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Abstract

This work presents a computational study of the steady, axisymmetric, viscous flow

around two circular cylinders in tandem. The vorticity – stream function formulation of

the Navier – Stokes equations was chosen. Numerical solutions have been obtained in

bipolar cylindrical coordinates. The finite difference method was used to discretize the

model equations. A nested defect correction algorithm was employed to solve the discrete

equations. Different cylinders spacing and sizes were considered for the upstream cylinder

Reynolds number equal to 2. Vorticity and pressure distributions on the cylinders surfaces

and drag coefficients are presented and compared with those calculated for an isolated

cylinder.

Keywords: Laminar flow, two circular cylinders, bipolar coordinates, multigrid, de-

fect correction.

1 Introduction

Hydrodynamic interaction between two cylinders is an important phenomenon in engineering
flows. The arrangement of the cylinders with respect to the free stream flow direction can be
classified as:
tandem (or in-line) – the free stream flow direction is parallel with the line of the centers of the
cylinders;
transverse (or side-by-side) – the free stream flow direction is perpendicular to the line of the
cylinders centers;
staggered.
Significant research has gone, experimentally and numerically, for the understanding of the flow
past two cylinders [1], [2]. The flow past two cylinders in transverse arrangement was analysed
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numerically by Tokunga et al. [3] and Cheung et al. [4]. Cheung et al. [4], Mittal et al. [5],
Mittal and Kumar [6] and Khorrami et al. [7] report computational results for flow past two
cylinders in-line and staggered arrangements.
Cheung et al. [4] employed a spectral element method on a Cartesian grid to analyse the
interference effects when two cylinders or two spheres are placed in series or parallel in a low
Reynolds number flow. It was found that for two equal cylinders with their line of centers
parallel to the free stream flow direction, the drag on the trailing body is less than that of
leading body, which in turn is less than the drag of an isolated cylinder. Also, the drag on the
leading body is significantly greater than that on the trailing cylinder. Mittal et al. [5] used
a stabilized finite element formulation on a Cartesian grid to study incompressible flows past
a pair of equal-sized cylinders at Reynolds numbers 100 and 1000. Computations are carried
out for three sets of cylinder arrangements, two in tandem and one staggered. The flow-induce
oscillations of a pair of equal-sized cylinders in tandem and staggered arrangement placed in
uniform incompressible flow for Reynolds number 100 is studied by Mittal and Kumar [6].
As in [5], a Cartesian grid was used. Khorrami et al. [7] focused on two-dimensional, time-
accurate flow simulations for the tandem cylinder configuration. This setup is viewed to be
representative for several component-level flow interactions that occur when air flows over the
main landing gear of large civil transports. Results of the unsteady Reynolds Averaged Navier-
Stokes computations with a two-equation turbulence model, at a Reynolds number of 0.166 ×
106 and a Mach number of 0.166, are presented.
The flow past two cylinders in tandem is used as test problem for new computational methods
in [8 – 10]. Young et al. [8] proposed a three-step FEM-BEM computational technique to
simulate high-Reynolds number flow past circular cylinders in 2D incompressible viscous flows
in external flow fields. Guermond and Lu [9] introduced a domain decomposition method for
simulating 2D external, incompressible viscous flows. Russell and Wang [10] used an underlying
regular Cartesian grid to solve 2D incompressible viscous flows around multiple moving objects.
The aim of this work is to complete the analysis of the flow past two cylinders in tandem at
low Reynolds numbers. The Navier-Stokes equations in stream function – vorticity formulation
were solved numerically in the bipolar cylindrical coordinate system. Different cylinders spacing
and sizes were considered for the upstream cylinder Reynolds number equal to 2.

