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We consider a concept of a generalized angle in complex normed vector spaces.
Its de�nition corresponds to the de�nition of the well known Euclidean angle in
real inner product spaces. Not surprisingly, it yields complex values as `angles'.
This `angle' has some simple properties, which are known from the usual angle
in real inner product spaces. To do ordinary Euclidean geometry, real angles
are necessary. We show that in a complex normed space there are many pure
real valued `angles'. In an inner product space we have even better conditions.
There we can use the known theory of orthogonal systems to �nd many pairs
of vectors with real angles, and it is possible to do geometry, which is based on
principles already known by the Greeks 2000 years ago.
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1. INTRODUCTION

There are some attempts already to generalize the well known Euclidean
angle of real inner product spaces to real normed spaces; see the references [2, 3,
6, 8, 9, 15�18]. Also angles in complex inner product spaces were considered, see
[4, 5, 12]. In this paper a complex-valued `angle' is de�ned for the �rst time for
all complex normed spaces, and we investigate its properties. We believe that
this concept of a complex-valued angle is superior to the enforcement of pure
real angles, since real angles may suppress some true properties of a complex
normed vector space.

To initiate the constructions that follow we begin with the special case of
an inner product space (X,< . | . >) over the complex �eld C. It is well known
that the inner product can be expressed by the norm, namely for ~x, ~y ∈ X we
can write < ~x | ~y > =

1

4
·
[
‖~x+ ~y‖2 − ‖~x− ~y‖2 + i ·

(
‖~x+ i · ~y‖2 − ‖~x− i · ~y‖2

) ]
,(1)

where the symbol `i' means the imaginary unit.
For two vectors ~x, ~y 6= ~0 it holds < ~x | ~y > = ‖~x‖ · ‖~y‖· < ~x

‖~x‖ |
~y
‖~y‖ >.

We use these two facts and ideas from [13] to generate a continuous product in
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all complex normed vector spaces (X, ‖ · ‖), which is just the inner product in
the special case of a complex inner product space.

De�nition 1.1. Let ~x, ~y be two arbitrary elements of a complex normed
space (X, ‖ · ‖). In the case of ~x = ~0 or ~y = ~0 we set < ~x | ~y > := 0, and if
~x, ~y 6= ~0, i.e. ‖~x‖ · ‖~y‖ > 0, we de�ne the complex number < ~x | ~y > :=

‖~x‖ · ‖~y‖ · 1

4
·

[∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
+i ·

(∥∥∥∥ ~x

‖~x‖
+ i · ~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− i · ~y

‖~y‖

∥∥∥∥2
)]

.

It is easy to show that the product ful�ls the conjugate symmetry
(< ~x | ~y > = < ~y | ~x >), where < ~y | ~x > is the complex conjugate of < ~y | ~x >,
the positive de�niteness (< ~x | ~x > ≥ 0, and < ~x | ~x >= 0 only for ~x = ~0),
the homogeneity for real numbers, (< r · ~x | ~y > = r · < ~x | ~y >), and the
homogeneity for pure imaginary numbers, (< r · i · ~x | ~y > = r · i · < ~x | ~y >
= < ~x | − r · i · ~y >), for ~x, ~y ∈ X, r ∈ R. Further, for ~x ∈ X it holds
‖~x‖ =

√
< ~x | ~x >.

If we switch for a moment to real inner product spaces (X,< . | . >real)
we have for all ~x, ~y 6= ~0 the usual Euclidean angle ∠Euclid. It can be de�ned
also in terms of the norm by

∠Euclid(~x, ~y)

= arccos

(
< ~x | ~y >real
‖~x‖ · ‖~y‖

)
=arccos

(
1

4
·

[ ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
])

.

For two vectors ~x, ~y 6= ~0 from a complex normed vector space (X, ‖ · ‖) we
use the de�ned product < · | · >, and we are able to de�ne an `angle', which
coincides with the de�nition of the Euclidean angle in real inner product spaces.

De�nition 1.2. Let ~x, ~y be two elements of X\{~0}. We de�ne the complex
number

∠(~x, ~y) := arccos

(
< ~x | ~y >
‖~x‖ · ‖~y‖

)
.

This number ∠(~x, ~y) ∈ C is called the angle of the pair (~x, ~y).

We state that the angle ∠(~x, ~y) is de�ned for all ~x, ~y 6= ~0. Since we deal
with complex vector spaces, it is not surprising that we get complex numbers
as `angles'. For the de�nition we need the extension of the cosine and arccosine
functions on complex numbers. We use two subsets A and B of the complex
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plane C, where

A := {a+ i · b ∈ C | 0 < a < π, b ∈ R} ∪ {0, π}, and

B := C\{r ∈ R | r < −1 or r > +1}.

We have two known homeomorphisms cos : A
∼=−→ B and arccos : B

∼=−→
A. The cosines of the `angles' are in the complex unit square CUS := {r+ i ·s ∈
C | − 1 ≤ r, s ≤ +1} ⊂ B. The values of the `angles' are from its image
arccos(CUS), which forms a symmetric hexagon (with concave sides) in A. Its
center is π/2, two corners are 0 and π. We get a third corner if we use one of
four possibilities of ±1± i, for instance arccos(1 + i) ≈ 0.90− i · 1.06.

The `angle' in De�nition 1.2 has eight simple properties (An 1)�(An 8),
which are known from the Euclidean angle ∠Euclid of real inner product spaces.

Theorem 1.3. In a complex normed space (X, ‖ · ‖) the angle ∠ has the

following properties. We assume that ~x, ~y are non-zero elements of X.

• (An 1) ∠ is a continuous map from
(
X\{~0}

)2
onto a subset of

arccos(CUS) ⊂ A. The image of ∠ is symmetric to π/2.

• (An 2) ∠(~x, ~x) = 0,

• (An 3) ∠(−~x, ~x) = π,

• (An 4) ∠(~x, ~y) = ∠(~y, ~x),

• (An 5) for real numbers r, s > 0 we have ∠(r · ~x, s · ~y) = ∠(~x, ~y),

• (An 6) ∠(−~x,−~y) = ∠(~x, ~y),

• (An 7) ∠(~x, ~y) + ∠(−~x, ~y) = π.

• (An 8) If ~x, ~y are two linear independent vectors of (X, ‖ · ‖) there

is a continuous injective map Θ : R −→ A, t 7→ ∠(~x, ~y+t ·~x).
The limits are limt→−∞ Θ(t) = π and limt→∞ Θ(t) = 0.

In Table 1 we list some angles and their cosines. We take arbitrary two
elements ~x, ~y 6= ~0 of a complex normed space (X, ‖ · ‖), and six suitable real
numbers a, b, r, s, v, w with −π

2 ≤ a, v ≤ π
2 and −1 ≤ r, s ≤ 1, such that

∠(~x, ~y) = π
2 + a+ i · b ∈ A, cos(∠(~x, ~y)) = cos

(
π
2 + a+ i · b

)
= r+ i · s ∈ B,

and ∠(i · ~x, ~y) = π
2 + v + i · w ∈ A.

