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We consider a mathematical model which describes a quasistatic frictional con-
tact between a piezoelectric body and a deformable foundation. A nonlinear
electro-viscoelastic constitutive law with long memory is used and the contact
is modeled with a normal compliance condition and the associated Coulomb’s
law of dry friction in which the adhesion of contact surfaces is taken into ac-
count. Under a smallness assumption on the coefficient of friction, we prove the
existence of a unique weak solution of the problem. The proof is based on argu-
ments of variational inequalities, differential equations and Banach fixed point
theorem.
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1. INTRODUCTION

Contact problems with or without friction between deformable bodies or
between a rigid and a deformable body are very common in industry and in
daily life. One of the first publications on this topic is [19] due to Signorini
where the contact problem between a linear elastic body and a rigid founda-
tion is formulated. The variational formulation associated with this contact
model was established by Fechera [8] and the problem was solved by using the
arguments of variational inequalities. It follows the work of Duvaut and Lions
[7] which added friction to the contact problems. Recall that frictional contact
problems are studied in [13, 14, 16, 19, 23] and many others.

Given their wide range of applications, considerable progress has been
completed in the modeling and processing of deformable materials, in partic-
ular, materials are called piezoelectric which reflect the act of polarize under
the mechanical action or deform when an electric field is applied on this type
of material. In mathematical models, this property is included in the law of
material behavior, for a detailed presentation of piezoelectricity, see [1, 2, 12].
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So, in addition to the equation of motion describing the evolution of the dis-
placement field and traction-displacement conditions, the models also include
an equation describing the evolution of the electric displacement field and the
conditions on the electric potential and electric charges applied on the material.

In addition to piezoelectric effect, in recent models, adhesion is consid-
ered; this last is interfacial phenomena accompanying the motion when a glue is
added to prevent the surfaces from relative motion. Following Frémond [8, 9],
many models of adhesive contact in quasistatic or dynamic processes are stud-
ied in [4, 19, 22, 23] and some models for viscoelastic materials with adhesion
can be found in [4, 11, 17, 20].

This paper is a contribution to the study of the contact problem for
piezoelectric materials. In this work, we consider a mathematical model for
adhesive contact between a body assumed to be electro-viscoelastic with long
memory and a deformable foundation. The novelty consists in the fact that
here the quasistatic problem is frictional and is modeled by a standard normal
compliance condition associated with a Coulomb’s law of dry friction. Note
that the frictionless contact problem is resolved [1]. Other work are carried
out in viscoelasticity with short memory (see [22]) and in some models where
the frictional condition is modeled with subdifferential boundary (see [25]).

As in [8, 9], we use a bonding field of adhesion represented by a variable
β defined on the area of contact which satisfies the restrictions 0 ≤ β ≤ 1, if
β = 1 at all point in the area of contact; the adhesion is complete and all the
bonds are active, if β = 0; all the bonds are inactive, severed, and there is no
adhesion, when 0 < β < 1, the adhesion is partial and only a fraction β of the
bonds is active.

The paper is organized as follows. In Section 2, we introduce some nota-
tion and preliminaries concerning the different function spaces used in continum
mechanics. In Sections 3 and 4, we describe the mechanical problem, list the
assumptions on the data and set it into a variational formulation. Finally, in
Section 5, under the assumption of smallness of the coefficient of friction, we
state and prove an existence and uniqueness result of the weak solution to the
mechanical problem, Theorem 5.1.

2. PRELIMININARIES AND NOTATIONS

In this section, we present the notation and different function spaces used
in this work. For further details, we refer the reader to [3, 6, 19].

We denote by Sd the space of symmetric tensors of second order on Rd(d =
2, 3), ‘.’ and ‖.‖ the inner product and the Euclidean norm on Sd and Rd
respectively, i.e.:
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u.v = uivi, ‖v‖ = (v.v)
1
2 ∀u, v ∈ Rd, 1 ≤ i, j ≤ d,

σ.τ = σijτij , ‖τ‖ = (τ.τ)
1
2 ∀σ, τ ∈ Sd, 1 ≤ i, j ≤ d.

Let Ω ⊂ Rd, (d = 2, 3) a bounded domain with a Lipshitz boundary
∂Ω = Γ, ν denotes the unit outer normal defined almost everywhere on Γ.
Throughout this work we use standard notations for the spaces LP and Sobolev
spaces associated to Ω and Γ. We introduce the spaces

H =
[
L2 (Ω)

]d
,

Q =
{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
H1 =

{
u = (ui) |ui ∈ H1(Ω), i = 1, d

}
Hdiv = {σ ∈ Q |divσ ∈ H }

H, Q, H1, Hdiv are real Hilbert spaces equipped with the inner products:

(u, v)H =
∫

Ω uividx, 〈σ, τ〉Q =
∫

Ω σijτijdx,

(u, v)H1
= 〈u, v〉H + (ε(u), ε(v))Q ,

(σ, τ)Hdiv
= 〈σ, τ〉Q + (divσ, divτ)H ,

where ε is the deformation operator and div is the divergence operator,

ε : H1 → Q, ε (u) = (εij (u)) , εij (u) = 1
2 (∂jui + ∂iuj)

∀i, j = 1, d, u ∈ H1

div : Hdiv → H1, divσ = (∂jσij) ∀i = 1, d, σ ∈ Hdiv.