2 Statement of the problem

Let us consider two infinitely long cylinders of diameters di, i = 1,2, placed in a horizontal flow,
parallel with their line of centers, of an incompressible fluid having free stream velocity U∞ (as
illustrated in figure 1). The diameters of the cylinders are assumed considerably higher than
the molecular mean free path of the surrounding fluid. The fluid is homogeneous, Newtonian
and the flow is steady and laminar. The density ρ and viscosity µ of the fluid are considered
constant. Oscillations and rotation of the cylinders do not occur during the flow. Let a system
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Figure 1: Schematic of the problem.

of Cartesian coordinates (x, y, z) be chosen so that the centres of the cylinders lie along the
x-axis (see also figure 1). The cylinders being considered infinitely long, the flow does not
depend on z− coordinate. Also, for low Reynolds numbers, we can consider the flow symmetric
versus the y– axis.
The most convenient coordinate system for a pair of cylinders in tandem is the orthogonal
bipolar cylindrical coordinate system. The bipolar cylindrical coordinate system is defined by,
[11],

x =
c sin ξ

cosh η − cos ξ
; y =

c sinh η

cosh η − cos ξ
; z = z

where c ¿ 0 is a characteristic length. This transformation maps the upper half of the xy –
plane (from which the domain occupied by the cylinders is excluded) into the rectangle η1

≤ η ≤ η2, 0 ≤ ξ ≤ π (η1 ¡ 0, η2 ¿ 0). The surfaces of the cylinders are located at η = η1

and η = η2. The relations between ηi, the diameters of the cylinders di and the distances Li of
their centers from the origin of the coordinates system are:

di
2

=
c

sinh | ηi|
; Li = c coth | ηi| , i = 1, 2

The Navier-Stokes equations in the stream-function – vorticity formulation for an axisymmet-
rical flow field in general orthogonal curvilinear coordinates α, β, ζ, are:

hζ

hαhβ

[

∂ ψ

∂α

∂

∂ β

(

ω

hζ

)

−
∂ ψ

∂ β

∂

∂ α

(

ω

hζ

)]

= ν E2 (hζ ω ) (1)

E2 ψ = hζ ω (2)

where
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E2 =
hζ

hαhβ

[

∂

∂ α

(

hβ

hζ hα

∂

∂ α

)

+
∂

∂ β

(

hα

hζ hβ

∂

∂ β

)]

and ν is the kinematic viscosity of the fluid. The scale factors (metric coefficients) hη, hξ, hz

for the bipolar cylindrical coordinate system are:

hη = hα =
c

cosh η − cos ξ
; hξ = hβ =

c

cosh η − cos ξ
; hz = hζ = 1 .

For convenience, all variables are considered to be non-dimensionalized with respect to the
radius of the leading cylinder d1 / 2 for length, U∞ for velocity, U∞d1 / 2 for stream function
and d1 / 2 U∞ for vorticity. Also, it is convenient numerically to work with the deviation from
the uniform flow ψ∗,

ψ∗ = ψ −
c̄ sin ξ

cosh η − cos ξ
; c̄ =

2 c

d1

.

After η and ξ are substituted for α and β and the scale factors are expressed explicitly, the
dimensionless Navier-Stokes equations are:

( cosh η − cos ξ )2

c̄2

(

∂2 ψ∗

∂ η2
+

∂2 ψ∗

∂ ξ2

)

= ω (3)

[

∂ ω

∂ξ

(

∂ ψ∗

∂ η
−

c̄ sin ξ sinh η

( cosh η − cos ξ )2

)

−
∂ ω

∂ η

(

∂ ψ∗

∂ ξ
+
c̄ ( cosh η cos ξ − 1 )

( cosh η − cos ξ )2

)]

=
2

Re

(

∂2 ω

∂ η2
+
∂2 ω

∂ ξ2

)

(4)

where the Reynolds number Re, based on the leading cylinder diameter d1, is:

Re = U∞d1 / ν.

