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Raport Tehnic

1 Introducere

Covorul vegetal este un factor activ de control al circulat, iei apei ı̂n natură. Prin intermediul rădăcinilor,
plantele extrag apa din sol s, i o eliberează ı̂n atmosferă la nivelul etajului foliar care la rândul lui ret, ine o
parte din apa căzută ı̂n timpul precipitat, iilor. Prezent,a plantelor pe terenuri ı̂n pantă modifică regimul
hidrodinamic al curgerilor de suprafat, ă cu efecte directe asupra proceselor de eroziune s, i propagării vi-
iturilor ı̂n timpul inundat, iilor. Scara proceselor este extrem de largă: procesele de absorbţie a apei din
sol ı̂n plante au loc la scara rădăcinii, procesele de evapotranspiraţie sunt la nivelul frunzei, procesele
de eroziune şi inundaţiile sunt semnificative la nivel bazinal.
Studierea acestor procese este de o importanţă vitală pentru climatologie, hidrologie, ecologie şi agri-
cultură ı̂ntrucât cunoaşterea lor permite elaborarea unor modele de analiză şi prognoză utile ı̂n man-
agementul resurselor naturale.
Conceptul de continuum Sol-Plante-Atmosferă permite crearea unui cadru unitar de analiză teoretică
a proceselor semnificative atât la scară microlocală cât şi scară macrolocală. Trecerea de la micro la
macro poate fi făcută printr-o procedură de mediere a legilor generale de bilanţ.
În capitolul “Mathematical Models in Hydrology: Shallow Water Type Equations” descriem ı̂n detaliu
această procedură aplicătă obţinerii unor modele matematice pentru:

1 curgerea apei ı̂n sol;

2 curgerea apei la suprafaţa solului;

3 eroziunea solului produsă de curgerea apei.

Raportul conţine o parte aplicativă şi una teoretică. Partea teoretică este dedicată deducerii modelelor
macroscopice.
Ca principiu general, un modelul macroscopic presupune existenţa unui principiu general de bilanţ
(conservarea masei, conservarea impulsului sau energiei) formulat ı̂n cadrul axiomatic al mecanicii
mediilor continue (scara microlocală) şi o formulă de mediere. Prin această tehnică se obţin noi
concepte care sunt utilizabile la scara macrolocală. Un exemplu tipic este conceptul de mediu poros cu
rădăcini. La nivel micro avem medii distincte: matricea solidă a solului, spaţiul gol dintre particulele
solide (porii), rădăcinile plantelor şi mediul fluid (aer, apă, etc.). Mediul fluid circulă prin spaţiu
porilor şi poate trece ı̂n rădacinile plantelor. La acest nivel, geometria porilor si a rădăcinilor este
extrem de complicată şi practic este imposibil să determinăm regimul de viteze al mediului fluid.
Prin mediere, mediile ı̂şi pierd identitatea, spaţiul este ocupat de un mediu poros cracterizat de unele
proprietăti ca porositate, conductivitate hidraulică, umiditate etc.
În partea aplicativă prezentăm câteva aplicaţii care ilustrează cum poate fi utizat modelul matematic
pentru a studia probleme reale. Ne vom restrictiona la trei probleme importante din punct de vedere
al aplicaţiilor practice: curgerea apei ı̂n sol, curgerea apei pe suprafeţe acoperite cu vegetaţie şi
erosiunea solului. Toate rezultatele numerice au fost obţinute cu ajutorul modulelor ASTERIX-CASES
şi ASTERIX-CASPA, componente ale softului ASTERIX.
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Figure 1: Circulaţia apei ı̂n sistemul Sol-Plante-Atmosferă. Procese dominante: precipitaţii,
evapotranspiraţie, infiltraţie, curgeri de suprafaţă.

2 Curgerea apei ı̂n sol

Modelul matematic folosit este un model larg utilizat ı̂n s,tiint,ele solului: ecuat, iile lui Richards cu surse
de masă. Sursele de masă modelează absorbţia apei de către plante prin intermediul rădăcinilor. În
acest model, rădăcinile plantelor act, ionează ca o pompă care extrage apă din sol cu o rată care variază
ı̂n funct, ie de densitatea spat, ială a rădăcinilor şi de potenţialul de evapotransipraţie al plantelor.
Ecuaţia lui Richards este dată de

∂θ

∂t
− divK∇(ψ + z) = −jw(t,x)

unde θ reprezintă conţinutul de apă din sol, ψ sarcina hidraulică, K conductivitatea hidraulică, iar z
coordonata pe verticală. Termenul jw(t,x) modelează rata de absorbţie a apei din sol de către plante.
De regulă, ı̂n zona rădăcinilor, solul este nesaturat, spaţiul porilor este ocupat parţial cu apă. În
această zonă, conductivitatea hidraulică K, conţinutul de apă, θ şi sarcina de presiune ψ sunt legate
prin relaţii algebrice neliniare. Relaţiile sunt de natură empirică şi sunt caracteristice unui anumit tip

3



Raport Tehnic

Figure 2: Pentru a trăi şi a se dezvolta, plantele au nevoie de apa din sol

de sol. Un model de relaţii empirice este modelul Mualem-vanGenuchten:

S(ψ) =

{

(1 + (αψ)n)−m , ψ < 0,
1, ψ ≥ 0,

K(S) =

{

KsS
l
(

1−
(

1− S1/m
)m

)2

, 0 < S < 1,

Ks, S ≥ 1,

S =
θ − θr
θs − θr

.

În acest model intervin următorii parametri:
Ks, θs conductiviatea hidraulică şi respectiv conţinutul de apă ı̂n regim saturat,
θr conţinutul de apă rezidual;
n, l parametrii specifici modelului Mualem-vanGenuchten, m = 1− 1/n.
Pentru determinarea ratei de absorţie, ı̂n literatură au fost propuse mai multe formule. În acest raport
folosim o relaţie de tipul:

jw = γ(ψ)Πm(t,x)

ı̂n care Πm(t,x) este rata normalizată de absorţie a apei, γ(ψ) este o funcţie care modelează stresul
hidric,

Πm(t,x) = Tp(t)
β(x)

∫

Ωr
β(x)dx

,
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β(x) modelează densitatea de distribuţie a rădăcinilor. Tp este potenţialul de transpiraţie al plantelor.
Funcţiile γ(ψ) şi β(x) considerate au expresiile:

β(z) =

(

1−
z

zm

)

e−
pz
zm

|z∗−z|, γ(ψ) =
1

1 +

(

ψ

ψ50

)p ,

unde z∗, pz, p sunt parametri. ψ50 este sarcina hidraulică la care rata de evapotranspiraţie se reduce
la jumătate.
Provocarea principală a unui model matematic este să măsoare variaţia variabilelor procesele hidro-
dinamice ı̂n raport cu variaţia caracteristicilor bio-fizice ale plantelor. În modelul propus de noi,
caracteristicile bio-fizice ale plantelor sunt cuantificate prin intermediul a şase parametri. Trei din-
tre aceştia caracterizează geometria spaţială a sistemului radicular, iar ceilalţi trei parametri ţin de
metabolismul intern al plantelor.

Aplicaţie. Infiltraţia apei de ploaie intr-o coloană de sol acoperit cu vegetaţie.

Obiective. Influenţa parametrilor asociaţi plantelor asupra proceselor de evapotranspiratie şi drenaj.

Pentru simularea numerică am considerat o coloană de sol cu grosimea de 1 m compusă din două
straturi, stratul 1 fiind la suprafaţa solului. Datele pentru ploie provin din ı̂nregistrări zilnice, cantitea
de apă cazută intr-o zi, pe un interval de 30 de zile. Calculul soluţiei numerice a fost efectuat cu
următoarele condiţii la limită: flux qr(t) impus la suprafaţa solului. La baza solului am considerat
drenaj liber.
Fluxul qr(t) a fost calculat prin distribuirea ı̂n mod uniform a precipitaţiilor dintr-o zi pe perioada
ı̂ntregii zile:

qr(24 ∗ td + t∗) = r(td)/24,

unde td este timpul măsurat ı̂n zile, r(td) cantitatea de apă căzută ı̂n ziua td, iar t
∗ timpul zilnic

măsurat ı̂n ore, t∗ ∈ [0, 24].
Pentru analiza variaţiei regimului de curgere ı̂n sol ı̂n funcţie de parametrii asociaţi plantelor am
analizat patru cazuri distincte. Tabelul 1 conţine valorile parametrilor utilizaţi pentru fiecare caz ı̂n
parte. Timpul de simulare 30 de zile.
Experimentul numeric arată ca modelul matematic este suficient de sensibil la variaţia parametrilor
caracteristici plantelor. El poate fi utilizat pentru elaborarea unor scenarii privind protecţia pânzei
freatice ı̂mpotriva contaminării cu ape de suprafaţă contaminate.
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Figure 3: Configuraţia spaţială a coloanei de sol şi distribuţia rădăcinilor.

Parametrii asociaţi solului

Grosime n α l Ks θs θr
Stratul 1 [0, 0.3] 2 3.35 0.5 0.3318 0.368 0.102

Stratul 2 [0.3, 1] 2 3.35 0.5 0.118 0.409 0.082

Parametrii asociaţi plantelor
Experiment Geometria rădacinilor Fiziologia plantelor

zm pz z∗ p ψ50 Tp
1 0.5 3 0.1 3 −6 2.06e− 4

2 0.5 3 0.2 3 −6 2.06e− 4

3 0.5 3 0.2 3 −6 1.06e− 4

4 0.5 3 0.2 3 −6 0

Table 1: Parametrii asociaţi solului şi plantelor. Unităţi de măsură: L[m], T[h].
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Figure 4: Distribuţia ratei de evapotranspiraţie (imaginea din stânga) şi a ratei de infiltraţie (imaginea
din dreapta). Datele privind caracteristicile solului şi plantelor sunt cele din Tabelul 1.

(1) (2)

(3) (4)

Figure 5: Distribuţia conţinutului de apă ı̂n sol
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3 Curgerea apei pe suprafeţe ı̂n pantă şi acoperite cu vegetaţie

Modelul folosit este dat de ecuat, iile Saint-Venant cu porozitate s, i frecare. Caracteristicile solului sunt
luate ı̂n considerare prin intermediul coeficientului de frecare apă-sol, iar cele ale covorului vegetal prin
intermediul porozităt, ii covorului vegetal s, i al coeficientului de frecare apă-plante. Din păcate, există
put, ine date experimentale pentru a putea valida modelul numeric pe baza lor. Dispunem de un singur
set date măsurate ı̂ntr-un experiment de laborator s, i făcute disponibile de autorii experimentului, [2].
Pe lângă aceasta confruntare cu datele experimentale, au fost efectuate s, i validări teoretice pe baza
unor solut, ii analitice. Determinarea solut, iilor analitice este o problemă dificilă s, i a necesitat un efort
deosebit. Simulările au fost făcute cu programul ASTERIX- CASES.

