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Abstract

In this paper, we prove the convergence of an iterative method for fixed-point problems in a
reflexive Banach space. As a particular case, the proposed method is exactly the additive Schwarz
domain decomposition method when we use the Sobolev spaces. Also, for the finite element spaces,
our result proves that the one-level and multi-level methods (the multigrid method, for instance)
can be applied to find the fixed-points of contraction operators.
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1 Introduction

The literature on the domain decomposition methods is very large. We can see, for instance, the papers
in the proceedings of the annual conferences on domain decomposition methods starting in 1988 with
[4] or those cited in the books [12] and [13]. Naturally, most of the papers dealing with these methods
are dedicated to the linear elliptic problems. For the variational inequalities, the convergence proofs
refer in general to the inequalities coming from the minimization of quadratic functionals. Also, most
of the papers consider the convex set decomposed according to the space decomposition as a sum of
convex subsets. To our knowledge, even if sometimes the authors make some remarks in their papers
on the nonlinear cases, very few papers really deal with the application of these methods to nonlinear
problems. We can cite in this direction the papers written by Lui [8], [9], Tai and Espedal [14], and Tai
and Xu [15], for nonlinear equations, Hoffmann and Zhou [6], Zeng and Zhou in [16] for inequalities
having nonlinear source terms, and Badea [1] for the minimization of non-quadratic functionals.
The multilevel or multigrid methods can be viewed as domain decomposition methods and we can cite
the results obtained by Kornhuber [7], Mandel [10], [11], Smith, Bjørstad and Gropp [13], Badea, Tai
and Wang [2], and Badea[3]. Evidently, this list is not exhaustive and it can be completed with other
papers.
As we have already said, few papers deal with the domain decomposition methods for non-linear
problems, even if there are many mechanical or engineering problems which are modeled by a non-
linear equation which does not come from the minimization of a energy functional. In this paper,
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we prove the convergence of an iterative method for fixed-point problems. The paper is organized as
follows. In Section 2, we introduce the framework of our paper. The problem is stated in a reflexive
Banach space and it generalizes the well known fixed-point problem in the Hilbert spaces. Section 3 is
dedicated to a general subspace correction method for the problem in previous section. We give here an
error estimation theorem for the proposed algorithm. Finally, in Section 4, we show that the particular
form of proposed method in which the subspaces are associated with a domain decomposition is the
multiplicative Schwarz method. Also, we make some remarks concerning the convergence rate (as
a function of overlapping and mesh parameters) of the one-level and multi-level methods when the
proposed algorithm is applied for problems in finite element spaces.

2 General framework

Let V be a reflexive Banach space and V1, · · · , Vm, be some closed subspaces of V such that V =
V1 + · · ·+ Vm. We make the following assumption concerning the decomposition of the space V .

Assumption 2.1. There exists a constant C0 > 0 such that for any v ∈ V , there exist vi ∈ Vi,
i = 1, · · · ,m, satisfying

v =

m
∑

i=1

vi, (2.1)

and
m
∑

i=1

||vi|| ≤ C0||v||. (2.2)

We consider a Gâteaux differentiable functional F : V → R, and we assume that there exists p > 1
such that for any real number M > 0 there exist two real numbers AM , BM > 0 for which

AM ||v − u||p ≤< F ′(v)− F ′(u), v − u > (2.3)

and
||F ′(v)− F ′(u)||V ′ ≤ BM ||v − u||p−1, (2.4)

for any u, v ∈ V with ||u||, ||v|| ≤ M . Above, we have denoted by F ′ the Gâteaux derivative of F . It
is evident that if (2.3) and (2.4) hold, then for any u, v ∈ V , ||u||, ||v|| ≤M , we have

AM ||v − u||p ≤< F ′(v)− F ′(u), v − u >≤ BM ||v − u||p. (2.5)

Following the way in [5], we can prove that for any u, v ∈ V , ||u||, ||v|| ≤M , we have

< F ′(u), v − u > +AM

p
||v − u||p ≤ F (v)− F (u) ≤

< F ′(u), v − u > +BM

p
||v − u||p,

(2.6)

Finally, let T : V → V ′ be a contraction operator in the sense that for any M > 0 there exist
0 < ρM < 1 such that

||T (v)− T (u)||V ′ ≤ ρM ||v − u||p−1 (2.7)
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for any v, u ∈ V , ||v||, ||u|| ≤M .
We consider the problem

u ∈ V : < F ′(u), v > − < T (u), v >= 0, for any v ∈ V. (2.8)

Since the functional F is convex and differentiable, any solution of problem (2.8) is also a solution for

u ∈ V : F (u)− < T (u), u >≤ F (v)− < T (u), v >, for any v ∈ V. (2.9)

Using (2.6), for a given M > 0 such that the solution u of (2.8) satisfies ||u|| ≤M , we get

AM

p
||v − u||p ≤ F (v)− F (u)− < T (u), v − u > for any v ∈ V, ||v|| ≤M. (2.10)

3 Subspace correction algorithm

We define the following correction algorithm corresponding to the subspaces V1, · · · , Vm of the space
V .