The boundary conditions for the dimensionless stream-function and vorticity are:
- cylinders surfaces (η = ηi, i = 1,2)

ψ∗ = - c sinξ / (cosh η - cos ξ ) (3a)

- free stream (η → 0, ξ → 0)

ψ∗ → 0, ω → 0 (3b)
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- symmetry axis (ξ = 0 and η 6= 0, ξ = π)

ψ∗ = ω = 0 (3c)

The pressure coefficients CP (ξ) on the cylinders surfaces and the drag coefficients, CD, are
computed with the relations [12],

CP ( ξ ) = P ( ξ ) − P ( ξref ) =
2

Re

ξ
∫

ξref

∂ ω

∂ η

∣

∣

∣

∣

∣

η = ηi

d ξ (5)

CD = 2

ξmax
∫

ξmin

∂ y

∂ξ
CP ( ξ ) d ξ +

4

Re

ξax
∫

ξin

∂ x

∂ ξ
ω d ξ (6)

The two integrals in (6) are referred as the pressure and friction drag coefficients and are
denoted CD,P and CD,F , respectively. In relations (5) and (6), for both cylinders, ξref = ξmin

= 0 and ξmax = π.. For this reason, the sign “–“ should be considered for the integrals in (6),
when the calculations are carried out for the trailing cylinder.

3 Solution procedure

The Navier-Stokes equations were solved numerically. The two-dimensional region (η1, η2) ×
(0, π) was transformed into the unit square. The finite difference method was used for dis-
cretization. Equation (3) was discretized with the central second order accurate finite difference
scheme. A double discretization (upwind and central finite difference schemes), necessary for
the defect correction iteration, was used for equation (??). Numerical experiments were made
with the discretization steps h = 1 / 64, 1 / 128, 1 / 256. The algorithm employed is the nested
defect-correction iteration, [13, 14]. The method is well described in the references mentioned
previously and it is not necessary to reproduce it here. It must be mentioned that in this work
the defect-correction iteration was used only locally [15], in the region defined by
| 2x / d1 | ≤ n max ( 2 L1 / d1, 2 L2 / d2 )

y ≤ n max ( 2 L1 / d1, 2 L2 / d2 )

The values of n were varied until for two consecutive values, ni, ni+1, ni+1 – ni ≥ 2, the
relative changes in CD are lower than 1%. This process was repeated for each 2 Li / di and d1

/ d2 value.
One of the main problems in solving numerically the Navier-Stokes equations in unbounded
regions is the boundary conditions at infinity. For the flow past an isolated cylinder, a reference
article in solving this problem is [16]. In this case, i.e. the flow past an isolated cylinder, the
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free stream must be located at a large but finite distance from the cylinder center. For the
present problem, in bipolar cylindrical coordinate system, the infinity of the physical space (x,
y) is located in the point ξ = η = 0. For this reason, the boundary conditions (3b) were used
in this work.

