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We directly prove that the amalgamated monotone or anti-monotone products (in
N. Muraki’s originary sense [17], for the scalar-valued case) (see also M. Popa’s
paper [22], for an operator-valued case) of some bimodule maps (in particular,
conditional expectations), and ordered-free product (in T. Hasebe’s originary sense
[8] for the scalar-valued case) of pairs of some bimodule maps defined on ∗- or C∗-
algebras preserve the (complete) positivity. As a by-product, in the same context,
we get an extension and, in particular, a new proof of R. Speicher’s theorem [24]
concerning the (complete) positivity of D. Voiculescu’s amalgamated free product
of positive conditional expectations [28]. Our approach is made in terms of Schwarz
maps. The proofs extend a scalar case technique due to M. Bożejko, M. Leinert,
and R. Speicher from [4] concerning the conditionally free product of states.
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1. INTRODUCTION

The monotone product and the anti-monotone product (which is a mono-
tone product with respect to the opposite order) of linear functionals on alge-
bras (indexed by a totally ordered set) are defined on the associated universal
free product algebra without unit, and on involutive algebras they preserve
the positivity (see, e.g., [16], [6], [17]).

The monotone product was introduced by N. Muraki in C∗-algebraic
setting to abstract the structure hidden in his monotone Fock space [17] or
M. De Giosa and Y.G. Lu’s chronological Fock space, and the corresponding
arcsine Brownian motion [14], [15], [5], [12], [13]. The mentioned Fock space is
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a special case of some structures as twisted Fock space, deformed Fock space,
or interacting Fock space (see, e.g., [17] and the references therein).

These products and the involved stochastic independences are fundamen-
tal in the so-called monotone, respectively anti-monotone quantum probability
theory and related topics (see, e.g., [1], [2], [7], [8], [9], [14], [15], [16], [22] and
the references therein).

These are two (dual) theories of the five noncommutative probability
theories (the other being R.L. Hudson’s Boson or Fermion probability theo-
ry, D.V. Voiculescu’s free probability theory, and R. Speicher and W. von
Waldenfels’ Boolean probability theory) emerged from an associative (but
noncommutative) product which fulfills a quasi-universal rule for mixed mo-
ments (according to Muraki’s work [17] on the quasi-universal products of al-
gebraic probability spaces) or even a natural product in A. Ben Ghorbal and
M. Schürmann’s spirit (due to Muraki’s classification of his natural products
[18] and U. Franz’s axiomatic study in [6]).

Franz [7] revealed that the monotone (and, by duality, anti-monotone)
product of unital functionals on algebras may be derived from a unital condi-
tionally-free (c-free, for short) product of adequate functionals in M. Bożejko
and R. Speicher’s sense (see, e.g., [4]) defined on the associated universal free
product algebra with unit. Then, M. Popa [22] expressed this connection in
the more general frame involving conditional expectations defined on algebras
over a common subalgebra, and showed the monotone product of positive
conditional expectations defined on ∗-algebras over a common C∗-algebra is
also positive.

The ordered-free product of pairs of linear functionals on algebras re-
cently introduced by T. Hasebe may be defined on the corresponding univer-
sal free product algebra as a generalization of (Voiculescu’s free product and
as well of) both the monotone and the anti-monotone product, is associative,
consists of parts of Bożejko and Speicher’s c-free products, and is also a part
of Hasebe’s indented product; which is another kind of associative (and non-
commutative) product, but defined for triples of linear functionals on algebras
(see [8]).

In this Note, we consider monotone and anti-monotone products of condi-
tional expectations and ordered-free products of pairs of conditional expecta-
tions (but also, more generally, of some bimodule maps), as parts of adequate
amalgamated c-free product maps (in F. Boca’s sense [3]) defined on (∗-, C∗-)
algebras over (respectively, endowed with a compatible bimodule structure
with respect to) a common C∗-algebra and directly prove they preserve the
(complete) positivity. As a by-product, in the same frame, we get an exten-
sion and, in particular, a new proof of Speicher’s theorem about the (complete)
positivity of Voiculescu’s amalgamated free product [28] of positive conditional
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expectations (i.e., Theorem 3.5.6 in [24]). Our statements are formulated in
terms of Schwarz maps (see, e.g., Chapter II, 9.2–9.3 in [26]). Thus, our re-
sult on the amalgamated monotone product implies the corresponding Popa’s
result in [22]. The proofs extend M. Bożejko, M. Leinert, and R. Speicher’s
method from the scalar-valued case [4] concerning the c-free product of states
on unital involutive algebras (see also [10], [11]).

2. (∗-, C∗-) ALGEBRA WITH ADJOINED ALGEBRA,
COMPLETE POSITIVITY, SCHWARZ MAP,

AMALGAMATED UNIVERSAL FREE PRODUCT (∗-, C∗-)
ALGEBRA, AMALGAMATED C-FREE PRODUCT MAP

Let B be an (associative) algebra. Let A be an algebra (over the same
field) endowed with a compatible B-B-bimodule structure, such that: b(a1a2)
= (ba1)a2, (a1b)a2 = a1(ba2), (a1a2)b = a1(a2b); for all a1, a2 ∈ A and b ∈ B.
Then the direct sum Ã := B ⊕ A is an (associative) algebra over B (i.e., A
includes B as a subalgebra) with the multiplication

(b1 ⊕ a1)(b2 ⊕ a2) := b1b2 ⊕ (b1a2 + a1b2 + a1a2), bi ∈ B, ai ∈ A.

If B has a unit 1B, and 1Ba = a1B = a, for all a ∈ A, then Ã has the
unit 1B ⊕ 0.

We may call Ã the algebra with adjoined algebra B, corresponding to A.
Remark that A = 0 ⊕ A is a two-sided ideal (of codimension equal to the
dimension of B) in Ã; and every homomorphism π of A in an algebra D
over B, which is a B-B-bimodule map (in the natural sense), extends to a
similar homomorphism π̃ of Ã in D such that the restriction π̃|B coincides
with the embedding of B into D. The algebra Ã is uniquely determined up to
an isomorphism by this universality property: Ã is generated by B and A, and
if ε is an injective homomorphism of A into an algebra D over B, such that ε
is a B-B-bimodule map, and ε(A)∩ j(B) = {0}, denoting by j the embedding
of B into D, then ε extends to an injective homomorphism of Ã into D which
is also a B-B-bimodule map.

