,, Caius Iacob" Conference on
Fluid Mechanics\&Technical Applications
Bucharest, Romania, November 2005

The Study of a Laminar Non-Stationary Gravific Flow of a Viscous Fluid Between Non-Axial Cylinders
by
Olivia FLOREA ${ }^{1}$

Abstract

This paper deals with the study of laminar non-stationary flow of a viscous fluid between nonaxial cylinders. We are using the mediation method in Navier-Stokes equation. The problem is reduced to a stationary one for which the conform domain transformation in a circular corona can be applied. For this problem, the solution is determined by using the variables separation method. The flow is accepted for different forms of the pressure gradient $\left(\frac{\partial p}{\partial z}\right)$: linear, exponential study and stability analysis

Key words and phrases: Navier-Stokes, stationary, non-stationary, conformable mapping, averaging

Mathematics Subject Classification: 34M40,35K50, 35Q30, 76D05

1 The non-stationary case study

We are considering the non-stationary movement of a viscous incompressible fluid between two nonaxial cylinders, see figure 1. The equations of the viscous fluid's laminar movement given by NavierStokes, in which are considered the gravic force and the difference of a constant pressure generated by a certain pump,$\frac{\partial p}{\partial z}=-f(t) \equiv k$, are:

$$
\begin{equation*}
\nu\left[\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}\right]=\frac{\partial w}{\partial t}+\frac{1}{\rho}\left[\frac{\partial p}{\partial z}-\rho g \sin \alpha\right] \tag{1}
\end{equation*}
$$

The initial and boundary conditions are:

$$
\left\{\begin{array}{l}
w(r, \theta, t=0)=0 \tag{2}\\
w(r, \theta, t)_{C}=w(r, \theta, t)_{\gamma}=0
\end{array}\right.
$$

wher C and γ are the contours of circles.

[^0]

Figure 1: Two non-axial cylinders between which the viscous fluid flows with laminar speed w
The flow is ensured by the incline plane and by the pump.
We are using the averaging method Slezkin-Targ [5]:

$$
\begin{equation*}
W(t)=\frac{1}{A_{D}} \iint_{D} \frac{\partial w}{\partial t} d x d y \tag{3}
\end{equation*}
$$

We introduce (3) in (1) and obtain:

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}=G(t) \tag{4}
\end{equation*}
$$

where $G(t)=\frac{1}{\nu} \frac{\partial w}{\partial t}+\frac{1}{\rho \nu}\left[\frac{\partial p}{\partial z}-\rho g \sin \alpha\right]$, considering $\rho \nu=\mu$, where ρ is the fluid density, μ the dynamic viscosity, and ν the kinematic viscosity.
We apply the averaging over $\frac{\partial w}{\partial t}$ term and obtain:

$$
\begin{equation*}
G(t)=\frac{1}{\nu} \frac{\partial W}{\partial t}+\frac{1}{\mu}\left[\frac{\partial p}{\partial z}-\rho g \sin \alpha\right] \tag{5}
\end{equation*}
$$

We wish to eliminate $G(t)$ in order to obtain $\Delta w=0$. Given the following substitution:

$$
\begin{equation*}
w=v+\frac{G(t)}{2} r^{2} \sin ^{2} \theta \tag{6}
\end{equation*}
$$

By replacing in (4) the partial derivates we obtain the homogeneous equation in v

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}=0 \tag{7}
\end{equation*}
$$

The boundary conditions (2) become:

$$
\begin{equation*}
v_{\gamma}=-\frac{G(t)}{2} r^{2} \sin ^{2} \theta ; v_{C}=-\frac{G(t)}{2} r^{2} \sin ^{2} \theta \tag{8}
\end{equation*}
$$

In the initial portrait of the two cylinders see figure $2, C\left(O_{1}, r_{1}\right), C\left(O_{2}, r_{2}\right), r_{1}<r_{2}$ we say that $O O_{1}=d$.

