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Copula models are becoming increasingly popular for modelling dependencies bet-
ween random variables. The range of their recent applications include such fields
as analysis of extremes in financial assets and returns, failure of paired organs
in health science, and human mortality in insurance. The aim of this work is to
establish an upper bound on Lṕ-losses (2 ≤ ṕ < ∞) of the linear wavelet-based
estimator for copula function when the copula function is assumed to be bounded.
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1. INTRODUCTION

In the recent years, the copula models became an increasingly popular
tool for modeling dependencies between random variables, especially in such
fields as biostatistics, actuarial science, and finance. One of the advantages of
copula models is their relative mathematical simplicity. Another advantage is
the possibility to build a variety of dependence structures based on existing
parametric or non-parametric models of the marginal distributions. The copu-
las model has been extensively studied in a parametrical frame-work for the
distribution function C. Large classes of copulas, such as the elliptic family,
which contains the Gaussian copula and the Student copula, and the Archi-
median family, which contains the Gumbel copula, the Clayton copula and
the Frank copulas, have been identified.

Mainly, people have worked in two directions. Firstly, an important acti-
vity has concerned the modelling in view to find new copulas and methodolo-
gies to simulate data coming from these new copulas. Secondly, usual statistical
inference (estimation of the parameters, goodness-of-fit test, etc) has been de-
veloped using the copulas. As usual, the nonparametric point of view is useful
when no a priori model of the phenomenon is specified. For the practitioners,
the non-parametrical estimators could be seen as a benchmark allowing to
specify the model, comparing with the available parametrical families. This
explains the success of the nonparametric estimator of the copula.

REV. ROUMAINE MATH. PURES APPL., 57 (2012), 3, 205-213



206 A. Gannoun and N. Hosseinioun 2

Suppose that the relation between variables X and Y is of interest and
assume for simplicity that both of them are real-valued with rank statistics R
and S. Let F (x) = Pr(X ≤ x) and G(y) = Pr(Y ≤ y) be their cumulative
distribution functions. Following Sklar [19], the joint distribution function of
the pair (X,Y ) on (x, y) may be expressed in the form

(1.1) H(x, y) = C(F (x), G(y))

for some distribution function C whose margins are uniform on the interval
(0, 1). When F andG are continuous, C is unique and coincides with the distri-
bution function of the pair (U, V ) = (F (X), G(Y )). In practice, H is unknown.
A copula model for the pair (X,Y ) can then be constructed by assuming that
F,G and C belong to specific classes of distributions. An advantage of this
approach is that the copula C, which characterizes the dependence between
X and Y , can be chosen separately from the marginal models.

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the unknown distri-
bution H. Denote by Fn and Gn the empirical distributions associated with
F and G. A first step in selecting an appropriate class of copulas consists of
plotting the pairs

(1.2)
(
Ri

n
,
Si

n

)
= (Fn(Xi), Gn(Yi)), i = {1, . . . , n},

here, Ri is the rank of Xi among X1, . . . , Xn and Si is the rank of Yi among
Y1, . . . , Yn. The motivation behind this graphical approach is that the pseudo
observations (Ri

n ,
Si
n ) are close substitutes to the unobservable pairs (Ui, Vi) =

(F (Xi), G(Yi)), forming a random sample from C. We denote by c the density
of C where

c(u, v) =
∂2C(u, v)
∂u∂v

, u, v ∈ (0, 1).

This density is assumed to exist and to be square-integrable in the sequel.
Nonparametric estimators of copula densities have been suggested by

Gijbels and Mielniczuk [13] and Fermanian and Scaillet [11], who used kernel
methods, Sancetta [16] and Sancetta and Satchell [17], who employed tech-
niques based on Bernstein polynomials. Biau and Wegkamp [5] proposed esti-
mating the copula density through a minimum distance criterion. Their estima-
tor enjoys good properties but its computation entails non-trivial implemen-
tation issues that are left unaddressed. Estimation of a class of copula-based
semiparametric stationary Markov models discussed by Chen and Fan [7],
characterized by nonparametric marginal distributions and parametric copula
functions, while the copulas capture all the scale-free temporal dependence of
the processes. Dearden, Fitzsimons and Goodman [10] illustrated both the use-
fulness of copulas as a statistical technique for modelling dependence in earning
across the life-cycle, as well as contrast it with more traditional approaches for
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modelling earnings dynamics that appear in the literature. Pseudo-likelihood
estimator for copula function based on delicate empirical process theory has
been developed by Breaks and Keilegom [6] with the asymptotic normality of
the proposed estimator. Morettin, Toloi, Chiann and Miranda [14] presented
a brief review of the methods often used for copula estimation in the con-
text of independent, identically distributed random variables and discussed
their use for time series data. Finally, Genest, Masiello and Tribouley [12]
proposed a wavelet-based estimator for a copula function and the estimation
procedure is shown to be optimal in the minimax sense on a large functional
class of regular copula densities. Their approach is illustrated with actuarial
and financial data.