Algorithm 3.1. We start the algorithm with an arbitrary u0 ∈ V . At iteration n+1, having un ∈ V ,
n ≥ 0, we compute sequentially for i = 1, · · · ,m, wn+1

i ∈ Vi which satisfies the equation

< F ′(un+ i−1

m + wn+1
i ), vi > − < T (un+ i−1

m + wn+1
i ), vi >= 0,

for any vi ∈ Vi,
(3.1)

and then we update

un+ i
m = un+ i−1

m + wn+1
i .

Evidently, if wn+1
i is a solution of problem (3.1), then it also satisfies

F (un+ i−1

m + wn+1
i )− < T (un+ i−1

m + wn+1
i ), wn+1

i >≤

F (un+ i−1

m + vi)− < T (un+ i−1

m + wn+1
i ), vi >, for any vi ∈ Vi.

(3.2)

We have the following global convergence result.

Theorem 3.1. Let V be a reflexive Banach and V1, · · · , Vm be some closed subspaces of V such that
V = V1 + · · ·+ Vm. We assume that F is convex, Gâteaux differentiable and satisfies (2.3) and (2.4).
Also, we suppose that the operator T satisfies (2.7). If Assumption 2.1 holds, u is the solution of
problem (2.8) and un, n ≥ 0, are its approximations obtained from Algorithm 3.1, then there exists

ρmax ≤

AM

p

2|p−2|mp−1
(3.3)

such that for values 0 < ρM < ρmax of the contraction constant in (2.7), we have

F (un)− < T (u), un > −F (u)+ < T (u), u >≤
(

C1

C1+1

)n
[

F (u0)− < T (u), u0 > −F (u)+ < T (u), u >
] (3.4)
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and

||un − u||p ≤ C2

(

C1

C1+1

)n
[

F (u0)− < T (u), u0 > −F (u)+ < T (u), u >
]

(3.5)

The constants C1 and C2 are given in (3.18) and (3.20), respectively, in which we take for ε1 and ε2

their values giving ρmax in (3.25).

Proof. In this proof, we use (2.3), (2.4) and (2.7) in which u and v are replaced only with the solution
of problem (2.8) or its approximations obtained from Algorithm 3.1. Consequently, we are interested

in the existence of an M > 0 such that ||un+ i
m || ≤M , n ≥ 0, i = 1, · · · ,m. To this end, we see that,

with a proof by induction on n and i, equation (3.5) can be used to prove the existence of such a M

at the same time with (3.4) and (3.5). In the following, for the simplicity of the proof, we prove only

(3.4) and (3.5) assuming that there exists an M > 0 such that ||un+ i
m || ≤M , n ≥ 0, i = 1, · · · ,m, ie.

we prove only the general step of the induction process.
From (3.1) and (2.6), for any n ≥ 0 and i = 1, · · · ,m, we get,

F (un+ i−1

m )− F (un+ i
m )− < T (un+ i

m ), un+ i−1

m > +

< T (un+ i
m ), un+ i

m >≥ AM

p
||wn+1

i ||p,
(3.6)

and, using (2.10), for any n ≥ 0 and i = 1, · · · ,m, we have

F (un+ i
m )− F (u)− < T (u), un+ i

m > + < T (u), u >≥ AM

p
||un+ i

m − u||p. (3.7)

From Assumption 2.1, we get a decomposition u1, · · · , um of v = u − un satisfying (2.1)–(2.2). Re-
placing vi by ui in (3.1), and using (2.6) we get

F (un+1)− F (u)− < T (u), un+1 > + < T (u), u > +AM

p
||u− un+1||p ≤

< F ′(un+1), un+1 − u > − < T (u), un+1 > + < T (u), u >=
m
∑

i=1

< F ′(un+ i
m )− F ′(un+1), ui − wn+1

i > −

m
∑

i=1

< T (un+ i
m ), ui − wn+1

i > − < T (u), un+1 > + < T (u), u > .