Note that the cosines of all angles in the table (third column) have the
same modulus

√
r2 + s2.
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Table 1

pair of vectors their angle ∠ the cosine of ∠ the angle for ~x = ~y
its cosine
for ~x = ~y

(~x, ~y) π
2

+ a+ i · b r + i · s 0 1
(−~x, ~y) π

2
− a− i · b −r − i · s π −1

(~y, ~x) π
2

+ a− i · b r − i · s 0 1
(−~y, ~x) π

2
− a+ i · b −r + i · s π −1

(i · ~x, ~y) π
2

+ v + i · w −s+ i · r π
2
− i · log

[√
2 + 1

]
i

(~y, i · ~x) π
2

+ v − i · w −s− i · r π
2

+ i · log
[√

2 + 1
]

−i
(~x, i · ~y) π

2
− v − i · w s− i · r π

2
+ i · log

[√
2 + 1

]
−i

(i · ~y, ~x) π
2
− v + i · w s+ i · r π

2
− i · log

[√
2 + 1

]
i

With given two vectors ~x, ~y ∈ X we consider as before the angle ∠(~x, ~y) =
π
2 +a+i·b with suitable real numbers a, b. Now we express the complex number
∠(i·~x, ~y) in dependence of a and b. For the representation the real valued cosine
and hyperbolic cosine are used, and their inverses arccosine and area hyperbolic
cosine. For a correct sign we use the signum function. The result is as follows.

Theorem 1.4. In a complex normed space (X, ‖ · ‖) we take two elements

~x, ~y 6= ~0. We assume the angle ∠(~x, ~y) = π
2 + a+ i · b ∈ A , i.e.− π

2 ≤ a ≤
π
2 .

(If a = −π
2 or a = π

2 since ∠(~x, ~y) ∈ A it follows b = 0.) We use the

abbreviations H− and H+. We get

∠(i · ~x, ~y) =
π

2
+

1

2
· [−sgn(b) · arccos(H−) + i · sgn(a) · arcosh(H+)] ,

H± :=

√[
cos2

(π
2

+ a
)

+ cosh2(b)− 2
]2

+ 4 · cos2
(π

2
+ a
)
· cosh2(b)

±
[
cos2

(π
2

+ a
)

+ cosh2(b)− 1
]
.

It is worthwhile to look at special cases. We consider a real angle ∠(~x, ~y) =
π
2 + a (i.e. b = 0), and an angle on the vertical line of complex numbers with
real part π/2, this means ∠(~x, ~y) = π

2 + i · b (i.e. a = 0).

Corollary 1.5. For a pure real angle ∠(~x, ~y) = π
2 +a, i.e. −π

2 ≤ a ≤
π
2

and b = 0, we get a complex angle ∠(i · ~x, ~y) with a real part π/2,

∠(i · ~x, ~y) =
π

2
+ i · 1

2
· sgn(a) · arcosh

(
2 · cos2

(π
2

+ a
)

+ 1
)

=
π

2
+ i · sgn(a) · log

[ √
cos2

(π
2

+ a
)

+ 1 +
∣∣∣cos

(π
2

+ a
)∣∣∣ ] .

Corollary 1.6. For an angle ∠(~x, ~y) = π
2 + i · b (i.e. a = 0) we get a

pure real angle ∠(i · ~x, ~y), more precisely

∠(i · ~x, ~y) =
π

2
− 1

2
· sgn(b) · arccos[3− 2 · cosh2(b)]
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=
π

2
− 1

2
· sgn(b) · arccos[2− cosh(2 · b)] =

π

2
− arcsin[sinh(b)]

= arccos[sinh(b)] .

Now we are interested in pairs (~x, ~y) with a real valued angle ∠(~x, ~y).

Let us take two vectors ~x, ~y 6= ~0 of a complex normed vector space (X, ‖·‖).
We can prove in Proposition 3.10 that there is a real number ϕ ∈ [0, 2π] such
that (ei·ϕ · ~x , ~y) has a pure real angle, i.e. ∠(ei·ϕ · ~x , ~y) ∈ [0, π].

This fact ensures the existance of many real valued angles in complex
normed spaces. The situation improves yet in the special case of complex
vector spaces provided with an inner product < . | . >.

The properties of complex inner product spaces (X,< . | . >) have been
studied extensively, and such spaces have many applications in technology and
physics.

To do ordinary Euclidean geometry we need real valued angles. The idea
is simple. We take an orthogonal basis T of (X,< . | . >), and we generate the
real span L(R)(T), the set of all �nite real linear combinations of elements of
T. Let

L(R)(T) :=

{
n∑
i=1

ri · ~xi | n ∈ N, r1, r2, . . . , rn ∈ R, ~x1, ~x2, . . . , ~xn ∈ T

}
.

If X is a Hilbert space, i.e. it is complete, we can even use limits of
Cauchy sequences from elements of L(R)(T), or, in other words, we take the
limits of all in�nite convergent series of elements of T with real coe�cients. It
means that we take the closure L(R)(T) of L(R)(T) in X. This creates a real
linear subspace L(R)(T) of X, where all angles are real:

Theorem 1.7. Let (X,< · |· >) be a complex Hilbert space. Let T ⊂ X
be an orthonormal system. The set L(R)(T) is a real subspace of X, and we

get that each pair of non-zero vectors ~y, ~z ∈ L(R)(T) has a real angle, i.e.

∠(~y, ~z) ∈ [0, π].

Afterwards we consider complex inner product spaces (X,< . | . >) of
�nite complex dimension n ∈ N. Their real dimension is 2 · n, and we shall
state in Corollary 4.4 that the maximal dimension of a real subspace of X with
all-real angles is n. The real span L(R)(T) of an orthogonal basis T ⊂ X yields
an example.

Finally, we demonstrate two examples of ordinary Euclidean geometry
in complex inner product spaces, and to do this we show that real angles are
useful.

Note that the concept of this `angle' has been treated �rst for real normed
spaces in [14] and [15].
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2. GENERAL DEFINITIONS

Let X = (X, τ) be an arbitrary complex vector space. This means that
the vector space X is provided with a topology τ such that the addition of two
vectors and the multiplication with complex numbers are continuous. Further,
let ‖ · ‖ denote a norm on X, i.e. ‖ · ‖ is a continuous map X −→ R+ ∪ {0},
which ful�ls the following axioms ‖z · ~x‖ = |z| ·‖~x‖ (`absolute homogeneity'),
‖~x + ~y‖ ≤ ‖~x‖ + ‖~y‖ (`triangle inequality'), and ‖~x‖ = 0 only for ~x = ~0
(`positive de�niteness'), for ~x, ~y ∈ X and z ∈ C.

