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In this paper, we give some su�cient conditions which guarantee practical uni-
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Lyapunov functional method. In this way, we extend some existing results under
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1. INTRODUCTION

In this paper, we study the practical stability of nonlinear time-varying
system of the form

ẋ1 = f1(t, x1) + g(t, x)x2,(1.1)

ẋ2 = f2(t, x2),(1.2)

where x1 ∈ Rn, x2 ∈ Rm, and x := col(x1, x2). The function f1, f2 and g
are continuous, locally Lipschitz in x uniformly in t, and f1 is continuously
di�erentiable in both arguments.

For related works in the autonomous case, see the papers [17, 18] by
Sontag and further bibliography cited therein. See also [6, 12�15, 19]. In
particular, Sontag showed that the input to state stability (ISS) is closed under
composition. It is also worth noticing that Jiang et al. [5, 8, 9] generalized the
concept of the ISS to the concept of input to state to practical stability (ISPS).

Recently, Chaillet and Loria in [2] and [3] studied the uniform semi-global
practical asymptotic stability of the cascade system under some hypotheses. In
[1] Benabdallah et al. investigated global practical uniform exponential stability
of such dynamical systems by using a known result by Corless which appeared
in [4]. Some good results related to the subject have been obtained, see [1�19].

The purpose of this paper is to establish su�cient conditions for the prac-
tical exponential stability of a class of nonlinear nonautonomous systems. In
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the spirit of a result of [4], we develop the practical exponential stability with
more general assumptions. We obtain a new theorem with more general com-
parable conditions which will allow us to generalize some results by Benabdal-
lah et al. [1].

This paper is organized as follows. First in Section 2, we give some def-
initions and results about practical uniform exponential stability. Then, in
Section 3, after giving some su�cient conditions to guarantee that a nonlinear
time-varying is practically uniformly exponentially stable system:

(1.3) ẋ1 = f1(t, x1),

we introduce suitable conditions on function g(t, x) and we show that if both
systems (1.2) and (1.3) are practically uniformly exponentially stable, then
(1.1)�(1.2) is practically uniformly exponentially stable.

2. PRELIMINARIES

We consider the following system

(2.1) ẋ(t) = f(t, x(t)), x(t0) = x0

where t ∈ R+ and x ∈ Rn. We denote by

Br = {x ∈ Rn : ‖x‖ ≤ r}, and Br = {x ∈ Rn : ‖x‖ ≥ r}.

2.1. Exponential Convergence to a Ball

De�nition 2.1. The system (2.1) is (globally, uniformly) exponentially
convergent to Br (or Br is globally uniformly exponentially stable) i� there
exists a > 0 with the property that, for any initial conditions t0 ∈ R and
x0 ∈ Rn, there exists C(x0) ≥ 0 such that, if x(.) : R+ → Rn is any solution of
(2.1) with x(t0) = x0, then

(2.2) ‖x(t)‖ ≤ r + C(x0)exp[−a(t− t0)] for all t ≥ t0.

System (2.1) is globally practically uniformly exponentially stable
(G.U.P.A.S.) if there exists r > 0 such that Br is globally uniformly expo-
nentially stable.

Note that (2.2) implies that

‖x(t)‖ ≤ r + C(x0) for all t ≥ t0.

Hence, the solutions of (2.1) are bounded and can be extended inde�nitely.
In the above de�nition, a is called an exponential rate of convergence; the
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number r is called an asymptotic (norm). If the system (2.1) satis�es the
conditions of the above de�nition with lim

x0→0
C(x0) = 0, then the system is said

to be (globally, uniformly) exponentially stable to within Br. If, in addition,
r = 0, then the system is exponentially stable about zero.

2.2. Comparison principle

Quite often when we study the equation ẋ = f(t, x) we need to compute
bounds on the solution x(t) without computing the solution it self. The com-
paraison lemma is one tool that can be used toward that goal. It applies to
a situation where the derivative of scalar di�erentiable function V (t) satis�es
inequality of the form V̇ (t) ≤ f(t, V (t)) for all t in certain interval.