Aplicaţie. Curgerea pe terenuri acoperite cu vegetaţie.

Obiective. Influenţa parametrilor asociaţi plantelor asupra regimului de curgere.

În cadrul acestei aplicaţii au fost efectuate două simulari numerice. O simulare a fost făcută ı̂n scopul
validarii modelului teoretic şi a schemei numerice. Datele de intrare au fost cele corespunzătoare
experimentului prezentat ı̂n figura 6.

Figure 6: Instalaţie experimentală pentru studiul curgerii apei pe suprafeţe acoperite cu vegetaţie.
Jgeabul prin care curge apa are 18 m lungime, 1 m lăţime şi o ı̂nclinare de S = 1.05mm/m. Covorul
vegetal este modelat printr-un şir de cilindri verticali cu raza de 5 mm. Porositatea covorului vegetal
este θ = 0.99336. La partea superioară jgeabul este alimentat cu un debit constant, iar partea
inferioară este liberă. Alţi parametri: coeficientul Manning n2 = 3.005785, coeficientul de frecare
apă-plante αp = 74.7643 m−1.

O comparaţie a datelor experimentale cu datele numerice este prezentată ı̂n figura 7.
În al cel de al doilea experiment numeric dorim să punem ı̂n evidenţă implicaţiile despăduririlor asupra
propagării viiturilor de apă ı̂n zonele montane şi de deal. Pentru aceasta am considerat o suprafaţă
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Figure 7: Curgere pe o suprafaţă cu vegetaţie: comparaţie experiment - numeric. Q reprezintă debitul
de alimentare.
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Figure 8: Imaginile reprezintă nivelul apei la momentele de timp t = 40, 60, 200, 400 s ı̂n două
configuraţii distincte: suprafaţă netedă peste tot (prima linie) şi suprafaţă acoperită parţial cu un
filtru vegetal (linia a doua).

convex-concavă. Iniţial, suprafaţa este parţial acoperită (zona cu panta ı̂n cădere) cu un strat uniform
de apă şi la momentul de timp t = 0 apa este eliberată provocând o viitură. În funcţie de energia
curgerii, apa poate urca sau nu obstacolul prezent ı̂n centrul terenului. Rezulatele numerice, vezi
figura 8, arată că prezenţa covorului vegetal provoacă o disiparea a energiei cinetice astfel ı̂ncât zona
din spatele obstacolului este protejată la inundaţii. Acest lucru nu se mai ı̂ntâmplă ı̂nsă ı̂n absenţa
filtrului vegetal.

4 Eroziunea solului acoperit cu vegetaţie

Modelul combină ecuaţiile Saint-Venant cu vegetaţie cu modelul Hairsine-Rose de eroziune. În acest
caz, procedeul de mediere include şi fracţiile de sediment aflate ı̂n suspensie.
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Figure 9: Bazinul hidrografic din Valea lui Paul. Poză aeriană (stânga) şi terenul reconstruit (din date GIS) pe o reţea
hexagonală (dreapta).
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Figure 10: Stop cadru cu distribuţia apei ı̂n bazinul hidrografic din Valea lui Paul. Observaţii directe indică faptul că
timpul de rezindenţă al apei din bazin depinde de densitatea de vegetaţie. Datele numerice obţinute de noi sunt consistente
cu observaţiile din teren: timpul de scurgere al apei din bazin este mai mare ı̂n cazul unei densităţi mai mari de vegetaţie.
În această simulare s-a considerat terenul acoperit cu o vegetaţie uniformă: θ = 0.993 pentru poza din stânga şi θ = 0.974
pentru poza din dreapta.
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Figure 11: Distribuţia sedimentului erodat la t = 1000 s ı̂n bazinul hidrografic din Valea lui Paul pentru două distribuţii
uniforme de vegetaţie diferite: θ = 0.993 pentru poza din stânga şi θ = 0.974 pentru poza din dreapta. Procesul de
eroziune implică două componente: eroziune netă (pierdere de masă) şi depunere netă (câştig de masă). Nuanţele de rou̧
indică eroziune netă, iar nuanţele de verde indică depunere netă.
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5 Concluzii

Rezultatele numerice arată că modelele dezvoltate sunt suficient de versatile pentru a prinde hetero-
genitatea proceselor de mediu. De asemenea, ele ne permit formularea unor noi ipoteze privind rolul
plantelor ı̂n cadrul proceselor complexe din continuumul Sol-Plante-Apă. Apreciem câ pachetele de
programe dezvoltate ı̂n cadrul proiectul INTER-ASPA pot fi extrem de utile ı̂n proiectarea unor schem
de monitoring integrat al bazinelor hidrografice ı̂n vederea unei bune administrări a resurselor de apă.
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Chapter 1

General Balance Equations

for Fluids

The main subject of our work is the flow a fluid on the soil surface. We assume
that thermal effects has a small influence of the mechanical characteristics of
the fluid, consequently we deal only with the two balance equations, namely,
mass balance equation and momentum balance equation. A general balance
equation can be formulate as integral form or as local form. Usually the later is
obtained from the first by using several variant of the flux divergence formula.
We will present a general form of the balance equation and then we will show
how one can obtain different variants of the local form. An instructive exercise
is to obtain the differential form in a general curvilinear coordinate system from
integral form.

In all our consideration one assume that there exist a Cartesian coordinate
system Ox in the reference Euclidean space E3. Let V be a volume in the
domain of the flow and let ψ be the mass density of a mechanical quantity. The
balance equation of a mechanical quantity defined by the mass density ψ read
as

∂t

∫

V

ρψdx+

∫

∂V

ρψ(vn − un)dσ =

∫

∂V

Φψndσ +

∫

V

ρφψdx (1.1)

where ρ is mass density of the fluid, n is the unitary normal to the boundary
∂V of V outward orientated, v is the velocity of the fluid. The terms un stands
for the velocity displacement of a point of boundary ∂V . Φψ is the flux density
of ψ and φ is mass density supply of ψ. For more details the reader is referred
to [1] and [2]. The general balance equation (1.1) must be red as

For any domain V in the domain fluid flow the time variation of the
mechanical quantity with the mass density ψ obey the law (1.1).

If all fields that appear in the balance law are smooth enough one obtain local
form or differential form of the balance law.
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2 CHAPTER 1. GENERAL BALANCE EQUATIONS FOR FLUIDS

Table 1.1: The entry fields in the mass and linear momentum balance equation
for viscous fluid.
Mechanical ψ Φψ φ Comment
Mass 1 0 0 For reactive fluids one must specify

the mass production φ
Linear mo-
mentum

v t, tij = −pδij +
τ ij

f t is the stress tensor, p is the pres-
sure field and τ is viscous stress
tensor, f is the body force

If the integral form can be written only in Cartesian coordinate the differen-
tial form can be written as well as in any curvilinear system,{xI})I = 1, 3. The
invariant form read as

∂t(ρψ
I) +

(
ρψIvJ

)
;J

= Φψ
IJ
;J + ρφI (1.2)

where subscript ; stands for covariant derivative. For a vectorial quantity ψ an
alternative form is

∂t(
√
gρψi)+∂j

(√
gρψivj

)
+
√
gψkvjΓikj = ∂j

(√
gΦijψ

)
+
√
gΦkjψ Γikj+ρφ

i
ψ (1.3)

where g = detg·,· is the determinant of the metric tensor g and Γkij are the
Christoffel symbols.



Chapter 2

Fluid Flow on Unvegetated

Hillslope

The accumulation of water on the surface of the soil is a process that implies
rain and infiltration into soil, the rain drops produce a layer of water if rain rate
is greater than infiltration rate. This stratum of exceeding water moves on the
soil surface down the hill. This flow was modeled in [3] and the flow described
by this model is usually named hortonian flow.

There exists different models of water flow on hill slope and each of them
is process oriented. As a consequence it is very hard to extrapolate an existent
model to a new context or to establish what is generally common for all flow
process on hill slope. We find that the Saint Venant equations can be con-
sidered as common ground for most models used for hill slope flow. The Saint
Venant equations in turn are obtained from Navier Stokes equations by using an
asymptotic analysis and a space averaged technique, [8], [9]. Here we present a
variant of Saint Venant equations for overland flow obtained from Navier Stokes
equations.

2.1 Depth average form of the balance of laws

of mass and momentum

The physical problem considered here is the motion of a film of fluid along a
soil surface. Generally in such problems the topographical characteristics of soil
exhibits variation and the depth of fluid is small comparative with the soil area
occupied by the fluid. In the water domain the velocity of the fluid is almost
parallel with the soil surface and their variation along the depth of the fluid is
a small quantity as compared with its averaged.

That two characteristics namely small aspect ratio of depth versus soil sur-
face area and small normal components of the velocity field allows one to use
model equations of water as simplified form of full Navier Stokes equations.
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4 CHAPTER 2. FLUID FLOW ON UNVEGETATED HILLSLOPE

Shallow water type equations (SWE) are a typical approximation model used
in many applications.

A common way to obtain a SWE model is firstly depth average differential
form of the balance equations and then obtain a set of equations for the depth
averaged mechanical quantities. To obtain these equations one essential ingre-
dient is to assume that interface air-water or interface soil-water are material
surface with respect to water motion.

The interface water-air is a mobile surface that occupies different space po-
sitions at different moments of time. Its mobility is mainly due to the motion
of the fluid, but there is another process that can affect its space position: the
mass transfer between atmosphere and water body. The rain raises the water
level and the evaporation decreases the water level. Both processes do not affect
the motion of the water body material.

As regarding the interface water-soil if one take into account the erosion of
soil by water moving also give rise to surface that is not a material surface with
respect to fluid motion. As conclusion we admit that the water-air interface and
soil-water interface are not necessary material surfaces with respect to the fluid
motion.

In sequel we present a new method to obtain a shallow water type equation
that avoid the assumption that the interfaces that separate the fluid domain
from the external media are material surface. In our approach we start with the
integral form of the balance laws.

