))dx = 0,

then we have u1 = 0 in D, and hence u−
1
= 0 on Γ. In addition, u+

1
= 0 on Γ, and thus, according

to the jump formulas (2.17), we obtain Φ1 ≡ 0. This result contradicts the property Φ1 6= 0 on Γ.
Therefore, we must have

∫

Γ1

Φ1 · ndΓ1 6= 0, c1 6= 0. (4.20)

4.1 The completion of the boundary integral representations (4.3)

Recall that the boundary integral representation of the velocity field corresponding to the interior
Neumann problem in terms of a single-layer potential without any completion leads to the boundary
integral equation (4.4), which admits solutions in C0(Γ) only if the condition (4.7) holds.
Let us now consider the boundary integral representations

u(x) = Vχ2,n

(

x,
1

2$n

Ψ

)

+ β1Wχ2,n

(

x,
1

2$n

Φ1

)

, x ∈ D, (4.21)

10
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q(x) = Pχ2,n

(

x,
1

2$n

Ψ

)

+ β1P
d
χ2,n

(

x,
1

2$n

Φ1

)

, x ∈ D, (4.22)

where β1 ∈ C is an unknown constant, Ψ ∈ C0(Γ) is an unknown vector density, and the set {Φ1} is

a basis of the space N

(

1

2
In +Kχ2,n

)

.

Applying the boundary condition (4.2) to the boundary integral representations (4.21) and (4.22),
and using the jump formulas (2.18), we obtain the following Fredholm integral equation of the second
kind with unknown density Ψ:

(

1

2
In +Hχ2,n

)

Ψ = T− β1Σ
−

(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n on Γ. (4.23)

Now, according to the properties (4.18) and (4.20), we can choose the number β1 ∈ C such that

β1 =

[
∫

Γ

{

Σ−
(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n

}

·Φ1dΓ

]−1 ∫

Γ

T ·Φ1dΓ. (4.24)

Therefore, we get the relation

∫

Γ

{

T− β1Σ
−

(

Wχ2,n

(

·,
1

2$n

Φ1

))

· n

}

·Φ1dΓ = 0, (4.25)

which is just the condition required by Fredholm’s alternative in order to have a solution of equations
(4.23) in the space C0(Γ).
Concluding the above arguments, we obtain the following property:

Theorem 4.2 Let D = D′ \ D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary Γ = Γ′ ∪ Γ1

of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}. Also, let T ∈ C0(Γ)

be given. Assume that the set {Φ1} is a basis of the space N

(

1

2
In +Kχ2,n

)

. Then there exist the

uniquely determined constant β1 such that the Fredholm integral equation of the second kind (4.23) has
a solutionΨ ∈ C0(Γ). Moreover, the boundary integral representations (4.21) and (4.22), obtained with

the density Ψ and the constant β1, determine the unique classical solution of the interior Neumann

problem (4.1)-(4.2).

5 The mixed boundary value problem

Let D = D′ \ D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary Γ = Γ′ ∪ Γ1 of class C1,α

(0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}. Also, let T ∈ C0(Γ′) and U ∈ C0(Γ1) be
given.
We next refer to the mixed boundary problem

∇ · u = 0, −∇q + (∇2 − χ2)u = 0 in D (5.1)

Σ(u) · n = T on Γ′ (5.2)

11
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u = U on Γ1. (5.3)

The mixed boundary value problem corresponding to the steady case (χ = 0) can be consulted in [12]
and [1].
In order to prove the existence of solutions to the boundary value problem (5.1)-(5.3) we consider the
boundary integral representations

u(x) = Vχ2,n

∣

∣

∣

Γ′

(

x,
1

2$n

Ψ

)

+Wχ2,n

∣

∣

∣

Γ1

(

x,
1

2$n

Φ

)

, (5.4)

q(x) = P s
χ2,n

∣

∣

∣

Γ′

(

x,
1

2$n

Ψ

)

+ P d
χ2,n

∣

∣

∣

Γ1

(

x,
1

2$n

Φ

)

, (5.5)

x ∈ D.
Now, imposing the boundary condition (5.2) to the boundary integral representations (5.4) and (5.5),
and making use of the jump formulas (2.18), we obtain the equation

(

1

2
In +Hχ2,n

∣

∣

∣

Γ′

)

Ψ+Σ−
(

Wχ2,n

∣

∣

∣

Γ1

(

·,
1

2$n

Φ

))

· n = T on Γ′. (5.6)

Further, applying the boundary condition (5.3) to the boundary integral representation (5.4) and using
the jump formulas (2.17), we get the equation

(

−
1

2
In +Kχ2,n

∣

∣

∣

Γ1

)

Φ+Vχ2,n

∣

∣

∣

Γ′

(

·,
1

2$n

Ψ

)

= U on Γ1. (5.7)

Then we have the following result:

Theorem 5.1 (see [5], [6]) Let D = D′ \ D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary

Γ = Γ′ ∪ Γ1 of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}. Also,

let T ∈ C0(Γ′) and U ∈ C0(Γ1) be given. Then the system of Fredholm integral equations of the

second kind (5.6) and (5.7) has a unique solution (Ψ,Φ) ∈ C0(Γ′)×C0(Γ1), and the boundary integral

representations (5.4) and (5.5), obtained with the densities Ψ and Φ, provide the unique classical

solution (u, q) of the mixed boundary value problem (5.1)-(5.3).
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