,, Caius Iacob" Conference on Fluid Mechanics&Technical Applications Bucharest, Romania, November 2005

Asymptotic thermal flow around a highly conductive suspension by FADILA BENTALHA¹ , ISABELLE GRUAIS² AND DAN POLIŠEVSKI ³

Abstract

Radiant spherical suspensions have an ε -periodic distribution in a three dimensional incompressible viscous fluid governed by the Stokes-Boussinesq system. We study the border case when the radius of the spheres is of order ε^3 and the ratio of the solid/fluid conductivities is of order ε^{-6} . We apply a homogenization procedure by adapting the energy method introduced by [1] and developed by [2]-[7]. The macroscopic behavior is described by a nonlocal law of Brinkman-Boussinesq type and two coupled heat equations, where the radiation and a certain capacity of the vanishing suspensions appear. This result completes those obtained for the thermal flow when the volume of the solid matrix is not vanishing as $\varepsilon \to 0$ (see [8]-[9]).

1 Preliminaries

Let $\Omega \subset \mathbf{R}^3$ be a bounded open set and let

$$Y := \left(-\frac{1}{2}, +\frac{1}{2}\right)^{3}.$$
$$Y_{\varepsilon}^{k} := \varepsilon k + \varepsilon Y, \quad k \in \mathbf{Z}^{3}.$$
$$\mathbf{Z}_{\varepsilon} := \{k \in \mathbf{Z}^{3}, \quad Y_{\varepsilon}^{k} \subset \Omega\}$$

The reunion of the suspensions is defined by

$$T_{\varepsilon} := \bigcup_{k \in \mathbf{Z}_{\varepsilon}} B(\varepsilon k, r_{\varepsilon}),$$

where $0 < r_{\varepsilon} < < \varepsilon$ and $B(\varepsilon k, r_{\varepsilon})$ is the ball of radius r_{ε} centered at $\varepsilon k, k \in \mathbb{Z}_{\varepsilon}$. The fluid domain is given by

$$\Omega_{\varepsilon} = \Omega \setminus T_{\varepsilon}.$$

Let $\mathbf{e}^{(3)}$ be the last vector of the canonical basis of \mathbf{R}^3 , *n* the normal on $\partial\Omega_{\varepsilon}$ in the outward direction and $[\cdot]_{\varepsilon}$ the jump across the interface ∂T_{ε} . For a > 0 (the so-called Rayleigh number), $f \in L^2(\Omega)$, $g \in C(\overline{\Omega})$ and b > 0, where $b(\varepsilon/r_{\varepsilon})^3$ stands for the ratio of the solid/fluid conductivities, we consider

¹University of Batna, Algeria

²Université de Rennes1, France

³I.M.A.R., Bucharest, Romania

E-mail: danpolise@yahoo.com

the problem corresponding to the non-dimensional Stokes-Boussinesq system governing the thermal flow of an ε -periodic distribution suspension of solid spheres: To find $(u^{\varepsilon}, p^{\varepsilon}, \theta^{\varepsilon}) \in H^1(\Omega_{\varepsilon}; \mathbf{R}^3) \times L^2(\Omega_{\varepsilon}) \times H^1(\Omega)$, solution of

$$\operatorname{div} u^{\varepsilon} = 0 \quad \text{in} \quad \Omega_{\varepsilon}, \tag{1}$$

$$-\Delta u^{\varepsilon} + \nabla p^{\varepsilon} = a\theta^{\varepsilon} \mathbf{e}^{(3)} \quad \text{in} \quad \Omega_{\varepsilon}, \tag{2}$$

$$-\Delta\theta^{\varepsilon} + u^{\varepsilon}\nabla\theta^{\varepsilon} = f \quad \text{in} \quad \Omega_{\varepsilon}, \tag{3}$$

$$-\Delta \theta^{\varepsilon} = g \quad \text{in} \quad T_{\varepsilon}, \tag{4}$$

$$\begin{bmatrix} \theta^{\varepsilon} \end{bmatrix}_{\varepsilon} = 0 \quad \text{on} \quad \partial T_{\varepsilon}, \tag{5}$$

$$\frac{\partial \sigma}{\partial n} = b(\varepsilon/r_{\varepsilon})^3 \frac{\partial \sigma}{\partial n}$$
 on ∂T_{ε} , (6)

$$u^{\varepsilon} = 0 \quad \text{on} \quad \partial \Omega_{\varepsilon},$$
 (7)

$$\theta^{\varepsilon} = 0 \quad \text{on} \quad \partial\Omega.$$
 (8)