Let < . | . > : X2 −→ C be a continuous map from the product space
X×X into the �eld C. Such a map is called a product. We notice the following
four properties:

(1): For all z ∈ C and ~x, ~y ∈ X it holds < z · ~x | ~y > = z· < ~x | ~y >
(`homogeneity').

(2): For all ~x, ~y ∈ X it holds < ~x | ~y > = < ~y | ~x >
(`conjugate symmetry').

(3): For ~0 6= ~x ∈ X we get a real number < ~x | ~x > > 0,
(`positive de�niteness').

(4): For all ~x, ~y, ~z ∈ X it holds < ~x | ~y + ~z >=< ~x | ~y > + < ~x | ~z >
(`linearity in the second component').

If < . | . > ful�ls all properties (1), (2), (3), (4), the map < . | . > is
an inner product on X. In this case we call the pair (X,< . | . >) a complex

inner product space.

It is well known that in a complex normed space (X, ‖ · ‖) its norm ‖ · ‖
generates an inner product < . | . > by equation (1) if and only if it holds the
parallelogram identity: For ~x, ~y ∈ X there is the equation

‖~x+ ~y‖2 + ‖~x− ~y‖2 = 2 ·
(
‖~x‖2 + ‖~y‖2

)
.

In the following section, we need some complex valued functions like the
cosine, sine, arccosine, arcsine, etc. We abbreviate them by cos, sin, arccos,
arcsin.

In the introduction we have already de�ned two subset B and A of the
complex plane C, and we asserted that there exist two homeomorphisms cos :

A
∼=−→ B and arccos : B

∼=−→ A. Note that A contains only inner points
except two boundary points 0 and π, while B has 1 and −1.

In the following De�nition 2.1 we express the complex functions in detail
by known real valued cos, sin, arccos, arcosh, log and exp functions.

Recall the three values of the signum function, sgn(0) = 0, sgn(x) = 1 for
real numbers x > 0, and sgn(x) = −1 for x < 0. We abbreviate the exponential
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function by ex := exp(x). Note that in the next section we prove explicitly that
the de�ned arccosine is truly the inverse function of the cosine. The formulas of
the arcsine and arccosine are from [20]. An equivalent de�nition can be found
in [10].

De�nition 2.1. For a number z = a + i · b ∈ C its complex cosine and
sine can be de�ned explicitly by

cos (a+ i · b) :=
1

2
·
[
cos (a) ·

(
eb +

1

eb

)
− i · sin (a) ·

(
eb − 1

eb

)]
,

sin (a+ i · b) :=
1

2
·
[
sin (a) ·

(
eb +

1

eb

)
+ i · cos (a) ·

(
eb − 1

eb

)]
.

For a shorter representation we can use the real hyperbolic cosine and
hyperbolic sine. Their abbreviations are the symbols cosh and sinh, their
formulas are

cosh(x) :=
1

2
·
(
ex +

1

ex

)
and sinh(x) :=

1

2
·
(
ex − 1

ex

)
, for x ∈ R.

For r + i · s ∈ B we de�ne the functions arcsine and arccosine by

arcsin(r + i · s) :=
1

2
· [ sgn(r) · arccos (G−) + i · sgn(s) · arcosh (G+) ] , and

arccos(r + i · s) :=
π

2
− arcsin(r + i · s).

Here we use the abbreviations G− and G+, where

G− :=
√

(r2+s2−1)2+4 · s2−
(
r2+s2

)
, G+ :=

√
(r2+s2−1)2+4 · s2+

(
r2+s2

)
.

Recall that the symbol arcosh means the real area hyperbolic cosine,

arcosh(x) := log
(
x+
√
x2 − 1

)
for real numbers x ≥ 1 ,

which is the inverse of the real hyperbolic cosine.

It is useful to mention a few well-known consequences.
We assume the real cosine and sine functions and the complex exp func-

tion, all de�ned by its power series. Since it holds ei·r = cos (r) + i · sin (r) for
real numbers r, with the above De�nition 2.1 of the complex sine and cosine
we can deduce Euler's formula ei·z = cos (z) + i · sin (z) for all z ∈ C. After
this, it is easy to prove the identities

cos (z) =
1

2
·
[
ei·z + e−i·z

]
and sin (z) =

1

2 · i
·
[
ei·z − e−i·z

]
.

We notice the equations arcosh ◦ cosh(x) = x for real x ≥ 0, and cosh
◦arcosh(x) = x for x ≥ 1. Further, the complex cosine can be written as

cos (a+ i · b) = cos(a) · cosh(b)− i · sin(a) · sinh(b),
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while the complex sine function is

sin (a+ i · b) = sin(a) · cosh(b) + i · cos(a) · sinh(b).

3. COMPLEX NORMED SPACES

First, we prove that the cosine and arccosine as they are written in De�-
nition 2.1 are mutually inverse functions.

Lemma 3.1. For all z ∈ B it holds cos ◦ arccos(z) = z.

Proof. We take an arbitrary element z = r + i · s ∈ B. We use the
abbreviations G− and G+ of De�nition 2.1, and with an easy calculation we get

(1− G−) · (G+ + 1) = 4 · r2 , and (1 + G−) · (G+ − 1) = 4 · s2 .

We assume for z = r + i · s ∈ B that both r and s are positive. We use
De�nition 2.1 and elementary calculus, and we compute cos ◦ arccos (z)

= cos [arccos(r + i · s)] = cos

[
π

2
− 1

2
· arccos (G−) − i · 1

2
· arcosh (G+)

]
= cos

(
π

2
− 1

2
· arccos(G−)

)
· cosh

(
− 1

2
· arcosh(G+)

)
− i · sin

(
π

2
− 1

2
· arccos(G−)

)
· sinh

(
− 1

2
· arcosh(G+)

)
= sin

(
1

2
· arccos(G−)

)
· cosh

(
1

2
· arcosh(G+)

)
+ i · cos

(
1

2
· arccos(G−)

)
· sinh

(
1

2
· arcosh(G+)

)
=

√
1

2
· (1− G−) ·

√
1

2
· (G+ + 1) + i ·

√
1

2
· (1 + G−) ·

√
1

2
· (G+ − 1)

=
1

2
·
√

(1− G−) · (G+ + 1) + i · 1

2
·
√

(1 + G−) · (G+ − 1) = r + i · s = z.