If B and A are (complex) ∗-algebras (i.e., complex algebras endowed with
conjugate linear involutions ∗, which are anti-isomorphisms), and A is endowed
with a corresponding compatible B-B-bimodule structure (i.e., besides of the
above properties, (ab)∗ = b∗a∗, (ba)∗ = a∗b∗; for all a ∈ A and b ∈ B), then
Ã := B⊕A becomes a ∗-algebra (with a corresponding universality property)
by (b ⊕ a)∗ = b∗ ⊕ a∗; b ∈ B, a ∈ A; and every (injective) ∗-homomorphism
of A in(to) an ∗-algebra D over B, which is a B-B-bimodule map, can be
extended to a(n injective) ∗-homomorphism of Ã in(to) D which is a B-B-
bimodule map.
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Proposition 2.1. Let Bbe a C∗-algebra, and A be a C∗-algebra endowed
with a corresponding compatible B-B-bimodule structure.

Then the ∗-algebra Ã := B ⊕A endowed with the norm

‖b⊕ a‖ := sup
‖x‖≤1, x∈A

‖bx+ ax‖, b ∈ B, a ∈ A,

becomes a C∗-algebra over B, and Ã contains A as a closed two-sided ideal.

Proof. The norm on Ã is a Banach algebra norm, because it is the norm
induced from the Banach algebra of all bounded linear operators on the un-
derlying Banach space of A:

‖b⊕ a‖ = ‖bIdA + La‖
denoting by La the left multiplication (by a) operator, and by IdA the identity
operator.

The embedding of A into Ã is isometric because, for a 6= 0,

‖a‖ = ‖a(a∗/‖a‖)‖ ≤ ‖0⊕ a‖ = ‖La‖ ≤ ‖a‖.
Since A is a C∗-algebra, one infers as in the scalar case (B = C, the field

of complex numbers)

‖b⊕ a‖2 = sup
‖x‖≤1, x∈A

‖bx+ ax‖2 = sup
‖x‖≤1, x∈A

‖(bx+ ax)∗(bx+ ax)‖ ≤

≤ sup
‖x‖≤1, x∈A

‖b∗bx+(a∗b+b∗a+a∗a)x‖ = ‖(b⊕a)∗(b⊕a)‖ ≤ ‖(b⊕a)∗‖ ‖b⊕a‖.

Therefore, ‖b⊕ a‖ ≤ ‖(b⊕ a)∗‖, and thus ‖b⊕ a‖ = ‖(b⊕ a)∗‖.
Hence ‖(b⊕ a)∗(b⊕ a)‖ ≤ ‖b⊕ a‖2, and the C∗-algebra norm condition

is verified.
The embedding of B into Ã is of norm one and also isometric. �

Let A be a (complex) ∗-algebra. We consider the cone A+ of positive ele-
ments in A consisting of finite sums

∑
a∗i ai, with ai ∈ A. Thus, A+ determines

a preorder structure on the real linear subspace of self-adjoints elements in A.
For any positive integer n, let Mn(A) be the ∗-algebra of n× n matrices

[aij ] with entries from A. Every positive element M∗M in Mn(A) can be

expressed as
n∑
k=1

[a(k)∗
i a

(k)
j ]i,j=1,...,n with some a(k)

i ∈ A.When A is a C∗-algebra,

A+ = {a∗a; a ∈ A} determines an order structure on the real linear subspace
of self-adjoint elements in A, and Mn(A) becomes a C∗-algebra.

Let B be another ∗-algebra and ϕ : A → B be a linear map. We say ϕ
is Hermitian if ϕ(a∗) = ϕ(a)∗ for all a ∈ A; ϕ is positive if ϕ(A+) ⊂ B+; and
ϕ is a Schwarz map if ϕ(a∗a) ≥ ϕ(a)∗ϕ(a), for all a ∈ A.

For any positive integer n, let ϕn : Mn(A) →Mn(B) be the inflation map
given by ϕn([aij ]) = [ϕ(aij)], for [aij ] ∈Mn(A). Then ϕ is called n-positive if
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the map ϕn induced by ϕ is positive. The map ϕ is completely positive if it
is n-positive, for all positive integer n.

If B is a subalgebra of A, a linear map ϕ : A → B is a conditional
expectation of A onto B, if ϕ is a B-B-bimodule map (i.e., ϕ(ab) = ϕ(a)b,
ϕ(ba) = bϕ(a), for a ∈ A and b ∈ B), which is a projection on B (i.e.,
ϕ|B = idB); and we view (A,ϕ) or (A,ϕ, ψ), if ψ is another conditional
expectation of A onto B, as quantum probability spaces over B, according to
[27], [28].

More generally, if B and A are algebras, A being endowed with a com-
patible B-B-bimodule structure, and ϕ,ψ : A → B are B-B-bimodule maps,
we regard (A,ϕ), or (A,ϕ, ψ) as quantum B-probability spaces.

If B and A are algebras, A being also endowed with a compatible B-B-
bimodule structure, every B-B-bimodule map φ of A in B naturally extends
to a conditional expectation φ̃ of Ã := B ⊕ A, the algebra with algebra B
adjoined to A, onto B:

φ̃(b⊕ a) := b+ φ(a), for all b ∈ B, a ∈ A.

When B and A as above are ∗-algebras, Ã := B⊕A becomes a ∗-algebra
and if φ is a Hermitian B-B-bimodule Schwarz map, then the conditional
expectation φ̃ is a Hermitian Schwarz map, too.

We say that a ∗-algebra A satisfies the Combes axiom if, for every a ∈ A,
there exists a scalar λ(a) > 0 with x∗a∗ax ≤ λ(a)x∗x, for all x ∈ A.

The following criterion of positivity for a matrix over a C∗-algebra is due
to W.L. Paschke and E. Størmer (see Proposition 6.1 in [19] and Theorem 2.2
in [25]).

Proposition 2.2. Let B be a C∗-algebra and [bi,j ] ∈ Mn(B). Then

[bi,j ] ∈Mn(B)+ if and only if
n∑

i,j=1
b∗i bi,jbj ∈ B+ for all b1, . . . , bn ∈ B. �

In consequence, by Proposition 2.2, we can observe the next fact (see also,
in the unital case, Proposition 3.5.4 and Remark 3.5.5 in [24]; or Chapter II,
9.2–9.3 in [26], in the C∗-algebraic case).

