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Kármán’s flows on a single and between two infinite coaxial rotating disks are
famous examples of self-similar solutions of the Navier–Stokes equations. Consi-
dering the shrouded two disk systems, numerical investigations of the steady
axisymmetric solutions have shown the existence of a so called pseudo-similar
region where the velocity profiles are homothetic. In the present work, the corres-
ponding three parameter model is derived.
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1. INTRODUCTION

Rotating flows have long drawn much attention because of both techni-
cal and theoretical interests. At the beginning of the XXth century, the early
studies have been dedicated to the deflection of the surface-layer oceanic circu-
lation driven by the wind. Then, less than two decades later, Kármán initiated
the study of self-similar flows on single and between two infinite coaxial rotat-
ing disks [14, 2]. These flows constitute an outstanding example of self-similar
solutions of the Navier–Stokes equations, originally used for the study of in-
flexional instability in three-dimensional boundary layers [13].

Stimulated by the observations of Nansen in 1898, the theory carried out
by Ekman in 1905 opened the way to the understanding of the fundamental
mechanism giving rise to the steady upper-layer of the wind driven current
[8] (for example, see [12]). In the framework of the Rossby similitude, the
convective term is neglected with respect to the viscous term. In the rotating
frame of reference attached to the Earth, the equations of motion are thus
reduced to the linear balance between the Coriolis force, the pressure gradient
and the eddy friction stress in the β-plan. Therefore, the velocity field is the
result of the superposition of geostrophic and non geostrophic parts associated
with the pressure gradient and the friction respectively.

In 1921, Kármán studied the incompressible viscous flow engendered by
rotating plan which can be viewed as an infinite disk depicted in Fig. 1-a.
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Assuming that, far from the disk, the flow is wholly normal to the disk, the
Navier–Stokes equations degenerate to a one-parameter system of Ordinary
Differential Equations (ODE) named after him. The parameter γ is the ratio
of the angular velocities

γ =
Ω1

Ω0
,

where Ω1 and Ω0 �= 0 are the angular velocities of the disk and of the fluid at
infinity respectively or vice versa in the case of Bödewadt flows [3].

In 1951, Batchelor extended the Kármán self-similar model introducing
the two-parameter ODE model of the flow powered by the differential rotation
of two infinite disks sketched in Fig. 1-b. The additional parameter is the
Reynolds number based of the gap height H

ReH =
UH

ν
,

where U ≡ HΩ0 is the characteristic velocity. Fundamentally, Batchelor thus
defined the general family of the parameterized self-similar Kármán models.

(a) Kármán (b) Batchelor

(c) Enclosed two disk system

Fig. 1. Configurations of the hierarchy of the steady rotationally-
symmetric flows engendered by differential rotation fluid versus disks.

In 1996, we considered the shrouded two disk systems depicted in
Fig. 1-c. In particular, the steady axisymmetric flows were investigated nu-
merically. Adapting [10] a time-stepping pseudo-spectral code [9], the steady
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states were carried by mean of a Newton–Raphson’s method [4]. However, the
Kármán self-similar [2] does not describe the steady solution of the shrouded
two disk configuration [7, 11]. In [5], it was shown that the Reynolds number
based on H yields a good description of the steady flows and measures the
thickness of the boundary layers. In [6], a self-similar solution was shown to
exist surrounding the axis, with a recirculating zone near the end-wall. Be-
tween these two zones there is a pseudo-similar region where velocity profiles
are homothetic. The radial extension of the self-similar zone was studied for
aspect ratios within a range [3, 10]. For a tolerance of 1% for the superposition
of the velocity profile, the self-similar zone was shown to be confined in the
vicinity of the rotation axis for radial positions r ≤ 1H where H is the height
of the cavity.

(a) envelop attached to the stator (h = 0.50)

(b) envelop attached to the rotor (h = 0.00)

(c) linear boundary condition between the rotor and the stator (h = 0.00)

Fig. 2. Homothetic zone: superposition of the velocity profiles
u/r, v/r and w for various boundary conditions on the envelop [4, 6].
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For radial positions greater than H, numerical experiments suggested
that there exists a zone where the velocity profiles obey an homothetic law as
a function of the aspect ratio r = ax+h for r ∈ [h, (a−1)H] where h depends
on the boundary conditions (see Fig. 2). The so-called pseudo self-similar zone
described he self-similar property of the solution on a part of the domain.

