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In this work, we study the existence of renormalized solutions for a class of
nonlinear degenerated parabolic problem in the form

(0.1)
∂b(x, u)

∂t
− div(a(x, t, u,Du)) + div(φ(u)) = f in Q,

where b(x, u) is unbounded function on u, the Carath�eodory function a satis-
fying the coercivity condition, the general growth condition and only the large
monotonicity, the function φ is assumed to be continuous on R and not belong
to (L1

loc(Q))N . The data belongs to L1(Q).
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1. INTRODUCTION

Let Ω be a bounded open set of RN , p be a real number such that 2 < p <
∞, Q = Ω×]0, T [ and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions
(i.e., every component wi(x) is a measurable function which is positive a.e. in
Ω) satisfying some integrability conditions. The objective of this paper is to
study the following problem in the weighted Sobolev space:

(1.1)

∂b(x, u)

∂t
− div(a(x, t, u,Du)) + div(φ(u)) = f in Q,

b(x, u)(t = 0) = b(x, u0) in Ω

u = 0 in ∂Ω×]0, T [.

The data f and b(x, u0) lie in L1(Q) and L1(Ω), respectively. The func-
tions φ is just assumed to be continnous of R with values in RN . The operator
div(a(x, t, u,Du)) is a Leray-Lions operator which is coercive, and which grows
like |Du|p−1 with respect to |Du|, but which is not restricted by any growth
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condition with respect to u and only the large monotonicity (see assumption
(H2)) and b(x, u) is unbounded function on u.

Let us point out, the di�culties that arise in problem (1.1) are due to
the following facts: the data f and u0 only belong to L1, a satis�es the large
monotonicity that is

[a(x, t, s, ξ)− a(x, t, s, η)](ξ − η) ≥ 0 for all (ξ, η) ∈ RN × RN .

and the function φ(u) does not belong to (L1
loc(Q))N (because the function φ is

just assumed to be continuous on R). To overcome this di�culty, we will apply
Landes's technical (see [14, 24]) and the framework of renormalized solutions.
This notion was introduced by Diperna and P.-L. Lions [20] in their study of
the Boltzmann equation. This notion was then adapted to an elliptic version
of (1.1) by L. Boccardo et al. [8] when the right hand side is in W−1,p′(Ω), by
J.-M. Rakotoson [27] when the right hand side is in L1(Ω), and �nally by G.
Dal Maso, F. Murat, L. Orsina and A. Prignet [19] for the case of right hand
side is general measure data.

For the parabolic equation (1.1) the existence of weak solution has been
proved by J.-M. Rakotoson [26] with the strict monotonicity and a measure
data, the existence and uniqueness of a renormalized solution has been proved
by D. Blanchard and F. Murat [10] in the case where a(x, t, u,Du) is indepen-
dent of u, φ = 0, b(x, u) = u, and by D.Blanchard, F. Murat and H. Redwane
[11] with the large monotonicity on a.

For the degenerated parabolic equations the existence of weak solutions
have been proved by L. Aharouch et al. [3] in the case where a is strictly
monotone, φ = 0, b(x, u) = u and f ∈ Lp′(0, T,W−1, p′(Ω, w∗)). See also the
existence of renormalized solution by Y. Akdim et al. [7] in the case where
a(x, t, u,Du) is independent of u and φ = 0, b(x, u) = u.

Note that, this paper can be seen as a generalization of [3, 29] in weighted
case and as a continuation of [7].

The plan of the paper is as follows. In Section 2 we give some preliminaries
and the de�nition of weighted Sobolev spaces. In Section 3 we make precise all
the assumptions on a, φ, f and u0. In Section 4 we give some technical results.
In Section 5 we give the de�nition of a renormalized solution of (1.1) and we
establish the existence of such a solution (Theorem 5.3). Section 6 is devoted
to an example which illustrates our abstract result.

2. PRELIMINARIES

Let Ω be a bounded open set of RN , p be a real number such that 2 <
p <∞ and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions, i.e., every
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component wi(x) is a measurable function which is strictly positive a.e. in Ω.
Further, we suppose in all our considerations that, there exits

r0 > max(N, p) such that w
−r0
r0−p
i ∈ L1

loc(Ω),(2.1)

wi ∈ L1
loc(Ω),(2.2)

w
−1
p−1

i ∈ L1(Ω),(2.3)

for any 0 ≤ i ≤ N . We denote by W 1,p(Ω, w) the space of all real-valued
functions u ∈ Lp(Ω, w0) such that the derivatives in the sense of distributions
ful�ll

∂u

∂xi
∈ Lp(Ω, wi) for i = 1, . . . , N.

Which is a Banach space under the norm

(2.4) ‖u‖1,p,w =
[ ∫

Ω
|u(x)|pw0(x) dx+

N∑
i=1

∫
Ω
|∂u(x)

∂xi
|pwi(x) dx

]1/p
.

The condition (2.2) implies that C∞0 (Ω) is a subspace of W 1,p(Ω, w) and
consequently, we can introduce the subspace V = W 1,p

0 (Ω, w) of W 1,p(Ω, w) as
the closure of C∞0 (Ω) with respect to the norm (2.4). Moreover, condition (2.3)
implies that W 1,p(Ω, w) as well as W 1,p

0 (Ω, w) are re�exive Banach spaces.

We recall that the dual space of weighted Sobolev spaces W 1,p
0 (Ω, w) is

equivalent to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′
i , i = 0, . . . , N} and

where p′ is the conjugate of p i.e. p′ = p
p−1 (see [23]).

3. BASIC ASSUMPTIONS

Assumption (H1). For 2 ≤ p <∞, we assume that the expression

(3.1) ‖|u|‖V =
( N∑
i=1

∫
Ω
|∂u(x)

∂xi
|pwi(x) dx

)1/p

is a norm de�ned on V which equivalent to the norm (2.4), and there exist a
weight function σ on Ω such that,

σ ∈ L1(Ω) and σ−1 ∈ L1(Ω).

We assume also the Hardy inequality,

(3.2)
(∫

Ω
|u(x)|qσ dx

)1/q
≤ c
( N∑
i=1

∫
Ω
|∂u(x)

∂xi
|pwi(x) dx

)1/p
,
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holds for every u ∈ V with a constant c > 0 independent of u, and moreover,
the imbedding

(3.3) W 1, p(Ω, w) ↪→↪→ Lq(Ω, σ),

expressed by the inequality (3.2) is compact. Note that (V, ‖|.|‖V ) is a uniformly
convex (and thus, re�exive) Banach space.

Remark 3.1. If we assume that w0(x) ≡ 1 and in addition the integrability
condition: There exists ν ∈]Np ,+∞ [∩[ 1

p−1 ,+∞[ such that

(3.4) w−νi ∈ L1(Ω) and w
N
N−1

i ∈ L1
loc(Ω) for all i = 1, . . . , N.