Introducing

$$V_{\varepsilon} := \{ v \in H_0^1(\Omega_{\varepsilon}; \mathbf{R}^3), \quad \operatorname{div} v = 0 \}$$

the variational formulation of (1)-(8) reads:

$$\begin{aligned} \forall (v,q) \in V_{\epsilon} \times L^{2}(\Omega_{\varepsilon}), \quad & \int_{\Omega_{\varepsilon}} \nabla u^{\varepsilon} \cdot \nabla v \, dx = -a \int_{\Omega_{\varepsilon}} \theta^{\varepsilon} v_{3} \, dx \\ & \int_{\Omega_{\varepsilon}} q \operatorname{div} u^{\varepsilon} \, dx = -0 \end{aligned} \\ \forall \varphi \in H_{0}^{1}(\Omega_{\varepsilon}), \qquad & \int_{\Omega_{\varepsilon}} \nabla \theta^{\varepsilon} \nabla \varphi \, dx \quad + -b(\varepsilon/r_{\varepsilon})^{3} \int_{T_{\varepsilon}} \nabla \theta^{\varepsilon} \nabla \varphi \, dx \\ & + \int_{\Omega_{\varepsilon}} u^{\varepsilon} \varphi \nabla \theta^{\varepsilon} \, dx = \int_{\Omega_{\varepsilon}} f \varphi + b(\varepsilon/r_{\varepsilon})^{3} \int_{T_{\varepsilon}} g \varphi dx. \end{aligned}$$

We define $\mathcal{F}_{\varepsilon} \in H^{-1}(\Omega)$ by

$$\forall \varphi \in H^1_0(\Omega), \quad \mathcal{F}_{\varepsilon}(\varphi) := \int_{\Omega_{\varepsilon}} f\varphi \ dx + b(\varepsilon/r_{\varepsilon})^3 \!\!\!\int_{T_{\varepsilon}} g\varphi dx.$$

Then, for $\gamma > 0$ (we shall choose a suitable value for this parameter later), we can present the variational formulation of the problem (1)-(8):

To find $(u^{\varepsilon}, \theta^{\varepsilon}) \in V_{\varepsilon} \times H^1_0(\Omega)$ such that

$$\langle G(u^{\varepsilon}, \theta^{\varepsilon}), (v, \varphi) \rangle = \mathcal{F}_{\varepsilon}(\varphi) \quad for \quad any \quad (v, \varphi) \in V_{\varepsilon} \times H^{1}_{0}(\Omega), \tag{9}$$

where the mapping $G: V_{\varepsilon} \times H_0^1(\Omega) \to V'_{\varepsilon} \times H^{-1}(\Omega)$ is defined by

$$\langle G(u,\theta), (v,\varphi) \rangle = \gamma \int_{\Omega_{\varepsilon}} \nabla u \nabla v \, dx - \gamma \, a \int_{\Omega_{\varepsilon}} \theta v_3 \, dx \\ + \int_{\Omega_{\varepsilon}} \nabla \theta \nabla \varphi \, dx + \int_{\Omega_{\varepsilon}} u \varphi \nabla \theta \, dx + b(\varepsilon/r_{\varepsilon})^3 \int_{T_{\varepsilon}} \nabla \theta \nabla \varphi \, dx$$

In order to prove the existence theorem for problem (9), we make use of the following result of Gossez:

Theorem 1.1 Let X be a reflexive Banach space and $G: X \to X'$ a continuous mapping between the corresponding weak topologies. If

$$\frac{\langle G\varphi,\varphi\rangle}{|\varphi|_X} \to \infty \quad as \quad |\varphi|_X \to \infty$$

then G is a surjection.

Acting as in the proof of Theorem 5.2.2 [8] Ch 1, Sec. 5, we find that the existence of the weak solutions of problem (9) is assured if γ is chosen sufficiently small. Moreover, if $(u^{\varepsilon}, \theta^{\varepsilon})$ is a solution of problem (9), then, by using the weak maximum principle, we obtain that $\theta^{\varepsilon} \in L^{\infty}(\Omega)$, (see Theorem 3.4 [8] Ch 2, Sec. 3). We do not have a uniqueness result, except if we assume that a > 0 is small enough.

