We consider a second-order differential inclusion and we obtain sufficient conditions for \(h \)-local controllability along a reference trajectory.

AMS 2010 Subject Classification: 34A60.

Key words: differential inclusion, \(h \)-local controllability, mild solution.

1. INTRODUCTION

In this paper we are concerned with the following second-order differential inclusion

\[
(1.1) \quad x'' \in Ax + F(t,x), \quad x(0) \in X_0, \quad x'(0) \in X_1,
\]

where \(F : [0,T] \times X \to \mathcal{P}(X) \) is a set valued map, \(A \) is the infinitesimal generator of a strongly continuous cosine family of operators \(\{C(t); \ t \in \mathbb{R}\} \) on a separable Banach space \(X \) and \(X_0, X_1 \subset X \) are closed sets. Let \(S_F \) be the set of all mild solutions of (1.1) and let \(R_F(T) \) be the reachable set of (1.1). For a mild solution \(z(.) \in S_F \) and for a locally Lipschitz function \(h : X \to X \) we say that the differential inclusion (1.1) is \(h \)-locally controllable around \(z(.) \) if \(h(z(T)) \in \text{int}(h(R_F(T))) \). In particular, if \(h \) is the identity mapping the above definitions reduces to the usual concept of local controllability of systems around a solution.

The aim of the present paper is to obtain a sufficient condition for \(h \)-local controllability of inclusion (1.1) when \(X \) is finite dimensional. This result is derived using a technique developed by Tuan for differential inclusions ([15]). More exactly, we show that inclusion (1.1) is \(h \)-locally controllable around the mild solution \(z(.) \) if a certain linearized inclusion is \(\lambda \)-locally controllable around the null solution for every \(\lambda \in \partial h(z(T)) \), where \(\partial h(.) \) denotes Clarke’s generalized Jacobian of the locally Lipschitz function \(h \). The key tools in the proof of our result are a continuous version of Filippov’s theorem for mild solutions of problem (1.1) obtained in [5] and a certain generalization of the classical open mapping principle in [16].
Our result may be interpreted as an extension of the controllability results in [10] to h-controllability.

We note that existence results and qualitative properties of the mild solutions of problem (1.1) may be found in [2–10] etc.

The paper is organized as follows: in Section 2 we present some preliminary results to be used in the sequel and in Section 3 we present our main results.

2. PRELIMINARIES

Let denote by I the interval $[0, T]$ and let X be a real separable Banach space with the norm $||.||$ and with the corresponding metric $d(.,.)$. Denote by $\mathcal{L}(I)$ the σ-algebra of all Lebesgue measurable subsets of I, by $\mathcal{P}(X)$ the family of all nonempty subsets of X and by $\mathcal{B}(X)$ the family of all Borel subsets of X. Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, \quad d^*(A, B) = \sup\{d(a, B); a \in A\},$$

where $d(x, B) = \inf_{y \in B} d(x, y)$.

As usual, we denote by $C(I, X)$ the Banach space of all continuous functions $x(.) : I \to X$ endowed with the norm $||x(.)||_C = \sup_{t \in I} ||x(t)||$ and by $L^1(I, X)$ the Banach space of all (Bochner) integrable functions $x(.) : I \to X$ endowed with the norm $||x(.)||_1 = \int_I ||x(t)||dt$.

We recall that a family $\{C(t); t \in \mathbb{R}\}$ of bounded linear operators from X into X is a strongly continuous cosine family if the following conditions are satisfied

(i) $C(0) = Id$, where Id is the identity operator in X,

(ii) $C(t+s) + C(t-s) = 2C(t)C(s) \ \forall t, s \in \mathbb{R},$

(iii) the map $t \to C(t)x$ is strongly continuous $\forall x \in X$.