Let Ox1x2x3 be a Cartesian coordinate system in the reference Euclidean
space E3 and let V be an arbitrary domain in the domain flow. The integral
form of the balance laws of momentum and mass are given by

∂t

∫

V

ρvdx+

∫

∂V

ρv(vn − un)dσ =

∫

∂V

tndσ +

∫

V

ρfdx (2.1)

∂t

∫

V

ρdx+

∫

∂V

ρ(vn − un)dσ = 0 (2.2)

respectively. ρ is the mass density of the fluid, v the velocity field of fluid, f
is the density of the applied force, tn is the stress vector and un is the normal
component of the velocity of a point of the boundary ∂V of V .

To perform the depth average we choose a cylindrical volume control V with
the top face on the free surface and the bottom face on the soil surface. To
take advantage from that the velocity field is almost parallel with soil surface
one need to introduce a soil surface based coordinate system. If the soil surface
is a mobile surface this give rise to a new difficulty. We assume that the basal
surface deviate in a small amount from a fix surface and we choose that surface
as a referential surface. Let B be the referential surface, S be the soil surface
and U be the free surface.

Let B be represented by

xi = bi(y1, y2), (y1, y2) ∈ D̃ ⊂ R
2. (2.3)
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Figure 2.1: Flow domain of the watersheet flow

Given (2.3) one introduces a new coordinate system in euclidean space E3 by

xi = bi(y1, y2) + y3νi(y1, y2), (y1, y2) ∈ D̃ ∈ R
2, y3 ∈ I ∈ R, (2.4)

where ν is the unitary normal to the reference surface. It is supposed that the
application

x : D × I → R
3

define a coordinate transformation and its image cover the entire domain of flow
Assume also that there exists the functions

η : D̃ × (0,∞) → [0,∞),

s : D̃ × (0,∞) → R

such that the upper surface U can be parameterized by

xi = bi(y1, y2) + η(y1, y2, t)νi(y1, y2) (2.5)

and the bottom surface S can be parameterized by

xi = bi(y1, y2) + s(y1, y2, t)νi(y1, y2). (2.6)

In the new coordinate system the domain flow is defined by

{(y1, y2, y3)|(y1, y2) ∈ D̃, s(y1, y2, t) < y3 < η(y1, y2, t)}

The function h(y1, y2, t) := η(y1, y2, t) − s(y1, y2, t) measures the depth of the
fluid along the normal to the reference surface.

Let D be an arbitrary domain in D̃, u(y1, y2) and w(y1, y2) two functions

defined on D̃ such that

s(y1, y2, t) ≤ u(y1, y2, t) < w(y1, y2, t) ≤ η(y1, y2, t)
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Figure 2.2: Configuration of a volume control.

one defines the cylinder V by

V =
{
x|x = b(y1, y2) + y3ν, u(y1, y2) < y3 < w(y1, y2), (y1, y2) ∈ D

}
(2.7)

For cylinder V given by (2.7) one introduce the notations:

Ḣi
v(D; (u,w)) := ∂t

∫

V

ρvdx+

∫

∂V

ρv(vn − un)dσ,

Ḣi
m(D; (u,w)) := ∂t

∫

V

ρdx+

∫

∂V

ρ(vn − un)dσ,

F i
stress(D; (u,w)) :=

∫

∂V

tndσ,

F i
ext(D; (u,w)) :=

∫

V

ρfdx.

(2.8)

By using the above notation one rewrite the balance of the momentum of V as

Ḣi
v(D; (u,w)) = F i

stress(D; (u,w)) + F i
ext(D; (u,w)) (2.9)

and balance of mass of V as

Ḣi
m(D; (u,w)) = 0. (2.10)

To obtain the averaged form of balance of equations in the based surface coordi-
nate {y1, y2, y3} one rewrites the equations (2.9), (2.10) as function of curvilinear
components of the velocity and tensor fields.

By using the stress tensor t one can evaluate the stress vector on the surface
ΣD by

tin = tijnj

The stress tensor for an incompressible can be written as

tij = −ρpδij + ρσij
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where p is the pressure field and σ is the viscous part of the stress tensor.

On an interface one write the stress vector as

σ · n = −σ⊥n+ σ‖ aζa (2.11)

where the where ζ1,2 are two directions in the tangent plan at the interface and
n is a unitary normal to the interface.

In the new coordinate system one has

vi = vaqcaτ
i
c + v3νi,

f i = faqcaτ
i
c + f3νi,

tij = tabqcaq
e
bτ
i
cτ
j
e + ta3qcaτ

i
cν
j + t3bqebν

iτ je + t33νiνj ,
(2.12)

(see appendix for notations).

Lemma 1 Let y be the surface based coordinates introduced as in (2.4). Then

F i
−p(D; (u,w)) = −

∫∫

D

∫ w

u

∂a
(
pgabζibϑ

)
dy3dy1dy2+

−
∫∫

D

νi pϑ|y3=w dy1dy2 +

∫∫

D

νi pϑ|y3=u dy1dy2

= −
∫∫

D

∫ w

u

(
∂apg

abζib + pνigabΓ3
baϑ
)
dy3dy1dy2

−
∫∫

D

νi pϑ|y3=w dy1dy2 +

∫∫

D

νi pϑ|y3=u dy1dy2

= −
∫∫

D

∫ w

u

(
∂apg

abζib + νi∂3p
)
ϑdy3dy1dy2

(2.13)

F i
visc(D; (u,w)) =

∫∫

D

τ ic


 ∂

∂ya

w∫

u

qcbσ
baϑ(y)dy3 + γcae

w∫

u

qebσ
baϑ(y)dy3 − κca

w∫

s

σa3ϑ(y)dy3


 dy1dy2+

+

∫∫

D

νi


κca

w∫

u

qcbσ
baϑ(y)dy3 +

∂

∂ya

w∫

u

qcbσ
3aϑ(y)dy3


 dy1dy2+

+

∫∫

D

τ icq
c
a

(
σ‖aς(w)− σ⊥gab∂bw

)
+ νi

(
∂aw σ‖aς(w) + σ⊥

)∣∣∣
y3=w

ϑ(w)dy1dy2

−
∫∫

D

τ icq
c
a

(
σ‖aς(u)− σ⊥gab∂bu

)
+ νi

(
∂au σ

‖aς(u) + σ⊥
)∣∣∣
y3=u

ϑ(u)dy1dy2

(2.14)
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Ḣi
v(D; (u,w)) =

∫∫

D

∂

∂t


τ ic

w∫

u

ρqcbv
bϑ(y)dy3dy1dy2 + νi

w∫

u

ρv3ϑ(y)dy3


 dy1dy2+

+

∫∫

D

τ ic


 ∂

∂ya

w∫

u

ρqcbv
bvaϑ(y)dy3 + γcae

w∫

u

qebv
bvaϑ(y)dy3 − κca

w∫

u

ρvav3ϑ(y)dy3


 dy1dy2+

+

∫∫

D

νi


κca

w∫

u

ρqcbv
bvaϑ(y)dy3 +

∂

∂ya

w∫

u

ρv3vaϑ(y)dy3


 dy1dy2+

+

∫∫

D

ρτ icq
c
a

(
v‖aς(w)− v⊥gab∂bw

)
+ νi

(
∂aw v‖aς(w) + v⊥

)∣∣∣
y3=w

ϑ(w)(vn − un)dy
1dy2

−
∫∫

D

ρτ icq
c
a

(
v‖aς(u)− v⊥gab∂bu

)
+ νi

(
∂au v

‖aς(u) + v⊥
)∣∣∣
y3=u

ϑ(u)(vn − un)dy
1dy2

(2.15)

Ḣi
m(D; (u,w)) =

∫∫

D

∂

∂t

w∫

u

ρϑ(y)dy3dy1dy2 +

∫∫

D

∂

∂ya

w∫

u

ρvaϑ(y)dy3dy1dy2+

+

∫∫

D

ρϑ(η)(vn − un)|y3=w dy1dy2 −
∫∫

D

ρϑ(η)(vn − un)|y3=u dy1dy2

(2.16)

F i
ext(D; (s, η)) =

∫∫

D


τ ic

w∫

u

ρqcbf
bϑ(y)dy3dy1dy2 + νi

w∫

u

ρf3ϑ(y)dy3


 dy1dy2

(2.17)
where

ς(r) =

√
1 + gab

∂r

∂ya
∂r

∂yb

Proof See appendix.
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Let us introduce the averaged quantities

hh̃ =
η∫
s

∆(y, y3)dy3

hṽca =
η∫
s

qcbv
bva∆(y, y3)dy3, hṽ3a =

η∫
s

v3va∆(y, y3)dy3,

hτ̃ ca =
η∫
s

qcbτ
ba∆(y, y3)dy3, hτ̃3a =

η∫
s

τ3a∆(y, y3)dy3,

hṽc =
η∫
s

qcbv
b∆(y, y3)dy3, hṽ3 =

η∫
s

v3∆(y, y3)dy3,

hvc =
η∫
s

vc∆(y, y3)dy3,

hp̃ca =
η∫
s

pqcbg
ab∆(y, y3)dy3,

hp̃c =
η∫
s

∂apq
c
bg
ab∆(y, y3)dy3,

hf̃ c =
η∫
s

qcbf
b∆(y, y3)dy3, hf̃3 =

η∫
s

f3∆(y, y3)dy3,

(2.18)

The governing equations of the averaged fields result from lemma 1 by taking
into account that the domain D is an arbitrary domain in D̃.

Proposition 1 (Depth Averaged form of mass balance equation) Assume
that all integrands in the integrals appearing in the Lemma 1 are continuous
functions. Then

∂

∂t
hh̃+

1

β

∂

∂ya
βhva = ∆(y, η) (vn − un)|U −∆(y, s) (vn − un)|S (2.19)

By using the linear independence of the vectors (τ 1, τ 2,ν), in the whole domain
flow the equality (2.2) can be written component-wise. The components in the
tangent plan read as

Proposition 2 (Depth Averaged form of momentum equation) The pro-
jection in the tangent plan of the reference surface of the mediate momentum
equations are given by

∂

∂t
hṽc +

1

β

∂

∂ya
β h (ṽca − σ̃ca) + hγcab

(
ṽab − σ̃ab

)
− hκca(ṽ

a3 − σ̃a3) + hp̃c =

hf̃ c + Ec(η)∆(y)|y3=η − E(s)c∆(y)|y3=s , c = 1, 2.

