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This paper is focused on biharmonic immersions into spheres and ellipsoids: we
shall discuss generalities, geometric properties of solutions and rigidity conditions
which force a biharmonic submanifold of a sphere to be CMC. We shall also
describe recent developments concerning the existence of biharmonic curves and,
more generally, hypersurfaces, into Euclidean ellipsoids.
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1. INTRODUCTION

Harmonic maps (see [17] for an introduction to this topic) are critical
points of the energy functional

(1.1) E(ϕ) =
1

2

∫
M
|dϕ|2 dvg ,

where ϕ : (M, g)→ (N,h) is a smooth map between two Riemannian manifolds
M and N . In analytical terms, the condition of harmonicity is equivalent to
the fact that the map ϕ is a solution of the Euler-Lagrange equation associated
to the energy functional (1.1), i.e.

(1.2) traceg (∇dϕ) = 0 .

The left member of (1.2) is a vector �eld along the map ϕ, or, equivalently,
a section of the pull-back bundle ϕ−1 (TN): it is called the tension �eld and
denoted by τ(ϕ). A related topic of growing interest deals with the study of the
so-called biharmonic maps: these maps, which provide a natural generalisation
of harmonic maps, are the critical points of the bienergy functional (as suggested
by Eells�Lemaire [17])

E2(ϕ) =
1

2

∫
M
|τ(ϕ)|2 dvg .
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In [27] G. Jiang derived the �rst variation and the second variation formu-
las for the bienergy. In particular, he showed that the Euler-Lagrange equation
associated to E2(ϕ) is

(1.3) τ2(ϕ) = −J (τ(ϕ)) = −4τ(ϕ)− traceRN (dϕ, τ(ϕ))dϕ = 0 ,

where J denotes (formally) the Jacobi operator of ϕ, 4 is the rough Laplacian
on sections of ϕ−1 (TN) that, for a local orthonormal frame {ei}mi=1 on M , is
de�ned by

(1.4) ∆ = −
m∑
i=1

{∇ϕei∇
ϕ
ei −∇

ϕ
∇M

ei
ei
} ,

and
RN (X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

is the curvature operator on (N,h). We point out that (1.3) is a fourth order

semi-linear elliptic system of di�erential equations. We also note that any
harmonic map is an absolute minimum of the bienergy, and so it is trivially
biharmonic. Therefore, a general working plan is to study the existence of
biharmonic maps which are not harmonic: these shall be referred to as proper
biharmonic maps. We refer to [31] for existence results and general properties
of biharmonic maps.

An immersed submanifold into a Riemannian manifold (N,h) is called
a biharmonic submanifold if the immersion is a biharmonic map. In a purely
geometric context, B.-Y. Chen [11] de�ned biharmonic submanifolds M ⊂ Rn
of the Euclidean space as those with harmonic mean curvature vector �eld,
that is ∆H = (∆H1, . . . ,∆Hn) = 0, where H = (H1, . . . ,Hn) is the mean
curvature vector as seen in Rn and ∆ is the Beltrami-Laplace operator on M .
It is important to point out that, if we apply the de�nition of biharmonic
maps to immersions into the Euclidean space, we recover Chen's notion of
biharmonic submanifolds. In this sense, work on biharmonic immersions into
non-�at Riemannian manifolds can be regarded in the spirit of a generalization
of Chen's biharmonic submanifolds.

In their famous paper [18], Eells and Sampson obtained existence, in every
homotopy class of mappings between compact manifolds, of an energy minimiz-
ing harmonic map, under the assumption that the Riemannian curvature tensor
of the target manifold N is nonpositive (the compactness assumption can be
weakened and replaced by some technical conditions which ensure that solutions
of the associated non-linear heat equation

τ(ϕt) =
∂ϕt
∂t
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remain bounded as t→ +∞). By contrast, in the case of mappings into man-
ifolds of positive curvature, solutions are unstable and so they are much more
di�cult to obtain and understand: in this order of ideas, the most important
and studied case is N = Sn (see [19] for an overview and methods).

In a way which re�ects the above cited energy minimizing property of
harmonic maps into negatively curved manifolds, a general result of Jiang [27]
tells us that a compact, orientable, biharmonic submanifold M into a manifold
N such that RiemN ≤ 0 is necessarily minimal. Moreover, C. Oniciuc, in [35],
proved that also CMC biharmonic isometric immersions into a manifold N with
RiemN ≤ 0 are necessarily minimal. In fact, it is still open the Chen's conjec-
ture: biharmonic submanifolds into a non-positive constant sectional curvature
manifold are minimal. The Chen's conjecture was generalized in [6] for bihar-
monic submanifolds into a Riemannian manifold with non-positive sectional
curvature, although Y. Ou and L. Tang found in [37] a counterexample. These
facts have pushed research towards the investigation of biharmonic subman-
ifolds of the Euclidean sphere: in Section 3 below, we shall review the main
results in this area. A further step is the study of biharmonic submanifolds into
Euclidean ellipsoids (for harmonic maps, this was carried out in [20]), because
these manifolds are geometrically rich and interestingly do not have constant
sectional curvature: in Section 2, we give, in particular, a complete classi�ca-
tion of proper biharmonic curves into 3-dimensional ellipsoids while, in Section
4 we shall describe proper biharmonic submanifolds of dimension ≥ 2.