Proposition 2.3. Let B be a C∗-algebra, A be a ∗-algebra such that B
is a ∗-subalgebra of A, and let ϕ : A→ B be a positive Hermitian conditional
expectation.

Then ϕ is a completely positive Schwarz map. �

The assertion below is adapted from one stated, e.g., in Chapter II, 9.2
in [26].
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Proposition 2.4. Let A be a ∗-algebra, B be a C∗-algebra, and ϕ :
A → B be a Schwarz map. If ϕ(a∗a) = ϕ(a)∗ϕ(a), for some a ∈ A, then
ϕ(x∗a) = ϕ(x)∗ϕ(a), and ϕ(a∗x) = ϕ(a)∗ϕ(x), for all x ∈ A. �

Throughout B will denote a (non-necessary unital) fixed (complex)
(∗-, C∗-) algebra.

If A is a (complex) (∗-, C∗-) algebra endowed with a (∗-)homomorphism
ε : B → A, we say that A is a (∗-, C∗-) B-algebra, and call ε the structural
morphism of the B-algebra A. (When A and B are unital, consider, as usually,
unital structural morphism, whenever it is not null.) When the structural
morphism is injective, we say that the B-algebra A is an algebra over B.
The same algebra can have different B-algebra structures. A B-algebra is an
algebra naturally endowed with a compatible B-B-bimodule structure. Every
algebra endowed with a compatible B-B-bimodule structure may be regarded
as a B-algebra with respect to the null structural morphism.

Consider the category of the (∗-, C∗-) B-algebras, with morphisms being
the (∗-)algebraic homomorphisms π : A1 → A2 making the following diagrams
commutative

A1
π−→ A2

ε1
↖ ↗ ε2

B

The amalgamated universal free product of a family of (∗-, C∗-) B-
algebras (Ai)i∈I of structural morphisms εi : B → Ai, i ∈ I, or the uni-
versal free product of a family of (∗-, C∗-)algebras (Ai)i∈I , endowed with
(∗-) homomorphisms εi : B → Ai, i ∈ I, with B amalgamated, denoted
A = ?i∈I(Ai, εi, B), is the coproduct in this category.

This (∗-, C∗-)algebra A is endowed with a structural morphism ε : B →
A, and canonical (∗-)algebraic homomorphisms ji : Ai → A such that ji ◦ εi =
ε, for all i ∈ I, A is generated by

⋃
i∈I ji(Ai), and satisfies the following univer-

sality property: whenever D is a (∗-, C∗-) B-algebra endowed with a structural
morphism η : B → D, and λi : Ai → D, i ∈ I, are (∗-)homomorphisms sat-
isfying λi ◦ εi = η, for all i ∈ I, there exists a (∗-)homomorphism λ : A → D
such that λ ◦ ji = λi, for all i ∈ I.

When the structural morphisms are embeddings, i.e., Ai are algebras
over B, this universal object A is the universal free product of (Ai)i∈I with
amalgamation over B [20], [24], [3], [28], and B identifies to a subalgebra of A;
A is commonly denoted by ∗BAi, although this notation hides the dependence
of A on the embeddings εi, i ∈ I.

Moreover, as B-B-bimodule, a realization of the universal free product
∗BAi associated to a family of (∗-, C∗-) algebras (Ai)i∈I over B, such that
Ai = B ⊕ Aoi are direct sums of B-B-bimodules Aoi being endowed with a



7 Amalgamated monotone, anti-monotone, and ordered-free products 231

compatible scalar multiplication, is (see, e.g., [3])

A = B ⊕n≥1 ⊕i1 6=···6=inA
o
i1 ⊗B . . .⊗B A

o
in =: B ⊕Ao.

When the (∗-, C∗-)algebras Ai, i ∈ I are endowed with compatible B-
B-bimodule structures, a realization (as B-B-bimodule) of the universal free
product Ao = ?i∈I(Ai, εi = 0, B), with B amalgamated, is

Ao = ⊕n≥1 ⊕i1 6=···6=in Ai1 ⊗B . . .⊗B Ain ;

and B does not identify to a (∗-, C∗-) subalgebra of Ao, if B is not {0}.
By natural operations, the above B-B-bimodules A and Ao are organized

as (∗-)algebras.
In particular, if Ai and B are C∗-algebras, A and Ao satisfy the Combes

axiom.
After separation and completion of the corresponding universal free pro-

duct ∗-algebra A, respectively Ao, in its enveloping C∗-seminorm

‖a‖ = sup
{
‖π(a)‖ ;π ∗ -representation of A (resp.Ao)

as bounded linear operators on a Hilbert space
}
,

one can realize the universal (or full) amalgamated free product ∗BAi, or the
involved ?i∈I(Ai, εi = 0, B), in the category of C∗-algebras over B, respec-
tively, of C∗-algebras endowed with (corresponding) compatible B-B-bimodule
structures.

When Ai, i ∈ I, are (∗-, C∗-)algebras over B, and, thus, they naturally
are B-algebras, we may also consider Ai as B-algebras with respect to the null
structural morphisms. If A is their universal free product with amalgamation
over B (hence with the identification of B as a subalgebra of A), and Ao

denotes their universal free product with B amalgamated (but, generally, with
the non- identification of B to a subalgebra of Ao), there exists a canonical
epimorphism of Ao onto A arising from the embeddings of Ai into A, i ∈ I,
via the universality property.

In the following, let Ai, i ∈ I, be (∗-)algebras over B, and ϕi, ψi, i ∈ I,
be (Hermitian) conditional expectations of Ai onto B. (The set I having, of
course, at least two elements.) Then Ai = B ⊕ A◦

i are direct sums of B-B-
bimodules, with Aoi = kerψi, the kernel of ψi. When ψi is a homomorphism
(which is the identity on B), then Aoi is an algebra.