(2.20)
where

Ec(η) = qca

[(
σ‖aς(η)− σ⊥gab∂bη

)
−
(
v‖aς(η)− v⊥gab∂bη

)
(vn − un)

]

and

Ec(s) = qca

[(
σ‖aς(s)− t⊥gab∂bs

)
−
(
v‖aς(s)− v⊥gab∂bs

)
(vn − un)

]
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We follow an idea of [10] to use the projection in the normal direction to
obtain the pressure field. On write again the integral form but this time we
chose a volume V given by

{(y1, y2, y3)|(y1, y2) ∈ D, ξ < y3 < χ}

where ξ, χ is such that s(y1, y2, t) < ξ < χ < η(y1, y2, t), (y1, y2) ∈ D. By
writing the integral form as

Ḣi(D; (ξ, χ)) = F i
stress(D; (ξ, χ)) + F i

ext(D; (ξ, χ)) (2.21)

one can obtain the normal projection that read as

∂

∂t

χ∫

ξ

v3ϑ(y)dy3 + κca

χ∫

ξ

qcbv
bvaϑ(y)dy3 +

∂

∂ya

χ∫

ξ

(
v3va − σ3a

)
ϑ(y)dy3+

+(v3v3 − σ33)ϑ(y, χ)− (v3v3 − σ33)ϑ(y, ξ) +
χ∫
ξ

∂3pϑ(y)dy
3 =

χ∫
ξ

ϑ(y)f3dy3

(2.22)
The equations (2.19), (2.20) and (2.22) result from the general balance equations
and are general true. In the next section we obtain simplified variants of it by
using several constitutive hypothesis concerning the fluid and its interaction
with the external media and by performing an asymptotic analysis with respect
to a small parameter.

2.2 Hydrostatic approximation

To perform of an asymptotic analysis of the equation (??) one assume that
the new coordinate system have the dimension of the length. One introduce a
characteristic length L of the domain D̃, and a characteristic velocity V0.

Proposition 3 (Pressure field) Let the external force be the gravitational
force

f = −ggraviti3.
On assume that

||ta|| = O(1),
η

L
= O(ǫ),

v3

V0
= O(ǫ),

va

V0
= O(1),

τa3

ρV 2
0

= O(ǫ),
τ33

ρV 2
0

= O(ǫ),
(2.23)

Then:
(a) up to O(ǫ) the pressure field and velocity field satisfy

κbav
bva + ∂3p = f3 +O(ǫ), (2.24)

(b) if the curvatures of the support surface is also a small quantities κ = O(ǫ)
one has

p(y, ξ) = −f3(η − ξ) +O(ǫ2). (2.25)
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Proof By using the equation (2.22) and the assumptions (2.23) one obtains

κca
χ∫
ξ

qcbv
bva∆(y)dy3 +

χ∫
ξ

∂3p∆(y, ξ)dy3 =
χ∫
ξ

∆(y, y3)f3dy3 +O(ǫ) (2.26)

and then by taken into account that the χ and ξ are arbitrary numbers results
(2.24).

The most important consequence of the assumptions (2.23) and the assump-
tion regarding the curvature of the support surface is that one can decouple
the calculation of the velocity field from calculation of the pressure field. The
relation (2.25) provide the pressure field distribution. Similarly to the case of
flat surface the pressure field is linear distributed along the fluid depth.

Let us now analyze the consequences of the hydrostatic approximation of
the pressure by (2.25) on the averaged balance momentum (2.20).

One introduce the vector

p̃c := hp̃c − hf̃ c =

η∫

s

(
∂apg

ab − f b
)
qca∆(y, y3)dy3

Lemma 2 For a pressure field given by (2.25) and for the force field f given
by gravitational force one has

p̃a = hggravitβ
ac∂c

(
x3(y1, y2) + η(y1, y2)ν3(y1, y2)

)
+ hO(ǫκ) (2.27)

Proof To prove the formula (2.27) one needs to express the component

f3 = −ggravitν3, fa = −ggravitgabe3b ; e3b := ∂b(x
3 + y3ν3)

of the gravitational force and to introduce the metric tensor g by

gab = QaeQ
b
fβ

ef , Qacq
c
b = δab .

One obtains

p̃a = ggravit∂a(x
3 + ην3)

η∫

s

gabqcb∆dy3

and then one perform the integrals.
Remarks One note that

x3(y1, y2) + η(y1, y2)ν3(y1, y2)

is the x3 components of the water surface in the surface base coordinate system.
By introducing the potential force

w = ggravit
(
x3(y1, y2) + η(y1, y2)ν3(y1, y2)

)

we can write the integral form of momentum balance equation up to O(ǫκ) as
follows

∂

∂t
hṽc +

1

β

∂

∂ya
β h (ṽca − σ̃ca) + hγcab

(
ṽab − σ̃ab

)
+ hβca∂aw =

Ec(η)∆(y)|y3=η − E(s)c∆(y)|y3=s + hO(ǫκ), c = 1, 2.
(2.28)
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2.3 Closure relations

In order to be solved, the equations obtained in the hydrostatic approximation
require some closure relations concerning the viscosity, frictional force and mixed
averaged quantities concerning quadratic velocity terms. We analyze here a
model that can be relevant in the case of water moving on hill slope with small
curvature and thin water film.

2.3.1 Saint Venant’s equations with curvature

The models in this class are simplified variant of the equations (2.19) and (2.28).

Proposition 4 (Saint Venant) In addition to the assumptions (2.23) of the
proposition (3) one consider that

κab = O(ǫ)
va(y1, y2, y3, t) = va(y1, y2, t) +O(ǫ)
σab = O(ǫ).

(2.29)

Assume that the friction vector obey the Darcy-Weisbach law

ta(s) = f |v|va (2.30)

Then the model equations of water flow on an unvegetated hillslope is given by

∂

∂t
βh+

∂

∂ya
βhva = β(mr −mi)

∂

∂t
hβvc +

∂

∂ya
β hvcva + hβγcabv

avb + hββca∂aw = −βf |v|vc.
(2.31)

Proposition 5 The system (2.31) has the properties:
(a) it preserve the steady state of a lake

x3 + hν3 = constant

(b) There exists a conservative equation of the energy

∂

∂t
hβE +

∂

∂ya
hβva

(
E + ggravit

h

2
ν3
)

= βM(−1

2
|v|2 + w)− fβ|v|3 (2.32)

where

E :=
1

2
|v|2 + ggravit(x

3 +
h

2
ν3),M = mr −mi

(c) Bernoulli law. In a steady state in the absence of the mass source and
without friction force the total energy, i.e

Et =
1

2
|v|2 + ggravitx

3 + p(y, h)

is constant along of a current line

va∂aEt = 0. (2.33)
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Prof. The affirmation (a) is evident. To prove (b) one rewrite momentum
balance equation as

∂

∂t
vc + va

∂

∂ya
vc + γcabv

avb + βca∂aw = −v
c

h
(M+ f |v|) (2.34)

Then one multiplies the (2.34) by vc and using that

vcv
a∂av

c + γcabv
avbvc =

1

2
va∂avbv

b

one can write

1

2

∂

∂t
vcv

c + va
∂

∂ya

(
1

2
vbv

b + w

)
= −vcv

c

h
(M+ f |v|)

Then one multiplies by hβ and one obtains

1

2

∂

∂t
hβ|v|2+w ∂

∂t
hβ+

∂

∂ya
hβva

(
1

2
|v|2 + w

)
= β

((
−1

2
|v|2 + w

)
M− f |v|3

)

that is the relation (b) The affirmation (c) results from the observation

w = ggravitx
3 + p(y, h)
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Chapter 3

Fluid Flow on Vegetated

Hillslope

The presence of plants on the hill creates a resistance force to the water flow
and influences the process of water accumulation on the soil surface. The large
diversity of plants growing on a hill makes the elaboration of an unitary model of
the water flow over a soil covered by vegetation very difficult. Here, we present
a model based on water mass and momentum balance equations that takes into
account the presence of certain type of plants.

More precisely, the plants form a dense net of rigid vertical tubes and the
water fills the “voided” space up to a level not higher than these plant tubes,
see Figure 3.1.

3.1 Space Averaging Models

Space averaging is a method to define a unique continuous model associated
to a heterogeneous fluid-solid mechanical system. The method is largely used
in porous soil media models [4], [5]. For the fluid-plants physical system, the
porous analogy was also used in [6], [7] especially in the case of submerged
vegetation.

At a hydrographic basin scale, there are variations in the geometrical prop-
erties of the terrain (curvature, orientation, slope) and vegetation density or
vegetation type etc. Assume there is a map that models the terrain surface

xi = bi(ξ1, ξ2), (ξ1, ξ2) ∈ D ⊂ R
2, i = 1, 2, 3. (3.1)

Denote the tangent vectors to the coordinate curves on this surface by

ςa = ∂ab :=
∂b

∂ξa
, a = 1, 2. (3.2)

Using this fixed surface, one introduces a new coordinate y3 along the normal
direction ν to the surface. A point in the neighborhood of this surface is defined

15
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Figure 3.1: The representative element of the volume Pδ used for mediation.
The bottom surface of Pδ has a representative width δ along two orthogonal
directions on this surface. The water depth h associated to Pδ is the averaged
value of the physical water depth h̃ inside Pδ.

in this new system of coordinates Y = (ξ1, ξ2, y3) by

xi = bi(ξ1, ξ2) + y3νi, (ξ1, ξ2) ∈ D ⊂ R
2, y3 ∈ J ∈ R, i = 1, 2, 3, (3.3)

where ν = (ν1, ν2, ν3) represents the unit normal to the surface.
We introduce the tangent vectors to the coordinate curves defined by Y

ζI := ∂Ix, I = 1, 2, 3. (3.4)

One has
ζ3 = ν, ζa = (δba − y3κba)ςb, a = 1, 2, (3.5)

where κ is the curvature tensor of the terrain surface.
In the presence of vegetation on the hill slope, the fluid occupies the free

space between plant bodies and the mechanical characteristics of the fluid flow
are defined only in the domain occupied by the fluid.

We adopt the following
General convention: any variable bearing a tilde over it designates a micro-
local physical quantity, while the absence of tilde indicates the corresponding
averaged quantity. When the micro-local quantity does not differ from the cor-
responding averaged quantity we denote the micro-local quantity without tilde.

Denote by Ωf and Ωp the spatial domain occupied by fluid and plants, respec-

tively. Consider ψ̃ to be some microscopic quantity that refers to the fluid. Let
y = (y1, y2) be a point in D. One introduces the rectangular domain

Dδ = Dδ(y) := [y1 − δ, y1 + δ]× [y2 − δ, y2 + δ]. (3.6)



3.1. SPACE AVERAGING MODELS 17

Define the spatial averaging volume

P = P (y) =
{
(x1, x2, x3) | xi = bi(ξ1, ξ2) + y3νi,

0 < y3 < h̄(ξ1, ξ2), (ξ1, ξ2) ∈ Dδ(y), i = 1, 2, 3
}
.