Lemma 2.2. Let V (t) a continuous function whose derivative V̇ (t) satis�es
the di�erential inequality

V̇ (t) ≤ −a(t)V (t) + b(t),

where a and b are continuous functions. Then

V (t) ≤ eσ(t)V (t0) +

∫ t

t0

e−σ(s)b(s)ds,

where σ(t) = −
∫ t
t0
a(s)ds.

3. MAIN RESULTS

3.1. Practical exponential stability of nonautonomous systems

We present in this section our contribution. Our �rst theorem gives suf-
�cient conditions for convergence exponential of Bρ. We start this section by
giving a result from [4] on the exponential stability of (2.1), with the existence
of a uniform Lyapunov function.

Condition 3.1. There exists a continuously di�erentiable function V :
R+ × Rn −→ R and scalars c1, c2 > 0 which satisfy

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2 ,

for all x ∈ Rn, such that, for some scalars c3 > 0 and k > 0

V (t, x) > k =⇒ V̇ (t, x) ≤ −2c3(V (t, x)− k).
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Theorem 3.2 ([4]). Suppose that the system (2.1) satis�es Condition 3.1.

Then (2.1) is exponentially convergent to Bρ with rate c3, where

c(x0) =


0 if V (t0, x0) ≤ k,√
V (t0, x0)− k

c1
if V (t0, x0) > k,

with ρ =

√
k

c1
. Also, (2.1) is exponentially stable to within Bρ.

In the theorem below, we give su�cient conditions for the exponential
stability of (2.1) with a more general Lyapunov-like function.

Condition 3.3. There exists a continuously di�erentiable function V :
R+ × Rn −→ R and scalars c1, c2, c3, p, q, r, k > 0 which satisfy

(3.1) c1 ‖x‖p ≤ V (t, x) ≤ c2 ‖x‖q ,

(3.2) V̇ (t, x) ≤ −c3p(‖x‖r − k),

for all x ∈ W =


Bδ if p > q where δ =

(
c2
c1

) 1
p−q

,

Bη if p < q where η =

(
c1
c2

) 1
p−q

.

Theorem 3.4. Suppose that the system (2.1) satis�es condition 3.3. Then,

(2.1) is exponentially convergent to Bρ, where

ρ =



(
c2
c1

) 1
p−q

if p > q,

p

√
kc2

c1ηr−q
if p < q ≤ r,

p

√
max{c2(k)

q
r , V (t0, x0)}
c1

if p < q and q > r.

Proof. We �rst prove that the solutions are bounded. Then, we prove the
exponentially stability of Bρ.

a) Boundedness of solutions. We distinguish three cases of the behavior
of V̇ .

(1) If V̇ (t) ≤ 0, since V is a positive de�nite function, then V is a decreasing
function. Hence, V is necessarily bounded and from (3.1) we have

‖x(t)‖ ≤ p

√
V (t0, x0)

c1
.
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(2) If V̇ (t) ≥ 0, from Condition 3.3 it follows that

‖x(t)‖ ≤ r
√
k.

(3) If V̇ is oscillatory, there exists (tn)n≥0, tn ≥ 0 and lim
n→+∞

tn = +∞

such that V̇ (tn) = 0. Without loss of generality we assume that for
t ∈ [tn; tn+1] we have V̇ (t) ≥ 0 which implies that ‖x(t)‖ ≤ r

√
k. For

t ∈ [tn+1; tn+2] we have V̇ (t) ≤ 0 implies that V (t) ≤ V (tn+1). Hence,

‖x(t)‖ ≤ r
√
k.

b) Practical exponential stability of solutions. If p > q, from (3.1) we get

‖x‖q
[
c1 ‖x‖p−q − c2

]
≤ 0.

Hence,

‖x‖ ≤
(
c2
c1

) 1
p−q

= δ,

witch implies that

‖x(t)‖ ≤ ρ+ c(x0)e
−α(t−t0),

with ρ = δ and c(x0) = 0.

If p < q, from (3.1) we have

‖x‖p
[
c1 − c2 ‖x‖q−p

]
≤ 0 =⇒ ‖x‖ ≥

(
c1
c2

) 1
q−p

:= η.