The other three cases are r · s = 0, r · s < 0, and both r and s are
negative. By noting the signs, they work in the same manner, and the lemma
is established. �

Proposition 3.2. We have two identities cos ◦ arccos = idB and

arccos ◦ cos = idA. Further, both functions are homeomorphisms, where

cos : A
∼=−→ B and arccos : B

∼=−→ A .
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Proof. By De�nition 2.1 we have two continuous maps, cos : A → B and
arccos : B → A. We just proved cos ◦ arccos(z) = z for all z ∈ B. If we consider
all possible cases for a and b, for a+i·b ∈ A, we see that the cosine is injective on
its domain A. It follows that the cosine function is a bijective map A → B. We
have cos ◦ arccos = idB. Therefore, it holds arccos = cos−1 ◦ idB = cos−1, and
we get that the arccosine is also a bijective map and the inverse of the cosine.
Both functions are continuous, hence they are both homeomorphisms. �

We describe now that the cosine and arccosine functions respect the `cen-
ter points' π/2 of A and 0 of B, respectively. Note that for each complex
number z we can write z = π

2 +a+ i ·b, with a suitable real number a. It means
that the real part of z is π

2 + a.

Proposition 3.3. For each complex number z in A we write z = π
2 +a+

i · b, with a suitable real number −π
2 ≤ a ≤

π
2 . If cos

(
π
2 + a+ i · b

)
= r + i · s

we have
cos
(π

2
− a− i · b

)
= −r − i · s .

Correspondingly, for a number r + i · s ∈ B with arccos (r + i · s) =
π
2 + a+ i · b, it holds arccos (−r − i · s) = π

2 − a− i · b .
Proof. For the arccosine we see this immediately from De�nition 2.1. Note

that both the real arccosine and the real area hyperbolic cosine have a non-
negative image. Since the cosine is the inverse function of the arccosine, it must
act as it is claimed in this proposition. �

Let (X, ‖ ·‖) be a complex normed vector space. In De�nition 1.1 we have
de�ned a continuous product < . | . > on X. In the introduction we already
mentioned that this is the inner product in the case that the norm ‖·‖ generates
an inner product by equation (1). We have also noticed some properties of this
product. We will discuss them now.

Proposition 3.4. For all vectors ~x, ~y ∈ (X, ‖ · ‖) and for real numbers r
the product < . | . > has the following properties.

(a) < ~x | ~y > = < ~y | ~x > (conjugate symmetry),

(b) < ~x | ~x > ≥ 0, and < ~x | ~x > = 0 only for ~x = ~0
(positive de�niteness),

(c) < r · ~x | ~y > = r· < ~x | ~y > = < ~x | r · ~y > (homogeneity for real numbers),

(d) < i · ~x | ~y > = i· < ~x | ~y > = < ~x | − i · ~y >
(homogeneity for the imaginary unit),

(e) ‖~x‖ =
√
< ~x | ~x > (the norm can be expressed by the product).

Proof. The proof for (a) is easy, and (b) is trivial. For a positive number
r, the point (c) is trivial. After that, we can show < −~x | ~y >= − < ~x | ~y >, and
(c) follows immediately. The point (d) is similar to (c), and (e) is clear. �
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In De�nition 1.2 we de�ned the angle ∠(~x, ~y), we wrote

∠(~x, ~y) := arccos

(
< ~x | ~y >
‖~x‖ · ‖~y‖

)
=arccos

(
1

4
·

[∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2− ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
+i ·

(∥∥∥∥ ~x

‖~x‖
+ i · ~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− i · ~y

‖~y‖

∥∥∥∥2
)])

.

This complex number ∠(~x, ~y) is called the complex angle of the pair (~x, ~y).

Lemma 3.5. For a pair ~x, ~y 6= ~0 in a complex normed space (X, ‖ · ‖) it

holds that both the real part and the imaginary part of cos(∠(~x, ~y)) are in the

interval [−1, 1].

Proof. The lemma can be proven easily with the triangle inequality. �

Corollary 3.6. Lemma 3.5 means that
{

cos(∠(~x, ~y)) | ~x, ~y ∈ X\{~0}
}
is

a subset of the `complex unit square' CUS := {r+i·s ∈ C | −1 ≤ r, s ≤ +1} ⊂ B.
Hence cos(∠(~x, ~y)) ∈ B and ∠(~x, ~y) ∈ A, i.e. the angle ∠(~x, ~y) is de�ned for

each pair ~x, ~y 6= ~0. Further, it holds |cos(∠(~x, ~y))| ≤
√

2.

Corollary 3.7. The values of the `angles' are from the image arccos(CUS),
which forms a symmetric hexagon (with concave sides) in A. Its center is π/2,
two corners are 0 and π. A third corner is arccos(1 + i) =

(π/2)−(1/2)·
[
arccos

(√
5−2

)
+ i · log

(√
5 + 2 + 2 ·

√√
5 + 2

)]
≈0.90−i·1.06.

Noting the signs in ±1 ± i ∈ CUS, the other corners can be computed easily

with Proposition 3.3 and De�nition 2.1, respectively.

In the introduction we stated Theorem 1.3. Here we catch up on its proof:

Proof. The property (An 1) is a consequence of Lemma 3.5. The following
two corollaries say that the angle is always de�ned, and the image of the map
∠ is in A. With Proposition 3.3, we get that it is symmetric to π/2.

The �ve points (An 2) - (An 6) are rather trivial. We use properties of the
product < · |· > from Proposition 3.4, and properties of the arccosine.

For the next point (An 7) we have to prove ∠(~x, ~y) + ∠(−~x, ~y) = π,
for ~x, ~y 6= ~0. We use Proposition 3.3 and < −~x | ~y >= − < ~x | ~y > from
Proposition 3.4. If ∠(~x, ~y) = arccos(r + i · s) = π

2 + a + i · b, we have
∠(−~x, ~y) = arccos(−r − i · s) = π

2 − a− i · b. It holds (An 7).
To prove the last point (An 8) we use [15]. We take the two linear inde-

pendent vectors ~x, ~y, and we generate the set of all its real linear combinations

U := {r · ~x+ s · ~y | r, s ∈ R}.
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This set U is a real subspace of X with the real dimension two.
Instead of ∠(~x, ~y+ t · ~x) we consider the real part of the complex number

cos(∠(~x, ~y + t · ~x)) ∈ B. We de�ne the real valued map Θ̃,

Θ̃(t) :=
1

4
·

[∥∥∥∥ ~x

‖~x‖
+

~y + t · ~x
‖~y + t · ~x‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y + t · ~x
‖~y + t · ~x‖

∥∥∥∥2
]
, for t ∈ R .

By the triangle inequality we can regard this as a map Θ̃ : R → [−1, 1].
Since U is a real normed space we can apply [15]. The main theorem there
states that the map Θ̃ is an increasing homeomorphism onto the open interval
(−1, 1) ⊂ B. Since the complex arccosine function is a homeomorphism with
domain B and Codomain A, the �rst claim of (An 8) is true.