We denote, respectively, the norms associated with ‖.‖H , ‖.‖Q, ‖.‖H1
and

‖.‖Hdiv
.

If Γ is of class C1 then, the mapping v → u |Γ defined on C1
(
Ω̄
)d

in

L2 (Γ)d extends to a continuous mapping γ of H1 into L2 (Γ)d. The image

space of H1 by this mapping denoted HΓ =
[
H

1
2 (Γ)

]d
is the Hilbert space,

then the mapping v → γv is linear continuous and surjective from H1 in HΓ.
Let H

′
Γ the dual space of HΓ, for any σ ∈ Hdiv, the vector σν can be defined

as an element of H
′
Γ satisfying Green’s formula as follows:

〈σν, γv〉
H
′
Γ×HΓ

= 〈σ, ε (v)〉Q + (divσ, v)H ∀v ∈ H1.

For every v ∈ H1, we also use the notation v for the trace of v on Γ and
we denote by vν and vτ the normal and tangential components of v on the
boundary Γ, given by

(2.1) vν = v.ν = viνi , vτ = v − vνν.

We define, similarly, by σv and σr the normal and the tangential traces
of the stress tensor σ ∈ Q1, and when σ is a regular function then
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(2.2) σν = (σν).ν, στ = σν − σνν,

and we have the relation

(2.3) 〈σν, γv〉 =

∫
Γ
σν.vda ∀v ∈ H1,

where da is the surface measure element Γ and Green’s formula is written as

(2.4) 〈σ, ε (v)〉Q + (divσ, v)H =

∫
Γ
σν.vda ∀v ∈ H1.

Let Γ1 ∪ Γ2 ∪ Γ3 a partition of Γ, such that Γ1, Γ2 and Γ3 are disjoint open
sets and let V be the closed subspace of H1 defined by

(2.5) V = {v ∈ H1 |γv = 0 a.e. on Γ1} .

If meas(Γ1) > 0, then, the Korn’s inequality holds, i.e., there exists a constant
cΩ > 0 depending only on Ω and Γ1 such that:

(2.6) ‖ε (v)‖Q > cΩ ‖v‖H1
∀v ∈ V.

The space V is equipped with the inner product:

(2.7) (u, v)V = (ε(u), ε(v))Q ,

and the associated norm ‖.‖V . It follows by Korn’s inequality (2.6) that ‖.‖V is
equivalent to the canonical norm ‖.‖H1

and V is a real Hilbert space. Moreover,
given the trace theorem (2.6) and (2.7), there exists a positive constant c0 such
that

(2.8) ‖v‖L2(Γ3)d 6 c0 ‖v‖V ∀v ∈ V,

where c0 depends on Ω and Γ.

Now, if we consider another partition of assuming Γ = Γ̄a ∪ Γ̄b where
Γa, Γb are disjoint open sets with mes(Γa) > 0, we obtain similar results. We
define the following spaces

W = {ψ ∈ H1 |γψ = 0 a.e. on Γa } ,
Wa =

{
D = (Di)

∣∣Di ∈ L2(Ω)
}
,

W and Wa are Hilbert spaces endowed, respectively:

(ψ, φ)W = (∇ψ,∇φ)H ,

(D,E)Wa = (D,E)H + (divD,divE)L2(Ω) ,

where ∇ is the gradient operator

(2.9) ∇ψ = (∂iψ) = (ψ,i) ∀ψ ∈W.

We denote the norms associated with ‖.‖W and ‖.‖Wa
.
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As meas(Γa) > 0 then the Friedrichs-Poincaré inequality holds, which
shows that there exists a constant CF depending only on Ω and Γ such that:

(2.10) ‖∇ψ‖ ≥ CF ‖ψ‖H1(Ω) ∀ψ ∈W.

Moreover, if D ∈ Wd is a regular field, we have a result similar to (2.4),
that is to say, that we have Green’s formula as follows:

(2.11) (D,∇ψ)H + (divD,ψ)L2(Ω) =

∫
Γb

Dνψda ∀ψ ∈W.

We will also need the space of tensors of order four Q∞ defined by

Q∞ = {E = (Eijkh) ; Eijkh = Ejikh = Ekhij ∈ L∞ (Ω)} .

Q∞ is a Banach space with the norm defined by

‖E‖Q∞ = max
0≤i,j,k,h≤d

‖Eijkh‖L∞(Ω) .