2 Basic inequalities

Lemma 2.1 For every $0 < r_1 < r_2$, consider:

$$C(r_1, r_2) := \{ x \in \mathbf{R}^3, \quad r_1 < |x| < r_2 \}.$$

Then, if $u \in H^1(C(r_1, r_2))$, the following estimate holds true:

$$|\nabla u|_{C(r_1,r_2)}^2 \ge \frac{4\pi r_1 r_2}{r_2 - r_1} \left| \int_{\mathbf{S}_{r_2}} u \, d\sigma - \int_{\mathbf{S}_{r_1}} u \, d\sigma \right|^2,\tag{10}$$

where $f_{\mathbf{S}_r} \cdot d\sigma := \frac{1}{4\pi r^2} \int_{\mathbf{S}_r} \cdot d\sigma$.

Lemma 2.2 There exists a positive constant C > 0 such that, for any R > 0, $\alpha \in (0,1)$ and $u \in H^1(B(0,R))$, the following inequality holds:

$$\int_{B(0,R)} |u - \oint_{\mathbf{S}_{\alpha R}} u \, d\sigma|^2 \, dx \le C \frac{R^2}{\alpha} |\nabla u|^2_{B(0,R)}.$$
(11)

We denote the domain confined between the spheres of radii a < b by

$$C(a,b) := \{x \in \mathbf{R}^3, \ a < |x| < b\}$$

and correspondingly

$$\mathcal{C}^k(a,b) := \varepsilon k + \mathcal{C}(a,b)$$

From now on, we consider R_{ε} to be a radius satisfying

$$r_{\varepsilon} << R_{\varepsilon} << \varepsilon \tag{12}$$

and we use the following notations:

$$\mathcal{C}_{\varepsilon} := \bigcup_{k \in \mathbf{Z}_{\varepsilon}} \mathcal{C}^k(r_{\varepsilon}, R_{\varepsilon}).$$

$$S_{r_{\varepsilon}}^{k} = \partial B(\varepsilon k, r_{\varepsilon}), \quad S_{r_{\varepsilon}} := \bigcup_{k \in \mathbf{Z}_{\varepsilon}} S_{r_{\varepsilon}}^{k},$$
$$S_{R_{\varepsilon}}^{k} = \partial B(\varepsilon k, R_{\varepsilon}), \quad S_{R_{\varepsilon}} := \bigcup_{k \in \mathbf{Z}_{\varepsilon}} S_{R_{\varepsilon}}^{k},$$
$$C := H^{1}(\Omega) \longrightarrow L^{2}(\Omega) \text{ by}$$

For any $r \in (0, \varepsilon)$, we define $G_r: H_0^1(\Omega) \to L^2(\Omega)$ by

$$G_r(\theta)(x,t) = \sum_{k \in \mathbf{Z}_{\varepsilon}} \left(\oint_{\mathbf{S}_r^k} \theta(y,t) \, d\sigma_y \right) \mathbf{1}_{Y_{\varepsilon}^k}(x). \tag{13}$$

Lemma 2.3 For every $\theta \in H_0^1(\Omega)$ we have

$$|\theta - G_{R_{\varepsilon}}(\theta)|_{L^{2}(\cup_{k \in \mathbf{Z}_{\varepsilon}} Y_{\varepsilon}^{k})} \leq C \left(\frac{\varepsilon^{3}}{R_{\varepsilon}}\right)^{1/2} |\nabla \theta|_{L^{2}(\Omega)}$$
(14)

$$|\theta - G_{r_{\varepsilon}}(\theta)|_{L^{2}(T_{\varepsilon})} \leq Cr_{\varepsilon}|\nabla\theta|_{L^{2}(T_{\varepsilon})}$$
(15)

$$|G_{R_{\varepsilon}}(\theta) - G_{r_{\varepsilon}}(\theta)|_{L^{2}(\Omega)} \leq C \left(\frac{\varepsilon^{3}}{r_{\varepsilon}}\right)^{1/2} |\nabla \theta|_{L^{2}(\mathcal{C}_{\varepsilon})}.$$
(16)

Denoting $\oint_{T_{\varepsilon}} \cdot dx = \frac{1}{|T_{\varepsilon}|} \int_{T_{\varepsilon}} \cdot dx$, we also have

$$|G_{R_{\varepsilon}}(\theta)|^{2}_{L^{2}(\Omega)} = \oint_{T_{\varepsilon}} |G_{R_{\varepsilon}}(\theta)|^{2} dx \quad and \quad |G_{r_{\varepsilon}}(\theta)|^{2}_{L^{2}(\Omega)} = \oint_{T_{\varepsilon}} |G_{r_{\varepsilon}}(\theta)|^{2} dx.$$
(17)