Figure 2: The portrait of the two non-axial cylinders
Due to the fact that the cylinders are non-axial we have to aply an homographic conformable mapping in order to obtain concentric cylinders [2]:

$$
\begin{equation*}
Z=\frac{M z+N}{P z+Q}=R e^{i \Theta} \tag{9}
\end{equation*}
$$

After applying the conformable mapping the cylinders become axial, so that $C\left(O_{1}, r_{1}\right) \rightarrow C(O, 1)$ şi $C\left(O_{2}, r_{2}\right) \rightarrow C(O, h)$. In order to ease the calculus we are going to make the following notations:

$$
\begin{gathered}
Z=\frac{(A+1) z-\left(x_{1}^{\prime} A+x_{1}\right)}{(A-1) z-\left(x_{1}^{\prime} A-x_{1}\right)}, A=\sqrt{\frac{r_{2}^{2}-\left(d+r_{1}\right)^{2}}{r_{2}^{2}-\left(d-r_{1}\right)^{2}}} \\
h=\frac{1+\sqrt{\Delta}}{1-\sqrt{\Delta}}, \Delta=\frac{\left(r_{2}-r_{1}\right)^{2}-d^{2}}{\left(r_{2}+r_{1}\right)^{2}-d^{2}}
\end{gathered}
$$

We switch to polar coordinates in order to obtain the $r^{2} \sin ^{2} \theta$ product. We get the following result for y^{2} :

$$
y_{(1,2)}^{2}=\frac{R^{2} \sin ^{2} \Theta\left[2 A\left(r_{1}+d\right)-2 A\left(r_{1}-d\right)\right]^{2}}{\left[(A-1)^{2} R^{2}-2\left(A^{2}-1\right) R \cos \Theta+(A+1)^{2}\right]^{2}}=F_{(1,2)}(\Theta)
$$

which becomes:

$$
y_{(1,2)}^{2}=\left\{\begin{array}{l}
F_{1}(\Theta), R=1 \tag{10}\\
F_{2}(\Theta), R=h
\end{array}\right.
$$

Therefore:

$$
F_{1}(\Theta)=\frac{16 \sin ^{2} \Theta d^{2} A^{2}}{\left[(A-1)^{2}-2\left(A^{2}-1\right) \cos \Theta+(A+1)^{2}\right]^{2}}
$$

$$
F_{2}(\Theta)=\frac{16 h^{2} \sin ^{2} \Theta d^{2} A^{2}}{\left.(A-1)^{2} h^{2}-2\left(A^{2}-1\right) h \cos \theta+(A+1)^{2}\right]^{2}}
$$

Trough the conformable mapping the equation (7) becomes:

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial R^{2}}+\frac{1}{R} \frac{\partial v}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{2}}{\partial \theta^{2}}=0 \tag{11}
\end{equation*}
$$

wich allows as a particular solution

$$
\begin{equation*}
v_{o}=a \ln R+b \tag{12}
\end{equation*}
$$

We use the variable separation method and search for a v of the following form: $v=X(R) Y(\Theta)$. By replacing v in (11) we get:

$$
R^{2} \frac{X^{\prime \prime}}{X}+R \frac{X^{\prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0 \Leftrightarrow R^{2} \frac{X^{\prime \prime}}{X}+R \frac{X^{\prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda^{2}
$$

We obtain the equation: $Y^{\prime \prime}+\lambda^{2} Y=0$ having $Y=C_{1} \cos (\lambda \Theta)$ as solution due to the parity $v(\Theta)=$ $v(-\Theta)$. For the Euler equation $R^{2} X^{\prime \prime}+R X^{\prime}-\lambda^{2} X=0$ with the solution: $\tilde{X}=R^{n}$ wुe find $\lambda= \pm n$ This way is obtain the general solution for (11)

$$
\begin{equation*}
v=-\frac{G}{2}\left[a \ln R+b+\sum_{n=1}^{\infty}\left[a_{n} R^{n}+b_{n} R^{-n}\right] \cos n \Theta\right] \tag{13}
\end{equation*}
$$