The amalgamated c-free product ϕ = ∗{ψi}
B

ϕi, in Boca’s sense, of (ϕi)i∈I
with respect to ψi, i ∈ I, is the unique linear map [well-]defined on the uni-
versal free product A = ∗BAi (see, e.g.,[3]) such that:

1) ϕ|Ai = ϕi, for each i ∈ I;
2) ϕ(a1 . . . an) = ϕi1(a1) . . . ϕin(an), for all n ≥ 2, i1 6= · · · 6= in, and ak ∈

Aik , with ψik(ak) = 0, if k = 1, . . . , n; relatively to the natural embeddings of
Ai into A arising from the free product construction.
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Therefore, ϕ = ∗{ψi}
B

ϕi is a (Hermitian) conditional expectation of A
onto B, and ∗{ψi}

B
ψi is Voiculescu’s amalgamated free product [28] ψ = ∗Bψi.

When I = {1, 2}, we denote ∗{ψi}
B

ϕi by ϕ1 ψ1 ∗ ψ2 ϕ2, adopting Franz’s
notation from [7]; and ∗Bψi by ψ1∗Bψ2; moreover, if Ai are adequate (complex)
∗-algebras, we denote by A1?0A2, and A1?1A2,the non-unital, and respectively,
the unital free product ∗-algebra.

3. AMALGAMATED MONOTONE, ANTI-MONOTONE,
AND ORDERED-FREE PRODUCTS

The following definition comes from [17], [9], [22], [23].

Definition 3.1. Let B be an algebra, and I be a totally ordered set.
Let Ai be algebras endowed with compatible B-B-bimodule structures and
ϕi : Ai → B be B-B-bimodule maps; i ∈ I.

The amalgamated monotone product ϕ = BBϕi of (ϕi)i∈I is the unique
linear map well-defined on the universal free product A of (Ai)i∈I with B
amalgamated, such that:

1) ϕ | Ai = ϕi, for each i ∈ I;
2) for n ≥ 2, i1 6= · · · 6= in, and ak ∈ Aik , with k = 1, . . . , n:

i) ϕ(a1 . . . an) = ϕi1(a1)ϕ(a2 . . . an), if i1 > i2;
ii) ϕ(a1 . . . an) = ϕ(a1 . . . an−1)ϕin(an), if in−1 < in;
iii) ϕ(a1 . . . an) = ϕ(a1 . . . ak−1ϕik(ak)ak+1 . . . an), if ik−1 < ik >

ik+1 for 2 ≤ k ≤ n − 1; with respect to the natural embeddings of Ai into A
arising from the free product construction.

Thus, ϕ = BBϕi is a B-B-bimodule map. �

When I = {1, 2}, we denote BBϕi by ϕ1 BB ϕ2. By reversing the order
structure, one can define the amalgamated anti-monotone product, denoted
CBϕi, respectively, for two maps, ϕ1 CB ϕ2, and derive from the two proposi-
tions below the assertions involving it.

The next statement describes the amalgamated monotone product as a
part of an amalgamated c-free product (compare with [9] and [23]).

Proposition 3.2. Let B be an algebra, Ai be two algebras endowed with
compatible B-B-bimodule structures and ϕi : Ai → B be B-B-bimodule maps.
Consider the algebras Ãi := B ⊕ Ai, with adjoined algebra B, define the con-
ditional expectations ϕ̃i of Ãi onto B, and the homomorphisms δi of Ãi onto
B by ϕ̃i(b⊕ a) := b+ϕi(a), respectively δi(b⊕ a) := b; if b⊕ a ∈ B ⊕Ai = Ãi.

Let A be the universal free product of A1 and A2 with B amalgamated,
Ã := Ã1 ∗B Ã2 be the universal free product of Ã1 and Ã2 with amalgamation
over B, and δ := δ1 ∗B δ2.
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Then A = ker δ, Ã = B ⊕ A is the algebra with adjoined algebra B,
corresponding to A, and ϕ1 BB ϕ2 = ϕ̃1 δ1 ∗ ϕ̃2

ϕ̃2 | A. �

The proposition below presents the link between the amalgamated mono-
tone product and the amalgamated c-free product map considered in [7] and
[22] as the monotone product of unital functionals, respectively, of conditional
expectations (compare with Proposition 3.1 in [7] or Theorem 6.6 in [22]).

Proposition 3.3. Let Bbe an algebra. Let Ai be two algebras over B,
such that A.1 = B ⊕ A◦

1, A
◦
1 being an algebra endowed with compatible B-B-

bimodule structure, and ϕi be conditional expectations of Ai onto B. Let δ1 be
the unique homomorphism of A.1 onto B such that A◦

1 = ker δ1, and consider
the B-B-bimodule map ϕ◦1 := ϕ1 | A◦

1.
Let A := A1 ∗B A2 be the universal free product of A.1 and A.2, with

amalgamation over B, and A◦ be the universal free product of A◦
1 and A.2 with

B amalgamated. Let ϕ := ϕ1 δ1 ∗ ϕ2 ϕ2 : A → B be the amalgamated c-
free product conditional expectation, and ϕ◦ := ϕ◦1 BB ϕ2 : A◦ → B be the
amalgamated monotone product B-B-bimodule map.

Then ϕ◦ = ϕ ◦ j, j being the canonical homomorphism of A◦ in A,
arising from the embeddings A◦

1 ↪→ A.1 ↪→ A and A.2 ↪→ A, via the universality
property. �

If B and Ai are ∗-algebras, and ϕi and δ1 are Hermitian, then the above
maps ϕ, ϕ◦ and j preserve the natural involutions.

Adopting the terminology from [7], [8], and [22], we consider, in the
sequel, ϕ1 δ1 ∗ ϕ2 ϕ2 as the amalgamated monotone product conditional ex-
pectation of ϕi, if ϕi are conditional expectations, as above; thus, in the scalar-
valued case B = C, we consider this map as the unital monotone product. By
duality, we may also consider unital versions of the anti-monotone products.

Let B be a ∗-algebra, as above, let Ai be ∗ -algebras over B, let ψi be
(Hermitian) conditional expectations of Ai onto B, and Aoi = kerψi, i ∈ I.
Now I is an arbitrary set having at least two elements.

The lemma below is a generalization of Lemma 2.1 (established for states)
in [4]. Its proof is similar to the scalar case, via the natural decompositions
Ai � a = ψi(a) + a◦ ∈ B ⊕A◦

i .
Denote by W = {a1 . . . an; n ≥ 1, ak ∈ Aoik , i1 6= · · · 6= in} the set of

reduced words in A = ∗BAi.
For w = a1 . . . an ∈ W , call n the length of w and a1 the first letter

of w. If x =
∑

k w
(k) ∈ Ao, call the length of x the maximal length in this

representation of x.

