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1 Introducere

Covorul vegetal este un factor activ de control al circulatiei apei in natura. Prin intermediul radacinilor,
plantele extrag apa din sol si o elibereaza in atmosfera la nivelul etajului foliar care la randul lui retine o
parte din apa cazuta in timpul precipitatiilor. Prezenta plantelor pe terenuri in panta modifica regimul
hidrodinamic al curgerilor de suprafata cu efecte directe asupra proceselor de eroziune si propagarii vi-
iturilor in timpul inundatiilor. Scara proceselor este extrem de larga: procesele de absorbtie a apei din
sol in plante au loc la scara radacinii, procesele de evapotranspiratie sunt la nivelul frunzei, procesele
de eroziune gi inundatiile sunt semnificative la nivel bazinal.

Studierea acestor procese este de o importanta vitala pentru climatologie, hidrologie, ecologie si agri-
cultura intrucat cunoasterea lor permite elaborarea unor modele de analiza si prognoza utile in man-
agementul resurselor naturale.

Conceptul de continuum Sol-Plante-Atmosfera permite crearea unui cadru unitar de analiza teoretica
a proceselor semnificative atat la scara microlocala cat si scara macrolocala. Trecerea de la micro la
macro poate fi facuta printr-o procedura de mediere a legilor generale de bilant.

In capitolul “Mathematical Models in Hydrology: Shallow Water Type Equations” descriem in detaliu
aceasta procedura aplicata obtinerii unor modele matematice pentru:

1 curgerea apei in sol;
2 curgerea apei la suprafata solului;

3 eroziunea solului produsa de curgerea apei.

Raportul contine o parte aplicativa gi una teoretica. Partea teoretica este dedicata deducerii modelelor
macroscopice.

Ca principiu general, un modelul macroscopic presupune existenta unui principiu general de bilant
(conservarea masei, conservarea impulsului sau energiei) formulat in cadrul axiomatic al mecanicii
mediilor continue (scara microlocald) si o formuld de mediere. Prin aceasta tehnica se obtin noi
concepte care sunt utilizabile la scara macrolocala. Un exemplu tipic este conceptul de mediu poros cu
radacini. La nivel micro avem medii distincte: matricea solida a solului, spatiul gol dintre particulele
solide (porii), radacinile plantelor i mediul fluid (aer, apa, etc.). Mediul fluid circula prin spatiu
porilor si poate trece in radacinile plantelor. La acest nivel, geometria porilor si a radacinilor este
extrem de complicatd si practic este imposibil sa determinam regimul de viteze al mediului fluid.
Prin mediere, mediile igi pierd identitatea, spatiul este ocupat de un mediu poros cracterizat de unele
proprietati ca porositate, conductivitate hidraulica, umiditate etc.

In partea aplicativa prezentam cateva aplicatii care ilustreaza cum poate fi utizat modelul matematic
pentru a studia probleme reale. Ne vom restrictiona la trei probleme importante din punct de vedere
al aplicatiilor practice: curgerea apei In sol, curgerea apei pe suprafete acoperite cu vegetatie si
erosiunea solului. Toate rezultatele numerice au fost obtinute cu ajutorul modulelor ASTERIX-CASES
si ASTERIX-CASPA, componente ale softului ASTERIX.



Contract 34PNCccDI/2018 P2 MODSPA-NUTRITOX

Figure 1: Circulatia apei in sistemul Sol-Plante-Atmosfera. Procese dominante: precipitatii,
evapotranspiratie, infiltratie, curgeri de suprafata.

2 Curgerea apei in sol

Modelul matematic folosit este un model larg utilizat in stiintele solului: ecuatiile lui Richards cu surse
de masa. Sursele de masa modeleaza absorbtia apei de catre plante prin intermediul radécinilor. In
acest model, radacinile plantelor actioneaza ca o pompa care extrage apa din sol cu o rata care variaza
in functie de densitatea spatiala a radacinilor si de potentialul de evapotransipratie al plantelor.
Ecuatia lui Richards este data de

00
5 div KV(¢ + z) = —ju(t, @)

unde 6 reprezinta continutul de apa din sol, ¢ sarcina hidraulica, K conductivitatea hidraulici, iar z
coordonata pe verticala. Termenul j,, (¢, ) modeleaza rata de absorbtie a apei din sol de catre plante.
De regula, In zona radacinilor, solul este nesaturat, spatiul porilor este ocupat partial cu apa. In
aceastd zona, conductivitatea hidraulicd K, continutul de apa, @ si sarcina de presiune v sunt legate
prin relatii algebrice neliniare. Relatiile sunt de natura empirica si sunt caracteristice unui anumit tip
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O leaves

Figure 2: Pentru a trai si a se dezvolta, plantele au nevoie de apa din sol

de sol. Un model de relatii empirice este modelul Mualem-vanGenuchten:

S(w):{ §1+(04¢) ), wigoa
{1(5'1(1—(1—51/m)m)2 0<S<1
K(S): S ) Y
K, S=>1,
00,
S= =4

In acest model intervin urmitorii parametri:

K, 65 conductiviatea hidraulica si respectiv continutul de apa in regim saturat,

0, continutul de apa rezidual;

n,l parametrii specifici modelului Mualem-vanGenuchten, m =1 — 1/n.

Pentru determinarea ratei de absortie, in literatura au fost propuse mai multe formule. In acest raport
folosim o relatie de tipul:

Jw = () (t, )
in care II,, (¢, x) este rata normalizata de absortie a apei, 7(¢)) este o functie care modeleaza stresul

hidric,
B(x)

O (t,x) = Tp(ﬂm»
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B(x) modeleaza densitatea de distributie a radacinilor. 7T}, este potentialul de transpiratie al plantelor.
Functiile () si B(x) considerate au expresiile:
Y )” ’
1+ <
V50

unde z*, p,, p sunt parametri. 15 este sarcina hidraulica la care rata de evapotranspiratie se reduce
la jumatate.

Provocarea principala a unui model matematic este sa masoare variatia variabilelor procesele hidro-
dinamice In raport cu variatia caracteristicilor bio-fizice ale plantelor. In modelul propus de noi,
caracteristicile bio-fizice ale plantelor sunt cuantificate prin intermediul a sase parametri. Trei din-
tre acesgtia caracterizeaza geometria spatiala a sistemului radicular, iar ceilalti trei parametri tin de
metabolismul intern al plantelor.

) = (1= 2 ) 5L ) =

Aplicatie. Infiltratia apei de ploaie intr-o coloand de sol acoperit cu vegetatie.
Obiective. Influenta parametrilor asociati plantelor asupra proceselor de evapotranspiratie si drenaj.

Pentru simularea numerica am considerat o coloana de sol cu grosimea de 1 m compusa din doua
straturi, stratul 1 fiind la suprafata solului. Datele pentru ploie provin din inregistrari zilnice, cantitea
de apa cazuta intr-o zi, pe un interval de 30 de zile. Calculul solutiei numerice a fost efectuat cu
urmatoarele conditii la limita: flux g,(¢) impus la suprafata solului. La baza solului am considerat
drenaj liber.

Fluxul ¢,(t) a fost calculat prin distribuirea in mod uniform a precipitatiilor dintr-o zi pe perioada
intregii zile:

@24ty +t*) =r(ta)/24,

unde ty este timpul masurat in zile, r(f;) cantitatea de apa cazutd in ziua t4, iar ¢* timpul zilnic
masurat in ore, t* € [0, 24].

Pentru analiza variatiei regimului de curgere in sol in functie de parametrii asociati plantelor am
analizat patru cazuri distincte. Tabelul 1 contine valorile parametrilor utilizati pentru fiecare caz in
parte. Timpul de simulare 30 de zile.

Experimentul numeric arata ca modelul matematic este suficient de sensibil la variatia parametrilor
caracteristici plantelor. El poate fi utilizat pentru elaborarea unor scenarii privind protectia panzei
freatice Impotriva contaminarii cu ape de suprafata contaminate.
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Figure 3: Configuratia spatiala a coloanei de sol si distributia radacinilor.

