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Abstract

This paper deals with the study of laminar non-stationary flow of a viscous fluid between non-
axial cylinders. We are using the mediation method in Navier-Stokes equation. The problem is
reduced to a stationary one for which the conform domain transformation in a circular corona can
be applied. For this problem, the solution is determined by using the variables separation method.

The flow is accepted for different forms of the pressure gradient
(

∂p
∂z

)

: linear, exponential study

and stability analysis
Key words and phrases: Navier-Stokes, stationary , non-stationary, conformable mapping, av-

eraging
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1 The non-stationary case study

We are considering the non-stationary movement of a viscous incompressible fluid between two non-
axial cylinders, see figure 1. The equations of the viscous fluid’s laminar movement given by Navier-
Stokes, in which are considered the gravic force and the difference of a constant pressure generated by
a certain pump ,∂p

∂z
= −f(t) ≡ k, are:

ν

[

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

]

=
∂w

∂t
+

1

ρ

[

∂p

∂z
− ρg sinα

]

(1)

The initial and boundary conditions are:

{

w(r, θ, t = 0) = 0
w(r, θ, t)C = w(r, θ, t)γ = 0

(2)

wher C and γ are the contours of circles.
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Figure 1: Two non-axial cylinders between which the viscous fluid flows with laminar speed w

The flow is ensured by the incline plane and by the pump.
We are using the averaging method Slezkin-Targ [5]:

W (t) =
1

AD

∫ ∫

D

∂w

∂t
dxdy (3)

We introduce (3) in (1) and obtain:

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
= G(t) (4)

where G(t) = 1
ν
∂w
∂t

+ 1
ρν

[

∂p
∂z
− ρg sinα

]

, considering ρν = µ, where ρ is the fluid density, µ the dynamic

viscosity, and ν the kinematic viscosity.
We apply the averaging over ∂w

∂t
term and obtain:

G(t) =
1

ν

∂W

∂t
+

1

µ

[

∂p

∂z
− ρg sinα

]

(5)

We wish to eliminate G(t) in order to obtain ∆w = 0. Given the following substitution:

w = v +
G(t)

2
r2 sin2 θ (6)

By replacing in (4) the partial derivates we obtain the homogeneous equation in v

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2

∂θ2
= 0 (7)

The boundary conditions (2) become:

vγ = −G(t)

2
r2 sin2 θ; vC = −G(t)

2
r2 sin2 θ (8)
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In the initial portrait of the two cylinders see figure 2, C (O1 , r1 ) ,C (O2 , r2 ) , r1 < r2 we say that
OO1 = d.

Figure 2: The portrait of the two non-axial cylinders

Due to the fact that the cylinders are non-axial we have to aply an homographic conformable mapping
in order to obtain concentric cylinders [2]:

Z =
Mz +N

Pz +Q
= ReiΘ (9)

After applying the conformable mapping the cylinders become axial, so that C (O1 , r1 ) → C (O , 1 )
şi C (O2 , r2 )→ C (O , h). In order to ease the calculus we are going to make the following notations:

Z =
(A+ 1)z − (x

′

1A+ x1)

(A− 1)z − (x
′

1A− x1)
, A =

√

r22 − (d+ r1)2

r22 − (d− r1)2
,

h =
1 +

√
∆

1−
√
∆
,∆ =

(r2 − r1)
2 − d2

(r2 + r1)2 − d2

We switch to polar coordinates in order to obtain the r2 sin2 θ product. We get the following result
for y2:

y2(1,2) =
R2 sin2Θ [2A(r1 + d)− 2A(r1 − d)]2

[(A− 1)2R2 − 2(A2 − 1)R cosΘ + (A+ 1)2]2
= F(1,2)(Θ)

which becomes:

y2(1,2) =

{

F1(Θ), R = 1
F2(Θ), R = h

(10)

Therefore:

F1(Θ) =
16 sin2Θd2A2

[(A− 1)2 − 2(A2 − 1) cosΘ + (A+ 1)2]2
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F2(Θ) =
16h2 sin2Θd2A2

(A− 1)2h2 − 2(A2 − 1)h cos θ + (A+ 1)2]2

Trough the conformable mapping the equation (7) becomes:

∂2v

∂R2
+

1

R

∂v

∂R
+

1

R2
∂2

∂θ2
= 0 (11)

wich allows as a particular solution

vo = a lnR+ b (12)

We use the variable separation method and search for a v of the following form: v = X(R)Y (Θ). By
replacing v in (11) we get:

R2
X

′′

X
+R

X ′

X
+

Y
′′

Y
= 0⇔ R2

X
′′

X
+R

X ′

X
= −Y

′′

Y
= −λ2

We obtain the equation: Y ′′ + λ2Y = 0 having Y = C1 cos(λΘ) as solution due to the parity v(Θ) =
v(−Θ). For the Euler equation R2X ′′ +RX ′ − λ2X = 0 with the solution: X̃ = Rn w̧e find λ = ±n
This way is obtain the general solution for (11)

v = −G

2

[

a lnR+ b+
∞
∑

n=1

[

anR
n + bnR

−n
]

cosnΘ

]

(13)

With the help of the conditions (8) in order to determine the Fourier coefficients that are part of the
solution (13), we get:
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{

F1 (Θ) = b+
∑

∞

n=1 (an + bn) cosnΘ
F2(Θ) = a lnh+ b+

∑

∞

n=1 (anh
n + bnh

−n) cosnΘ
(14)

implying the following system:

b =
2

π

∫ π

0
F1(Θ)dΘ, an + bn =

2

π

∫ π

0
F1(Θ) cosnΘdΘ,

anh
n + bnh

−n =
2

π

∫ π

0
F2(Θ) cosnΘdΘ, a lnh+ b =

2

π

∫ π

0
F2(Θ)dΘ

with the help of which we find the coefficients a, b, an, bn. Going back to w = v + G
2 r
2 sin2 θ, the

moving speed of the viscous fluid between the two cylinders will be:

w = −G

2

[

a lnR+ b+
∞
∑

n=1

(

anR
n + bnR

−n
)

cosnΘ+ r2 sin2 θ

]

(15)

In order to determine the solution for (15) we are using the averaging:

W (t) =
1

AD

∫ ∫

D

∂w

∂t
dxdy =

1

AD

∫ ∫

D

∂v0

∂t
dxdy +

r2 sin2 θ

2AD

∫ ∫

D

∂G

∂t
dxdy (16)

To simplify we introduce the following notation:

E = −1

2

∫ ∫

D

(

v0 − r2 sin2 θ
)

JdXdY (17)

Therefore the equation (16) becomes

W = −W ′

AD

E (18)

with the solution given by W = Ce−
AD

E t. We place the initial conditions and get W (0) = C. In
order to determine the constant we go back to (5) in which G(0) = 0. In this context we obtain
C = νµ [f(0)− ρg sinα]. The solution for equation (18) is therefore

W (t) = νµ [f(0)− ρg sinα] e−
AD

E
t (19)

and the term G(t) will have the following form:

G(t) = µ [f(0)− ρg sinα] e−
AD

E
t +

1

µ
[−f(t)− ρg sinα] (20)

In these circumstances the solution for equation (15) can be determined directly and represents
the solution for the non-stationary case problem. . It can be observed that if t → ∞, G(t) ≡
1
µ
[−f(t)− ρg sinα] the solution is stabilizing.
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2 The stationary case study

We rely on same demonstrations as for the non-stationary case and we’ll consider the equation (1)
but in which the time dependent term is missing. So, the equation that is designated to be solved is:

ν

[

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

]

=
1

ρ

[

∂p

∂z
− ρg sinα

]

(21)

wich is equivalent to the equation ∆w = K
µ

using the substitution K = ∂p
∂z
− g sinα. Therefore, the

particular solution of (21) will be:

wp =
K

2µ
r2 (22)

We perform the function substitution w − wp = W from which we get ∆W = 0. By placing the
boundary conditions:

{

w|C = 0⇒W |C = −wp|R=h = −K
2µh

2

w|γ = 0⇒W |γ = −wp|R=1 = −K
2µ

(23)

the equation (21) in the new unknown function becomes:

∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2
∂2W

∂θ2
= 0 (24)

Looking for a solution of the following type W = X(r)Y (θ) w̧e get: Y = C cosλθ, X = rn, from which
derives that λ = ±n. Therefore, the equation’s solution will be:

W =
∞
∑

n=1

(

anr
n + bnr

−n
)

cosnθ (25)

We set the boundary conditions (23) in order to determine the coefficients that are part of W . There-
fore:

{

anh
n + bnh

−n = 2
π

∫ π
0 −K

2µh
2 cosnθdθ

an + bn = 2
π

∫ π
0 −K

2µ cosnθdθ
(26)

We get the solution of the problem for the stationary case:

w =
K

2µ
r2 +

∞
∑

n=1

(

anr
n + bnr

−n
)

cosnθ (27)

2.1 Conclusions

1. k = 0, the flow will be gravic with the factor −g sinα in the solution (24)

2. α = 0, in this situation only the pump acts over the installation and we have K = ∂p
∂z

, only the
k factor is present in the solution
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3. K = α = 0, this case is not possible because the solution will be null.

These conclusions are the cases that stabilize the non-stationary solution (15) when t → ∞. By
following the solution determination effective numerical calculus can be made also to determine the
debit Q =

∫

S ρ · ~v · ~ndA. The mass and heat problem can be treated in the future.
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