Note that the assumptions (2.2) and (3.4) imply that,

(3.5) ‖|u‖| =
( N∑
i=1

∫
Ω
| ∂u
∂xi
|pwi(x) dx

)1/p
,

is a norm de�ned onW 1,p
0 (Ω, w) and its equivalent to (2.4) and that, the imbed-

ding

(3.6) W 1,p
0 (Ω, w) ↪→ Lp(Ω),

is compact for all 1 ≤ q ≤ p∗1 if p.ν < N(ν+1) and for all q ≥ 1 if p.ν ≥ N(ν+1)
where p1 = pν

ν+1 and p∗1 is the Sobolev conjugate of p1 (see [22], pp. 30�31).

Assumption (H2).

(3.7) b : Ω× R→ R

is a Carath�eodory function such that for every x ∈ Ω, b(x, .) is a strictly in-
creasing C1 − function with b(x, 0) = 0.

Next, for any k > 0, there exist λk > 0 and functions Ak ∈ L1(Ω) and
Bk ∈ Lp(Ω) such that

(3.8) λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣∣Dx

(
∂b(x, s)

∂s

)∣∣∣∣ ≤ Bk(x)

for almost every x ∈ Ω, for every s such that |s| ≤ k , we denote by Dx

(
∂b(x,s)
∂s

)
the gradient of ∂b(x,s)∂s de�ned in the sense of distributions.

For i = 1, ..., N and for any k > 0 there exist βk > 0 and a function
Ck(x, t) ∈ Lp

′
(Q) such that,

(3.9) |ai(x, t, s, ξ)| ≤ βkw
1
p

i (x)[Ck(x, t) +

N∑
j=1

w
1
p′
j (x)|ξj |p−1],
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for almost every x ∈ Ω, for every s such that |s| ≤ k and ξ ∈ RN .

[a(x, t, s, ξ)− a(x, t, s, η)](ξ − η) ≥ 0 for all (ξ, η) ∈ RN × RN ,(3.10)

a(x, t, s, ξ).ξ ≥ α
N∑
i=1

wi|ξi|p,(3.11)

φ : R→ RN is a continuous function,(3.12)

f is an element of L1(Q),(3.13)

u0 is measurable function de�ned on Ω such that b(x, u0) ∈ L1(Ω).(3.14)

Where α is strictly positive constant. We recall that, for k > 1 and s in
R, the truncation is de�ned as,

Tk(s) =

{
s if |s| ≤ k
k s
|s| if |s| > k.

4. SOME TECHNICAL RESULTS

Characterization of the time molli�cation of a function u. In order
to deal with time derivative, we introduce a time molli�cation of a function u
belonging to a some weighted Lebesgue space. Thus, we de�ne for all µ ≥ 0
and all (x, t) ∈ Q,

uµ = µ

∫ t

∞
ũ(x, s) exp(µ(s− t))ds, where ũ(x, s) = u(x, s)χ(0,T )(s).

Proposition 4.1 ([3]).

1) If u ∈ Lp(Q,wi) then uµ is measurable in Q and
∂uµ
∂t = µ(u− uµ) and,

‖uµ‖Lp(Q,wi)
≤ ‖u‖Lp(Q,wi)

.

2) If u ∈W 1,p
0 (Q,w), then uµ → u in W 1,p

0 (Q,w) as µ→∞.
3) If un → u in W 1,p

0 (Q,w) , then (un)µ → uµ in W 1,p
0 (Q,w).

Some weighted embedding and compactness results. In this sec-
tion, we establish some embedding and compactness results in weighted Sobolev
spaces, some trace results, Aubin's and Simon's results [30].

Let V = W 1, p
0 (Ω, w), H=L2(Ω, σ) and let V ∗=W−1,p′ , with (2 ≤ p <∞).

Let X = Lp(0, T ;W 1, p
0 (Ω, w)). The dual space of X is X∗ = Lp

′
(0, T, V ∗)

where 1
p + 1

p′ = 1 and denoting the space W 1
p (0, T, V,H) = {v ∈ X : v′ ∈ X∗}

endowed with the norm

‖u‖W 1
p

= ‖u‖X +
∥∥u′∥∥

X∗
,
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which is a Banach space. Here u′ stands for the generalized derivative of u, i.e.,∫ T

0
u′(t)ϕ(t)dt = −

∫ T

0
u(t)ϕ′(t)dt for all ϕ ∈ C∞0 (0, T ).

Lemma 4.2 ([31]).
1) The evolution triple V ⊆ H ⊆ V ∗ is veri�ed.

2) The imbedding W 1
p (0, T, V,H) ⊆ C(0, T,H) is continuous.

3) The imbedding W 1
p (0, T, V,H) ⊆ Lp(Q, σ) is compact.

Lemma 4.3 ([3]). Let g ∈ Lr(Q, γ) and let gn ∈ Lr(Q, γ), with ‖gn‖Lr(Q,γ)

≤ C, 1 < r <∞. If gn(x)→ g(x) a.e. in Q, then gn ⇀ g in Lr(Q, γ).

Lemma 4.4 ([3]). Assume that,

∂vn
∂t

= αn + βn in D′(Q)

where αn and βn are bounded respectively in X∗ and in L1(Q). If vn is bounded

in Lp(0, T ;W 1, p
0 (Ω, w)), then vn → v in Lploc(Q, σ).

Further vn → v strongly in L1(Q).

De�nition 4.5. A monotone map T : D(T )→ X∗ is called maximal mono-
tone if its graph

G(T ) = {(u, T (u)) ∈ X ×X∗ for all u ∈ D(T )}

is not a proper subset of any monotone set in X ×X∗.
Let us consider the operator ∂

∂t which induces a linear map L from the
subset D(L) = {v ∈ X : v′ ∈ X∗, v(0) = 0} of X into X∗ by

〈Lu, v〉X =

∫ T

0
〈u′(t), v(t)V dt〉 u ∈ D(L), v ∈ X.

Lemma 4.6 ([31]). L is a closed linear maximal monotone map.

In our study we deal with mappings of the form F = L + S where L is
a given linear densely de�ned maximal monotone map from D(L) ⊂ X to X∗

and S is a bounded demicontinuous map of monotone type from X to X∗.

De�nition 4.7. A mapping S is called pseudo-monotone with un ⇀ u,
Lun ⇀ Lu and lim

n→∞
sup〈S(un), un − u〉 ≤ 0, that we have

lim
n→∞

sup〈S(un), un − u〉 = 0 and S(un) ⇀ S(u) as n→∞.
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5. MAIN RESULTS

Consider the problem

(5.1)

b(x, u0) ∈ L1(Ω), f ∈ L1(Q)

∂b(x, u)

∂t
− div(a(x, t, u,Du)) + div(φ(u)) = f in Q

u = 0 on ∂Ω×]0, T [,

b(x, u(x, 0)) = b(x, u0) on Ω

De�nition 5.1. Let f ∈ L1(Q) and b(x, u0) ∈ L1(Ω). A real-valued func-
tion u de�ned on Ω×]0, T [ is a renormalized solution of problem (5.1) if
(5.2)
Tk(u) ∈ Lp(0, T ;W 1, p

0 (Ω, w)) for all (k ≥ 0) and b(x, u) ∈ L∞(0, T ;L1(Ω));

(5.3)

∫
{m≤|u|≤m+1}

a(x, t, u,Du)Du dxdt→ 0 as m→ +∞;

∂BS(x, u)

∂t
− div

(
S′(u)a(u,Du)

)
+ S′′(u)a(u,Du)Du

(5.4) +div(S′(u)φ(u))− S′′(u)φ(u)Du = fS′(u) in D′(Q);

for all functions S ∈W 2, ∞(R) which compact support in R, where BS(x, z) =∫ z
0
∂b(x,r)
∂r S′(r)dr and

(5.5) BS(x, u)(t = 0) = BS(x, u0) in Ω.