Parametrii asociati solului
Grosime | n | « l K 0 0,
Stratul 1 | [0,0.3] | 2 |3.35| 0.5 | 0.3318 | 0.368 | 0.102
Stratul 2 | [0.3,1] | 2 |3.35| 0.5 | 0.118 | 0.409 | 0.082

Parametrii asociati plantelor
Experiment | Geometria radacinilor | Fiziologia plantelor
Zm | Pz 2" P | Y50 Ty
1 05| 3 0.1 3| —6 | 2.06e—4
2 05| 3 0.2 3| —6 | 2.06e—4
3 05| 3 0.2 3| —6 | 1.06e —4
4 05| 3 0.2 3| —6 0

Table 1: Parametrii asociati solului si plantelor. Unitati de masura: L[m], T[h].
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Figure 4: Distributia ratei de evapotranspiratie (imaginea din stanga) si a ratei de infiltratie (imaginea
din dreapta). Datele privind caracteristicile solului si plantelor sunt cele din Tabelul 1.
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Figure 5: Distributia continutului de apa in sol
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3 Curgerea apei pe suprafete in panta si acoperite cu vegetatie

Modelul folosit este dat de ecuatiile Saint-Venant cu porozitate si frecare. Caracteristicile solului sunt
luate in considerare prin intermediul coeficientului de frecare apa-sol, iar cele ale covorului vegetal prin
intermediul porozitatii covorului vegetal si al coeficientului de frecare apa-plante. Din pacate, exista
putine date experimentale pentru a putea valida modelul numeric pe baza lor. Dispunem de un singur
set date masurate intr-un experiment de laborator si facute disponibile de autorii experimentului, [2].
Pe langa aceasta confruntare cu datele experimentale, au fost efectuate si validari teoretice pe baza
unor solutii analitice. Determinarea solutiilor analitice este o problema dificila si a necesitat un efort
deosebit. Simularile au fost facute cu programul ASTERIX- CASES.

Aplicatie. Curgerea pe terenuri acoperite cu vegetatie.
Obiective. Influenta parametrilor asociati plantelor asupra regimului de curgere.

In cadrul acestei aplicatii au fost efectuate doua simulari numerice. O simulare a fost facuta in scopul
validarii modelului teoretic si a schemei numerice. Datele de intrare au fost cele corespunzatoare
experimentului prezentat in figura 6.

Figure 6: Instalatie experimentala pentru studiul curgerii apei pe suprafete acoperite cu vegetatie.
Jgeabul prin care curge apa are 18 m lungime, 1 m latime si o inclinare de S = 1.05mm/m. Covorul
vegetal este modelat printr-un gir de cilindri verticali cu raza de 5 mm. Porositatea covorului vegetal
este § = 0.99336. La partea superioara jgeabul este alimentat cu un debit constant, iar partea
inferioara este libera. Alti parametri: coeficientul Manning n? = 3.005785, coeficientul de frecare
apa-plante o, = 74.7643 m'.

O comparatie a datelor experimentale cu datele numerice este prezentata in figura 7.
In al cel de al doilea experiment numeric dorim sa punem in evidenta implicatiile despaduririlor asupra
propagarii viiturilor de apa in zonele montane si de deal. Pentru aceasta am considerat o suprafata
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Figure 7: Curgere pe o suprafata cu vegetatie: comparatie experiment - numeric. @ reprezinta debitul
de alimentare.
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Figure 8: Imaginile reprezinta nivelul apei la momentele de timp ¢ = 40, 60, 200, 400 s in doua
configuratii distincte: suprafata neteda peste tot (prima linie) si suprafata acoperita partial cu un
filtru vegetal (linia a doua).

convex-concava. Initial, suprafata este partial acoperita (zona cu panta in cadere) cu un strat uniform
de apa si la momentul de timp ¢ = 0 apa este eliberata provocand o viitura. In functie de energia
curgerii, apa poate urca sau nu obstacolul prezent in centrul terenului. Rezulatele numerice, vezi
figura 8, arata ca prezenta covorului vegetal provoaca o disiparea a energiei cinetice astfel incat zona
din spatele obstacolului este protejatd la inundatii. Acest lucru nu se mai intampla insa in absenta
filtrului vegetal.

4 FEroziunea solului acoperit cu vegetatie

Modelul combina ecuatiile Saint-Venant cu vegetatie cu modelul Hairsine-Rose de eroziune. In acest
caz, procedeul de mediere include si fractiile de sediment aflate in suspensie.

10
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Figure 9: Bazinul hidrografic din Valea lui Paul. Poza aeriana (stanga) si terenul reconstruit (din date GIS) pe o retea
hexagonala (dreapta).
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Figure 10: Stop cadru cu distributia apei in bazinul hidrografic din Valea lui Paul. Observatii directe indica faptul ca
timpul de rezindenta al apei din bazin depinde de densitatea de vegetatie. Datele numerice obtinute de noi sunt consistente
cu observatiile din teren: timpul de scurgere al apei din bazin este mai mare in cazul unei densitati mai mari de vegetatie.

In aceasta simulare s-a considerat terenul acoperit cu o vegetatie uniforma: 6 = 0.993 pentru poza din stanga si § = 0.974
pentru poza din dreapta.

otuyag, odey
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Figure 11: Distributia sedimentului erodat la ¢ = 1000 s in bazinul hidrografic din Valea lui Paul pentru doua distributii
uniforme de vegetatie diferite: 6 = 0.993 pentru poza din stanga si § = 0.974 pentru poza din dreapta. Procesul de
eroziune implicad doud componente: eroziune neta (pierdere de masa) si depunere neta (castig de masa). Nuantele de roy
indica eroziune neta, iar nuantele de verde indica depunere neta.

QT0Z/IADONAFE 1oRITO))

XOLIYLAN-VdSAON ¢d



Raport Tehnic

5 Concluzii

Rezultatele numerice arata ca modelele dezvoltate sunt suficient de versatile pentru a prinde hetero-
genitatea proceselor de mediu. De asemenea, ele ne permit formularea unor noi ipoteze privind rolul
plantelor in cadrul proceselor complexe din continuumul Sol-Plante-Apéa. Apreciem ca pachetele de
programe dezvoltate in cadrul proiectul INTER-ASPA pot fi extrem de utile in proiectarea unor schem
de monitoring integrat al bazinelor hidrografice in vederea unei bune administrari a resurselor de apa.

14
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Chapter 1

General Balance Equations
for Fluids

The main subject of our work is the flow a fluid on the soil surface. We assume
that thermal effects has a small influence of the mechanical characteristics of
the fluid, consequently we deal only with the two balance equations, namely,
mass balance equation and momentum balance equation. A general balance
equation can be formulate as integral form or as local form. Usually the later is
obtained from the first by using several variant of the flux divergence formula.
We will present a general form of the balance equation and then we will show
how one can obtain different variants of the local form. An instructive exercise
is to obtain the differential form in a general curvilinear coordinate system from
integral form.

In all our consideration one assume that there exist a Cartesian coordinate
system Oz in the reference Euclidean space E3. Let V be a volume in the
domain of the flow and let ¢ be the mass density of a mechanical quantity. The
balance equation of a mechanical quantity defined by the mass density ¢ read
as

O | ppdr + | p(vn —un)do = [ ®yndo+ [ popydz (1.1)
[ o]

where p is mass density of the fluid, n is the unitary normal to the boundary
OV of V outward orientated, v is the velocity of the fluid. The terms wu,, stands
for the velocity displacement of a point of boundary 0V. @, is the flux density
of ¥ and ¢ is mass density supply of . For more details the reader is referred
to [1] and [2]. The general balance equation (1.1) must be red as

For any domain V in the domain fluid flow the time variation of the
mechanical quantity with the mass density 1 obey the law (1.1).

If all fields that appear in the balance law are smooth enough one obtain local
form or differential form of the balance law.
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GENERAL BALANCE EQUATIONS FOR FLUIDS

Table 1.1: The entry fields in the mass and linear momentum balance equation
for viscous fluid.

Mechanical | 1 P, 1) Comment

Mass 1 0 0 For reactive fluids one must specify
the mass production ¢

Linear mo- | v t, t79 = —pé? + | f t is the stress tensor, p is the pres-

mentum T sure field and 7 is viscous stress
tensor, f is the body force

If the integral form can be written only in Cartesian coordinate the differen-
tial form can be written as well as in any curvilinear system,{z'})I = 1,3. The
invariant form read as

au(pd") + (pw"o”), ;= @yl] + po! (1.2)

where subscript ; stands for covariant derivative. For a vectorial quantity ¢ an
alternative form is

Ou(VgU)+0; (Vapu'v!) + /g o T, = 05 (Vo) +/g@y T +poly (1.3)

where g = detg.. is the determinant of the metric tensor g and Ff’j are the
Christoffel symbols.



Chapter 2

Fluid Flow on Unvegetated
Hillslope

The accumulation of water on the surface of the soil is a process that implies
rain and infiltration into soil, the rain drops produce a layer of water if rain rate
is greater than infiltration rate. This stratum of exceeding water moves on the
soil surface down the hill. This flow was modeled in [3] and the flow described
by this model is usually named hortonian flow.

There exists different models of water flow on hill slope and each of them
is process oriented. As a consequence it is very hard to extrapolate an existent
model to a new context or to establish what is generally common for all flow
process on hill slope. We find that the Saint Venant equations can be con-
sidered as common ground for most models used for hill slope flow. The Saint
Venant equations in turn are obtained from Navier Stokes equations by using an
asymptotic analysis and a space averaged technique, [8], [9]. Here we present a
variant of Saint Venant equations for overland flow obtained from Navier Stokes
equations.