2. BIHARMONIC CURVES INTO SPHERES AND ELLIPSOIDS

Biharmonic curves γ : I ⊂ R→ (N,h) of a Riemannian manifold are the
solutions of the fourth order di�erential equation

(2.1) ∇3
γ′γ
′ −R(γ′,∇γ′γ′)γ′ = 0,

where∇ is the Levi-Civita connection on (N,h) and R is its curvature operator.

These curves arise from a variational problem and are a natural generalisation
of geodesics. In the last decade biharmonic curves have been extensively stud-
ied and classi�ed in several spaces by analytical inspection of (2.1) (see, for
example, [6, 8, 9, 7, 25, 16, 21, 22, 32]). Although much work has been done,
the full understanding of biharmonic curves in a surface of the Euclidean three-
dimensional space is far from being achieved. As yet, we have a clear picture of
biharmonic curves in a surface only in very few cases: one of them is when the
surface is invariant by the action of a one parameter group of isometries of the
ambient space. For example, in [8] it was proved that a biharmonic curve on a
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surface of revolution in the Euclidean space (invariant by the action of SO(2))
must be a parallel, that is an orbit of the action of the group on the surface.
This property was then generalized to invariant surfaces in a 3-dimensional
manifold (see [32]).

The main obstacle in trying to describe and classify biharmonic curves in a
surface by analytical methods is that (2.1) is a fourth order di�erential equation
which, in general, is very hard to tackle. In the �rst part of this Section we
present some general notions concerning biharmonic curves. The second part
of the Section is devoted to the study of biharmonic curves into spheres and
ellipsoids, where purely algebraic methods can be applied. Material and results
of this Section can be found in [7, 8, 9, 33].

Let now γ : I → (N,h) be a curve parametrized by arc length, from an
open interval I ⊂ R to a Riemannian manifold. In this case, putting T = γ′,
the tension �eld becomes τ(γ) = ∇TT and the biharmonicity equation (1.3)
reduces to

(2.2) ∇3
TT −R(T,∇TT )T = 0 .

In order to describe geometrically equation (2.2), let us recall the de�nition
of the Frenet frame (for the purposes of this paper, the case dimN = n = 2
would su�ce, but we insert the general de�nition because the reader may �nd
it useful in other contexts):

De�nition 2.1. The Frenet frame (see [28]) {Fi}i=1,...,n associated to a
curve γ : I ⊂ R→ (Nn, h), parametrized by arc length, is the orthonormalisa-

tion of the (n+ 1)-uple {∇(k)
∂
∂t

dγ( ∂∂t)}k=0,...,n described by:

F1 = dγ(
∂

∂t
),

∇γ∂
∂t

F1 = k1F2,

∇γ∂
∂t

Fi = −ki−1Fi−1 + kiFi+1, ∀i = 2, . . . , n− 1,

∇γ∂
∂t

Fn = −kn−1Fn−1 ,

where the functions {k1, k2, . . . , kn−1} are called the curvatures of γ and ∇γ
is the Levi-Civita connection on the pull-back bundle γ−1(TN). Note that
F1 = T = γ′ is the unit tangent vector �eld along the curve.

Using the Frenet frame, the biharmonic equation (2.2) reduces to a di�er-
ential system involving the curvatures of γ and if we look for proper biharmonic
solutions, that is for biharmonic curves with k1 6= 0, we have
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Proposition 2.2 ([7]). Let γ : I ⊂ R → (Nn, h) (n ≥ 2) be a curve

parametrized by arc length from an open interval of R into an n-dimensional

Riemannian manifold (Nn, h). Then γ is proper biharmonic if and only if:

(2.3)


k1 = constant 6= 0
k21 + k22 = R(F1, F2, F1, F2)
k′2 = −R(F1, F2, F1, F3)
k2k3 = −R(F1, F2, F1, F4)
R(F1, F2, F1, Fj) = 0 , j = 5, . . . , n .