Here, h̄ is some extension of h̃ to the domain D, where h̃ is the function de-
scribing the free water surface outside the domain occupied by plants.

Denote by P f the fluid domain inside P ,

P f := P ∩ Ωf .

The boundary of P f can be partitioned as

∂P f = Σfp ∩ Σff ∩ Σfa ∩ Σfs,

where Σfp is the fluid-plant contact surface inside P f , Σfa is the free surface of
the fluid inside P f , Σfs is the fluid-soil contact surface inside P f , and Σff is
the boundary surface separating the fluid inside and outside P f .

The general form of a balance equation is [? ]

∂t

∫

P f

ρ̃ ψ̃dV +

∫

∂P f

ρ̃ ψ̃(ṽ · n− un)dσ =

∫

∂P f

Φ̃ψ · ndσ +

∫

P f

ρ̃ φ̃ψdV. (3.7)

Here, the significance of the above quantities are:
- ρ̃ – the micro-local mass density of the fluid;
- ṽ – the micro-local velocity of the fluid;
- n – the exterior unit normal on ∂P f ;
- Φ̃ψ – the micro-local flux density of ψ̃;

- φ̃ψ – the micro-local mass density of supply ψ̃;
- un – the normal surface velocity;
- dV – the volume element;
- dσ – the surface element.
To obtain a mathematical treatable model, one needs to make some assump-

tions concerning the complex fluid-plant-soil system. The first assumption refers
to the plant cover.

Asummption 1 (Vegetation structure) The plant cover satisfies:
A1. The plants are almost normal to the terrain surface and they behave like
rigid sticks.
A2. The water depth is smaller than the height of the plants.

Assumption A1 is often used in the porous model of the vegetation and assump-
tion A2 is proper to the overland flow.

The soil-fluid Ifs and fluid-air Ifa interfaces can be represented as

Ifs := {x
∣∣xi = bi(ξ1, ξ2), (ξ1, ξ2) ∈ Df , i = 1, 2, 3}
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and

Ifa := {x
∣∣∣xi = bi(ξ1, ξ2) + h̃(ξ1, ξ2)δi3, (ξ1, ξ2) ∈ Df , i = 1, 2, 3},

respectively, where Df :=
{
(ξ1, ξ2) ∈ D

∣∣b(ξ1, ξ2) ∈ Ωf
}
.

Define the averaged water depth by

h(y1, y2, t) :=
1

ωf

∫

D
f
δ

h̃(ξ1, ξ2, t)β(ξ1, ξ2)dξ1dξ2, (3.8)

where ωf measures the area of Σfs,

ωf :=

∫

D
f
δ

β(ξ1, ξ2)dξ1dξ2. (3.9)

The volume of the fluid inside the elementary domain P is given by

vol(P f ) = ωfh. (3.10)

A pure geometrical result which refers to the flux of ψ̃ through the boundary
Σff is formulated as:

Lemma 3

∫

Σff

ρ̃ ψ̃ ṽ · ndσ = ∂a

∫

Df

h̃(ξ1,ξ2,t)∫

0

ρ̃ ψ̃ ṽa∆dy3β(ξ1, ξ2)dξ1dξ2, (3.11)

where ∆ = 1 − y3KM + (y3)2KG, with KM and KG the mean and Gauss
curvature respectively, and βdξdη is the area element of the terrain surface.
The quantities ṽa, with a = 1, 2 stand for the contravariant components of the
velocity fields in the local basis {ζI}I=1,3

ṽ = ṽaζa + ṽ3ν.

In Lemma 3, the partial differentiation ∂a stands for

∂a :=
∂

ya
.

3.1.1 Averaged mass balance equation

Although the water density is considered to be a constant function, we keep it
in the mass balance formulation for emphasizing the physical meaning of the
equations. Define the averaged water flux by

ρva(x, t) :=
1

vol(P f )

∫

D
f
δ

h̃(ξ1,ξ2,t)∫

0

ρ̃ ṽa∆dy3βdξ1dξ2. (3.12)
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The mass balance equation results from (3.7) by taking ψ̃ = 1, Φ̃ψ = 0 and φ̃ψ =
0. Since the plants are treated as solid bodies and the water does not penetrate
the plant bodies, the water flux through the boundary of the elementary volume
P f reduces to

∫

∂P f

ρ̃(ṽ · n− un)dσ =

∫

Σff

ρ̃ ṽ · ndσ +

∫

Σfa

ρ̃(ṽ · n− un)dσ +

∫

Σfs

ρ̃ ṽ · ndσ.

The second integral in the r.h.s. of the above relation represents the water
flux due to the rain which leads to the water mass gain inside P f . The third
term corresponds to the water flux due to the infiltration which contributes to
the water loss inside P f . Using Lemma 3 and the definition of the averaged
quantities, one can write the mass balance:

∂

∂t
(ωfh) + ∂a (ωfhv

a) = ωr − ωf i, (3.13)

with

∫

Σfa

ρ̃(ṽ · n− un)dσ = −ρωr and

∫

Σfs

ρ̃ ṽ · ndσ = ρωf i (3.14)

representing the rain and the infiltration rates, respectively. Here, as in (3.9),
ω is defined as

ω :=

∫

Dδ

β(ξ1, ξ2)dξ1dξ2.

3.1.2 Averaged Momentum Balance Equations

The momentum balance equation results from (3.7) with ψ̃ = ṽ, Φ̃ψ = T̃ , where

T̃ is the stress tensor and φ̃ψ = f̃ , with f̃ denoting the body forces. Here, we
only consider the gravitational force.

In contrast to the planar case, there are some difficulties in writing component-
wise the space averaging balance momentum equations. These difficulties appear
due to the point dependence of the local basis. In the euclidean basis of X, the
momentum of the elementary volume P f is given by

Hi(P f ) =

∫

P f

ρ̃ ṽidV.

Using the components of ṽ in the basis of Y coordinates, we obtain

Hi(P f ) =

∫

Σfs

h̃∫

0

ρ̃ ζia ṽ
a∆dy3dσ +

∫

Σfs

h̃∫

0

ρ̃ νi ṽ3∆dy3dσ, (3.15)
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which can be rewritten as

Hi(P f ) = ςia

∫

Σfs

h̃∫

0

ρ̃ ṽa∆dy3dσ + νi
∫

Σfs

h̃∫

0

ρ̃ ṽ3∆dy3dσ + E i1(ṽ, P f ). (3.16)

Here and in what follows, we make the following convention: ςa = ςa(y), where
y = (y1, y2) is the point defining the domain Dδ(y) from (3.6). When it appears
inside the integral, the unit normal ν is a variable quantity depending on the
current point from the domain Dδ, but when it appears outside the integral, it
is the unit normal defined by the same y as ςa.

The term

E i1(ṽ, P f ) :=
∫

Σfs

h̃∫

0

ρ̃(ζia − ςia)ṽ
a∆dy3dσ

represents an error introduced by neglecting the variation of the basis ζI along
the domain P f .

By averaging, from (3.16) one has

H(P f ) = ρhωfv
aςa + ρhωfv

3ν + E1(ṽ, P f ). (3.17)

If one neglects the momentum transfer on the fluid-air and fluid-soil inter-
faces, then the flux of the momentum through the boundary ∂P f can be reduced
to

F(ρ̃ ṽ, ∂P f ) :=

∫

∂P f

ρ̃ ṽ(ṽ · n− un)dσ =

∫

Σff

ρ̃ ṽ(ṽ · n)dσ.

Using Lemma 3, one has

F(ρ̃ ṽ, ∂P f ) = ∂a

∫

Df

h̃(ξ1,ξ2,t)∫

0

ρ̃ ṽ ṽa∆dy3β(ξ1, ξ2)dξ1dξ2,

and then,

F(ρ̃ ṽ, ∂P f ) =

∂a(ρωfhv
bvaςb) + ∂a(ρωfhw

baςb) + ∂a(ρωfhv
3vaν)+

E2(ṽ2, P f ),
(3.18)

where the fluctuation

ρwab :=
1

ωfh

∫

Σf

∫ h̃(ξ1,ξ2,t)

0

ρ̃(ṽb − vb)ṽay3β(ξ1, ξ2)dξ1dξ2.

The quantity E2(ṽ2, P f ) (as E1(ṽ, P f ) appearing above), represents the error
introduced by approximating the variable local basis (ζ1(ξ

1, ξ2, y3), ζ2(ξ
1, ξ2, y3),



3.1. SPACE AVERAGING MODELS 21

ν(ξ1, ξ2, 0)) with the fixed local basis (ς1, ς2,ν) at (y1, y2, 0). The quantities
E3, E4 and E5 introduced in what follows are errors of the same nature.

Rel. (3.18) can be rewritten as

F(ρ̃ ṽ, ∂P f ) =

=∂a(ρωfhv
bva)ςb + ρωfhv

bva∂aςb + ∂a(ρωfhw
ba)ςb + ρωfhw

ba∂aςb+

∂a(ρωfhv
3va)ν + ρωfhv

3va∂aν + E2(ṽ2, P f )
=∂a(ρωfhv

bva)ςb + ρωf (hv
bva + wba)(γcabςc + κabν)+

∂a(ρωfhw
ba)ςb + ∂a(ρωfhv

3va)ν − ρωfhv
3vaκbaςb + E2(ṽ2, P f )

=∂a(ρωfh(v
bva + wba))ςb − ρωfhv

3vaκbaςb + ρωf (hv
bva + wba)γcabςc+

ρωf (hv
bva + wba)κabν + ∂a(ρωfhv

3va)ν + E2(ṽ2, P f ),

(3.19)

where γcab are the Christoffel symbols.
To express the contribution of the stress forces to the momentum balance

we decompose the stress tensor field T̃ in two components: the pressure field p̃
and the viscous part of the stress tensor field τ̃

T̃ = −p̃I + τ̃ .

The flux of the stress vector can now be written as

F(T̃ , ∂Pf ) = F(−pI, ∂Pf ) + F(τ̃ , ∂Pf ).

An elementary calculation show that

F(−pI, ∂Pf ) = −
∫

Df

h̃(ξ1,ξ2,t)∫

0

(
∂apg

abζb + ∂3pν
)
∆dy3βdξ1dξ2 (3.20)

The pressure field is determined up to a constant value. If we subtract
the atmospheric pressure from the water pressure, on the interface fluid-air
the pressure must be zero. We assume the pressure field to be hydrostatically
distributed.