2.1 Depth average form of the balance of laws
of mass and momentum

The physical problem considered here is the motion of a film of fluid along a
soil surface. Generally in such problems the topographical characteristics of soil
exhibits variation and the depth of fluid is small comparative with the soil area
occupied by the fluid. In the water domain the velocity of the fluid is almost
parallel with the soil surface and their variation along the depth of the fluid is
a small quantity as compared with its averaged.

That two characteristics namely small aspect ratio of depth versus soil sur-
face area and small normal components of the velocity field allows one to use
model equations of water as simplified form of full Navier Stokes equations.
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Shallow water type equations (SWE) are a typical approximation model used
in many applications.

A common way to obtain a SWE model is firstly depth average differential
form of the balance equations and then obtain a set of equations for the depth
averaged mechanical quantities. To obtain these equations one essential ingre-
dient is to assume that interface air-water or interface soil-water are material
surface with respect to water motion.

The interface water-air is a mobile surface that occupies different space po-
sitions at different moments of time. Its mobility is mainly due to the motion
of the fluid, but there is another process that can affect its space position: the
mass transfer between atmosphere and water body. The rain raises the water
level and the evaporation decreases the water level. Both processes do not affect
the motion of the water body material.

As regarding the interface water-soil if one take into account the erosion of
soil by water moving also give rise to surface that is not a material surface with
respect to fluid motion. As conclusion we admit that the water-air interface and
soil-water interface are not necessary material surfaces with respect to the fluid
motion.

In sequel we present a new method to obtain a shallow water type equation
that avoid the assumption that the interfaces that separate the fluid domain
from the external media are material surface. In our approach we start with the
integral form of the balance laws.

Let Oz'x222 be a Cartesian coordinate system in the reference Euclidean
space E2 and let V be an arbitrary domain in the domain flow. The integral
form of the balance laws of momentum and mass are given by

8t/pvdx+/pv(vn—un)da: /tnda—i-/pfdx (2.1)

\%4 v oV \%4

8t/pdx + /p(vn — Up)do =0 (2.2)
1% ov

respectively. p is the mass density of the fluid, v the velocity field of fluid, f
is the density of the applied force, t,, is the stress vector and w, is the normal
component of the velocity of a point of the boundary oV of V.

To perform the depth average we choose a cylindrical volume control V' with
the top face on the free surface and the bottom face on the soil surface. To
take advantage from that the velocity field is almost parallel with soil surface
one need to introduce a soil surface based coordinate system. If the soil surface
is a mobile surface this give rise to a new difficulty. We assume that the basal
surface deviate in a small amount from a fix surface and we choose that surface
as a referential surface. Let B be the referential surface, S be the soil surface
and U be the free surface.

Let B be represented by

t =0yt y?), (v y?) € D C R% (2.3)
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Figure 2.1: Flow domain of the watersheet flow

Given (2.3) one introduces a new coordinate system in euclidean space E? by
2 =y + YY), vy e DER P e TR, (24)

where v is the unitary normal to the reference surface. It is supposed that the
application
z:DxI—R?

define a coordinate transformation and its image cover the entire domain of flow
Assume also that there exists the functions

n:l~)><(0,oo)—>[0,oo),
s:Dx (0,00) = R

such that the upper surface U can be parameterized by

ot =0yl y?) +alyt vt vyt y?) (2.5)
and the bottom surface S can be parameterized by
zt =0(yhy?) + syl P vyt yP). (2.6)

In the new coordinate system the domain flow is defined by

{W"v*,v")|(y", v°) € D,s(y', v, t) <y® <n(y", v t)}

The function h(y*,y2,t) == n(y',y% t) — s(y', 4%, t) measures the depth of the
fluid along the normal to the reference surface.

Let D be an arbitrary domain in D, u(y1,y2) and w(y1,y2) two functions
defined on D such that

s(y1,y2,t) < u(yr,y2,t) < w(ys,y2,t) < (Y1, ye,t)
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Figure 2.2: Configuration of a volume control.

one defines the cylinder V' by

V={zlz=0by"v*) +y’v.uly'v?) <y’ <w'.v?).(y',y*) € D} (2.7)

For cylinder V given by (2.7) one introduce the notations:
Hiy(D; (u,w)) = @/WM+/WW—%ﬂm

Hi, (Ds (u,0)) = (yﬂm%/m%—%mm

(2.8)
f’L

stress(
Fi(D: / pfde.
14

By using the above notation one rewrite the balance of the momentum of V' as
HL (D (1, 0)) = Fyesa(Ds (1, 0)) + Fiy (D: (0, ) (2.9)

and balance of mass of V as
H (D; (u,w)) = 0. (2.10)

To obtain the averaged form of balance of equations in the based surface coordi-
nate {y1, Y2, ys} one rewrites the equations (2.9), (2.10) as function of curvilinear
components of the velocity and tensor fields.
By using the stress tensor t one can evaluate the stress vector on the surface
Xp by o
th = tin,
The stress tensor for an incompressible can be written as

i — _pp(sij +p0_ij
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where p is the pressure field and o is the viscous part of the stress tensor.
On an interface one write the stress vector as

o-n=—-ctn+oli, (2.11)

where the where ¢, 5 are two directions in the tangent plan at the interface and
n is a unitary normal to the interface.

In the new coordinate system one has

% a, c -t

v = o vtq,T, + v3
fr="feqsri+ f5 o o o (2.12)
ti = tebglqtTivd + t“3 Crivi + 30qevird + 330

(see appendix for notations).

Lemma 1 Let y be the surface based coordinates introduced as in (2.4). Then

/ / / o (pg“* i) dy’dy* dy®+
//V Y| g,wdy dy? +//V Y| Ludyldy

= /// dapg” Cb+pvg‘“’F 9) dy*dy' dy? (2.13)

_//y pﬂ\yg,:wdy dy? —|—//V pﬁ\ygzudyldyz
D D

= - / / / (0apg™ ¢l + 11 05p) 9dydy* dy?
D u

F o (D5 (u, w))

p

w

| | 8 r
FielDitww)) = [[ 7| 5 [ it omar + . [ oot =i [ ooy’ | dy'ay+

D
Jr//lji Hca/ ob9(y)dy® +

o [ .. ,
/%03 I(y)dy® | dy'dy®+

D u
—|—// rjqu (U“‘lg( Lg®ow) + (8 w auaq(w) + O’J‘> 13:u)19(w)dy1dy2
" y
- // Td; (0““<(U) - Ulg“babu) +v (8au oll*s(u) + UL) . O(u)dy'dy”
Vi

(2.14)
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Hi,(D; (u, w) // o ( /quv O(y)dy’dy* dy? +Vi/pv319(y)dy3) dy'dy®+

u

w w
. 0
+// 7. (ay/quvbv“ﬂ )dy? +7ae/qbvbv“19 )dy® — & /pv“vgﬁ(y)dyg) dy'dy*+
D

u

+ / / ( / paSoPud(y)dy® + 82“ pv® ) dy'dy®+
D

+ // pTiGS (v” s(w) —w gab(?bw) + v (3,,,10 v”“c(w) + UJ') i I w)(vy, — uyp)dytdy?
D
// pTiGS ( o (u) — UJ‘gab(?bu> + v (aau vleg(u) + UJ‘) ysﬂtﬁ(u)(vn — uy, )dy*dy?
D

(2.15)

Hi (D; (u, w) // at/pﬁ )dy3dytdy? +// 88 /pv I(y)dy dy'dy*+
+// pO(n) (v — un)|5_,, dy'dy® // p9(n)( tn)| s, dy* dy?
D

(2.16)

Fie(D;(s,m)) = // (Té/pQEfbﬁ(y)dygdyldyz+vi/pf319(y)dy3) dy'dy®

D u
(2.17)
where

or or
Oy Oyb

s(r) =y /1+g%

Proof See appendix.
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Let us introduce the averaged quantities
-~ n
hh = [ Aly,y°)dy’
S
n n
Rt = [ gfv v Ay, y?)dy?, ho®® = [ 03 Ay, y?)dy?,
S S
n n
hrce — f qubaA(y, y3)dy3, h7da — fTSaA(y, y3)dy3,
S S

n n
hot = [ ggvP Ay, y*)dy?, ho* = [v3A(y, y®)dy?,
s s (2.18)
ot = [veA(y,y*)dy?,

n
hpet = [ pagg®Aly, y*)dy®,
S

n
hp® = [ 0apgsg® Ay, y*)dy?,
~ n - n
hfe = [agfP Ay, y°)dy?, hf* = [ FPAy,y°)dy?,
The governing equations of the averaged fields result from lemma 1 by taking
into account that the domain D is an arbitrary domain in D.