The rest of this paper is organized as follows. We provide a brief intro-
duction to copulas and discuss the class of wavelet-based estimator for copula
function, defined by Genest, Masiello and Tribouley [12] in Section 2. We also
discuss the class of Besov spaces as functional spaces. Section 3 provides some
Lemmas which will be used throughout our main results, while the Lp-losses
for the proposed estimator is stated in Section 4.

2. WAVELET-BASED ESTIMATORS

First, for any univariate function h(·), we denote by hjk(·) the function
2j/2h(2j .−k) where j ∈ N and k ∈ Z. Now, let φ and ψ be respectively a scaling
function and an associated wavelet function. We assume that these functions
are compactly supported on [0, L] for some L ≥ 1 and form an othonormal
basis, and we have the representation at scale j0

h(t) =
∑
k∈Z

αj0kφj0k(t) +
∑
j≥j0

∑
k∈Z

βjkψjk(t).

This construction can be easily extended to bivariate functions h(· , ·). We
build a bivariate wavelet basis as follows

φj,k(x, y) = φjk1(x)φjk2(y),

ψε
j,k(x, y) =

2∏
m=1

φ1−εm
jkm

(x)ψεm
jkm

(y),

for all k = (k1, k2) ∈ Z2 and ε = (ε1, ε2) ∈ S2 = {(0, 1), (1, 0), (1, 1)}. For any
j0 ∈ N, the set

{
φj0,k, ψ

ε
j,k | j ≥ j0, k ∈ Z2, ε ∈ S2

}
is an orthonormal basis

of L2(R2). The expansion of the analysed function on the wavelet basis splits
into the trend at the level j0 and the sum of the “details” for all the larger
levels j, j ≥ j0, is given by

h(x, y) = hj0(x, y) +Dj0h(x, y), x, y ∈ R,
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where
hj0(x, y) =

∑
k∈Z2

αj0kφj0k(x, y),

is a trend (or approximation) and Dj0h(x, y) is represented as follows

Dj0h(x, y) =
∑
j≥j0

∑
k∈Z2

∑
ε∈S2

βε
jkψ

ε
jk(x, y).

Assuming that the copula density c belongs to L2, we present wavelet proce-
dures of its estimation. Motivated by the wavelet expansion, we first estimate
the coefficients of the copula density on the wavelet basis. Given a bounded
copula density c, one can then expand it in the form (2.1) with

αj0k =
∫

(0,1)2
c(u, v)φj0k(u, v)dudv, k ∈ Z2.

If the marginal distributions F and G were known, a natural (moment-based)
estimator of αj0k would then be given by

(2.1) α̂j0k =
1
n

n∑
i=1

φj0k(F (Xi), G(Yi)).

The wavelet-based estimator of c is given by

(2.2) ĉj0(u, v) =
∑
k∈Z2

α̂j0kφj0k(u, v), (u, v) ∈ (0, 1).

When F and G are unknown, a nonparametric analogue is obtained by Ge-
nest, Masiello and Tribouley [12], upon replacing F and G by their empirical
counterparts, Fn and Gn. In view of relation (1.2), the estimator is thus rank-
based, viz.

α̃j0k =
1
n

n∑
i=1

φj0k(Fn(Xi), Gn(Yi)) =
1
n

n∑
i=1

φj0k

(
Ri

n
,
Si

n

)
.

The linear wavelet-based estimator of c is then given by

(2.3) c̃j0(u, v) =
∑
k∈Z2

α̃j0kφj0k(u, v), (u, v) ∈ (0, 1).

Note that c̃j0 may sometimes be negative on parts of its domain and fail
to integrate to 1. If in applications, an intrinsic copula density estimate is
deemed necessary, it can be derived from c̃j0 by truncation and normalization.
For recent developments and applications on wavelets see Antoniadis [1].