As a special case of (2.3), if γ : I ⊂ R→ (N2, h) is a curve into a surface,
then γ is proper biharmonic if and only if

(2.4)

{
k1 = constant 6= 0
k21 = K ,

where K is the Gaussian curvature of the surface (N2, h). Here we propose a
scheme to classify biharmonic curves into an ellipsoid in the three-dimensional
Euclidean space by using purely algebraic methods.

Let F : R3 → R be a di�erentiable function: we shall assume that, for all
p ∈ N2 = F−1(0), (gradF )(p) 6= 0, so that N2 is a regular surface in R3. If
we denote by CHF the cofactor matrix of the Hessian HF of F , the Gaussian
curvature of the surface N2 is given by (see, for example, [23])

(2.5) K =
(gradF )(CHF )(gradF )>

‖ gradF‖4
.

Let now F : R3 → R and G : R3 → R be two di�erentiable functions
such that F−1(0) and G−1(0) are, as above, two regular surfaces in R3, and
also assume that at all points p ∈ F−1(0) ∩ G−1(0) the gradients gradF and
gradG are linearly independent. Then F−1(0) ∩G−1(0) de�nes the trace of a
regular curve in R3 that, locally, can be parametrized by arc length as γ(s) =
(x(s), y(s), z(s)), s ∈ (a, b). The unit tangent vector to γ is then

γ′(s) =
dγ

ds
= T =

gradF ∧ gradG

‖ gradF‖‖ gradG‖
.

The curve γ can be seen as a curve both of F−1(0) and G−1(0). For each
point p = γ(s), s ∈ (a, b), we denote by kFn (p) (respectively kGn (p)) the normal
curvature at p of the surface F−1(0) (respectively G−1(0)) in the direction of T .

The curvature k(s) of the curve γ : (a, b)→ R3 can be computed in terms
of the normal curvatures kFn (p) and kGn (p), p = γ(s), as

(2.6) k2 =
1

sin2 ϑ

(
(kFn )2 + (kGn )2 − 2(kFn )(kGn ) cosϑ

)
,
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where ϑ is the angle between (gradF )(p) and (gradG)(p), that is

cosϑ =
〈gradF, gradG〉
‖ gradF‖‖ gradG‖

.

The proof of (2.6) is immediate. In fact, k(s) is the norm of γ′′(s) =
d2γ/ds2 which is normal to T . Thus,

γ′′ = α
gradF

‖ gradF‖
+ β

gradG

‖ gradG‖
for some functions α, β : (a, b)→ R which, recalling that

kFn = 〈γ′′, gradF

‖ gradF‖
〉 , kGn = 〈γ′′, gradG

‖ gradG‖
〉 ,

can be expressed by:

α =
kFn − kGn cosϑ

sin2 ϑ
, β =

kGn − kFn cosϑ

sin2 ϑ
.

Finally, looking at γ(s) as a curve in the surface F−1(0), at a point p =
γ(s) the geodesic curvature k1(s), the normal curvature kFn (p) and the curvature
k(s) are related by the formula

(2.7) k2 = k21 + (kFn )2 .

Thus, combining (2.6) and (2.7), we have the following proposition:

Proposition 2.3. Let F : R3 → R and G : R3 → R be two di�erentiable

functions such that F−1(0) and G−1(0) are two regular surfaces in R3. Assume

that at all points p ∈ F−1(0) ∩ G−1(0) the gradients gradF and gradG are

linearly independent. Then the geodesic curvature k1 of the curve γ : (a, b) →
F−1(0) ⊂ R3, with γ(s) ∈ F−1(0) ∩G−1(0), for all s ∈ (a, b), is given by

(2.8) k21 =
(cosϑkFn − kGn )2

sin2 ϑ
.

The main point here is that, in order to compute the geodesic curvature
of the curve γ de�ned as in Proposition 2.3, there is no need to parametrize the
intersection curve, because (2.8) can be explicitly written in terms of gradF ,
gradG and the Hessian matrices HF and HG. Now we apply this machinary
to the study of biharmonic curves into an ellipsoid in the Euclidean space
R3. With respect to an adapted orthonormal frame of R3, we can describe an
ellipsoid in R3 by means of Q = F−1(0), where

(2.9) F (x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1 , a, b, c > 0 .



7 Biharmonic immersions into spheres and ellipsoids 431

According to (2.4), the Gauss curvature of the surface along a proper bi-
harmonic curve must be a positive constant. If we compute the Gauss curvature
of the ellipsoid Q, by means of (2.5), we �nd

(2.10) K =
1

a2 b2 c2
(
x2

a4
+
y2

b4
+
z2

c4

)2 .