Proposition 1 (Depth Averaged form of mass balance equation) Assume
that all integrands in the integrals appearing in the Lemma 1 are continuous
functions. Then

g.,~ 10

%hh + Eaiyaﬂhva =AY, n) (vn —un)ly — Ay, s) (vn — un)ls (2.19)
By using the linear independence of the vectors (71, T2, v), in the whole domain
flow the equality (2.2) can be written component-wise. The components in the
tangent plan read as

Proposition 2 (Depth Averaged form of momentum equation) The pro-
jection in the tangent plan of the reference surface of the mediate momentum
equations are given by

0 1 0

Y y~c - ~ca __ =ca c (mab _ ~ab) _ c(~a3 _ ~a3 5 —
athv +68yaﬁh(v ) + hS, (0 ") — hkl (v %) + hp

e+ €AW,y — EG AWy, c=T2

(2.20)
where

En) =g [(U”“C(n) — ULg“”am) — (v“%(n) — ng“"f)bn) (vn — un)}
and

Es) =q; [(U”ag(s) - tl‘gabﬁbs) — (v”aq(s) - vJ‘g“bﬁbs) (v, — un)]
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We follow an idea of [10] to use the projection in the normal direction to
obtain the pressure field. On write again the integral form but this time we
chose a volume V given by

{W"v% )" v?) € D& <y’ < x}

where ¢, x is such that s(y',y%1) < & < x < n(y',¥%1),(y',y*) € D. By
writing the integral form as

H'(D; (€ X)) = Firess (D3 (€ X)) + Fexa (D3 (€, X)) (2.21)

one can obtain the normal projection that read as

X X X
0 0
e /v319(y)dy3 + Kea / gEvPvd(y)dy? + By / (11311“ — %) I(y)dy®+
3 3 XE N
WP = o*)i(y,x) = (0%~ ®)i(y. &) + [ apd(y)dy® = [ 9(y)F>dy®
£ 3

(2.22)
The equations (2.19), (2.20) and (2.22) result from the general balance equations
and are general true. In the next section we obtain simplified variants of it by
using several constitutive hypothesis concerning the fluid and its interaction
with the external media and by performing an asymptotic analysis with respect
to a small parameter.

2.2 Hydrostatic approximation

To perform of an asymptotic analysis of the equation (??) one assume that
the new coordinate system have the dimension of the length. One introduce a
characteristic length L of the domain D, and a characteristic velocity Vj.

Proposition 3 (Pressure field) Let the external force be the gravitational
force

f= _ggraviti&
On assume that
3 a
7 v v

HtaH = 0(1)7 52 = 0(6)7 A = 0(6)7 A = 0(1)7

-a3 33 0 0 (2.23)

—=0(e),—5 =0

pV02 (6)7 pV02 (6)7
Then:
(a) up to O(e) the pressure field and velocity field satisfy

Hbavbva + a?)p = fs + O(E)v (224)

(b) if the curvatures of the support surface is also a small quantities k = O(e)
one has

p(y.§) = = (n— &) + O(e). (2.25)
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Proof By using the equation (2.22) and the assumptions (2.23) one obtains
X X X
kea | @500  A(y)dy® + [ BspA(y, €)dy® = [ Ay, y*) f2dy® + O(e)  (2.26)
13 3 3

and then by taken into account that the x and & are arbitrary numbers results
(2.24).

The most important consequence of the assumptions (2.23) and the assump-
tion regarding the curvature of the support surface is that one can decouple
the calculation of the velocity field from calculation of the pressure field. The
relation (2.25) provide the pressure field distribution. Similarly to the case of
flat surface the pressure field is linear distributed along the fluid depth.

Let us now analyze the consequences of the hydrostatic approximation of
the pressure by (2.25) on the averaged balance momentum (2.20).

One introduce the vector

n
pei=hp" — hf¢ = / (0apg™ — *) 4z Ay, y*)dy®
S
Lemma 2 For a pressure field given by (2.25) and for the force field f given
by gravitational force one has

P = hgravit 20 (2° (y', y%) +0(y', y°)v° (', y7)) + hO(er) (2.27)
Proof To prove the formula (2.27) one needs to express the component
F? = —garavit?”, [ = —garavieg®ep; € 1= Op(a® + y*1%)
of the gravitational force and to introduce the metric tensor g by
9" = QeQ4BY, Qg = 6.

One obtains .

’ﬁa = ggravitaa(w3 + 77V3) /g“bqlfAdy?’

and then one perform the integrals.
Remarks One note that

2yt v+l v ) (vt v?)
is the x> components of the water surface in the surface base coordinate system.
By introducing the potential force
w = ggravit (2°(y",y°) + 0yt ) (v1,9%))

we can write the integral form of momentum balance equation up to O(ek) as
follows

0

~c 1 6 ~ca ~ca ¢ (~ab ~ab ca _
athv +53ya6h(v ) + hyg (0 ") + hB 0w =

EXMAW)ys—y — E(5)°AY)]ys—s + hO(er), ¢ =1,

(2.28)

o
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2.3 Closure relations

In order to be solved, the equations obtained in the hydrostatic approximation
require some closure relations concerning the viscosity, frictional force and mixed
averaged quantities concerning quadratic velocity terms. We analyze here a
model that can be relevant in the case of water moving on hill slope with small
curvature and thin water film.

2.3.1 Saint Venant’s equations with curvature

The models in this class are simplified variant of the equations (2.19) and (2.28).

Proposition 4 (Saint Venant) In addition to the assumptions (2.23) of the
proposition (3) one consider that

Kab = O(e)
v (yh v,y t) = (vt yPt) + Ofe) (2.29)
o = O(e).

Assume that the friction vector obey the Darcy-Weisbach law

tlsy = flofo® (2.30)
Then the model equations of water flow on an unvegetated hillslope is given by
0 0
—Bh+ —pBhv* = B(m, —m,)
5 5 ot oy (2.31)
ahﬂvc + o B hvv® 4+ hBySu 0 + hBB 0w =  —Bf|v|ve.

Proposition 5 The system (2.31) has the properties:
(a) it preserve the steady state of a lake

2% + hv® = constant

(b) There exists a conservative equation of the energy

0
oy°

0 h 1
5B+ 5ahe® (€ + dumicr? ) = B 5lul +0) = FBP (232)

where

1 h
£ .= §|v|2 + ggravit(xg + 51/3),9)? =m, —m;

(¢) Bernoulli law. In a steady state in the absence of the mass source and
without friction force the total energy, i.e

1
E' = S |vP* + garaviea” + p(y, h)

is constant along of a current line

v 0,E" = 0. (2.33)
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Prof. The affirmation (a) is evident. To prove (b) one rewrite momentum
balance equation as

9 c a 9 c c ,a,b ca _ f
GOV S 0w =~ @ ] (239

Then one multiplies the (2.34) by v. and using that
a c c ,a,b 1 a b
V"0 + Y50 0 v, = 51} Oy Upv

one can write

10 . .0 (1 v
et 40" (ot 4 w) == Ot gl

Then one multiplies by A8 and one obtains

19
20t

1 1
hf|v|? er%hﬁJr 33“ hpv® <2v2 + w) =p <<2|v|2 + w> M — f|v3)
that is the relation (b) The affirmation (c) results from the observation

w = ggravitxs + p(ya h)
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Chapter 3

Fluid Flow on Vegetated
Hillslope

The presence of plants on the hill creates a resistance force to the water flow
and influences the process of water accumulation on the soil surface. The large
diversity of plants growing on a hill makes the elaboration of an unitary model of
the water flow over a soil covered by vegetation very difficult. Here, we present
a model based on water mass and momentum balance equations that takes into
account the presence of certain type of plants.

More precisely, the plants form a dense net of rigid vertical tubes and the
water fills the “voided” space up to a level not higher than these plant tubes,
see Figure 3.1.

3.1 Space Averaging Models

Space averaging is a method to define a unique continuous model associated
to a heterogeneous fluid-solid mechanical system. The method is largely used
in porous soil media models [4], [5]. For the fluid-plants physical system, the
porous analogy was also used in [6], [7] especially in the case of submerged
vegetation.

At a hydrographic basin scale, there are variations in the geometrical prop-
erties of the terrain (curvature, orientation, slope) and vegetation density or
vegetation type etc. Assume there is a map that models the terrain surface

o' =b(¢€%), (€,€)eDCR, =123 (3.1)
Denote the tangent vectors to the coordinate curves on this surface by

ob

a = ab;:i’
Sa =0, oEa

a=1,2. (3.2)

Using this fixed surface, one introduces a new coordinate > along the normal
direction v to the surface. A point in the neighborhood of this surface is defined

15
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Figure 3.1: The representative element of the volume Pjs used for mediation.
The bottom surface of Ps has a representative width ¢ along two orthogonal
directions on this surface. The water depth h associated to Pj is the averaged
value of the physical water depth h inside Ps.

in this new system of coordinates Y = (¢£1,£2,4%) by

=0 oyt (L) eDCR? P eJeR, i=1,2,3, (3.3)
where v = (11,2, 13) represents the unit normal to the surface.
We introduce the tangent vectors to the coordinate curves defined by Y

¢, =0m, I=1,23. (3.4)

One has
CS =V, Ca = (63 - y3"$g)§b7 a=1,2, (3'5)

where k is the curvature tensor of the terrain surface.