In the present work, the family of the rescaled three-parameter model is
derived where the aditional parameter is the aspect ratio

a =
R

H
,

where R is the radial extension of the disks of the enclosed two disk system.

2. HOMOTHETIC SELF-SIMILAR MODEL

As one member of the self-similar Kármán family of rotating flows, the
key arguments merely lay on original papers of Kármán and Batchelor and
can be stated as in Proposition 2.1. But, as a proof should be constructive, a
self-contained proof is given.

Proposition 2.1. The homothetic steady axisymmetric solution of the
generalized Kármán enclosed two disk systems solves a self-similar six order
ODE governed by three parameters as follows:

ah′′′′ = −2ReH(hh′′′ + gg′),(1a)

ag′′ = 2ReH(gh′ − hg′),(1b)

y = 0, h′ = 0, g = 1, h = 0,(1c)

y = 1, h′ = 0, g = γ, h = 0.(1d)

where the dimensionless radial, tangential and axial components of the velocity
satisfy

w� = −2h(y), u� = xh′, v� = xg(y).

Proof. Let u, v and w be the radial, tangential and axial components of
the velocity field and p be the pressure. In cylindrical polar coordinates and
according to axisymmetry hypothesis, the steady Navier-Stokes equations are

1
r

∂

∂r
(ru) +

∂w

∂z
= 0,(2a)

ρ

(
u

∂u

∂r
− v2

r
+ w

∂u

∂z

)
= −∂p

∂r
+ μ

(
�u− u

r2

)
,(2b)

ρ

(
u

∂v

∂r
+

uv

r
+ w

∂v

∂z

)
= μ

(
�v − v

r2

)
,(2c)
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ρ

(
u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
+ μ�w,(2d)

with

�f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

∂2f

∂z2
.

Let H and R be the characteristic length scales in r and z directions,
respectively. If Ω0 �= 0, let

(3) U ≡ RΩ0

be the characteristic velocity in radial and tangential direction. One may re-
place Ω0 by Ω1, the following proof holds. Let W be the characteristic axial
velocity.

First, according to dimensional analysis (see e.g. [1]), we define the di-
mensionless coordinates and axial and radial components of the velocity field

(4) r = Rx, z = Hy, u = Uu�, v = Uv�, w = Ww�

and the continuity equation (2a) equivalently reads

(5)
U

aW

1
x

∂

∂x
(xu�) +

∂ w�

∂y
= 0.

Hence, preserving the full tridimensionnality of the model, the order of dimen-
sionless coefficient of the first term is one and the characteristic axial velocity
is such that

(6) U = aW.

According to the Kármán hypothesis, the axial velocity is of the form

(7) w� = φ(y) ≡ −2 h(y).

Thus, from the continuity equation (5), we deduce that the radial dimension-
less velocity is

(8) u� = xh′.

Second, from the axial component of the momentum equation (2d), we
infer that the pressure field is the superposition of radial and axial pressure
fields. Let P be the characteristic pressure. Let us remark that the axial com-
ponent of the momentum equation (2d) equivalently reads

4 hh′ = − P

ρW 2

∂p�

∂y
− 2

ν

WH
h′′.

For example, the two choices ρW 2 or ρU2 for the characteristic pressure are
possible and respectively yields

(9) p�(x, y) = −2
(

h2 +
a

Re
h′

)
+ Π(x),
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or

(10) p�(x, y) = − 2
a2

(
h2 +

a

Re
h′

)
+ Π(x).

Third, taking into account of (3), (4), (6), the radial momentum equation
(2b) is

u� ∂u�

∂x
− v�2

x
− 2 h

∂u�

∂y
= − P

ρ U2

dΠ
dx

+
1

aRe

{
1
x

∂

∂x

(
x

∂u�

∂x

)
+ a2 ∂2u

∂y2
− u�

x2

}

Furthermore, taking into account of (7), (8) yields

(11) +
P

ρ U2

1
x

dΠ
dx
−

(
v�

x

)2

= Θ(y),

where
Θ(y) ≡ a

Re
h′′′ + 2 h h′′ − (h′)2.

The non-slip condition on the disks are (1c), (1d). Considering the
boundary condition (1d) for example, the form of the tangential velocity is thus

(12) v� = x g(y).

Taking into account of (12) and differentiating the radial momentum equation
(11) with respect to y yields the equation (1a).

Fourth, taking into account of (3), (4), (6) on one hand and of (7), (8),
(12) on the other hand, the tangential momentum equation (2c) is (1b). This
ends the proof. �
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