If a = b = c, then the quadric is a sphere and the proper biharmonic
curves are the circles of radius

√
2a/2, a result proved in [8]. In all the other

cases, combining (2.4) and (2.10), we conclude that, if there exists a proper
biharmonic curve, then it must be the intersection of the given ellipsoid Q with
another ellipsoid of the type

(2.11)
x2

a4
+
y2

b4
+
z2

c4
= d2 ,

where d ∈ R .

Theorem 2.4. Let Q be an ellipsoid as above which is not a sphere, and

assume a ≥ b > c (the case a > b ≥ c is similar). Then Q admits a proper

biharmonic curve if and only if

(2.12) a = b .

Moreover, if (2.12) holds, the biharmonic curve is the intersection of the

ellipsoid Q with the ellipsoid (2.11) with d2 = 1/(ac).

Proof. (Outline). As we proved above, if there exists a proper biharmonic
curve γ, it must be the intersection of Q with an ellipsoid (2.11), i.e.

(2.13) γ :


F (x, y, z) =

x2

a2
+
y2

b2
+
z2

c2
− 1 = 0

G(x, y, z) =
x2

a4
+
y2

b4
+
z2

c4
− d2 = 0 .

Then, using (2.8), we can compute the geodesic curvature of the inter-
section curve γ as a curve of the quadric Q. A long, but straightforward,
computation yields:

(2.14) k21 =
1

d2

[
d2λ4 −

(
x2

a6
+ y2

b6
+ z2

c6

)
λ6

]2
λ28

[
d2
(
x2

a8
+ y2

b8
+ z2

c8

)
−
(
x2

a6
+ y2

b6
+ z2

c6

)2] ,
where

λn = any2z2
(
b2 − c2

)2
+ bnx2z2

(
a2 − c2

)2
+ cnx2y2

(
a2 − b2

)2
.
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Now, since Q is not a sphere, we recall our hypothesis a ≥ b > c and
also note that the curve γ is a real curve with in�nity points if and only if
d2c2 − 1 > 0 . Under these hypotheses, a tedious computation shows that the
condition that the curve γ is proper biharmonic, that is (2.4), becomes

1− a2c2d4

a4c2d4 (c2d2 − 1)
= 0 ,

from which the desired result follows. �

Remark 2.5. In [33], the methods of the previous theorem are used to ob-
tain a complete classi�cation of biharmonic curves into non-degenerate quadrics
in the Euclidean 3-dimensional space, and this represents an instance where the
understanding of biharmonic curves is satisfactory.

3. BIHARMONIC IMMERSIONS IN SN

The key ingredient in the study of biharmonic submanifolds is the splitting
of the bitension �eld with respect to its normal and tangent components. In the
case when the ambient space is the unit Euclidean sphere we have the following
characterization.

Theorem 3.1 ([12, 35, 38]). An immersion ϕ : Mm → Sn is biharmonic

if and only if

(3.1)

 ∆⊥H + traceB(·, AH ·)−mH = 0,

2 traceA∇⊥
(·)H

(·) +
m

2
grad |H|2 = 0,

where A denotes the Weingarten operator, B the second fundamental form, H
the mean curvature vector �eld, |H| the mean curvature function, ∇⊥ and ∆⊥

the connection and the Laplacian in the normal bundle of ϕ, respectively.

In the codimension one case, denoting by A = Aη the shape operator
with respect to a (local) unit section η in the normal bundle and putting f =
(traceA)/m, the above result reduces to the following.

Corollary 3.2 ([5, 35]). Let ϕ : Mm → Sm+1 be an orientable hypersur-

face. Then ϕ is biharmonic if and only if

(3.2)


(i) ∆f = (m− |A|2)f,

(ii) A(grad f) = −m
2
f grad f.

A special class of immersions in Sn consists of the parallel mean curvature
immersions (PMC), that is immersions such that ∇⊥H = 0. For this class of
immersions Theorem 3.1 reads as follows.
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Corollary 3.3 ([2]). Let ϕ : Mm → Sn be a PMC immersion. Then ϕ
is biharmonic if and only if

(3.3) traceB(AH(·), ·) = mH,

or equivalently,

(3.4)


〈AH , Aξ〉 = 0, ∀ξ ∈ C(NM)with ξ ⊥ H,

|AH |2 = m|H|2,
where NM denotes the normal bundle of M in Sn.

We now list the main examples of proper biharmonic immersions in Sn.
B1. The canonical inclusion of the small hypersphere

Sn−1(1/
√

2) =
{

(x, 1/
√

2) ∈ Rn+1 : x ∈ Rn, |x|2 = 1/2
}
⊂ Sn.