In the presence of vegetation on the hill slope, the fluid occupies the free
space between plant bodies and the mechanical characteristics of the fluid flow
are defined only in the domain occupied by the fluid.

We adopt the following

General convention: any variable bearing a tilde over it designates a micro-
local physical quantity, while the absence of tilde indicates the corresponding
averaged quantity. When the micro-local quantity does not differ from the cor-
responding averaged quantity we denote the micro-local quantity without tilde.

Denote by Q¢ and €, the spatial domain occupied by fluid and plants, respec-
tively. Consider 1 to be some microscopic quantity that refers to the fluid. Let
y = (y*,y?) be a point in D. One introduces the rectangular domain

Ds = Ds(y) = [yl -5yt + 0] x [y2 -5,y + J]. (3.6)



3.1. SPACE AVERAGING MODELS 17

Define the spatial averaging volume

P =P(y) = {(z',2%2°) [ 2" = b'(", ) + y*0",
0 <y’ <h(e &), (€'.€°) € Ds(y), i=1,2,3}.

Here, h is some extension of h to the domain D, where I is the function de-
scribing the free water surface outside the domain occupied by plants.
Denote by P/ the fluid domain inside P,

pl=pPnal
The boundary of P/ can be partitioned as
oPT =x/rnefinyfanyss,

where /P is the fluid-plant contact surface inside P/, £/ is the free surface of
the fluid inside P/, /¢ is the fluid-soil contact surface inside P/, and /7 is
the boundary surface separating the fluid inside and outside P/.

The general form of a balance equation is [? |

at/mdeu / SO 1 — uy)do = / &w-nda—i—/ﬁa)wdv. (3.7)

pr oprPf orPt pf

Here, the significance of the above quantities are:

- p — the micro-local mass density of the fluid;

- v — the micro-local velocity of the fluid;

- n — the exterior unit normal on oP7;

- ‘I>¢ — the micro-local flux density of d},

¢w — the micro-local mass density of supply 7,/1,

- u, — the normal surface velocity;

- dV — the volume element;

- do — the surface element.

To obtain a mathematical treatable model, one needs to make some assump-
tions concerning the complex fluid-plant-soil system. The first assumption refers
to the plant cover.

Asummption 1 (Vegetation structure) The plant cover satisfies:

Al. The plants are almost normal to the terrain surface and they behave like
rigid sticks.

A2. The water depth is smaller than the height of the plants.

Assumption Al is often used in the porous model of the vegetation and assump-
tion A2 is proper to the overland flow.
The soil-fluid Z¢s and fluid-air Z¢, interfaces can be represented as

Ips o= {w|a’ =b'(£",6%), (¢,6))eD’, i=1,2,3}
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and

Tpo = {z|a’ =b(¢, %) + h(e',€)dh, (61,6 e DI i=1,23},

respectively, where D/ := {(¢',£2) € D ‘b(§1,§2) € Q).
Define the averaged water depth by
1 ~
bt o) = o [0 aetagt (38)
Dj

where w; measures the area of nis,

o= [ B €agtag” (39)
Df
The volume of the fluid inside the elementary domain P is given by
vol(Pf) = wyh. (3.10)
A pure geometrical result which refers to the flux of 1; through the boundary
¥/ f is formulated as:
Lemma 3
h(g'.%,t)
[#ovmto=o, [ [ Fowadseeiagad Gan
nif

S
o

where A = 1 — 3Ky + (v°)?Kg, with Ky and Kg the mean and Gauss
curvature respectively, and d&dn is the area element of the terrain surface.
The quantities v*, with a = 1,2 stand for the contravariant components of the
velocity fields in the local basis {¢;};_13

v =70"C, +0°v.
In Lemma 3, the partial differentiation 9, stands for

Oy := g
ya

3.1.1 Averaged mass balance equation

Although the water density is considered to be a constant function, we keep it
in the mass balance formulation for emphasizing the physical meaning of the
equations. Define the averaged water flux by

. h(&,6%t)
oz, t) ::7/ / p 0 Ady®pdetde?. (3.12)

vol(Pf)
pf O
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The mass balance equation results from (3.7) by taking {E =1, @w = 0and aw =
0. Since the plants are treated as solid bodies and the water does not penetrate
the plant bodies, the water flux through the boundary of the elementary volume
P/ reduces to

/ﬁ(5~n—un)doz /pv nda—i—/ (V- n—un)da—i—/ﬁ%ﬂ%da.

oPf sff »fa Sfs

The second integral in the r.h.s. of the above relation represents the water
flux due to the rain which leads to the water mass gain inside P7. The third
term corresponds to the water flux due to the infiltration which contributes to
the water loss inside P/. Using Lemma 3 and the definition of the averaged
quantities, one can write the mass balance:

0
n (wrh) + Oq (Wrhv®) = wr — wyi, (3.13)
with
/ p(v-n —uy)do = —pwr and / pv-ndo = pwyi (3.14)
Sfa =fs

representing the rain and the infiltration rates, respectively. Here, as in (3.9),
w is defined as

wi= [ plet eR)aetag.
Ds

3.1.2 Averaged Momentum Balance Equations

The momentum balance equatlon results from (3.7) with w =, <I’w =T, where
T is the stress tensor and (bw = f, with f denoting the body forces. Here, we
only consider the gravitational force.

In contrast to the planar case, there are some difficulties in writing component-
wise the space averaging balance momentum equations. These difficulties appear
due to the point dependence of the local basis. In the euclidean basis of X, the
momentum of the elementary volume P/ is given by

HI(PT) = /ﬁﬁidV

Pf

Using the components of @ in the basis of Y coordinates, we obtain

HI(PT) = //pg“Z “Ady3do+//pl/ 73 Ady’do, (3.15)

»fs 0 »fs 0
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which can be rewritten as

B i
Hi(Pf)zgg//ﬁaaAdy3da+yi//553Ady3da+8{(6,13f). (3.16)
»fs 0

»fs 0

Here and in what follows, we make the following convention: ¢, = ¢,(y), where
y = (y*,y?) is the point defining the domain Ds(y) from (3.6). When it appears
inside the integral, the unit normal v is a variable quantity depending on the
current point from the domain Dg, but when it appears outside the integral, it
is the unit normal defined by the same y as ¢,.

The term

h
E@. P = [ [ 36— adids
»fs 0

represents an error introduced by neglecting the variation of the basis {; along
the domain P/.
By averaging, from (3.16) one has

H(PT) = phwsv’s, + phwivdv + & (9, PT). (3.17)

If one neglects the momentum transfer on the fluid-air and fluid-soil inter-
faces, then the flux of the momentum through the boundary 9Pf can be reduced
to

F(v,0P) = /55(5-n—un)da: /55(5.n)da.
opPf Sff

Using Lemma 3, one has

R(g',€%,1)
f(ﬁﬂﬁPf):aa/ / P o AdyPB(€r, £2)detde?,
Df 0
and then,
F(pv,0PT) =

Da(pwphvPvosy) 4 0a(pw phwsy) + Oa(pwphv3v®v)+  (3.18)
52(’7727 Pf)7

where the fluctuation
b 1 E(€1’§2’t)~~b bya, 3arel 2\ 161942
puttie — [ ] PR — o) TP A(E, €2)dEhde?.
wrh Jsr Jo

The quantity & (v2, P¥) (as & (v, PT) appearing above), represents the error
introduced by approximating the variable local basis (¢, (&1, €2,9%), ¢, (€1, €2,93),
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v(£4,€2,0)) with the fixed local basis (s1,62,v) at (y!,4%,0). The quantities
&3, &4 and &5 introduced in what follows are errors of the same nature.
Rel. (3.18) can be rewritten as
F(pv,0PT) =
=0 (pw hv"v®)sp + pw phv v 0usp + O (pw phw®) sy 4 pw s hw®d,6,+
v+ pwrhv3v®d,v + & (0%, PY)
=0 (pw rhv®v®) sy + pw s (hv®v® + W) (V6e + KapV)+ (3.19)
Da(pwphw®) sy 4 Oa(pw phvv® v — pwphv3v®kle, + Eo (02, PT)

~— ~—

D (pw phv30®

=0 (pw rh(vP0" + wP*))sp — pwrhv3v ks + pw s (hvPv® + wP)yE et
pw (R v® 4+ wP) kv + Ou(pw phv v + E9 (02, PY),

where 7§, are the Christoffel symbols.