4 Results

The dimensionless equations (2a,b) and the boundary conditions (3) depend on three dimen-
sionless parameters: Re, 2L1/d1, and d1/d2. The first question discussed in this section is the
selection of the numerical values of these parameters.
Only one value of the up-stream cylinder Re number was used: Re = 2. For Re = 2, the
hydrodynamic regime of the laminar flow around an isolated circular cylinder is steady flow
without separation (Re ≤ 5). The geometric quantities 2L1/d1, and d1/d2,take the values,
2L1/d1 = 1.5, 2, 3 and d1/d2 = 0.5, 1, 2. The diameters of the cylinders are the characteristics
lengths of the present problem. If d1 = d2 = d, the values of 2L/d = 1.5, 2, 3 correspond to a
separation gap between cylinders equal to 0.5 d, dand 2d, respectively.
The first task in any numerical work is to validate the code’s ability to reproduce published
results accurately. Unfortunately, excepting figure 6 from [4], there are no data in literature to
verify the accuracy of the present computations.
The first numerical experiments were made considering d1 = d2 = d. The influence of 2L/d on
the surface vorticity and surface pressure coefficient is plotted in figures 2 and 3, respectively.
In all graphs, the surface’s coordinate ξ / π varies from 0 to 1. For the upstream cylinder, the
front stagnation point is located at ξ / π = 0 while the rear stagnation point at ξ / π = 1.
For the downstream cylinder, the front stagnation point is located at ξ / π = 1 while the rear
stagnation point at ξ / π = 0. Under these conditions, in each situation, the isolated cylinder
data were adapted to be consistent with the present data.
Figures 2 and 3 show that the tandem interaction changes the surface vorticity and coefficient
pressure of the two cylinders. As expected, the decrease in 2L/dincreases these effects. These
effects are stronger on the trailing cylinder. The surface vorticity and coefficient pressure on
the front stagnation zone of the leading cylinder are not strongly influenced by the interaction.
For the leading cylinder, the interaction’s effects increases on the rear stagnation zone. The
strongest interaction effect is a radical change in the surface vorticity and coefficient pressure
(especially) of the trailing cylinder. In figure 3b it can be seen that a low pressure zone occurs
on the front of the trailing cylinder. Also, it must be mentioned that flow separation occurs for
2L/d= 1.5, 2.
This behaviour has some similarities with that described in [17] for the flow past two spheres
in tandem. For the same hydrodynamic system, i.e. two spheres in tandem, Tsuji et al. [18]
showed that the tandem interactions are more pressure drag effects than friction drag effects.
This statement seems to apply to the low Re number flow around two circular cylinders in
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Figure 2: The vorticity distribution over the bodies surface; d1 = d2 = d; (a) upstream cylinder;
(b) downstream cylinder.

Figure 3: The distribution of the pressure coefficient over the bodies surface; d1 = d2 = d; (a)
upstream cylinder; (b) downstream cylinder.
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tandem.

Figure 4: The distribution of the vorticity over the bodies surface; 2 L1 / d1 = 2; (a) upstream
cylinder; (b) downstream cylinder.

Figure 5: The distribution of the pressure coefficient over the bodies surface; 2 L1 / d1 = 2; (a)
upstream cylinder; (b) downstream cylinder.

The tandem interaction for cylinders of different sizes is plotted in figure 4 and 5. It can
be seen that the general rules of tandem interaction discussed previously remain valid even
when the cylinders have different diameters. The variation of the diameters ratio induces only
quantitative changes. If d1 / d2 is smaller / greater than one, the surface vorticity decreases
/ increases for both cylinders. The pressure coefficient over the surface of the leading cylinder
increases with the decrease in the diameters ratio. For the trailing cylinder, the decrease in the
diameters ratio decreases the pressure coefficient over the surface of the body.
Table 1 summarizes the present computations of the drag coefficients. Based on the data
presented in table 1, we can make the following observations:
both cylinders experience a lower drag coefficient compared to the isolated cylinder;
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for both cylinders, the drag coefficient decreases as the gap decreases;
if d1 / d2 ≥ 1, the drag on the trailing cylinder is significantly lower than that of the leading
cylinder (slip-streaming phenomenon); this aspect amplifies with the increase in diameters ratio;
if d1 / d2 ¡ 1, the trailing cylinder may exhibit a higher drag than the leading cylinder;
for d1 / d2 = 1, the agreement between the present λ1 values and those presented in [4] is
very good; our λ2 values are smaller than those from [4]; note that in [4] the cylinder Reynolds
number is considered equal to 1.

Table 1: Drag coefficients for a pair of cylinders in tandem, Re = 2, λ1 = CD1/CD, λ2 = CD2/CD

L1/d1 d1/d2 CD1 CD2 CD

isolated
cylinder

λ1 λ2

1.5 1 5.14 2.51

6.629

0.775 0.379
2 1 5.29 2.62 0.798 0.395
3 1 5.48 2.81 0.827 0.424
2 0.5 4.46 4.92 0.673 0.742
2 2 5.64 1.61 0.85 0.243
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