The strongly continuous sine family $\{S(t); t \in \mathbb{R}\}$ associated to a strongly continuous cosine family $\{C(t); t \in \mathbb{R}\}$ is defined by

$$S(t)y := \int_0^t C(s)yds, \quad y \in X, t \in \mathbb{R}.$$

The infinitesimal generator $A : X \to X$ of a cosine family $\{C(t); t \in \mathbb{R}\}$ is defined by

$$Ay = (\frac{d^2}{dt^2})C(t)y|_{t=0}.$$

For more details on strongly continuous cosine and sine family of operators we refer to [12, 14].
In what follows A is infinitesimal generator of a cosine family $\{C(t); \ t \in \mathbb{R}\}$ and $F(.,.) : I \times X \to \mathcal{P}(X)$ is a set-valued map with nonempty closed values, which define the following Cauchy problem associated to a second-order differential inclusion

\begin{align}
(2.1) \quad x''(t) & = Ax(t) + F(t, x(t)), \quad x(0) = x_0, \quad x'(0) = x_1. \\
\end{align}

A continuous mapping $x(.) \in C(I, X)$ is called a \textit{mild solution} of problem (2.1) if there exists a (Bochner) integrable function $f(.) \in L^1(I, X)$ such that:

\begin{align}
(2.2) \quad f(t) & \in F(t, x(t)) \quad a.e. (I), \\
(2.3) \quad x(t) = C(t)x_0 + S(t)x_1 + \int_0^t S(t-u)f(u)du \quad \forall t \in I,
\end{align}

i.e., $f(.)$ is a (Bochner) integrable selection of the set-valued map $F(.,x(\cdot))$ and $x(.)$ is the mild solution of the Cauchy problem

\begin{align}
(2.4) \quad x''(t) & = Ax(t) + f(t), \quad x(0) = x_0, \quad x'(0) = x_1.
\end{align}

We shall call $(x(\cdot), f(\cdot))$ a \textit{trajectory-selection pair} of (2.1) if $f(.)$ verifies (2.2) and $x(.)$ is a mild solution of (2.4).

Hypothesis 2.1. i) $F(.,.) : I \times X \to \mathcal{P}(X)$ has nonempty closed values and is $\mathcal{L}(I) \otimes \mathcal{B}(X)$ measurable.

ii) There exists $L(.) \in L^1(I, \mathbb{R}_+)$ such that, for any $t \in I$, $F(t, .)$ is $L(t)$-Lipschitz in the sense that

\[d_H(F(t, x_1), F(t, x_2)) \leq L(t)||x_1 - x_2|| \quad \forall x_1, x_2 \in X. \]

Hypothesis 2.2. Let S be a separable metric space, $X_0, X_1 \subset X$ are closed sets, $a_0(.) : S \to X_0$, $a_1(.) : S \to X_1$ and $c(.) : S \to (0, \infty)$ are given continuous mappings.

The continuous mappings $g(.) : S \to L^1(I, X)$, $y(.) : S \to C(I, X)$ are given such that

\[(y(s))''(t) = Ay(s)(t) + g(s)(t), \quad y(s)(0) \in X_0, \quad (y(s))'(0) \in X_1. \]

There exists a continuous function $p(.) : S \to L^1(I, \mathbb{R}_+)$ such that

\[d(g(s)(t), F(t, y(s)(t)))) \leq p(s)(t) \quad a.e. (I), \quad \forall s \in S. \]

Theorem 2.3 ([5]). Assume that Hypotheses 2.1 and 2.2 are satisfied.

Then there exist $M > 0$ and the continuous functions $x(.) : S \to L^1(I, X)$, $h(.) : S \to C(I, X)$ such that for any $s \in S$ $(x(s)(.), h(s)(.))$ is a trajectory-selection of (1.1) satisfying for any $(t, s) \in I \times S$

\[x(s)(0) = a_0(s), \quad (x(s))'(0) = a_1(s), \]
(2.5) \[||x(s)(t) - y(s)(t)|| \leq M[c(s) + ||a_0(s) - y(s)(0)|| + \int_0^t p(s)(u)du]. \]

In what follows we assume that \(X = \mathbb{R}^n \).