Remark 5.2. Equation (5.4) is formally obtained through pointwise mul-
tiplication of equation (5.1) by S′(u). However, while a(u,Du) and φ(u) does
not in general make sense in (5.1), all the terms in (5.4) have a meaning in
D′(Q).

Indeed, if M is such that supp(S′) ⊂ [−M,M ], the following identi�ca-
tions are made in (5.4):

• S(u) ∈ L∞(Q) since S is a bounded function.
• S′(u)a(u,Du) identi�es with S′(u)a(TM (u), DTM (u)) a.e. in Q. Since

|TM (u)| ≤M a.e. in Q, assumptions (3.9) imply that

|ai(x, t, TM (u), DTM (u))| ≤ βMw
1
p

i (x)

(
CM (x, t) +

N∑
i=1

w
1
p′
j (x)

∣∣∣∣∂TM (u)

∂xj

∣∣∣∣p−1
)
.

We obtain that S′(u)a(TM (u), DTM (u)) ∈
N∏
i=1

Lp
′
(Q,w∗i ).

• S′′(u)a(u,Du)Du identi�es with S′′(u)a(TM (u), DTM (u))DTM (u) we
have S′′(u)a(TM (u), DTM (u))DTM (u) ∈ L1(Q).
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• S′′(u)φ(u)Du and S′(u)φ(u) respectively identify with S′′(u)φ(TM (u))
DTM (u) and S′(u)φ(TM (u)). Due to the properties of S′ and to (3.12), the
functions S′, S′′ and φoTM are bounded on R so that (5.2) implies that
S′(u)φ(TM (u)) ∈ (L∞(Q))N , and S′′(u)φ(TM (u))DTM (u) ∈ Lp(Q,w)

• S′(u)f belongs to L1(Q) .
The above considerations show that equation (5.4) holds in D′(Q) and

that
∂BS(x, u)

∂t
∈ Lp′(0, T ;W−1, p′(Ω, w∗i )) + L1(Q).

Due to the properties of S and (5.4), ∂S(u)
∂t ∈ L

p′(0, T ;W−1, p′(Ω, w∗i )) +
L1(Q), which implies that S(u) ∈ C0([0, T ];L1(Ω)) so that the initial condition
(5.5) makes sense, since, due to the properties of S (increasing) and (3.8), we
have

(5.6)
∣∣BS(x, r)−BS(x, r′)

∣∣ ≤ Ak(x)
∣∣S(r)− S(r′)

∣∣ for all r, r′ ∈ R.

Theorem 5.3. Let f ∈ L1(Q) and b(x, u0) ∈ L1(Ω). Assume that (H1)

and (H2) hold true. then, there exists at least a renormalized solution u of the

problem (5.1) (in the sense of De�nition 5.1).

Remark 5.4. The statement of Theorem 5.3 generalized in weighted case
the analogous in [29] and [7] (with b(x, u) = u).

Remark 5.5. Since, the function φ(u) does note belong to
(
L1
loc(Q)

)N
.

Then the problem (5.1) can have a renormalized solution, but not a weak
solution.

Proof. Step 1: The approximate problem.
For n > 0, let us de�ne the following approximation of b, a, φ, f and u0;

(5.7) bn(x, r) = b(x, Tn(r)) +
1

n
r for n > 0,

In view of (5.7), bn is a Carath�eodory function and satis�es (3.8), there
exist λn > 0 and functions An ∈ L1(Ω) and Bn ∈ Lp(Ω) such that

λn ≤
∂bn(x, s)

∂s
≤ An(x) and

∣∣∣∣Dx

(
∂bn(x, s)

∂s

)∣∣∣∣ ≤ Bn(x) a.e. in Ω, s ∈ R.

(5.8) an(x, t, s, d) = a(x, t, Tn(s), d) a.e. in Q, ∀s ∈ R, ∀d ∈ RN ,

In view of (5.8), an satisfy (3.11) and (3.9), there exists Cn ∈ Lp
′
(Q) and

βn > 0 such that
(5.9)

|ani (x, t, s, ξ)| ≤ βnw
1
p

i (x)[Cn(x, t) +

N∑
j=1

w
1
p′
j (x)|ξj |p−1], for all (s, ξ) ∈ R×RN ,
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(5.10) φn is a Lipschitz continuous bounded function from R into RN ,

such that φn uniformly converges to φ on any compact subset of R as n tends
to +∞,
(5.11)
fn ∈ Lp

′
(Q) and fn → f a.e. in Q and strongly in L1(Q) as n→ +∞,

u0n ∈ D(Ω) : ‖bn(x, u0n)‖L1 ≤ ‖b(x, u0)‖L1 ,

(5.12) bn(x, u0n)→ b(x, u0) a.e. in Ω and strongly in L1(Ω).

Let us now consider the approximate problem:

(5.13)

∂bn(x, un)

∂t
− div(an(x, t, un, Dun)) + div(φn(un)) = fn in D′(Q),

un = 0 in (0, T )× ∂Ω,

bn(x, un(t = 0)) = bn(x, u0n) in Ω.

As a consequence, proving existence of a weak solution un ∈ Lp(0, T ;
W 1, p

0 (Ω, w)) of (5.13) is an easy task (see e.g. [25, 28]).

Step 2: The estimates derived in this step rely on standard techniques for
problems of type (5.13).

Using in (5.13) the test function Tk(un)χ(0,τ), we get, for every τ ∈ [0, T ].

(5.14)

〈∂bn(x, un)

∂t
, Tk(un)χ(0,τ)〉+

∫
Qτ

a(x, t, Tk(un), DTk(un))DTk(un)dxdt

+

∫
Qτ

φn(un)DTk(un)dxdt =

∫
Qτ

fnTk(un)dxdt,

which implies that,

(5.15)

∫
Ω
Bn
k (x, un(τ))dx+

∫ τ

0

∫
Ω
a(x, t, Tk(un), DTk(un))DTk(un)dxdt

+

∫
Qτ

φn(un)DTk(un)dxdt =

∫
Qτ

fnTk(un)dxdt+

∫
Ω
Bn
k (x, u0n)dx,

where Bn
k (x, r) =

∫ r
0 Tk(s)

∂bn(x,s)
∂s ds. The Lipschitz character of φn and Stokes'

formula together with the boundary condition 2 of problem (5.13) give

(5.16)

∫ τ

0

∫
Ω
φn(un)DTk(un)dxdt = 0.