With the help of the conditions (8) in order to determine the Fourier coefficients that are part of the solution (13), we get:

$$
\left\{\begin{array}{l}
F_{1}(\Theta)=b+\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) \cos n \Theta \tag{14}\\
F_{2}(\Theta)=a \ln h+b+\sum_{n=1}^{\infty}\left(a_{n} h^{n}+b_{n} h^{-n}\right) \cos n \Theta
\end{array}\right.
$$

implying the following system:

$$
\begin{gathered}
b=\frac{2}{\pi} \int_{0}^{\pi} F_{1}(\Theta) d \Theta, a_{n}+b_{n}=\frac{2}{\pi} \int_{0}^{\pi} F_{1}(\Theta) \cos n \Theta d \Theta \\
a_{n} h^{n}+b_{n} h^{-n}=\frac{2}{\pi} \int_{0}^{\pi} F_{2}(\Theta) \cos n \Theta d \Theta, a \ln h+b=\frac{2}{\pi} \int_{0}^{\pi} F_{2}(\Theta) d \Theta
\end{gathered}
$$

with the help of which we find the coefficients a, b, a_{n}, b_{n}. Going back to $w=v+\frac{G}{2} r^{2} \sin ^{2} \theta$, the moving speed of the viscous fluid between the two cylinders will be:

$$
\begin{equation*}
w=-\frac{G}{2}\left[a \ln R+b+\sum_{n=1}^{\infty}\left(a_{n} R^{n}+b_{n} R^{-n}\right) \cos n \Theta+r^{2} \sin ^{2} \theta\right] \tag{15}
\end{equation*}
$$

In order to determine the solution for (15) we are using the averaging:

$$
\begin{equation*}
W(t)=\frac{1}{A_{D}} \iint_{D} \frac{\partial w}{\partial t} d x d y=\frac{1}{A_{D}} \iint_{D} \frac{\partial v_{0}}{\partial t} d x d y+\frac{r^{2} \sin ^{2} \theta}{2 A_{D}} \iint_{D} \frac{\partial G}{\partial t} d x d y \tag{16}
\end{equation*}
$$

To simplify we introduce the following notation:

$$
\begin{equation*}
E=-\frac{1}{2} \iint_{D}\left(v_{0}-r^{2} \sin ^{2} \theta\right) J d X d Y \tag{17}
\end{equation*}
$$

Therefore the equation (16) becomes

$$
\begin{equation*}
W=-\frac{W^{\prime}}{A_{D}} E \tag{18}
\end{equation*}
$$

with the solution given by $W=C e^{-\frac{A_{D}}{E}} t$. We place the initial conditions and get $W(0)=C$. In order to determine the constant we go back to (5) in which $G(0)=0$. In this context we obtain $C=\nu \mu[f(0)-\rho g \sin \alpha]$. The solution for equation (18) is therefore

$$
\begin{equation*}
W(t)=\nu \mu[f(0)-\rho g \sin \alpha] e^{-\frac{A_{D}}{E} t} \tag{19}
\end{equation*}
$$

and the term $G(t)$ will have the following form:

$$
\begin{equation*}
G(t)=\mu[f(0)-\rho g \sin \alpha] e^{-\frac{A_{D}}{E} t}+\frac{1}{\mu}[-f(t)-\rho g \sin \alpha] \tag{20}
\end{equation*}
$$

In these circumstances the solution for equation (15) can be determined directly and represents the solution for the non-stationary case problem. . It can be observed that if $t \rightarrow \infty, G(t) \equiv$ $\frac{1}{\mu}[-f(t)-\rho g \sin \alpha]$ the solution is stabilizing.