A closed convex cone \(C \subset \mathbb{R}^n \) is said to be regular tangent cone to the set \(X \) at \(x \in X \) ([13]) if there exists continuous mappings \(q_\lambda : C \cap B \to \mathbb{R}^n \), \(\forall \lambda > 0 \) satisfying
\[
\lim_{\lambda \to 0^+} \max_{v \in C \cap B} ||q_\lambda(v)|| = 0, \\
x + \lambda v + q_\lambda(v) \in X \quad \forall \lambda > 0, v \in C \cap B.
\]

From the multitude of the intrinsic tangent cones in the literature (e.g. [1]) the contingent, the quasitangent and Clarke’s tangent cones, defined, respectively, by
\[
K_xX = \{v \in \mathbb{R}^n; \exists s_m \to 0^+, x_m \in X : \frac{x_m - x}{s_m} \to v\} \\
Q_xX = \{v \in \mathbb{R}^n; \forall s_m \to 0^+, \exists x_m \in X : \frac{x_m - x}{s_m} \to v\} \\
C_xX = \{v \in \mathbb{R}^n; \forall (x_m, s_m) \to (x, 0^+), x_m \in X, \exists y_m \in X : \frac{y_m - x_m}{s_m} \to v\}
\]
seem to be among the most oftenly used in the study of different problems involving nonsmooth sets and mappings. We recall that, in contrast with \(K_xX, Q_xX \), the cone \(C_xX \) is convex and one has \(C_xX \subset Q_xX \subset K_xX \).

The results in the next section will be expressed, in the case when the mapping \(g(.) : X \subset \mathbb{R}^n \to \mathbb{R}^m \) is locally Lipschitz at \(x \), in terms of the Clarke generalized Jacobian, defined by ([11])
\[
\partial g(x) = \text{co}\{\lim_{i \to \infty} g'(x_i); \quad x_i \to x, \quad x_i \in X \setminus \Omega_g\},
\]
where \(\Omega_g \) is the set of points at which \(g \) is not differentiable.

Corresponding to each type of tangent cone, say \(\tau_xX \) one may introduce (e.g. [1]) a set-valued directional derivative of a multifunction \(G(.) : X \subset \mathbb{R}^n \to \mathcal{P}(\mathbb{R}^n) \) (in particular of a single-valued mapping) at a point \((x, y) \in \text{graph}(G) \) as follows
\[
\tau_yG(x; v) = \{w \in \mathbb{R}^n; (v, w) \in \tau_{(x, y)}\text{graph}(G)\}, \quad v \in \tau_xX.
\]

We recall that a set-valued map, \(A(.) : \mathbb{R}^n \to \mathcal{P}(\mathbb{R}^n) \) is said to be a convex (respectively, closed convex) process if \(\text{graph}(A(.)) \subset \mathbb{R}^n \times \mathbb{R}^n \) is a convex (respectively, closed convex) cone. For the basic properties of convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis 2.4. i) **Hypothesis 2.1 is satisfied and** \(X_0, X_1 \subset \mathbb{R}^n \) **are closed sets.**
ii) \((z(.), f(.)) \in C(I, \mathbb{R}^n) \times L^1(I, \mathbb{R}^n)\) is a trajectory-selection pair of (1.1) and a family \(P(t, .) : \mathbb{R}^n \to \mathcal{P}(\mathbb{R}^n), t \in I\) of convex processes satisfying the condition
\[
P(t, u) \subset Q_{f(t)}F(t, .)(z(t); u) \quad \forall u \in \text{dom}(P(t, .)), \text{ a.e. } t \in I
\]
is assumed to be given and defines the variational inclusion
\[
v'' \in Av + P(t, v).
\]

Remark 2.5. We note that for any set-valued map \(F(., .)\), one may find an infinite number of families of convex process \(P(t, .), t \in I\), satisfying condition (2.6); in fact any family of closed convex subcones of the quasitangent cones, \(\mathcal{P}(t) \subset Q_{z(t), f(t)}\text{graph}(F(t, .))\), defines the family of closed convex process
\[
P(t, u) = \{v \in \mathbb{R}^n; (u, v) \in \mathcal{P}(t)\}, \quad u, v \in \mathbb{R}^n, t \in I
\]
that satisfy condition (2.6). One is tempted, of course, to take as an "intrinsic" family of such closed convex process, for example Clarke’s convex-valued directional derivatives \(C_{f(t)}F(t, .)(z(t); .)\).