Due to the de�nition of Bn
k we have

(5.17) 0 ≤
∫

Ω
Bn
k (x, u0n)dx ≤ k

∫
Ω
|bn(x, u0n)| dx ≤ k ‖b(x, u0)‖L1(Ω) .

Using (5.16), (5.17) and Bn
k (x, un) ≥ 0, it follows from (5.15) that
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(5.18)

∫ τ

0

∫
Ω
a(x, t, Tk(un), DTk(un))DTk(un)dxdt

≤ k(‖fn‖L1(Q) + ‖bn(x, u0n)‖L1(Ω)) ≤ Ck,

Thanks to (3.11) we have

(5.19) α

∫
Q

N∑
i=1

wi(x)

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p dxdt ≤ Ck, ∀k ≥ 1.

We deduce from that above inequality (5.15) and (5.17) that

(5.20)

∫
Ω
Bn
k (x, un)dx ≤ k(‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)) ≡ Ck.

Then, Tk(un) is bounded in Lp(0, T ;W 1, p
0 (Ω, w)), Tk(un) ⇀ vk in L

p(0, T ;

W 1, p
0 (Ω, w)), and by the compact imbedding (3.6) gives,

Tk(un)→ vk strongly in Lp(Q, σ) and a.e. in Q.

Let k > 0 large enough and BR be a ball of Ω, we have,

k meas({|un| > k} ∩BR × [0, T ]) =

∫ T

0

∫
{|un|>k}∩BR

|Tk(un)| dxdt

≤
∫ T

0

∫
BR

|Tk(un)| dxdt

≤
(∫

Q
|Tk(un)|p σdxdt

) 1
p
(∫ T

0

∫
BR

σ1−p′dxdt

) 1
p′

≤ TcR

(∫
Q

N∑
i=1

wi(x)

∣∣∣∣∂Tk(un)

∂xi

∣∣∣∣p dxdt
) 1

p

≤ ck
1
p ,

which implies that,

meas({|un| > k} ∩BR × [0, T ]) ≤ c1

k
1− 1

p

, ∀k ≥ 1.

So, we have

lim
k→+∞

(meas({|un| > k} ∩BR × [0, T ])) = 0.

Now, we turn to prove the almost every convergence of un and bn(x, un).
Consider now a function non decreasing gk ∈ C2(R) such that gk(s) = s for
|s| ≤ k

2 and gk(s) = k for |s| ≥ k. Multiplying the approximate equation by
g′k(bn(x, un)), we get

(5.21)
∂gk(bn(x, un))

∂t
− div(a(x, t, un, Dun)g′k(bn(x, un)))
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+ a(x, t, un, Dun)g′′k(bn(x, un))Dx

(
∂bn(x, un)

∂s

)
Dun

− div(g′k(bn(x, un))φn(un)) + g′′k(bn(x, un))Dx

(
∂bn(x, un)

∂s

)
φn(un)Dun

= fng
′
k(bn(x, un))

in the sense of distributions, which implies that

(5.22) gk(bn(x, un)) is bounded in Lp(0, T ;W 1, p
0 (Ω, w)),

and

(5.23)
∂gk(bn(x, un))

∂t
is bounded in X∗ + L1(Q),

independently of n as soon as k < n. Due to De�nition (3.7) and (5.7) of bn, it
is clear that

{|bn(x, un)| ≤ k} ⊂ {|un| ≤ k∗}
as soon as k < n and k∗ is a constant independent of n. As a �rst consequence
we have
(5.24)

Dgk(bn(x, un)) = g′k(x, bn(un))Dx

(
∂bn(x, Tk∗(un))

∂s

)
DTk∗(un) a.e. in Q

as soon as k < n. Secondly, the following estimate holds true∥∥∥∥g′k(bn(x,un))Dx

(
∂bn(x,Tk∗(un))

∂s

)∥∥∥∥
L∞(Q)

≤
∥∥g′k∥∥L∞(Q)

( max
|r|≤k∗

(
Dx

(
∂bn(x, s)

∂s

))
+1).

As a consequence of (5.19), (5.24) we then obtain (5.22). To show that
(5.23) holds true, due to (5.21) we obtain

(5.25)
∂gk(bn(x, un))

∂t
= div(a(x, t, un, Dun)g′k(bn(x, un)))

− a(x, t, un, Dun)g′′k(bn(un))Dx

(
∂bn(x, un)

∂s

)
+ div(g′k(bn(x, un))φn(un)

− g′′k(bn(un))Dx

(
∂bn(x, un)

∂s

)
φn(un)Dun + fng

′
k(bn(x, un)).

Since suppg′k and suppg′′k are both included in [−k, k], un may be re-
placed by Tk∗(un) in each of these terms. As a consequence, each term on
the right-hand side of (5.25) is bounded either in Lp

′
(0, T ;W−1,p′(Ω, w∗)) or in

L1(Q). Hence, lemma 4.4 allows us to conclude that gk(bn(x, un)) is compact
in Lploc(Q, σ).

Thus, for a subsequence, it also converges in measure and almost every
where in Q, due to the choice of gk, we conclude that for each k, the sequence
Tk(bn(x, un)) converges almost everywhere inQ (since we have, for every λ > 0,)
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meas({|bn(x, un)− bm(x, um)| > λ} ∩BR × [0, T ])

≤ meas({|bn(x, un)| > k}∩BR×[0, T ])+meas({|bm(x, um)| > k}∩BR×[0, T ])

+meas({|gk(bn(x, un))− gk(bm(x, um))| > λ}).
Let ε > 0, then, there exist k(ε) > 0 such that,

meas({|bn(x, un)− bm(x, um)| > λ} ∩BR × [0, T ]) ≤ ε
for all n,m ≥ n0(k(ε), λ,R).

This proves that (bn(x, un)) is a Cauchy sequence in measure in BR×[0, T ],
thus converges almost everywhere to some measurable function v. Then for a
subsequence denoted again un,

(5.26) un → u a.e. in Q,

and

(5.27) bn(x, un)→ b(x, u) a.e. in Q,

we can deduce from (5.19) that,

(5.28) Tk(un) ⇀ Tk(u) weakly in Lp(0, T ;W 1, p
0 (Ω, w))

and then, the compact imbedding (3.3) gives,

Tk(un)→ Tk(u) strongly in Lq(Q, σ) and a.e. in Q.

Which implies, by using (3.9), for all k > 0 that there exists a function

hk ∈
N∏
i=1

Lp
′
(Q,w∗i ), such that

(5.29) a(x, t, Tk(un), DTk(un)) ⇀ hk weakly in
N∏
i=1

Lp
′
(Q,w∗i ).

We now establish that b(x, u) belongs to L∞(0, T ;L1(Ω)). Using (5.26)
and passing to the limit-inf in (5.20) as n tends to +∞, we obtain that

1

k

∫
Ω
Bk(x, u)(τ)dx ≤ [‖f‖L1(Q) + ‖u0‖L1(Ω)] ≡ C,

for almost any τ in (0, T ). Due to the de�nition of Bk(x, s) and the fact that
1
kBk(x, u) converges pointwise to b(x, u), as k tends to +∞, shows that b(x, u)
belong to L∞(0, T ;L1(Ω)) .