B2. The canonical inclusion of the standard (extrinsic) products of spheres

Sn1(1/
√

2)×Sn2(1/
√

2)=
{

(x, y)∈Rn1+1×Rn2+1, |x|2= |y|2=1/2
}
⊂Sn,

n1 + n2 − 1 and n1 6= n2.
B3. The maps ϕ = ı ◦ φ : M → Sn, where φ : M → Sn−1(1/

√
2) is a

minimal immersion, and ı : Sn−1(1/
√

2)→ Sn denotes the canonical
inclusion.

B4. The maps ϕ = ı ◦ (φ1 × φ2) : M1 ×M2 → Sn, where φi : Mmi
i →

Sni(1/
√

2), 0 < mi ≤ ni, i = 1, 2, are minimal immersions, m1 6= m2,
n1+n2−1, and ı : Sn1(1/

√
2)×Sn2(1/

√
2)→ Sn denotes the canonical

inclusion.

Remark 3.4. (i) The proper biharmonic immersions of classB3 are pseudo-
umbilical, i.e. AH = |H|2 Id, have parallel mean curvature vector �eld and
mean curvature |H| = 1. Clearly, ∇AH = 0.
(ii) The proper biharmonic immersions of class B4 are no longer pseudo-

umbilical, but still have parallel mean curvature vector �eld and their
mean curvature is |H| = |m1 −m2|/m ∈ (0, 1), where m = m1 + m2.
Moreover, ∇AH = 0 and the principal curvatures in the direction of H,
i.e. the eigenvalues of AH , are constant on M and given by λ1 = . . . =
λm1 = (m1 −m2)/m, λm1+1 = . . . = λm1+m2 = −(m1 −m2)/m. Speci�c
B4 examples were given by W. Zhang in [42] and generalized in [1, 41].

When a biharmonic immersion has constant mean curvature (CMC) the
following bound for |H| holds.

Theorem 3.5 ([36]). Let ϕ : M → Sn be a CMC proper biharmonic

immersion. Then |H| ∈ (0, 1], and |H| = 1 if and only if ϕ induces a minimal

immersion of M into Sn−1(1/
√

2) ⊂ Sn, that is ϕ is B3.
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Let us look in detail at the case of CMC proper biharmonic hypersurfaces
in Sm+1:

Theorem 3.6 ([1, 2]). Let ϕ : Mm → Sm+1 be a CMC proper biharmonic

hypersurface. Then

(i) |A|2 = m;

(ii) the scalar curvature s is constant and positive, s = m2(1 + |H|2)− 2m;

(iii) for m > 2, |H| ∈ (0, (m− 2)/m] ∪ {1}. Moreover, |H| = 1 if and only if

ϕ(M) is an open subset of the small hypersphere Sm(1/
√

2), and |H| =
(m− 2)/m if and only if ϕ(M) is an open subset of the standard product

Sm−1(1/
√

2)× S1(1/
√

2).

Remark 3.7. In the minimal case the condition |A|2 = m is exhaustive.
In fact a minimal hypersurface in Sm+1 with |A|2 = m is a minimal standard
product of spheres (see [15, 29]). We point out that the full classi�cation of
CMC hypersurfaces in Sm+1 with |A|2 = m, therefore biharmonic, is not known.

Corollary 3.8. Let ϕ : Mm → Sm+1 be a complete proper biharmonic

hypersurface.

(i) If |H| = 1, then ϕ(M) = Sm(1/
√

2) and ϕ is an embedding.

(ii) If |H| = (m− 2)/m, m > 2, then ϕ(M) = Sm−1(1/
√

2)× S1(1/
√

2) and

the universal cover of M is Sm−1(1/
√

2)× R.

In the following, we shall no longer assume that the biharmonic hypersur-
faces have constant mean curvature, and we shall split our study in three cases.
In Case 1 we shall study the proper biharmonic hypersurfaces with respect to
the number of their distinct principal curvatures, in Case 2 we shall study them
with respect to |A|2 and |H|2, and in Case 3 the study will be done with respect
to the sectional and Ricci curvatures of the hypersurface.

3.1. Case 1

Obviously, if ϕ : Mm → Sm+1 is an umbilical proper biharmonic hyper-
surface in Sm+1, then ϕ(M) is an open part of Sm(1/

√
2).

When the hypersurface has at most two or exactly three distinct principal
curvatures everywhere we obtain the following rigidity results.

Theorem 3.9 ([1]). Let ϕ : Mm → Sm+1 be a hypersurface. Assume

that ϕ is proper biharmonic with at most two distinct principal curvatures ev-

erywhere. Then ϕ is CMC and ϕ(M) is either an open part of Sm(1/
√

2), or
an open part of Sm1(1/

√
2) × Sm2(1/

√
2), m1 + m2 = m, m1 6= m2. More-

over, if M is complete, then either ϕ(M) = Sm(1/
√

2) and ϕ is an embedding,
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or ϕ(M) = Sm1(1/
√

2) × Sm2(1/
√

2), m1 + m2 = m, m1 6= m2 and ϕ is an

embedding when m1 ≥ 2 and m2 ≥ 2.