Lemma 3.4. Let ϕi, ψi : Ai → B be Hermitian conditional expectations;
i ∈ I.
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Let ϕ = ∗{ψi}
B

ϕi be the amalgamated c-free product of(ϕi)i∈I with respect
to ψi, i ∈ I, defined on A = ∗BAi.

Consider two words x1 = y1 . . . yn, and x2 = z1 . . . zm in W .

(1) If y1 and z1 do not belong to the same Aoi , then

ϕ(x∗1x2) = ϕ(x1)∗ϕ(x2).

(2) Let a ∈ Ai, for some i ∈ I. If y1, z1 /∈ Aoi , then

ϕ(x∗1ax2) = ϕ(x∗1ψi(a)x2)− ϕ(x1)∗ψi(a)ϕ(x2) + ϕ(x1)∗ϕi(a)ϕ(x2). �

The folowing assertion implies Proposition 6.2 in [22].
Throughout when we consider positive conditional expectations, we as-

sume Hermitian maps.

Proposition 3.5. Let B be a C∗-algebra. Let Ai be two ∗-algebras over
B, and A := A1 ∗B A2.

Let ϕ1, δ1 be a positive conditional expectation, and, respectively, a ∗-
homomorphism of A1 onto B such that δ1|B = idB. Let ϕ2 be a positive
conditional expectation of A2 onto B.

Then the ∗-algebraic amalgamated monotone product ϕ = ϕ1 BB ϕ2 :=
ϕ1 δ1 ∗ ϕ2 ϕ2 is a Schwarz map.

Thus, ϕ is a positive conditional expectation of A onto B. As quantum
probability spaces over B, (A1, ϕ1) BB (A2, ϕ2) = (A,ϕ1 BB ϕ2).

Proof. Let Ao1 = ker δ1, and Ao2 = kerϕ2. In view of Lemma 3.4, it suffices
to prove the asserted property for every word x(i) in Ao represented as

∑
k

w(k)

with w(k)∈W having the first letter in a same Aoi ; if i ∈ {1, 2}.
Suppose that x(i) has p terms of length one; else, the argument is similar.

Thus, let x(i) =
p∑

k=1

a(k)+
N∑

k=p+1

a(k)y(k), with all a(k) ∈ Aoi ; and y(k) ∈W ,

but the first letter of y(k) does not belong to Aoi .
Since ϕi = ϕ|Ai are B-B-bimodule maps, we deduce, by Lemma 3.4,

ϕ(x(i)∗x(i))− ϕ(x(i))∗ϕ(x(i)) = b(i) + ϕi(x◦(i)∗x◦(i))− ϕi(x◦(i))∗ϕi(x◦(i)),

with

x◦(i) :=
p∑

k=1

a(k) +
N∑

k=p+1

a(k)ϕ(y(k)) ∈ Ai,

and

b(1) := ϕ(y∗y)− ϕ(y)∗ϕ(y),
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where y :=
N∑

k=p+1

δ1(a(k))y(k) ∈ A◦ has the length less than the length of x(1);

respectively,

b(2) :=
N∑

k,l=p+1

[
ϕ(y(k)∗ϕ2(a(k)∗a(l))y(l))− ϕ(y(k))∗ϕ2(a(k)∗a(l))ϕ(y(l))

]
.

One may represent ϕ2(a(k)∗a(l)) =
∑
r
b
(k)∗
r b

(l)
r , with some b(k)r ∈ B, via

the complete-positivity of ϕ2 (according to Proposition 2.3), and thus one
may express

b(2) =
∑
r

[
ϕ(x(r)∗x(r))− ϕ(x(r))∗ϕ(x(r))

]
,

where x(r) =
N∑

k=p+1

b
(k)
r y(k) ∈ Ao has the length less than the length of x(2).

Therefore, one concludes by induction on the length of the x(i)′ s, because
every ϕi is a Schwarz map. �

Corollary 3.6. Let Ai be two unital (complex) ∗-algebras such that
A1 = C ⊕ A◦

1 (direct sum of linear spaces), A◦
1 being even an algebra, and ϕi

be (unital positive functionals, i.e.) states of Ai.
Let ϕ = ϕ1Bϕ2 be their unital monotone product, defined on the ∗-algebra

A := A1 ∗1 A2.
Then ϕ(a∗a) ≥ |ϕ(a)|2, for all a ∈ A.
Thus, ϕ is a state, too. �

From Boca’s main result in [3, Theorem 3.1], M. Popa in [23] derived a
theorem concerning the complete positivity of the amalgamated conditionally
monotone product involving unital maps between C∗-algebras. The method
presented in our Note is more elementary and does not use the above cited
Boca’s result. (In fact, our method also permits a simpler new proof of Boca’s
main result in [3], and a corresponding extension-for slightly more general
maps- of this theorem stated by Popa.) Let expose our statement for the
amalgamated monotone product, via Proposition 3.2.

Corollary 3.7. Let B be a C∗-algebra. Let Aibe two ∗-algebras endo-
wed with compatible B-B-bimodule structures, and ϕi : Ai → B be Hermitian
B-B-bimodule Schwarz maps. Let A be the universal free product of (Ai)i with
B amalgamated.

Then the ∗-algebraic amalgamated monotone product of B-B-bimodule
maps ϕ = ϕ1 BB ϕ2 is a Schwarz map of A in B.

Thus, ϕ is a (completely) positive B-B-bimodule map. As quantum B-
probability spaces, (A1, ϕ1) BB (A2, ϕ2) = (A,ϕ1 BB ϕ2). �
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The statement involving the monotone product in Muraki’s originary
sense [17] is the following

Corollary 3.8. Let Ai be two (complex) ∗-algebras, and ϕi be linear
functionals on Ai, such that their unitizations are states. Let ϕ = ϕ1 B ϕ2 be
their monotone product, defined on the ∗-algebra A := A1 ∗0 A2.

Then ϕ(a∗a) ≥ |ϕ(a)|2, for all a ∈ A. Thus, ϕ is positive. �

By duality, we may establish the assertions corresponding to the (amal-
gamated) anti-monotone product, of course.