Step 3: This step is devoted to introduce for k ≥ 0 �xed a time regular-
ization of the function Tk(u) and to establish the following limits:
(5.30)

a(x, t, Tk(un), DTk(un)) ⇀ a(x, t, Tk(u), DTk(u)) weakly in
N∏
i=1

Lp
′
(Q,w∗i ),
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as n tends to +∞. This proof is devoted to introduce for k ≥ 0 �xed, a time reg-
ularization of the function Tk(u) in order to perform the monotonicity method.

Firstly, we prove the following lemma:

Lemma 5.6.

(5.31) lim
m→+∞

lim
n→+∞

∫
{m≤|un|≤m+1}

a(x, t, un, Dun)Dundxdt = 0,

for any integer m ≥ 1,

Proof. Taking T1(un − Tm(un)) as a test function in (5.13), we obtain
(5.32)〈

∂bn(x, un)

∂t
, T1(un − Tm(un))

〉
+

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt

+

∫
Q

div

[∫ un

0
φ(r)T ′1(r − Tm(r))

]
dxdt =

∫
Q
fnT1(un − Tm(un)).

Using the fact that
∫ un

0 φ(r)T ′1(r − Tm(r))dxdt ∈ Lp(0, T ;W 1, p
0 (Ω, w))

and Stokes' formula, we get

(5.33)

∫
Ω
Bm
n (x, un)(T )dx+

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt

≤
∫
Q
|fnT1(un − Tm(un))| dxdt+

∫
Ω
Bm
n (x, u0n)dx,

where Bm
n (r) =

∫ r
0
∂bn(x,s)

∂s T1(s − Tm(s))ds. In order to pass to the limit as n
tends to +∞ in (5.33), we use Bm

n (x, un)(T ) ≥ 0 and (5.11),(5.12), we obtain
that

(5.34)

lim
m→+∞

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt

≤
∫
{|u(x)|>m}

|f | dxdt+

∫
{|u0(x)|>m}

|b(x, u0(x))| dx.

Finally, by (3.14), (3.13) and (5.34) we get

(5.35) lim
m→+∞

lim
n→+∞

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt = 0.

The very de�nition of the sequence (Tk(u))µ for µ > 0 (and �xed k) we
establish the following lemma.

Lemma 5.7. Let k ≥ 0 be �xed. Let (Tk(u))µ the molli�cation of Tk(u).
Let S be an increasing C∞(R)-function such that S(r) = r for |r| ≤ k and

supp S′ is compact. Then,

(5.36) lim
µ→+∞

lim
n→+∞

∫ T

0

〈
∂bn(x, un)

∂t
, S′(un)(Tk(un)− (Tk(u))µ)

〉
dxdt ≥ 0,
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where 〈., .〉 denotes the duality pairing between L1(Ω) + W−1,p′(Ω, w∗) and

L∞(Ω) ∩W 1, p
0 (Ω, w).

Proof. See H. Redwane [29].
We prove the following lemma, which is the key point in the monotonicity

arguments.

Lemma 5.8. The subsequence of un satis�es for any k ≥ 0
(5.37)

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω
a(Tk(un), DTk(un))DTk(un)dxdsdt ≤

∫ T

0

∫ t

0

∫
Ω
hkDTk(u)dxdsdt,

where hk is de�ned in (5.29).

Proof. In the following we adapt the above-mentionned method to prob-
lem (5.1) and we �rst introduce a sequence of increasing C∞(R)-functions Sm
such that

Sm(r) = r if |r| ≤ m,
suppS′m ⊂ [−(m+ 1),m+ 1],∥∥S′′m∥∥L∞ ≤ 1, for any m ≥ 1.

We use the sequence Tk(u)µ of approximations of Tk(u), and plug the test
function S′m(un)(Tk(un)− (Tk(u))µ) (for n > 0 and µ > 0) in (5.13). Through
setting, for �xed k ≤ 0,

Wn
µ = Tk(un)− (Tk(u))µ,

we obtain upon integration over (0, t) and then over (0, T ):

(5.38)∫ T

0

∫ t

0

〈
∂bn(x, un)

∂t
, S′m(un)Wn

µ

〉
dtds+

∫ T

0

∫ t

0

∫
Ω
S′m(un)an(un, Dun)DWn

µ dxdsdt

+

∫ T

0

∫ t

0

∫
Ω
S′′m(un)an(un, Dun)DunW

n
µ dxdsdt−

∫ T

0

∫ t

0

∫
Ω
S′m(un)φn(un)DWn

µ dxdsdt

−
∫ T

0

∫ t

0

∫
Ω
S′′m(un)φn(un)DunW

n
µ dxdsdt =

∫ T

0

∫ t

0

∫
Ω
fnS

′
m(un)Wn

µ dxdsdt.

In the following we pass the limit in (5.38) as n tends to +∞, then µ tends
to +∞ and then m tends to +∞, the real number k ≥ 0 being kept �xed. In
order to perform this task we prove below the following results for �xed k ≥ 0 :

(5.39) lim inf
µ→+∞

lim
n→+∞

∫ T

0

∫ t

0

〈
∂Bn

m(x, un)

∂t
,Wn

µ

〉
dtds ≥ 0, for any m ≥ k,

(5.40) lim
n→+∞

lim
µ→+∞

∫ T

0

∫ t

0

∫
Ω
S′m(un)φn(un)DWn

µ dxdsdt = 0, for any m ≥ 1,
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(5.41)

lim
n→+∞

lim
µ→+∞

∫ T

0

∫ t

0

∫
Ω
S′′m(un)φn(un)DunW

n
µ dxdsdt = 0, for any m ≥ 1,

(5.42)

lim
m→+∞

lim sup
µ→+∞

lim sup
n→+∞

∣∣∣∣∫ T

0

∫ t

0

∫
Ω
S′′m(un)a(un, Dun)DunW

n
µ dxdsdt

∣∣∣∣ = 0, m ≥ 1

(5.43) lim
µ→+∞

lim
m→+∞

∫ T

0

∫ t

0

∫
Ω
fnS

′
m(un)Wn

µ dxdsdt = 0.

Proof of (5.39). The function Sm belongs to C∞(R) and is increasing. We
have for m ≥ k, Sm(r) = r for |r| ≤ k while suppS′m is compact. In view of
the de�nition of Wn

µ , lemma 5.7 applies with S = Sm for �xed m ≥ k. As a
consequence (5.39) holds true.