Using (3.2), we treat two cases:

1) For r ≥ q : we have

V̇ (t, x) ≤ −c3p(‖x‖q ‖x‖r−q − k), for ‖x‖ ≥ η,

then

V̇ (t, x) ≤ −c3p(ηr−q ‖x‖q − k)

≤ −c3η
r−qp

c2
(V (t, x)−K),

such that K =
c2k

ηr−q
. We conclude by Theorem 3.2 that

‖x(t)‖ ≤ ρ+ c(x0)e
−α(t−t0),

where ρ = p

√
K

c1
, α =

c3η
r−q

c2
, and c(x0) =

p

√
(V (t0, x0)−K)

c1
.
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2) For r < q : we have

V (t, x) ≤ max{c2 (k)
q
r , V (t0, x0)},

then
‖x(t)‖ ≤ ρ+ c(x0)e

−α(t−t0),

with ρ =
p

√
max{c2 (k)

q
r , V (t0, x0)}
c1

and c(x0) = 0. �

Theorem 3.5. Suppose that the system (2.1) satis�es condition 3.3 with

p = q = r and W = Rn. Then, (2.1) is globally exponentially convergent to

Bρ, where

ρ = p

√
kc2
c1
.

Proof. Our proof starts with the observation that using condition 3.3
we get

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f(t, x)

≤ −c3p(‖x‖r − k)

≤ −c3p
c2

[V (t, x)− kc2].

We conclude by Theorem 3.2 that

V (t, x) ≤ kc2 + (V (t0, x0)− kc2)e
− c3

c2
p(t−t0).

Since for all a, b > 0 and p ≥ 1 ,

(a+ b)
1
p ≤ a

1
p + b

1
p ,

then
‖x(t)‖ ≤ ρ+ c(x0e

−α(t−t0),

with ρ = p

√
kc2
c1

, α =
c3
c2
, and

c(x0) =


0 if V (t0, x0) ≤ kc2,

p

√
(V (t0, x0)− kc2)

c1
if V (t0, x0) > kc2. �

3.2. Practical exponential stability of cascade systems

In this section, we give su�cient conditions that guarantee the practical
uniform exponential stability of system (1.1)�(1.2). We start this section by
giving a result from [1] on the practical exponential stability of nonlinear time-
varying cascade systems, with the existence of a uniform Lyapunov function.
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Theorem 3.6 ([1]). If assumptions (H1) and (H2) below hold and the in-

terconnection term is bounded, i.e., there exists a constant M > 0 such that

‖g(t, x)‖ ≤ M for all (t, x), then system (1.1)�(1.2) is practically globally uni-

formly exponentially stable.

H1) There exists a continuously di�erentiable function V1 and some positive
numbers c1, c2, c3, c4, and k1 such that

c1 ‖x1‖2 ≤ V1(t, x1) ≤ c2 ‖x1‖2 ,
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) ≤ −c3V1(t, x1) + k1,∥∥∥∥∂V1∂x1

∥∥∥∥ ≤ c4 ‖x1‖ .

H2) There exists a continuously di�erentiable function V2 and some positive
numbers b1, b2, b3, and k2 such that

b1 ‖x2‖2 ≤ V2(t, x2) ≤ b2 ‖x2‖2 ,
∂V2
∂t

+
∂V2
∂x2

f2(t, x2) ≤ −b3V2(t, x2) + k2.

We propose in this part to state theorems generalizing Theorem 3.6.
Indeed, in Theorem 3.6 we assume that the term of interconnection veri�es
‖g(t, x)‖ ≤M, there are therefore the upper boundedness of g(t, x), whereas in
the following theorem we suppose that the perturbation term g(t, x) satis�es
the linear growth bound

(3.3) ‖g(t, x)‖ ≤ ε ‖x‖+M, for all t ≥ 0,

where M is a positive constant and ε > 0 .

Theorem 3.7. If the assumptions (H1) and (H2) hold and the intercon-

nection term is bounded, i.e. there exists a constants M, ε > 0 such that

‖g(t, x)‖ ≤ ε ‖x‖+M for all (t, x), then system (1.1)�(1.2) is practically uni-

formly exponentially stable.