The limits limt→−∞ Θ̃(t) = −1 and limt→∞ Θ̃(t) = 1 are mentioned in the
proof of the theorem in [15], or we can �nd one directly in [2], which was the
main source of [15]. We use the arccosine, and we get the demanded limits of
Θ(t) in (An 8), since the imaginary parts of Θ(t) vanish if t turns to ±∞. �

Lemma 3.8. In a complex normed vector space (X, ‖·‖) we take two vectors
~x, ~y 6= ~0. It holds
| cos(∠(~x, ~y))| = | cos(∠(−~x, ~y))| = | cos(∠(i · ~x, ~y))| = | cos(∠(~x, i · ~y))|.
Proof. This fact follows easily with Proposition 3.4. �

In the next proof, the values in Table 1 from the introduction will be
discussed.

Again we assume two elements ~x, ~y 6=~0 of a complex normed space (X, ‖·‖).
Note that in Table 1 the identities ∠(~x, ~y) = π

2 + a+ i · b and cos(∠(~x, ~y)) =
r + i · s are by de�nition, as well the expression ∠(i · ~x, ~y) = π

2 + v + i · w.

Proof. The last column of Table 1 comes directly from De�nition 1.2, e.g.
cos(∠(~x, ~x)) = < ~x|~x > /‖~x‖2, etc. We get the values of the fourth column by
using the �fth column and applying the arccosine function from De�nition 2.1.
The other entries of the table have to be calculated.

We show, for instance, that ∠(i·~y, ~x) = π
2−v+i·w, and cos(∠(i·~y, ~x)) =

s+ i · r, please see the entries in the bottom row of Table 1. We compute

∠(i · ~y, ~x) = arccos

(
< i · ~y | ~x >
‖i · ~y‖ · ‖~x‖

)
= arccos

(
i · < ~x | ~y >
‖~y‖ · ‖~x‖

)
,

hence it follows

cos(∠(i · ~y, ~x))= i · < ~x | ~y >
‖~y‖ · ‖~x‖

= i · cos (∠(~x, ~y)) = i · (r + i · s) = s+ i · r.(2)

With a similar argumentation we get

cos(∠(i · ~x, ~y)) = −s+ i · r .
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We had de�ned ∠(i · ~x, ~y) = π
2 + v+ i ·w, hence it follows π

2 + v+ i ·w =
arccos (−s+ i · r). We use the arccosine function from De�nition 2.1, and by
the di�erent signs of s we can deduce arccos (s+ i · r) = π

2 − v+ i ·w. With
equation (2) we get ∠(i · ~y, ~x) = π

2 − v + i · w, and the bottom row of Table 1
is shown. The other rows can be proven with similar considerations. �

With the help of the table, and the properties of the product < · | · >
from Proposition 3.4, and Proposition 3.3, we can conclude other values. For
instance we get

∠(−i ·~y, ~x) =
π

2
+v− i ·w = ∠(~y, i ·~x), and ∠(~x,−~y) =

π

2
−a− i ·b = ∠(−~x, ~y).

Now we refer to Table 1 again. There we had assumed ∠(~x, ~y) = π
2 +a+i·b.

We want to express cos(∠(~x, ~y)) = r + i · s in coordinates of a and b, and we
get at once from De�nition 2.1 the number r + i · s = cos

(
π
2 + a+ i · b

)
=

1

2
·
[
cos
(π

2
+ a
)
·
(
eb +

1

eb

)
− i · sin

(π
2

+ a
)
·
(
eb − 1

eb

)]
.

To express the complex number ∠(i · ~x, ~y) = π
2 + v+ i ·w in dependence

of a and b requires more e�ort. In Theorem 1.4 we already have presented the
result. Now we need to prove Theorem 1.4.

Proof. Here we also use the real sine and hyperbolic sine functions, abbre-
viated by sin and sinh, please see De�nition 2.1. To shorten the representation
of the proof it is useful to introduce more abbreviations.

Let cpi2a := cos
(π

2
+ a
)
, spi2a := sin

(π
2

+ a
)
.

From De�nition 2.1 we have

r + i · s = cos(∠(~x, ~y)) = cpi2a · cosh(b)− i · spi2a · sinh(b),

and we have two real numbers r = cpi2a·cosh(b) and s = −spi2a·sinh(b). Note
−π

2 ≤ a ≤
π
2 . Since

π
2 + a+ i · b ∈ A it follows from the special cases a = −π

2
or a = π

2 that the imaginary part b vanished, i.e. 0 = b = s = spi2a = sinh(b).
We get from Table 1 and from De�nition 2.1

∠(i · ~x, ~y) =
π

2
+ v + i · w = arccos[−s+ i · r]

= arccos[ spi2a · sinh(b) + i · (cpi2a · cosh(b)) ]

=
π

2
− arcsin[ spi2a · sinh(b) + i · (cpi2a · cosh(b)) ]

=
π

2
− 1

2
· [ sgn(spi2a·sinh(b))·arccos(K−)+i·sgn(cpi2a·cosh(b))·arcosh(K+) ]

=
π

2
− 1

2
· [ sgn(b) · arccos(K−) + i · sgn(−a) · arcosh(K+) ] ,
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with the abbreviations K− and K+,

K± :=

√[
spi2a2 · sinh2(b) + cpi2a2 · cosh2(b)− 1

]2
+ 4 · cpi2a2 · cosh2(b)

±
[
spi2a2 · sinh2(b) + cpi2a2 · cosh2(b)

]
.

With the aid of the well-known equations

sin2(x) + cos2(x) = 1 = cosh2(x)− sinh2(x)

we �nally reach the identities H− = K− and H+ = K+, which was the last
step to prove Theorem 1.4. �

Now we prove Corollary 1.5. We could use the just proven theorem, but
we show it more elaborate.

Proof. Since b = 0 we have sinh(b) = 0 and s = 0, and cosh(b) = 1. It
follows

∠(i · ~x, ~y) =
π

2
+ v + i · w = arccos(i · r) = arccos(i · cpi2a · cosh(b))

=
π

2
− 1

2
·[i·sgn(−a)·arcosh(K+)]=

π

2
+

1

2
·i·sgn(a)·arcosh

[
2·cos2

(π
2

+a
)

+1
]
.

Please see the de�nition of the arcosh function in De�nition 2.1, and note
that the equation

log
[√

cos2(x)+1 +| cos(x)|
]

=
1

2
· log

[
2·cos2(x)+1+2·| cos(x)|·

√
cos2(x) + 1

]
holds for all real numbers x, which concludes the proof of Corollary 1.5. �

For the proof of the next corollary we need a lemma.

Lemma 3.9. In the case of ∠(~x, ~y)= π
2 + i · b, i.e. a = 0, the range of b is

− log
(√

2 + 1
)
≤ b ≤ + log

(√
2 + 1

)
≈ 0.88.