For every real Banach space X and T a positive real we use the notation
C ([0, T ] ;X) for the space of continuous functions defined on [0, T ] in X, which
is a Banach space with the norm:

‖u‖C([0,T ];X) = max
t∈[0,T ]

‖u(t)‖X .

For p ∈ [0,∞], the space Lp(0, T ;X) denotes the space of (class of) measurable
functions t→ f(t), which is a Banach space for the norm:

‖u‖Lp(0,T ;X)


(
T∫
0

‖v(t)‖pX dt

) 1
p

if 1 ≤ p <∞

sup ess
(0,T )

‖v(t)‖X if p =∞.

In particular, the space L2(0, T ;X) is a Hilbert space with the inner product:

(u, v)L2(0,T ;X) =

T∫
0

(u(t), v(t))X .

In addition, W k,∞(0, T ;V ) is a Banach space for the norm defined by:

‖u‖Wk,∞(0,T ;X) =

k∑
j=0

sup
(0,T )

ess
∥∥Dju

∥∥
X
.

In particular, for k = 0, we have

W k,∞(0, T ;X) = L∞(0, T ;X).

For k = 1, the space W 1,∞(0, T ;X) is defined by
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W 1,∞(0, T ;X) = {u : [0, T ]→ X such that: u ∈ L∞(0, T ;X)
and u̇ ∈ L∞(0, T ;X)},

equipped with the norm:

‖u‖W 1,∞(0,T ;X) = ‖u‖L∞(0,T ;X) + ‖u̇‖L∞(0,T ;X) .

Finally, we introduce the space of bonding the field denoted B by

B = {β : [0, T ] −→ L2(Γ3) such that : 0 ≤ β (t) ≤ 1
∀t ∈ [0, T ], a.e. x ∈ Γ3}.

3. THE CONTACT PROBLEM STATEMENT

We consider the following physical setting. An electro-viscoelastic with
long memory body occupies a bounded domain Ω ⊂ Rd (d = 2, 3). The bound-
ary ∂Ω = Γ is assumed to be regular and partitioned into three parts Γ =
Γ1∪Γ2∪Γ3, such that Γ1, Γ2, Γ3 are open, mutually disjoint and meas (Γ1) > 0
on one hand, and partitioned on two measurable parts Γ = Γa ∪ Γb such that
Γa, Γb are open, disjoint, meas (Γa) > 0 and Γ3 ⊂ Γb, on the other hand.
Let T > 0, [0, T ] denotes the time interval under consideration. We assume
that the body is fixed on Γ1 and is submitted to volume forces of density ϕ0

given on Ω× (0, T ) and to surface tractions of ϕ2 given on Γ2× (0, T ). On the
other hand, the body is submitted to electrical constraints.We assume that the
electric potential is zero on Γa and that the body is submitted to an electric
charge density q0 act on Ω and an electric charge of density q2 imposed on
Γb. Along Γ3 the body is in adhesive contact with a deformable foundation.
The contact is modelled with a normal compliance condition associated with
Coulomb friction. This problem may be stated as follows:

Problem (P ). Find a displacement field u : Ω × [0, T ] → Rd, a stress
field σ : Ω × [0, T ] → Sd, an electric potential ϕ : Ω × [0, T ] → R, an electric
displacement field D : Ω× [0, T ]→ Rd and a bonding field β : Γ3 × [0, T ]→ R
such that, for all t ∈ [0, T ],

(3.1) σ (t) = Bε(u(t)) +

t∫
0

F(t− s)ε(u(s))ds− E∗E(ϕ(t))

(3.2) D(t) = Eε(u(t)) + CE(ϕ(t))

(3.3) divσ(t) + ϕ0(t) = 0 in Ω,

(3.4) divD(t) + q1(t) = 0 in Ω,

(3.5) u(t) = 0 on Γ1,
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(3.6) σν(t) = ϕ2(t) on Γ2,

(3.7) −σν(t) = pν(uν(t)− q)− γνβ2Rν(uν(t)) on Γ3,

(3.8) β̇(t) = −
[
β(t)

(
(γνRνuν(t))2 + γτ ‖Rτ (uτ (t))‖2

)
− εa

]
+

on Γ3,

(3.9) ϕ(t) = 0 on Γa,

(3.10) Dν(t) = q2(t) on Γb,

(3.11) β(0) = β0 on Γ3,

(3.12)



∥∥στ (t) + γτβ
2Rτ (uτ (t))

∥∥ 6 µp (uν(t)− q)∥∥στ (t) + γτβ
2Rτ (uτ (t))

∥∥ < µp (uν(t)− q) =⇒ uτ (t) = 0∥∥στ (t) + γτβ
2Rτ (uτ (t))

∥∥ = µp (uν(t)− q) =⇒ ∃λ > 0

such that : στ (t) + γτβ (t)2Rτ (uτ (t)) = −λuτ (t)

on Γ3.