The purpose of this section is to study the performance of c̃j0 as an
estimator of the underlying copula density c. First, let us give the definition
of Besov spaces in terms of wavelet coefficients. This is convenient as it gives a
description in terms of sequence spaces. Then, we state two Lemmas, needed
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to establish the main results. From now on we denote K any constant that
may change from one line to another, which does not depend on j, k and n,
but depends on the wavelet basis and on ‖c‖∞ = sup(u,v)∈(0,1) |c(u, v)| and
‖c‖2 =

∫
c(u, v)2dudv.

Since we deal with wavelet methods, it is very natural to consider Besov
spaces as functional spaces because they are characterized in term of wavelet
coefficients as follows. Besov spaces depend on three parameters s > 0, 1 <
p < ∞ and 1 < q < ∞ and are denoted by Bs,p,q. Let f ∈ L2(R2) and let s
be smaller than r (wavelet regularity). Using Tribouley [20], f ∈ Bs,p,q if and
only if

‖f‖s,p,q = ‖α0.‖p +

(∑
j≥0

(
2j(s+d/2+d/p)‖βj.‖p

)q
)1/q

<∞,

where

‖βj.‖p =

( ∑
k∈Z2

∑
ε∈S2

|βε
j,k|p

)1/p

.

We assume that the copula function c belongs to the Besov space. More
precisely, it is assumed to be bounded. There are other definitions and charac-
terizations of Besov spaces; see Peetre [15] and Bergh and Loftstorm [4] for
more discussions.

3. INTERMEDIATE RESULTS

Lemma 3.1 (Rosenthal’s inequality). Let p ≥ 2 and {X1, . . . , Xn} be
independent random variables such that E(Xi) = 0, ‖Xi‖∞ < M . Then there
exists a constant C(p), depends on p, such that

E

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p
)
≤ C(p)

{
Mp−2

n∑
i=1

E|Xi|p +
( n∑

i=1

E(X2
i )
)p/2

}
.

In the theory of probability, the Glivenko-Cantelli theorem determines
the asymptotic behaviour of the empirical distribution function as the num-
ber of i.i.d. observations grows, strengthening this result by proving uniform
convergence of Fn to F . This uniform convergence of more general empirical
measures becomes an important property of the Glivenko-Cantelli classes of
functions or sets.

Lemma 3.2 (Glivenko-Cantelli’s inequality). Assume that X1, . . . , Xn are
i.i.d. random variables in R with common cumulative distribution function
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F (x). The empirical distribution function is defined by

Fn(x) =
1
n

n∑
i=1

I(−∞,x](Xi),

where IA is the indicator function, then

‖Fn − F‖∞ = sup
x∈R

|Fn(x)− F (x)| → 0 a.s.

Proof. See for example Van der Vaart [21]. �

Theorem 3.1. Let ṕ ≥ 2 and φ be a scaling function having m deriva-
tives and for arbitrary resolution level j0 ∈ N, let ĉj0 and c̃j0 be the estimators
of a copula density c defined by (2.3) and (2.4). Then there exists a constant
K such that for given (u, v) ∈ (0, 1)2 and any level j0 satisfying 2j0 ≤ n,

(3.1) E‖ĉj0 − cj0‖ṕ ≤ K
23j0

n
,

(3.2) E‖ĉj0 − c̃j0‖ṕ = op(1).

Proof. The proof of equation (3.1) requires the evaluation of

α̂j0k − αj0k =
1
n

n∑
i=1

(φj0k(F (xi), G(yi))− αj0k).

Using the definitions (2.1) and (2.3), one may easily have

E‖ĉj0 − cj0‖ṕ = E

∥∥∥∥ ∑
k∈Z2

(α̂j0k − αj0k)φj0k(x, y)
∥∥∥∥

ṕ

≤
∑
k∈Z2

E‖(α̂j0k − αj0k)‖ṕ‖φ(u)‖∞‖φ(v)‖∞.(3.3)

Using the definition (2.2), we obtain

α̂j0k − αj0k =
1
n

n∑
i=1

(φj0k(F (xi), G(yi))− αj0k).

Let us introduce the following notation

ξi = φj0k(F (xi), G(yi))− αj0k.