Proof. By Lemma 3.5, there is a suitable −1 ≤ s ≤ +1 with cos
(
π
2 + i · b

)
= i · s. Using the arccosine of De�nition 2.1, it follows for the modulus of b

|b|= 1

2
· arcosh(G+) =

1

2
·arcosh

(
2 · s2 + 1

)
=

1

2
·log

(
2·s2+1+2·|s|·

√
s2 +1

)
,

and note
√

3 + 2 ·
√

2 =
√

2 + 1, and the lemma is proven. �

We add the proof of Corollary 1.6.

Proof. We apply Theorem 1.4, and since a = 0 we get

∠(i · ~x, ~y) =
π

2
+

1

2
· [−sgn(b) · arccos(H−)] ,

with H− =

√[
cosh2(b)− 2

]2 − [cosh2(b)− 1
]
.
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A consequence of Lemma 3.9 is the fact cosh2(b) ≤ 2, it follows

H− =
[
2− cosh2(b)

]
−
[
cosh2(b)− 1

]
= 3− 2 · cosh2(b) ,

and the �rst line of Corollary 1.6 is proven. The next line is some calculus. �

Up to now we had de�ned for each complex normed space X an `angle'
which generally has complex values. The geometrical meaning of a complex
angle is unclear. To do the usual known `Euclidean' geometry we need real
valued angles. During the following consideration it turns out that although
we deal with complex vector spaces, actually `a lot' of our angles are purely
real. The situation will even improve in inner product spaces, which will be
investigated in the next section.

Proposition 3.10. Let us take two vectors ~x, ~y 6= ~0 from a complex

normed vector space (X, ‖ · ‖). It holds that there is at least one real num-

ber ϕ ∈ [0, 2π] such that the product < ei·ϕ · ~x | ~y > is real, or equivalently

∠(ei·ϕ · ~x , ~y) ∈ R .

Of course, the parts of ~x and ~y can be exchanged. The proposition means
that for ~x, ~y 6= ~0 we have to `twist' either ~x or ~y by a suitable complex factor
ei·ϕ to generate a pure real angle in [0, π].

Proof. Please see both Proposition 3.3 and Proposition 3.4. Let us assume
a complex angle

∠(~x, ~y) = arccos

(
< ~x | ~y >
‖~x‖ · ‖~y‖

)
=

π

2
+ a+ i · b ∈ A, with b 6= 0.

From Proposition 3.4 we have < −~x | ~y > = − < ~x | ~y >, i.e. with
Proposition 3.3 it follows

∠(−~x, ~y) = arccos

(
< −~x | ~y >
‖~x‖ · ‖~y‖

)
=

π

2
− a− i · b.

We know ei·π = −1. The set Oval(~x, ~y) :=
{
∠(ei·ϕ · ~x, ~y) | ϕ ∈ [0, 2π]

}
⊂

A is the continuous image of the complex unit circle
{
ei·ϕ | ϕ ∈ [0, 2π]

}
, or the

interval [0, 2π], respectively, therefore it has to be connected. This means that
Oval(~x, ~y) is connected, i.e. it must cross the real axis. �

Let's turn to inner product spaces.

4. COMPLEX INNER PRODUCT SPACES

In the introduction we have constructed in De�nition 1.1 a continous prod-
uct for all complex normed spaces (X, ‖ · ‖). There we have already mentioned
that in a case of an inner product space (X,< · | · >) the product from De�ni-
tion 1.1 coincides with the given inner product < · | · >, which can be written
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as in equation (1). For all complex normed spaces (X, ‖ · ‖) we have introduced
the `angle' ∠ in De�nition 1.2. Now we investigate its properties in the special
case of an inner product space (X,< · | · >).

We deal with complex vector spaces X provided with an inner product
< · | · >, i.e. it has the properties (1), (2), (3), (4). The de�nition ‖~x‖ :=√
< ~x |~x > generates a norm ‖ · ‖, which means that the pair (X, ‖ · ‖) is a

normed space, and its angles ∠ have at least all properties which have been
developed in the previous section. The special conditions of an inner product
space open up more possibilities, which we will explore now.

In the previous section we dealt with complex normed spaces, and we
ensure by Proposition 3.10 the existence of many pairs of elements with real
angles. Now we want to expand on this. Roughly spoken, we seek for subsets
U ⊂ X, such that U is a real subspace of the complex vector space X, and in
addition all products in U are real, i.e. all angles in U are real.

First we take a second look at Proposition 3.10 and its proof. For two
elements ~x, ~y of a complex normed space (X, ‖ · ‖) we know from Proposi-
tion 3.10 that there is at least one ϕ ∈ [0, 2π] such that the angle of the pair
(ei·ϕ · ~x , ~y) is real.

Lemma 4.1. Let us take two arbitrary vectors ~x, ~y from an inner product

space (X,< · | · >) with < ~x |~y >6= 0. It holds that there exists one number

0 ≤ ϕ < 2 · π and a suitable number 0 < a ≤ π
2 such that the set Oval(~x, ~y)

has exactly two real angles

∠
(
ei·ϕ · ~x , ~y

)
=

π

2
+ a, ∠

(
ei·(ϕ+π) · ~x, ~y

)
=

π

2
− a .

Proof. For an inner product < · | · > it holds < ei·ϕ · ~x | ~y > = ei·ϕ· <
~x | ~y >, hence the cosines cos(Oval(~x, ~y)) ⊂ B shape an Euclidean circle with
radius | < ~x | ~y > | /(‖~x‖·‖~y‖). We map this circle with the arccosine function,
and by Proposition 3.3 the image Oval(~x, ~y) ⊂ A is symmetrical to π/2, it
crosses the real axis exactly two times. (Note that Oval(~x, ~y) is no Euclidean
circle.) �

Albeit we deal with complex inner product spaces we are interested in real
subspaces. In a complex normed space (X, ‖ · ‖) let U 6= ∅ be any non-empty
subset of X. We de�ne L(R)(U) as the set of all �nite real linear combinations
of elements from U, while L(C)(U) is the set of complex linear combinations.
The formula is

L(R)(U) :=

{
n∑
i=1

ri · ~xi | n ∈ N, r1, r2, . . . , rn ∈ R, ~x1, ~x2, . . . , ~xn ∈ U

}
.
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The de�nition of L(C)(U) is similar, but we use complex numbers instead
of real numbers r1, r2, r3, . . . . This de�nitions mean that L(C)(U) is a C-linear
subspace of the complex vector space X, while L(R)(U) is a real linear subspace
of X, which is also a real vector space.