We recall (e.g. [1]) that, since \(F(t, .)\) is assumed to be Lipschitz a.e. on \(I\), the quasitangent directional derivative is given by
\[
Q_{f(t)}F(t, .)((z(t); u)) = \{w \in \mathbb{R}^n; \lim_{\theta \to 0^+} \frac{1}{\theta} d(f(t) + \theta w, F(t, z(t) + \theta u)) = 0\}.
\]

In what follows \(B\) or \(B_{\mathbb{R}^n}\) denotes the closed unit ball in \(\mathbb{R}^n\) and \(0_n\) denotes the null element in \(\mathbb{R}^n\).

Consider \(h : \mathbb{R}^n \to \mathbb{R}^m\) an arbitrary given function.

Definition 2.6. Inclusion (1.1) is said to be \(h\)-locally controllable around \(z(.)) if \(h(z(T)) \in \text{int}(h(R_F(T)))\).

Inclusion (1.1) is said to be locally controllable around the solution \(z(.)\) if \(z(T) \in \text{int}(R_F(T))\).

Finally, a key tool in the proof of our results is the following generalization of the classical open mapping principle due to Warga ([16]).

For \(k \in \mathbb{N}\) we define
\[
\Sigma_k := \{\gamma = (\gamma_1, ..., \gamma_k); \sum_{i=1}^k \gamma_i \leq 1, \quad \gamma_i \geq 0, \ i = 1, 2, ..., k\}.
\]

Lemma 2.7 ([16]). Let \(\delta \leq 1\), let \(g(.) : \mathbb{R}^n \to \mathbb{R}^m\) be a mapping that is \(C^1\) in a neighborhood of \(0_n\) containing \(\delta B_{\mathbb{R}^n}\). Assume that there exists \(\beta > 0\) such that for every \(\theta \in \delta \Sigma_n, \beta B_{\mathbb{R}^m} \subset g'(\theta) \Sigma_n\). Then, for any continuous mapping \(\psi : \delta \Sigma_n \to \mathbb{R}^m\) that satisfies \(\sup_{\theta \in \delta \Sigma_n} ||g(\theta) - \psi(\theta)|| \leq \frac{\delta \beta}{32}\) we have
\[
\psi(0_n) + \frac{\delta \beta}{16} B_{\mathbb{R}^m} \subset \psi(\delta \Sigma_n).
\]
3. THE MAIN RESULT

In what follows C_0 is a regular tangent cone to X_0 at $z(0)$, C_1 is a regular tangent cone to X_1 at $z'(0)$, denote by S_P the set of all mild solutions of the differential inclusion

$$v'' \in Av + P(t,v), \quad v(0) \in C_0, \quad v'(0) \in C_1$$

and by $R_P(T) = \{x(T); x(.) \in S_P\}$ its reachable set at time T.

Theorem 3.1. Assume that Hypothesis 2.4 is satisfied and let $h : \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz function with Lipschitz constant $l > 0$.

Then, inclusion (1.1) is h-local controllable around the solution $z(.)$ if

$$0_m \in \text{int}(\lambda R_P(T)) \quad \forall \lambda \in \partial h(z(T)).$$

Proof. By (3.1), since $\lambda R_P(T)$ is a convex cone, it follows that $\lambda R_P(T) = \mathbb{R}^m \forall \lambda \in \partial f(z(T))$. Therefore, using the compactness of $\partial f(z(T))$ (e.g. [11]), we have that for every $\beta > 0$ there exist $k \in \mathbb{N}$ and $u_j \in R_P(T)$ $j = 1, 2, ..., k$ such that

$$\beta B_{\mathbb{R}^m} \subset \lambda (u(\Sigma_k)) \quad \forall \lambda \in \partial f(z(T)),$$

where

$$u(\Sigma_k) = \{u(\gamma) := \sum_{j=1}^{k} \gamma_j u_j, \quad \gamma = (\gamma_1, ..., \gamma_k) \in \Sigma_k\}.$$

Using an usual separation theorem we deduce the existence of $\beta_1, \rho_1 > 0$ such that for all $\lambda \in L(\mathbb{R}^n, \mathbb{R}^m)$ with $d(\lambda, \partial f(z(T))) \leq \rho_1$ we have

$$\beta_1 B_{\mathbb{R}^m} \subset \lambda (u(\Sigma_k)).$$

Since $u_j \in R_P(T)$, $j = 1, ..., k$, there exist $(w_j(.), g_j(.))$, $j = 1, ..., k$ trajectory-selection pairs of (2.7) such that $u_j = w_j(T)$, $j = 1, ..., k$. We note that $\beta > 0$ can be taken small enough such that $||w_j(0)|| \leq 1$, $j = 1, ..., k$.

