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We use the framework and results developed by Meyer in [7] to establish for
general irreducible Markov processes some properties of quasi-stationary distri-
butions well known in the continuous time denumerable space case. We also set
out a class of processes that do not satisfy the (usually assumed) condition of
asymptotic remoteness of absorbtion, nevertheless still having quasi-stationary
distributions.
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1. INTRODUCTION

Quasi-stationary-distributions were introduced to describe the long-term
behaviour of Markov processes expected to die out, but maintaining a sort of
equilibrium up to their death.

To make things precise letX = (Ω,F ,F t, Xt, θt, Xt, P
x) be a right Markov

processes with state space (E, E), semigroup (Pt)t≥0, resolvent (Uα)α≥0 and
lifetime ζ. Denote as usual P ν (·) =

∫
ν (dx)P x (·) .

De�nition 1. A quasi-stationary distribution (in short a QSD) for X is a
probability measure ν on (E, E) satisfying

P ν (Xt ∈ A, t < ζ) = ν (A)P ν (t < ζ)

for any t > 0, A ∈ E .

In order to eventually associate a QSD with the Markov process X, the
latter will be subject to certain conditions that we now introduce:

(i) m-irreducibility with respect to a measure m satisfying mU1 � m,
i.e.

m (A) > 0⇒ U1 (x,A) > 0 for every x ∈ E.
(ii) Pt1 (x) > 0 for every t > 0, x ∈ E.
(iii) P x (ζ) <∞ for every x ∈ E.
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Comments on the hypotheses. The condition of m-irreducibility is tra-
ditionally imposed on the process when looking for QSD's. According to it
whenever A is an absorbing set we have either A = ∅ or m(Ac) = 0. Applying
this property to At = {x : Pt1 (x) = 0} for t > 0 (which is absorbing since
x → Pt1 (x) is excessive) we get that either Pt1 (x) > 0 for each x, or Pt1 = 0
a.e. m, the latter being excluded by the long term analysis we have in mind.
Similarly, x → P x (ζ) being excessive we either have P x (ζ) = ∞ for every
x ∈ E, or P x (ζ) <∞ a.e.m which leads to the assumption (iii).

We end up this introduction by recalling some results from [6]. First, we
have the following

De�nition 2. A probability measure ν on (E, E) is a quasi-limiting distri-

bution for X (in short a QLD) if there exists a probability measure α on (E, E)
such that for every A ∈ E

lim
t→∞

Pα (Xt ∈ A | t < ζ) = ν (A) .

From Proposition 1 in [6] we get

Proposition 1. A probability measure ν on (E, E) is a QLD for X if and

only if it is a QSD for X.

Also, we shall repeatedly make use of the following result which is Propo-
sition 3 in [6].

Proposition 2. For any QSD ν there exists λν ∈]0,∞[ such that

P ν (ζ > t) = exp [−tλν ] .

In particular, for any γ ∈]0, λν [ we have P ν (exp (γζ)) <∞.

This proposition entails the equivalence between QSDs and γ-invariant
probabilities and as a consequence for any QSD ν we have λν ≤ λ, where λ
stands for the decay parameter of the irreducible process X.

In Section 2 we recall the framework of reviving a process having ζ ∈]0,∞[,
by means of a given probability measure µ on the state space and use this
technique to give the precise form of the invariant probability measure µ̃ of
the revived process as well as to establish the fact that within the class of
probabilities µ satisfying Pµ (ζ) <∞, µ is a QSD for X if and only if µ = µ̃.

In Section 3, we discuss a class of processes that have QSD's although
these processes do not satisfy the condition of asymptotic remoteness of extinc-
tion. Particular examples of such processe are given in [9].
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2. CLASSICAL REVIVAL TECHNIQUE

In the context for QSD's for continuous time denumerable Markov chains
a very useful tool is the �returned� or �resurrected� process: a process that
behaves like the initial one up to the moment of extinction when it returns to
the state space according to a probability µ (see [1, 2, 4, 8]). This technique
is essentially based on the connection between the Q-matrix of the resurrected
chain and the Q-matrix of the initial one. Since for general Markov processes
perturbing a generator with a measure is a very delicate matter we propose
instead the existing technique of revival of a process (see [5] and [7]). Actually
a very particular case of this theory will be involved.

Let X = (Ω,F ,F t, Xt, θt, Xt, P
x) be the initial right Markov process sub-

ject to the conditions set out in section 1 and let µ be a probability on (E, E) .
Recall that this means that we may asumme ζ ∈]0,∞[.