We should mention here that M. Popa has in [22] and [21] stated two
theorems about amalgamated conditionally free products which are more gen-
eral than the results exposed in this Note. However, his proofs are incomplete,
as we may

Remark 3.9. Indeed, for ϕ = ϕ1 ψ1 ∗ ψ2 ϕ2 defined on A := A1 ∗B A2,
and a = a1a2 ∈ A, with arbitrary ak ∈ kerψik , i1 6= i2, his computation (see
[22, page 323] and [21, page 310]) gives ϕ(a∗2a

∗
1a1a2) = ϕ(a2)∗ϕ(a∗1a1)ϕ(a2).

This is true only if ψi1(a
∗
1a1) = 0; and this condition is fulfilled if ψi1 is

a homomorphism.
Otherwise, the equation above is equivalent to ϕi2((ba2)∗ba2) = ϕi2(ba2)∗

ϕi2(ba2), denoting b∗b := ψi1(a
∗
1a1) ∈ B+, with b 6= 0.

Therefore, in view of (Proposition 2.3 and) Proposition 2.4, one could
deduce ϕi2(xba2) = ϕi2(x)bϕi2(a2), for all x ∈ Ai2

, and all a2 ∈ kerψi2 ;
and then ϕi2 should satisfy the condition ϕi2(xby) = ϕi2(x)bϕi2(y), for all
x, y ∈ Ai2

, since ϕi2 is a conditional expectation.
In particular, when B = C (the field of complex numbers, as before), it

would result that ϕi2 must be a ∗-homomorphism.
In conclusion, the proofs in [22, Theorem 6.5] and [21, Theorem 2.3]

work, in the most general case, when ψi are ∗-homomorphisms; i.e., for the
amalgamated Boolean product ϕ1 δ1 ∗ δ2 ϕ2, in Franz’s notation; and for
a unital C∗-algebra B, and unital maps, because it is used Speicher’s Theo-
rem 3.5.6 in [24]. �

The next statement extends Proposition 3.5.

Theorem 3.10. Let B be a C∗-algebra. Let Ai be two ∗-algebras over
B; and A := A1 ∗B A2.

Let ϕ1, ψ1 be positive conditional expectations of A1 onto B, and let ϕ2

be a positive conditional expectation of A2 onto B.
Then the ∗-algebraic amalgamated c-free product ϕ := ϕ1 ψ1 ∗ ϕ2 ϕ2 is

a Schwarz map.
Thus, ϕ is a positive conditional expectation of A onto B.
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Proof. Denote now Ao1 = kerψ1, and Ao2 = kerϕ2.
By Lemma 3.4, as above, it is enough to verify the necessary property for

every x(i) in Ao represented as
∑
k

w(k) with w(k) ∈ W having the first letter

in a same Aoi ; if i ∈ {1, 2}.
In the same way, assume that x(i) has p terms of length one, i.e., x(i) =

p∑
k=1

a(k) +
N∑

k=p+1

a(k)y(k), with all a(k) ∈ Aoi ; and y(k) ∈ W , but the first letter

of y(k) does not belong to Aoi ; otherwise, the argument is similar. Then we

infer, via the same Lemma 3.4, with x◦(i) :=
p∑

k=1

a(k) +
N∑

k=p+1

a(k) ϕ(y(k)) ∈ Ai

again, that

ϕ(x(i)∗x(i))− ϕ(x(i))∗ϕ(x(i)) = b(i) + ϕi(x◦(i)∗x◦(i))− ϕi(x◦(i))∗ϕi(x◦(i)),

where this time

b(1) :=
N∑

k,l=p+1

[
ϕ(y(k)∗ψ1(a(k)∗a(l))y(l))− ϕ(y(k))∗ψ1(a(k)∗a(l))ϕ(y(l))

]
,

and

b(2) :=
N∑

k,l=p+1

[
ϕ(y(k)∗ϕ2(a(k)∗a(l))y(l))− ϕ(y(k))∗ϕ2(a(k)∗a(l))ϕ(y(l))

]
,

because ϕi = ϕ|Ai are B-B-bimodule maps. The complete-positivity of both
ψ1 and ϕ2, as before (by Proposition 2.3), ensures us we may represent
ψ1(a(k)∗a(l)) =

∑
r
b
(k)∗
r b

(l)
r , with some b(k)r ∈B, and, respectively, ϕ2(a(k)∗a(l)) =∑

s
b
(k)∗
s b

(l)
s , with some b(k)r , b

(k)
s ∈ B.

Consequently, we may express b(1) =
∑
r

[
ϕ(x(r)(1)∗x(r)(1))−ϕ(x(r)(1))∗

ϕ(x(r)(1))
]
, and b(2) =

∑
s

[
ϕ(x(s)(2)∗x(s)(2)) − ϕ(x(s)(2))∗ϕ(x(s)(2))

]
, where

x(r)(1) =
N∑

k=p+1

b
(k)
r y(k) ∈ Ao, and x(s)(2) =

N∑
k=p+1

b
(k)
s y(k) ∈ Ao have the length

less than the length of x(1), and respectively, that of x(2).
In conclusion, every ϕi being a Schwarz map (due to the same Proposi-

tion 2.3), the proof completes by induction on the length of the x(i)′s. �

Thus, we get a new proof concerning the (complete) positivity of Voicu-
lescu’s amalgamated free product, due to the well-known associativity property
of this product. The next consequence implies Speicher’s Theorem 3.5.6 in [24]
(stated for a unital C∗-algebra B, and unital maps).
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Corollary 3.11. Let B be a C∗-algebra, and I be a set having at least
two elements. Let Ai be ∗-algebras over B, endowed with positive conditional
expectations of Aionto B; i ∈ I. Let A = ∗BAi be the ∗-algebraic amalgamated
free product.

Then the ∗-algebraic amalgamated free product ϕ := ∗ B ϕi is a Schwarz
map.

Thus, ϕ is a positive conditional expectation of A onto B. As quantum
probability spaces over B, ∗B(Ai, ϕi) = (A,ϕ). �

The previous facts have versions in terms of more general B-B-bimodule
maps.