Proof of (5.40). In order to avoid repetitions in the proofs of (5.43), let
us summarize the properties of Wn

µ . For �xed µ > 0

Wn
µ ⇀ Tk(u)− (Tk(u))µ weakly in Lp(0, T ;W 1, p

0 (Ω, w)), as n→ +∞∥∥Wn
µ

∥∥
L∞(Q)

≤ 2k, for any n > 0 and for any µ > 0

we deduce that for �xed µ > 0

Wn
µ → Tk(u)− (Tk(u))µ a.e. in Q and in L∞(Q)weak − ∗, as n→ +∞

one has suppS′′m ⊂ [−(m+ 1),−m] ∪ [m,m+ 1] for any �xed m ≥ 1, we have

(5.44) S′m(un)φn(un)DWn
µ = S′m(un)φn(Tm+1(un))DWn

µ a.e. in Q,

since suppS′m ⊂ [−m − 1,m + 1]. Since S′m is smooth and bounded, (3.12),
(5.10), and un → u a.e. in Q lead to
(5.45)
S′m(un)φn(Tm+1(un))→ S′m(u)φ(Tm+1(u)) a.e. in Q and in L∞(Q)weak−∗,
as n tends to +∞. As a consequence of (5.47) and (5.45), we deduce that

(5.46) lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
S′m(un)φn(un)DWn

µ dxdsdt =

= lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
S′m(un)φ (Tm+1(u)) (DTk(u)−D(Tk(u))µ)dxdsdt,

for any µ > 0. Passing to the limit as µ → +∞ in (5.46) we conclude that
(5.40) holds true.

Proof of (5.41). For �xed m ≥ 1, and by the same arguments that those
that lead to (5.47), we have
(5.47)
S′′m(un)φn(un)DunW

n
µ = S′′m(un)φn(Tm+1(un))DTm+1(un)Wn

µ a.e. in Q.
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From (3.12), un → u a.e. in Q and (5.28), it follows that for any µ > 0

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
S′′m(un)φn(un)DunW

n
µ dxdsdt

=

∫ T

0

∫ t

0

∫
Ω
S′′m(un)φ (Tm+1(u)) (DTk(u)−D(Tk(u))µ)dxdsdt,

for any µ > 0. Passing to the limit as µ → +∞ in (5.46) we conclude that
(5.41) holds true.

Proof of (5.42). One has suppS′′m ⊂ [−(m + 1),−m] ∪ [m,m + 1] for any
m ≥ 1. As a consequence∣∣∣∣∫ T

0

∫ t

0

∫
Ω
S′′m(un)a(un, Dun)DunW

n
µ dxdsdt

∣∣∣∣
≤ T

∥∥S′′m(un)
∥∥
L∞

∥∥Wn
µ

∥∥
L∞

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt,

for any m ≥ 1, any µ > 0 and any n ≥ 1. It is possible to obtain

lim sup
µ→+∞

lim sup
n→+∞

∣∣∣∣∫ T

0

∫ t

0

∫
Ω
S′′m(un)a(un, Dun)DunW

n
µ dxdsdt

∣∣∣∣
≤ C lim sup

n→+∞

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt,

for any m ≥ 1, where C is a constant independent of m.

Appealing now to (5.31) it possible to pass the limit as m tends to +∞
to establish (5.42).

Proof of (5.43). Lebesgue's convergence theorem implies that for any
µ > 0 and any m ≥ 1

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
fnS

′
m(un)Wn

µ dxdsdt =

∫ T

0

∫ t

0

∫
Ω
fS′m(u)(Tk(u)− (Tk(u)µ))dxdsdt

Now, for �xedm ≥ 1, using lemma 4.1 and passing to the limit as µ→ +∞
in the above equality to obtain (5.43).

We now turn back to the proof of lemma 5.8. Due to (5.39)�(5.42) and
(5.43), we are in a position to pass the limit-sup when n tends to +∞, then
to the limit-sup when µ tends +∞ and then to the limit as m tends to +∞ in
(5.38). We obtain by using the de�nition of Wn

µ that for any k ≥ 0

lim
m→+∞

lim sup
µ→+∞

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω
S′m(un)an(un, Dun)(DTk(un)−D(Tk(u))µ)dxdsdt≤0.
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Since S′m(un)an(un, Dun)DTk(un) = a(un, Dun)DTk(un) for k ≤ n and
k ≤ m, the above inequality implies that for k ≤ m

(5.48)

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω
an(un, Dun)DTk(un)dxdsdt

≤ lim
m→+∞

lim sup
µ→+∞

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω
S′m(un)an(un, Dun)D(Tk(u))µdxdsdt.

The right-hand side of (5.48) is computed as follows. We have for n ≥
m+ 1:

S′m(un)an(un, Dun) = S′m(un)a(Tm+1(un), DTm+1(un)) a.e. in Q.

Due to the weak convergence of a(DTm+1(un)) it follows that for �xed
m ≥ 1

S′m(un)an(un, Dun) ⇀ S′m(un)hm+1 weakly in
N∏
i=1

Lp
′
(Q,w∗i ),

when n tends to +∞. The strong convergence of (Tk(u))µ to Tk(u) in

Lp(0, T ;W 1, p
0 (Ω, w)) as µ tends to +∞, then we conclude that

(5.49)

lim
µ→+∞

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
S′m(un)an(un, Dun)D(Tk(u))µdxdsdt

=

∫ T

0

∫ t

0

∫
Ω
S′m(un)hm+1DTk(u)dxdsdt,

as soon as k ≤ m, S′m(r) = 1 for |r| ≤ m. Now for k ≤ m we have,

a(Tm+1(un), DTm+1(un))χ{|un|<k} = a(Tk(un), DTk(un))χ{|un|<k} a.e. in Q,

which implies that, passing to the limit as n→ +∞,

(5.50) hm+1χ{|un|<k} = hkχ{|un|<k} a.e. in Q− {|u| = k} for k ≤ m.

As a consequence of (5.50) we have for k ≤ m,

(5.51) hm+1DTk(u) = hkDTk(u) a.e. in Q.

Recalling (5.48), (5.49), (5.51) we conclude that (5.37) holds true and the
proof of Lemma 5.8 is complete.

In this Lemma we prove the following monotonicity estimate:

Lemma 5.9. The subsequence of un satis�es for any k ≥ 0
(5.52)

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
[a(Tk(un),DTk(un))−a(Tk(un), DTk(u))][DTk(un)−DTk(u)]dxdsdt=0.
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Proof. Let k ≥ 0 be �xed. The character (3.10) of a(x, t, s, d) with respect
to d implies that
(5.53)

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
[a(Tk(un),DTk(un))−a(Tk(un), DTk(u))][DTk(un)−DTk(u)]dxdsdt≥0.

To pass to the limit-sup as n tends to +∞ in (5.53) imply that

a(Tk(un), DTk(u))→ a(Tk(u), DTk(u)) a.e. in Q,

and that,

|ai(Tk(un), DTk(u))| ≤ βw
1
p

i (x)

Ck(x, t) +
N∑
j=1

w
1
p′
j (x)

∣∣∣∣∂Tk(u)

∂xj

∣∣∣∣p−1
 a.e. in Q,

uniformly with respect to n. It follows that when n tends to +∞

(5.54) a(Tk(un), DTk(u))→ a(Tk(u), DTk(u)) strongly in
N∏
i=1

Lp
′
(Q,w∗i ).

Lemma 5.8, weak convergence ofDTk(un) , a(Tk(un), DTk(un)) and (5.54)
make it possible to pass to the limit-sup as n → +∞ in (5.53) and to obtain
the result .