Obtaining the revived process (X̃, µ) = (Ω̃, F̃ ,F̃t, X̃t, θ̃t, X̃t, P̃
x) requires

the following elements: consider

Ω̃ :=
∞∏
i=1

Ωi, Ωi = Ω for every i = 1, 2...

s−1 (ω̃) := 0, s0 (ω̃) := ζ (ω) , si (ω̃) :=
i∑

j=0
ζ (ωj) , ω̃ ∈ Ω̃

and for si−1 (ω̃) ≤ t < si (ω̃) de�ne

θ̃t (ω̃) :=
(
θt−si−1(ω̃) (ωi, ωi+1, ...)

)
X̃t (ω̃) := Xt−si−1(ω̃) (ωi)

Finally, the probabilities associated with (X̃, µ) are P̃ x := P x
⊗ ∞⊗

i=1
Pµ..

The particular form of the σ-algebras associated with (X̃, µ) will be ir-
relevant in the sequel and we shall omit their de�nitions (which however are
crucial in [7] in the proof of the fact that (X̃, µ) is a right process).

Note that the measure µ appears only in the de�nition of the probabilities
(and consequently in the de�nition of the associated semigroup and resolvent
as well); the other elements are de�ned in a standard way independent of it.

Due to the strong law of the large numbers applied to the sequences

(sn − sn−1)n≥1 and

(
sn∫

sn−1

1B

(
X̃s

)
ds

)
n≥1

we have ζ̃ = ∞ P̃ x-a.s. and

(X̃, µ) is Harris recurrent with respect to the measure m. Denote by µ̃ be
the unique (up to multiplicative constants) invariant measure of (X̃, µ).

For reasons that will be subsequently clear we shall restrict our attention
to measures in the class

M := {µ : probability on (E, E) such that Pµ (ζ) <∞}.
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We shall denote by Fµ (v) := Pµ (ζ ≤ v) .

Proposition 3. For any µ ∈M the measure µ̃ is given by

µ̃ (B) := [Pµ (ζ)]−1 Pµ
(∫ ζ

0
1B (Xs) ds

)
.

Proof. It is enough to check that µ̃P̃t (f) ≤ µ̃ (f) for any bounded, non-
negative f and any t, since the process X̃ is Harris recurrent the only excessive
probability measure is the invariant one.∫
µU (dx) P̃tf (x) =

∞∑
κ=0

∫
µU (dx) P̃ x

[
f
(
X̃t

)
; sk−1 ≤ t < sk

]
=

=
∞∑
κ=0

∞∫
0

Pµ
(
P̃Xu

[
f
(
X̃t

)
; sk−1 ≤ t < sk

]
;u < ζ

)
du =

=
∞∑
κ=0

∞∫
0

P̃µ
(
P̃ X̃u

[
f
(
X̃t

)
; sk−1 ≤ t < sk

]
;u < s0

)
du =

=
∞∑
κ=0

∞∫
0

P̃µ
[
f
(
X̃t+u

)
; sk−1 ≤ t+ u < sk;u < s0

]
du.

In the last equality we have applied the simple Markov property of (X̃, µ)
and the fact that sj ◦ θ̃u = sj − u whenever u < s0. We now separate the �rst
term of the sum and get

∞∫
0

P̃µ
(
f
(
X̃t+u

)
; 0 ≤ t+ u < s0

)
= Pµ

∫ ∞
t

f (Xv) 1v<ζdv =

∫ ∞
t

µPv (f) dv.

As for the remaining part we have

∞∑
κ=1

∞∫
0

P̃µ
(
f
(
X̃t+u

)
; sk−1 ≤ t+ u < sk;u < s0

)
du =

=
∞∑
κ=1

P̃µ
∫ sk
sk−1

(
f
(
X̃v

)
; t ≤ v < t+ s0

)
dv =

=
∞∑
κ=1

P̃µ
∫ sk(ω̃)
sk−1(ω̃)

(
f
(
Xv−sk−1(ω̃) (ωk)

)
; t ≤ v < t+ s0 (ω̃)

)
dv ≤

≤
∞∑
κ=1

∫ t
0 P

µ (f (Xs (ωk)) , s < ζ (ωk)) P̃
µ (sk−1 − s0 ≤ t− s < sk−1) ds.
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Since F
(n)
µ (v) = P̃µ (sn−1 ≤ v) and the last sum equals∫ t

0
µPs (f)

∞∑
κ=1

[
F (k−1)
µ (v)− F (k)

µ (v)
]

=

∫ t

0
µPs (f) . �

We now turn to the second previously announced result, namely

Proposition 4. Let µ ∈M. Then µ is a QSD for X if and only if µ = µ̃.