We now provide some comments on equations and conditions (3.1)–(3.12).
(3.1) and (3.2) represent the constituve law of an electro-viscoelastic with

long memory, in which ε is the linearized deformation tensor, B is an operator of
elasticity, F is the tensor of relaxation, E = (eijk) is the piezoelectric operator
reflecting the proportionality between the electric charge and deformation at
constant field or zero, E∗ = (e∗ijk) is its transpose, E(ϕ) = −∇ϕ is the electric
field and C = (Cij) denotes the electric permittivity tensor.

(3.3) is the equation of motion describing the evolution of the displace-
ment u : Ω× [0, T ]→ Rd. (3.4) is the equation describing the evolution of the
electric displacement D : Ω× [0, T ]→ Rd. (3.5) and (3.6) are the displacement
and traction boundary conditions.

The equation (3.7) reflects the fact that the body is in adhesive contact
with a deformable foundation. The normal constraint satisfies the condition
called normal compliance modeling the interpenetration of the contact surface
in the foundation. The contact area is not known a priory, q is the initial jump
between the body and the foundation measured in the direction of the normal
ν and p is a given non negative function. This condition shows that the foun-
dation has a reaction on the body which depends on the penetration (uν − q).

The differential equation (3.8) describes the evolution of the bonding
field β. Here γν , γτ and εa are positive coefficients of adhesion where [.]+ =
max {0, .}. Rν is a truncation operator defined by:

(3.13) Rν(s) =


L if s < L
−s if − L ≤ s ≤ 0

0 if s > L
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where L > 0 is the characteristic length of the bond [17].

Rτ is also a truncation operator defined by

(3.14) Rτ (s) =

{
s if ‖s‖ < L,

L
s

‖s‖
if ‖s‖ > L.

In (3.9) we assume that the potential vanishes on Γa, (3.10) expresses the
fact that the electric charge density q2 is imposed on Γb and (3.11) is an initial
condition.

Eqs. (3.12) represent a version of Coulomb’s law of dry friction on its
static version, where µ is the friction coefficient and µp (uν(t)− q) represents
the so-called friction bound.

In the study of Problems (P ) we consider the following assumptions on
the problem data:

The elasticity operator satisfies:

(3.15)



(a) B : Ω× Sd −→ Sd
(b) B ∈ Q∞ and there exists a constant MB > 0 such that:

‖B(x, ξ1)− B(x, ξ2)‖ ≤MB ‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ Sd, a.e. in Ω.

(c) There exists a constant mB > 0 such that: Bξ.ξ > mB |ξ|2
∀ξ ∈ Sd a.e. in Ω.

(d) The function x −→ B(x, ξ) is measurable on Ω a.e. ξ ∈ Sd.

The relaxation tensor F satisfies:

(3.16) F ∈ C([0, T ];Q∞)

The electric permittivity tensor C satisfies:

(3.17)


(a) C : Ω× Rd −→ Rd
(b) C(x,E) = (cij(x)Ej) ∀E = (Eij) ∈ Rd, a.e. in Ω

cij = cji ∈ L∞(Ω).
(c) There exists a constant mC > 0 such that:

cij(x)EiEj > mC ‖E‖2 ∀ξ ∈ Sd, a.e. in Ω.

The piezoelectric tensor E satisfies:

(3.18)


(a) E : Ω× Sd −→ Rd
(b) E(x, ξ) = (eijkh(x)ξij) ∀ξ = (ξij) ∈ Sd, a.e. in Ω
(c) eijk = eikj ∈ L∞(Ω)

The tensor E∗ = E∗(e∗ijk) transposed E satisfies the property

(3.19) Eσ.v = σ.E∗υ ∀σ ∈ Sd, v ∈ Rd.
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The contact function p : Γ3 × R −→ R+ satisfies:

(3.20)


(a) There exists Lp > 0 such that:
|p (x, u1)− p (x, u2)| 6 Lp |u1 − u2| ∀u1, u2 ∈ R, a.e. x ∈ Γ3;

(b) x 7−→ pr (x, u) is Lebesgue measurable on Γ3, ∀ u ∈ R;
(c) x 7−→ pr (x, u) = 0 for u 6 0, a.e. x ∈ Γ3.

In addition, we assume that

(3.21) q ∈ L2 (Γ3) , q > 0, a.e. x ∈ Γ3.

(3.22) γτ , γν ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) , γτ , γν , εa > 0, a.e. x ∈ Γ3.

The forces have regularity

(3.23) ϕ0 ∈ C ([0, T ] ;H) , ϕ2 ∈ C
(

[0, T ] ;L2 (Γ2)d
)
.

The electric charges q0 and q2 check:

(3.24) q0 ∈ C ([0, T ] ;H) , q2 ∈ C
(

[0, T ] ;L2 (Γb)
d
)
.