Proof. The time derivative of V1(t, x) along the trajectories of (1.1)�(1.2) is

V̇1(t, x1) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2

Using assumption (H1) and (3.3) we obtain

V̇1(t, x1) ≤ −c3V1(t, x1) + k1 + c4 ‖x1‖ ‖x2‖ (ε ‖x‖+M).
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From assumption (H2) ẋ2 = f2(t, x2) is practically exponentially stable
by Theorem 3.2. Hence, there exists λ such that ‖x2‖ ≤ λ. Using ‖x‖ ≤
‖x1‖+ ‖x2‖ we obtain

V̇1(t, x1) ≤ −c3c1 ‖x1‖2 + k1 + c4λε ‖x1‖2 + c4λ(ελ+M) ‖x1‖
≤ −(c3c1 − c4λε) ‖x1‖2 + c4λ(ελ+M) ‖x1‖+ k1.

ε is chosen such that µ1 = c3c1 − c4λε > 0. Therefore, one obtains

V̇1(t, x1) ≤ −µ1 ‖x1‖2 + c4λ(ελ+M) ‖x1‖+ k1

≤ −µ1 ‖x1‖2 + µ1θ ‖x1‖2 − µ1θ ‖x1‖2 + c4λ(ελ+M) ‖x1‖+ k1

≤ −µ1(1− θ) ‖x1‖2 − µ1θ ‖x1‖2 + c4λ(ελ+M) ‖x1‖+ k1,

where 0 < θ < 1. If ‖x1‖ ≥
c4λ(ελ+M)

µ1θ
, then

V̇1(t, x1) ≤ −
µ1(1− θ)

c1
V1(t, x1) + k1, ∀ ‖x1‖ ≥

c4λ(ελ+M)

µ1θ
.

SettingW (t, x1, x2) = V1(t, x1)+αV2(t, x2) where α is a positive constant.
The derivative of W along the trajectories of system (1.1)�(1.2) is

Ẇ (t) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2 + α(
∂V2
∂t

+
∂V2
∂x2

∂x2
∂t

)

≤ −µ1(1− θ)
c1

V1(t, x1) + k1 + α(−b3V2(t, x2) + k2)

≤ −µ1(1− θ)
c1

V1(t, x1)− αb3V2(t, x2) + k1 + αk2

≤ −min(
µ1(1− θ)

c1
, b3)W (t) + k1 + αk2.

Let µ = min(
µ1(1− θ)

c1
, b3), it follows that

Ẇ (t) ≤ −µW (t) + k1 + αk2.

Hence, by Lemma 2.2, system (1.1)�(1.2) is practically uniformly expo-
nentially stable. �

Remark 3.8. Note that Theorem 3.6 is a special case of Theorem 3.7 when
ε = 0.

For the proof of Theorem 3.10 below we will use the next lemma.

Lemma 3.9. Let V be a positive de�nite and continuously di�erentiable

function de�ned such that

V̇ (t) ≤ −αV (t) + β s
√
V (t) + k,

where α, β, k are positives constants, and s > 1. Then V is bounded.
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Proof. Take
f(V ) = −αV + β

s
√
V + k.

There are three possibilities for the behavior of V̇ (t).
Case 1) If V̇ (t) ≤ 0, since V is a positive de�nite function, then V is a

decreasing function. Hence, V is necessarily bounded.

Case 2) If V̇ (t) ≥ 0, in this case f(V ) ≥ 0 and f ′(V ) =
−sαV 1− 1

s + β

sV 1− 1
s

.

It is easy to see that

f ′(V ) = 0 and f(V ) =
s− 1

α
1

s−1

(
β

s

) s
s−1

+ k > 0,

where V = (
β

sα
)

s
s−1 and f ′(V ) < 0 for V (t) > V and lim

V→+∞
f(V ) = −∞.

Thus, there exists ξ > V such that f(ξ) = 0. Consequently

f(V ) > 0 for all V (t) < ξ.