Let g = −gi3 be the gravitational force acting on the mass unit. In the local
frame of coordinates related to the free surface of the fluid this force has the
representation

g = f̃aζa − f̃3ν.

Asummption 2 (Hydrostatic approximation) One assume that,
A3. The hydrostatic pressure field has the form,

p̃(ξ1, ξ2, y3) = ρ̃ f̃3(h̃(ξ1, ξ2)− y3).

We neglect the shear forces on the fluid-air interface, i.e.

F(τ̃ ,Σfa) = 0.
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On the fluid-soil interface the stress vector t̃ := τ̃ · n can be written as

t̃ = t̃aζa + t̃3ν.

On the interface soil-water we can write

F(τ̃ ,Σfs) = ςa

∫

Σfs

t̃adσ + ν

∫

Σfs

t̃3dσ + E3(T̃ ,Σfs). (3.21)

Introducing the shear force at the fluid-soil interface

σas =
1

ρωf

∫

Σfs

t̃adσ,

(3.21) takes the form

F(τ̃ ,Σfs) = ςaρωfσ
a
s + ν

∫

Σfs

t̃3dσ + E3(T̃ ,Σfs). (3.22)

On the fluid-plant interface

F(τ̃ ,Σfp) =

∫

Σfp

τ̃ · ndσ =
∑

l

∫

Σfp
l

τ̃ · ndσ, (3.23)

where Σfpl is the fluid-plant surface corresponding to the plant l. Obviously,⋃
l

Σfpl = Σfp. Since the plant stems are supposed to be perpendicular to the

ground surface, (3.23) becomes

F(τ̃ ,Σfp) = ςa
∑

l

∫

Σfp
l

t̃adσ + E4(τ̃ ,Σfp) (3.24)

and introducing the plant resistance force

σap =
1

ρω

∑

l

∫

Σfp
l

t̃adσ,

(3.24) becomes
F(τ̃ ,Σfp) = ςaρωσ

a
p + E4(τ̃ ,Σfp). (3.25)

On the fluid interface of P f invoking again Lemma 3, the contribution of
the viscous part of the stress tensor on the interface fluid-fluid takes the form

F(τ̃ ,Σff ) = ∂a

∫

Σfs

h̃∫

0

τ̃ baζb∆dy3dσ + ∂a

∫

Σfs

h̃∫

0

τ̃3aν∆dy3dσ.
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Then, we write the above quantity as,

F(τ̃ ,Σff ) = ∂a(ωfhτ
baςb) + ∂a(ωfhτ

3aν) + E5(τ̃ v, P f ). (3.26)

Rel. (3.26) implies,

F(τ̃ ,Σff ) =

=∂a(ωfhτ
ba)ςb + ωfhτ

ba∂aςb + ∂a(ωfhτ
3a)ν + ωfhτ

3a∂aν+

E5(τ̃ v, P f )
=∂a(ωfhτ

ba)ςb + ωfhτ
ba(γcabςc + κabν) + ∂a(ωfhτ

3a)ν−
ωfhτ

3aκbaςb + E5(τ̃ v, P f ) =
=∂a(ωfhτ

ba)ςb − ωfhτ
3aκbaςb + ωfhτ

baγcabςc + ωfhτ
baκabν+

∂a(ωfhτ
3a)ν + E5(τ̃ v, P f ).

(3.27)

For the supply Φ̃ψ we only consider the contribution of the gravitational
force. Proceeding by components as in (3.16), the second term in the r.h.s. of
(3.7) is finally expressed as

∫

P f

ρ̃φ̃ψdV =

∫

Df

h̃(ξ1,ξ2,t)∫

0

(
f̃aζa − f̃3ν

)
∆dy3βdξ1dξ2 (3.28)

The relations (3.17, 3.19, 3.20, 3.22, 3.25, 3.27) and some order assumptions
are the basis for averaged momentum equations.

The porosity of the plant cover θ and is defined by

θ =
ωf
ω
.

Let β0 = β(y1, y2), where y = (y1, y2) is the point defining the domain
Dδ(y) from (3.6).

Let ǫ be a small parameter.

Asummption 3 (Kinematical and topographical assumptions) Suppose
that the physical processes satisfy the following properties:
A4. The water depth. h̃ = O(ǫ).
A5. The velocity. v3 = O(ǫ).
A6. Geometric assumptions:
A6.1. Curvature. The terrain surface curvatures and the curvature of the co-
ordinate curves are of order of ǫ. This means that locally the surface is almost
planar.
A6.2. Metric tensor. β = β0 +O(ǫ).
A7. The averaged dimension δ. dp << δ << L and δKM = O(ǫ).
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In what follows, by abuse of notations, we denote β0 by β.

The shallow water type approximation of the averaged momentum balance
for an incompressible fluid results by an asymptotic analysis.

Theorem 1 (Averaged momentum equations) Under assumptions A1–A7,
the first order approximation for the momentum equations are given by

∂t(hβθv
a) + ∂bF

ab(h, v) + hβθβab∂aw = Ga(h, v), a = 1, 2, (3.29)

where

w = ggravit(b
3 + hν3),

Fab(h, v) = hβθ

(
vavb + wab − 1

ρ
τab
)
,

Ga(h, v) = βσap + βθσas − γabcη
bc

and

ηac = hβθ

(
vavb + wab − 1

ρ
τab
)
.

Sketch of proof. Using Assumption 3 and relations (3.17, 3.19, 3.22, 3.25, 3.27)
one can prove that the terms E1, . . . , E5 are of order ǫ2. For ǫ << 1 these terms
as well as the terms containing the factors v3h, hκ or h2 (which are of same
order ǫ2) can be neglected.

The equations (3.29) must be supplemented by empirical laws concerning
the averaged stress tensor τ , the averaged vegetation force resistance σp, the
averaged shear fluid-soil force σs and the averaged fluctuation wab. These em-
pirical laws are expressed by functions depending on the averaged velocity v, the
averaged water depth h and a set of parameters λ defined by the characteristics
of the plant cover. 




τab = Tab(∇v, h,λ),

σbp = Sb
p(v, h,λ),

σbs = Sb
s(v, h,λ),

wab = Wab(v, h,λ).

(3.30)

3.2 Closure Relations

The averaged models of water flow on a vegetated hillslope consists in mass bal-
ance equation (3.13), momentum balance equations (3.29) and a set of empirical
relations (3.30).
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3.2.1 The averaged vegetation force resistance

The most used empirical relations that relates the vegetation resistance and
fluid velocity has the form [7], [6]

σap = −1

2
Cdmd|v|va, (3.31)

wherem is the number of stems on the surface ω and d is the averaged diameters
of the stems. The bed shear stress

σab = −ggravit
C2
b

|v|va, (3.32)

|v| being the magnitude of the averaged velocity i.e.

|v|2 = βabv
avb.

One assumes that the viscosity of fluid and the fluctuation of the velocity field
have a small effect as compared with the bed friction and plant resistance.
Therefore the base model is given by

∂

∂t
(hβθ) + ∂a (hβθv

a) =β(mr − θmi),

∂

∂t
hθβvc +

∂

∂ya
θβ hvcva + hθβγcabv

avb + hβθβca∂aw =− βK(h, θ)|v|vc.
(3.33)

The parameter function K(h, θ) is given by

K(h, θ) =
1

2
Cdm(y)hd+

gθ

C2
b

here m stands for the density number of the stems on surface area. In our model
of plant the porosity θ and the density number m are related by

θ = 1−m
πd2

4
.

such that one can write

K(h, θ) = αph(1− θ) + αsθ,

where the new parameters are given by

αp =
2Cd
πd

, αs =
g

C2
b

.

Note that the system equations modeling the water flow on an unvegetated
hill can be obtained from the model (3.33) by simply considering the porosity
θ = 1.
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Chapter 4

SWE models

The full PDE model for the water flow on vegetated hill is given by (3.33). The
system is hyperbolic with source terms and there is an energy function that is
a conserved quantity in the absence of plants and water-soil friction. Also, the
model preserves the steady state of the lake.

Proposition 6 The model (3.33) is of hyperbolic type with source terms.
(a) The conservative form of the system is given by

∂tHi(y, t,u) + ∂aF ia(y, t,u) = Pi(y, t,u), (4.1)

where

u =




h
v1

v2


 , H(y, t,u) =




βθh
βθhv1

βθhv2


 ,

F(y, t,u) =




βθhv1 βθhv2

βθ(hv1v1 + ggravitν
3β11h2/2) βθ(hv1v2 + ggravitν

3β12h2/2)
βθ(hv2v1 + ggravitν

3β21h2/2) βθ(hv2v2 + ggravitν
3β22h2/2)


 ,

and

P(y, t,u) =




β(mr − θ(y)mi)

−βθhγ1abvavb − ggravith

[
βθβ1a

(
∂ax

3 +
h

2
∂aν

3

)
− h

2
ν3∂aβθβ

1a

]
− βK|v|v1

−βθhγ1abvavb − ggravith

[
βθβ2a

(
∂ax

3 +
h

2
∂aν

3

)
− h

2
ν3∂aβθβ

2a

]
− βK|v|v2



.

(b) For any unitary vector n ∈ R
3, the eigenvalue problem [11]

(
∂

∂ui
Fjana − λ

∂

∂ui
Hj

)
ri = 0 (4.2)

has three solutions:

λ− = vana −
√
ggravitν3h, λ0 = vana, λ+ = vana +

√
ggravitν3h. (4.3)

27
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Proof. In order to prove the existence of the solution for (4.2), it is sufficient to
show that

∂

∂ui
Fjana−λ

∂

∂ui
Hj = βθ




δ hn1 hn2
v1δ + ggravitν

3hβ1ana hδ + hv1n1 hv1n2
v2δ + ggravitν

3hβ2ana hv2n1 hδ + hv2n2


 ,

where δ = vana − λ. The solutions (4.3) results then from straightforward
calculations.