To reflect the fact that the foundation is isolating, we assume that:

(3.25) q0(t) = 0 on Γ3 ∀t ∈ [0, T ].

And finally, the initial data β0 satisfies

(3.26) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.

4. VARIATIONAL FORMULATION

It follows from Riesz-Fréchet ’s representation theorem that there exists
a function f : [0, T ] −→ V such that

(4.1) (f(t), v)V =

∫
Ω
ϕ0(t)vdx+

∫
Γ2

ϕ2vda ∀v ∈ V.

By the same argument, it follows that there exists a function q : [0, T ] −→ W
such that

(4.2) (q(t), ψ)V =

∫
Ω
q0(t)ψdx+

∫
Γ2

q2ψda ∀ψ ∈W.

(3.23) and (3.24) imply that:

(4.3) f ∈ C ([0, T ] ;H) and q ∈ C ([0, T ] ;W ) .

We define the adhesion functional jad : L∞ (Γ3) × V × V −→ R, the
normal compliance functional jcn : V × V −→ R and the friction functional
jfr : V × V −→ R as follows:
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(4.4) jad(β, u, v) =

∫
Γ3

−(γνβ
2Rν(uν)vν + γτβ

2Rτ (uτ )vτ )da,

(4.5) jcn(u, v) =

∫
Γ3

p(uν − q)vνda,

(4.6) jfr(u, v) =

∫
Γ3

µp (uν(t)− q) . |vτ | da.

By using a standard procedure based on Green’s formula with (2.4) and
(2.11) we prove that if u, σ, ϕ and D are regular functions and satisfying the
equations and conditions (3.1)–(3.12), then

(4.7)

(σ(t), ε(u(t)))Q + jad(β(t), u(t), v) + jcn(u(t), v − u(t))

+jfr(u(t), v)− jfr(u(t), u(t)) ≥ (f(t), v − u(t))V

∀v ∈ V, t ∈ [0, T ],

(4.8) (D(t),∇ψ)H + (q(t), ψ)W = 0 ∀ψ ∈W.

Take σ(t) in (4.7) by its expression given by (3.1) and D(t) by its ex-
pression given by (3.2) and adding the equations (3.8) and (3.11) with E(ϕ) =
−∇ϕ, we associate to Problem (P ) the following variational formulation:

Problem (PV ). Find a displacement field u : [0, T ] −→ V , an electric
potential ϕ : [0, T ] −→ W and a bonding field β : [0, T ] −→ L∞ (Γ3) , such
as u(t) ∈ V, ϕ(t) ∈W and

(4.9)

(Bε(u(t)), ε(v − u(t)))Q +
(∫ t

0 F(t− s)ε(u(s))ds, ε(v − u(t))
)
Q

+ (E∗∇ϕ(t), ε(v − u(t)))Q + jad(β(t), u(t), v − u(t))

+ jcn(u(t), v − u(t)) + jfr(u(t), v)− jfr(u(t), u(t))

≥ (f(t), v − u(t))V ∀v ∈ V, t ∈ [0, T ],

(4.10) (C∇ϕ(t),∇ψ)H − (Eε(u(t),∇ψ)H = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ],

(4.11)

β̇(t) = −
[
β(t)

(
(γνRνuν(t))2 + γτ ‖Rτ (uτ (t))‖2

)
− εa

]
+

a.e. t ∈ (0, T ), a.e. x ∈ Γ3,

β(0) = β0.
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5. EXISTENCE AND UNIQUENESS

The main result we prove in this section is the following.

Theorem 5.1. Assume that (2.15)–(2.25) hold, then there exists a con-

stant L0 > 0 such that if Lp

(
1 + ‖µ‖L∞(Γ3)

)
< L0, the problem (PV ) has a

unique solution (u, ϕ, β) with regularity:

u ∈ C([0, T ] ;V ),(5.1)

ϕ ∈ C([0, T ] ;W ),(5.2)

β ∈ W 1,∞ (0, T ;L2(Γ2)
)
∩B.(5.3)

The proof of this theorem will be carried out in several steps. We assume
in what follows that (3.1) − (3.26) hold and also, everywhere in this section,
c will represent a strictly positive constant independent on time and whose
value may change from place to place. First, for β ∈ B we state the following
auxiliary problem:

Problem (P βV ). Find a displacement field uβ : [0, T ] −→ V and an elec-
tric potential ϕβ : [0, T ] −→W such that:

(5.4)

(Bε(uβ(t)), ε(v − uβ(t)))Q +
(∫ t

0 F(t− s)ε(u(s))ds, ε(v − u(t))
)
Q

+ (E∗∇ϕβ(t), ε(v − uβ(t)))Q + jad(β(t), uβ(t), v − uβ(t))

+ jcn(uβ(t), v − uβ(t)) + jfr(uβ(t), v)− jfr(uβ(t), uβ(t))

≥ (f(t), v − uβ(t))V ∀v ∈ V, t ∈ [0, T ]

(5.5)
(C∇ϕβ(t),∇ψ)H − (Eε(uβ(t),∇ψ)H = (q(t), ψ)W

∀ψ ∈W, t ∈ [0, T ].