Corollary 3.12. Let B be a C∗-algebra, and I be a set having at least
two elements. Let Ai be ∗-algebras endowed with compatible B-B-bimodule
structures, and ϕi : Ai → B be Hermitian B-B-bimodule Schwarz maps. Con-
sider the ∗-algebras Ãi := B ⊕ Ai, with adjoined algebra B, and the condi-
tional expectations ϕ̃i of Ãi onto B, defined by ϕ̃i(b ⊕ a) := b + ϕi(a); if
b⊕ a ∈ B ⊕Ai = Ãi; i ∈ I.

Let A be the universal free product of (Ai)i∈I with B amalgamated.
Then the ∗-algebraic amalgamated free product ?Bϕi := (?Bϕ̃i) | A is a

B-B-bimodule Schwarz map. As quantum B-probability spaces, ∗B(Ai, ϕi) =
(A, ?Bϕi). �

Corollary 3.13. Let Bbe a C∗-algebra. Let Ai be two ∗-algebras en-
dowed with compatible B-B-bimodule structures, and ϕi : Ai → B be Hermitian
B-B-bimodule Schwarz maps. Let ψ1 be a Hermitian B-B-bimodule Schwarz
map of A1 in B.

Consider the ∗-algebras Ãi := B ⊕ Ai, with adjoined algebra B, the
conditional expectations ϕ̃i of Ãi onto B, and ψ̃1 of Ã1 onto B, defined by
ϕ̃i(b⊕ a) := b+ ϕi(a), and ψ̃1(b⊕ a) := b+ ψ1(a); if b⊕ a ∈ B ⊕Ai = Ãi.

Let A be the universal free product of (Ai)i∈{1,2} with B amalgamated.
Then the ∗-algebraic amalgamated c-free product ϕ1 ψ1 ∗ϕ2 ϕ2 := ϕ̃1ψ̃1

∗ϕ̃2

ϕ̃2 | A is a B-B-bimodule Schwarz map. �

In order to recover the ordered-free product we need the following result,
which can be proved analogously.

Theorem 3.14. Let B be a C∗-algebra. Let Ai be two ∗-algebras over
B; and A := A1 ∗B A2.

Let ϕ1 be a positive conditional expectation of A1 onto B, and let ϕ2, ψ2

be positive conditional expectations of A2 onto B.
Then the ∗-algebraic amalgamated c-free product ϕ := ϕ1 ϕ1 ∗ ψ2ϕ2 is a

Schwarz map. Thus, ϕ is a positive conditional expectation of A onto B.
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Proof. We sketch the proof for the convenience of the reader. In the light
of the preliminary Lemma 3.4, it suffices to check the asserted condition for
every x(i) in Ao represented as

∑
k

w(k) with w(k) ∈ W having the first letter

in a same Aoi ; if i ∈ {1, 2}; letting now Ao1 = kerϕ1, and Ao2 = kerψ2.

Assuming that x(i) has p terms of length one, i.e., x(i) =
p∑

k=1

a(k) +

N∑
k=p+1

a(k)y(k), with every a(k) ∈ Aoi ; and y(k) ∈ W , but the first letter of y(k)

does not belong to Aoi , we get again, in the same way as before, with

x◦(i) :=
p∑

k=1

a(k) +
N∑

k=p+1

a(k)ϕ(y(k)) ∈ Ai,

that

ϕ(x(i)∗x(i))− ϕ(x(i))∗ϕ(x(i)) = b(i) + ϕi(x◦(i)∗x◦(i))− ϕi(x◦(i))∗ϕi(x◦(i)),

where now

b(1) :=
N∑

k,l=p+1

[
ϕ(y(k)∗ϕ1(a(k)∗a(l))y(l))− ϕ(y(k))∗ϕ1(a(k)∗a(l))ϕ(y(l))

]
,

and

b(2) :=
N∑

k,l=p+1

[
ϕ(y(k)∗ψ2(a(k)∗a(l))y(l))− ϕ(y(k))∗ψ2(a(k)∗a(l))ϕ(y(l))

]
.

It remains only to use the complete-positivity of both ϕ1 and ψ2 (by
Proposition 2.3), to represent ϕ1(a(k)∗a(l)) =

∑
r
b
(k)∗
r b

(l)
r , and respectively

ψ2(a(k)∗ a(l)) =
∑
s
b
(k)∗
s b

(l)
s ; then, as in the previous proof, b(1) =

∑
r

[
ϕ(x(r)(1)∗

x(r)(1))−ϕ(x(r)(1))∗ϕ(x(r)(1))
]
, and b(2) =

∑
s

[
ϕ(x(s)(2)∗x(s)(2))−ϕ(x(s)(2))∗

ϕ(x(s) (2))
]
; denoting x(r)(1) =

N∑
k=p+1

b
(k)
r y(k) ∈ Ao, and x(s)(2) =

N∑
k=p+1

b
(k)
s y(k)

∈ Ao, with some b(k)r , b
(k)
s ∈ B. �

Corollary 3.15. Let B be a C∗-algebra. Let Ai be two ∗-algebras over
B; and A := A1 ∗B A2.

Let ϕ1 be a positive conditional expectation of A1 onto B. Let ϕ2, δ2 be
a positive conditional expectation, and, respectively, a ∗-homomorphism of A2

onto B such that δ2|B = idB.
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Then the ∗-algebraic amalgamated anti-monotone product ϕ = ϕ1 CB

ϕ2 := ϕ1 ϕ1 ∗ δ2 ϕ2 is a Schwarz map. Thus, ϕ is a positive conditional
expectation of A onto B. As quantum probability spaces over B, (A1, ϕ1) CB

(A2, ϕ2) = (A,ϕ1 CB ϕ2). �

Corollary 3.16. Let B be a C∗-algebra. Let Ai be two ∗-algebras en-
dowed with compatible B-B-bimodule structures, and ϕi : Ai → B be Hermitian
B-B-bimodule Schwarz maps. Let ψ2 be a Hermitian B-B-bimodule Schwarz
map of A2 in B.

Consider the ∗-algebras Ãi := B ⊕ Ai, with adjoined algebra B, the
conditional expectations ϕ̃i of Ãi onto B, and ψ̃2 of Ã2 onto B, defined by
ϕ̃i(b ⊕ a) := b + ϕi(a), and ψ̃2(b ⊕ a) := b + ψ2(a); if b ⊕ a ∈ B ⊕ Ai = Ãi;
i ∈ {1, 2}.