Proposition 7 The following properties hold for system (3.33):
(a) it preserve the steady state of a lake

x3 + hν3 = constant

(b) There is a conservative equation for the energy

∂

∂t
hβθE +

∂

∂ya
hβθva

(
E + ggravit

h

2
ν3
)

= β

((
M(−1

2
|v|2 + w

)
−K|v|3

)

(4.4)
where

E :=
1

2
|v|2 + ggravit(x

3 +
h

2
ν3), M = mr − θmi

(c) Bernoulli’s law. At a steady state, in the absence of mass source and
friction force, the total energy

Et =
1

2
|v|2 + ggravitx

3 + p(y, h)

is constant along a current line

va∂aEt = 0. (4.5)

4.1 Simplified models

The mathematical model (3.33) is too complicated for many practical applica-
tions, but it represents a great start to generate simplified models of certain
realistic problems. A simplified version of the full model corresponds to a given
soil surface topography and a given structure of the plant cover. In what follows,
we introduce a simplified variant of (3.33) that allows variations in the soil to-
pography and plant porosity, but for which one must consider small departures
from some constant states.

Assume that the soil surface is represented by

x1 = y1, x2 = y2, x3 = z(y1, y2) (4.6)

and the surface is such that the first derivatives of the function z(y1, y2) are
small quantities.
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Assumptions:
(a) Geometrical assumptions:

|∇z|2 ≈ 0, ∇2z ≈ 0.

One these grounds, equations (3.33) can be approximated as

∂

∂t
θh+ ∂a (θhv

a) = M,

∂

∂t
θhva + ∂bθhvav

b + θh∂aw = −K(h, θ)|v|va,
(4.7)

where

K(h, θ) = αph(1− θ) + θαs, M = mr −miθ, w = g(z(y1, y2) + h). (4.8)

The simplified model (4.7) preserves the main properties of the full model.

Proposition 8 The reduce model (4.7) of equations for the water flow on veg-
etated hill is of hyperbolic type with source terms.
(a) The conservative form of the system is given by

∂

∂t
θh+ ∂a (θhv

a) = M,

∂

∂t
θhva + ∂b

(
θhvav

b + δbaθg
h2

2

)
= −hg∂az − g

h2

2
∂aθ −K(h, θ)|v|va.

(4.9)

(b) For any unitary vector n ∈ R
3, the solutions of the eigenvalue problem are

given by

λ− = vana −
√
gh, λ0 = vana, λ+ = vana +

√
gh. (4.10)

Proposition 9 The system (4.7) has the following properties:
(a) it preserves the steady state of a lake

x3 + h = constant,

(b) there is a conservative form of the equation for the energy dissipation

∂

∂t
θhE +

∂

∂ya
θhva

(
E + ggravit

h

2

)
=

((
M(−1

2
|v|2 + w

)
−K|v|3

)
, (4.11)

where

E :=
1

2
|v|2 + g(x3 +

h

2
)

,
(c) Bernoulli’s law. At a steady state, in the absence of mass source and

friction force, the total energy

Et =
1

2
|v|2 + gx3 + p(y, h)

is constant along of a current line

va∂aEt = 0. (4.12)
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The presence of the plants and the existence of the frictional interaction
between water and soil induce and energetic lost. To put in evidence such
phenomenon, let us consider a domain Ω and n the unitary normal to the
∂Ω outward orientated. One assumes that the ∂Ω consists in an impermeable
portion and an exit portion ∂Ω = Γ1 ∪ Γ2, n · v = 0 on Γ1 and n · v > 0 on Γ2.
One of the two portions can be a void set.

Proposition 10 (Energy disipation) Assume that there is no mass produc-
tion. Then the energy of Ω is a decreasing function with respect to time

∂t

∫

Ω

hβθEdx < 0 (4.13)

To prove the assertion, one integrates the energy dissipation equation (4.11)

∂t

∫

Ω

hβθEdx+

∫

∂Ω

hβθv · nEtds = −
∫

Ω

K|v|3dx

and observes that the second integral from the l.h.s. is a positive quantity.

4.2 Mathematical model of soil erosion in the

presence of vegetation

Soil erosion is a complex and not yet very well understood process. To fill this
gap in the mathematical modeling of this process, there are several empirical
relations that relate the soil production with some soil properties and water mo-
tion characteristics. The concept of “sediment transport” refers to the transport
of the eroded as suspended sediment in the water. One assumes that the soil
particle velocity components in the tangent plane at soil surface are approxi-
mately equal to the velocity of the mixture - one ignores the diffusion processes
of the sediment. Also, one assumes that the surface is an almost planar surface.

The erosion model we consider here couples the shallow water equations with
the Hairsin-Rose model for soil erosion and takes into account the presence of
the plants on the soil surface, [15]

∂tθh+ ∂a(θhv
a) = 0,

∂t(θhv
a) + ∂b(θhv

avb) + θhgδab∂b(z + h) = τav + τas , a = 1, 2
(4.14)

∂t(θhρα) + ∂a(θραhv
a) = θ(eα + erα − dα), α = 1, N, (4.15)

∂tmα = θ(dα − erα), α = 1, N. (4.16)

The unknown variables are h(t, x) - water depth, va(t, x) - components of
the water speed, ρα(t, x) - mass density of the suspended sediment of the size
class α and mα(t, x) - mass density of the deposited sediment of the size class α.
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Figure 4.1: Representative elementary volume in the sediment mass balance
equation

The sediment is partioned in N size classes. The soil surface is modeled by the
altitude function z(x) and the vegetation is quantified by the porosity function
θ(x). The terms τav and τas quantify the interaction water-plant and water-soil,
respectively. The erosion and sedimentation processes are modeled by the terms
eα - entrainment rate, erα - re-entrainment rate and dα - deposition rate of the
sediment from the size class α, respectively.

Equations (4.14-4.16) need empirical relations to relate the erosion rates, the
deposition rate, and the flow resistance to the unknown functions. One assumes
that the flow resistance exercised by plants and soil obey laws (4.17) and (4.18),
respectively

τav = −αvh (1− θ) |v|va, (4.17)

τas = −θαs|v|va, (4.18)

where αv and αs are material parameters. The coefficient αv depends on the
geometry of the plants from the vegetation cover, while αs depends on the soil
roughness.

The Hairsine-Rose model [13, 14, 16], uses a set of empirical relationships
based on the “power stream” concept, originally introduced by Bagnold [12] for
determining the sediment transport in rivers, and then extended to flows on
sloping surfaces

dα = νs αρα,

eα = pα(1−H)
F (Ω− Ωcr)

J
,

erα = H
mα

mt

γs
γs − 1

F (Ω− Ωcr)

gh
,

(4.19)

where pα is the proportion of the sediment in the original soil, νs,α is the settling
velocity of the sediment in the size class α, and γs is specific weight of sediment.
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The parameters F - effective fraction of power stream, J - energy of soil particles
detachment and Ωcr - critical power stream are specific to a given type of soil.
The erosion processes are controlled by the water flow through the stream power
Ω. In the present paper we use the law

Ω = θρw|τs||v|. (4.20)

The function

H = min

{
mt

m⋆
t

, 1

}
(4.21)

plays the role of a protecting factor of the original soil to the erosion process.
The terms

mt =

N∑

a=1

ma

and m⋆
t from (4.21) are the total mass of sediment deposited on the soil and the

mass required to protect the original soil from erosion, respectively.



Appendix A

Basics of differential

geometry in E
3

A.1 Curvilinear coordinate

Let Ox be a Cartesian coordinate system Ox in the reference Euclidean space
E
3. Let {yI}I=1,3 be another coordinate system and let

xi = xi(y1, y2, y3), y ∈ D (A.1)

be the transformation rule. By coordinate line, one understands the curves gen-
erated by the variation of a single variable yI , while the rest are kept constants.
The tangent vector to the coordinate lines are defined by

eI = ∂ix. (A.2)

The set of vectors {eI}I=1,3 give rise to a new base of tensor fields. For the
vectors and tensor of rank 2, one writes

v = vIeI , t = tIJeIeJ .

In the new coordinate system, the components of the metric tensor g is given
by

gIJ = δije
i
Ie
j
J (A.3)

and

gIJ = δijhIi h
J
j , (A.4)

where

hIj = ∂jy
I . (A.5)

One has

ejIh
I
i = δji , ejIh

J
j = δJI (A.6)

33
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and then
gIKgKJ = δIJ .

The volume element is
J = εijke

i
1e
j
2e
k
3 . (A.7)

From (A.7) and (A.3), one obtains

det g.. = J2. (A.8)

The variation of the basis {eI}I with respect to the y coordinate is stored
inside Christoffel’s symbols Γ

∂IeJ = ΓLIJeL. (A.9)

Alternatively, one can calculate the Γ coefficients by

ΓLIJ = hLi ∂Je
i
I ,

ΓLIJ = −eiIejJ∂ihLj ,

ΓLIJ =
1

2
gLK (∂IgKJ + ∂JgKI − ∂KgIJ) .

(A.10)

Define the covariant derivative of a vector by

vI;L = ∂Lv
I + vKΓILK (A.11)

and the covariant derivative of tensor by

tIJ;L = ∂Lt
IJ + tKJΓILK ++tIKΓJLK . (A.12)

An elementary way to introduce the covariant derivative is to estimate the
difference of vector fields between two neighbor points

v(x+△x)−v(x) = vIeI(y+△y)−vIeI(y) =
(
∂Lv

I + vKΓILK
)
eI△yL+O(△y2)

A.2 Basic notions of differential geometry on a

surface in E
3

For completeness, we present here the essential facts about the differential geom-
etry of the surface in the euclidean space E3; as a reference, one can consults the
classical books [? ]. Let Ox be a Cartesian coordinate system in the reference
Euclidean space E

3. Let S be a surface in E3 and let

xi = bi(y1, y2), (y1, y2) ∈ D ∈ R
2 (A.13)

be a parameterization of S. One defines the tangent vectors to the surface by

τ ia =
∂bi

∂ya
(A.14)
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and the oriented normal direction to the surface by

Ni = ǫj k iτ
j
1 τ

k
2 . (A.15)

The unitary normal ν to the surface is given by

νi =
Ni

||N || . (A.16)

Metric tensor β of the surface. The covariant components of β are given
by

βab = δijτ
i
aτ
j
b (A.17)

and the contravariant components βab of it are defined by the relations

δab = βacβcb = βbcβ
ca. (A.18)

The area element of the surface is defined by

dσ = βdy1dy2, (A.19)

where
β =

√
ǫabβa1βb2. (A.20)

Note that
||N || = β.

The curvature tensor κ. The curvature tensor (introduced by Wiengartern)
and the affine connection γ are defined by

∂τ a
∂yb

= γca bτ c + κa bν

∂ν

∂ya
= −κbaτ b.

(A.21)

A.3 Surface Based Curvilinear Coordinate Sys-

tem

A surface S based coordinate system in the space E
3 is introduced as follows.