For both spaces we regard the closure in X. Let L(R)(U) and L(C)(U)
are the closures of L(R)(U) and L(C)(U), respectively. Of course, for a �nite
set U ⊂ X it holds L(R)(U) = L(R)(U) and L(C)(U) = L(C)(U). If we assume
an in�nite set U, an element ~y ∈ X belongs to L(R)(U) if and only if there is a
countable set {~x1, ~x2, ~x3, . . .} ⊂ U and there are real numbers r1, r2, r3, r4, . . .
such that

lim
k→∞

∥∥∥∥∥~y −
k∑
i=1

ri · ~xi

∥∥∥∥∥ = 0 . We can write ~y =
∞∑
i=1

ri · ~xi .(3)

The set L(C)(U) is constructed similarly, but we can use complex numbers
z1, z2, z3, . . .. Again we get two subspaces of X, L(R)(U) is a real subspace,
while L(C)(U) is a complex subspace. We have inclusions L(R)(U) ⊂ L(R)(U),
and L(C)(U) ⊂ L(C)(U), respectively, and generally both inclusions are proper.
Note L(R)(U) ⊂ L(C)(U).

In a complex inner product space (X,< · | · >) we can use the well-known
theory of orthogonal systems. Details about this topic can be found in [11] or
[19], or in many other books about functional analysis.

De�nition 4.2. Let (X,< · | · >) be a complex Hilbert space, i.e. it is a
complex inner product space which is complete. A subset ∅ 6= T ⊂ X is called
an orthonormal system if and only if for each pair of distinct elements ~x, ~y ∈ T
it holds < ~x |~y >= 0, and all ~x ∈ T are unit vectors, i.e. ‖~x‖ = 1.

An orthonormal system T is called an orthonormal basis if and only if T
is maximal. This means that if there is a second orthonormal system V with
T ⊂ V, it has to be T = V.

Note that generally an orthonormal basis of X is not a vector space basis
of X.

Each unit vector ~x provides an orthonormal system {~x}. It is well known
that there is an orthonormal basis T with {~x} ⊂ T ⊂ X. This shows that there
are orthonormal bases in all Hilbert spaces X 6= {~0}. Further note that an
orthonormal system T ⊂ X is an orthonormal basis in L(C)(T).

In Theorem 1.7 we already have described that the real subspace L(R)(T)
of the complex inner product space (X,< · |· >) has pure real angles. Here is
the proof of Theorem 1.7.

Proof. The set L(R)(T) is a real subspace of X by construction, and it has
a vector space basis T. The real vector space L(R)(T) has the closure L(R)(T)
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in X. For ~y, ~z ∈ L(R)(T) we know that ~y and ~z have representations as it is
shown in statement (3). It means that there is a countable set {~x1, ~x2, ~x3, . . .} ⊂
T and two sequences r1, r2, r3, . . . and s1, s2, s3, . . . of real numbers such that
~y =

∑∞
i=1 ri ·~xi and ~z =

∑∞
i=1 si ·~xi. Then it is easy to varify ~y+~z ∈ L(R)(T)

and also r · ~y ∈ L(R)(T), for each r ∈ R. This shows that L(R)(T) is a real
subspace of X.

Now we want to prove ∠(~y, ~z) ∈ R in the case of two non-zero vectors
~y, ~z ∈ L(R)(T). We compute the cosine of the angle of the pair (~y, ~z).

cos(∠(~y, ~z)) = cos

(
arccos

(
< ~y | ~z >
‖~y‖ · ‖~z‖

))
=

1

‖~y‖ · ‖~z‖
· < ~y | ~z >

=
1

‖~y‖ · ‖~z‖
·

 <
∞∑
i=1

ri · ~xi |
∞∑
j=1

sj · ~xj >


=

1

‖~y‖ · ‖~z‖
· lim
k→∞

 k∑
i=1

k∑
j=1

ri · sj · < ~xi | ~xj >


=

1

‖~y‖ · ‖~z‖
· lim
k→∞

(
k∑
i=1

ri · si· < ~xi | ~xi >

)
(T is orthonormal)

=
1

‖~y‖ · ‖~z‖
· lim
k→∞

(
k∑
i=1

ri · si

)
=

1

‖~y‖ · ‖~z‖
·
∞∑
i=1

ri · si.

Since cos(∠(~y, ~z)) is an element of C, it is clear that the last in�nite series∑∞
i=1 ri · si is convergent. We get cos(∠(~y, ~z)) = (

∑∞
i=1 ri · si) / (‖~y‖ · ‖~z‖),

and we con�rm that indeed the cosine of ∠(~y, ~z) is real, this means that the
angle ∠(~y, ~z) is real,too. The proof of Theorem 1.7 is �nished. �

The above proof demonstrates the existence of many real angles in each
complex inner product space. The following statement is in the opposite direc-
tion. It shows that the subsets of (X,< · |· >) which have only real angles
cannot be `arbitrarily large'. We formulate this as a precise statement.

Proposition 4.3. Let (X,< · |· >) be a complex inner product space.

Let n ∈ N be a natural number. The following two properties are equivalent.

• (1) There is an orthonormal system T := {~x1, ~x2, ~x3, . . . , ~xn} ⊂ X of n
vectors.

• (2) There exists a set B := {~v1, ~v2, ~v3, . . . , ~vn} ⊂ X of n elements such

that B is a R-linear independent set and all angles in L(R)(B) are real.

Before we provide the proof of Proposition 4.3 we formulate a corollary.
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Corollary 4.4. Let n ∈ N. We assume any n-dimensional complex

inner product space (X,< · |· >). (The real dimension of the real vector space

X is 2 · n). It is not possible to �nd a set B := {~v1, ~v2, . . . , ~vn, ~vn+1} ⊂ X
of n + 1 elements such that both B is R-linear independent, and all angles in

L(R)(B) are real.

Proof. There are at most n C-linear independent vectors in X. �

Now we prove Proposition 4.3, which is easy.

Proof. From (1) follows (2) trivially, because for the orthonormal system
T = {~x1, ~x2, . . . , ~xn} it holds that it is C-linear independent, hence R-linear
independent, and the inner product of two elements from T is either 0 or 1.

Also, for complex inner product spaces of in�nite dimension the conclusion
from (2) to (1) is trivial, since in this case an orthonormal system with the
cardinality of N always exists.

We assume a complex inner product space (X,< · |· >) with �nite
complex dimension and a set B ⊂ X with the properties of (2), i.e. all inner
products in L(R)(B) are real. We use the well-known method of Gram-Schmidt
to generate a set B̂ := {v̂1, v̂2, v̂3, . . . , v̂n} of n unit vectors. This method yields
a set B̂ which spans the same n-dimensional real subspace as B, i.e. L(R)(B) =
L(R)(B̂). By construction, the set B̂ consists of n R-linear independent vectors.
Because their inner products < v̂i |v̂j > are either 0 or 1, the set B̂ is even an
orthonormal system as de�ned in De�nition 4.2. This was required in (1), and
Proposition 4.3 is proven. �

At last we demonstrate that real angles are very useful to do classical
Euclidean geometry. We are still investigating complex inner product spaces
(X,< · |· >), and we consider the desirable equation

∠(~x, ~y) = ∠(~x, ~x+ ~y) + ∠(~x+ ~y, ~y) .(4)

Note that inner product spaces have the property (4), the linearity. We
know that for real numbers −1 ≤ r, s ≤ +1 there is the identity

arccos(r) + arccos(s) = arccos
(
r · s−

√
1− r2 − s2 + r2 · s2

)
.