Proposition 2.4 For any $\theta \in H_0^1(\Omega)$ we have:

$$\int_{T_{\varepsilon}} |\theta|^2 \, dx \le C \max\left(1, \frac{\varepsilon^3}{r_{\varepsilon}}\right) |\nabla \theta|^2_{L^2(\Omega)},\tag{18}$$

Remark 2.5 Using the Mean Value Theorem, we easily find that

$$|G_{r_{\varepsilon}}(\varphi) - \varphi|_{L^{\infty}(\mathcal{C}_{\varepsilon} \cup D_{\varepsilon})} \leq 2R_{\varepsilon} |\nabla \varphi|_{L^{\infty}(\Omega)}, \quad \forall \varphi \in \mathcal{D}(\Omega).$$
(19)

3 A priori estimates

In the sequel, we denote

$$\gamma_{\varepsilon} := \frac{r_{\varepsilon}}{\varepsilon^3} \tag{20}$$

and we assume that

$$\lim_{\varepsilon \to 0} \gamma_{\varepsilon} = \gamma \in]0, +\infty[.$$
⁽²¹⁾

Proposition 3.1 We have

$$\mathcal{F}_{\varepsilon} \rightharpoonup \mathcal{F} \quad in \quad H^{-1}(\Omega),$$
(22)

where $\mathcal{F} \in H^{-1}(\Omega)$ is given by

$$\mathcal{F}(\varphi) := \int_{\Omega} f\varphi \, dx + \frac{4\pi b}{3} \int_{\Omega} g\varphi \, dx \tag{23}$$

Proposition 3.2 If $(u^{\varepsilon}, \theta^{\varepsilon}) \in V_{\varepsilon} \times H^1_0(\Omega)$ is a solution of the problem (9), and if \hat{u}^{ε} stands for u^{ε} continued with zero to Ω , then we have

$$\hat{u}^{\varepsilon}$$
 and θ^{ε} are bounded in $H^1_0(\Omega)$. (24)

Moreover,

$$|\nabla \theta^{\varepsilon}|^{2}_{\Omega_{\varepsilon}} + b(\varepsilon/r_{\varepsilon})^{3} |\nabla \theta^{\varepsilon}|^{2}_{T_{\varepsilon}} \le C.$$
⁽²⁵⁾

Proposition 3.3 There exist $u \in H_0^1(\Omega; \mathbf{R}^3)$, $\theta \in H_0^1(\Omega)$ and $\tau \in L^2(\Omega)$ such that

$$\hat{u}^{\varepsilon} \rightarrow u \quad in \quad H^1_0(\Omega; \mathbf{R}^3),$$
 (26)

$$\operatorname{div} u = 0 \quad in \quad \Omega \tag{27}$$

$$\theta^{\varepsilon} \rightarrow \theta \quad in \quad H_0^1(\Omega),$$
(28)

$$G_{R_{\varepsilon}}(\theta^{\varepsilon}) \rightarrow \theta \quad in \quad L^{2}(\Omega),$$
 (29)

$$G_{r_{\varepsilon}}(\theta^{\varepsilon}) \rightharpoonup \tau \quad in \quad L^{2}(\Omega).$$
 (30)

Moreover,

$$\lim_{\varepsilon \to 0} \int_{T_{\varepsilon}} |\theta^{\varepsilon} - G_{r_{\varepsilon}}(\theta^{\varepsilon})|^2 \, dx = 0 \tag{31}$$

4 The two macroscopic heat equations

The aim of this section is to pass to the limit as $\varepsilon \to 0$ in the variational formulation of the heat equations:

$$\forall \Phi \in H_0^1(\Omega), \ \int_{\Omega_{\varepsilon}} \nabla \theta^{\varepsilon} \nabla \Phi \ dx + b(\varepsilon/r_{\varepsilon})^3 \int_{T_{\varepsilon}} \nabla \theta^{\varepsilon} \nabla \Phi \ dx + \int_{\Omega_{\varepsilon}} u^{\varepsilon} \nabla \theta^{\varepsilon} \Phi \ dx = \mathcal{F}_{\varepsilon}(\Phi).$$