Proof. Suppose �rst that µ is a QSD for X. To get µ = µ̃ it is enough to
check that in this case µ is an invariant measure for (X̃, µ). To this end let

µP̃t (f) = P̃µ
(
f
(
X̃t

))
=
∞∑
k=0

P̃µ
(
f
(
X̃t

)
; sk−1 ≤ t < sk

)
=

=
∞∑
k=0

P̃µ
(
f
(
Xt−sk−1(ω̃) (ωk)

)
; sk−1 (ω̃) ≤ t < sk (ω̃)

)
=

=
∞∑
k=0

∫ t
0 P

µ (f (Xt−s (ωk)) ; 0 ≤ t− s < ζ (ωk)) dP̃µ (sk−1 ≤ s) =

=
∞∑
k=0

∫ t
0 µPt−s (f) dF

(k)
µ (s) =

∞∑
k=0

∫ t
0 µ (f)µPt−s (1) dF

(k)
µ (s) =

= µ (f)
∞∑
k=0

(
F

(k)
µ (t)− F (k+1)

µ (t)
)

= µ (f) .

To prove the converse, note that µ = µ̃ implies, due to the particular form
of µ̃, that µ (U1A) = µ (A)µ (U1) . By the resolvent equation we get for every
λ ≥ 0 that

µ
(
Uλ1A

)
= µ (A)µ (U1) [1 + λµ (U1)]−1

whence µ
(
Uλ1A

)
= µ (A)µ

(
Uλ1

)
for any λ ≥ 0, A ∈ E . Also, the function t→

µ (Pt1A) is right continuous since from the equality µ = µ̃ we get that the mea-

sure µ is excessive for (Pt) : µ (Pt1A) = µ̃ (Pt1A) ≤ µ̃
(
P̃t1A

)
= µ̃ (A) = µ (A) .

The uniqueness of the Laplace transform now implies µ (Pt1A) = µ (A)µ (Pt1)
for every A ∈ E , t ≥ 0 and thus, µ is a QSD. �

3. ASYMPTOTICAL REMOTENESS
OF EXTINCTION VERSUS FAST EXPLOSION

In this section the state space (E, E) of the process is assumed locally
compact with a countable base. As usual a point ∆ is adjoined to E as a point
to in�nity if E is not compact and as an isolated point if E is compact.The
space E∆ thus, obtained is endowed with the σ-algebra of Borel sets E∆.

In discussing the existence of QSD's in case of a continuous time denu-
merable Markov chain the following condition was imposed in [4]:

(AR) : lim
x→∆

Pt1 (x) = 1 for every t > 0
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(this was called asymptotic remoteness of the absorbing state in [9]).

It is also proved in [4] that under (AR) a necessary and su�cient condition
for the existence of a QSD is :

(∗) ∃ γ > 0 such that {x : P x (exp (γζ)) <∞} 6= ∅.

But Pakes in [9] gives examples of processes for which (AR) does not hold
without preventing the existence of QSD's.

On the other hand in the context of Feller processes irreducible by open
sets Sato [10] shows that imposing the condition

(FE) : lim
x→∆

Pt1 (x) = 0 for every t > 0

there exists a probability measure µ which is λ0-invariant, where

λ0 := lim
t→∞

[
−t−1 log sup

x∈E
Pt1 (x)

]
.

As λ0 > 0 under (FE) µ turns out to be a QSD for X. In a way condition
(FE) (coming from fast explosion) is more compatible with (∗) since it actually
implies

(∗∗) for every γ<λ0 we have sup
x∈E

P x (exp (γζ)) <∞.

Further, adding the condition that the process is strong Feller (which is
always true in the denumerable case) it is proved in [3] that the exponential
decay λ of the process is equal to λ0 and that (by the results in [12])

lim
t→∞

Pt (x,A)

Pt1 (x)
= µ (A) for every x ∈ E.

Actually in [12] this holds up to an m-null set, which due to the absolute
continuity underlying the strong Feller property vanishes here.

Thus, in this particular case, we have the best situation, i.e. what is called
in [6] the existence of Yaglom limits.
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