Define

$$w(t,s) = \sum_{j=1}^{k} s_j w_j(t), \quad \bar{g}(t,s) = \sum_{j=1}^{k} s_j g_j(t), \quad \forall s = (s_1, ..., s_k) \in \mathbb{R}^k.$$

Obviously, $w(.,s) \in S_P$, $\forall s \in \Sigma_k$.

Taking into account the definition of C_0 and C_1, for every $\varepsilon > 0$ there exists a continuous mapping $o_\varepsilon : \Sigma_k \to \mathbb{R}^n$ such that

$$z(0) + \varepsilon w(0,s) + o_\varepsilon(s) \in X_0, \quad z'(0) + \varepsilon \frac{\partial w}{\partial t}(0,s) + o_\varepsilon(s) \in X_1$$

$$\lim_{\varepsilon \to 0^+} \max_{s \in \Sigma_k} \frac{||o_\varepsilon(s)||}{\varepsilon} = 0.$$
Define

\[p_\varepsilon(s)(t) := \frac{1}{\varepsilon}d(\bar{g}(t, s), F(t, z(t) + \varepsilon w(t, s)) - f(t)), \]

\[q(t) := \sum_{j=1}^{k} ||g_j(t)|| + L(t)||w_j(t)||, \quad t \in I. \]

Then, for every \(s \in \Sigma_k \) one has

\[p_\varepsilon(s)(t) \leq ||\bar{g}(t, s)|| + \frac{1}{\varepsilon}d_H(0_n, F(t, z(t) + \varepsilon w(t, s)) - f(t)) \leq ||\bar{g}(t, s)|| + \frac{1}{\varepsilon}d_H(F(t, z(t)), F(t, z(t) + \varepsilon w(t, s))) \leq ||\bar{g}(t, s)|| + L(t)||w(t, s)|| \leq q(t). \]

Next, if \(s_1, s_2 \in \Sigma_k \) one has

\[|p_\varepsilon(s_1)(t) - p_\varepsilon(s_2)(t)| \leq ||\bar{g}(t, s_1) - \bar{g}(t, s_2)|| + \frac{1}{\varepsilon}d_H(F(t, z(t) + \varepsilon w(t, s_1)), F(t, z(t) + \varepsilon w(t, s_2))) \leq ||s_1 - s_2|| \cdot \max_{j=1,k} [||g_j(t)|| + L(t)||w_j(t)||], \]

thus, \(p_\varepsilon(.) (t) \) is Lipschitz with a Lipschitz constant not depending on \(\varepsilon \).

On the other hand, from (2.8) it follows that

\[\lim_{\varepsilon \to 0^+} p_\varepsilon(s)(t) = 0 \quad a.e. (I), \quad \forall s \in \Sigma_k \]

and hence,

\[\lim_{\varepsilon \to 0^+} \max_{s \in \Sigma_k} p_\varepsilon(s)(t) = 0 \quad a.e. (I). \]

Therefore, from (3.6), (3.7) and Lebesgue dominated convergence theorem we obtain

\[\lim_{\varepsilon \to 0^+} \int_0^T \max_{s \in \Sigma_k} p_\varepsilon(s)(t) dt = 0. \]

By (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find \(\varepsilon_0, e_0 > 0 \) such that

\[\max_{s \in \Sigma_k} \frac{||o_{\varepsilon_0}(s)||}{\varepsilon_0} + \int_0^T \max_{s \in \Sigma_k} p_{\varepsilon_0}(s)(t) dt \leq \frac{\beta_1}{28 T^2}, \]

\[\varepsilon_0 w(T, s) \leq \frac{e_0}{2} \quad \forall s \in \Sigma_k. \]