Hence, V is bounded.
Case 3) If V̇ is oscillatory. There exists the sequence (tn)n≥0 such that

tn ≥ 0, and lim
n→+∞

tn = +∞ with V̇ (tn) = 0, ∀n. Without loss of generality,

we suppose that on [tn; tn+1] : V̇ (t) ≥ 0, from case 2 there exists �nite constant
ξn > 0 such that V (t) ≤ ξn for all t ∈ [tn+1; tn+2].

If t ∈ [tn+1; tn+2] : V̇ (t) ≤ 0 and V (t) ≤ V (tn+1) ≤ ξn so V (t) ≤ ξn for
all t ∈ [tn; tn+2], consequently , V (t) ≤ supn≥0 ξn, for all t ≥ t0. �

Theorem 3.10. If assumptions (H3) and (H4) below hold and the in-

terconnection term is bounded, i.e., there exists a constant M > 0 such that

‖g(t, x)‖ ≤ M for all (t, x) , then system (1.1)�(1.2) is practically uniformly

exponentially stable.

H3) There exists a continuously di�erentiable function V1 and some positive
numbers c1, c2, c3, c4, k1, and p, q, r > 1 such that

c1 ‖x1‖p ≤ V1(t, x1) ≤ c2 ‖x1‖q ,
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) ≤ −c3 ‖x1‖r + k1,∥∥∥∥∂V1∂x1

∥∥∥∥ ≤ c4 ‖x1‖ .

H4) There exists a continuously di�erentiable function V2 and some positive
numbers b1, b2, b3, k2, and p, q, r > 1 such that

b1 ‖x2‖p ≤ V2(t, x2) ≤ b2 ‖x2‖q ,
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∂V2
∂t

+
∂V2
∂x2

f2(t, x2) ≤ −b3 ‖x2‖r + k2.

Proof. a) Boundedness of V1.
Case 1) If p = q = r

V̇1(t, x1) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2

≤ −c3 ‖x1‖r + k1 +M

∥∥∥∥∂V1∂x1

∥∥∥∥ ‖x2‖
≤ −c3 ‖x1‖r + k1 + c4M ‖x1‖ ‖x2‖ .

From assumption (H4) we have that ẋ2 = f2(t, x2) is practically exponen-
tially stable. Hence, by Theorem 3.5, there exists λ > 0 such that ‖x2‖ ≤ λ.
Then

V̇1(t, x1) ≤ −
c3
c2
V1(t, x1) +

c4Mλ
r
√
c1

r
√
V1(t, x1) + k1.

Take f(V1) = −αV1 + β r
√
V1 + k1 with α =

c3
c2
, and β =

c4Mα
r
√
c1

. We conclude

by Lemma 3.9 (s = r) that V1 is bounded.
Case 2) If p > q V1 is bounded (see the proof of Theorem 3.4).
Case 3) If p < q, we have

‖x1‖ >
(
c2
c1

) 1
q−p

= η,

and

V̇1(t, x1) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2

≤ −c3 ‖x1‖r + k1 +M

∥∥∥∥∂V1∂x1

∥∥∥∥ ‖x2‖
≤ −c3 ‖x1‖r + k1 + c4M ‖x1‖ ‖x2‖ .

Since for all ξ > 0, ‖x1‖ ‖x2‖ ≤ (
‖x1‖2

2ξ
+ 2ξ ‖x2‖2), we get

V̇1(t, x1) ≤ −c3 ‖x1‖r +
c4M

2ξ
‖x1‖2 +

c4Mξ

2
‖x2‖2 + k1.

We discuss two cases.
1) For r ≥ q : we have

V̇1(t, x1) ≤ −c3ηr−q ‖x1‖q +
c4M

2ξηp−2
‖x1‖p +

c4Mξ

2
λ2 + k1

≤ −c3η
r−q

c2
V1(t, x1) +

c4M

2c1ξηp−2
V1(t, x1) +

c4Mξ

2
λ2 + k1
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≤ −(c3η
r−q

c2
− c4M

2c1ξηp−2
)V1(t, x1) +

c4Mξ

2
λ2 + k1.

We choose ξ such that

c3η
r−q

c2
− c4M

2c1ξηp−2
> 0.