We have the following lemma:

Lemma 1. The problem (P βV ) has a unique solution (uβ, ϕβ) ∈ C([0, T ] ;
V ×W ).

Proof. To prove this lemma, consider the product Hilbert space X =
V ×W with the inner product defined by

(5.6) 〈x, y〉 = 〈(u, ϕ), (v, ψ)〉 = (u, v) + (ϕ,ψ), x, y ∈ X

and the associated norm ‖.‖X .
For all η ∈ C([0, T ] ;Q) and t ∈ [0, T ], we introduce the operator

Λβ : X −→ X and the element fη(t) ∈ X defined for all x = (u, v) and
y = (ϕ,ψ) by
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〈Λβ(t)x, y〉 = (Bε(u), ε(v))Q + (E∗∇ϕ, ε(v))Q + (C∇ϕ,∇ψ)H(5.7)

− (Eε(u),∇ψ)H + jad(β(t), u, v),

(5.8) 〈fη(t), y〉 = (f(t), v)V + (q(t), ψ)W − (η(t), ε(v))Q

and let

(5.9) j(x, y) = jcn(u, v) + jfr(u, v). �

We introduce the following two problems:

Problem (P 1
η ). Find xβη : [0, T ] −→ X such that

(5.10)

(Bε(uβη(t)), ε(v − uβη(t)))Q + (E∗∇ϕβη(t), ε(v − uβη(t)))Q

+ (C∇ϕβη(t),∇ψ)H − (Eε(uβη(t),∇ψ)H + (η(t), ε(v − uβη(t)))Q

+jad(β(t), uβη(t), v) + jcn(uβη(t), v − (uβη(t))

+jfr(uβη(t), v)− jfr(uβη(t), uβη(t)) ≥ (f(t), v − uβη(t))V

∀v ∈ V, t ∈ [0, T ],

(5.11)
(C∇ϕβη(t),∇ψ)H − (Eε(uβη(t),∇ψ)H = (q(t), ψ)W

∀ψ ∈W, t ∈ [0, T ].

Problem (P 2
η ). Find xβη : [0, T ] −→ X such that

(5.12)
〈Λβ(t)xβη(t), y − xβη(t)〉+ j(y, xβη(t))− j(xβη(t), xβη(t))

≥ 〈fη(t), y − xβη(t)〉 ∀y ∈ X, t ∈ [0, T ].

Remark 1. The two precedent problems are equivalent in the way that if
xβη = (uβ, ϕβη) ∈ C([0, T ] ;X) is a solution of one of the problems it is

also a solution of the other problem.

We now have the following lemma:

Lemma 2. There exists a constant L0 > 0 such that if Lp(1+‖µ‖L∞(Γ3)) <

L0, the problem (P 2
η ) has a unique solution xβη ∈ C([0, T ] ;X).

Proof. To prove Lemma 2, we proceed as follows:
The functional jad is linear over the third term and therefore,

(5.13) jad(β, u,−v) = −jad(β, u, v).
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Using the properties of truncation operators (see [22]), we deduce that there
exists c such that

(5.14) jad(β1, u1, u2−u1) + jad(β2, u2, u1−u2) ≤ c
∫
|β1−β2| ‖u1 − u2‖V ds.

We take β = β1 = β2 in the last inequality, we obtain

(5.15) jad(β, u1, u2 − u1) + jad(β, u2, u1 − u2) ≤ 0.

Choose u1 = v and u2 = 0 in (5.15) and use (5.13) and (5.14), we obtain

(5.16) jad(β, v, v) ≥ 0.

The following assumptions (3.13)–(3.19) and (5.16), show that Λβ is an op-
erator Lipschitz continuous and strongly monotone, i.e.: there exists c such
that

(5.17) 〈Λβ(t)xβη(t), xβη(t)〉 ≥ c ‖xβη(t)‖2X ∀xβη(t) ∈ X.

We note that

j(y, xβη(t))− j(xβη(t), xβη(t)) = j(y, uβη(t))− j(uβη(t), uβη(t))

Next, let the set L2
+ (Γ3) defined by

L2
+ (Γ3) =

{
ϕ ∈ L2 (Γ3) ; ϕ > 0, a.e. on Γ3

}
.