To express the contribution of the stress forces to the momentum balance
we decompose the stress tensor field T' in two components: the pressure field p
and the viscous part of the stress tensor field 7

T =—pI +7.
The flux of the stress vector can now be written as
F(T,0P5) = F(—pI,dP5) + F(7,0P)).

An elementary calculation show that

h(e',€2,t)
F(—pI,oP;) = / / (0upg™Cy + Dspr) AdyPpde'de®  (3.20)
DFf 0

The pressure field is determined up to a constant value. If we subtract
the atmospheric pressure from the water pressure, on the interface fluid-air
the pressure must be zero. We assume the pressure field to be hydrostatically
distributed.

Let g = —gt3 be the gravitational force acting on the mass unit. In the local
frame of coordinates related to the free surface of the fluid this force has the
representation

g:faca_fgy'

Asummption 2 (Hydrostatic approximation) One assume that,
A3. The hydrostatic pressure field has the form,

BELE ) =P (EE) — o).
We neglect the shear forces on the fluid-air interface, i.e.

F(r, 2/ =o0.
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On the fluid-soil interface the stress vector £ := 7 - m can be written as
t=1¢, + .
On the interface soil-water we can write
F(T,2%) =<, / t*do + v / Bdo + &(T, 27%). (3.21)
»fs »fs

Introducing the shear force at the fluid-soil interface

1 ~
cf = — [ t%o,
pwy
5fs
(3.21) takes the form
F(7,%2%) = qupwso + v / Bdo + E(T, 27*). (3.22)
5fs

On the fluid-plant interface

F(r,2/P) = /?-nda:;/?-ndm (3.23)

»fp Z{p
where Zlf P is the fluid-plant surface corresponding to the plant {. Obviously,
UE{p = 2/P. Since the plant stems are supposed to be perpendicular to the
1
ground surface, (3.23) becomes
FEST) =6, 3 / Pdo + £,(7, £I7) (3.24)
1 siv
and introducing the plant resistance force
0% = 1 Z / tdo
P pw l
={r

(3.24) becomes
F(7,577) = apwol + E4(7,277). (3.25)

On the fluid interface of Pf invoking again Lemma 3, the contribution of
the viscous part of the stress tensor on the interface fluid-fluid takes the form

i i
FEF2 =0, / / 7ha¢, Ady3do + 0, / / ey Adydo.
>

fs 0 »fs 0
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Then, we write the above quantity as,
F(7, %) = 04 (wrht*6p) + 0 (wiht3v) + E5(T4, PY). (3.26)
Rel. (3.26) implies,

F(F,2) =

:8a(wfh7'ba)cb + wthbaaacb + 9, (wth?’“)u + wfh7'3a(9al/+
&5 (7o, PT)

=0a(wsh7") s + whT " (V40 + KapV) + Oa(WphT3 )V — (3.27)
wihT3 Kby + (T, PT) =

zaa(wfhrba)gb - wthga/-zggb + wthba'y;bgc + wfhrbanabu+
Da(wihT3)w + E5(F0, PT).

For the supply &)d, we only consider the contribution of the gravitational
force. Proceeding by components as in (3.16), the second term in the r.h.s. of
(3.7) is finally expressed as

h(€'.€%,t)
[wuav=[ [ (Fe-Fv)sapsacas (s2s)
Pf Df 0

The relations (3.17, 3.19, 3.20, 3.22, 3.25, 3.27) and some order assumptions
are the basis for averaged momentum equations.

The porosity of the plant cover 6 and is defined by

0="21
w

Let 8o = B(y1,92), where y = (y',4?) is the point defining the domain
Ds(y) from (3.6).

Let € be a small parameter.

Asummption 3 (Kinematical and topographical assumptions) Suppose
that the physical processes satisfy the following properties:

A4. The water depth. h = O(e).

A5. The velocity. v3 = O(e).

A6. Geometric assumptions:

AG6.1. Curvature. The terrain surface curvatures and the curvature of the co-
ordinate curves are of order of €. This means that locally the surface is almost
planar.

A6.2. Metric tensor. 8= By + O(e).

A7. The averaged dimension §. dp, << 0 << L and 6K = O(e).
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In what follows, by abuse of notations, we denote 5y by .
The shallow water type approximation of the averaged momentum balance
for an incompressible fluid results by an asymptotic analysis.

Theorem 1 (Averaged momentum equations) Under assumptions A1-AT,
the first order approximation for the momentum equations are given by

Ot (hBOV®) + 0, (h,v) + hBOLYDyw = B%(h,v), a=1,2, (3.29)

where
w = ggravit(b3 + h'VB)a

3 (h,v) = hj30 (Uavb 1 owab 1Tab) ,
P

&“(h,v) = Bol + BOo — ypn"
and

1
n* = hpo <v“vb + w — prab> .

Sketch of proof. Using Assumption 3 and relations (3.17, 3.19, 3.22, 3.25, 3.27)
one can prove that the terms &i,...,Es are of order €2. For € << 1 these terms
as well as the terms containing the factors v3h, hx or h? (which are of same
order €?) can be neglected.

The equations (3.29) must be supplemented by empirical laws concerning
the averaged stress tensor T, the averaged vegetation force resistance o, the
averaged shear fluid-soil force o, and the averaged fluctuation w®. These em-
pirical laws are expressed by functions depending on the averaged velocity v, the
averaged water depth h and a set of parameters A defined by the characteristics
of the plant cover.

7% = T (Vw, h, N),

ag = GZ(v,h,)\),
(3.30)
ot =64, h,A),

w® = WP (v, h, ).

3.2 Closure Relations

The averaged models of water flow on a vegetated hillslope consists in mass bal-
ance equation (3.13), momentum balance equations (3.29) and a set of empirical
relations (3.30).
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3.2.1 The averaged vegetation force resistance
The most used empirical relations that relates the vegetation resistance and
fluid velocity has the form [7], [6]
1
o = —iCdmdh;\va, (3.31)

where m is the number of stems on the surface w and d is the averaged diameters
of the stems. The bed shear stress

a Ggravit a
%:—ﬁé—Mv, (3.32)

|v| being the magnitude of the averaged velocity i.e.
[v|? = Bapv®®.

One assumes that the viscosity of fluid and the fluctuation of the velocity field
have a small effect as compared with the bed friction and plant resistance.
Therefore the base model is given by

2

ot

hopv¢ + ;96 hvv® 4+ hOBy S, v b 4+ hBOBDgw = — BK(h, 0)|v|ve.
y(l

(hBO) + 0, (hBOv*) =B(m, — Om,),

5 (3.33)

ot
The parameter function K(h, 6) is given by

g0

1
b

here m stands for the density number of the stems on surface area. In our model
of plant the porosity 6 and the density number m are related by

rd?
=1—m" "
my

such that one can write
K(h,0) = aph(l —0) + a6,
where the new parameters are given by

QCd qg

a, = —2 a,= =
P rd? C?

Note that the system equations modeling the water flow on an unvegetated
hill can be obtained from the model (3.33) by simply considering the porosity
0=1.
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Chapter 4

SWE models

The full PDE model for the water flow on vegetated hill is given by (3.33). The
system is hyperbolic with source terms and there is an energy function that is
a conserved quantity in the absence of plants and water-soil friction. Also, the
model preserves the steady state of the lake.

Proposition 6 The model (3.33) is of hyperbolic type with source terms.
(a) The conservative form of the system is given by

OH (y, t,u) + 0. F " (y, t,u) = Py, t,u), (4.1)
where
h BOh
u=| o' |, Hyt,u) =| o' |,
v? BOhv?
BOhv! BOhv?
Fy,t,u) = ﬂe(hvlvl + ggravitV3ﬁ11h2/2) 69(}“11”2 + ggravitygﬁl2h2/2) )
BO(hv*vt + ggravit® 32 h?/2) BO(hv?v? + geravit’® 32202 /2)
and
B(m, — 0(y)m;)
h h
_ 1 ,a,b _ X la 3 e 3) "3 la| 1
Ply,tu) = BOhy,,v*V° — Garavith | 308 Oyx° + 28al/ 2V 0u 805 BK|v|v

B0 — graich | P52 (D + 200 ) — LiP0,606% | — BKJul?

(b) For any unitary vector n € R3, the eigenvalue problem [11]

0 0
9 pia, _
( ou’ Fina = A out

Hj) =0 (4.2)

has three solutions:

A =0"Ng — \/GaravitV3h, Ao = 0Ng,  Ap = 0Ng + \/ Garavit?3h.  (4.3)

27
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Proof. In order to prove the existence of the solution for (4.2), it is sufficient to
show that

] 9 . ) hn1 hn2
fjana—)\WHj =80 v'é+ ggravitu3hﬁlana hd + hvlng hvlng
u v26 + gg,avitugh,@mna hv2n, hd + hvng

0
ou’

where 6 = v%n, — A. The solutions (4.3) results then from straightforward
calculations.