(3.8)
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In the following, using (2.4) and (2.2) for the decomposition u1, · · · , um of u− un, we get

m
∑

i=1

< F ′(un+ i
m )− F ′(un+1), ui − wn+1

i >≤

m
∑

i=1

m
∑

j=i+1

< F ′(un+ j−1

m )− F ′(un+ j
m ), ui − wn+1

i >≤

BM

m
∑

i=1

||wn+1
i ||p−1

m
∑

i=1

||ui − wn+1
i || ≤

BM

m
∑

i=1

||wn+1
i ||p−1

(

m
∑

i=1

||ui||+
m
∑

i=1

||wn+1
i ||

)

≤

BMm
1

p

(

m
∑

i=1

||wn+1
i ||p

)
p−1

p
(

(1 + C0)
m
∑

i=1

||wn+1
i ||+ C0||u

n+1 − u||

)

≤

BMm
1

p

(

m
∑

i=1

||wn+1
i ||p

)
p−1

p



m
p−1

p (1 + C0)

(

m
∑

i=1

||wn+1
i ||p

) 1

p

+ C0||u
n+1 − u||



 =

BMm(1 + C0)
m
∑

i=1

||wn+1
i ||p +BMm

1

pC0

(

m
∑

i=1

||wn+1
i ||p

)
p−1

p

||un+1 − u||.

But, for any ε > 0, p > 1 and x, z ≥ 0 we have the inequality

zx
1

p ≤ εx+ (
zp

ε
)

1

p−1 . (3.9)

Applying this inequality to the last term of the above equation, we get

m
∑

i=1

< F ′(un+ i
m )− F ′(un+1), ui − wn+1

i >≤

BM



m(1 + C0) +m
1

p
C0

ε
1

p−1

1





m
∑

i=1

||wn+1
i ||p +BMm

1

pC0ε1||u− un+1||p,

(3.10)

for any ε1 > 0.
Let un = un1 + · · ·+ unm, uni ∈ Vi, i = 1, · · · ,m, be an arbitrary decomposition of un. Using (2.7) and
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(2.2) for the above decomposition u1, · · · , um of u− un, we get

−
m
∑

i=1

< T (un+ i
m ), ui − wn+1

i > − < T (u), un+1 > + < T (u), u >=

−
m
∑

i=1

< T (un+ i
m ), uni + ui > +

m
∑

i=1

< T (un+ i
m ), uni + wn+1

i > +

−
m
∑

i=1

< T (u), uni + wn+1
i > +

m
∑

i=1

< T (u), uni + ui >=

m
∑

i=1

< T (un+ i
m )− T (u), wn+1

i − ui >≤

ρM

m
∑

i=1

||un+ i
m − u||p−1||wn+1

i − ui|| ≤

ρM

(

||un+1 − u||+
m
∑

i=1

||wn+1
i ||

)p−1 m
∑

i=1

||wn+1
i − ui|| ≤

ρM

(

||un+1 − u||+
m
∑

i=1

||wn+1
i ||

)p−1 m
∑

i=1

(||wn+1
i ||+ ||ui||) ≤

ρM

(

||un+1 − u||+
m
∑

i=1

||wn+1
i ||

)p−1(

(1 + C0)
m
∑

i=1

||wn+1
i ||+ C0||u

n+1 − u||)

)

≤

ρM (1 + C0)

(

m
∑

i=1

||wn+1
i ||+ ||un+1 − u||

)p

Consequently, we have

−
m
∑

i=1

< T (un+ i
m ), ui − wn+1

i > − < T (u, un+1)+ < T (u, u) ≤

ρM (1 + C0)(m+ 1)
p−1

p

(

m
∑

i=1

||wn+1
i ||p + ||un+1 − u||p

) (3.11)

From (3.8), (3.10) and (3.11), we get

F (un+1)− F (u)− < T (u), un+1 > + < T (u), u > +
(

AM

p
−BMm

1

pC0ε1 − ρM (1 + C0)(m+ 1)
p−1

p

)

||un+1 − u||p ≤


BMm+BMm
1

p
C0

ε
1

p−1

1

+ ρM (1 + C0)(m+ 1)
p−1

p





m
∑

i=1

||wn+1
i ||p

(3.12)

for any ε1 > 0.
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Now, from (3.6) we get