Let A be the universal free product of (Ai)i∈{1,2} with B amalgamated.
Then the ∗-algebraic amalgamated c-free product ϕ1 ϕ1∗ ψ2ϕ2 := ϕ̃1 ϕ̃1

∗
ψ̃2

ϕ̃2 | A is a B-B-bimodule Schwarz map. �

Corollary 3.17. Let Ai be two unital (complex) ∗-algebras, such that
A2 = C ⊕A◦

2 (direct sum of linear spaces), A◦
2 being an algebra too, and ϕi be

states of Ai.
Let ϕ = ϕ1 C ϕ2 be their unital anti-monotone product, defined on the

∗-algebra A := A1 ∗1 A2. Then ϕ(a∗a) ≥ |ϕ(a)|2, for all a ∈ A. Thus, ϕ is a
state, too. �

We get the following statement via the dual of Proposition 3.2.

Corollary 3.18. Let B be a C∗-algebra. Let Ai be two ∗-algebras en-
dowed with compatible B-B-bimodule structures, and ϕi : Ai → B be Hermi-
tian B-B-bimodule Schwarz maps. Consider the ∗-algebras Ãi := B⊕Ai, with
adjoined algebra B, define the conditional expectations ϕ̃i of Ãi onto B, and
the ∗-homomorphism δ2 of Ã2 onto B by ϕ̃i(b ⊕ a) := b + ϕi(a), respectively
δ2(b⊕ a) := b; if b⊕ a ∈ B ⊕Ai = Ãi, i ∈ {1, 2}.

Let A be the universal free product of (Ai)i∈{1,2} with B amalgamated.
Then the ∗-algebraic amalgamated anti-monotone product of B-B-bimo-

dule maps
ϕ = ϕ1 CB ϕ2 := ϕ̃1 ϕ̃1

∗ δ2 ϕ̃2 | A
is a Schwarz map of A in B. Thus, ϕ is a positive B-B-bimodule map. As
quantum B-probability spaces, (A1, ϕ1) CB (A2, ϕ2) = (A,ϕ1 CB ϕ2). �

The assertion involving the anti-monotone product in Muraki’s originary
sense [17] is

Corollary 3.19. Let Ai be two (complex) ∗-algebras, and ϕi be linear
functionals on Ai, such that their unitizations are states.
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Let ϕ = ϕ1 C ϕ2 be the anti-monotone product, defined on the ∗-algebra
A := A1 ∗0 A2. Then ϕ(a∗a) ≥ |ϕ(a)|2, for all a ∈ A. Thus, ϕ is positive,
too. �

From Theorem 3.10 and Theorem 3.14 we derive the next

Corollary 3.20. Let B be a C∗-algebra. Let Ai be two ∗-algebras over
B, and ϕi, ψi be positive conditional expectations of Ai onto B.

Then the ∗-algebraic amalgamated ordered-free product (ϕ1, ψ1) hB (ϕ2,
ψ2) := (ϕ1 ψ1 ∗ ϕ2 ϕ2 , ψ1 ψ1 ∗ ϕ2 ψ2) consists of Schwarz maps; i.e., of positive
conditional expectations of A := A1 ∗B A2 onto B.

As quantum probability spaces over B, (A1, ϕ1, ψ1) hB (A2, ϕ2, ψ2) =
(A, (ϕ1, ψ1) hB (ϕ2, ψ2)). �

Corollary 3.21. Let B be a C∗-algebra. Let Ai be two ∗-algebras en-
dowed with compatible B-B-bimodule structures, and ϕi, ψi be Hermitian B-
B-bimodule Schwarz maps of Ai in B.

Consider the ∗-algebras Ãi := B ⊕ Ai, with adjoined algebra B, and the
conditional expectations ϕ̃i, ψ̃i of Ãi onto B given by ϕ̃i(b ⊕ a) := b + ϕi(a),
and ψ̃i(b⊕ a) := b+ ψi(a); if b⊕ a ∈ B ⊕Ai = Ãi.

Let A be the universal free product of (Ai)i∈{1,2} with B amalgamated.
Then the ∗-algebraic amalgamated ordered-free product (ϕ1, ψ1) hB (ϕ2,

ψ2) := (ϕ̃1 ψ̃1
∗ ϕ̃2

ϕ̃2 | A, ψ̃1 ψ̃1
∗ ϕ̃2

ψ̃2 | A) consists of Hermitian
B-B-bimodule Schwarz maps.

As quantum B-probability spaces,

(A1, ϕ1, ψ1) hB (A2, ϕ2, ψ2) = (A, (ϕ1, ψ1) hB (ϕ2, ψ2)). �

In particular, we obtain the fact below concerning the ordered-free pro-
duct in Hasebe’s sense [8].

Corollary 3.22. Let Ai be two unital (complex) ∗-algebras, endowed
with pairs of states ϕi, ψi. Then the ordered-free product (ϕ1, ψ1)h (ϕ2, ψ2) :=
(ϕ1 ψ1 ∗ ϕ2 ϕ2, ψ1 ψ1 ∗ ϕ2 ψ2) consists of states, too. �

Remark 3.23. One can show that Voiculescu’s GNS construction [27] can
also be performed for all unital positive conditional expectation defined on a
unital ∗-algebra A satisfying the Combes axiom and valued onto a ∗-subalgebra
of A containing the unit of A, such that this subalgebra has a structure of C∗-
algebra.

Therefore, whenAi are C∗-algebras, the above amalgamated c-free, mono-
tone or anti-monotone, and ordered-free product maps extend to correspon-
ding Schwarz maps on the amalgamated universal (full) free product C∗-
algebra ∗BAi, or the involved C∗-algebra ?i∈I(Ai, εi = 0, B); via such a GNS
type construction (using, when it is necessary, Proposition 2.1). �
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In the same way as above, one can prove that the general amalgamated
conditionally free product of some extended B-B-bimodule maps (in particu-
lar, conditional expectations) defined on ∗-algebras and valued in C∗-algebras
preserves the (complete) positivity; thus, in the same context, one get, for
example, that the amalgamated indented product (in Hasebe’s originary sense
[8], for the scalar-valued case) preserves the (complete) positivity; and these
statements are also true in C∗-algebraic setting. Moreover, due to the associa-
tivity of the amalgamated indented product, these facts are valable for more
than two pairs of maps.
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