Proposition 7 The following properties hold for system (3.33):
(a) it preserve the steady state of a lake

2% + h® = constant

(b) There is a conservative equation for the energy

0 0 h 1
—hpB0 ——hB0v" cavit =V | = ——|v|? - 3
5 55+6ya B6v <5+gg t2u> B(<9ﬁ( 2\U| +w) IC|U|>
(4.4)
where . 4
£ = i\vP +ggravit(x3 + §V3)7 M =m, — Om,;

(¢) Bernoulli’s law. At a steady state, in the absence of mass source and
friction force, the total energy

1
E' = S |v* + garaviea® + p(y, h)

1s constant along a current line

v?0,E" = 0. (4.5)

4.1 Simplified models

The mathematical model (3.33) is too complicated for many practical applica-
tions, but it represents a great start to generate simplified models of certain
realistic problems. A simplified version of the full model corresponds to a given
soil surface topography and a given structure of the plant cover. In what follows,
we introduce a simplified variant of (3.33) that allows variations in the soil to-
pography and plant porosity, but for which one must consider small departures
from some constant states.
Assume that the soil surface is represented by

T =y, x°=y°, x3:z(y1,y2) (4.6)

and the surface is such that the first derivatives of the function z(y',y?) are
small quantities.
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Assumptions:
(a) Geometrical assumptions:

IVz* =0, V2z=0.

One these grounds, equations (3.33) can be approximated as

9 a
50h + 0u (0hv") = M,

%Ghva + Op0hv,v° + 0hd,w = —K(h, 0)|v|v,,

(4.7)

where
K(h,0) = aph(1 = 0) + 0as, M=m, —mif, w=g(z(y',y°)+h). (48)
The simplified model (4.7) preserves the main properties of the full model.

Proposition 8 The reduce model (4.7) of equations for the water flow on veg-
etated hill is of hyperbolic type with source terms.
(a) The conservative form of the system is given by

9 on + 0, (Ohv®) = M,

ot
a h2 h2 (49)
57 0va + o (Hhvavb + 5gog2> = —hg0yz — g?&ﬁ — K(h,0)|v|v,.

(b) For any unitary vector n € R®, the solutions of the eigenvalue problem are
given by
Al =0v'ng —Vgh, Xo=vq, A =0v"Ng+ gh. (4.10)

Proposition 9 The system (4.7) has the following properties:
(a) it preserves the steady state of a lake

z2 + h = constant,

(b) there is a conservative form of the equation for the energy dissipation

) o . . A 1, ,
aehg + a—yaﬁhv (8 + Jgravit 2) = <<m(—2 |’U| + U)) — K:I’U| ) s (411)
where

1 h
£ = 5\1}\2 + g(z® + 5)

(¢) Bernoulli’s law. At a steady state, in the absence of mass source and
friction force, the total energy

1
& = §|v|2 + g2 4 p(y, h)

s constant along of a current line

v29,E = 0. (4.12)
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The presence of the plants and the existence of the frictional interaction
between water and soil induce and energetic lost. To put in evidence such
phenomenon, let us consider a domain 2 and n the unitary normal to the
0 outward orientated. One assumes that the 02 consists in an impermeable
portion and an exit portion 02 =TI'1 Uy, n-v=0on Iy and n-v > 0 on I's.
One of the two portions can be a void set.

Proposition 10 (Energy disipation) Assume that there is no mass produc-
tion. Then the energy of 1 is a decreasing function with respect to time

) / hBOEdT < 0 (4.13)

Q

To prove the assertion, one integrates the energy dissipation equation (4.11)

8t/h595dx+/h59v-n€tds: —/K|v\3dx
Q

Q o0

and observes that the second integral from the lL.h.s. is a positive quantity.

4.2 Mathematical model of soil erosion in the
presence of vegetation

Soil erosion is a complex and not yet very well understood process. To fill this
gap in the mathematical modeling of this process, there are several empirical
relations that relate the soil production with some soil properties and water mo-
tion characteristics. The concept of “sediment transport” refers to the transport
of the eroded as suspended sediment in the water. One assumes that the soil
particle velocity components in the tangent plane at soil surface are approxi-
mately equal to the velocity of the mixture - one ignores the diffusion processes
of the sediment. Also, one assumes that the surface is an almost planar surface.

The erosion model we consider here couples the shallow water equations with
the Hairsin-Rose model for soil erosion and takes into account the presence of
the plants on the soil surface, [15]

0,0h + 0, (0hv™) = 0,

X b (4.14)

0t (0hv®) + Op(Ohv®v°) + 0hgd®Op(z + h) =10 + 78, a=1,2
0t (0hpa) + 0 (0pahv®) = 0(eq + €., —do), a=1,N, (4.15)
Ome =0(dq —¢), a=1,N. (4.16)

The unknown variables are h(t,z) - water depth, v®(¢,x) - components of
the water speed, p,(t,x) - mass density of the suspended sediment of the size
class a and my (¢, ) - mass density of the deposited sediment of the size class a.
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Figure 4.1: Representative elementary volume in the sediment mass balance
equation

The sediment is partioned in N size classes. The soil surface is modeled by the
altitude function z(z) and the vegetation is quantified by the porosity function
O(z). The terms 72 and 72 quantify the interaction water-plant and water-soil,
respectively. The erosion and sedimentation processes are modeled by the terms
e - entrainment rate, e}, - re-entrainment rate and d, - deposition rate of the
sediment from the size class «, respectively.

Equations (4.14-4.16) need empirical relations to relate the erosion rates, the
deposition rate, and the flow resistance to the unknown functions. One assumes
that the flow resistance exercised by plants and soil obey laws (4.17) and (4.18),
respectively

T8 = —ayh (1 = 0) |v|v?, (4.17)
78 = —Oas|v|v?, (4.18)

where «, and ag are material parameters. The coefficient o, depends on the
geometry of the plants from the vegetation cover, while oy depends on the soil
roughness.

The Hairsine-Rose model [13, 14, 16], uses a set of empirical relationships
based on the “power stream” concept, originally introduced by Bagnold [12] for
determining the sediment transport in rivers, and then extended to flows on
sloping surfaces

do = Vs aPa,

F(Q—Q.
€a :pa(l—H)¥v (4.19)
Ma Vs F(Q—Q)
el = H— ,
mg vs — 1 gh

where p,, is the proportion of the sediment in the original soil, v,  is the settling
velocity of the sediment in the size class «, and -y, is specific weight of sediment.



32 CHAPTER 4. SWE MODELS

The parameters I - effective fraction of power stream, J - energy of soil particles
detachment and 2., - critical power stream are specific to a given type of soil.
The erosion processes are controlled by the water flow through the stream power
Q). In the present paper we use the law

0= Gp‘,,\TSHvL (420)
The function
=min-<§ —— .
m; ’

plays the role of a protecting factor of the original soil to the erosion process.

The terms
N
my = E meg
a=1

and m} from (4.21) are the total mass of sediment deposited on the soil and the
mass required to protect the original soil from erosion, respectively.



Appendix A

Basics of differential
geometry in E’

A.1 Curvilinear coordinate

Let Oz be a Cartesian coordinate system Oz in the reference Euclidean space
E?. Let {y’};_13 be another coordinate system and let

o' =2y % yY), yeD (A.1)

be the transformation rule. By coordinate line, one understands the curves gen-
erated by the variation of a single variable y!, while the rest are kept constants.
The tangent vector to the coordinate lines are defined by

ey = (97.’13 (A2)

The set of vectors {e;};_13 give rise to a new base of tensor fields. For the
vectors and tensor of rank 2, one writes

v = vIeI, t= t”ele!;.

In the new coordinate system, the components of the metric tensor g is given
by

grj = 51-]-@3(% (A.3)
and
g" = §9nInd, (A4)
where
hi = 0;y". (A.5)
One has , ' .
ethl =67, eh] =6f (A.6)

33
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and then
9K gr; =00,
The volume element is o
J = eijpetedel. (A7)
From (A.7) and (A.3), one obtains
detg. = J?. (A.8)

The variation of the basis {e;}; with respect to the y coordinate is stored
inside Christoffel’s symbols I'

ore; =Tker. (A.9)
Alternatively, one can calculate the I' coefficients by
F%J = thaJeiIa
Iy = —ejehdiny, (A.10)
Tf; = %gLK (Or9rs + 01951 — 0K g1y) -
Define the covariant derivative of a vector by
U{L = dpvl + 05T (A.11)
and the covariant derivative of tensor by
tl] = opt!? + 5T o + +"5T . (A.12)

An elementary way to introduce the covariant derivative is to estimate the
difference of vector fields between two neighbor points

v(z+Az)—v(z) =v'es(y+Ay)—v'e(y) = (v + 05T k) er Ay +O(Ay?)