If we define

\[y(s)(t) := z(t) + \varepsilon_0 w(t, s), \quad g(s)(t) := f(t) + \varepsilon_0 \bar{g}(t, s) \quad s \in \mathbb{R}^k, \]

\[a_0(s) := z(0) + \varepsilon_0 w(0, s) + o_{\varepsilon_0}(s), \quad a_1(s) := z'(0) + \varepsilon_0 \frac{\partial w}{\partial t}(0, s) + o_{\varepsilon_0}(s), \quad s \in \mathbb{R}^k, \]

then we apply Theorem 2.3 and we find that there exists the continuous function \(x(.) : \Sigma_k \to C(I, \mathbb{R}^n) \) such that for any \(s \in \Sigma_k \) the function \(x(s)(.) \) is solution of the differential inclusion \(x'' \in A x + F(t, x), x(s)(0) = a_0(s), (x(s))'(0) = a_1(s) \forall s \in \Sigma_k \) and one has
where \(\chi \) satisfies (3.3) and verifies (3.12). In particular, we obtain (3.3)

\[
\|h(x) - h_0(x)\| \leq lb,
\]

(3.13)

\[
\phi(s) := h_0(z(T) + \varepsilon_0 w(T, s)),
\]

where \(\chi(.) : \mathbb{R}^n \to [0, 1] \) is a \(C^\infty \) function with the support contained in \(B_{\mathbb{R}^n} \) that satisfies \(\int_{\mathbb{R}^n} \chi(y)dy = 1 \) and \(b = \min\{\frac{\varepsilon_0}{2}, \frac{\varepsilon_0 \beta_1}{2^6 l}\} \).

Therefore, \(h_0(.) \) is of class \(C^\infty \) and verifies (3.12)

\[
\|h(x) - h_0(x)\| \leq lb,
\]

(3.13)

\[
\phi'(s) \mu = h_0'(z(T) + \varepsilon_0 w(T, \mu)) \quad \forall \mu \in \Sigma_k.
\]

Using again the upper semicontinuity of Clarke’s generalized Jacobian we obtain

\[
d(h_0'(z(T) + \varepsilon_0 w(T, s)), \partial h(z(T))) \leq \sup\{d(h_0'(u), \partial h(z(T))) ; \|u - z(t)\| \leq \|u - (z(T) + \varepsilon_0 w(T, s))\| + \|\varepsilon_0 w(t, s)\| \leq \varepsilon_0, \quad h'(u) \text{ exists}\} < \rho_1.
\]

The last inequality with (3.3) gives

\[
\varepsilon_0 \beta_1 B_{\mathbb{R}^m} \subset \phi'(s) \Sigma_k \quad \forall s \in \Sigma_k.
\]

Finally, for \(s \in \Sigma_k \), we put \(\psi(s) = h(x(s)(T)) \).

Obviously, \(\psi(.) \) is continuous and from (3.11), (3.12), (3.13) one has

\[
\|\psi(s) - \phi(s)\| = \|h(x(s)(T)) - h_0(y(s)(T))\| \leq \|h(x(s)(T)) - h(y(s)(T))\| + \|h(y(s)(T)) - h_0(y(s)(T))\| \leq l\|x(s)(T) - y(s)(T)\| + lb \leq \frac{\varepsilon_0 \beta_1}{64} + \frac{\varepsilon_0 \beta_1}{64} = \frac{\varepsilon_0 \beta_1}{32}.
\]

We apply Lemma 2.7 and we find that

\[
h(x(0_k)(T)) + \frac{\varepsilon_0 \beta_1}{16} B_{\mathbb{R}^m} \subset \psi(\Sigma_k) \subset h(R_F(T)).
\]

On the other hand, \(\|h(z(T)) - h(x(0_k)(T))\| \leq \frac{\varepsilon_0 \beta_1}{64} \), so we have \(h(z(T)) \in \text{int}(R_F(T)) \) and the proof is complete. \(\square \)

Remark 3.2. If \(m = n \) and \(h(x) \equiv x \), Theorem 3.1 yields Theorem 3.4 in [10].
REFERENCES

Received 15 October 2012

University of Bucharest,
Faculty of Mathematics and Informatics,
Academiei 14, 010014 Bucharest,
Romania
acernea@fmi.unibuc.ro