Theorem 3.10 ([1]). Let ϕ : Mm → Sm+1, m ≥ 3, be a proper biharmonic

hypersurface. The following statements are equivalent:

(i) ϕ is quasi-umbilical,

(ii) ϕ is conformally �at,

(iii) ϕ(M) is an open part of Sm(1/
√

2) or of Sm−1(1/
√

2)× S1(1/
√

2).

It is well known that, if m ≥ 4, a hypersurface ϕ : Mm → Sm+1 is quasi-
umbilical if and only if it is conformally �at. From Theorem 3.10 we see that
under the biharmonicity hypothesis the equivalence remains true when m = 3.

Theorem 3.11 ([3]). There exist no compact CMC proper biharmonic hy-

persurfaces ϕ : Mm → Sm+1 with three distinct principal curvatures everywhere.

In particular, in the low dimensional cases, Theorem 3.9, Theorem 3.11
and a result of S. Chang (see [10]) imply the following.

Theorem 3.12 ([6, 3]). Let ϕ : Mm → Sm+1 be a proper biharmonic

hypersurface.

(i) If m = 2, then ϕ(M) is an open part of S2(1/
√

2) ⊂ S3.
(ii) If m = 3 and M is compact, then ϕ is CMC and ϕ(M) = S3(1/

√
2) or

ϕ(M) = S2(1/
√

2)× S1(1/
√

2).

We recall that an orientable hypersurface ϕ : Mm → Sm+1 is said to
be isoparametric if it has constant principal curvatures or, equivalently, the
number ` of distinct principal curvatures k1 > k2 > · · · > k` is constant on
M and the ki's are constant. The distinct principal curvatures have constant
multiplicities m1, . . . ,m`, m = m1 +m2 + . . .+m`.

In [26], T. Ichiyama, J.I. Inoguchi and H. Urakawa classi�ed the proper
biharmonic isoparametric hypersurfaces in spheres.

Theorem 3.13 ([26]). Let ϕ : Mm → Sm+1 be an orientable isoparametric

hypersurface. If ϕ is proper biharmonic, then ϕ(M) is either an open part

of Sm(1/
√

2), or an open part of Sm1(1/
√

2) × Sm2(1/
√

2), m1 + m2 = m,

m1 6= m2.

3.2. Case 2

The starting point is the following result that in the present form was
proved in [4], although point (a) is originally taken from [13].

Theorem 3.14 ([4, 13]). Let ϕ : Mm → Sm+1 be a compact hypersurface

and assume that ϕ is proper biharmonic.
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(a) if |A|2 ≤ m then ϕ is CMC and |A|2 = m;

(b) if |A|2 ≥ m then ϕ is CMC and |A|2 = m.

Remark 3.15. It is worth pointing out that the statement (a) of Theo-
rem 3.14 is similar in the minimal case: if ϕ : Mm → Sm+1 is a minimal
hypersurface with |A|2 ≤ m, then either |A| = 0 or |A|2 = m (see [40]). By
way of contrast, an analog of the statement (b) in Theorem 3.14 is not true
in the minimal case. In fact, it was proved in [39] that if a minimal hypersur-
face ϕ : M3 → S4 has |A|2 > 3, then |A|2 ≥ 6. But, if the compact minimal
hypersurface of Sm+1 with |A|2 ≥ m has at most two distinct principal cur-
vatures, then |A|2 = m (see [24]); and we believe that any proper biharmonic
hypersurface in Sm+1 has at most two principal curvatures everywhere.

Obviously, from Theorem 3.14 we get the following result.

Proposition 3.16. Let ϕ : Mm → Sm+1 be a compact hypersurface. If ϕ
is proper biharmonic and |A|2 is constant, then ϕ is CMC and |A|2 = m.

The next result is a direct consequence of Theorem 3.14.

Proposition 3.17. Let ϕ : Mm → Sm+1 be a compact hypersurface. If

ϕ is proper biharmonic and |H|2 ≥ 4(m− 1)/(m(m+ 8)), then ϕ is CMC.

Moreover,

(i) if m ∈ {2, 3}, then ϕ(M) is a small hypersphere Sm(1/
√

2);
(ii) if m = 4, then ϕ(M) is a small hypersphere S4(1/

√
2) or a standard

product of spheres S3(1/
√

2)× S1(1/
√

2).

For the non-compact case we have the following.