A.2 Basic notions of differential geometry on a
surface in E3

For completeness, we present here the essential facts about the differential geom-
etry of the surface in the euclidean space E?; as a reference, one can consults the
classical books [? |. Let Ox be a Cartesian coordinate system in the reference
Euclidean space E3. Let S be a surface in E3 and let

o =b(yhy?), (yhy*)eDeR? (A.13)
be a parameterization of S. One defines the tangent vectors to the surface by

i
Ta

oy

Sy (A.14)
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and the oriented normal direction to the surface by

N = €jpiTid. (A.15)
The unitary normal v to the surface is given by
N;
Vi = ——F. (A.16)
V]|
Metric tensor 3 of the surface. The covariant components of 3 are given
by
Bab = 0i7iT] (A.17)
and the contravariant components 3% of it are defined by the relations
0y = B*Beb = BoeB. (A.18)
The area element of the surface is defined by
do = pdytdy?, (A.19)
where
B = V€ Ba1 Bpa. (A.20)
Note that

VIl = 8.

The curvature tensor k. The curvature tensor (introduced by Wiengartern)
and the affine connection ~ are defined by

0Tq . n
= YabTc Ra bV

Oyb

W b (A.21)
= —KR,Tp-

oy @

A.3 Surface Based Curvilinear Coordinate Sys-
tem

A surface S based coordinate system in the space E3 is introduced as follows.
Given a parameterization (A.13) of the surface, one defines the applications

?=by )+, (W) eDCRY, yPeleR, (A.22)

where I is an open neighborhood of zero. Assume that (A.22) defines a coor-
dinate transformation from D x I to a space neighborhood €2 of the surface S.
The surface S in the new coordinate system is given by 3% = 0.
Furthermore, we have:

e the vectors tangent to the coordinate lines

ox { e, = qZTb, qg = (52 — ygmg,

o\ es—wv

a=1,2

ey = (AQS)
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e the coefficients of the metric tensor

¢, d
:62 v oJ . Gab qaqbﬁCdv a3 ) A.24
grJ Jerey { 930 = 0, g33 = 1, ( )
with
Vdetg. = A, A:=1-2y3Ky + (v*)*Kea (A.25)

e the affine connection

der =Tk e, = { e = ('ng -y’ (&mf + “g%czlf)) Qg Tas = —rgQe,

oy’ T3, = (85 — y>KS) Ken, I3, =0,
(A.26)
where @ is defined by
1 — 352 3,2
Q=301 Y=xyp
T.=Qbe, = 1Y Ys 4 (A.27)
a 3k 1— 43k
Q% — u7 Q% — ﬁ.
A(y) Aly)

Obs. For any y? € I, the tangent vectors t, belong to the tangent plane at
the surface y> = const and they are orthogonal to the normal v. In the new
coordinate system, the elementary element volume is given by

I(y) = e jutithth = \/detg. = (1 - 2¢° K + (4°)?Ke) B, (A.28)

where Ky = 1/2k% and Kg = €, k{5 are the mean curvature and the Gauss
curvature of the surface, respectively.

A.3.1 Integrals of vectors and second order tensors

Let V be a domain in E? defined by
z=by,y") +y’v, (yhy)eD, uly,y’) <y’ <wly',y’)

where D is a open closed domain with boundary D, u(y!, y?) and w(y!,y?) are
two functions that define some surfaces in E3. We are interested in calculating
the flux of vectors or tensors through the boundary of V', to evaluate integral
of vectors in V or to calculate integrals of vectors on surfaces. In E2, such
integrals define global quantities of the same kind as the integrands: scalar
defines scalars, vector defines vectors and second tensors define second tensors.
If one uses curvilinear coordinate, such invariant properties are lost.

Let S and V be a surface and a domain in E?, respectively. Define the flux
of f and ® through a surface by

Ff(S) :z/finida,
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and the integrals of a vector field by
L(V) = [ P,
73(5) = gfjda,

where n stands for outward oriented unitary normal to the surface.
Let S, be the surface defined by some function r(y!,y?)

z=>by',v*)+r" v, '.y*)eD.

One denotes the “vertical” boundary of V' by

S={xcE} x=>b(y'(s),y(s)) + Su(y'(s), y*(s)),
€ (0,L), u(y'(s),y?(s)) <y <w(y'(s),y*(s))} (4.29)

where (y'(s),y%(s)), s € (0, L) is a parameterization of D.

Let f and ® be a vector field and a second order tensor field in E3, respec-
tively. Using the law of transformation of coordinate system of a tensorial field
under coordinate transformation, one can write

fr= g, @Y = Geet.
Next lemma refers to various integrals.

Lemma 4 Let f and ® be some smooth fields on a domain Q C E3. Let S,, V
and X be a surface, domain and portion of OV as the ones previously defined,
respectively. Then:

/ / / G frody® + v / FPody® | dy'ay?,
// 19 ( 8Ta> dyldyQ’
y3=r
a a 3 1 2
= ﬂf dy“dy-dy~,
dye
D u

_ // Tci @ PY3 _ aﬂ¢ba 4t (@38 — ‘97“)(1)&1 9(y) dytdy?,
oy® oy® Yo
/ [ / ey’ +, [aowenar® - g [ oo | dtas

w

/ / / V(y)dbedy? t 5 / (y)®**dy? | dy'dy?.

(A.30)
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Proof. Let (y'(s),y?(s)), s € (0, L) be a parameterization of the boundary D.
On X, the tangent directions are given by

ts =t ,w?,
t3 =V,

a

dy

where w® = and the outward normal direction is given by

N; = ejkitgtf = ejkiujtsw“.
Thus, one can evaluate the flux as
L w(s)
Fr(X) = / fingdo = / / fiN;dy3ds.
> 0 u(s)
Then, one writes f on the local basis {ti,t2,t3} and obtains
FIN: = (f't + PV )N; = ejrar’ thtiw® f* = 9(y)eapw f°

and

L w(s) L h(s)

Fr(%) :/ I(y)eqpw® fodyds == /eabw“ / I(y) fody3ds.
0 u(s) 0 u(s)

a
Observe that e w® = eabi is the normal direction to the boundary 0D

and use the flux-divergence theorem and to obtain

Fr(®) = // (;)a /ﬁ(y)f“dy3dy1dy2. (A.31)
D Y u
On S, one has tangent vectors
ox or
= = A. 2
Ca aya tll + ayav ( 3 )
and normal direction
Ny = et + 2oy h 4 20 A.33
i—ﬁjki(t1+871’/ )(tl—‘raiygl/ ) (A.33)
that implies
FN = (7 — 2 g
i =9y age! )
Then o
,
Fyisn = [[ ot - gmt| - dytay? (A.31)
y3=r

D
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Consider now a second order tensor ®. The coordinate transformation (?7)
implies that the contravariant components of the tensor in the two coordinate
system are related by _
oY = tit) ol
The main difficulty in this case is that the vectors of the basis depend on the
variables (y!,y?,y?) and there is no sense to find the components of the vector
global quantity F¢ in the new coordinate system. We proceed to find the
Cartesian components of Fg, but calculated as functions of the contravariant
components ®77.
On the surface X, one has

OIN; =it T Ny = 9(y)eapw t; "

and the flux is given by

o [ .
z) ://Ty(l/ﬁ(y)t}@mdy?’dyldgf
D u

Next, one uses the relations (A.23) to get

//a ~ / Oy )@bady3+ui/z9(y)q>3ady3 dytdy?.
Using Weigartern formula, we can write

// / (y)®bedy? —|—1/ / (y)@3dy® | dy*dy?+
/ / Voo / D(y) 2P dy® — kS / I(y)@**dy® | dy'dy*+

u

+// Vi/@ea/qgﬁ(y)q)bady?’dyldyz.
D u

Regrouping terms, one obtain the result for Fj ().
Lemma 5 Let the stress tensor of the fluid be given as

{10 = _p§ii 4 7

Fsztress // t”n]da

and set
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Then
or or Or
~33\ ab ~a3 ab 15,2
Fitress( Teds -7 — 4T 14+g v dy dy“+
St // [ < )9 Ayb dye 5y> (y)] P Yy dy
+// vi[—p+ 78+ 2z, 14 gan O 8—2 3(y) dy'dy®.
dye oy® dy P
D y3=r(y',y?)
(A.35)

Proof Let 7(y*, y?) a parameterization of the surface S, and let ¢, ¢5, 1 be the
tangent vectors and the unit normal given by (A.32) and (A.33), respectively.
One can write

tijnj = —pn' + T”n = —pn' + 793¢ 47830, (A.36)

Rewrite the unit normal and the tangent vectors on the basis {t;} as

a ab or 79(:"/) 3 ’19(:(/)

= ata 37 = - ) = )
nE ey = m N " T N

[N} = D(y) /149

ar or
D97 Db y* =1y y%)

and

CftJraaau

respectively. Taking into account that the area element is given by

do = [|N||dy'dy?,

then, the result of the lemma will immediately follow.
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