AM

p

m
∑

i=1

||wn+1
i ||p ≤ F (un)− F (un+1)− < T (u), un > + < T (u), un+1 > −

m
∑

i=1

[< T (un+ i
m ), un+ i−1

m > − < T (un+ i
m ), un+ i

m >]+

< T (u), un > − < T (u), un+1 >

(3.13)

Again, with an arbitrary decomposition un = un1 + · · ·+ unm, uni ∈ Vi, i = 1, · · · ,m, of un, in the same
way as for (3.11), we have

−
m
∑

i=1

[< T (un+ i
m ), un+ i−1

m > −

< T (un+ i
m ), un+ i

m >]+ < T (u), un > − < T (u), un+1 >≤

−
m
∑

i=1

< T (un+ i
m ), uni > +

m
∑

i=1

< T (un+ i
m ), uni + wn+1

i > +

m
∑

i=1

< T (u), uni > −
m
∑

i=1

< T (u), uni + wn+1
i >=

m
∑

i=1

< T (un+ i
m )− T (u), wn+1

i >≤ ρM

m
∑

i=1

||un+ i
m − u||p−1||wn+1

i || ≤

ρM

(

m
∑

i=1

||wn+1
i ||+ ||un+1 − u||

)p−1 m
∑

i=1

||wn+1
i ||

For x, y ≥ 0, we have (x+ y)q ≤ xq + yq for 0 < q ≤ 1, and (x+ y)q ≤ 2q−1(xq + yq) for 1 < q. Using
it and inequality (3.9), we get from the above equation

−
m
∑

i=1

[< T (un+ i
m ), un+ i−1

m > −

< T (un+ i
m ), un+ i

m >]+ < T (u), un > − < T (u), un+1 >≤

ρM2|p−2|

(

m
∑

i=1

||wn+1
i ||

)p

+ ρM2|p−2|||un+1 − u||p−1
m
∑

i=1

||wn+1
i || ≤

ρM2|p−2|(1 + ε2)

(

m
∑

i=1

||wn+1
i ||

)p

+ ρM
2|p−2|

ε
1

p−1

2

||un+1 − u||p ≤

ρM2|p−2|(1 + ε2)m
p−1

m
∑

i=1

||wn+1
i ||p + ρM

2|p−2|

ε
1

p−1

2

||un+1 − u||p

(3.14)

7



Lori BADEA Domain decomposition method for fixed-point problems

for any ε2 > 0. Consequently, from (3.13) and (3.14), we get

(

AM

p
− ρM2|p−2|(1 + ε2)m

p−1

) m
∑

i=1

||wn+1
i ||p ≤

F (un)− F (un+1)− < T (u), un > + < T (u), un+1 > +ρM
2|p−2|

ε
1

p−1

2

||un+1 − u||p
(3.15)

for any ε2 > 0.
Let us write

C3 =
AM

p
− ρM2|p−2|(1 + ε2)m

p−1. (3.16)

For some ρM and ε2 such that C3 > 0, we get from (3.12) and (3.15),

F (un+1)− F (u)− < T (u, un+1)+ < T (u, u) + C4||u− un+1||p ≤
C1

[

F (un)− F (un+1)− < T (u, un)+ < T (u, un+1)
] (3.17)

where

C1 = 1
C3

(

BMm+BMm
1

p C0

ε
1

p−1

1

+ ρM (1 + C0)(m+ 1)
p−1

p

)

(3.18)

and

C4 =
AM

p
−BMm

1

pC0ε1 − ρM (1 + C0)(m+ 1)
p−1

p − ρM
2|p−2|

ε
1

p−1

2

C1 (3.19)

From (3.17), we easily get (3.4) assuming that C4 > 0. From (3.7) we get that AM

p
||un+1 − u||p ≤

F (un+1)− F (u)− < T (u), un+1 > + < T (u), u >, and using again (3.17), we get

[(1 + C1)
AM

p
+ C4]||u

n+1 − u||p ≤ F (un)− F (u)− < T (u, un)+ < T (u, u).