Using this formula, it is a straightforward proof to show that equation
(4) is ful�lled for a real angle ∠(~x, ~y), i.e. < ~x |~y > ∈ R. To demonstrate
that a real angle is also necessary for equation (4) it is su�cient to consider the
special case of unit vectors ~x, ~y. The use of unit vectors simpli�es the proof.
Before the proof we mention a lemma.

Lemma 4.5. For all numbers z ∈ C it holds the identity

2 · arccos(z) = arccos(2 · z2 − 1) .
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Proof. We use cos (z) = 1
2 ·
[
ei·z + e−i·z

]
, and from this we can prove

easily cos (2 · w) = 2 · cos2(w) − 1, for w ∈ C. We set w := arccos(z),
and another application of the arccosine function gives the desired equation of
Lemma 4.5. �

Proposition 4.6. In a complex inner product space (X,< · |· >) let ~x, ~y
be two unit vectors. Equation (4) holds if and only if their angle ∠(~x, ~y) is real.

Proof. To prove Proposition 4.6 we assume a complex number r+ i · s :=
cos(∠(~x, ~y)) with two unit vectors ~x, ~y, i.e. ‖~x‖ = 1 = ‖~y‖. By De�nition 1.2
of the angle ∠(~x, ~y) this means r + i · s =< ~x | ~y >. We consider the right
hand side of equation (4), and we calculate

∠(~x, ~x+ ~y) + ∠(~x+ ~y, ~y) = arccos

(
< ~x | ~x+ ~y >

‖~x‖ · ‖~x+ ~y‖

)
+ arccos

(
< ~x+ ~y | ~y >
‖~x+ ~y‖ · ‖~y‖

)
= arccos

(
< ~x | ~x > + < ~x | ~y >

‖~x+ ~y‖

)
+ arccos

(
< ~x | ~y > + < ~y | ~y >

‖~x+ ~y‖

)
= arccos

(
2 ·
[

1+ < ~x | ~y >
‖~x+ ~y‖

]2
− 1

)
(by Lemma 4.5)

= arccos

(
2 ·
[

1 + 2 · (r + i · s) + (r + i · s)2

< ~x+ ~y | ~x+ ~y >

]
− 1

)
= arccos

(
2 ·
[

1 + 2 · r + r2 − s2 + i · (2 · s+ 2 · r · s)
1 + 2 · r + 1

]
− 1

)
(note (2))

= arccos

(
r + r2 − s2 + i · (2 · s+ 2 · r · s)

1 + r

)
= arccos

(
r − s2

1 + r
+ i · 2 · s

)
.

Obviously, the last term is equal arccos(r+i·s) = ∠(~x, ~y) only in the case
of s = 0, i.e. if and only if the angle ∠(~x, ~y) is real. The proof of Proposition
4.6 is established. �

With the properties of Theorem 1.3 and equation (4) we can do ordinary
Euclidean geometry even in complex Hilbert spaces, but only in those parts
where real angles occur. We will give two examples. As a �rst example we
prove that the sum of inner angles in a triangle is π.

Proposition 4.7. Let us assume a real angle ∠(~x, ~y) in a complex Hilbert

space, i.e. < ~x | ~y >∈ R. We get

∠(~x, ~y) + ∠(−~x, ~y − ~x) + ∠(−~y, ~x− ~y) = π.

Proof. We use equation (4), and Theorem 1.3 (An 4),(An 6),(An 7). If we
regard (4), the linearity (from the section `General De�nitions'), we see that all
angles in the following equation are real. We compute
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∠(~x, ~y) + [∠(−~x, ~y − ~x)] + [∠(−~y, ~x− ~y)]

= ∠(~x, ~y) + [∠(−~x, ~y)− ∠(−~x+ ~y, ~y)] + [∠(−~y, ~x)− ∠(−~y + ~x, ~x)] = π. �

As a second example we consider the `Law of Cosines'.

Proposition 4.8. Let ~x, ~y 6= ~0 be two vectors in a complex Hilbert space.

It holds the `Law of Cosines'

‖~x− ~y‖2 = ‖~x‖2 + ‖~y‖2 − 2 · ‖~x‖ · ‖~y‖ · cos(∠(~x, ~y))(5)

if and only if the angle ∠(~x, ~y) is real, or in other words < ~x | ~y >∈ R.

Proof. If the angle ∠(~x, ~y) is real, the proof of the Law of Cosines is
straightforward. In the case of a proper complex angle ∠(~x, ~y) the right hand
side of equation (5) is complex, while the left hand side is real. �

Note that the above theorems can be adapted to the complex situation,
e.g. the Law of Cosines can be expressed by ‖~x−~y‖2 = ‖~x‖2+‖~y‖2−‖~x‖·‖~y‖·
[cos(∠(~x, ~y)) + cos(∠(~y, ~x))], or alternatively < ~x|~y >= cos(∠(~x, ~y))·‖~x‖·‖~y‖.

At the end we should mention that in the last decades other concepts of
generalized angles in complex inner product spaces have been considered. Note
that the following concepts of angles (except ∠3, since the value of % may be
larger than 1, see Corollary 3.6) can be used in all complex normed spaces,
provided with the product of De�nition 1.1.

There were attempts to enforce pure real angles by the de�nitions ∠1, ∠2,
and ∠3, where

∠1(~x, ~y) := the real part of (∠(~x, ~y)) = real part of

(
arccos

(
< ~x | ~y >
‖~x‖ · ‖~y‖

))
,

∠2(~x, ~y) := the arccosine of the real part of

(
< ~x | ~y >
‖~x‖ · ‖~y‖

)
,

∠3(~x, ~y) := arccos(%) , for
< ~x | ~y >
‖~x‖ · ‖~y‖

= % · ei·ϕ ∈ C .

For more information and references see a paper [12] by Scharnhorst.

An interesting position is held by Froda in [4]. For the complex number
<~x | ~y>
‖~x‖·‖~y‖ = r + i · s he de�ned the complex angle ∠4(~x, ~y),

∠4(~x, ~y) := arccos (r) + i · arcsin (s).

Note that in the special case of a pure real non-negative product < ~x|~y >
all four angles coincide with our angle ∠(~x, ~y).
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