Proposition 3.18. Let ϕ : Mm → Sm+1, m > 2, be a non-compact

hypersurface. Assume thatM is complete and has non-negative Ricci curvature.

If ϕ is proper biharmonic, |A|2 is constant and |A|2 ≥ m, then ϕ is CMC and

|A|2 = m. In this case |H|2 ≤ ((m− 2)/m)2.

Corollary 3.19. Let ϕ : Mm → Sm+1 be a non-compact hypersurface.

Assume thatM is complete and has non-negative Ricci curvature. If ϕ is proper

biharmonic, |A|2 is constant and |H|2 ≥ 4(m− 1)/(m(m+ 8)), then ϕ is CMC

and |A|2 = m. In this case, m ≥ 4 and |H|2 ≤ ((m− 2)/m)2.

Proposition 3.20. Let ϕ : Mm → Sm+1 be a non-compact hypersurface.

Assume thatM is complete and has non-negative Ricci curvature. If ϕ is proper

biharmonic, |A|2 is constant, |A|2 ≤ m and H is nowhere zero, then ϕ is CMC

and |A|2 = m.

Proof. As H is nowhere zero we consider η = H/|H| a global unit section
in the normal bundle. Then, on M ,

(3.5) ∆f = (m− |A|2)f,
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where f = |H| > 0. As m − |A|2 ≥ 0 by a classical result (see, for example,
[30, p. 2]) we conclude that m = |A|2 and therefore f is constant. �

3.3. Case 3

We �rst present another result of J.H. Chen in [13].

Theorem 3.21 ([13]). Let ϕ : Mm → Sm+1 be a compact hypersurface. If

ϕ is proper biharmonic, M has non-negative sectional curvature and m ≤ 10,
then ϕ is CMC and ϕ(M) is either Sm(1/

√
2), or Sm1(1/

√
2) × Sm2(1/

√
2),

m1 +m2 = m, m1 6= m2.

Then in [4] the following result was proved.

Theorem 3.22. Let ϕ : Mm → Sm+1 , m ≥ 3, be a hypersurface. Assume

that M has non-negative sectional curvature and for all p ∈ M there exists

Xp ∈ TpM , |Xp| = 1, such that Ricci(Xp, Xp) = 0. If ϕ is proper biharmonic,

then ϕ(M) is an open part of Sm−1(1/
√

2)× S1(1/
√

2).

Remark 3.23. If ϕ : Mm → Sm+1, m ≥ 3, is a compact hypersurface, then
the conclusion of Theorem 3.22 holds replacing the hypothesis on the Ricci
curvature with the requirement that the �rst fundamental group is in�nite. In
fact, the full classi�cation of compact hypersurfaces in Sm+1 with non-negative
sectional curvature and in�nite �rst fundamental group was given in [14].

4. BIHARMONIC SUBMANIFOLDS INTO ELLIPSOIDS

We study biharmonic submanifolds into Euclidean ellipsoids Qp+q+1(c, d)
de�ned as follows:

Qp+q+1(c, d) =

{
(x, y) ∈ Rp+1 × Rq+1 = Rn :

|x|2

c2
+
|y|2

d2
= 1

}
,

where c, d are �xed positive constants. The symmetry of Qp+q+1(c, d) makes
it natural to look for biharmonic generalized Cli�ord's tori. More precisely, we
shall be interested in isometric immersions of the following type:
(4.1)
ϕ : Sp(a) × Sq(b) −→ Qp+q+1(c, d)

(x1, . . . , xp+1 , y1, . . . , yq+1) 7−→ (x1, . . . , xp+1, y1, . . . , yq+1) ,

where i denotes the inclusion and the radii a, b must satisfy the following con-
dition:

(4.2)
a2

c2
+
b2

d2
= 1 .
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In this context, we have the following result, proved in [34]:

Theorem 4.1. Let ϕ : Sp(a) × Sq(b) → Qp+q+1(c, d) be an isometric

immersion as in (4.1). If

(4.3) a2 = c2
p

p+ q
; b2 = d2

q

p+ q

then the immersion is minimal. If (4.3) does not hold and

(4.4) a2 = c2
c

c+ d
; b2 = d2

d

c+ d
,

then the immersion is proper biharmonic.

Remark 4.2. We observe that, interestingly, if c = p and d = q, then we
have generalized minimal Cli�ord's tori, but we do not have proper biharmonic
submanifolds of the type (4.1).

We also point out that, according to Theorem 4.1, the ellipsoid Q3(c, d)
(p = q = 1, c 6= d) admits a proper biharmonic torus, while in S3 there exists
no genus 1 proper biharmonic submanifold, as we pointed out in Section 3.