It follows that

V̇1(t, x1) ≤ −β1V1(t, x1) +K1,

where

ξ =
c2c4M

c1c3ηr−q+p−2
, β1 =

c3η
r−q

2c2
, K1 =

c4Mξ

2
λ2 + k1.

We conclude by Lemma 2.2, that V1 is bounded.
2) For r < q : we have

V̇1(t, x1) ≤ −c3 ‖x1‖r + k1 + c4M ‖x1‖ ‖x2‖
≤ −c3 ‖x1‖r + λc4M ‖x1‖+ k1

≤ −c3 ‖x1‖r +
λc4M

ηr−1
‖x1‖r + k1

≤ −β2 ‖x1‖r + k1,

where β2 = c3 −
λc4M

ηr−1
and M is chosen such that β2 > 0. Hence, by

Theorem 3.4, V1 is bounded.
b) Practical uniform exponential stability of system (1.1)�(1.2).
Set W (t, x1, x2) = V1(t, x1) + αV2(t, x2) where α is a positive constant.

The derivative of W along the trajectories of system (1.1)�(1.2) is

Ẇ (t) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2 + α(
∂V2
∂t

+
∂V2
∂x2

f2(t, x2))

≤ −c3 ‖x1‖r + k1 + c4M ‖x1‖ ‖x2‖+ α(−b3 ‖x2‖r + k2)

≤ −β3 ‖x1‖r + k1 − αb3 ‖x2‖r + αk2

≤ −µ1V
r
q

1 (t, x1) + k1 − αµ2V
r
q

2 (t, x2) + αk2,

where β3 = min(β1, β2, c3), µ1 =
β3

c
r
q

2

and µ2 =
b3

b
r
q

2

. We remark that

Ẇ (t) ≤ − µ1 V1(t, x1)− αµ2 V2(t, x2) + µ1(V1(t, x1)− V
r
q

1 (t, x1))

+ αµ2(V2(t, x2)− V
r
q

2 (t, x2)) + k1 + αk2.

Let µ = min(µ1, µ2), we obtain

Ẇ (t)≤−µW (t)+µ1(V1(t, x1)−V
r
q

1 (t, x1)) +αµ2(V2(t, x2)−V
r
q

2 (t, x2))+k1+αk2.
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The boundedness of V1 and V2 implies that there exists k3 > 0 such that

µ1(V1(t, x1)− V
r
q

1 (t, x1)) + αµ2(V2(t, x2)− V
r
q

2 (t, x2)) ≤ k3,

thus,
Ẇ (t) ≤ −µW (t) + k1 + αk2 + k3.

By Lemma 2.2, system (1.1)�(1.2) is practically uniformly exponentially
stable. �

Remark 3.11. We can give a di�erent proof of the boundedness of V1 for
p = q = r > 1. Indeed

V̇1(t, x1) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2

≤ −c3 ‖x1‖r + k1 + c4M ‖x1‖ ‖x2‖
≤ −c3 ‖x1‖r + c4Mλ ‖x1‖+ k1

≤ −c3 ‖x1‖r + θc3 ‖x1‖r − θc3 ‖x1‖r + c4Mλ ‖x1‖+ k1

≤ −c3(1− θ) ‖x1‖r + k1, ∀ ‖x1‖ > r−1

√
λc4M

c3θ
,

where 0 < θ < 1. We conclude by Theorem 3.5, that V1 is bounded.

The example below illustrates our results.

Example. Consider the system

(3.4)


ẋ1 = −

1

4
x

3
2
1 +

x
7
4
1

1 + x21
e−x

2
1 +

1

1 + t2
x2,

ẋ2 = −x
3
2
2 + 2e−x

1
4
2 .

In this case,

f1(t, x1) = −1

4
x

3
2
1 +

x
7
4
1

1 + x21
e−x

2
1 ,

f2(t, x2) = −x
3
2
2 + 2e−x

1
4
2 ,

g(t, x) =
1

1 + t2
.

Set V1(t, x1) = x
5
4
1 and V2(t, x2) = x

5
4
2 .