For each g = (g1, g2) ∈ L2
+ (Γ3)2, we define the functional h (g, .) : V −→ R by

h (g, y) =

∫
Γ3

g1wνda+

∫
Γ3

g2 ‖wτ‖ da ∀y = (w,ψ) ∈ X,

and introduce an intermediate problem as follows

Problem (P g1 ) . Find xβη : [0, T ] −→ X such that

(5.18)
〈Λβ(t)xβη(t), y − xβη(t)〉+ h (g, y)− h (g, xβη(t)) > (f, y − xβη(t))V

∀y ∈ X.

Lemma 3. The problem (P g1 ) has a unique solution.

Proof. The functional h(g, .) is convex and lower semicontinuous, Λβ is
Lipschitz continuous and strongly monotone, we deduce that the problem (P g1 )
has a unique solution (see [24]). �

Now, to prove Lemma 2, we define the following mapping:

Ψ : L2
+ (Γ3)2 −→ L2

+ (Γ3)2

g 7−→ Ψ (g) = (p (uβηgν − q) , µp (uβηgν − q)),
then we show the following lemma.
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Lemma 4. Ψ has a unique fixed point g∗ and xβηg∗ is a unique solution
of the problem (P 2

η ).

Proof. For i = 1, 2, define the following problem.

Problem(P 2
ηgi). Find ugi ∈ V such that:

〈Λβ(t)xβηgi, y〉+ h (gi, y)− h (gi, xβηgi) > (f, y − xβηgi)V ∀y ∈ V.
Denote xβηgi by xgi and take y = xg2 in the previous inequality written for
g = g1, then take y = xg1 in the same inequality written for g = g2, by adding
the resulting inequalities, we get

〈Λβ(t)(xg1 − xg2), xg1 − xg2〉 ≤ h (g1, xg1)−h (g1, yg2) +h (g2, xg2)−h (g2, yg1) .

Then, using (2.8) and (5.17) it follows that there exists c such that

(5.19) ‖ug1 − ug2‖V 6 c ‖g1 − g2‖L2(Γ3)2 .

On the other hand, by the hypothesis on the function p and (2.8) we have

‖Ψ (g1)−Ψ (g2)‖L2(Γ3)2 6 cLp
(

1 + ‖µ‖L∞(Γ3)

)
‖xg1 − xg2‖X .

Hence, using (5.19) we deduce the estimate

‖Ψ (g1)−Ψ (g2)‖L2(Γ3)2 6 c′cLp
(

1 + ‖µ‖L∞(Γ3)

)
‖g1 − g2‖L2(Γ3)2 .

By asking L0 = 1/c′c, we deduce that Lp

(
1 + ‖µ‖L∞(Γ3)

)
< L0, Ψ is a

contraction, thus, admitting a unique fixed point g∗.
Keeping in mind that there is a unique element xg∗ satisfying the equality:

〈Λβ(t)xg∗ , y − xg∗〉+ h (Ψ(g∗), y)− h (Ψ(g∗), xg∗) > (f, y − xg∗)V ∀y ∈ Xxg∗ ,
and as h ◦ Ψ = j, we have that xβη(t) = xg∗ is a unique solution of Problem
(P 2

η ). �

Now, define the operator zβ : C([0, T ] ;Q) −→ C([0, T ] ;Q) by

(5.20) zβη(t) =

∫ t

0
F(t− s)ε(uβη(s))ds ∀η ∈ C(0, T ;Q) ∀t ∈ [0, T ].

Lemma 5. The operator zβ has a unique fixed point uβ.

Proof. Let η1, η1 ∈ C([0, T ] ;Q). By a standard computation based on
(3.16) and (5.10), we obtain

‖zβη1(t)−zβη2(t)‖Q ≤ c
∫ t

0
‖η1(t)− η2(t)‖Q ds ∀t ∈ [0, T ].

By iteration, we deduce for any positive integer n, the estimate∥∥zn
βη1 −zn

βη2

∥∥
C([0,T ];Q)

≤ cnTn

n!
‖η1 − η2‖C([0,T ];Q) ,
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which implies that a power zn
β of zβ is a contraction on the space C([0, T ] ;Q).

Thus, zn
β admits a unique fixed element ηβ ∈ C([0, T ] ;Q) which is also a unique

fixed point of zβ. �

Now, denote uβ = uβη and ϕβ = ϕβη, the couple (uβ, ϕβ) is the unique

solution of the problem (P βV ). Indeed, the existence and uniqueness follows
from Lemmas 2 and 5.

Also, in order to prove Theorem 1, we need other intermediate results.
Consider uβ the solution obtained above and define the following Cauchy

problem stated as follows:

Problem (Pad). Find a bonding field β∗ : [0, T ] −→ L∞(Γ3) such that:

β̇∗(t) = −
[
β∗(t)

(
(γνRνuβ∗ν(t))2 + γτ ‖Rτ (uβ∗τ (t))‖2

)
− εa

]
+
,(5.21)

a.e. t ∈ [0, T ],

(5.22) β∗(0) = β0.