Given a parameterization (A.13) of the surface, one defines the applications

xi = bi(y1, y2) + y3νj , (y1, y2) ∈ D̃ ⊂ R
2, y3 ∈ Ĩ ∈ R, (A.22)

where Ĩ is an open neighborhood of zero. Assume that (A.22) defines a coor-

dinate transformation from D̃ × Ĩ to a space neighborhood Ω of the surface S.
The surface S in the new coordinate system is given by y3 = 0.
Furthermore, we have:

• the vectors tangent to the coordinate lines

eI =
∂x

∂yI
=⇒

{
ea = qbaτ b, qba := δba − y3κba, a = 1, 2
e3 = ν

. (A.23)
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• the coefficients of the metric tensor

gIJ = δije
i
Ie
j
J =⇒

{
gab = qcaq

d
bβcd, ga3 = 0,

g3a = 0, g33 = 1,
(A.24)

with √
detg·· = β∆, ∆ := 1− 2y3KM + (y3)2KG (A.25)

• the affine connection

∂eI
∂yJ

= ΓLIJeL =⇒
{

Γcab =
(
γeab − y3

(
∂aκ

d
b + κfb γ

d
af

))
Qcd, Γca3 = −κeaQce,

Γ3
ab = (δea − y3κea)κcb, Γ3

a3 = 0,
(A.26)

where Q is defined by

τ a = Qbaeb =⇒





Q1
1 =

1− y3κ22
∆(y)

, Q2
1 =

y3κ21
∆(y)

,

Q1
2 =

y3κ12
∆(y)

, Q2
2 =

1− y3κ11
∆(y)

.
(A.27)

Obs. For any y3 ∈ I, the tangent vectors ta belong to the tangent plane at
the surface y3 = const and they are orthogonal to the normal ν. In the new
coordinate system, the elementary element volume is given by

ϑ(y) = ǫi j kt
i
1t
j
2t
k
3 =

√
detg·· =

(
1− 2y3KM + (y3)2KG

)
β, (A.28)

where KM = 1/2κaa and KG = ǫa,bκ
a
1κ

b
2 are the mean curvature and the Gauss

curvature of the surface, respectively.

A.3.1 Integrals of vectors and second order tensors

Let V be a domain in E
3 defined by

x = b(y1, y2) + y3ν, (y1, y2) ∈ D, u(y1, y2) < y3 < w(y1, y2)

where D is a open closed domain with boundary ∂D, u(y1, y2) and w(y1, y2) are
two functions that define some surfaces in E

3. We are interested in calculating
the flux of vectors or tensors through the boundary of V , to evaluate integral
of vectors in V or to calculate integrals of vectors on surfaces. In E

3, such
integrals define global quantities of the same kind as the integrands: scalar
defines scalars, vector defines vectors and second tensors define second tensors.
If one uses curvilinear coordinate, such invariant properties are lost.

Let S and V be a surface and a domain in E
3, respectively. Define the flux

of f and Φ through a surface by

Ff (S) :=

∫

S

f i nidσ,

F i
Φ
(S) :=

∫

S

Φij njdσ,
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and the integrals of a vector field by

Ijf (V ) =
∫
V

f jdx,

Ijf (S) =
∫
S

f jdσ,

where n stands for outward oriented unitary normal to the surface.
Let Sr be the surface defined by some function r(y1, y2)

x = b(y1, y2) + r(y1, y2)ν, (y1, y2) ∈ D.

One denotes the “vertical” boundary of V by

Σ =
{
x ∈ E

3| x = b(y1(s), y2(s)) + y3ν(y1(s), y2(s)),
s ∈ (0, L), u(y1(s), y2(s)) < y3 < w(y1(s), y2(s))

} (A.29)

where
(
y1(s), y2(s)

)
, s ∈ (0, L) is a parameterization of ∂D.

Let f and Φ be a vector field and a second order tensor field in E
3, respec-

tively. Using the law of transformation of coordinate system of a tensorial field
under coordinate transformation, one can write

f i = f ItiI , Φij = tiIt
j
JΦ

IJ .

Next lemma refers to various integrals.

Lemma 4 Let f and Φ be some smooth fields on a domain Ω ⊂ E
3. Let Sr, V

and Σ be a surface, domain and portion of ∂V as the ones previously defined,
respectively. Then:

Iif (V ) =

∫∫

D


τ ia

w∫

u

qab f
bϑdy3 + νi

w∫

u

f3ϑdy3


 dy1dy2,

Ff (Sr) =
∫∫

D

ϑ(y)

(
f3 − fa

∂r

∂ya

)∣∣∣∣
y3=r

dy1dy2,

Ff (Σ) =
∫∫

D

∂

∂ya

w∫

u

ϑfady3dy1dy2,

F i
Φ(Sr) =

∫∫

D

[(
τ ic q

c
b

(
Φb3 − ∂w

∂ya
Φba
)
+ νi

(
Φ33 − ∂w

∂ya
Φ3a

))
ϑ(y)

]∣∣∣∣
y3=r

dy1dy2,

F i
Φ(Σ) =

∫∫

D

τ ic


 ∂

∂ya

w∫

u

qcbϑ(y)Φ
bady3 + γcae

w∫

u

qebϑ(y)Φ
bady3 − κca

w∫

u

ϑ(y)Φ3ady3


 dy1dy2+

+

∫∫

D

νi


κca

w∫

u

qcbϑ(y)Φ
bady3 +

∂

∂ya

w∫

u

ϑ(y)Φ3ady3


 dy1dy2.

(A.30)
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Proof. Let (y1(s), y2(s)), s ∈ (0, L) be a parameterization of the boundary ∂D.
On Σ, the tangent directions are given by

ts = taw
a,

t3 = ν,

where wa =
dya

ds
and the outward normal direction is given by

Ni := ǫjkit
j
3t
k
s = ǫjkiν

jtkaw
a.

Thus, one can evaluate the flux as

Ff (Σ) :=
∫

Σ

f inidσ =

L∫

0

w(s)∫

u(s)

f iNidy
3ds.

Then, one writes f on the local basis {t1, t2, t3} and obtains

f iNi = (f btib + f3νi)Ni = ǫjkiν
jtkat

i
bw

af b = ϑ(y)ǫabw
af b

and

Ff (Σ) =
L∫

0

w(s)∫

u(s)

ϑ(y)ǫabw
af bdy3ds

=⇒
==

L∫

0

ǫabw
a

h(s)∫

u(s)

ϑ(y)f bdy3ds.

Observe that ǫabw
a = ǫab

∂ya

∂s
is the normal direction to the boundary ∂D

and use the flux-divergence theorem and to obtain

Ff (Σ) =
∫∫

D

∂

∂ya

w∫

u

ϑ(y)fady3dy1dy2. (A.31)

On Sr, one has tangent vectors

ζa =
∂x

∂ya
= ta +

∂r

∂ya
ν (A.32)

and normal direction

Ni = ǫjki(t
j
1 +

∂r

∂y1
νj)(tk1 +

∂r

∂y2
νk) (A.33)

that implies

f iNi = ϑ(y)(f3 − ∂r

∂ya
fa).

Then

Ff (Sr) =
∫∫

D

ϑ(y)(f3 − ∂r

∂ya
fa)

∣∣∣∣
y3=r

dy1dy2 (A.34)
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Consider now a second order tensor Φ. The coordinate transformation (??)
implies that the contravariant components of the tensor in the two coordinate
system are related by

Φij = tiIt
j
JΦ

IJ .

The main difficulty in this case is that the vectors of the basis depend on the
variables (y1, y2, y3) and there is no sense to find the components of the vector
global quantity FΦ in the new coordinate system. We proceed to find the
Cartesian components of FΦ, but calculated as functions of the contravariant
components ΦIJ .

On the surface Σ, one has

ΦijNj = tiIt
j
JT

IJNj = ϑ(y)ǫabw
atiIΦ

Ib

and the flux is given by

F i
Φ(Σ) =

∫∫

D

∂

∂ya

w∫

u

ϑ(y)tiIΦ
Iady3dy1dy2

Next, one uses the relations (A.23) to get

F i
Φ(Σ) =

∫∫

D

∂

∂ya


τ ic

w∫

u

qcbϑ(y)Φ
bady3 + νi

w∫

u

ϑ(y)Φ3ady3


 dy1dy2.

Using Weigartern formula, we can write

F i
Φ(Σ) =

∫∫

D


τ ic

∂

∂ya

w∫

u

qcbϑ(y)Φ
bady3 + νi

∂

∂ya

w∫

u

ϑ(y)Φ3ady3


 dy1dy2+

+

∫∫

D

τ ic


γcae

w∫

u

qebϑ(y)Φ
bady3 − κca

w∫

u

ϑ(y)Φ3ady3


 dy1dy2+

+

∫∫

D

νiκea

w∫

u

qebϑ(y)Φ
bady3dy1dy2.

Regrouping terms, one obtain the result for F i
Φ(Σ).

Lemma 5 Let the stress tensor of the fluid be given as

tij = −pδij + τ ij

and set

F i
stress(Sr) =

∫∫

Sr

tijnjdσ.
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Then

F i
stress(Sr) =

∫∫

D

[
τ icq

c
a

(
(p− τ̃33)gab

∂r

∂yb
+ τ̃a3

√
1 + gab

∂r

∂ya
∂r

∂yb

)
ϑ(y)

]∣∣∣∣∣
y3=r(y1,y2)

dy1dy2+

+

∫∫

D

[
νi

(
−p+ τ̃33 +

∂r

∂ya
τ̃a3

√
1 + gab

∂r

∂ya
∂r

∂yb

)
ϑ(y)

]∣∣∣∣∣
y3=r(y1,y2)

dy1dy2.

(A.35)

Proof Let r(y1, y2) a parameterization of the surface Sr and let ζ1, ζ2, n be the
tangent vectors and the unit normal given by (A.32) and (A.33), respectively.
One can write

tijnj = −pni + τ ijnj = −pni + τ̃a3ζia + τ̃33ni. (A.36)

Rewrite the unit normal and the tangent vectors on the basis {tI} as

n = nata + n3ν, na = −gab ∂r
∂ya

ϑ(y)

||N || , n3 =
ϑ(y)

||N || ,

||N || = ϑ(y)

√
1 + gab

∂r

∂ya
∂r

∂yb
, y3 = r(y1, y2)

and

ζa = ta +
∂r

∂ya
nu,

respectively. Taking into account that the area element is given by

dσ = ||N ||dy1dy2,

then, the result of the lemma will immediately follow.
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