Since Eξi = 0 and Eξ2i ≤ 2j0‖φ(u)φ(v)‖∞‖c‖∞,

‖ξi‖∞ ≤ 2j0‖φ(u)φ(v)‖∞.
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Recall the Rosenthal’s inequality in Lemma (3.1), we easily get

(3.4)

(
1
n

n∑
i=1

Eξi

)ṕ

≤ Kn−ṕ
{

(2j0)ṕ−2n2j0 + (n2j0)ṕ/2
}
.

Since the support of the scaling function is compact, there are at most 22j

terms in the sums over k appearing in the right-hand terms of (3.3), hence by
substituting (3.4) in (3.3), we easily conclude

E‖ĉj0 − cj0‖ṕ ≤ K123j0(n1−ṕ2j0(ṕ−1) + n−ṕ/22j0ṕ/2)

= K122j0

((
2j0

n

)1−2/ṕ 2j0

n
+

2j0

n

)
.

But since n ≥ 2j0 and 1− 2/ṕ ≥ 0 imply
(

2j0

n

)1−2/ṕ ≤ 1,

E‖ĉj0 − cj0‖ṕ ≤ K2
23j0

n
.

Now for the next equation, using the definition of Autin, Le Pennec, Tri-
bouley [3],

(3.5) E‖ĉj0 − c̃j0‖ṕ = E‖
2∑

m=1

C2
mλm,j‖ṕ,

where

λ1,j = ψε
j,k1

(F (Xi))(δj(Xi)),

λ2,j = ψε
j,K1

(F (Xi))ψε
j,k2

(F (Yi))δj(Xi)δj(Yi),

with

δj(·) = ψj,km(F̂m(·))− ψj,km(Fm(·)).

Following along the lines of Autin, Le Pennec, Tribouley [3], one may easily
have

(3.6) |λm,j | ≤
m∑
´m=0

2j(m+ḿ/2)(max4(xi)m+ḿ)‖ψ‖4−ḿ
∞ 2j/2(2−ḿ), m = 1, 2

with 4(·) = F̂m(·)−Fm(·). Using (3.6) in (3.5) by using Lemma 3.2, since the
support of scaling functions is compact, we conclude the second result. �
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4. MAIN RESULTS

Now we are in a position to provide an upper bound on Lṕ -losses for
the mentioned estimator, similar to the one obtained in the case of curve
estimation by Antoniadis [1] and Doosti et al. [9] for negatively dependent
random variables. Suppose c ∈ Bs,p,q, with s ≥ 1/p, p ≥ 1.

Theorem 4.1. For ṕ ≥ max(2, p), there exists a constant K, such that

E‖c̃j0 − c‖2
ṕ ≤ K

(
26j0n−2 + 2−2j0(ś+2/ṕ+1)

)
,

where
ś = s+ 1/ṕ− 1/p.

Proof. First we decompose E‖c̃j0 − c‖2
ṕ as

E‖c̃j0 − c‖2
ṕ ≤ 2E‖c̃j0 − cj0‖2

ṕ + 2
∥∥∥∥∑

j≥j0

∑
k,ε

βε
j,kψ

ε
j,k

∥∥∥∥2

ṕ

= 2(T1 + T2).

Now, we want to find upper bounds for T1 and T2, separately. Note that√
T1 ≤ E‖c̃j0 − ĉj0‖ṕ + E‖ĉj0 − cj0‖ṕ = T11 + T12.

Using Theorem 3.1, one may easily bound the terms in T1. Next, we have√
T2 ≤ E

(∑
j≥j0

∥∥∥∥∑
k,ε

βε
j,kψ

ε
j,k

∥∥∥∥
ṕ

)
=

= E

(∑
j≥j0

2j(ś+2/ṕ+1)

∥∥∥∥∑
k,ε

βε
j,kψ

ε
j,k

∥∥∥∥
ṕ

2−j(ś+2/ṕ+1)

)
.

Using Holder inequality, with 1
q + 1

q́ = 1, the above equation implies

T2 ≤ K‖c‖ś,ṕ,q

{∑
j≥j0

2−j(ś+2/ṕ+1)q́

}2/q́

.

Now, using the continuous Sobolev injection in Donoho et al. [8], we conclude
that Bs

p,q ⊂ Bś
ṕ,q, hence one gets

T2 ≤ ‖c‖s,p,q2−2j0(ś+2/ṕ+1),

and in turn, we get

T2 ≤ K2−2j0(ś+2/ṕ+1). �
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