We have the following lemma:

Lemma 6. The problem (Pad) has a unique solution β∗ ∈ W 1,∞(0, T ;
L∞(Γ3)) ∩B.

Proof. The solution β∗ belongs to the subset Θ of the set C([0, T ] ;L2(Γ2)
defined by

(5.23) Θ =
{
β ∈ C([0, T ] ;L2(Γ2)) ∩B ; β(0) = β0

}
.

Indeed, consider the mapping: Φ : Θ −→ Θ defined by

(5.24)
Φ(t) = β0 −

∫ t
0

[
β(s)

(
(γνRνuβν(s))2 + γτ ‖Rτ (uβτ (s))‖2

)
− εa

]
+
ds

∀t ∈ [0, T ],

where uβ is the first component of the solution of Lemma 1. To prove the
result in Lemma 6 we show that for a positive integer n the operator Φn is a
contraction in Θ for an integer n large enough.

Indeed, let βi, i = 1, 2 two elements of Θ, denote uβi = ui and xi =
(ui, ϕi). Let t ∈ [0, T ], from (5.14), we show that there exists c > 0

(5.25) jad(β1, u1, u2−u1)+jad(β2, u2, u1−u2) ≤ c ‖β1 − β2‖L2(Γ3) ‖u1 − u2‖V
Using the assumptions (3.15) and (3.20), we also show that there exists a
constant c such that

‖x1(t)− x2(t)‖V ≤ c ‖β1 − β2‖L2(Γ3) ‖u1 − u2‖V ,

and consequently,

(5.26) ‖u1(t)− u2(t)‖V + ‖ϕ1(t)− ϕ2(t)‖W ≤ c ‖β1(t)− β2(t)‖L2(Γ3) ,
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hence,

(5.27) ‖u1(t)− u2(t)‖V ≤ c ‖β1(t)− β2(t)‖L2(Γ3) .

We have

(5.28)

‖β1(t)−β2(t)‖L2(Γ3) ≤ c
∫ t

0

∥∥β1(s)Rν(u1ν)2−β2(s)Rν(u2ν)2
∥∥
L2(Γ3)

ds

+
∫ t

0

∥∥∥β1(s) ‖Rτ (u1τ )‖2 − β2(s) ‖Rτ (u2τ )‖2
∥∥∥
L2(Γ3)

ds.

Using the proprieties of the operators Rν and Rτ (see [24]), it follows that

(5.29) ‖β1(t)− β2(t)‖L2(Γ3) ≤

c

(∫ t

0
‖β1(s)− β2(s)‖L2(Γ3) ds+ intt0 ‖u1(s)− u2(s)‖L2(Γ3)d ds

)
.

Finally, by the Gronwall argument and (2.8), we get

(5.30) ‖β1(t)− β2(t)‖L2(Γ3) ≤ c
∫ t

0
‖u1(s)− u2(s)‖V ds,

from which we deduce:

‖Φβ1(t)− Φβ2(t)‖L2(Γ3) ≤ c
∫ t

0
‖u1(s)− u2(s)‖V ds

and taking into account (5.26) we obtain

(5.31) ‖Φβ1(t)− Φβ2(t)‖L2(Γ3) ≤ c
∫ t

0
‖β1(s)− β2(s)‖L2(Γ3) ds.

By iteration, we deduce for any positive integer n, the estimate

(5.32) ‖Φnβ1 − Φnβ2‖C([0,T ],L2(Γ3)) ≤
cnTn

n!
‖β1 − β2‖C([0,T ],L2(Γ3)) .

Then, for n large enough, the operator Φn is a contraction on C([0, T ] ;L2(Γ3)),
then Θn admits a unique fixed point β∗ ∈ Θ which is also a unique fixed point
of Θ. �

Now, we have all the ingredients to prove Theorem 1:

Existence. Let β∗ the fixed point of the operator Φ and x∗ = (u∗, ϕ∗) the

solution of problem (P β
∗

V ), again using the assumption (3.15) and one p, we
have

‖u∗(t1)− u∗(t2)‖V ≤ c
(
‖β∗(t1)− β∗(t2)‖L2(Γ3) + ‖q(t1)− q(t2)‖W

+ ‖f(t1)− f(t2)‖V
)
, ∀t1, t2 ∈ [0, T ]
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and

‖ϕ∗(t1)− ϕ∗(t2)‖V ≤ c (‖q∗(t1)− q∗(t2)‖W + ‖q(t1)− q(t2)‖W +

‖u∗(t1)− u∗(t2)‖V ) ,∀t1, t2 ∈ [0, T ].

Uniqueness. It follows by Lemmas 2, 4, 5 and 6 that the triple (u∗, ϕ∗, β∗)
is a unique solution of the problem (PV ) and with the regularity express (5.1),
(5.2) and (5.3). Finally, the uniqueness follows from the uniqueness of the fixed
point of the operator Φ, which completes the proof of Theorem 1.
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