2 The stationary case study

We rely on same demonstrations as for the non-stationary case and we'll consider the equation (1) but in which the time dependent term is missing. So, the equation that is designated to be solved is:

$$
\begin{equation*}
\nu\left[\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}\right]=\frac{1}{\rho}\left[\frac{\partial p}{\partial z}-\rho g \sin \alpha\right] \tag{21}
\end{equation*}
$$

wich is equivalent to the equation $\Delta w=\frac{K}{\mu}$ using the substitution $K=\frac{\partial p}{\partial z}-g \sin \alpha$. Therefore, the particular solution of (21) will be:

$$
\begin{equation*}
w_{p}=\frac{K}{2 \mu} r^{2} \tag{22}
\end{equation*}
$$

We perform the function substitution $w-w_{p}=W$ from which we get $\Delta W=0$. By placing the boundary conditions:

$$
\left\{\begin{array}{l}
\left.w\right|_{C}=\left.0 \Rightarrow W\right|_{C}=-\left.w_{p}\right|_{R=h}=-\frac{K}{2 \mu} h^{2} \tag{23}\\
\left.w\right|_{\gamma}=\left.0 \Rightarrow W\right|_{\gamma}=-\left.w_{p}\right|_{R=1}=-\frac{K}{2 \mu}
\end{array}\right.
$$

the equation (21) in the new unknown function becomes:

$$
\begin{equation*}
\frac{\partial^{2} W}{\partial r^{2}}+\frac{1}{r} \frac{\partial W}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} W}{\partial \theta^{2}}=0 \tag{24}
\end{equation*}
$$

Looking for a solution of the following type $W=X(r) Y(\theta)$ wुe get: $Y=C \cos \lambda \theta, X=r^{n}$, from which derives that $\lambda= \pm n$. Therefore, the equation's solution will be:

$$
\begin{equation*}
W=\sum_{n=1}^{\infty}\left(a_{n} r^{n}+b_{n} r^{-n}\right) \cos n \theta \tag{25}
\end{equation*}
$$

We set the boundary conditions (23) in order to determine the coefficients that are part of W. Therefore:

$$
\left\{\begin{array}{l}
a_{n} h^{n}+b_{n} h^{-n}=\frac{2}{\pi} \int_{0}^{\pi}-\frac{K}{2 \mu} h^{2} \cos n \theta d \theta \tag{26}\\
a_{n}+b_{n}=\frac{2}{\pi} \int_{0}^{\pi}-\frac{K}{2 \mu} \cos n \theta d \theta
\end{array}\right.
$$

We get the solution of the problem for the stationary case:

$$
\begin{equation*}
w=\frac{K}{2 \mu} r^{2}+\sum_{n=1}^{\infty}\left(a_{n} r^{n}+b_{n} r^{-n}\right) \cos n \theta \tag{27}
\end{equation*}
$$

2.1 Conclusions

1. $k=0$, the flow will be gravic with the factor $-g \sin \alpha$ in the solution (24)
2. $\alpha=0$, in this situation only the pump acts over the installation and we have $K=\frac{\partial p}{\partial z}$, only the k factor is present in the solution
3. $K=\alpha=0$, this case is not possible because the solution will be null.

These conclusions are the cases that stabilize the non-stationary solution (15) when $t \rightarrow \infty$. By following the solution determination effective numerical calculus can be made also to determine the debit $Q=\int_{S} \rho \cdot \vec{v} \cdot \vec{n} d A$. The mass and heat problem can be treated in the future.

References

[1] Homentcovshi, D. Complex functions with application in science and technique. Ed. Tehnică, 1996.
[2] Koppenfels, W., Stallmann, F. Praxis der Konformen Abbilduing Ed. Springer - Verlag, 1959
[3] Ionescu, D. Introduction to mechanics of fluids, Ed. Tehnică, Bucureşti, 2004
[4] Petrila, T., Trif, D. Numerical and computational methods in fluid dynamics Ed. Digital Data Cluj, 2002
[5] Filatov, A.N., Averaging methods in differential and integro-differential equations (en russe), Ed. Fan, Rusia, 1971

[^0]: ${ }^{1}$ University Transilvania of Brasov, Romania
 E-mail: oaflorea@gmail.com