$$(32)$$

First we consider the unique solution of the following problem:

$$\Delta W^{\varepsilon} = 0 \quad \text{in} \quad \mathcal{C}(r_{\varepsilon}, R_{\varepsilon}), \tag{33}$$

$$W^{\varepsilon} = 1 \quad \text{in} \quad r = r_{\varepsilon}, \tag{34}$$

$$W^{\varepsilon} = 0 \quad \text{in} \quad r = R_{\varepsilon}. \tag{35}$$

that is,

$$W^{\varepsilon}(y) = \frac{r_{\varepsilon}}{(R_{\varepsilon} - r_{\varepsilon})} \left(\frac{R_{\varepsilon}}{r} - 1\right) \quad \text{if} \quad y \in \mathcal{C}(r_{\varepsilon}, R_{\varepsilon}) \quad \text{and} \quad r := |y|.$$

Proposition 4.1 Setting

$$w^{\varepsilon}(x) := \begin{cases} 0 \quad in \quad \Omega_{\varepsilon} \setminus \mathcal{C}_{\varepsilon}, \\ W^{\varepsilon}(x - \varepsilon k) \quad in \quad \mathcal{C}^{k}_{\varepsilon}, \quad k \in \mathbf{Z}_{\varepsilon}, \\ 1 \quad in \quad T_{\varepsilon}, \end{cases}$$
(36)

we have

$$|\nabla w^{\varepsilon}|_{\Omega} \le C \tag{37}$$

Lemma 4.2 If for any $\varphi, \psi \in \mathcal{D}(\Omega)$ we denote $\Phi^{\varepsilon} \in H_0^1(\Omega)$ by

$$\Phi^{\varepsilon} = (1 - w^{\varepsilon})\varphi + w^{\varepsilon}G_{r_{\varepsilon}}(\psi), \qquad (38)$$

then, as $\lim_{\varepsilon \to 0} |\Phi^{\varepsilon} - \varphi|_{\Omega} = 0$, we have

$$\lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}} \nabla \theta^{\varepsilon} \cdot (\nabla \Phi^{\varepsilon} + \Phi^{\varepsilon} u^{\varepsilon}) \, dx$$
$$= \int_{\Omega} \nabla \theta \cdot (\nabla \varphi + \varphi u) \, dx + \gamma \int_{\Omega} (\theta - \tau) (\psi - \varphi) \, dx,$$

where $(u^{\varepsilon}, \theta^{\varepsilon})$ is a solution of (9).

Using Lemma 4.2, the two heat equations of the homogenized system are easily obtained. They are given by the next corollary.

Corollary 4.3 The limit (u, θ, τ) verifies

$$u\nabla\theta - \Delta\theta + 4\pi\gamma(\theta - \tau) = f \quad in \quad \Omega, \tag{39}$$

$$4\pi\gamma(\tau-\theta) = \frac{4\pi b}{3}g \quad in \quad \Omega.$$
(40)

5 The homogenized problem

From [7], we find that there exists an extension of the pressure (denoted by \hat{p}^{ε}) and some $p \in L^2(\Omega)$ such that

$$\hat{p}^{\varepsilon} \rightharpoonup p \quad \text{in} \quad L^2(\Omega)/\mathbf{R}.$$
 (41)

We denote by $(w_{\varepsilon}^k, q_{\varepsilon}^k) \in H^1(\mathcal{C}(r_{\varepsilon}, \frac{\varepsilon}{2})) \times L^2_0(\mathcal{C}(r_{\varepsilon}, \frac{\varepsilon}{2}))$ the only solution of the following Stokes problem

$$\operatorname{div} w_{\varepsilon}^{k} = 0 \quad \text{in} \quad \mathcal{C}(r_{\varepsilon}, \frac{\varepsilon}{2}),$$
$$-\Delta w_{\varepsilon}^{k} + \nabla q_{\varepsilon}^{k} = 0 \quad \text{in} \quad \mathcal{C}(r_{\varepsilon}, \frac{\varepsilon}{2}),$$
$$w_{\varepsilon}^{k} = 0 \quad \text{if} \quad r = r_{\varepsilon},$$
$$w_{\varepsilon}^{k} = \mathbf{e}^{(k)} \quad \text{if} \quad r = \frac{\varepsilon}{2}.$$