Veri�cation of assumption H3). We have

‖x1‖
5
4 ≤ V1(t, x1) ≤ ‖x1‖

3
2 ,

∂V1
∂t

+
∂V1
∂x1

f1(t, x1) ≤
5

4
x

1
4
1 (−

1

4
x

3
2
1 +

x
7
4
1

1 + x21
e−x

2
1)

≤ − 5

16
x

7
4
1 +

5

4
≤ − 5

16
‖x1‖

7
4 +

5

4
.
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With p =
5

4
, q =

3

2
, r =

7

4
, c1 = 1, c2 = 1, c3 =

5

16
, c4 =

5

4
, k1 =

5

4
and

‖x1‖ ≥ 1 = η.

Veri�cation of assumption H4). We have

‖x2‖
5
4 ≤ V2(t, x2) ≤ ‖x2‖

3
2

∂V2
∂t

+
∂V2
∂x2

f2(t, x1) ≤
5

4
x

1
4
2 (−x

3
2
2 + 2e−x

1
4
2 )

≤ −5

4
x

7
4
2 +

5

2

≤ −5

4
‖x2‖

7
4 +

5

2
,

with p =
5

4
, q =

3

2
, r =

7

4
, b1 = 1, b2 = 1, b3 =

5

4
, c4 =

5

4
, k2 =

5

2
and

‖x1‖ ≥ 1 = η. Therefore, we can apply Theorem 3.10 to prove that system
(3.4) is practically uniformly exponentially stable.

Theorem 3.12. If assumptions (H3) and (H4) hold and the intercon-

nection term is bounded, i.e., there exists a constants M, ε > 0 such that

‖g(t, x)‖ ≤ ε ‖x‖+ M for all (t, x), then system (1.1)�(1.2) is practically uni-

formly exponentially stable.

Proof. a) Boundedness of V1:

1) If p = q = r > 2, we have

V̇1(t, x1) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2

≤ −c3 ‖x1‖r + k1 + c4 ‖x1‖ ‖x2‖ (ε ‖x‖+M)

≤ −c3 ‖x1‖r + k1 + c4 ‖x1‖ ‖x2‖ (ε ‖x1‖+ ε ‖x2‖+M)

≤ −c3 ‖x1‖r + k1 + c4 ‖x1‖ ‖x2‖ (ε ‖x1‖+ ελ+M)

≤ −c3 ‖x1‖r + k1 + c4(ελ+M) ‖x1‖ ‖x2‖+ c4ελ ‖x1‖2

≤ −c3 ‖x1‖r +
c4(ελ+M)

2
‖x1‖2 + c4ελ ‖x1‖2 +A,

where A =
c4(ελ+M)

2
λ2 + k1. For 0 < θ < 1, we obtain

V̇1(t, x1) ≤ −c3 ‖x1‖r + c3θ ‖x1‖r − c3θ ‖x1‖r +
3c4ελ+ c4M

2
‖x1‖2 +A

≤ −c3(1− θ) ‖x1‖r − c3θ ‖x1‖r +
3c4ελ+ c4M

2
‖x1‖2 +A,

so

V̇1(t, x1) ≤ −c3(1− θ) ‖x1‖r +A, ∀ ‖x1‖ > r−2

√
3c4ελ+ c4M

2c3θ
.
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From Theorem 3.5 V1 is bounded.

2) If p < q, we have

V̇1(t, x1) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2

≤ −c3 ‖x1‖r + k1 + c4 ‖x1‖ ‖x2‖ (ε ‖x‖+M)

≤ −c3 ‖x1‖r + k1 + c4(ελ+M) ‖x1‖ ‖x2‖+ c4ελ ‖x1‖2

≤ −c3 ‖x1‖r+k1+
c4(ελ+M)

2
‖x1‖2+

c4(ελ+M)

2
‖x2‖2+c4ελ ‖x1‖2,

for r ≥ q ≥ 2, we have

V̇1(t, x1) ≤ −(c3 −
c4(ελ+M)

2ηr−2
− c4ελ

ηr−2
) ‖x1‖r +A.