Using (3.4), we get (3.5) with

C2 =
1 + C1

(1 + C1)
AM

p
+ C4

. (3.20)

Conditions C3 > 0 and C4 > 0 can be written as

AM

p
− ρM2|p−2|(1 + ε2)m

p−1 > 0 (3.21)

and
AM

p
−BMm

1

pC0ε1 − ρM (1 + C0)(m+ 1)
p−1

p −

ρM
2|p−2|

ε
1

p−1

2

BMm+BMm
1
p C0

ε

1

p−1

1

+ρM (1+C0)(m+1)
p−1

p

AM
p

−ρM2|p−2|(1+ε2)mp−1
> 0

(3.22)
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respectively. Using (3.21), the above inequality could have a solution ρM > 0 only if

ε1 <

AM

p

BMm
1

pC0

(3.23)

Moreover, (3.22) can be written as a second order algebraic inequality,

ρ2
M

[

2|p−2|(1 + ε2)(1 + C0)m
p−1(m+ 1)

p−1

p − 2|p−2|

ε
1

p−1

2

(1 + C0)(m+ 1)
p−1

p

]

−

ρM

[

2|p−2|(1 + ε2)m
p−1(AM

p
−BMm

1

pC0ε1) + (1 + C0)(m+ 1)
p−1

p AM

p
+

2|p−2|

ε
1

p−1

2

(BMm+BMm
1

p C0

ε
1

p−1

1

)

]

+ AM

p
(AM

p
−BMm

1

pC0ε1) > 0,

(3.24)

and we can simply verify that for any ε1 satisfying (3.23) and ε2 > 0 there exists a ρε1ε2 > 0 such that
any 0 < ρM < ρε1ε2 is a solution of (3.24). Also, we can verify that the bound of ρM obtained from
(3.21) do not satisfy (3.24). Consequently,

ρε1ε2 <

AM

p

2|p−2|(1 + ε2)mp−1
<

AM

p

2|p−2|mp−1
,

and we get (3.3) with

ρmax = sup

0<ε1<

AM
p

BM m
1
p C0

, 0<ε2

ρε1ε2 (3.25)

4 Multiplicative Schwarz method as a subspace correction method

In the following, we show that the particular form of Algorithm 3.1 in which the subspaces are
associated with a domain decomposition is the multiplicative Schwarz method.
Let Ω be an open bounded domain in Rd with Lipschitz continuous boundary ∂Ω. We consider an
overlapping decomposition of the domain Ω,

Ω =
m
⋃

i=1

Ωi (4.1)

in which Ωi are open subdomains with Lipschitz continuous boundary.
We take V = W

1,s
0 (Ω), 1 < s < ∞ and associate to the domain decomposition (4.1) the subspaces

Vi = W
1,s
0 (Ωi), i = 1, · · · ,m. In this case, Algorithm 3.1 represents the multiplicative Schwarz method

written as a subspace correction method.
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To see that Assumption 2.1 holds, let us consider a unity partition associated with decomposition
(4.1), θ1, · · · , θm, ie.

θi ∈ C1(Ω̄), suppθi ⊂ Ωi, i = 1, · · · ,m, and
m
∑

i=1

θi = 1 on Ω. (4.2)

It is evident that for a v ∈ V , the decomposition vi = θiv, i = 1, · · · ,m, satisfies (2.1) and (2.2) in
Assumption 2.1. Consequently, the convergence and error estimation given in Theorem 3.1 hold, too.
Evidently, the constant C0 in (2.2) depends on the unity partition (4.2). From error estimations (3.4)
and (3.5), we see that the convergence rate essentially depend on this constant C0. If we use the finite
element spaces associated with the above spaces V and Vi, i = 1, · · · ,m, following the techniques in
[3], we can write the constant C0 depending on the overlapping and mesh parameters. In this way, we
can prove that C0 depends only on the overlapping parameter in the case of the one-level method, but
it is independent of these parameters for the multi-level methods (multigrid methods, for instance).

Remark 4.1. The above spaces V and Vi correspond to Dirichlet boundary conditions. Similar
results can be obtained if we consider mixed boundary conditions. We take ∂Ω = Γ̄1 ∪ Γ̄2, Γ1 ∩Γ2 = ∅
a partition of the boundary such that meas(Γ1) > 0, and we consider the Sobolev space V = {v ∈
W 1,s(Ω) : v = 0 on Γ1}. This space corresponds to Dirichlet boundary conditions on Γ1 and Neumann
boundary conditions on Γ2. The subspaces Vi will be defined in this case as Vi = {vi ∈W 1,s(Ω) : vi =
0 in Ω− Ω̄i, vi = 0 in ∂Ωi ∩ Γ1}, i = 1, · · · ,m.
Also, we have considered problems having the solution in W 1,s(Ω), but all the obtained results hold
with [W 1,s(Ω)]N , N ≥ 2, in the place of W 1,s(Ω).

Acknowledgment. The author acknowledges the financial support of IMAR under the contracts
CNCSIS nr. 33079/2004 and CERES 4-187/2004.
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