Correspondingly, we define

$$v_{\varepsilon}^{k}(x) = \begin{cases} 0 \quad \text{if} \quad x \in T_{\varepsilon}, \\ w_{\varepsilon}^{k}(x - \varepsilon i) \quad \text{if} \quad x \in \mathcal{C}^{i}(r_{\varepsilon}, \frac{\varepsilon}{2}), \quad i \in \mathbf{Z}_{\varepsilon}, \\ \mathbf{e}^{(k)} \quad \text{if} \quad x \in \Omega_{\varepsilon} \setminus \bigcup_{i \in \mathbf{Z}_{\varepsilon}} \mathcal{C}^{i}(r_{\varepsilon}, \frac{\varepsilon}{2}). \end{cases}$$

Setting $v = \varphi v_{\varepsilon}^k$ in (9), for some $\varphi \in \mathcal{D}(\Omega)$, and using the energy method like in [1], we find that the limits satisfy the following Brinkman type homogenized equation:

$$-\Delta u + 6\pi\gamma u = -\nabla p + a\theta \mathbf{e}^{(3)} \quad \text{in} \quad \Omega.$$
(42)

Finally, the results of Proposition 3.3, Corollary 4.3 and relations (41)-(42) are summarized by our main theorem:

Theorem 5.1 If $(u^{\varepsilon}, \theta^{\varepsilon})$ is a solution of problem (9), then there exists an extension of the pressure (denoted by \hat{p}^{ε}) such that the following convergences hold on some subsequence

$$\hat{p}^{\varepsilon} \rightarrow p \quad in \quad L^2(\Omega)/\mathbf{R}.$$
 (43)

$$\hat{u}^{\varepsilon} \rightarrow u \quad in \quad H^1_0(\Omega; \mathbf{R}^3),$$

$$\tag{44}$$

$$\theta^{\varepsilon} \rightarrow \theta \quad in \quad H_0^1(\Omega),$$
(45)

$$G_{r_{\varepsilon}}(\theta^{\varepsilon}) \rightharpoonup \tau \quad in \quad L^2(\Omega).$$
 (46)

The limit (p, u, θ, τ) is a solution of the following system

 $\operatorname{div} u = 0 \quad in \quad \Omega. \tag{47}$

$$-\Delta u + 6\pi\gamma u = -\nabla p + a\theta \mathbf{e}^{(3)} \quad in \quad \Omega, \tag{48}$$

$$u\nabla\theta - \Delta\theta = f + \frac{4\pi b}{3}g \quad in \quad \Omega, \tag{49}$$

$$\tau = \theta + \frac{b}{3\gamma}g \quad in \quad \Omega.$$
(50)

Remark 5.2 If we assume that a > 0 is small enough, then the homogenized system has a unique solution in the corresponding space and the convergences of Theorem(5.1) hold on the entire sequence.

References

- D. CIORANESCU AND F. MURAT, Un terme étrange venu d'ailleurs, Nonlinear Partial Differential Equations And Their Applications, *Collége de France Seminar*, 2 and 3, *Research Notes In Mathematics*, 60, pp. 98-138 and 70, pp. 154-178, Pitman, London, 1982.
- [2] M. BELLIEUD AND G. BOUCHITTÉ, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects, Ann. Scuola Norm. Sup. Pis Cl. Sci., 26, pp. 407-436, 1998.
- [3] J. CASADO-DIAZ, Two-scale convergence for nonlinear Dirichlet problems in perforated domains. Proceedings of the Royal Society of Edinburgh, 130 A, pp. 249-276, 2000.
- [4] M. BRIANE AND N. TCHOU, Fibered microstructure for some non-local Dirichlet forms, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30, pp. 681-712, 2001.
- [5] M. BELLIEUD AND I. GRUAIS, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects, J. Math. Pures Appl., 84, pp. 55-96, 2005

- [6] U. MOSCO, Composite media and asymptotic dirichlets forms, J. Functional Anal., 123, pp. 368-421, 1994.
- [7] G. ALLAIRE, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framewok, a volume distribution of holes, Arch. Rational. Mech. Anal., 113, pp. 209-259, 1991.
- [8] H. ENE AND D. POLIŠEVSKI, Thermal Flow in Porous Media. D. Reidel Pub. Co., Dordrecht, 1987.
- [9] D. POLIŠEVSKI, Thermal flow through a porous radiant of low conductivity. J. Appl. Math. Phys. (ZAMP), 53, pp. 12-19, 2002.