In this lemma we identify the weak limit hk and we prove the weak-L1

convergence of the �truncated� energy a(T (un), DTk(un))DT (un) as n tends
to +∞.

Lemma 5.10. For �xed k ≥ 0, we have

(5.55) hk = a(T (u), DTk(u)) a.e. in Q,

(5.56)
a(T (un), DTk(un))DT (un) ⇀ a(T (u), DTk(u))DTk(u) weakly in L1(Q).

Proof. The proof is standard once we remark that for any k ≥ 0, any
n > k and any d ∈ RN

an(Tk(un), d) = a(Tk(un), d) a.e. in Q

which together with weak convergence of (Tk(un)) and a(DTk(un)) and (5.54)
we obtain from (5.52)
(5.57)

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω
a(Tk(un), DTk(un))DTk(un)dxdsdt =

∫ T

0

∫ t

0

∫
Ω
hkDTk(u)dxdsdt.

The usual Minty's argument applies in view of weak convergence of (Tk(un))
and a(DTk(un)) and (5.57). It follows that (5.55) hold true.
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In order to prove (5.56), we observe that monotone character of a and
(5.52) give that for any k ≥ 0 and any T ′ < T

(5.58) [a(Tk(un), DTk(un))− a(Tk(u), DTk(u))][DTk(un)−DTk(u)]→ 0

strongly in L1((0, T ′)× Ω) as n→ +∞.

Moreover, weak convergence of (Tk(un)) and a(DTk(un)), (5.58), (5.54)
and (5.55) imply that

a(Tk(un), DTk(un))DTk(u) ⇀ a(Tk(u), DTk(u))DTk(u) weakly in L1(Q),

and

a(Tk(un), DTk(u))DTk(u)→ a(Tk(un), DTk(u))DTk(u) strongly in L1(Q)

as n→ +∞.

Using the above convergence results in (5.58) shows that for any k ≥ 0
and any T ′ < T
(5.59)
a(Tk(un), DTk(un))DTk(un) ⇀ a(Tk(u), DTk(u))DTk(u) weakly in L1((0, T ′)×Ω),

as n→ +∞.
At the possible expense of extending the functions a(x, t, s, d), f on a

time interval (0, T̄ ) with T̄ > T in such a way that assumptions with a and f
hold true with T̄ in place of T , we can show that the convergence result (5.59)
is still valid in L1(Q)-weak, namely that (5.56) holds true.

Step 4: In this step we prove that u satis�es (5.3).

Lemma 5.11. The limit u of the approximate solution un of (5.13) satis�es

lim
m→+∞

∫
{m≤|u|≤m+1}

a(u,Du)Du dxdt = 0.

Proof. To this end, observe that for any �xed m ≥ 0 one has∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt =

∫
Q
a(un, Dun)(DTm+1(un)−DTm(un))dxdt

=

∫
Q
a(Tm+1(un), DTm+1(un))DTm+1(un)dxdt−

∫
Q
a(Tm(un),DTm(un))DTm(un)dxdt.

According to (5.56), one is at liberty to pass to the limit as n→ +∞ for



148 Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane 20

�xed m ≥ 0 and to obtain
(5.60)

lim
n→+∞

∫
{m≤|un|≤m+1}

a(un, Dun)Dundxdt

=

∫
Q
a(Tm+1(u), DTm+1(u))DTm+1(u)dxdt−

∫
Q
a(Tm(u), DTm(u))DTm(u)dxdt

=

∫
{m≤|un|≤m+1}

a(u,Du)Dudxdt.

Taking the limit as m→ +∞ in (5.60) and using the estimate (5.31) show
that u satis�es (5.3) and the proof of Lemma is complete.

Step 5: In this step, u is shown to satisfy (5.4) and (5.5). Let S be a
function in W 1,∞(R) such that S has a compact support. Let M be a positive
real number such that supp(S′) ⊂ [−M,M ]. Pointwise multiplication of the
approximate equation (5.13) by S′(un) leads to

(5.61)

∂Bn
S(x, un)

∂t
− div[S′(un)a(un, Dun)] + S′′(un)a(un, Dun)Dun

+ div(S′(un)φn(un))− S′′(un)φn(un)Dun = fS′(un) in D′(Q).

It was follows we pass to the limit as in (5.61) n tends to +∞.

• Limit of
∂BnS(x,un)

∂t . Since S is bounded and continuous, un → u a.e. in
Q implies that Bn

S(x, un) converges to BS(x, u) it a.e. in Q and L∞ weak�*.

Then
∂BnS(x,un)

∂t converges to ∂BS(x,u)
∂t in D′(Q) as n tends to +∞.

• Limit of −div[S′(un)an(un, Dun)]. Since supp(S′) ⊂ [−M,M ], we have
for n ≥M

S′(un)an(un, Dun) = S′(un)a(TM (un), DTM (un)) a.e. in Q.

The pointwise convergence of un to u and (5.55) as n tends to +∞ and
the bounded character of S′ permit us to conclude that

(5.62) S′(un)an(un, Dun) ⇀ S′(u)a(TM (u), DTM (u)) in
N∏
i=1

Lp
′
(Q,w∗i ),

as n tends to +∞. S′(u)a(TM (u), DTM (u)) has been denoted by S′(u)a(u,Du)
in equation (5.4).

• Limit of S′′(un)a(un, Dun)Dun. As far as the 'energy' term

S′′(un)a(un, Dun)Dun = S′′(un)a(TM (un), DTM (un))DTM (un) a.e. in Q.
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The pointwise convergence of S′(un) to S′(u) and (5.56) as n tends to
+∞ and the bounded character of S′′ permit us to conclude that
(5.63)
S′′(un)an(un, Dun)Dun ⇀ S′′(u)a(TM (u), DTM (u))DTM (u) weakly in L1(Q).

Recall that

S′′(u)a(TM (u), DTM (u))DTM (u) = S′′(u)a(u,Du)Du a.e. in Q.

• Limit of S′(un)φn(un). Since supp(S′) ⊂ [−M,M ], we have

S′(un)φn(un) = S′(u)φn(TM (u)) a.e. in Q.

As a consequence of (5.10) and un → u a.e. in Q, it follows that

S′(un)φn(un)→ S′(u)φ(TM (u)) strongly in
N∏
i=1

Lp
′
(Q,w∗i ),

as n tends to +∞. The term S′(u)φ(TM (u)) is denoted by S′(u)φ(u).
• Limit of S′′(un)φn(un)Dun. Since S′ ∈ W 1,∞(R) with supp(S′) ⊂

[−M,M ], we have

S′′(un)φn(un)Dun = φn(TM (un))DS′(un) a.e. in Q.

Moreover, DS′(un) converges to DS′(u) weakly in Lp(Q,w) as n tends to
+∞, while φn(TM (un)) is uniformly bounded with respect to n and converges
a.e. in Q to φ(TM (u)) as n tends to +∞. Therefore

S′′(un)φn(un)Dun ⇀ φ(TM (u))DS′(u) weakly in Lp(Q,w).