If ε is chosen such that

β1 = c3 −
c4(3ελ+M)

2ηr−2
> 0,

then by Theorem 3.4, V1 is bounded.

b) Practical uniform exponential stability of system (1.1)�(1.2):

Set W (t, x1, x2) = V1(t, x1) + αV2(t, x2) where α is a positive constant.
The derivative of W along the trajectories of system (1.1)�(1.2) is

Ẇ (t) =
∂V1
∂t

+
∂V1
∂x1

f1(t, x1) +
∂V1
∂x1

g(t, x)x2 + α(
∂V2
∂t

+
∂V2
∂x2

f2(t, x2))

≤ −c3 ‖x1‖r + k1 + c4(ε ‖x‖+M) ‖x1‖ ‖x2‖+ α(−b3 ‖x2‖r + k2)

≤ −β ‖x1‖r +A− αb3 ‖x2‖r + k2α

≤ −µ1V
r
q

1 (t, x1)− αµ2V
r
q

2 (t, x2) +B,

with β = min(β1, c3), µ1 =
β

c
r
q

2

, µ2 =
b3

b
r
q

2

and B = A + αk2. By the same

procedure of the previous theorem we obtain

Ẇ (t) ≤ −µW + µ1(V1(t, x1)− V
r
q

1 (t, x1)) + αµ2(V2(t, x2)− V
r
q

2 (t, x2)) +B.

The boundedness of V1 and V2 implies that there exists a �nite constant
C such that

µ1(V1(t, x1)− V
r
q

1 (t, x1)) + αµ2(V2(t, x2)− V
r
q

2 (t, x2)) +B ≤ C.

Hence,

Ẇ (t) ≤ −µW (t) + C.

By Lemma 2.2, system (1.1)�(1.2) is practically uniformly exponentially
stable. �
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Example. Consider the system

(3.5)


ẋ1 = −

1

9
x

5
2
1 +

4x
15
8
1 e−

1
2
t

9(1 + x21)
+ (

10−3xe−x
2

1 + t2
+

1

5
)x2

ẋ2 = −x
5
2
2 +

17

9
e−x

1
8
2

In this case,

f1(t, x1) = −1

9
x

5
2
1 +

4x
15
8
1 e−

1
2
t

9(1 + x21)
,

f2(t, x2) = −x
5
2
2 +

17

9
e−x

1
8
2 ,

g(t, x) =
10−3xe−x

2

1 + t2
+

1

5
.

Set V1(t, x1) = x
9
8
1 and V2(t, x2) = x

9
8
2 .

Veri�cation of assumption H3): We have

‖x1‖
9
8 ≤ V1(t, x1) ≤ ‖x1‖2

∂V1
∂t

+
∂V1
∂x1

f1(t, x1) ≤
9

8
x

1
8
1 (−

1

9
x

5
2
1 +

4x
15
8
1 e−

1
2
t

9(1 + x21)
)

≤ −1

8
x

21
8
1 +

1

2
≤ −1

8
‖x1‖

21
8 +

1

2
.

With p = 9
8 , q = 2, r = 21

8 , c1 = 1, c2 = 1, c3 = 1
8 , c4 = 9

8 , k1 = 1
2 and

‖x1‖ ≥ 1 = η.
Veri�cation of assumption H4): We have

‖x2‖
9
8 ≤ V2(t, x2) ≤ ‖x2‖2

∂V2
∂t

+
∂V2
∂x2

f2(t, x1) ≤
9

8
x

1
8
2 (−x

5
2
2 +

17

9
e−x

1
8
2 )

≤ −9

8
x

21
8
2 +

17

8
≤ −9

8
‖x2‖

21
8 +

17

8
.

With p = 9
8 , q = 2, r = 21

8 , b1 = 1, b2 = 1, b3 = 9
8 , k2 = 17

8 and
‖x2‖ ≥ 1 = η.

We have also ‖g(t, x)‖ ≤ ε ‖ x ‖ +M where M =
1

5
<

2c3η
r−2

c4
=

2

9
and

ε = 10−3e−2.

Therefore, we can apply Theorem 3.12 to prove that system (3.5) is prac-
tically uniformly exponentially stable.
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