Proof. We brie�y outline the method of proof: essentially, we work by
using coordinates in Rn, suitably restricted to the ellipsoid or to the torus,
according to necessity. It is necessary to proceed to a non-trivial direct com-
putation of the tension and the bitension �eld. In order to describe the �nal
result, we need to introduce the following vector �elds:

(4.5) ηQ =
ηQ1

|ηQ1 |
,

where

ηQ1 =

(
1

c2
x1, . . . ,

1

c2
xp+1,

1

d2
y1, . . . ,

1

d2
yq+1

)
,

which represents a unit normal vector �eld on the ellipsoid Qp+q+1(c, d). And
also

(4.6) ηT =
ηT1
|ηT1 |

,

where

(4.7) ηT1 =

(
c2

a2
x1, . . . ,

c2

a2
xp+1, −

d2

b2
y1, . . . , −

d2

b2
yq+1

)
,

which is a unit normal vector on the torus T viewed as a submanifold of the
ellipsoid Qp+q+1(c, d). A �rst step leads us to the expression of the tension
�eld:

(4.8) τ = λ ηT1 ,
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where

λ = −
[
c4

a2
+
d4

b2

]−1 [
p c2

a2
− q d2

b2

]
.

In particular, using (4.2), it is now immediate to conclude that (4.3) is
equivalent to the minimality of the immersion.

Next, one proceeds to the computation of the bitension �eld τ2, the main
di�culty being to work out the expression of the rough Laplacian (1.4). The
result is:

(4.9) τ2 = −
[
µ ηT1 + traceRQ(d i, τ) d i

]
,

where, using the fact that |ηT1 |2 is constant on T , we have de�ned

(4.10) µ =
λ

|ηT1 |2

[
p c4

a4
+
q d4

b4

]
(note also that, if (4.3) does not hold, then λ 6= 0, so that µ 6= 0 and the
immersion is not minimal).

In order to end the proof, one has to investigate for which values (if any) of
a, b the bitension τ2 vanishes. In order to overcome the di�culties arising from
the presence of the curvature tensor in (4.9), that can be done in an e�cient
way by studying the vanishing of normal and tangential components separately.
In particular, one proves that the normal component of τ2 is identically zero if
and only if (4.4) holds, while the tangential part of τ2 vanishes for all values of
a and b. �

We also point out that, by using similar methods, it is possible to study
biharmonic submanifolds into Euclidean ellipsoids of revolution Qp+1(c, d) de-
�ned as follows:

Qp+1(c, d) =

{
(x, y) ∈ Rp+1 × R = Rn :

|x|2

c2
+
y2

d2
= 1

}
,

where c, d are �xed positive constants. In this case, the symmetry of Qp+1(c, d)
makes it natural to look for biharmonic hyperspheres, that is isometric immer-
sions of the following type:

(4.11)
ϕ : Sp(a) × {b} −→ Qp+1(c, d)

(x1, . . . , xp+1 , b) 7−→ (x1, . . . , xp+1, b ) ,

where i denotes the inclusion and the constants a, b must again satisfy the
condition

(4.12)
a2

c2
+
b2

d2
= 1

(note that a is a radius, so it is positive, while the only request on b is: |b| < d).
In this context, we have the following result (see [34]):
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Theorem 4.3. Let ϕ : Sp(a)× {b} → Qp+1(c, d) be an isometric immer-

sion as in (4.11). If

(4.13) a2 = c2 ; b = 0

then the immersion is minimal (this is the case of the equator hypersphere). If

(4.14) a = c

√
c

c+ d
; b = ± d

√
d

c+ d
,

then the immersion is proper biharmonic.

We conclude by saying that the results of this Section enable us to derive
the existence of a new, large family of proper biharmonic immersions into el-
lipsoids. That is a consequence of the following composition properties, which
extend a result of [5] for the case of immersions into spheres:

Theorem 4.4. Let ϕ : Sp(a) → Qp+1(c, d) be a proper biharmonic im-

mersion as in Theorem 4.3, and let ψ : Mm → Sp(a) be a minimal immersion.

Then ϕ ◦ ψ : Mm → Qp+1(c, d) is a proper biharmonic immersion.

Theorem 4.5. Let ϕ : Sp(a) × Sq(b) → Qp+q+1(c, d) be a proper bi-

harmonic immersion as in Theorem 4.1, and let ψ1 : Mm1
1 → Sp(a) , ψ2 :

Mm2
2 → Sq(b) be two minimal immersions. Then ϕ◦(ψ1×ψ2) : Mm1

1 ×M
m2
2 →

Qp+q+1(c, d) is a proper biharmonic immersion.

Remark 4.6. We point out that all biharmonic submanifolds into ellip-
soids, constructed using the previous composition properties, have parallel
mean curvature vector �eld.
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