The term φ(TM (u))DS′(u) = S′′(un)φ(u)Du.
• Limit of S′(un)fn. Due to (5.11) and un → u a.e. in Q, we have

S′(un)fn → S′(u)f strongly in L1(Q) as n→ +∞.

As a consequence of the above convergence result, we are in a position to
pass to the limit as n tends to +∞ in equation (5.61) and to conclude that u
satis�es (5.4).

It remains to show that BS(x, u) satis�es the initial condition (5.5). To
this end, �rstly remark that, S being bounded, Bn

S(x, un) is bounded in L∞(Q).
Secondly, (5.61) and the above considerations on the behavior of the terms of

this equation show that
∂BnS(x,un)

∂t is bounded in L1(Q)+Lp
′
(0, T ;W−1,p′(Ω, w∗)).

As a consequence, an Aubin's type lemma (see, e.g. [30]) implies that Bn
S(x, un)

lies in a compact set of C0([0, T ], L1(Ω)). It follows that on the one hand,
Bn
S(x, un)(t = 0) = Bn

S(x, un0 ) converges to BS(x, u)(t = 0) strongly in L1(Ω).
On the other hand, the smoothness of S implies that

BS(x, u)(t = 0) = BS(x, u0) in Ω.



150 Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane 22

As a conclusion of step 1 to step 5, the proof of theorem 5.3 is com-
plete. �

Remark 5.12. We obtain the same result if the data is the forme f−div(F ),

whith f ∈ L1(Ω) and F ∈
N∏
i=1

Lp
′
(Ω, w1−p′

i ).

Remark 5.13. Under the assumption of theorem 5.3, if we suppose that
the seconde member are nonnegative, then we obtain a nonnegative solution.
Indeed, if we take Tk(u− Th(u+))χ(0,τ) a test function in (5.1), we have
(5.64) ∫

Ω
Bh
k (x, u(τ))dx+

∫ τ

0

∫
Ω
a(x, t, u,Du)DTk(u− Th(u+))dxdt

+

∫
Qτ

φ(u)DTk(u− Th(u+))dxdt =

∫
Qτ

fTk(u− Th(u+))dxdt+

∫
Ω
Bh
k (x, u0)dx,

where Bh
k (x, r) =

∫ r
0 Tk(s− Th(s+))∂b(x,s)∂s ds. The Lipschitz character of φ and

stokes' formula together with the boundary condition 2 of problem (5.1) give

(5.65)

∫ τ

0

∫
Ω
φ(u)DTk(u− Th(u+))dxdt = 0.

Using (5.65), and Bh
k (x, u) ≥ 0, it follows that

(5.66)∫
Q
a(x, t, u,Du)DTk(u− Th(u+))dxdt ≤

∫
Q
fTk(u−Th(u+))dxdt+

∫
Ω
Bh
k (x, u0)dx,

we remark also, by using f ≥ 0∫
Q
fTk(u− Th(u+))dxdt ≤

∫
{u≥h}

fTk(u− Th(u))dxdt.

On the other hand, thanks to (3.11), we conclude
(5.67)

α

∫
Q

N∑
i=1

wi(x)

∣∣∣∣∂Tk(u−)

∂xi

∣∣∣∣p dxdt ≤ ∫
{u≥h}

fTk(u−Th(u))dxdt+

∫
Ω
Bh
k (x, u0)dx.

Letting h tend to in�nity, we can easily deduce

Tk(u
−) = 0, ∀ k > 0,

which implies that

u ≥ 0.
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6. EXAMPLE

Let us consider the following special case: b(x, r) = Z(x)C(s) where Z ∈
W 1, p(Ω, w), Z(x) ≥ α > 0 and C ∈ C1(R) such that ∀ k > 0 : 0 < λk ≡
inf
|s|≤k

C ′(s) and C(0) = 0.

(6.1) 0 < λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣∣∇x(∂b(x, s)∂s

)∣∣∣∣ ≤ Bk(x)

φ : r ∈ R→ (φi)i=1,...,N ∈ RN ,
where

φi(r) = exp(αir) i = 1, ..., N, αi ∈ R
φ is a continuous function.

And

ai(x, t, s, d) = wi(x) |di|p−1 sgn(di), i = 1, ..., N,

with wi(x) a weight function (i = 1, ..., N).

For simplicity, we suppose that

wi(x) = w(x) for i = 1, ..., N − 1, wN (x) ≡ 0.

It is easy to show that the ai(x, t, s, d) are Carath�eodory functions satis-
fying the growth condition (3.9) and the coercivity (3.11). On the order hand
the monotonicity condition is veri�ed. In fact,

N∑
i=1

(
ai(x, t, s, d)− a(x, t, s, d′)

)
(di − d′i)

= w(x)

N−1∑
i=1

(
|di|p−1 sgn(di)−

∣∣d′i∣∣p−1
sgn(d′i)

)
(di − d′i) ≥ 0,

for almost all x ∈ Ω and for all d, d′ ∈ RN . This last inequality can not be strict,
since for d 6= d′ with dN 6= d′N and di = d′i, i = 1, ..., N − 1, the corresponding
expression is zero.

In particular, let us use special weight function, w, expressed in terms of
the distance to the bounded ∂Ω. Denote d(x) = dist(x, ∂Ω) and set w(x) =
dλ(x), such that

(6.2) λ < min
( p
N
, p− 1

)
.
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Remark 6.1. The condition (6.2) is su�cient to show the integrability
condition (3.4). Finally, the hypotheses of Theorem 5.3 are satis�ed. Therefore,
for all f ∈ L1(Q), the following problem:

(6.3)



b(x, u) ∈ L∞([0, T ];L1(Ω));

Tk(u) ∈ Lp(0, T ;W 1, p
0 (Ω, w)),

lim
m→+∞

∫
{m≤|u|≤m+1}

N∑
i=1

wi

∣∣∣ ∂u∂xi ∣∣∣p−1
∂u
∂xi
sgn

(
∂u
∂xi

)
dxdt = 0;

BS(x, r) =
∫ r

0
∂b(x,σ)
∂σ S′(σ)dσ,

−
∫
QBS(x, u)∂ϕ∂t dxdt+

∫
Q S(u)

N∑
i=1

wi

∣∣∣ ∂u∂xi ∣∣∣p−1
sgn

(
∂u
∂xi

)
∂ϕ
∂xi

dxdt

+
∫
Q S
′(u)

N∑
i=1

wi

∣∣∣ ∂u∂xi ∣∣∣p−1
sgn

(
∂u
∂xi

)
∂u
∂xi
ϕdxdt

+
∫
Q

N∑
i=1

S(u)exp(αiu) ∂ϕ∂xidxdt−
∫
Q

N∑
i=1

S′(u)exp(αiu) ∂u∂xiϕdxdt

=
∫
Q fS

′(u)ϕdxdt,

BS(u)(t = 0) = BS(u0) in Ω,

∀ ϕ ∈ C∞0 (Q) and S ∈W 1,∞(R) with S′ ∈ C∞0 (R),

has at least one renormalised solution.
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